

Creating a dogfight agent

David Solinger, Patrick Ehlert, and Leon Rothkrantz
Department of Media and Knowledge Engineering

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: {D.Solinger, P.A.M.Ehlert, L.J.M.Rothkrantz} @ ewi.tudelft.nl

Abstract

This paper describes the design and the
implementation of a prototype for a fully autonomous
agent, which can fly an airplane during a dogfight.
This project focuses on combining multiple elements
of flight automation, such as situation recognition,
decision-making and maneuver execution in one fully
autonomous agent. A flexible and modular overall
architecture is presented in which, for each element
of the flight automation process, different methods
can be implemented and replaced easily. The
methods that are used for the prototype
implementation are presented with a detailed design
and a description of the implementation. The
prototype is successfully implemented and can really
act as a competitive player during a one-to-one
dogfight in Microsoft Combat Flight Simulator. An
important conclusion is that the performance of the
whole agent is dependent on the performance of all
the different elements. This conclusion underlines the
relevance of this project, because the basis of the
project was to split the concept of flight automation
into multiple elements, so it is possible to focus on
the individual elements.

1. Introduction

Since the first airplane was build, more than 100
years ago, the capabilities of aircraft have been
improved enormously. Together with the increase in
the amount of aircraft in the air this has caused a huge
increase in the information load for a pilot. In
situations like this, humans normally start to look for
ways in which a computer can help them. So projects
have been started to investigate and design human-
support systems for use in a cockpit. The intelligent
cockpit environment (ICE) project is a project of the
Knowledge Based Systems group of the Delft
University of Technology. The goal of the ICE
project is to design, test and evaluate computational
techniques that can be used in the development of
intelligent situation-aware crew assistance systems
[Ehlert, 2003]. This paper described a part of the ICE
project in which a fully autonomous agent is created.

Within the ICE project different areas of flight
automation have been addressed, like: situation
recognition, decision-making, flight planning and
flight control. This resulted in a number of ideas and
methods for modern flight automation. Most of them
have successfully been tested, but not in combination
with other ideas. The ideas are not combined or the
influence of one task on another is not studied. For
example, a good situation recognition method can
maybe improve the decision-making. In this project
multiple ideas and methods of the ICE project are
combined in one program. All necessary tasks are
added, so that it can act completely by itself, without
any human interventions. This will result in an
architecture in which new methods for flight
automation can be designed, developed and tested.
Furthermore this project focuses on the decision-
making process and the execution process. These
parts of flight automation are already addressed
before in the ICE project, but the current techniques
are not good and/or not detailed enough to be usable.

The goal of this project is to create an agent that can
‘play’ the computer game Microsoft Combat Flight
Simulator (MSCFS). In this simulator game the agent
has to be a competitive player in a one-to-one
dogfight. The dogfight is one of the most difficult
scenarios for flight automation, so that is why this
scenario is chosen. The opponent of this agent can be
either a human player or another computer program.
The agent should combine methods discovered in the
ICE project in a flexible design and a nice
implementation so that the program can be used as a
test environment for future research.

2. Related work

ICE project

The goal of the ICE project is to design, test, and
evaluate computational techniques that can be used in
the development of intelligent situation-aware crew
assistance. Special issues addressed in the ICE
project are: situation recognition, mission or flight
plan monitoring, attack management and pilot
workload monitoring. Until now, most work had been
done in the field of situation recognition. Different
techniques are studied and tested like Bayesian belief

networks [Mouthaan, 2003] or neural networks
[Capkova, 2002]. However this work was not applied
to dogfight situations. Another study within the ICE
project [Andriambololona, 2003] is applied to
dogfight situations. In this study about decision-
making for a dogfight agent a decision-tree is
modeled after decisions as they are made by human
pilots. This report describes very well how a human
pilot basically makes decisions in a dogfight
situation, however the described model is not yet
detailed enough for a fully autonomous agent. A last
study within the ICE project that will be mentioned
here is about the construction of an agent that can fly
a human-defined flight plan [Tamerius, 2003]. The
agent is able to execute a set of consecutive flight
steps in a simulated flight environment.

Flight automation

Besides the ICE project there are many other projects
that focus on flight automation in one way or the
other [Laird, 1998], [Virtanen, 2001]. In most of the
projects a simulated environment is used to test new
ideas. Many of the interesting projects are about
strategy (or decision-making). In many projects the
dynamic, complex and real-time environment is seen
as the biggest challenge of the project. The locations
of the airplane and the opponent(s) change
constantly, also when no explicit action is taken.
Furthermore the environment is real-time which
means that there will never be a lot of time for
reasoning so that time-consuming algorithms are not
usable. One of the interesting projects is about agents
that can fly military missions in a military simulator
[Laird, 1998]. The agents are created to create both
enemies and friends for human pilots. The decisions
in this project are mainly on a higher level than
decisions in a dogfight situation. For example a rule
in this system can be ‘if an enemy plane is in front of
us, go into dogfight’. It is not clear how this dogfight
will be executed. This is often the case in projects
about decision-making in flight automation. In many
projects there is no implementation created, so there
is no need to specify more detailed and lower-level
decisions.

AI in computer games

Another field of interest related to creating a dogfight
agent for a simulated environment is the field of AI in
computer games. In recent years the interest in AI in
computer games grew for several reasons [Tozour,
2002]. One reason is that because of the increasing
complexity of modern computer games, it becomes
more difficult to create interesting digital opponents
for human players. Another important reason for the
increasing interest in AI in computer games comes
from the academic world. It is far more easy, fast and
cheap to test new ideas in a simulated environment,
such as a computer game. An interesting project in
this area is the development of the Quake III Arena
Bot [Waveren, 2001]. In this project an artificial
player is created for the computer game Quake that
can serve as an interesting and challenging opponent

for human players. The AI of the bot is based on
proven and good-to-understand AI techniques like a
finite state machine and a rule-based system. Despite
the success of quite basic AI techniques in computer
games, there is also research on the use of more
sophisticated AI techniques in computer games. In
[Spronk, 2003] neural networks are used in
combination with genetic selection. However the
success of projects like these depends heavily on the
simplicity of the computer game. Until now these
more sophisticated AI techniques are tried out in
more complex computer games only for subtasks.

3. Design

Model

In a one-to-one dogfight situation both pilots have the
same goal: eliminate the enemy and stay unharmed
yourself. In this project the actual shooting is left out.
So the goal of the agent will be to get and stay in the
best shooting position, which is close and straight
behind the opponent. To reach this goal the agent can
execute different flight maneuvers by changing the
elevator or aileron controls of the airplane. The
situation of both airplanes and the relation between
them changes continuously. The chosen model for the
agent is based on the model of a reflex agent. The
agent percepts, evaluates and acts in very small time
steps, so its behavior comes close to a continuous
behavior. Figure 1 shows how the agent and the
environment are related in the agent model.

Figure 1: Model of the dogfight agent

System Architecture

The simulated environment will consist of two
computers, participating in a MSCFS multiplayer
game over a TCP/IP network. On both computers the
agent software must run, so communication is
possible between the two agents. This setup is shown
in Figure 2. In this setup two agents can play against
each other, but it is also possible that a human player
takes over control on one of the computers, so one
agent is playing against one human. There is also
some communication between the two bots. This is
because it was not possible to retrieve data about the
opponent directly from the MSCFS.

Figure 2: System architecture

Agent architecture

One single agent is designed in a number of objects
and five layers. Figure 3 shows these layers and
objects.

Figure 3: Agent architecture

The first layer contains the external objects: The
MSCFS game and the opponent. These two objects
do not form a part of one single agent itself, but they
are essential for the proper working of the agent.

In the second layer there are two interfaces towards
the two external objects. The FSUIPC object consists
of a module that provides data exchange between the
agent program and MSCFS. The Communicator is
the object that communicates with the opponent via a
TCP/IP network.

The whole third layer is formed by one object: The
Knowledge center. This object keeps tracks of all
data from both lower and higher layers. All necessary
data from the external objects is collected via the
FSUIPC and Communicator objects. This data is
available for the objects in the fourth layer. All data
produced by objects in the fourth layer is in the
Knowledge center available for the external objects,
via the interfaces, and also for the other objects in the
fourth layer.

There are four objects in the fourth layer. The
Situation Recognizer recognizes the current situation
by looking at all the data collected in the Knowledge
center about the current situation, for example the
current locations of both airplanes. The recognized
situation is stored in the Knowledge center. The
Predictor must predict future values of certain
variables based on their current and past values.
Because of practical reasons the Predictor is not

implemented or used further on in this project. The
Decision-maker decides which maneuver will be
executed in the next time step. The Executor
calculates the right values for the airplanes input
controls in MSCFS. These values are also stored in
the Knowledge center. Via the FSUIPC object these
values are put into the MSCFS, which makes the
airplane execute the chosen maneuver.

The only object in the fifth, and highest, layer is the
Controller. The only task of this object is to schedule
all the tasks of the other objects each time step in the
right order.

Situation recognition AI

Situation recognition is the first intelligent task of the
agent. Based on data retrieved directly out of the
environment and also on data that is calculated out of
this easily, such as the range between the two
airplanes or the angle between the directions of the
two airplanes, the situation is recognized. In the
dogfight agent situation recognition consists of two
things: recognizing the maneuver the opponent is
executing and recognizing the relation between the
positions of the two airplanes. Maneuver recognition
can be done in various ways, for example with a
Bayesian belief network [Mouthaan, 2003] or a
neural network [Capkova, 2002]. To be able to create
a successful prototype, a rather simple AI method: a
decision-tree is chosen for maneuver recognition.
Altogether, nine maneuvers can be recognized with
the decision-tree from which a part is shown in
Figure 4.

Figure 4: Part of maneuver recognition decision-tree

The relation between the positions of both airplanes
is also recognized with a decision-tree. A part of this
decision-tree is shown in Figure 5. There are 15
different position relations in this decision-tree, for
example: ‘Long distance’, ‘Middle distance – attack’,
or ‘Small distance – defend’.

Figure 5: Part of position recognition decision-tree

Decision-making AI

Based on the current situation, the agent needs to
decide the next maneuver to execute. The decision-
making will be done by a set of logical rules. The big
advantage of rule-based decision-making in a first
prototype is that it is easy for humans to understand
the rules. Even, when a computer algorithm creates
the rules. This makes analyzing unexpected behavior
much easier.

The most difficult task in creating a rule-based
system is the acquisition of the rules. There are three
ways of acquiring rules: the rules can be entered by
domain experts [Andriambololona, 2003], they can
be learned by observing experts [Lent, 1998] of the
rules can be learned by experience. The last two
methods are more complex to design and implement,
especially the third one. Because of the goal to create
a working prototype and because of the scope of this
project the first method is chosen. This method is
easier to implement, but it requires a certain amount
of domain knowledge.

To make the task of entering rules a bit less complex,
the decision-making system is split up into 15 smaller
sets of decision rules, one for each position situation
as it is recognized by the Situation Recognizer. In one
specific situation only a subset of all available
situation data items is relevant. Also only a subset of
the maneuvers is useful. Besides that, the domain
expert is working with one specific situation at a
time, therefore the expert can fully focus on the
specifics of that situation. Figure 6 shows that the
rule-based system for the ‘Long distance’ situation
works with six relevant input variables and can lead
to only three of the nine possible maneuvers.

Figure 6: Rule-based system for Long distance

Execution AI

The decision-making system decides which maneuver
will be executed. After this the selected maneuver
must be executed by an execution system. The agent
cannot order the aircraft directly to make, for
example, a turn left. The agent can only use the
elevator and aileron parameters to perform the
desired maneuver. Most maneuvers differ from each
other, not only in their result, but also in the approach
of the pilot. Therefore the execution of each
maneuver will be separately designed and
implemented.

How will the agent know which values for the aileron
and the elevator must be set to perform the right
maneuver? In [Tamerius, 2003] the values are
changed a little bit each time step and the results are
monitored. The airplane will fly in the desired
position, after enough time steps. This method is not
fast enough for a dogfight situation. In [Liang, 2004]
a neural controller is used, but the results show that it
is still not very easy to create a highly reactive agent
for a dogfight situation. In this project the execution
is created by learning from experts. From flights by
human experts a log is created that contains for each
time step the values of the input control parameters
and the corresponding airplane behavior. In these
flights the human expert executed all the necessary
maneuvers, but also some complete random flights.

Figure 7: Relations between speed change (4), pitch
(5), pitch change (6) and elevator (7) in a random

flight

Figure 7 shows that even in a random flight there is a
correlation between some parameters. For example
the relation between the input control ‘elevator’ and
the ‘pitch change’ is very useful.

In this project polynomial regression is used to find
mathematical functions that express the relation
between the desired output and the input control
parameters. This method resulted in a good working
and very fast maneuver execution.

The execution is optimized by making a difference
between being in a desired maneuver position, and
not being is a desired maneuver position. a situation
in which the airplane already is executing a desired.
When the airplane is not yet flying the desired

maneuver it must first get in the desired position.
After, about two or three time steps, a little bit less
than one second, the airplane will get in the desired
position. When by that time, still the same maneuver
is desired, the agent can fully focus on executing that
maneuver as precise as possible. Different
mathematical mappings are created for this situation,
because now the airplane must try to continue this
maneuver as precise as possible. In a dogfight, not
only the tactics, or decision-making, makes the
difference between the two opponents. The player
that can execute the maneuvers best also has an
advantage.

4. Implementation

The prototype is implemented in Microsoft Visual
C++. The implementation follows the design closely.
Each object in the agent architecture is implemented
in a C++ class. The active objects are implemented in
a thread.

The Knowledge center retrieves the data via the
FSUIPC module out of MSCFS. This is not a very
complex task and it is better to have very accurate
data available for the other objects, so this thread runs
every 100 milliseconds. The data exchange with the
opponent in the Communicator also runs individually
every 200 milliseconds.

The controller makes calls to all the objects in the
Intelligence layer and the Knowledge center in the
right order. This is done every 300 milliseconds. This
interval is chosen after some experimenting. A much
larger time interval makes the agent less reactive, but
the time interval can also not be much shorter. The
airplane simply needs some time to start reacting,
before it is useful to monitor the situation and make a
new decision again.

A more detailed description of the implementation is
included in [Solinger, 2005]. That report also
includes some source code examples.

5. Results

The implementation of the dogfight agent is used in a
few test scenarios in a MSCFS multiplayer game. In
the first test scenario the human opponent of the
agent just flies straight ahead, in the second test
scenario the opponent makes some easy turns in both
directions. In both tests the agent could easily follow
the opponent and get in the best position, close
behind the opponent. Figure 8 shows two top views
of consecutive time periods in the second test
scenario. From these two test scenarios we can
conclude that the agent is able to intercept the
opponent. The agent must be able to go through the
whole reasoning process and take each step in good
order to be able to follow the opponent and get close
behind him.

Figure 8: top view in test scenario 2

The third test scenario is a heavy dogfight. In this
scenario the human opponent also tries to attack and
he tries to use all kinds of very steep maneuvers to
defeat the agent. Both players start by flying towards
each other. After they are close enough, the agent and
the human player both start turning around each other
to get behind the other. The agent has a better
overview, makes the right decisions and performs the
maneuvers slightly better than the human player.
Figure 9 shows that the agent comes in an attack
position close behind its opponent. Thereafter the
human player tries to escape by making very steep
maneuvers. The agent is able to follow and stay in the
‘small distance attack’ situation for more than 60
seconds.

Figure 9: first 42 seconds of the dogfight

The human player manages to escape by executing a
maneuver the agent does not understand: flying
almost straight down. The agent does not make the
best decisions in this situation and the human player
is able to get in an attack position for a few seconds.
The agent comes in a defend position, but it
recognizes the situation and is able to regain control
over the situation. The agent seems to be better in
standard situations, because it gets rid of the human
player in the same way as during the start of this
dogfight. The agent performs its maneuvers just a bit
better, and it does not make mistakes in the situation
recognition and decision-making phases as long as
the human player does not do something really
unexpected.

Figure 10 shows the situations according to the agent
during the dogfight. One can see that the agent was
more often in an attack situation than in a defend
situation. This figure also shows that the agent’s
situation is relatively stable. It is important that the
situation does not switch between different states all
the time, because this could result in unstable and not
effective behavior.

Figure 10: situations during the dogfight

6. Conclusions

The overall performance of the agent turned out to be
satisfying. The prototype is fully functional and has
become a ‘competitive player’ in a dogfight situation.
It works real-time on an everyday pc. Especially in
standard situations the agent’s reactions and
maneuvers were faster compared to its human
opponent. On the other hand a human player can be
more creative and execute for the agent yet unknown
or at least unexpected maneuvers. Altogether the
current state of the agent can be compared to the first
check computer programs. The agent always reacts
properly and fast in known situations, this can be a
large advantage when a human opponent makes a
small mistake or looses concentration for a few
seconds. The only way for a human player to defeat
the agent is to use its ability to be more creative than
the agent.

The performance of the complete agent is dependent
of the performance of each of the individual aspects
of the flight automation process. This conclusion
underlines the relevance of this project. By splitting
the whole automation process into multiple elements
it is possible to improve each of these individual
elements. During the development of the prototype
the performance of the bot increased significantly.
Sometimes improvements in only one of these objects
resulted in a big improvement in the performance of
the bot. For example a small improvement in the
‘turn’ maneuvers once resulted in a competitive bot
instead of a strange behaving airplane. It is also
important to combine the elements in the right way to
fully use the power of each of the individual
elements.

This project resulted in a flexible architecture in
which multiple objects can be altered, replaced or
added without changing the other objects. This makes
it very suitable for testing new ideas in future work.

7. Future work

The current prototype really works and the agent’s
results during the test scenarios are satisfying.
However there still are plenty of ideas for future
work. Three of them are mentioned.

Improve the decision-making

The first improvement for the agent is quit obvious.
In test scenario 3 the agent got into problems,
because it was unable to deal with an unknown
situation. The easiest way to overcome this problem
is to create more and better rules in the decision-
making system for all kinds of situations.

Advanced situation-based decisions

The decision-making is already situation-based. This
could be used even more. Different situations require
different approaches. In a defend situation a very
creative approach is required to escape. In an attack
situation a very precise following of the opponent is
required. It would be interesting to test different
methods, like rule-based systems, decision-trees, or
neural networks, for different situations.

Adaptive flight behavior

The current flight behavior is very static. The
mathematical functions for the maneuver execution
are only useful for one type of airplane, without
problems. When, for example, the airplane is hit, by
one single bullet in one of the wings, the agent will
not be able to control the airplane anymore. To
resolve this problem a method should be used for
dynamic flight control. In [Liang, 2004] a neural
network is used that can adapt during the actual
flight. The results in that project are however far from
usable in a dogfight situation.

Probabilistic approach

All data used in this project is concrete. There is no
missing data and there is no uncertainty. This is,
because the environment of the agent is a computer
game in which all necessary data is available at all
time. In a real life environment this would not be the
case. In that case a probabilistic approach might be
necessary. Such a real life situation could be
emulated by introducing noise in the data that is
retrieved from the MSCFS game. If one sees it as an
end goal to create an agent that can deal with a
computer game, a probabilistic approach will not be
necessary. But when one wants to take a step further
and extend an agent like the one described in this
report to be able to deal with a real-life situation, it
might be interesting to think of methods that can
handle errors in the data.

Bibliography

[Andriambololona, 2003]
Andriambololona, M. and Lefeuvre, P. (2003).
“ Implementing a dogfight artificial pilot”, Research
report DKS03-07/ICE07, Knowledge Based Systems
group, Delft University of Technology, The
Netherlands.

[Capkova, 2002]
Capkova, I. Juza, M. and Zimmermann, K. (2002).
“Explorative data analysis of flight behavior with
neural networks”, Research report DKS02-
04/ACE02, Knowledge Based Systems group, Delft
University of Technology, The Netherlands.

[Ehlert, 2003]
Ehlert, P.A.M. (2003). “The Intelligent Cockpit
Environment Project”, Research report DKS03-
04/ICE04, Knowledge Based Systems group, Delft
University of Technology, The Netherlands.

[Laird, 1998]
Laird, J.E. and Jones, R.M. (1998). “Building
Advanced Autonomous AI Systems for Large Scale
Real Time Simulations”, in Proceedings of the 1998
Computer Game Developers’ Conference, pp 365-
378. Long Beach, California, USA.

[Lent, 1998]
Lent, M. van and Laird, J.E.(1998). “Learning by
Observation in a Complex Domain”, in Proceedings
of the Workshop on Knowledge Acquisition,
Modeling, and Management. Banff, Alberta, Canada.

[Liang, 2004]
Liang, Q. (2004) “Neural flight control autopilot
system”, Research Report DKS04-04 / ICE 09,
Knowledge Based Systems group, Delft University of
Technology, The Netherlands.

[Machado, 2002]
Machado, R. (2002). “Rod Machado’s Ground
School” Microsoft Flight Simulator 2002.

[Mouthaan, 2003]
Mouthaan, Q.M. (2003). “Towards an intelligent
cockpit environment: a probabilistic approach to
situation recognition in an F-16”, MSc. thesis,
Knowledge Based Systems group, Delft University of
Technology, The Netherlands.

[Russell, 1995]
Russell, S.J. Norvig, P. (1995). “Artificial
Intelligence, a Modern Approach” Prentice Hall, Inc.

[Solinger, 2004]
Solinger, D. (2004). “Creating a dogfight agent: a
literature study” , Research Report DKS04-03 / ICE
08, , Knowledge Based Systems group, Delft
University of Technology, The Netherlands.

[Solinger, 2005]
Solinger, D. (2005). “Creating a dogfight agent” ,
Technical Report DKS05-01 / ICE 10, , Knowledge
Based Systems group, Delft University of
Technology, The Netherlands.

[Spronk, 2003]
Spronck, P. Sprinkhuizen-Kuyper, I. and Postma, E.
(2003). “Improving Opponent Intelligence Through
Offline Evolutionary Learning”, in Proceedings of
the Fourteenth Belgium-Netherlands Conference on
Artificial Intelligence, pp 299-306.

[Tamerius, 2003]
Tamerius, M.S. (2003). “Automating the cockpit:
constructing an autonomous human-like flight bot in
a simulated environment”, Technical report DKS-03-
05/ICE05, Knowledge Based Systems group, Delft
University of Technology, The Netherlands.

[Tozour, 2002]
Tozour, P.. (2002). “The Evolution of Game AI”, in
AI Game Programming Wisdom, Rabin, S. (editor)
Charles River Media, Inc., pp 3-15.

[Virtanen, 2001]
Virtanen, K. Raivio, T. and Hämäläinen, R.P. (2001).
“Modeling Pilot’s Sequential Maneuvering
Decisions by a Multistage Influence Diagram”, in
Proceedings of the AIAA Guidance, Control, and
Navigation Conference, Montreal, Canada, 2001.

[Waveren, 2001]
Waveren, J.M.P. van (2001). “The Quake III Arena
Bot”, MSc. thesis, Knowledge Based Systems group,
Delft University of Technology, The Netherlands.

