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Abstract 
 
This paper describes the design and the 
implementation of a prototype for a fully autonomous 
agent, which can fly an airplane during a dogfight. 
This project focuses on combining multiple elements 
of flight automation, such as situation recognition, 
decision-making and maneuver execution in one fully 
autonomous agent. A flexible and modular overall 
architecture is presented in which, for each element 
of the flight automation process, different methods 
can be implemented and replaced easily. The 
methods that are used for the prototype 
implementation are presented with a detailed design 
and a description of the implementation. The 
prototype is successfully implemented and can really 
act as a competitive player during a one-to-one 
dogfight in Microsoft Combat Flight Simulator. An 
important conclusion is that the performance of the 
whole agent is dependent on the performance of all 
the different elements. This conclusion underlines the 
relevance of this project, because the basis of the 
project was to split the concept of flight automation 
into multiple elements, so it is possible to focus on 
the individual elements. 
 

1. Introduction 
 
Since the first airplane was build, more than 100 
years ago, the capabilities of aircraft have been 
improved enormously. Together with the increase in 
the amount of aircraft in the air this has caused a huge 
increase in the information load for a pilot. In 
situations like this, humans normally start to look for 
ways in which a computer can help them. So projects 
have been started to investigate and design human-
support systems for use in a cockpit. The intelligent 
cockpit environment (ICE) project is a project of the 
Knowledge Based Systems group of the Delft 
University of Technology. The goal of the ICE 
project is to design, test and evaluate computational 
techniques that can be used in the development of 
intelligent situation-aware crew assistance systems 
[Ehlert, 2003]. This paper described a part of the ICE 
project in which a fully autonomous agent is created. 
 

Within the ICE project different areas of flight 
automation have been addressed, like: situation 
recognition, decision-making, flight planning and 
flight control. This resulted in a number of ideas and 
methods for modern flight automation. Most of them 
have successfully been tested, but not in combination 
with other ideas. The ideas are not combined or the 
influence of one task on another is not studied. For 
example, a good situation recognition method can 
maybe improve the decision-making. In this project 
multiple ideas and methods of the ICE project are 
combined in one program. All necessary tasks are 
added, so that it can act completely by itself, without 
any human interventions. This will result in an 
architecture in which new methods for flight 
automation can be designed, developed and tested. 
Furthermore this project focuses on the decision-
making process and the execution process. These 
parts of flight automation are already addressed 
before in the ICE project, but the current techniques 
are not good and/or not detailed enough to be usable.  
 
The goal of this project is to create an agent that can 
‘play’ the computer game Microsoft Combat Flight 
Simulator (MSCFS). In this simulator game the agent 
has to be a competitive player in a one-to-one 
dogfight. The dogfight is one of the most difficult 
scenarios for flight automation, so that is why this 
scenario is chosen. The opponent of this agent can be 
either a human player or another computer program. 
The agent should combine methods discovered in the 
ICE project in a flexible design and a nice 
implementation so that the program can be used as a 
test environment for future research. 
 

2. Related work 
 
ICE project 
 
The goal of the ICE project is to design, test, and 
evaluate computational techniques that can be used in 
the development of intelligent situation-aware crew 
assistance. Special issues addressed in the ICE 
project are: situation recognition, mission or flight 
plan monitoring, attack management and pilot 
workload monitoring. Until now, most work had been 
done in the field of situation recognition. Different 
techniques are studied and tested like Bayesian belief 



 
 
 
 
 
 

networks [Mouthaan, 2003] or neural networks 
[Capkova, 2002]. However this work was not applied 
to dogfight situations. Another study within the ICE 
project [Andriambololona, 2003] is applied to 
dogfight situations. In this study about decision-
making for a dogfight agent a decision-tree is 
modeled after decisions as they are made by human 
pilots. This report describes very well how a human 
pilot basically makes decisions in a dogfight 
situation, however the described model is not yet 
detailed enough for a fully autonomous agent. A last 
study within the ICE project that will be mentioned 
here is about the construction of an agent that can fly 
a human-defined flight plan [Tamerius, 2003]. The 
agent is able to execute a set of consecutive flight 
steps in a simulated flight environment.  
 
Flight automation 
 
Besides the ICE project there are many other projects 
that focus on flight automation in one way or the 
other [Laird, 1998], [Virtanen, 2001]. In most of the 
projects a simulated environment is used to test new 
ideas. Many of the interesting projects are about 
strategy (or decision-making). In many projects the 
dynamic, complex and real-time environment is seen 
as the biggest challenge of the project. The locations 
of the airplane and the opponent(s) change 
constantly, also when no explicit action is taken. 
Furthermore the environment is real-time which 
means that there will never be a lot of time for 
reasoning so that time-consuming algorithms are not 
usable. One of the interesting projects is about agents 
that can fly military missions in a military simulator 
[Laird, 1998]. The agents are created to create both 
enemies and friends for human pilots. The decisions 
in this project are mainly on a higher level than 
decisions in a dogfight situation. For example a rule 
in this system can be ‘if an enemy plane is in front of 
us, go into dogfight’. It is not clear how this dogfight 
will be executed. This is often the case in projects 
about decision-making in flight automation. In many 
projects there is no implementation created, so there 
is no need to specify more detailed and lower-level 
decisions. 
 
AI in computer games 
 
Another field of interest related to creating a dogfight 
agent for a simulated environment is the field of AI in 
computer games. In recent years the interest in AI in 
computer games grew for several reasons [Tozour, 
2002]. One reason is that because of the increasing 
complexity of modern computer games, it becomes 
more difficult to create interesting digital opponents 
for human players. Another important reason for the 
increasing interest in AI in computer games comes 
from the academic world. It is far more easy, fast and 
cheap to test new ideas in a simulated environment, 
such as a computer game. An interesting project in 
this area is the development of the Quake III Arena 
Bot [Waveren, 2001]. In this project an artificial 
player is created for the computer game Quake that 
can serve as an interesting and challenging opponent 

for human players. The AI of the bot is based on 
proven and good-to-understand AI techniques like a 
finite state machine and a rule-based system. Despite 
the success of quite basic AI techniques in computer 
games, there is also research on the use of more 
sophisticated AI techniques in computer games. In 
[Spronk, 2003] neural networks are used in 
combination with genetic selection. However the 
success of projects like these depends heavily on the 
simplicity of the computer game. Until now these 
more sophisticated AI techniques are tried out in 
more complex computer games only for subtasks. 
 

3. Design 
 
Model 
 
In a one-to-one dogfight situation both pilots have the 
same goal: eliminate the enemy and stay unharmed 
yourself. In this project the actual shooting is left out. 
So the goal of the agent will be to get and stay in the 
best shooting position, which is close and straight 
behind the opponent. To reach this goal the agent can 
execute different flight maneuvers by changing the 
elevator or aileron controls of the airplane. The 
situation of both airplanes and the relation between 
them changes continuously. The chosen model for the 
agent is based on the model of a reflex agent. The 
agent percepts, evaluates and acts in very small time 
steps, so its behavior comes close to a continuous 
behavior. Figure 1 shows how the agent and the 
environment are related in the agent model. 
 

 

Figure 1: Model of the dogfight agent 

 
System Architecture 
 
The simulated environment will consist of two 
computers, participating in a MSCFS multiplayer 
game over a TCP/IP network. On both computers the 
agent software must run, so communication is 
possible between the two agents. This setup is shown 
in Figure 2. In this setup two agents can play against 
each other, but it is also possible that a human player 
takes over control on one of the computers, so one 
agent is playing against one human. There is also 
some communication between the two bots. This is 
because it was not possible to retrieve data about the 
opponent directly from the MSCFS. 
 



 
 
 
 
 
 

 

Figure 2: System architecture 

 
 
Agent architecture 
 
One single agent is designed in a number of objects 
and five layers. Figure 3 shows these layers and 
objects. 
 

 

Figure 3: Agent architecture 

 
The first layer contains the external objects: The 
MSCFS game and the opponent. These two objects 
do not form a part of one single agent itself, but they 
are essential for the proper working of the agent. 
 
In the second layer there are two interfaces towards 
the two external objects. The FSUIPC object consists 
of a module that provides data exchange between the 
agent program and MSCFS. The Communicator is 
the object that communicates with the opponent via a 
TCP/IP network. 
 
The whole third layer is formed by one object: The 
Knowledge center. This object keeps tracks of all 
data from both lower and higher layers. All necessary 
data from the external objects is collected via the 
FSUIPC and Communicator objects. This data is 
available for the objects in the fourth layer. All data 
produced by objects in the fourth layer is in the 
Knowledge center available for the external objects, 
via the interfaces, and also for the other objects in the 
fourth layer. 
 
There are four objects in the fourth layer. The 
Situation Recognizer recognizes the current situation 
by looking at all the data collected in the Knowledge 
center about the current situation, for example the 
current locations of both airplanes. The recognized 
situation is stored in the Knowledge center. The 
Predictor must predict future values of certain 
variables based on their current and past values. 
Because of practical reasons the Predictor is not 

implemented or used further on in this project. The 
Decision-maker decides which maneuver will be 
executed in the next time step. The Executor 
calculates the right values for the airplanes input 
controls in MSCFS. These values are also stored in 
the Knowledge center. Via the FSUIPC object these 
values are put into the MSCFS, which makes the 
airplane execute the chosen maneuver. 
 
The only object in the fifth, and highest, layer is the 
Controller. The only task of this object is to schedule 
all the tasks of the other objects each time step in the 
right order. 
 
Situation recognition AI 
 
Situation recognition is the first intelligent task of the 
agent. Based on data retrieved directly out of the 
environment and also on data that is calculated out of 
this easily, such as the range between the two 
airplanes or the angle between the directions of the 
two airplanes, the situation is recognized. In the 
dogfight agent situation recognition consists of two 
things: recognizing the maneuver the opponent is 
executing and recognizing the relation between the 
positions of the two airplanes. Maneuver recognition 
can be done in various ways, for example with a 
Bayesian belief network [Mouthaan, 2003] or a 
neural network [Capkova, 2002]. To be able to create 
a successful prototype, a rather simple AI method: a 
decision-tree is chosen for maneuver recognition. 
Altogether, nine maneuvers can be recognized with 
the decision-tree from which a part is shown in 
Figure 4. 
 

 

Figure 4: Part of maneuver recognition decision-tree 

 
The relation between the positions of both airplanes 
is also recognized with a decision-tree. A part of this 
decision-tree is shown in Figure 5. There are 15 
different position relations in this decision-tree, for 
example: ‘Long distance’, ‘Middle distance – attack’, 
or ‘Small distance – defend’.  
  
 



 
 
 
 
 
 

 

Figure 5: Part of position recognition decision-tree 

 
Decision-making AI 
 
Based on the current situation, the agent needs to 
decide the next maneuver to execute. The decision-
making will be done by a set of logical rules. The big 
advantage of rule-based decision-making in a first 
prototype is that it is easy for humans to understand 
the rules. Even, when a computer algorithm creates 
the rules. This makes analyzing unexpected behavior 
much easier. 
 
The most difficult task in creating a rule-based 
system is the acquisition of the rules. There are three 
ways of acquiring rules: the rules can be entered by 
domain experts [Andriambololona, 2003], they can 
be learned by observing experts [Lent, 1998] of the 
rules can be learned by experience. The last two 
methods are more complex to design and implement, 
especially the third one. Because of the goal to create 
a working prototype and because of the scope of this 
project the first method is chosen. This method is 
easier to implement, but it requires a certain amount 
of domain knowledge. 
 
To make the task of entering rules a bit less complex, 
the decision-making system is split up into 15 smaller 
sets of decision rules, one for each position situation 
as it is recognized by the Situation Recognizer. In one 
specific situation only a subset of all available 
situation data items is relevant. Also only a subset of 
the maneuvers is useful. Besides that, the domain 
expert is working with one specific situation at a 
time, therefore the expert can fully focus on the 
specifics of that situation. Figure 6 shows that the 
rule-based system for the ‘Long distance’ situation 
works with six relevant input variables and can lead 
to only three of the nine possible maneuvers. 
 

 

Figure 6: Rule-based system for Long distance 

 

Execution AI 
 
The decision-making system decides which maneuver 
will be executed. After this the selected maneuver 
must be executed by an execution system. The agent 
cannot order the aircraft directly to make, for 
example, a turn left. The agent can only use the 
elevator and aileron parameters to perform the 
desired maneuver. Most maneuvers differ from each 
other, not only in their result, but also in the approach 
of the pilot. Therefore the execution of each 
maneuver will be separately designed and 
implemented. 
 
How will the agent know which values for the aileron 
and the elevator must be set to perform the right 
maneuver? In [Tamerius, 2003] the values are 
changed a little bit each time step and the results are 
monitored. The airplane will fly in the desired 
position, after enough time steps. This method is not 
fast enough for a dogfight situation. In [Liang, 2004] 
a neural controller is used, but the results show that it 
is still not very easy to create a highly reactive agent 
for a dogfight situation. In this project the execution 
is created by learning from experts. From flights by 
human experts a log is created that contains for each 
time step the values of the input control parameters 
and the corresponding airplane behavior. In these 
flights the human expert executed all the necessary 
maneuvers, but also some complete random flights. 
 

 

Figure 7: Relations between speed change (4), pitch 
(5), pitch change (6) and elevator (7) in a random 

flight 

 
Figure 7 shows that even in a random flight there is a 
correlation between some parameters. For example 
the relation between the input control ‘elevator’ and 
the ‘pitch change’ is very useful. 
 
In this project polynomial regression is used to find 
mathematical functions that express the relation 
between the desired output and the input control 
parameters. This method resulted in a good working 
and very fast maneuver execution.  
 
The execution is optimized by making a difference 
between being in a desired maneuver position, and 
not being is a desired maneuver position. a situation 
in which the airplane already is executing a desired. 
When the airplane is not yet flying the desired 



 
 
 
 
 
 

maneuver it must first get in the desired position. 
After, about two or three time steps, a little bit less 
than one second, the airplane will get in the desired 
position. When by that time, still the same maneuver 
is desired, the agent can fully focus on executing that 
maneuver as precise as possible. Different 
mathematical mappings are created for this situation, 
because now the airplane must try to continue this 
maneuver as precise as possible. In a dogfight, not 
only the tactics, or decision-making, makes the 
difference between the two opponents. The player 
that can execute the maneuvers best also has an 
advantage. 
 

4. Implementation 
 
The prototype is implemented in Microsoft Visual 
C++. The implementation follows the design closely. 
Each object in the agent architecture is implemented 
in a C++ class. The active objects are implemented in 
a thread. 
 
The Knowledge center retrieves the data via the 
FSUIPC module out of MSCFS. This is not a very 
complex task and it is better to have very accurate 
data available for the other objects, so this thread runs 
every 100 milliseconds. The data exchange with the 
opponent in the Communicator also runs individually 
every 200 milliseconds. 
 
The controller makes calls to all the objects in the 
Intelligence layer and the Knowledge center in the 
right order. This is done every 300 milliseconds. This 
interval is chosen after some experimenting. A much 
larger time interval makes the agent less reactive, but 
the time interval can also not be much shorter. The 
airplane simply needs some time to start reacting, 
before it is useful to monitor the situation and make a 
new decision again. 
 
A more detailed description of the implementation is 
included in [Solinger, 2005]. That report also 
includes some source code examples.  
 

5. Results 
 
The implementation of the dogfight agent is used in a 
few test scenarios in a MSCFS multiplayer game. In 
the first test scenario the human opponent of the 
agent just flies straight ahead, in the second test 
scenario the opponent makes some easy turns in both 
directions. In both tests the agent could easily follow 
the opponent and get in the best position, close 
behind the opponent. Figure 8 shows two top views 
of consecutive time periods in the second test 
scenario. From these two test scenarios we can 
conclude that the agent is able to intercept the 
opponent. The agent must be able to go through the 
whole reasoning process and take each step in good 
order to be able to follow the opponent and get close 
behind him. 

 

 

Figure 8: top view in test scenario 2 

 
The third test scenario is a heavy dogfight. In this 
scenario the human opponent also tries to attack and 
he tries to use all kinds of very steep maneuvers to 
defeat the agent. Both players start by flying towards 
each other. After they are close enough, the agent and 
the human player both start turning around each other 
to get behind the other. The agent has a better 
overview, makes the right decisions and performs the 
maneuvers slightly better than the human player. 
Figure 9 shows that the agent comes in an attack 
position close behind its opponent. Thereafter the 
human player tries to escape by making very steep 
maneuvers. The agent is able to follow and stay in the 
‘small distance attack’ situation for more than 60 
seconds.  
 

 

Figure 9: first 42 seconds of the dogfight 

 
The human player manages to escape by executing a 
maneuver the agent does not understand: flying 
almost straight down. The agent does not make the 
best decisions in this situation and the human player 
is able to get in an attack position for a few seconds. 
The agent comes in a defend position, but it 
recognizes the situation and is able to regain control 
over the situation. The agent seems to be better in 
standard situations, because it gets rid of the human 
player in the same way as during the start of this 
dogfight. The agent performs its maneuvers just a bit 
better, and it does not make mistakes in the situation 
recognition and decision-making phases as long as 
the human player does not do something really 
unexpected. 
 
Figure 10 shows the situations according to the agent 
during the dogfight. One can see that the agent was 
more often in an attack situation than in a defend 
situation. This figure also shows that the agent’s 
situation is relatively stable. It is important that the 
situation does not switch between different states all 
the time, because this could result in unstable and not 
effective behavior. 
 



 
 
 
 
 
 

 

Figure 10: situations during the dogfight 

 

6. Conclusions 
 
The overall performance of the agent turned out to be 
satisfying. The prototype is fully functional and has 
become a ‘competitive player’ in a dogfight situation. 
It works real-time on an everyday pc. Especially in 
standard situations the agent’s reactions and 
maneuvers were faster compared to its human 
opponent. On the other hand a human player can be 
more creative and execute for the agent yet unknown 
or at least unexpected maneuvers. Altogether the 
current state of the agent can be compared to the first 
check computer programs. The agent always reacts 
properly and fast in known situations, this can be a 
large advantage when a human opponent makes a 
small mistake or looses concentration for a few 
seconds. The only way for a human player to defeat 
the agent is to use its ability to be more creative than 
the agent. 
 
The performance of the complete agent is dependent 
of the performance of each of the individual aspects 
of the flight automation process. This conclusion 
underlines the relevance of this project. By splitting 
the whole automation process into multiple elements 
it is possible to improve each of these individual 
elements. During the development of the prototype 
the performance of the bot increased significantly. 
Sometimes improvements in only one of these objects 
resulted in a big improvement in the performance of 
the bot. For example a small improvement in the 
‘turn’ maneuvers once resulted in a competitive bot 
instead of a strange behaving airplane. It is also 
important to combine the elements in the right way to 
fully use the power of each of the individual 
elements. 
 
This project resulted in a flexible architecture in 
which multiple objects can be altered, replaced or 
added without changing the other objects. This makes 
it very suitable for testing new ideas in future work. 
 

7. Future work 
 
The current prototype really works and the agent’s 
results during the test scenarios are satisfying. 
However there still are plenty of ideas for future 
work. Three of them are mentioned. 
 

Improve the decision-making 
 
The first improvement for the agent is quit obvious. 
In test scenario 3 the agent got into problems, 
because it was unable to deal with an unknown 
situation. The easiest way to overcome this problem 
is to create more and better rules in the decision-
making system for all kinds of situations. 
 
Advanced situation-based decisions 
 
The decision-making is already situation-based. This 
could be used even more. Different situations require 
different approaches. In a defend situation a very 
creative approach is required to escape. In an attack 
situation a very precise following of the opponent is 
required. It would be interesting to test different 
methods, like rule-based systems, decision-trees, or 
neural networks, for different situations. 
 
Adaptive flight behavior 
 
The current flight behavior is very static. The 
mathematical functions for the maneuver execution 
are only useful for one type of airplane, without 
problems. When, for example, the airplane is hit, by 
one single bullet in one of the wings, the agent will 
not be able to control the airplane anymore. To 
resolve this problem a method should be used for 
dynamic flight control. In [Liang, 2004] a neural 
network is used that can adapt during the actual 
flight. The results in that project are however far from 
usable in a dogfight situation. 
 
Probabilistic approach 
 
All data used in this project is concrete. There is no 
missing data and there is no uncertainty. This is, 
because the environment of the agent is a computer 
game in which all necessary data is available at all 
time. In a real life environment this would not be the 
case. In that case a probabilistic approach might be 
necessary. Such a real life situation could be 
emulated by introducing noise in the data that is 
retrieved from the MSCFS game. If one sees it as an 
end goal to create an agent that can deal with a 
computer game, a probabilistic approach will not be 
necessary. But when one wants to take a step further 
and extend an agent like the one described in this 
report to be able to deal with a real-life situation, it 
might be interesting to think of methods that can 
handle errors in the data. 
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