

ISME

Icon based System for Managing Emergencies

Master Thesis of:
Paul Schooneman
Student number: 9745257
Date: January 2005
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Department Mediamatica / Man-Machine-Interaction

Graduation committee

Dr. Drs. L.J.M. Rothkrantz
Dr. ir. C.A.P.G van der Mast

ir. F. Ververs
ir. B. Tatomir
Dr. S. Oomes

2

Abstract

Since the terrorist attacks on 9/11 the issue about the collaboration of emergency services has
become increasingly important. One of the conclusions is that better communication between
the different services is needed. This motivated us to try a different modality for
communication. The modality we have chosen is a graphical one, which is very useful when
only a limited set of concepts need to be represented. This thesis describes how iconic
communication can be applied to the field of Emergency Management.

We have designed and implemented a prototype application, ISME, which is suited for
emergency services to communicate with each other, using a map and icons. Our main focus
is on the graphical user interface, and the intelligence of the system. The system is designed
as a client server application, where the client is focussed on the interface and the server
concentrates on the intelligence. We use a Jess knowledge and rule base to provide a
consistent world model at all times, while we represent the concepts in XML files. The
interface and network is implemented in Java.

ISME gives the users the possibility to report about what they observe by placing icons on a
map. The maps will be send to the server, which fuses the multiple observations and
constructs a new world model of it. Besides the world model, the server also sends
information about the most likely scenario, and it will suggest icons that are expected in the
world model but are not placed yet.

Keywords: icon, communication, map, emergency, crisis, interface, Jess, world model

 3

Preface

This thesis is the result of my graduation project at the Man Machine Interaction group of the
faculty Electrical Engineering, Mathematics and Computer Science at the Delft University of
Technology. This research is done as part of the Combined Systems [Comb] group at DECIS
LAB, a collaboration of Delft University of Technology, University of Amsterdam, THALES
Nederland, and TNO. This collaboration is focussed on the research of decision support
systems, seeking to order information in complex and chaotic situations.

Acknowledgements

First of all I would like to thank my supervisor Leon Rothkrantz for inspiring me to do my
research. Our weekly sessions always brought new ideas or different approaches. He was also
a great help in ordering this report.

Next I would like to thank my fellow students for always giving me useful input and
assistance. They are, in no particular order: Iulia Tatomir, Marcel van Velden, Paul Klapwijk,
Stefan Strijdhaftig, Jan Chau and Bogdan Tatomir (MMI staff).

Last, but certainly not least, I would like to thank my parents, sister and especially my
girlfriend for always supporting me, and listening to my stories, trying to comprehend even
the most technical problems I encountered.

 4

Table of Contents

Abstract .. 3
Preface.. 4

Acknowledgements .. 4
Table of Contents ... 5
Table of Figures ... 7

Chapter 1: Introduction .. 9

1.1 Project Overview.. 9
1.1.1 Define a World Model... 11
1.1.2 Interface... 11
1.1.3 Intelligence .. 12
1.1.4 Security.. 12

1.2 Problem Description... 12

Chapter 2: Related Work.. 15

2.1 About Icons .. 15
2.1.1 The History of Icons.. 15
2.1.2 Modern use of icons .. 16

2.2 C2000 ... 19
2.2.1 Advantages .. 21

2.2.1.1 A joint radio network with national coverage.. 21
2.2.1.2 A high level of security .. 21
2.2.1.3 An open European standard ... 22

2.3 Iconic Communication ... 22

Chapter 3: Global Design... 25

3.1 Requirements and Constraints.. 25
3.2 Java, Jess and XML.. 27
3.3 Overview .. 27
3.4 Design of the XML Files.. 29
3.5 Jess ... 33

3.5.1 About Jess ... 33
3.5.2 Design of the Jess Component .. 36

3.6 Design of the Java Component... 38
3.6.1 Graphical User Interface ... 38
3.6.2 The Network.. 41
3.6.3 Integration ... 41

Chapter 4: Implementation... 43

4.1 UML... 43
4.1.1 Use Case Diagram... 43
4.1.2 Class Diagrams.. 45
4.1.3 Sequence Diagrams ... 46

4.2 Jess ... 50
4.2.1 Adding Facts to Jess. ... 51
4.2.2 Deleting Facts from Jess ... 52
4.2.3 Modifying Jess Facts... 53
4.2.4 Rules about Double Placed Icons.. 53
4.2.5 Determining the Current Scenario... 59

 5

4.2.6 The Next Icon Predictor .. 61
4.3 Algorithms and Functions .. 64

4.3.1 From XML to Jess... 64
4.3.2 Zooming .. 65

4.3.2.1 Normal Zooming .. 66
4.3.2.2 Drag Zooming .. 68

Chapter 5: User Test... 71

5.1 Design of the Test .. 71
5.2 Test Results .. 72
5.3 Test Conclusions .. 75

Chapter 6: Conclusions and Recommendations... 77

6.1 Results .. 77
6.1.1 The Interface ... 77
6.1.2 The Intelligence... 78

6.2 Conclusions .. 79
6.3 Recommendations .. 80

Bibliography... 85

Appendix A: Scenarios... 87

Scenario 1: Riot .. 87
Scenario 2: Car Crash... 89
Scenario 3: Fire .. 91
Scenario 4: Bomb Scare ... 96
Scenario 5: Shooting .. 100

Appendix B: XML files.. 103

iconlist.xml... 103
scenariolist.xml .. 114

Appendix C: User Manual ISME... 119

What is the Application for? .. 119
How does it Work?... 120
Adding or Editing the Icons ... 122

Appendix D: Detailed Class Diagram.. 125

Appendix E: Paper ISME... 127

Abstract .. 127
1 Introduction ... 127
2 Related work ... 129

2.1 About Icons .. 129
2.2 C2000 ... 130
2.3 Iconic Communication ... 130

3 Model and Implementation ... 131
4 User Test ... 133

4.1 Design of the test.. 133
4.2 Test results.. 134
4.3 Test Conclusions .. 135

.. 135 5 Conclusions and Recommendations

 6

Table of Figures

Figure 1 Project Overview ... 10
Figure 2 The construction of the Bliss symbol for telephone .. 15
Figure 3 Cultural dependent icon ... 17
Figure 4 Three styles of icons .. 17
Figure 5 Transparent icons... 18
Figure 6 Stacking icons .. 19
Figure 7 Overview of C2000.. 20
Figure 8 Interface for iconic communication... 22
Figure 9 Grammar of the Iconic Communication system.. 23
Figure 10 Sharp Zaurus SL-C760 .. 26
Figure 11 Overview of the components ... 28
Figure 12 Example XML fragment .. 29
Figure 13 Example DTD .. 30
Figure 14 DTD of the icon XML file ... 30
Figure 15 Fragment of the icon XML file.. 31
Figure 16 DTD of the scenario XML file .. 31
Figure 17 Fragment of the scenario XML file ... 32
Figure 18 Structure of Jess rules .. 33
Figure 19 Example Jess rule... 33
Figure 20 Example Deftemplate .. 34
Figure 21 Network version 1.. 35
Figure 22 Network version 2.. 35
Figure 23 Network version 3.. 36
Figure 24 Overview of the expert system .. 37
Figure 25 The GUI of the report tool ... 39
Figure 26 Attribute window ... 39
Figure 27 Scenario Window... 40
Figure 28 Use case diagram for Reporter... 44
Figure 29 Use case diagram for Client... 45
Figure 30 Class diagram of ISME.. 46
Figure 31 Sequence diagram of showing the scenario window... 47
Figure 32 Sequence diagrams of adding and modifying icons on the map.............................. 48
Figure 33 Sequence diagram for deleting placed icons.. 49
Figure 34 Sequence diagram of sending to and receiving from the server 50
Figure 35 Example of ordered facts ... 51
Figure 36 Example of unordered facts ... 51
Figure 37 Deftemplate construct .. 51
Figure 38 Example of a deftemplate for a policeman .. 51
Figure 39 Examples of facts, defined by the deftemplate of Figure 38 52
Figure 40 Extending from other deftemplates.. 52
Figure 41 Asserting icon_to_delete.. 53
Figure 42 Rule for deleting icons... 53
Figure 43 Modifying an icon.. 53
Figure 44 Double reported icons, example 1 ... 55
Figure 45 Double placed icons, example 2 .. 56
Figure 46 Outcome of the example while using multiple owners.. 56
Figure 47 Filter double icons rule .. 56
Figure 48 Jess code to combine 2 icons ... 58
Figure 49 Awarding points to scenarios, with a rule for every icon .. 60

 7

Figure 50 Examples of facts that get asserted at start up of the application 60
Figure 51 The creation of 2 useful variables... 61
Figure 52 Function for awarding points to the scenarios ... 61
Figure 53 Jess code to calculate the icon suggestions.. 63
Figure 54 Integrated Jess code in Java ... 64
Figure 55 Dynamically adding the deftemplates and icon relations to the Rete instance........ 65
Figure 56 Zoom levels.. 66
Figure 57 Formulas for zooming while preserving the middle of the map.............................. 66
Figure 58 Zooming from level 1 to level 2 .. 67
Figure 59 Formula to go from global to local coordinates... 67
Figure 60 Alternative formula to go from global to local coordinates..................................... 67
Figure 61 Formula to go from local to global coordinates... 68
Figure 62 Zooming in, using drag zoom.. 68
Figure 63 Example translations from global to local coordinates.. 69
Figure 64 Example translation from local to global coordinates ... 69
Figure 65 Photographs C and D presented to Respondent 1.. 72
Figure 66 Report of respondent 1... 73
Figure 67 Photographs A and B presented to Respondent 2.. 73
Figure 68 Report by respondent 2 .. 74
Figure 69 new world model ... 74
Figure 70 Proposed network architecture... 81
Figure 71 News article Riot ... 88
Figure 72 News article Car Crash .. 91
Figure 73 News article Fire 1... 93
Figure 74 News article Fire 2... 95
Figure 75 News article Fire 3... 95
Figure 76 News article Bomb Scare 1.. 99
Figure 77 News article Bomb Scare 2.. 99
Figure 78 News article Shooting.. 101

 8

Chapter 1: Introduction

Since the terrorist attacks on September 11th 2001 the issue about the collaboration of
emergency services has become increasingly important. One of the conclusions is that better
communication between the different services is needed. Another important issue on that day
was the total breakdown of the communication infrastructure, immediately after the attack.

Because our MMI department is doing research on, among other topics, multi modal
interfaces and AI, it seemed promising to develop an intelligent system with a new modality
for communication, using a wireless, ad-hoc network.

Before this project was started there had been some research about chatting with icons, in
particular in crisis situations [Tat03]. The basic idea was to create a laguage, which is
universal, easy to use and easy to learn. Human communication is based on exchange of ideas
or concepts. An idea originating in the mind of the ‘sender’ is first converted to a string of
words. The receiver processes the string of words and tries to understand the underlying ideas
of the sender. Conversion, translation and interpretation introduce miscommunication. The
challenge is to define a way of communication based on a direct exchange of ideas or
concepts. That’s why we start with a basic set of concepts, visualized by icons.

In a communication system for emergency services it is important to be able to talk about
locations, hence we decided it could be useful to incorporate a map of the surroundings. To
communicate about geometrical positions of objects, we will use local maps of the world.
Now observers have to position icons on a map, so we have two kinds of communication:

1) Using strings of icons
2) Locating icons on a local map of the world

The proposed goal of this thesis is a system that is based on the second kind of
communication. It can be used by the emergency services to keep each other up to date about
what’s going on in a particular area, e.g. a city, by placing icons on the map and sending them
to each other. For now we will ignore the need of the wireless capabilities of the system
[Kla05], and focus on the interface and intelligence.

1.1 Project Overview

What we would like to achieve is to get a structured World Model from a real life crisis
situation. A World Model is composed of objects, characteristic features of the objects, and
relations between the objects. Every observer has his own World Model. Police officers,
firemen and laymen have different views of the world. An observer will look at the situation
that is going on, from this he will form his own ideas of what is happening. When you get just
a glimpse of a situation, and recognize certain aspects, the brain will automatically start to
make assumptions about what is going on. The brain will construct its own model about the
situation, the mental world model. Thoughts like these are based on what he observes, but
also on his background knowledge.

We may also assume that observers are positioned differently in time and space. Not all
observers will be able to see the same things because they report at another time, or from

 9

another place. What we want to do is mould these mental models into a computer system. To
do this we need to make the mental model more concrete, so that it can be stored in a
structured way. Next we want to fuse the different reports into one shared World Model, see
Figure 1.

The agent in the field observes what is going on in the Real World and forms his own Mental
World Model of the situation. He then wants to report his thoughts with the report tool of the
system. The tool will only be able to handle structured information; concepts represented by
icons. Thus the reporter has to concretise his ideas in icons, that he can then place on the map.
Then the Structured World Model gets send to a central server, which collects reports of all
the agents in the field. This server will fuse the ideas and form its own structured world model
that gets send back to the agents, along with suggestions that the agent might have forgotten
to report. The agent will see these suggestions, forcing him to observe the situation again, to
see if he missed anything.

Figure 1 Project Overview

 10

For an intelligent communication system like this we will have to look into several aspects:

• First of all we have to define a World Model, different sets of icons, corresponding to
different crisis situations, and a priori information about characteristics and relations
between the objects. What icons will we need? How are these icons related to each
other, and what are the specific characteristics of each?

• Then there needs to be the interface of the report tool. The interface should provide a

clear structure for the communication. What kind of information should be reported to
the system, and what kind of information should be distributed back to the users? How
will the information be represented to the user?

• A next aspect is the intelligence of the system, in particular in the fusion of the

different reports. How does the system handle double or missing information? How
should it deal with contradicting information? How does it keep its world model
unambiguous and up to date? How does the system handle time and dynamic events?

• Another issue is the security of the system. Since it will be based on wireless

communication, how can we prevent outsiders to intercept information? Should all
information be send to all the users, and if not, how do we define different roles of
users? How can we prevent the server from going down? And if it does go down, how
can we prevent losing the information?

1.1.1 Define a World Model

To define a World Model we will need information about what concepts play a part in crisis
situations and how the concepts are related to each other. It is important that the icons will be
expressive enough to represent the needed information, and that the vocabulary of the system
is extendible and editable. One of the first problems we encountered during the project is that
the emergency services are very conservative with providing information. The information we
have used is therefore for a big part originating from emergency scenarios as described in
news articles. Although we tried to define the concepts that can occur in a crisis situation to
our best knowledge, the reality of what the emergency services would actually use as concepts
may be somewhat different. The information about icons should therefore be stored as
flexible as possible, to be able to cope with different, more or other icons, or different
scenarios.

1.1.2 Interface

As said in the introduction we will be communicating by the means of placing icons on a
map. Since we are developing it for crisis situations we want the clients to run on handheld
computers. This means the application has to fit a certain dimension, making it rather
compact. It’s important for the interface that icons can be easily selected and placed on the
map. The icons should therefore be grouped in a logical way, so one can find the needed icon
quickly. It is also important that the icons can be placed with some accuracy, which can be
obtained by developing zoom functions for the map. A last issue is that the interface should be
able to deal with the flexible information about the icons. There is little use in making the
information flexible, but the interface not.

 11

1.1.3 Intelligence

We want a system that is intelligent, in the sense that it can deal with icons that are received
multiple times, cope with icons that might be missing and icons that might be placed wrongly.
If icons are received multiple times, the system should be able to handle this on its own,
without human interference. In the other cases however it is very hard and dangerous to let the
system delete, modify or add icons to its world model without human approval. Therefore the
system should be able to ask for feedback to the users, if it detects that errors might have
occurred. Again these errors are based on our own beliefs about crisis situations, and might be
different from reality. Taking this in mind, we want the Artificial Intelligence of the system to
be dynamic and easily adjustable. Another issue about the intelligence of the system is its
ability to cope with time. Specific events may happen in a strict order.

1.1.4 Security

Since the application is going to run on handheld computers, there will be wireless
communication. Wireless communication can quite easily be intercepted, allowing people to
‘listen’ to what is happening, and maybe worse, to actively send (wrong) information to the
system, making the system worthless. This can be solved by encrypting the information.
Another security issue is the failure of the server. We don’t want a system with only a central
server, because we could lose all information when it goes down. Therefore we want to have
all the information distributed amongst the clients, simulating a central server.
It might also be necessary for the different users to receive different kind of information.
Maybe ambulance personnel is not interesting in certain events that are important for the
police or the fir department. This could be solved by giving the different users different roles,
which determines what information will be send to them.

1.2 Problem Description

In the ideal case we would have a system that has its information safely distributed among
different clients. The system would have a clear interface that is easy enough to not make
mistakes, but complex enough to handle difficult and unexpected situations. The system
would at all times have a correct and up to date world model, that automatically adds missing
information, alters wrong information and deletes excessive information. Furthermore we
want a system that can easily be extended and altered, both on its vocabulary and its
intelligence.

 12

Taking in account that not everything can be handled in a single thesis work, the problem we
are trying to solve in this particular thesis work is focussed on the interface and intelligence,
and is defined as follows:

I
c

Design and implement a system that is suited for iconic communication in a crisis situation,
using a map of the surroundings, which is expressive enough to handle complex and
unexpected situations, yet intuitive enough to use without making (a lot of) errors. The
system should be intelligent enough to assemble and maintain a correct and up to date
world model. It should detect possible errors in the form of missing, double and wrongly
placed icons. Furthermore the system should be dynamic in the sense that new concepts and
rules can easily be added.
n chapter 3.1 we will elaborate on this problem description, splitting it up in workable
omponents, which the final result will be tested against.

13

 14

Chapter 2: Related Work

In this chapter we will describe some related work that was studied before starting the design
of the system. We will first discuss some background information about icons, then we will
look at an emergency system that has been designed by the Dutch government, and finally we
will take a look at a system that uses icons to communicate.

2.1 About Icons

Because we will be using icons to communicate we will first present some information about
icons. This section will tell something about the history of icons, followed by some
information about the modern use of icons. See [Bea94], [Cha02], [Dor94], [Jon96], [Mea91],
[Mea94], [NRC03], [Ric94], [Shn98].

2.1.1 The History of Icons

Icons are graphical symbols representing a concept or thing in reality. The term icon has been
adapted from the Russian word ikon, which is a religious painting or statue. Icons have been
around for a very long time, as early as the middle ages complex iconic systems have been
used, for example to denote systems of astrological signs. It may even be argued that the
ancient Egyptians were using icons as a language. They may not have called them icons, but
they did communicate using graphics.

In the 1930s Otto Neurath developed Isotype, a system for communication which uses
stylised graphics within a two-dimensional syntax. Neuraths work ranges from a very specific
example of how a complex idea can be conveyed graphically, to a proposal for an
international set of iconic images.

In the 1950s, Charles Bliss developed a set of atomic icons that represent basic objects in the
world, and their features. These can be combined to form complex icons that map on to the set
of words found in natural languages. Figure 2 shows how we can construct a symbol for
telephone using: mouth-ear-language-electricity-telephone

Figure 2 The construction of the Bliss symbol for telephone

The work of Bliss has some resemblance with the work of linguist Anna Wierzbicka, who
claims to be able to describe any concept with using only 61 different words. The
combination of these atomic words lead to a new concept, just as the atomic pictures of Bliss
lead to a new concept. Although Wierzbicka does not use icons, the possibility of mapping
her atomic words to atomic icons seems interesting.

The iconic languages were not all as successful as their developers might have hoped for, but
they do show that there are distinct advantages in a communication based on graphical icons.

 15

Our ability to learn or to recall the meaning of a sign seems to be greatly enhanced to the
point where we may not need to be told what the sign represents or to explicitly learn its
meaning. There might also be some advantage in the efficiency of using icons over natural
language in the sense that difficult concepts might be represented by only a small number of
icons, as opposed to many more words. Furthermore our ability to recognize icons does not
depend on the natural languages we know, suggesting that iconic systems may be a way to
overcome linguistic differences. Note that this does not imply that icons are also culturally
independent. [Colin Beardon]

2.1.2 Modern use of icons

Within the computing context the word icon is used to denote a small graphical representation
of a program, resource, state, option or window. As such, icons form an important part of the
Graphical User Interface (GUI).

An ideal icon language wouldn’t need any explanation, the intuition of the user, based upon
his life experience, should be enough to immediately understand it. Of course, this is not a
very realistic goal. Just as any language, icon language is something that does need some
training. Most people already have some training in recognizing icons however, because icons
can be found anywhere. In many public places they are used extensively, for example to
indicate the toilets, or to show where the emergence exits are. A lot of icons are used in traffic
signs, they point out if you are allowed to overtake other cars, if a road is one way only, or is
a dead end.

The challenge in designing icons is that they should be as easy as possible to learn, as easy as
possible to remember, and as easy as possible to recognize. Therefore icons should be
designed with the following criteria in mind:

• Graphically clear
• Semantically unambiguous
• Cultural independent
• Simple

To make them graphically clear is straightforward, make the icons so that they resemble a
concept in the real world, and keep them simple. Too much detail cannot be shown clearly in
32x32 pixels. Semantically unambiguous means that the icon only represents one concept, and
that concept is only represented by that particular icon. Don’t make two icons for the same
concept, don’t make one icon for 2 concepts. Cultural independence is harder to achieve, try
to make the icons independent of any cultural background information. An easy example of
doing this in a wrong way is using the road sign in Figure 3 in Great Britain, where this sign
would mean that it is forbidden to be overtaken by other cars.

 16

Figure 3 Cultural dependent icon

If icons are for some reason not clear to the user, they can be explained by written or spoken
text. This has, however, a very big drawback. One of the most important advantages of icon
use will be neglected in this way; icons can be used to communicate with people that don’t
speak each others natural language. If the explanation of an icon is given in a natural
language, somebody who doesn’t speak that language isn’t able to use it.

A better way, perhaps, to explain icons that are not very clear is to animate them. Especially
on computers this is very convenient to do and some icons are animated already. In most
operating systems you see an animation when you copy files from one map to another, for
example. Animated icons should only be used if normal ‘static’ icons will not suffice. In
addition, most animation should only be used for the explanation of the icon; otherwise, you
will become very distracted by all the moving images on your screen.

There are three styles of icons that are commonly used, see Figure 4:

1) Silhouette style; this one is very straight forward and clear, the drawback is that it is
somewhat limited in the range of things it can represent.

2) Three-quarter top view; this style is very informative, but it requires some visual
understanding.

3) Realistic style; this one is easy to recognize, but it is not very generalizing.

Although the use of these different styles makes it possible to select the best one for each
icon, it is not recommended to use a mix of different styles, as it can be confusing.

Figure 4 Three styles of icons

In systems that have a lot of different functions, it is not easy to design an icon for each
function. To improve the recognition of the different icons, they may be divided in subsets.
For example one could use a single group icon for representing surfaces, and have as subset
different icons for representing circular and rectangular surfaces. The division of icons in
subsets can also improve the overview and layout of certain applications.

 17

The icons we are going to use in our system are all designed in a silhouette style. Since we
use colours the icons may seem to fit in a realistic style as well. Because in a crisis situation
we want as much information as possible, an icon on the map is often not descriptive enough.
To add extra information we have tried a visual approach at first. We have tried 3 ways to
visualize combinations of icons.

Transparent icons

By making the icons background transparent we can just place them on top of each other. For
some icons this works, but a lot of icons cannot be recognized anymore, especially when more
than 2 icons are used in the combination. For example a fire in a building is shown as follows
in Figure 5. This is not a good visualisation, although there are only two icons used it
becomes unclear what’s shown in the first icon.

 + =
Figure 5 Transparent icons

Alternating icons

In this version the combinations will be visualized by alternating the icon every time unit. For
example a building is shown for one second, then it gets alternated by one second of flames.
This type of visualization is already a big improvement on the transparency, but still has some
drawbacks. If there are a lot of combined icons on the map, the whole map is blinking, which
is very distracting.

Another drawback we found after implementing and testing it is that some combinations are
shown very poorly. If we would select a car, a crash, and another car, it would just show a
car for two time units and a crash for one time unit. This is not nice because it looks like there
is just one car in this case. Of course there can be worked around this problem, there could be
certain rules that would not allow two identical icons in one combination. The example
combination could then be rephrased like 2, car, crash.

If a very big combination is made, another drawback can be found. It takes the user several
seconds to see the meaning of the icons because they are not shown simultaneously. They
would have to wait for the whole message to come by, before they understand the meaning.
We would rather have an instant overview with a single look at the map.

The final drawback about this implementation is that the application becomes pretty slow
when a lot of combinations are made. The map keeps getting repainted every time unit, and
this is of course really computer time intensive. Because the application is designed to
eventually run on a handheld, this might prove to be a problem. It may be clear from the
above that this is not the type of visualisation we are looking for.

 18

Stacking icons

In this version the icons simply get stacked on top of each other. The advantage is that this is
a very easy solution, because each icon will simply be placed shifted some pixels up and right
of the original icon. Also the icons used in the combination can still be recognized and they
are shown simultaneously. The only disadvantage is that the stacks take up more space than
the other versions. This can be worked around by setting a maximum size of a combination.
The stacking version is shown in Figure .

Figure 6 Stacking icons

Later on during the project we have decided to not make use of any of these combinations
after all. When the zooming in and out of the map had been implemented, it became clear that
we did not need any stacking at all, because the icons can be placed very close to each other
already. An additional reason to abandon the idea of visual representation of additional
information is that certain types of additional information are very hard to represent with an
icon. If we want to say something about the status of a policeman, we use terms as busy,
waiting, wounded. It is much easier to give this information in a natural language. That’s why
we implemented a way to add and view information by clicking on the icon and adjust some
of its attributes.

2.2 C2000

In the Netherlands a new digital radio network for the communication of emergency services
is being developed [C2000]. It is called C2000, and its goal is to maximally facilitate the
communication between the fire-brigades, ambulance services, police-brigades and military
police. The mobile communication between these emergency services should be supported
and improved. The system should guarantee fast and secure communication, make
communication between different emergency services possible, and help improve the safety
of the emergency personnel.

The need for a reliable communication system for these services is high. Not only for the day
to day activities, but also in case the different services need to cooperate with each other, for
example in crisis situations as in Enschede, where a fire occurred in a firework deposit. The
emergency services themselves are closely involved in the development if C2000. In 1996 the
first steps were undertaken to develop it, and the system is (was) supposed to be in full
operation at the end of 2003. In Figure 7 the design of the C2000 network is shown.

 19

Figure 7 Overview of C2000

The numbered components are explained below:

1) Direct Mode Operation. DMO makes it possible for car phones and walkie-talkies to
communicate with each other directly, without making use of the network.

2) Air Interface. Communication of a mobile station takes place using electromagnetic
waves, with a transmitter mast, or with another mobile station via the Air Interface.

3) Inter System Interface. Multiple TETRA networks can be linked using the Inter
System Interface. This is important for international communication.

4) Direct link with the central emergency room.
5) Gateways. The gateways make it possible to link the system to other external

networks, such as the public telephone network, or the Nationale Noodnet (national
emergency net).

6) Peripheral Equipment Interface. The PEI supports communication between laptops
and mobile stations, such as car phones.

 20

2.2.1 Advantages

C2000 makes the communication among emergency services fast, simple and reliable. This
one national system will replace almost 100 local systems that are currently used by the
different services. The digital network has big advantages over the old analogue systems:

• C2000 is suitable for multidisciplinary communication, whereas this was impossible
with the old systems.

• C2000 is designed in a way that is easy to secure, making it virtually impossible to
eavesdrop on it.

• C2000 has a national coverage, whereas the old systems only have regional coverage.
• C2000 has a much better sound quality for speech.
• C2000 is very suitable for data communication.
• All car phones and walkie-talkies are provided with emergency buttons.
• C2000 supports communication with foreign co-workers, improving provided services

near the borders.

2.2.1.1 A joint radio network with national coverage
C2000 is a big improvement on the current situation. At this time all regional organisations of
the four emergency services have their own networks in use, adding up to almost 100
networks, spread out all over the Netherlands. This makes communication among them very
difficult. However, in the case of a big calamity, like the disaster with the fireworks deposit in
Enschede, good communication can save lives. On top of this, the old networks are all
analogue and outdated. Because C2000 is one national network, the communication will be
fast, simple and reliable. It is believed that in the long term a lot of money can be saved on the
acquisition of hard and software because it will be standardized. Money will also be saved by
having a joint education of the personnel. Furthermore the network is believed to provide an
excellent basis for future technologies, because of its state of the art technology.

2.2.1.2 A high level of security
All car phones and walkie-talkies get provided with an emergency button. When this button is
pressed a connection is made directly with the central emergency room. The operator can then
automatically listen along with what’s going on. C2000 has an excellent quality of speech.
The system is designed in a way that it can not fail because of excessive use, what happens
with ‘normal’ communication such as the telephone when a lot of people use the network at
the same time. Think about New Years Eve, when everybody is trying to call their families at
the same time, the system then gets overloaded and fails to do its job. Furthermore the system
is secured against eavesdroppers. While people with special scanners can now freely hear
everything that’s being said over the analogue systems, this can’t happen in the new system
because every conversation will be secured automatically.

 21

2.2.1.3 An open European standard
C2000 is based on the European TETRA standard. TETRA stands for TErrestrial Trunked
RAdio. Just like GSM is the standard for mobile telephony, TETRA will be the standard for
emergency services. The standard is designed with the cooperation of the industries, ensuring
that a customer is not dependant on only one supplier, but can purchase TETRA equipment at
several suppliers. The TETRA standard is based on the latest digital technologies and is
continued to be improved. This will ensure the systems based on the standard will be fit for
the future. Most countries will be using, besides the TETRA standard, the same frequency.
This will allow for international cooperation.

The infrastructure for the C2000 system has been delivered in July 2004 and at this moment
some regions are working with it. The system is expected to be up and running in the whole of
the Netherlands at the end of 2004.

2.3 Iconic Communication

A closely related project involving icons and emergency situations was done by Iulia Tatomir
[Tat03]. The goal of this project was to create an application that allows its users to
communicate with each other using an international ‘language’, icons.

First the graphical user interface was developed, which is designed to be as easy as possible to
use. Because its is designed to be a simulation for a PDA application, big constraints on the
applications dimension were imposed. The interface is shown in Figure 8

Area 5

Area 4

Area 3

Area 2

Area 1

Figure 8 Interface for iconic communication

 22

The application is divided in 5 areas

Area 1: This is where the main categories are represented by their defined icon. The
categories are Crisis, Cars, People, House, First Aid, Directions and Time.

Area 2: This is where the icons of the chosen category are displayed. The first icon in this area
is always the icon that represents the index icon for the category. When an icon in this area is
being clicked on, it will appear at the cursor position in Area 4.

Area 3: This area is an extension of Area 1. The categories in this area are Human Actions,
Information, Numbers, Yes/No, Special Signs, Intonation, Military.

Area 4: This is the area where the selected icons are placed to form the sentence that the user
wants to send. There is room for 7 icons, which should be long enough for a sentence in icons.

Area 5: This last area is to edit the sentence. The middle left and right arrows are for
navigating through the sentence, it will move the cursor through the sentence. The big left
arrow is used for deleting an icon. The delete works as the backspace button on a keyboard, so
it deletes the icon before the cursor position. The last button is used for sending the sentence.

The main part of the research in this project was done on defining the grammar of the icon
sentence. Not all combinations of icons form correct sentences.

The grammar that was developed is a context free grammar, based on Chomsky’s hierarchy.
A grammar is basically a set of rules that defines how grammatically correct sentences can be
formed. A grammar is formally defined as a quadruple G = {N, T, S, P} with:
N – a finite set of non terminal symbols
T – a finite set of terminal symbols
S – a special goal or start or distinguished symbol
P – a finite set of production rules

The union of the sets N and T form the vocabulary of the grammar and should not intersect.
The final grammar used in the application is defined as follows:

F

S = negation A | number B | adjective C | noun R | verb E | adverb H
A = number B | O
O = verb E | P
P = verb | B
B = adjective C | C
C = noun R | noun
R = sign | D
D = negation F | F
F = verb | G
G = verb E | E
E = adverb | I
I = adverb H | H
H = number J | J
J = adjective K | K
K = noun L | noun
L = adverb
igure 9 Grammar of the Iconic Communication system

23

When an icon is selected, the sentence gets parsed and the system decides which icons can
follow. This is extended by the interface, by only making the icons that fit correctly in the
sentence selectable.

The similarities of the work by Tatomir and this project are of course the use of icons and the
context of a crisis environment. As we worked together for some time we made some
agreements on which icons to use for which concepts. A lot of icons in her work will thus be
seen again in this project. The categories of icons are different however, because on a map
only nouns can be placed. There is no use for verbs, numbers, adjectives, and so on.
While the idea of defining full sentences with icons seems promising it is not very applicable
in combination with a map. The only sentences we will need are of the form:

There is a <noun: icon> at position <number: x, number:y>

 24

Chapter 3: Global Design

In this chapter we will discuss the requirements and constraints of the system, we will see
how the system is built up from different components, what the responsibilities of these
components are, and how they are designed.

3.1 Requirements and Constraints

When developing any system, there are some requirements and constraints that needs to be
taken in mind. We will take the problem description to split up the different requirements into
workable components.

Design and implement a demonstrator for a system that is suited for iconic communication in
a crisis situation, using a map of the surroundings (1), which is expressive enough to handle
complex and unexpected situations (2), yet intuitive enough to use without making (a lot of)
errors (3). The system should be intelligent enough to assemble and maintain a correct and
up to date world model (4). It should detect possible errors in the form of missing, double and
wrongly placed icons (5). Furthermore the system should be dynamic in the sense that new
concepts and rules can easily be added (6).

The requirements that can be found in this problem description are discussed below:

1) To make the system suited for iconic communication in a crisis situation we need to
have icons that represent concepts in a crisis, and maps of the surroundings to place
the icons on.

2) To make the system expressive enough we will need different categories of icons for
people, events, transportation and buildings. Within these categories several icons are
needed for more specific information. Just placing a man on the map doesn’t do much
good, if it’s not specified he is e.g. a fireman. Even when there is a good icon to
represent the concept, we will need a way to add even more information. That’s why
the icons will have several attributes. In the case of flames these attributes will be the
size of the flames, the intensity and the status (increasing, decreasing, under control).

3) To prevent a lot of errors, the GUI should be intuitive and easy to use. It should be
clear which category and icon is selected and they should be added to the map with
just clicking on the location. To provide extra information, an attribute window will
pop up where the values of the attributes can be given. The values can be selected out
of a small list, this decreases the chance of making a wrong selection, and eliminates
the chance to make an illegal selection. When icons are placed, the user should be able
to delete them again, or to inspect or alter its attributes. To prevent placing icons on
the wrong location, the user should be able to easily zoom in and out of the map, to be
able to place the icon exactly where it should be.

4) In order to assemble and maintain a world model we will collect all information at one
server. To create a world model out of this information we could store it all in some
sort of database, which will have to be kept consistent at all times. We will choose a
client-server implementation for this, where the many clients are the reporters of the
crisis, and the server is the part that keeps a consistent world model and distributes all
information among its clients.

 25

5) To detect missing, double and wrongly placed icons we need some intelligent agent,
that constantly works on the information that’s being gathered. This means it will have
to work on the database of collected information.

6) In order to make the system dynamic, it’s useful to store all its information about icons
and their rules in some sort of database. The entries of this database should be easy to
edit, and the database should be extendible. If we keep this database in separate files
that are read by the system on start up, it’s possible to adjust rules, and icons in a way
that does not require the entire system to be recompiled.

We are going to make a demonstrator for a real system, which, except for the server, has to
run in the field during a crisis situation. This means that the type of hardware we need should
be usable in such situations. It is impossible to let the eventual system run on laptop
computers, let alone normal PC’s. The system has to run on handheld computers, and thus the
demonstrator has to take into account the constraints which come with that.

The PDA where the application will be based on, the Sharp Zaurus SL-C760 (Figure 10), has
a maximum resolution of 640x480 pixels, a 400 MHz Intel XScale PXA255 processor, and 62
MB of RAM. The constraints that follow from this are the resolution and the limited speed of
the client. That’s why we need the server to do all the time intensive calculations, and make
the client as light weight as possible. Furthermore we need to use a programming language
that can run on the Zaurus.

Figure 10 Sharp Zaurus SL-C760

Another constraint of using a handheld computer is that the system should be designed for
wireless communication. Because this is much slower than a normal network, we need to
keep the data traffic to an absolute minimum.

 26

3.2 Java, Jess and XML

Following from the requirements and constraints we have made a choice on which
programming language(s) to use.

The main programming language we will use is Java. There are some advantages of Java that
made us decide to use it. The first, and most important, is that Java is platform independent,
meaning that it should have little problems running on a handheld, or the server. The second
important reason to use Java is that there is a lot of knowledge available about how to handle
problems that may arise. A lot of people are familiar with the programming language, both
internally at our faculty and outside of it. Many help forums are available as well.

The storage of the world model of the server and the intelligence of the server are both
combined in one component, Jess [JESS]. Jess stands for Java Expert System Shell. In short
Jess is an expert system that works with facts, and rules that are automatically triggered when
the conditions are met. Jess is actually the Java version of CLIPS [CLIPS], with some added
functionality to cooperate better with other Java classes. More about Jess and how it works is
explained in section 3.5. The fact that Jess is written in Java made the choice of using it easy.
It should give little problem to embed the Jess component in the rest of the application,
written in Java.

The last part of the system is the storage of icons and the rules that apply to them. We have
chosen XML files for this part. They are very light weight, and easy to edit. Yet they have
constraints about how information is stored. The form of the XML files can be defined in
special Data Type Declaration files, as will be explained in section 3.4. Another advantage is
that XML files will be relatively easy to read by Java.

3.3 Overview

As said the system will work with one server and multiple clients. The clients collect the
information about their surroundings on their map and send it to the server. The server, in
turn, will make a consistent world model of all the gathered information and send it back to
the clients. The clients can not interact with each other directly, but all communication will be
done via the server.

The basic input of our system are the observations of the users. To reduce the ambiguity and
to come up with a shared view of the world, the system will provide the set of icons.
Nevertheless, the observations can still be somewhat ambiguous because of the following
reasons:

• Observers miss objects in the scene; they can overlook overlook certain events or have
a different view on what is important to report.

• Observers are remote in time. Crisis events occur and develop over time, so the

observations are time dependent.

• Observers are remote in location. Observers are positioned at different locations and
can see different things, or from a different angle.

 27

• Observers can either report with the use of the map, or just with icon strings (when
these systems are integrated). Both types of messages are supposed to be consistent
and complementary.

In Figure 11 an overview of how the different components interact is shown. The XML files
contain all information about the icons and scenarios. They also contain parameters that
influence the rules in the Server. The server is mainly done in Jess, there is only some Java
functionality that lets the server communicate with the clients, and lets it read in the XML
files. The Client is done entirely in Java, it gets information about what icons should be in the
GUI from the XML files, and then dynamically builds up the interface. A change in the XML
files will cause other icons to appear in the client, and other icons and rule parameters will be
used in the server as well. When the XML files are changed, both server and client need to
start up again, in order to let the changes affect them.

Figure 11 Overview of the components

Besides sending back the world model to the clients, the server will also send some
information about scenarios and will suggest some icons that can be placed next.

 28

The scenario information will consist of the predefined scenarios and the probability values
that the server has added to them. The values are not in percentages, but are a number that the
intelligence of the system will award to each scenario. The higher the number awarded, the
more likely it is that the scenario is happening. The scenario information is to give the users
of the clients a quick idea of what is happening around them, and to make better predictions
of expected icons.

The suggestions for new icons are some feedback for the user. The server has some
expectations of what icons it will be receiving next. If an icon is missing, the server will
notice this by the information of the XML files. If a fireman is reported, but there is no fire
truck, the system will be likely to suggest placing one. The suggestions for placing new icons
come from both individual icon relations (icon:flames icon:smoke) and relations between
scenarios and icons (scenario:bomb scare icon:bomb). Providing suggestions like these, we
believe, will add to a more accurate report. Things the reporter might have missed, or did not
find important enough to report will be more likely to be reported now. The user will be
actively looking for the concept represented by the icon of the suggestion.

3.4 Design of the XML Files

The XML files will form the basis of all knowledge in the system. In the first place, all the
used icons are defined in these files. The icons will be summed up, and each icon will have its
own attributes, as defined in these files. Furthermore these files will contain parameters that
influence the intelligent behaviour of the system as a whole. Finally the XML files will
contain information about emergency scenarios.

XML stands for eXtensible Markup Language and is a language to define structured
information. It is very lightweight, as opposed to a traditional database, and can be edited
relatively easy. All XML files should be well-formed, meaning that they should obey to
certain grammar rules of XML. This will lower the likelihood of making errors while editing
or creating the file. Besides this protection, the structure of the document can be further
constrained to be valid, meaning the file should obey a predefined structure. These structures
can be defined in Document Type Declaration file. This file exactly defines what structures
are allowed.

In DTD files is defined exactly what structures in the XML file are allowed. XML files use,
just as HTML, tags that separate the structure from the data. A tag is an indication of what
information will follow, at the end of the information will be a closing tag. Tags and
information can be nested. An example to clear this up:

F

E
F

<book>
<title>Artificial Intelligence: a modern approach</title>
<author>Russell</author>
<author>Norvig</author>

</book>
igure 12 Example XML fragment

verything from the beginning to the end of a tag pair, is called an element. In the example in
igure 12 we have the following elements: book, title, author.

29

Elements can thus be nested. Note that elements may contain multiple of the same sub
elements, while a book has only one title, it may have more than one author. This structure
can exactly be defined in DTD files. The DTD file that defines the structure of the example is
shown below:

F

E
F
a
D

I
t

F

A
s
w
b
i
p
c
a
i
p
p
s
h

<!ELEMENT book (title, author*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
igure 13 Example DTD

very element has to be specified in the DTD, and it defines how each element is build up.
rom Figure 13 we can see that every book has one title, and zero or more authors. The title
nd the author elements are both specified to contain #PCDATA, this is Parsed Character
ata, which means it can contain an arbitrary string of characters.

n our system we will need two separate XML files. The first one contains all the icons and
he inter icon relations. The DTD file is defined as follows:
<!ELEMENT iconlist (group*)>
<!ELEMENT group (icon*)>
<!ELEMENT icon (icon_name,icon_image,slot*,next_icon*,previous_icon*)>
<!ELEMENT icon_name (#PCDATA)>
<!ELEMENT icon_image (#PCDATA)>
<!ELEMENT slot (slot_name, slot_value*)>
<!ELEMENT slot_name (#PCDATA)>
<!ELEMENT slot_value (#PCDATA)>
<!ELEMENT next_icon (icon_name, chance, timespan)>
<!ELEMENT previous_icon (icon_name, chance, timespan)>
<!ELEMENT chance (#PCDATA)>
<!ELEMENT timespan (#PCDATA)>
igure 14 DTD of the icon XML file

 valid XML file, as defined by Figure 14, has an element iconlist, which is the main
tructure. We want to have the icons divided in categories, that’s why we make one big list,
hich can contain multiple groups. The iconlist can contain zero or more groups, as indicated
y the *. Each group, in turn can contain zero or more icons. Each icon contains exactly one
con_name, one icon_image, zero or more slots, zero or more next_icons, and zero or more
revious_icons. The icons name and image are defined as #PCDATA, an arbitrary string of
haracters. The slots of an icon is where its attributes are stored. It contains the name of the
ttribute and the possible values the attribute can take on. The inter icon relations are defined
n the next_icon and previous_icon fields. The fields have the name of the next, respectively
revious icon, a chance and a timespan. The chance defines how likely it is that if the icon is
laced, a next_icon or previous_icon is required as well. The higher the number in the chance
lot, the more likely. The timespan is currently not used, but can add extra information about
ow much time may pass until the relationship ‘expires’.

30

F

T
b

F

A
i
s
s

- <iconlist>
- <group>
- <icon>
 <icon_name>policeman</icon_name>
 <icon_image>./icons/people/policeman.jpg</icon_image>
- <slot>
 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>

 </slot>
- <previous_icon>
 <icon_name>policecar</icon_name>
 <chance>2</chance>
 <timespan>1</timespan>

 </previous_icon>
 </icon>
</group>

</iconlist>
igure 15 Fragment of the icon XML file

he second XML file we will use contains the information about scenarios. Its DTD is given
elow.

<!ELEMENT scenariolist (scenario*)>
<!ELEMENT scenario (scenario_name, icon*)>
<!ELEMENT icon (icon_name, chance, slot*)>
<!ELEMENT icon_name (#PCDATA)>
<!ELEMENT slot (slot_name, slot_value*)>
<!ELEMENT slot_name (#PCDATA)>
<!ELEMENT slot_value (#PCDATA)>
<!ELEMENT chance (#PCDATA)>

igure 16 DTD of the scenario XML file

s we can see the scenariolist contains zero or more scenarios, each consisting of multiple
cons. In the icon fields is the name of the icon is defined, with its chance of being in the
cenario, and possible slots that are relevant. Below, in Figure 17 is a small sample of the
cenariolist.xml file.

31

F

F
h
S

- <scenariolist>
- <scenario>
 <scenario_name>shooting</scenario_name>
- <icon>
 <icon_name>policeman</icon_name>
 <chance>4</chance>

 </icon>
- <icon>
 <icon_name>roadblock</icon_name>
 <chance>4</chance>

 </icon>
- <icon>
 <icon_name>victim</icon_name>
 <chance>4</chance>

 </icon>
- <icon>
 <icon_name>policecar</icon_name>
 <chance>4</chance>

 </icon>
- <icon>
 <icon_name>ambulance</icon_name>
 <chance>3</chance>

 </icon>
+ <icon>
+ <icon>

 </scenario>
 </scenariolist>
igure 17 Fragment of the scenario XML file

or a complete overview of the used XML files see Appendix B: XML Files. To understand
ow we made the inter icon relations, and scenario icon relations, we refer to Appendix A:
cenarios.

32

3.5 Jess

Jess is the expert shell in which we will program our expert system to add the systems
intelligent behavior. First we will provide some information about how Jess works, after that
we will discuss the design of our expert system.

3.5.1 About Jess

Jess is a rule-based expert system shell made in Java. This means that Jess’s purpose is to
continuously apply a set of if-then statements, the rules, to a set of data, the knowledge base.
The user can define his own rules to make his particular expert system. Jess rules are of the
form:

Figure 18 Stru

Which means that when A and B are stateme
well. An example of a rule and its explanatio

Figure 19 E

The book and borrower information would be
base is a collection of facts about the world. I
placed icons will be a big part of the knowled
and removed. Together the placed icons will
that the facts are allowed to have are defined
of a deftemplate for a book is shown in Figur
defined functions that can be either in the Jes
(Userfunctions).

A
B

C

cture of Jess rules

nts that are both true, C will be made true as
n:
(defrule library-rule
 (book (name ?X) (status late) (borrower ?Y))
 (borrower (name ?Y) (address ?Z))
=>
 (send-late-notice ?X ?Y ?Z))

Translation:

Library rule:
If
 A late book exists, with name X, borrowed by someone
named Y
And
 The address of borrower Y is known to be Z
Then
 Send a late notice to Y at Z about book X
xample Jess rule

 found in the knowledge base. The knowledge
n the knowledge base we will be using, the
ge base, and they will be the facts that are added
form the world model. The attributes, or slots,
in statements called deftemplates. An example
e 20. Actions like send-late-notice are user
s language (deffunctions) or in Java

33

A typical expert system has a
continuously. However it’s a
knowledge base is also fixed
being added and old ones get
time unit is rather small. For
rather inefficient. The obviou
continuously cycle through th
by checking each rule agains
results of each cycle will be t
stable, every cycle the same f
complexity this algorithm giv
the number of facts, and P th
dramatically if P increases. T

Jess instead uses a very effici
basis for a whole generation
In the Rete algorithm, the ine
results across iterations in the
LHSs. Additionally new facts
likely to be relevant. As a res
the knowledge base.

The Rete algorithm is implem
more tests on a rule LHS. Fac
At the bottom of the network
the way down the network, it
an activation. The RHS of the
invalidated by the removal of

There are two kind of nodes i
perform tests on individual fa
perform the grouping functio

If we have these two rules, th

(defrule example-1
 (x)
 (y)
 (z)
 =>)

(deftemplate book
 (slot name)
 (slot author)
 (slot ISBN_number)
 (slot status)
 (slot borrower))
Figure 20 Example Deftemplate

 fixed set of rules while the knowledge base changes
n empirical fact that, in most expert systems, much of the
from one rule operation to the next. Although new facts are
 removed all the time, the percentage of facts that change per
this reason the obvious implementation of an expert system is
s implementation would require keeping a list of rules, and
at list to see if any rules left hand side (LHS) has been made true

t the knowledge base. This is very inefficient, since most of the
he same in the next cycle. Since the knowledge base is fairly
acts are checked against the same LHSs of the rules. The
es is of the order O(RF^P). Where R is the number of rules, F

e average number of patterns per rule LHS. This increases
his is not a good solution for any expert system.

ent method called the Rete algorithm. This algorithm was the
of expert system shells: OPS5, its descendant ART, and CLIPS.
fficiency as described above is solved by remembering past test
 rule loop, meaning only new facts are tested against any rule
 will only be tested against the rule LHSs to which they are most
ult the complexity drops to O(RFP), which is linear in the size of

ented by building a network of nodes, each representing one or
ts that are added are processed through this network of nodes.

 the nodes that represent individual rules. When a fact filters all
 has passed all the tests of a particular rule, and this set becomes
 associated rule will be fired if the activation is not first
 one or more facts that make the activation set incomplete.

n the network: one-input and two-input nodes. One-input nodes
cts, while two-input nodes perform tests across facts and
n.

ey can be compiled into the network of figure 21:

(defrule example-2
 (x)
 (y)
 =>)

34

The nodes marked x?, y?, and z? test if a fact contains the given data, while the nodes marked
+ remember all facts and fire whenever they have received data from both their left and right
inputs. To run the network, Jess presents new facts to each node at the top of the network
when they are added to the knowledge base. Each node takes input from above and sends its
output downwards. A single input node generally receives a fact from above, applies a test to
it, and if the test passes, sends the fact downwards to the next node. If the test fails, the one-
input nodes simply don’t do anything. The two-input nodes have to integrate facts from their
left and right inputs. They must remember all facts presented to them and attempt to group
facts arriving from their left input with facts arriving from their right input, to make up
complete activation sets. A two-input node therefore has a left memory and a right memory.

Fire example 2Fire example 1

+ +

+

z? y?x?y? x?

Figure 21 Network version 1

Its convenient to divide the network into two logical components. The single input nodes
comprise the pattern network, and the two-input nodes form the join network. There are two
simple optimisations that can make the Rete algorithm even better. The first is to share nodes
in the pattern network. In the network in Figure 21 there are 5 single input nodes, while there
are only 3 distinct ones. We can adjust the network to share the double nodes, as can be seen
in figure 22.

Fire example 2Fire example 1

+ +

+

z? y? x?

Figure 22 Network version 2

 35

But this is obviously not the only redundancy in the network. We see that there is an identical
two-input node in the join network, which is integrating x, y pairs. When we share that node
as well we get to the situation in Figure 23.

Fire example 2Fire example 1

+

+

z? y? x?

Figure 23 Network version 3

3.5.2 Design of the Jess Component

Our first problem in designing an expert system is to make the knowledge we need explicit. A
common way for knowledge elicitation is to interview experts [Cha05] or to get the
knowledge from documentation and manuals. The focus of our research is more on the design
and implementation of a report tool. To test our system we defined the rules based on
common knowledge about cricises. The rules and concepts were in our case extracted from
the news articles in Appendix A.

It can be questioned if a rule based approach is appropriate for our system. A common AI
procedure is to start with a deterministic rule based system and as a next step to take a
probabilistic approach and to design a Bayesian Belief Network. This will be further
discussed in the Recommendations. We have chosen an incremental, prototype based
approach, to first prove that the concept of such a system is worth further investigation.

The Jess component will contain the systems World Model, based on reports from the clients.
The knowledge base of Jess will be kept consistent and up to date by constantly running the
rule base on it. When we look at the functionality of the Jess component, we can see that it
works as a virtual blackboard, with some intelligent agent that keeps it clean, consistent and
up to date. This agent is defined in the rule base. Every client can write information on it, the
reported input is then written down on it without question. Then the agent does its work by
performing certain functions on it. The resulting new world model is then send back to the
clients. In Figure 24 an overview of the Jess component is given.

As can be seen, the clients input will consist of new facts, deleted facts and modified facts.
The facts are in this case obviously the placed, deleted and modified icons. When input is

 36

received, the rule base will be applied. There are rules for added icons, deleted icons,
modified icons and doubly placed icons.

The rule for adding new icons will add the icon to the list of placed icons that the knowledge
base keeps track of. Deleting facts will delete the specified fact, and update the list of placed
icons again. The modify rule will search the fact that need modification and edit it. The rule
that searches for doubly placed icons will scan the knowledge base for icons that are very
similar and combine them into one fact. This rule only applies if the double icons are in the
near vicinity of each other and are not reported by the same client. The thought behind this is
if one client sends two icons that are close to each other, there probably are two distinct icons,
while if two clients both send the same icon, there is probably just one.

Policeman at
coordinates 100,
200, status busy,
reported by client A

Output to
clients

World
Model

Modified
Fact

Input from
clients

Next Icon
Suggestion

Adjust
Facts

Delete
Facts

Add Facts

Rule Base

Double
Occurrence

Filter

Scenario
Evaluation

Deleted
Fact

Newly
Added Fact

.....

.....

Adjust ambulance
at coordinates 100,
200, status waiting,
reported by client A

Delete car at
coordinates 110,
200, status crashed,
reported by client D

Add policeman at
coordinates 100,
200, status busy,
reported by client A

Knowledge Base

Figure 24 Overview of the expert system

After the rule base is applied to the knowledge base the resulting world model is send to the
clients, together with the scenario information and next icon suggestions. These last two
outputs are acquired by performing a function on the knowledge base that calculates the
values for the scenarios and suggestions. The Jess components are discussed in more detail in
Chapter 4: Implementation

 37

3.6 Design of the Java Component

The Java component in the system is responsible for everything besides what’s included in the
XML and Jess components. This means Java is responsible for the interface of the clients, the
network, and the integration of the XML and Jess components. We will discuss each of these
in this chapter, and in some more detail in Chapter 4: Implementation.

3.6.1 Graphical User Interface

The Graphical User Interface (GUI) of the client is made entirely in Java. The icons that will
be used, however, are extracted from the XML files. This means the GUI should be as
dynamic as possible. Adding a new icon in the XML files should not result in a problem
during the initialisation of the GUI.

As is stated in the projects problem description, the goal of the system is to communicate with
icons using a map. So obviously the icons and the map need to have their place in the GUI.
Besides these elements, there also need to be some placed reserved for control elements.
Things that fall in this category are a delete tool, an inspect option, the ability to send your
information to the server, and some zooming possibilities.

Since the clients will be receiving some information about the scenario that they are finding
themselves in, there needs to be some room reserved for displaying this information as well.
Finally we need some place to display any suggested icons. After many prototypes, the final
interface of the main screen that we developed can be seen in Figure 25.

As said before, the application is developed to fit on a handheld computer, and therefore has a
resolution of 640x480 pixels. Most of this space is filled up with the map. We tried to set
aside as much room as possible for the actual map. This is important because the map should
give a direct overview of what is going on.

The top left toolbar is reserved for the icon categories. Although there are only 4 categories in
the figure, there is room for 3 extra categories. These can be added to the XML files, and will
then automatically be displayed in the GUI. In the grey area right of the categories are the
icons that are in this category. This area will open up when a category is selected. There is
room for 14 icons per category, so effectively 98 different icons can be used in the
application. When an icon is selected to be placed a red border appears around the icon.

When an icon is selected and the location on the map is being clicked on, a new window
opens in which the attributes of the icon can be defined (Figure 26). The application can
support a maximum of 5 different attributes per icon, which are defined in the XML file.

 38

Figure 25 The GUI of the report tool

Figure 26 Attribute window

 39

The bottom left toolbar is reserved for the control options. Here the options to delete and
inspect are located. When they are selected while an icon on the map is clicked on, it either
deletes the icon, or shows its attributes. This latter option is especially relevant when there are
icons on the map that were added by other clients. The next button is to send your information
to the server and to get an updated world model back.

Finally this toolbar contains some options for zooming. The buttons marked with a + and –
magnifying-glass will zoom in and out, centred around the current middle of the map. There
are 7 predefined zoom levels. The next zooming function allows the user to drag over the
map. The area that will be shown is defined by the top left of the dragged area and the bottom
right area of this area.

On the left side below the map is a label that shows the scenario information. There is a
button before this label, marked with a question mark, which will bring up a new screen with
information about the scenarios. There is room for 7 scenarios. Per scenario a value is printed
that is the probability the server has given the scenario. The higher the value, the higher the
probability of the scenario. The values are not percentages but custom values, made up by the
information in the XML scenario file.

Figure 27 Scenario Window

The last part of the GUI consists of the icon suggestions of the server. These suggestions are
placed on the right side below the map. The best 5 suggestions are shown here, and can be
selected to be placed just like the icons on the left.

 40

3.6.2 The Network

Java will also be used for implementing the network. The topic of this thesis is not on
networking, that’s why the application just simulates a network on a single computer. If the IP
addresses are adjusted it’s easy to make it a real network over multiple computers. Since we
are using java for the network connections, it should be easy to integrate it with JADE
[JADE], which seems to be the most promising framework for mobile networks at the
moment.

As explained before, the clients send their information to the server, and receive their
information from the server, they do not interact with the other clients directly. The client
sends its information in three Vectors. The first Vector contains all the icons that were placed
since the last time information was send. This prevents the client from sending the same
information over and over again. Besides generating less network traffic, this also helps in
performance of the server because there is less information to process. After sending the new
icons, the client also sends which icons were deleted. Since only new icons were send before,
there is no way for the server to figure out if there are icons missing since the last time the
client sent data. Finally the client sends a Vector containing any adjusted icons. This Vector is
very similar to the first Vector, it contains icons and not just the changes. Since the server
knows which Vector will be received, it is clear that on receiving this Vector changes have to
be made.

At the other side, the server is going to send information back, after updating its world model.
There are two different possibilities of the data that is being send. The client will specify what
kind of data it wants. The first type is send. This will be used the first time a client connects to
the server. The data being send in this case is the map of the surroundings in question, and the
icons that are already placed, followed by the scenario information and the icon suggestions.
The second type is update, this type differs from the first in the fact that the map is not being
send to the client. After all, the client already has the map. The icons, scenario information
and icon suggestions are still send of course.

3.6.3 Integration

Java is also responsible for the integration of Java, Jess and XML. The XML file about icons
is read into Java, and based on the information in them the GUI gets build. The server will
read in both the icon information and the scenario information from the XML files. Based on
this information the knowledge base and rule base of the Jess engine is build. The integration
of the Jess component, is basically importing the right Jess classes and filling the knowledge
and rule base dynamically based on the information that was read from the XML files. More
information about how this integration is realised is presented in Chapter 4.

 41

 42

Chapter 4: Implementation

In this chapter we will discuss in detail how the system is built. We will show at the hand of
diagrams how the different parts of the system work. The most important classes, functions
and algorithms will be discussed in detail. Furthermore the Jess component will be explained.

4.1 UML

UML stands for Unified Modelling Language and is a system of diagrams that can specify
how systems work. System development focuses on three different models of the system
[Bru00]:

1) The functional model is represented in UML by Use Case Diagrams, which specifies
the systems functionality from a users perspective.

2) The object model is represented by Class Diagrams and describes the structure of the
system in terms of objects, attributes, associations, and operations.

3) The dynamic model is represented by sequence diagrams, state chart diagrams, and
activity diagrams. These describe the internal behaviour of the system.

In the next sections we will describe the system according to these three models, and will use
one UML representation per model. First we will discuss the Use Case Diagrams, then the
Class Diagram, and we will conclude with Sequence Diagrams of some important parts of the
system.

4.1.1 Use Case Diagram

Use cases are used during requirements elicitation and analysis to represent the functionality
of the system. Use cases focus on an external view of the system. A use case describes a
function provided by the system that yields visible results for an actor. An actor describes any
entity that interacts with the system (e.g. a user, another system, the systems physical
environment).

In the Use Case Diagram in Figure 28 the use case for the reporters is shown. They can add
icons, delete icons, inspect or modify icons, view the world model, view the suggestions, view
the scenario information, zoom, and send and receive. Some tasks, such as adding icons
require some additional actions. To add an icon the icon that needs to be placed has to be
selected, a location has to be given and the attributes have to be specified. To delete an icon
the icon has to be specified first. To modify or inspect an icon the icon has to be specified,
then the current attributes will be given, after which the new attributes can be specified.

 43

Figure 28 Use case diagram for Reporter

In the next Use Case Diagram (Figure 29) the use case for the client is shown. Just like the
reporter gets and inputs information to the client, the client interacts with the server. The
client can either send or receive information from the server. Sending will be split up in 3
stages: Send the newly placed icons, send the icons that were modified, and send the icons
that were deleted. Receiving from the server is also split up in 3 stages: Receive the icons,
receive the information about the scenarios, and receive the suggestions for icons that can be
placed.

 44

Figure 29 Use case diagram for Client

4.1.2 Class Diagrams

Class Diagrams are used to describe the structure of the system. Classes are abstractions that
specify the common structure and behaviour of a set of objects. Objects are instances of
classes that are created, modified and destroyed during the execution of the system. An object
has a state which includes the values of its attributes and its relationships with other objects.
Java programs are build up in classes already and therefore it is easy to create a Class
Diagram of it.

In figure 30 the simple Class Diagram for the system is shown. For a more detailed Class
Diagram we refer to appendix D: Detailed Class Diagram.

The directed relations in this figure can be read as: x has a y. For example IconApplication
has a MyXMLReader. The undirected relations are actually directed in both ways.
IconApplication has a ScenarioWindow and ScenarioWindow has an IconApplication. In this
case the obvious relation is that the IconApplication, which is the main part of the client, has a
ScenarioWindow. The other way around is true as well, because a ScenarioWindow has to
know who its parent is to give back the focus to the parent when the window is closed.

Note that the IconApplication and the MapServer do not have a direct relationship. The
IconApplication does not have a MapServer and vice versa. They communicate through the
network, via a Socket class. More about this in the next section about Sequence Diagrams.

 45

Figure 30 Class diagram of ISME

When we start with the class that has the highest connectivity, IconApplication, we see that
this main part of the client has a ScenarioWindow is which the scenario information will be
displayed, an AttributeWindow which is used to specify or show the attributes of a selected
icon. It also has a PlacedIcon which is a class that defines everything we need to know about
an icon that is placed (location, attributes, etc.). Furthermore the IconApplication has a
MyXMLReader to help it read in the information from the XML files. It also has a
Map_mouseAdapter, which is a class that handles the clicks that were made on the map. And
finally it has a Map. Map is a class that stores the background image, the icons that were
placed, etc. and it has some functions for zooming.

The MapServer class also has a Map. This is not the same instance as the Map on the
IconApplication, but via the network these two instances will be kept synchronized. The
ServerThread is the class that handles the connections with the iconApplications. Each
serverThread instance will support the connection with one iconApplication, but the
mapServer can have many different serverThreads (in fact, as many as the computational
power of the server can handle). Finally there is the Rete class. This is the main class for the
Jess component, all the reasoning is done via this class. More detail about how the different
classes interact is given in the next section.

4.1.3 Sequence Diagrams

Sequence Diagrams are used to represent the flow of events in a system. The objects in the
system interact with each other by sending messages. When a message is received this results
in some action at the receiving end. Actions that will be executed are operations that may
result in the sending of new messages to other objects. Arguments may be passed along with
the message to give more detail of what actions need to be undertaken. After the first diagram
we will only show the non trivial Sequence Diagrams.

 46

Figure 31 Sequence diagram of showing the scenario window

The first Sequence Diagram in Figure 31 shows how scenario information is shown to the
user. The reporter sends a message to get the information to the IconApplication, after that the
IconApplication sends a request to show the information. The ScenarioWindow will then
show it and wait for the reporter to send an OK message. After that the flow returns to the
IconApplication.

Figure 32 shows how icons can be added and modified on the local map. To add a new icon
the reporter has to select which icon to place. After that the reporter clicks on the map to
indicate where the icon needs to be placed. Note that in reality this happens by the use of the
Map_mouseAdapter, but since adding that class does not give any new relevant information,
we decided not to show it in this figure, to make it less complex. After the map is clicked on,
the AttibuteWindow is told to show the selected icons information. The reporter then selects
the appropriate attributes after which the AttributeWindow tells the map to add the icon.

To inspect an already placed icon the reporter has to activate the inspect mode. After clicking
on the map (again handled by the Map_mouseAdapter) the Map will decide if there is an icon
placed at the specified location. If there is one, the map gets information about which icon is
placed. Then the AttributeWindow gets a message to show this icon and the reporter can
adjust it, after which the map gets told to modify the icon.

 47

Figure 32 Sequence diagrams of adding and modifying icons on the map

To delete an icon (Figure 33) the flow of events is pretty much the same as those of adding
and modifying icons on the map. First the delete mode is activated, then the map is clicked
on, and if there is an icon at the specified location, that icon is retrieved and deleted from the
map.

 48

Figure 33 Sequence diagram for deleting placed icons

In Figure 34 we can see the flow of events that happen when the reporter presses the
send/receive button. The IconApplication begins with sending a simple String to the
ServerThread. The communication between the IconApplication and the ServerThread is not
directly, but via Sockets. Both classes use a Socket to communicate over the network with
each other. The reason we use a ServerThread to handle the communication, instead of using
the MapServer itself directly, is that a MapServer can have multiple ServerThreads that can
run at the same time. The advantage of this is that more than one client can communicate with
the server at the same time, instead of having to wait for the connection to be free.

The simple String that is send to the ServerThread is to indicate what the client wants from
the server. In this case it is “send”, indicating that we want to send our information to the
server. The ServerThread reads the request and knows what to do now. In this case it knows
more information will be send, namely three Vectors with new icons, deleted icons and
modified icons. After the Vectors are received the ServerThread will pass the Vectors on to
the MapServer with the request to handle them. The MapServer will then add the information
to the Jess knowledge base, represented by the Rete class.

After the information has been send and processed the IconApplication will ask for an update.
The ServerThread pass this request on to the MapServer by telling it to update the world. The
MapServer in turn will tell the Rete to run, meaning it will match all its facts to the rules. A
new world model is the result. The MapServer also requests for the suggestions of the server,
both scenario information and suggested icons. This information gets passed back to the
IconApplication, where the reporter can see it.

 49

Figure 34 Sequence diagram of sending to and receiving from the server

4.2 Jess

In this section we will elaborate on the inner workings of the Jess component. When we look
back to Figure 24 we see what functionality needs to be added. All the input that comes from
the client will be asserted as facts to the knowledge base. Even for icons that need to be
deleted, we will assert a fact. The rule base should decide to throw it away or not with its rules
for newly added facts, deleted facts and modified facts.

First we will see how we can add facts to our knowledge base, how icons will be deleted, and
how modifications take place. After that we will explain how the double icons filter works.
We will continue with the way the server determines the scenario, and finally we will explain
how the system can give suggestions for next icons.

 50

4.2.1 Adding Facts to Jess.

When a client sends its new information, this should be added to the Jess knowledge base. To
do this we will add it as a fact. The knowledge base is the collection of all facts that have been
inputted to it. In Jess, there are three kinds of facts: ordered facts, unordered facts, and
definstance facts.

Ordered facts are simply lists, where the first field (the head of the list) acts as a sort of
category for the fact. Here are some examples of ordered facts:

(policeman 100 200 idle Paul)
(flames 120 300 expanding huge huge Paul)

Figure 35 Example of ordered facts

Ordered facts are useful, but they are unstructured. We want a bit more organization. In
object-oriented languages, objects have named fields in which data appears. Unordered facts
offer this capability (although the fields are traditionally called slots.) When we rewrite the
previous ordered facts to unordered facts we get:

F

b
d

F

T
T
s
d
a
e
A
t

F

(policeman (x 100) (y 200) (status idle) (supporter Paul)
(flames (x 120) (y 300) (status expanding) (intensity huge)
igure 36 Example of unordered facts

efore you can create unordered facts, you have to define the slots they have using the
eftemplate construct:
(deftemplate <deftemplate-name> [extends <classname>] [<doc-comment>]
 [(slot <slot-name> [(default | default-dynamic <value>)]
 [(type <typespec>))]*)
igure 37 Deftemplate construct

he <deftemplate-name> is the head of the facts that will be created using this template.
here may be an arbitrary number of slots. Each <slot-name> must be an atom. The default
lot qualifier states that the default value of a slot in a new fact is given by <value>; the
efault is the atom nil. The 'default-dynamic' version will evaluate the given value each time
 new fact using this template is asserted. The 'type' slot qualifier is accepted but not currently
nforced by Jess; it specifies what data type the slot is allowed to hold. Acceptable values are
NY, INTEGER, FLOAT, NUMBER, ATOM, STRING, LEXEME, and OBJECT. Since

hey are currently not enforced by Jess, we will not use these.
(deftemplate police
 "A policeman."

man

 (slot x)
 (slot y)
 (slot status (default unknown)))
igure 38 Example of a deftemplate for a policeman

51

The example in Figure 38 would allow us to define facts like this:

(assert (policeman (x 100) (y 200) (status idle)))
(assert (policeman (y 200) (x 100))

 Figure 39 Examples of facts, defined by the deftemplate of Figure 38

Note that the status of the policeman is unknown by default. If we don't supply a default value

es, we

e form of the placed icons. These need to be transformed into Jess facts,

nd asserted into the knowledge base. How this is done will be discussed in section 4.3.1:

pply to all icons, rather than just an icon of a specific type it
ould be a good idea to let every type of icon extend an overarching icon fact. Figure 40

shows how this can be done.

e
s

ever, to see what the type of the icon is. The server can now add facts
ccording to the Jess code in Figure 40, when the client provides them with the icons that

need to be added.

.2.2 Deleting Facts from Jess

for a slot, and then don't supply a value when a fact is asserted, the special value nil is used.

Because we want to get all information about which icons we can use from the XML fil
need to make deftemplates for every icon in the list. Of course we have to read in the data
from the XML file first and then form Jess commands of it. This will all happen in the
initialisation phase of the server. When the server is up and running, it will get information
from the clients, in th
a
From XML to Jess.

Since we will have rules that a
w

(deftemplate icon
)

 (slot y)

eftemplate policeman extends icon

(assert (policeman (name policeman) (x 100) (y 100) (status busy)

 (slot name
 (slot x)

 (multislot supporters))

(d
 (slot status))

(supporters Paul)))

Figure 40 Extending from other deftemplates

There seems to be a little bit of overhead, because when we assert a new policeman now, w
specifically add a slot name to the icon, where the name should just be ‘policeman’. This i
the easiest way how
a

4

When looking back to Figure 24, we see that the clients can also tell the server to delete some
icons. Rather than doing this without any questions asked, we would prefer to add a fact that
tells the server to delete a certain icon. This approach resembles a blackboard where everyone
can put sticky notes on with a request. The owner of the blackboard, the server in this case,
can then take off the notes and decide what to do with them. The facts that will be asserted in

 52

order to let the server know what icons to delete is shown in Figure 41. When facts like these
.

e 43 shows the
odify construct and an example of how to modify an icon. To modify an icon you need the

t this by asserting a fact first,
he real system we will have to search for the right id, using queries.

Figure 43 Modifying an icon

 it will happen that the server receives double icons. If one client reports an icon and
nother client hasn’t updated his world yet, this client could place the same icon and the

ally

are asserted, the rule to delete icons will be triggered. A rule like this is shown in Figure 42

(deftemplate icon_to_delete (slot name)(slot x)(slot y)(slot deleted))

(assert (icon_to_delete (name policeman) (x 100) (y 100) (deleted 0)))

Figure 41 Asserting icon_to_delete

(defrule delete_icons
icon_to_delete (name ?icon_to_delete <- (?n) (x ?x) (y ?y) (deleted 0))

))

bind ?token (call ?q next))
 (bind ?fact (call ?token fact 1))

)
)

 =>
 (modify ?icon_to_delete (deleted 1))

y get_icon ?n ?x ?y (bind ?q (run-quer
hile (?q hasNext) (w

 (

 (retract ?fact)

Figure 42 Rule for deleting icons

4.2.3 Modifying Jess Facts

Facts can also be modified. The client will send a separate list of icons that need to be
modified by the server. There is a built-in function to modify facts, Figur
m
fact-id of the fact that needs modification. In the example we ge

 t

(modify cifier> (<slot-name> <value>)+)

name policeman) (x 100) (y 100) (status

(modify ?id (x 150) (y 200))

 <fact-spe

(bind ?id (assert (policeman (

in

 busy))))

4.2.4 Rules about Double Placed Icons

Often
a
server will receive the same information twice. Jess should filter these double occurrences
out.

When a double event is reported by only one client there is a big chance that there are actu
two distinct occurrences. In this case the Jess engine should not filter one of them out.

 53

However, when two clients report a same event in approximately the same place these
occurrences are probably the same, and one should be filtered. This is the reason we keep

ack of which reporter reported which icon. The supporters of an icon is a list with all the
rep
at the s t. The filtering can happen in several ways:

1) oth the occurrences get the system adds one occurrence at the average
location. That

) The system calculates which client is closest to its reported event, and deletes all the
er a

3) loser client might

rovide the more accurate report, we don’t think that the other client just reports
onsense. That’s why we could add weights to the reports of the clients. The closer

clients report w i other reports.

newX =

ute the weights. In practice, when this rule is
red there will be one icon already in the knowledge base, which might be reported by
everal reporters, o t s,

which h

newX =

Where the weights w1 and w2 have either value 1 or 2. The group that is closest to the

tr
orters that reported this icon. The reporters have a name and a location, which are defined

tart up of the clien

B deleted, and
is:

 (x1+..+xn) ________

n
newX =

newY =
1 n

n
________ (y +..+y)

2
other occurrences. This might be a reasonable solution because we think the clos
client is to the event, the more accurate his report will be.

A combined version of 1. and 2. Although we think that the c
p
n

ill get a h gher weight than the

 (w1x1 + .. + wnxn) _ ____ __________

n(w1 + .. + wn)

newY =

Now the question remains how to distrib

1 1 n n

n(w1 + .. + wn)
_______________ (w y + .. + w y)

fi
s and one new ic n that is just placed. This means here are 2 group

results in t e following formula:

 w1(x11 + .. + x1n) * groupsize1 + w2(x21 + .. + x2n) * groupsize2 ___

 w * groupsize1 + w * groupsize2 1 2

newY =

w1(y11 + .. + y1n) * groupsize1 + w2(y21 + .. + y2n) * groupsize2

 w1 * groupsize1 + w2 * groupsize2

event they report gets weight 2, the other group gets weight 1.We have chosen to
implement this last, most sophisticated design.

 54

Besides the filtering we have to check if the events are close enough to each other to even

aximum of 10 pixels. Note
at this range is dependent on the resolution of the map.

F
icon. If we don’t do this some icons could be deleted unwanted.

ple 1 the approach of giving each reported icon 1 owner seems to work. In steps 3 and
 Jess adds a new icon, with the ‘system’ as owner. The next example, however, shows how

e will solve this problem by not using one single owner per event, but instead keep track of
hich clients ‘supported’ the event. When each icon has a list of supporters this problem can
e avoided. In this case Jess action 4 will not occur because e) is supported by the same client
at reports a new policeman. Instead the outcome of the example will look like Figure 46.

consider counting them as double reported events. So we will only filter when the events are
within a certain range of each other. We have set that range at a m
th

or this rule to work correctly we need to keep track of a list of supporters of each reported

Example 1:
We will assume that the clients are at the same distance from their reported event, and an

) Client 1 reports a police man at location 200,210
on 210,210

c) Client 2 reports a police man at location 195,208
d) Client 2 reports a police man at location 215,208

Thi

2.
3. Jess matches c) with a) and deletes both to add a new police man at 197.5,209 (e)

e a) is deleted already.
5. Jess deletes b) and d) and adds a new police man at 212.5,209 (f) (e) and (f) will not

be matched because they belong to the same owner, in this case the system.

icon only has one owner.

a
b) Client 1 reports a police man at locati

s will be filtered by Jess as follows:
1. Jess adds a)

Jess adds b)

4. Jess matches d) with b) becaus

Figure 44 Double reported icons, example 1

In exam
5
this approach will go wrong. If we take a look at example 2 in Figure 45 we have a problem,
because in the end we have only one policeman left, even though both clients reported 2 of
them.

W
w
b
th

 55

F

F

N
i
a
c
p

T

F

T
t
i

Example 2:
We will assume again that the clients are at the same distance from their reported event.
a) Client 1 reports a police man at location 200,210
b) Client 2 reports a police man at location 215,208
c) Client 1 reports a police man at location 210,210
d) Client 2 reports a police man at location 210,205

This will be filtered by Jess as follows:

1. Jess adds a)
2. Jess matches b) with a) and deletes both to add a new police man at 207.5,209 (e)
3. Jess matches c) with e) because a) and b) are deleted already.
4. Jess deletes c) and e) and adds a new police man at 208.75,209.5 (f)
5. Jess matches d) with f) because c) and e) are deleted already.
6. Jess deletes d) and f) and adds a new police man at 209.375,207.25 (g)
igure 45 Double placed icons, example 2

1.
2.
3.

4.
5.

igure 46

ow tha
n Jess.
pply to
onsider
olicem

he rule

igure 47

his rul
hey are
n positi
Jess adds a)
Jess matches b) with a) and deletes both to add a new police man at 207.5,209 (e)
Jess adds c) because it cant be matched with e). The reason for this is that the
owner of c) also supports e)
Jess matches d) with c) and not with e) because the owner of d) also supports e)
Jess deletes d) and c) and adds a new police man at 210,207.5 (f)
 Outcome of the example while using multiple owners

t we still have our two police men, we need to develop an actual rule that can be used
Because this rule does not only apply to policemen but to all icons, the rule should
 icon, rather than each individual type of icon. We do however have to take into
ation the actual type of icon we are dealing with. We don’t want to filter out a
an, just because somebody else placed a fire icon at around the same position.

 we developed is shown in Figure 47.
(defrule filter_double_icons
 ?icon1 <- (icon (name ?n) (x ?x) (y ?y) (supporters $?list1))
 ?icon2 <- (icon (name ?n)

(x ?x1&: (< (- ?x ?x1) 10)& ?x1&: (< (- ?x1 ?x) 10))
(y ?y1&: (< (- ?y ?y1) 10)& ?y1&: (< (- ?y1 ?y) 10))
(supporters $?list2))

 (test (neq ?icon1 ?icon2))
 (test (not (has_shared_element ?list1 ?list2)))
=>

 (combine_icons ?icon1 ?icon2)
)
 Filter double icons rule

e matches all icons with each other and if they have the same name, which means, if
 of the same type, e.g. policeman, it matches the position of the icons. If the difference
on is smaller than 10 in x direction, or 10 in y direction, it will fire. Of course it has to

56

be checked if the icon is not matched against itself, or it will obviously always fire. We do
this with the built-in neq function, which only returns true if the first argument is not the
same as the second. Furthermore it tests if the icons have a shared supporter, by testing it with
function has_shared_element. The rule will only fire when it has no shared supporters.

When all the preconditions have been met, and the rule fires, we will combine the two icons
into a new one, according to the formulas we stated before. Besides calculating the new
position, the combine_icons function combines the supporters as well. The function can be
seen in Figure 48.

(deffunction combine_icons (?icon1 ?icon2)
 (bind ?f1 (fact-id ?icon1))
 (bind ?supporters1 (fact-slot-value ?f1 supporters))
 (printout t “supporters1: “ ?supporters1 crlf)
 (bind ?f2 (fact-id ?icon2))
 (bind ?supporters2 (fact-slot-value ?f2 supporters))
 (printout t “supporters2: “ ?supporters2 crlf)
 (printout t “now we should combine them” crlf)
 (bind ?supporters_to_add (complement$?supporters1

 ?supporters2))
 (bind ?supporters_total (insert$?supporters1 1 ?supporters2))
 (bind ?x1 (fact-slot-value ?f1 x))
 (bind ?y1 (fact-slot-value ?f1 y))
 (bind ?x2 (fact-slot-value ?f2 x))
 (bind ?y2 (fact-slot-value ?f2 y))
 (bind ?number_of_supporters1 (length$?supporters1))
 (bind ?number_of_supporters2 (length$?supporters2))
 (bind ?closest_x1 9999999)
 (bind ?closest_y1 9999999)
 (bind ?closest_x2 9999999)
 (bind ?closest_y2 9999999)
 (bind ?count 0)
 (while (< ?count (length$?supporters1))
 ;DETERMINE CLOSEST REPORTER IN GROUP 1
 (bind ?supporter_name (nth$ (+ 1 ?count) (create$

?supporters1)))
 (bind ?count (+ ?count 1))
 (bind ?rep (run-query search_reporters ?supporter_name))
 (while (?rep hasNext)
 (bind ?token (call ?rep next))
 (bind ?fact (call ?token fact 1))
 (bind ?x (fact-slot-value ?fact x))
 (bind ?y (fact-slot-value ?fact y))
 (bind ?n (fact-slot-value ?fact name))
)
 (bind ?distance_x (abs(- ?x ?x1)))
 (if (< ?distance_x ?closest_x1)
 then (bind ?closest_x1 ?distance_x)
)
 (bind ?distance_y (abs(- ?y ?y1)))
 (if (< ?distance_y ?closest_y1)
 then (bind ?closest_y1 ?distance_y)
)
) continued on next page…

 57

 (bind ?distance_group1 (sqrt (+ (* ?closest_x1 ?closest_x1)
(* ?closest_y1 ?closest_y1))))

 (bind ?count 0)
 (while (< ?count (length$?supporters2))
 ;DETERMINE CLOSEST REPORTER IN GROUP 2
 (bind ?supporter_name (nth$ (+ 1 ?count)

(create$?supporters2)))
 (bind ?count (+ ?count 1))
 (bind ?rep (run-query search_reporters ?supporter_name))
 (while (?rep hasNext)
 (bind ?token (call ?rep next))
 (bind ?fact (call ?token fact 1))
 (bind ?x (fact-slot-value ?fact x))
 (bind ?y (fact-slot-value ?fact y))
 (bind ?n (fact-slot-value ?fact name))
)
 (bind ?distance_x (abs(- ?x ?x2)))
 (if (< ?distance_x ?closest_x2)
 then (bind ?closest_x2 ?distance_x)
)
 (bind ?distance_y (abs(- ?y ?y2)))
 (if (< ?distance_y ?closest_y2)
 then (bind ?closest_y2 ?distance_y)
)
)
 (bind ?distance_group2 (sqrt (+ (* ?closest_x2 ?closest_x2)

(* ?closest_y2 ?closest_y2))))
 (bind ?weight_group1 1)

(bind ?weight_group2 1)
 (if (< ?distance_group1 ?distance_group2)
 then (bind ?weight_group1 2)
)
 (if (< ?distance_group2 ?distance_group1)
 then (bind ?weight_group2 2)
)
 ;the ‘winning group’ now has weight 2
 (bind ?new_x (/(+

(* ?weight_group1 (* ?x1 ?number_of_supporters1))
(* ?weight_group2 (* ?x2 ?number_of_supporters2)))
(+ (* ?weight_group1 ?number_of_supporters1)
 (* ?weight_group2 ?number_of_supporters2))))

(bind ?new_y (/(+
(* ?weight_group1 (* ?y1 ?number_of_supporters1))
(* ?weight_group2 (* ?y2 ?number_of_supporters2)))
(+ (* ?weight_group1 ?number_of_supporters1)
 (* ?weight_group2 ?number_of_supporters2))))

;now combine the icons by modifying one and deleting the other
(modify ?f1 (x ?new_x))

 (modify ?f1 (y ?new_y))
 (modify ?f1 (supporters ?supporters_total))
 (retract ?f2)
)

Figure 48 Jess code to combine 2 icons

 58

The code in Figure 48 may seem a bit overwhelming, especially for those who are not familiar
with Jess. What the function does is:

• Combine the supporters
• Determine the closest supporter of ‘team 1’
• Determine the closest supporter of ‘team 2’
• Give the ‘winning team’ a double weight
• Calculate the new position
• Modify one icon to have the combined supporters and new location
• Delete the other icon

Note that this function does not average the attributes. When a busy and an idle policeman are
reported, the last reported attribute will be chosen.

4.2.5 Determining the Current Scenario

At the server side there will be some thoughts about scenario’s. The system will read in
different scenario’s from the XML files, and by looking at which icons are in the world
model, it will determine in what scenario we are. The contents of each scenario, and the
values the icons get awarded in the XML files is abstracted from news articles which can be
found in Appendix A: Scenarios. The scenario information will be send back to the reporters
as general feedback.

The procedure of determining the scenario is:

• We make a variable for each scenario, and set it to 0.
• Every time an icon gets added, it will award points to the corresponding scenarios.
• When a certain threshold is reached the scenario is believed to be true and set to be the

current scenario.
• When another scenario gets a higher score than the current scenario, the current

scenario gets exchanged.

To keep track of the likely scenario we will make a variable for each defined scenario. The
code will award points towards each of these variables, if a newly placed icon would be
appropriate for the scenario. The easiest way to do this is simply add a rule for each placed
icon, as can be seen in Figure 49.

If we do this for each added icon we would get a score for each scenario. However, there is a
problem if we delete icons again. Then we would have to subtract all the awarded points for
each scenario. This would mean that in addition of having a rule for every type of icon that
gets added, we would also have to make a rule for every type of icon that gets deleted.

 59

(bind ?scenario_riot 0)
(bind ?scenario_carcrash 0)
(bind ?scenario_fire 0)
(bind ?scenario_bombscare 0)
(bind ?scenario_shooting 0)

(defrule new_policeman

?fact <- (policeman (name ?policeman) (x ?x) (y ?y) (status ?s)
(supporters ?sup))

=>
(bind ?scenario_riot (+ ?scenario_riot 4))
(bind ?scenario_carcrash (+ ?scenario_carcrash 1))
(bind ?scenario_fire (+ ?scenario_fire 1))
(bind ?scenario_bombscare (+ ?scenario_bombscare 2))
(bind ?scenario_shooting (+ ?scenario_shooting 3))

)

Figure 49 Awarding points to scenarios, with a rule for every icon

This means a lot of extra bookkeeping especially in the case of double placed icons. In this
case there would be two icons added, one icon deleted and one icon modified. This means we
have to modify the scenario variables 4 times, each time an icon is double placed. It also
means that if a reporter adds 5 icons at once, the scenario values get modified 5 times. It
would be better, and more efficient if we would just calculate which scenario is most likely,
every time we want to know. A good time to calculate this would be when the client sends his
icons. The server will then calculate a new world model, possible scenario and suggested
icons. When the server has calculated these things, it can be send back to the client.
To calculate which scenario is going on, Java will fire a Jess function and get back the value
of the scenarios. At start up of the application we will add all the scenario_chances, according
to the XML file. See Figure 50.
(deftemplate scenario_chance
 (slot scenario_name)
 (slot icon_name)
 (slot value))

(deftemplate scenario_suggestion
 (slot scenario_name)
 (slot value))

This will results in facts like:

(assert (scenario_chance (scenario_name riot) (icon_name flames)

(value 2)))
(assert (scenario_chance (scenario_name riot) (icon_name policeman)

(value 3)))
(assert (scenario_chance (scenario_name carcrash) (icon_name car)

(value 5)))

and at start up we will assert the following facts:

(assert (scenario_suggestion (scenario_name riot) (value 0)))
(assert (scenario_suggestion (scenario_name fire) (value 0)))
(assert (scenario_suggestion (scenario_name carcrash) (value 0)))

Figure 50 Examples of facts that get asserted at start up of the application

 60

With asserted facts like these we can define a function that calculates the chances for each
scenario. We will define 2 variables first, to keep track of what types of icon are already
placed, and what types of icons exist, according to the XML files.

(bind $?*placed* (create$ policeman soldier bomb))
(bind $?*all* (create$ policeman soldier bomb flames victim …))

Figure 51 The creation of 2 useful variables

The final function that awards the points to the scenarios is shown in Figure 52. It will award
points by looking at the icons that are already placed, and the values these icons give to the
different scenarios.

F

A
w

4

B
s
i
w
a
s

(deffunction check_suggested_scenarios ()
 (foreach ?x $?*placed*

(bind ?y (run-query is_in_scenario ?x))
(while (?y hasNext)

(bind ?token (call ?y next))
(bind ?fact (call ?token fact 1))
(bind ?name (fact-slot-value ?fact scenario_name))

(bind ?suggestion (run-query
(bind ?value (fact-slot-value ?fact value))

search_scenario_suggestion ?name))
(bind ?sug_token (call ?suggestion next))
(bind ?sug_fact (call ?sug_token fact 1))
(bind ?old_value (fact-slot-value ?sug_fact value))
(modify ?sug_fact (value (+ ?value ?old_value)))

)
)

)
igure 52 Function for awarding points to the scenarios

fter executing this function the scenario_suggestion facts are updated, and the suggestion
ith the highest value can be picked as suggestion.

.2.6 The Next Icon Predictor

esides giving the reporter feedback with the newly calculated icons and the most likely
cenario, the server will also give some suggestions for icons that might be placed next. This
s useful if the reporter forgot to report an icon. According to the placed icons in the current
orld model, the server will suggest icons to the client that it thinks are missing, or would be

 good choice as a next icon. For example, if flames were reported, the server may suggest a
moke icon as well, as long as there is no smoke icon already.

61

In order to make a reasonable prediction, the server can make use of 3 sources of information:

1) Every icon has a list of probable next icons
2) Every icon has a list of probable previous icons
3) Every scenario has a list of icons

In the XML file for the icons, besides it’s name, image, attributes, etc, every icon has a list of
probable next and previous icons. These icons also have a number attached to them, telling
how probable the relations are. These numbers are on a scale from 1 to 5, where 1 would
mean possibly and 5 would mean definitely. For example ‘fire’ would have as probable next
icon ‘smoke’ with probability 5. It would also have ‘smoke’ as probable previous icon with
probability 5, because often smoke is reported first, when the fire cannot be seen yet. The next
and previous relations are therefore causal relations.

The server is already keeping track of scenario’s. Every scenario has a list of icons that makes
up the scenario. When enough of these icons are in the world model, the scenario is probably
happening. With this, we have a great source to predict new icons, namely those icons that
should be in the scenario that’s going on, but are not on the map yet.

To implement a way to suggest new icons, we need to keep track of how many points each
predicted icon has been given. Just as in the calculation of the scenarios we will only calculate
this when we need to know the results, in order to prevent us from too much overhead in the
bookkeeping of the variables. Icons will only be suggested if they are not on the map yet. This
will help us in performance, since we only have to calculate the values for icons that are not
on the map yet.

We want to calculate suggestions every time the clients sends its icons and wants to receive
an update of the world model. In order to do this, we obviously need a function that will
calculate the chances of every icon to be placed next. Since we only need to check for icons
that are not on the map yet, we will be using the variable $?*placed* again, together with
variable $?*all* to calculate which icons have not been placed yet.
The function we designed is shown in Figure 53.

(deffunction check_suggeste
 (bind $?ic

d_icons ()
ons_to_check (complement$ $?*placed* $?*all*))

 (foreach ?

(bind ?sug_fact (call ?sug_token fact 1))
-value ?sug_fact

(+ ?value ?old_value)))

xt page…

x $?icons_to_check
 (bind ?y (run-query next_of ?x))

(while (?y hasNext)
(bind ?token (call ?y next))
(bind ?fact (call ?token fact 1))
(bind ?name (fact-slot-value ?fact name))

 (bind $?icon (create$?name))
 (bind $?intersection (intersection$ $?*placed* $?icon))
 (if (> (length$ $?intersection) 0) then
 (bind ?value (fact-slot-value ?fact value))

)) (bind ?suggestion (run-query search_suggestion ?x
 (bind ?sug_token (call ?suggestion next))

(bind ?old_value (fact- slot
value))

(modify ?sug_fact (value
)

)
ed on neContinu
62

igure 53

highest

)
)

F

This fun
icon in t
icons th
placed i
After th
Finally w
are of co
done for

 n l e

(bind ?z (run-query previous_of ?x))"+
 (while (?z hasNext)

(bind ?toke (cal ?z n xt))
(bind ?fact (call ?token fact 1))

 (bind ?name (fact-slot-value ?fact name))
 (bind $?icon (create$?name))"+
 (bind $?intersection (intersection$ $?*placed* $?icon))
 (if (> (length$ $?intersection) 0) then
 (bind ?value (fact-slot-value ?fact value))
 (bind ?suggestion (run-query search_suggestion ?x))

(bind ?sug_token (call ?suggestion next))
 (bind ?sug_fact (call ?sug_token fact 1))

(bind ?old_value (fact-slot-value ?sug_fact value))
 (modify ?sug_fact (value (+ ?value ?old_value)))

)
)
(bind ?q (run-query is_in_scenario ?x))
 (while (?q hasNext)

(bind ?token (call ?q next))
(bind ?fact (call ?token fact 1))

 (bind ?name (fact-slot-value ?fact scenario_name))
 (bind ?value (fact-slot-value ?fact value))
 (bind ?s (run-query search_scenario_suggestion ?name))

(bind ?token_s (call ?s next))
 (bind ?fact_s (call ?token_s fact 1))

(bind ?factor (/ (fact-slot-value ?fact_s value) 10))
 (bind ?suggestion (run-query search_suggestion ?x))
 (bind ?sug_token (call ?suggestion next))

(bind ?sug_fact (call ?sug_token fact 1))
(bind ?old_value (fact-slot-value ?sug_fact value))

 (modify ?sug_fact(value (+ (* ?value ?factor) ?old_value)))
)
 Jess code to calculate the icon suggestions

ny

ions and their score. The
scoring suggestions will be send to the reporter as feedback.

ction looks for all the icons that exist but have not been placed yet. Then for every
his group it starts looking for other icons that can award points to it. Of course the
at may award points have to be placed themselves. First this is done by looking if a
con has this icon as a next relation, if so the points are awarded to the suggestion.
is we do the same for previous relations, again points get awarded to the suggestion.

e look if the suggested icon is present in any scenario. The points awarded for this
urse dependent on the chance that the scenario is actually happening. When this is
 all the icons that are not placed yet, we have a list of suggest

63

4.3 Algorithms and Functions

In this section we will discuss some of the functions and algorithms that are used in the
system. First we will explain in detail how we can create Jess code from the XML files, and
let it run in Java. After that we will discuss the algorithms we designed for zooming on the
map.

4.3.1 From XML to Jess

This section will discuss how get from the information that is stored in the XML files, to the
generation of Jess code to get intelligent behaviour of the server. First we need to construct an
instance of the Rete class in the Jess package. Then we can add literal Jess code to it with the
executeCommand() function. This is very convenient, because we designed all the Jess code
first, and when it was finished we integrated it with Java.Figure 54 shows an example of how
we can add the code to the Rete instance in Java.

Rete r = new Rete();
r.executeCommand("(deftemplate icon (slot name)(slot image)

(slot x)(slot y)(multislot supporters))");
r.executeCommand("(deftemplate next_relation (slot name)

(slot next_icon)(slot value))");
r.executeCommand("(deftemplate previous_relation (slot name)

(slot previous_icon)(slot value))");
r.executeCommand("(deftemplate suggestion (slot name)(slot value))");

Figure 54 Integrated Jess code in Java

To read in the information of the XML files we make use of the class MyXMLReader, and
create Strings from the information we get out of it. After that we insert them into the Rete
instance. Figure 55 shows how the deftemplates and previous and next relations are created
dynamically from the XML files.

MyXMLReader iconsXML = new MyXMLReader("icons/iconlist.xml");

int numberOfGroups = iconsXML.getGroups();
for(int i=0; i<numberOfGroups; i++) //for every group:
{
 String[] iconsInGroup = iconsXML.getIconsInGroup(i);
 for(int j=0; j<iconsInGroup.length; j+=2)

 //for every icon in the group
 {
 //adding deftemlates from the XML files for all icons
 String iconname = iconsInGroup[j];
 String jessCode = "(deftemplate "+iconsInGroup[j]+

" extends icon";
 //get information about slots, next and previous relations
 int [] numbers = iconsXML.getNumbers(iconsInGroup[j]);
 int slots = numbers[0];
 int next = numbers[1];
 int prev = numbers[2];

 Continued on next page ...

 64

 for(int k=0; k<slots;k++)
 //get the slots

 {
 Vector slot = iconsXML.getSlot(iconname, k);
 jessCode = jessCode + " (slot "+slot.get(0)+")";
 }

 jessCode = jessCode + ")";
 r.executeCommand(jessCode);
 r.executeCommand("(assert (suggestion (name "+iconname+

")(value 0)))");

 //now add the next relations from XML file

 for(int k=slots; k<next+slots;k++)
 //get the next icons

 {
 jessCode = "(assert (next_relation (name "+iconname+") ";
 Vector slot = iconsXML.getSlot(iconname, k);
 jessCode = jessCode+ "(next_icon "+slot.get(1)+") ";
 jessCode = jessCode+ "(value "+slot.get(2)+")))";
 r.executeCommand(jessCode);
 }

 //now add the previous relations from XML file
 for(int k=slots+next; k<slots+prev+next;k++)

 //get the previous icons
 {
 jessCode= "(assert (previous_relation (name "+iconname+") ";
 Vector slot = iconsXML.getSlot(iconname, k);
 jessCode = jessCode+ "(previous_icon "+slot.get(1)+") ";
 jessCode = jessCode+ "(value "+slot.get(2)+")))";
 r.executeCommand(jessCode);
 }
}

Figure 55 Dynamically adding the deftemplates and icon relations to the Rete instance

To read in the XML information about scenarios we follow a similar approach. Besides the
Jess code that gets generated in this dynamic way, a lot of rules, templates, queries and
functions cannot be described in the form of XML in an easy way. Rules such as the double
icon filter are thus hard coded.

4.3.2 Zooming

Zooming on the map will make it easier for the users to place icons on the map. Since more
detail is shown, it is easier to select the correct location for the icon. Of course we can’t just
zoom the icons together with the background, as this could cause icons to take up half of the
map when zoomed in, or become almost invisibly tiny when zoomed out. That’s why we
don’t zoom the icons, but instead keep their original 32x32 size and translate their position on
the new background.

When the client is zooming there are three things happening.

1) The background is changing to represent the new area that needs to be shown
2) The already placed icons need to be translated to the right location
3) The newly placed icons need to be given global coordinates.

 65

To zoom on the map (background) we offer 3 possibilities.

1) zoom in, while preserving the middle of the map
2) zoom out, while preserving the middle of the map
3) zooming in by dragging an area on the map.

In all cases we are using some prefixed zooming levels, each defined to show a fixed size
region. They are defined in the 6 by 2 matrix in Figure. Zoom level 1 shows 500 by 400 pixels
of the original map, which is all of it, while zoom level 6 only shows 50 by 40 pixels,
stretched over the size of the map, which is 500 by 400.

Zoom level X Y
1 500 400
2 375 300
3 250 200
4 125 100
5 100 80
6 50 40

Figure 56 Zoom levels

4.3.2.1 Normal Zooming

Zooming while preserving the middle of the map is rather straight forward. When the zoom in
button is pressed we look at the global coordinates of the middle of the map (250,200) and
look at which zoom level should be shown. For the java function getSubImage to work we
need to present the top left and size as arguments. The image that is returned will then be
stretched over the entire 500 by 400 map. Figure 57 shows how the background gets zoomed
on.

left = global middle x – (new x size)/2
top = global middle y – (new y size)/2

image = image.getSubimage(left,top,
zoom[zoomlevel-1][0],zoom[zoomlevel-1][1]);
zoomedImage = image.getScaledInstance(500,400,0);

Figure 57 Formulas for zooming while preserving the middle of the map

In case we go from 500x400 to 375x300 we get the situation in figure 58. We then use the
formulas in Figure 57, with getSubImage(62.5, 50, 375, 300). This image is then
scaled to 500x400. Note that for zooming out the same formulas hold.

 66

Figure 58 Zooming from level 1 to level 2

Translating global to local coordinates

When there are icons that are already placed on the map we need to translate their global
coordinates (as they are stored on the map) to local coordinates (as they are shown on the
selected area). The relevant variables are the centre of the map and the zoom factor. The zoom
factor is the local size divided by the global size. When we hold on to the example in Figure
58 we see that the zoom factor in this case is 500/375 = 400/300 = 1 1/3. Since we have the
sizes of the zooming levels fixed and proportional, the zoom factor for the x coordinates is the
same as that for the y coordinates.

The formula for the new x and y coordinates for a placed icon can be defined as:

xLocal = (xGlobal - middleX)*zoomFactor + middleX;
yLocal = (yGlobal - middleY)*zoomFactor + middleY;

Figure 59 Formula to go from global to local coordinates

When we look ahead a bit, we see that in the drag zoom function the left and top coordinates
will be given directly. Therefore it could be a good idea to rewrite the formula to:

xLocal = (xGlobal - left)*zoomFactor;
yLocal = (yGlobal - top)*zoomFactor;

Figure 60 Alternative formula to go from global to local coordinates

E.g. when an icon has global coordinates (300,300) the icon gets translated to

xLocal = (300-62.5)*1 1/3 = 316 2/3
yLocal = (300-50)*1 1/3 = 333 1/3

 67

An icon with coordinates (20,20) would be translated to (–56.67, -40) which is outside the
visible map. An icon with coordinates (62.5, 50) would be translated to (0,0) which is
obviously correct since this would be exactly at the edge of the new visible map.

Translating local to global coordinates

When the map is zoomed in while icons get placed, we need to calculate their global
coordinates, before we can store them on the map. We can use an inverse formula of the
previous one:

F

W
3
z
t

x
y

4

T
a
r
s
r
f
b

F

xGlobal = xLocal * zoomFactor + left;
yGlobal = yLocal * zoomFactor + top;
igure 61 Formula to go from local to global coordinates

hen we reverse the example in the last section, we place an icon when we are zoomed in at
75x300. The coordinates of the icon then need to be translated to global coordinates. The
oom factor in this case is 375/500 = 300/400 = 0.75. When we place an icon at (300,300) this
ime and input them into the formula we get:

Global = 300*0.75 + 62.5 = 287.5
Global = 300*0.75 + 50 = 275

.3.2.2 Drag Zooming

he other way to zoom the background is by dragging an area. The selected area will be
djusted to fit the proper zoom level. This is to prevent dragging only 1 pixel, which would
esult in the entire 500x400 dimension to become one colour. If only 1 pixel is dragged, the
mallest resolution is shown, 50x40. When we drag, the top left coordinates and the bottom
ight coordinates are given by the user. The size of the dragged area gets mapped on the best
itting predefined resolution. The top left will remain unchanged, while the bottom right may
e adjusted a bit to fit one of the zoom levels. The code remains the same as in Figure 57.

igure 62 Zooming in, using drag zoom

68

Translating global to local coordinates

When we zoom in as shown in Figure 62 most of the placed icons will probably not be shown
in the zoomed area. The ones that will be shown will be translated according to the formula in
Figure 60, where:

zoomFactor = 500/100 = 400/80 = 5

Some examples of translations from global to local coordinates are given in Figure 63:

Figure 63 Example translations from global to local coordinates

Translating local to global coordinates

When icons are placed when the map is zoomed in we need to translate the local coordinates
to global ones before we can store them on the map. To do this we use an inverse formula.
When we continue the example from Figure 62, we see that the zoomFactor is now 1/5.
The inverse formula is the same as in Figure 61. In Figure 64 we show some examples of
local to global translations.

Figure 64 Example translation from local to global coordinates

(0,0) will be translated to
xGlobal = 0*1/5 + 20 = 20
yGlobal = 0*1/5 + 20 = 20

(250,200) will be translated to
xGlobal = 250*1/5 +20 = 70
yGlobal = 200*1/5 +20 = 60

(500,400) will be translated to
xGlobal = 500*1/5 +20 = 120
yGlobal = 400*1/5 +20 = 100

(20,20) will be translated to
xLocal = (20 - 20)*5 = 0
yLocal = (20 - 20)*5 = 0

(120,100) will be translated to
xLocal = (120 - 20)*5=500
yLocal = (100 - 20)*5=400

(70,60) will be translated to
xLocal = (70 - 20)*5 = 250
yLocal = (60 - 20)*5 = 200

 69

 70

Chapter 5: User Test

It is important to test the system, in order to detect errors and unexpected or unwanted
behaviour, it can also give some conclusions of the ease of use and the complexity of the
system. The goal of our test is to get a first impression of the users. The number of test
persons and test material is very limited. We have designed a test that will allow us to test the
usability, the correctness, and the completeness of the system at the same time.

Usability
One of the goals of our system was that it is easy to use and understand. Questions that arise
are:

• How easy is it for the users to select an icon from the hierarchical order and to place
them on the map?

• How do the users experience the zooming functionality?
• How easy is it to make corrections?
• How helpful are the systems suggestions for next icons and scenarios?
• Can we just introduce the system, or do the users need some training first?

Correctness
The system was designed to have intelligent behaviour by fusing data from different reports,
updating the data in an automated way, and to give suggestions for icons and scenarios.
Questions for this aspect are:

• Do the reports get fused in a correct way?
• Does the system come up with the right conclusions regarding the scenario?
• Are the suggestions for next icons correct?
• Is the intelligent behaviour of the system transparent for the users?

Completeness
The system has a limited range of different icons. They are extracted form the news articles in
Appendix A. Questions are:

• Do the users understand all the icons in the system?
• Do the icons have enough attributes to meet the complexity of the situation?
• Is the set of icons sufficient to report about a crisis?

5.1 Design of the Test

There are two users, the respondents, that will test the system simultaneously, using a scenario
presented to them in the form of photographs. The respondents are both not experienced in
reporting events, let alone reporting about emergency situations. We have taken a new
scenario for this test, as opposed to using one we used to determine the Jess rules. We have
done this to make the test less trivial, after all it wouldn’t be much of a challenge to predict
which scenario is going on, if the test case is exactly what the rules are derived from.

Unfortunately, the system can’t be tested in the real world, because 1) there is no fire or other
disaster going on when we want to test it, and 2) the system is running on normal PCs at this
time. That is why, instead of going outside the respondents are presented photographs of the
scenario. A disadvantage of this is that it is very hard to determine your position if you can’t
look around freely to orientate on the situation. That’s why the map of the environment
explicitly tells the respondents where they are, and what direction they are looking. We have

 71

done this by putting letters of the corresponding photograph on the map, accompanied by a
directional arrow. Because in a real situation the reporters will not both be reporting from the
same location, they will be given different pictures.

During the test the respondents are asked to think aloud, telling what they are thinking and
what they are trying to accomplish. This will allow us to determine if specific tasks need to be
made more intuitive, or need more functionality. In terms of the overview in Figure 1 the
photographs represent the Real World, the explanation of what the respondent sees and tries
to accomplish is the Mental World Model, and the Structured World Model is what the
respondent actually reports using the system.

5.2 Test Results

Respondent 1 was shown the pictures in Figure 65. She started with picture A and decided to
report a fire truck and a fireman. She found the corresponding icons without any trouble and
placed them on the map. She then decided that she could not place them at the correct location
very well because she had forgotten to zoom in first. She deleted the icons, then zoomed in a
few times to the desired resolution and placed the icons again. She decided that the woman on
the picture was not important to report about because she didn’t seem to be a wounded victim.
She didn’t notice any other events on the picture and moved on to picture B. She started with
a fireman icon and selected with the attributes there are 3-5 fireman. After that she reported
flames, small in size, with medium intensity. As a next step she decided to send the
information to the server. The server made some suggestions for next icons, and the
respondent decided that the smoke suggestion was actually an event she had overlooked.
After placing it on the map she sent the report again, and was satisfied with her current report.
The final results are shown in Figure 66.

Figure 65 Photographs A and B presented to Respondent 1. Photographs by Jos van Leeuwen.

 72

Figure 66 Report of respondent 1

Respondent 2 was presented photographs C and D, in Figure 67. He started with picture A
and decided to zoom in on the location first. As opposed to respondent 1 he used the drag
zoom tool, which allowed him to see the picture at the highest resolution at once. He then
placed a fire truck and 3-5 fireman. He wasn’t sure if the light in the window were flames or
just plain illumination. He decided to not report fire there and wished he could have seen the
building from a shorter distance. Respondent 2 continued with picture D and reported 3-5
firemen, a building, smoke and fire. The result of the report is shown in Figure 68.

Figure 67 Photographs C and D presented to Respondent 2. Photographs by Jos van Leeuwen.

 73

Figure 68 Report by respondent 2

Respondent 2 pressed the send button and the two world models were fused by the server.
Both respondents got a new map from the server with the new world model, which can be
seen in Figure 69.

Figure 69 new world model

 74

Both respondent 1 and 2 were not surprised by the new world model. They already expected
that some icons would have been moved a bit to take a weighted average of the two reports.
Respondent 1 noticed that she had forgotten to put a building icon on the map at first.

5.3 Test Conclusions

The conclusions that can be made from the test will be divided in the three aspects we tried to
test. First of all the usability of the system. The overall opinions of both tester is that the
system can be used quite easily.

• The needed icons were easily found in the hierarchical order and were placed on the
map without trouble.

• The zooming in and out of the map was used by both testers and was very helpful.
• Respondent 1 made some corrections in her placed icons, by deleting them and then

placing them in the right location. It might have been easy if the icons could be moved
instead.

• The suggestions that were coming from the server where helpful. Respondent 1 saw
she had forgotten to place smoke, and decided to agree on the systems suggestion to
place it.

• There were some problems with what to report. This will be due to the fact that neither
of the respondents are experienced in making reports. Respondent 1 decided that the
person that was on photograph C was not relevant enough to the situation to be
reported. From this can be concluded that even though we are structuring the mental
world model of the reporter, there is still some room for an own opinion. To get all
reporters to report what they should, some training should be given, and agreements
on what to report should be made.

Secondly, the correctness of the system seemed to be ok.

• Of course the respondents didn’t know exactly how the two reported world models
should have been fused, but they did not notice any strange modifications of their own
model. The fusion seemed to be correct.

• The suggestions that the system made were understandable, although most of the
suggested events were not seen on the photographs. This is because most of what
could be seen on the pictures was reported about already.

• The scenario suggestion, a fire, was obviously correct.
• Both respondents had read the user manual in Appendix C, and knew in advance that

their reports were going to be fused by the server. They were not surprised when some
icons were added on their screen and some were moved a bit. It was transparent
enough.

Finally, the completeness of the system seemed to be sufficient.

• The users understood all the icons that they needed.
• The attributes of the icons were enough to meet our respondents need. Because they

were both laymen they had no desire for more complexity in the attributes. Maybe
when the system gets tested by real firemen additional attributes may be needed.

• Neither of the respondents wanted to report anything that was not represented by an
icon, and the icons they needed were found very quickly. Respondent 2 was not sure if
he saw a fire on picture C. It would be nice if he could report about this, by adding an
uncertainty factor to his report.

 75

 76

Chapter 6: Conclusions and
Recommendations

In this chapter the results of the project are discussed. After that we will evaluate to what
extend the projects goals are reached. Finally we will discuss some possibilities for further
research and development of the system.

6.1 Results

This section presents the results of the project. We will present the results made on the
interface and the intelligence, and the dynamical aspects of both.

6.1.1 The Interface

The interface of the system was one of the first clear goals of the project. Before we could
make a working system we needed some way to let the user feed input to it. Many prototypes
were developed. The first prototypes were made in Macromedia Director [DIR], in which we
could very quickly make a good looking interface. We did not add any functionality to this
prototype, since the used tool was not really suited for it. These prototypes were basically
some interactive screenshots, in which the icons could be selected by opening the icon groups.

After reading a lot of papers about the use and development of icons we made up a list of
possible icons. Since we could not get our hands on things like a ‘policeman handbook’. We
had to reason about what concepts should be represented by icons ourselves, at the hand of
some news articles presented in Appendix A. After making a list of these concepts we
collected, developed and adjusted the icons that could be used.

The next prototypes were developed in Java, in a manner that allowed us to build up the
system incrementally. After some basic functionality was added we could build on top of this,
delete the changes if we didn’t like them and replace them with improvements. This iterative
process resulted in some different early stage versions. Like we showed in Chapter 2.1.2 we
experimented with creating combinations of icons. We made the icons transparent, stack on
top of each other and alternate each other. The results were not exactly what we were looking
for and we searched for a new solution. We introduced zooming on the map. This, in
combination with an attribute window to provide additional information, made combining
items and representing them as combined icons unnecessary. After this prototype was
designed and implemented, we began with the development of the server. The server didn’t
need a graphical interface.

When we arrived to the point in which we defined XML files to contain all the information
about the icons, we needed a more dynamical interface. We reserved some space for
additional icon groups and icons, and started working on ways to import the icons
dynamically. When this was properly working we had a highly dynamic interface. By just
editing some information in the XML files the interface is able to present more icon groups,
more icons, other icons, etc. The advantage of this is that the Java code does not need to be
revised, so non programmers can adjust the system as well, without having to recompile the
code.

 77

The dynamic version with zooming and an attribute window was nearly what we needed. The
only thing missing was a way to give feedback to the user. We developed the bar with icon
suggestions and the scenario information window for this. The result of this is the final
version of the client. This final version was tested as discussed in Chapter 5.

6.1.2 The Intelligence

When we had a first working version of the client we needed to implement a server as well.
The server needed to be able to connect with several clients at the same time, so we designed
it to start up a new thread for each client, which could then be handled simultaneously. The
first version of the server could receive input from clients and send it back. It did not care
about correct world models at that time, it just sent back its most recently received world map,
and disposed the older versions.

The next version of the server did not receive entire maps from the client, but only the placed
icons. Now the server sent back all the icons it received, not exactly what we wanted, but
clients could see what other clients had sent as well. Going on with this version, we added the
intelligence to the server. From now on it would have a Jess component to handle the world
model. This was the largest increase of the system, but we added it as one increment. It was so
large because we needed to extract the rules and information about icons from the XML files
and add this to the Jess component. Also all the icons that were send to the server needed to
be added to the knowledge base. To keep an overview of this increment we designed the Jess
code by itself at first. We used a command line interface to test the code, before embedding it
in Java.

In designing the Jess code we first made it possible to add new icons to the knowledge base.
When that was working we also designed code to delete and modify the icons. After that we
developed a way to filter out double icons. This is the only intelligence that actually deletes
icons by itself, without asking the users for feedback. We did think about deleting icons that
were not supported by other users, but found that deleting them would be to dangerous. Since
the system is designed for life threatening situations we don’t want the system to act
completely autonomous. We decided that the intelligence for that part should remain at the
human side.

Behaviour that could be added in a matter that relies both on human and machine intelligence
is to let the server make suggestions for possible next icons. To just add the icons would be
too dangerous, and the location of the to be placed icon is too hard to predict. The
compromise we designed is to let the server calculate which icons it expects, and ask the
human user to decide if they should really be placed, and where.

The server also makes some assumptions about what scenario is going on. Since this is just an
assumption that does not have a big impact on the working of the system and its world model,
we decided to keep this intelligence completely at the server side, without human
intervention. The adding of these rules resulted in the final version of the server. A server that
has a consistent world model at all times, and makes suggestions to the user.

 78

6.2 Conclusions

In this section we will evaluate to what extend the project goals are achieved. We will do so
by using the split up we made in the Design chapter:

Design and implement a demonstrator for a system that is suited for iconic communication in
a crisis situation, using a map of the surroundings (1), which is expressive enough to handle
complex and unexpected situations (2), yet intuitive enough to use without making (a lot of)
errors (3). The system should be intelligent enough to assemble and maintain a correct and
up to date world model (4). It should detect possible errors in the form of missing, double and
wrongly placed icons (5). Furthermore the system should be dynamic in the sense that new
concepts and rules can easily be added (6).

The conclusions for each requirement will be discussed below:

1) This part of the problem is solved. We made an interface which allows to use icons,
and place them on a map.

2) The system is expressive in a sense that there are a lot of concepts that can be reported
about. Furthermore the icons that are used to represent the concepts can be given
attributes to add more information. The complexity of the system can be further
increased by extending the XML files. Unexpected situations would be situations in
which new icons are needed that were not implemented yet. This can be done by
adjusting the XML files to add the concept and its relation to other concepts. There is
a problem with this however, because the server and the clients have to be restarted in
order for the changes to take effect. When this is done, the already reported icons will
be lost.

3) It is easy to select the right icon because the icons are distributed over logical icon
groups, which can be altered if needed by adjusting the XML files. To provide extra
information, an attribute window will pop up where the values of the attributes can be
given. The values can be selected out of a small list, this decreases the chance of
making a wrong selection, and eliminates the chance to make an illegal selection.
When icons are placed, the user is able to delete them again, or to inspect or alter its
attributes. To prevent placing icons on the wrong location, the user can easily zoom in
and out of the map, to be able to place the icon exactly where it should be. According
to the respondents of the user test, it is an easy to use system.

4) In order to assemble and maintain a world model we collect all information at one
server. The Jess component in the server is responsible for keeping the world model
up-to-date. Because the server only has 1 world model that gets adjusted over time, the
clients will all be send the same information, which is always the newest. The
correctness of this model is dependent on the information the users send. When they
report nonsense, the systems world model is worthless. During the user test, both users
were sending correct information, and the server fused their world models in a correct
new one.

5) To detect missing icons, the system looks at the already placed icons and the possible
scenario. From this it gives suggestions to the user, rather than adding icons
autonomously. The user can then decide if the suggested icon should be placed or not.
Double and wrongly placed icons are detected by the systems double icon filter. When
two or more of the same icons are placed very closely to each other, the system
combines them, as long as they were reported by different clients. When multiple
reports of the same icon are made, the system will take a weighted average of the
icons location, and thus incorrectly placed icons will be placed on a better position. If

 79

a client reports an icon that is too far from its correct location, and out of the filters
range, it cannot be detected.

6) New concepts can easily be added or adjusted by altering the XML files. The relations
between the icons can also be adjusted in this way. Adjusting these will result in the
system to give other icon suggestions or scenario overviews. There are however still
some hard coded functions that are not dynamical, such as the double icon filter.

Concluding we can say that all the goals, as stated in the problem description are met.
However, there are still many things we would like to see done in a different or more
elaborate way. We will discuss these in the next section.

6.3 Recommendations

The development of the ISME system has been a single student effort with a time span of
approximately a year. A similar system, like the C2000 project was done by hundreds of
people, costing about 700 million Euro, and its development is lasting many years already.
From this it should be clear that our constraints on resources have made it impossible to
develop and implement every aspect we wanted. In this chapter we will discuss some of the
ideas we were unable to work out and implement.

Extending the system by non human observers

At this time we only get input from human observers. To extend the system we could add
some non human observers as well. This could be done by sensors, which could for example
report about smoke development. We could add smart cameras to the system, which can
report about various things like unexpected crowds of people, smoke, or traffic jams. Systems
like these could place their own icons on the map and send them. In an ideal case our system
could get input from all sorts of security systems. If a fire alarm goes off in a building it could
send a report to our system as well, we know the location of the building and that there is
probably a fire. Information like this is exactly what we need for ISME. The same goes for
burglar alarms, in banks or even houses.

Improving the network

With the current version of ISME we make use of a central server. This is a very vulnerable
solution, especially in the case of terrorist attacks. If the location of the server is known, it is
an easy target to eliminate the entire system. What would be better is to have a number of
servers that are physically not located near each other. These servers would have to be kept up
to date by synchronizing them with the other servers. At all times all the servers should have
the same information.

Besides distributed servers other measurements may be taken. Just like the C2000 system we
could make an option for the clients to communicate directly with each other. Especially in
situations where no connection to a server is possible for all clients this is important (Figure
70). This was the case in the 9/11 terrorist attacks, for example. The entire communication
infrastructure was down. In such a peer to peer network there has to be some sort of
distributed blackboard where all the information is stored and reasoned about. This should be
done by letting one of the clients simulate a central server as we use at the moment [Kla05].
Problems will arise if this clients connection is getting worse or even vanish. In this case
another client has to take over the role of server. To prevent data from getting lost too often in
such scenarios we need algorithms that store data at multiple places and know when another

 80

client has to take over the role of server. Factors in such algorithms would be the connectivity
of each client and the strength of the connections. This proposed network has to be an ad-hoc
network, meaning that the connections between the clients may change with time and clients
may exit and enter the network at any time. Currently there is no platform that supports
functionality like this, but JADE seems to provide some possibilities for it. There are still
unsolved problems, however, when clients lose their connection, or when new clients want to
enter the network.

Figure 70 Proposed network architecture

Another improvement in the network is the use of GPS in it. Global Positioning System
provides ways to exactly define your location. Since the clients have to define their positions
at start up now, this could be replaced by a GPS that does it for them. On start up the system
could place the client on the map and even show his viewing direction. There is some security
issue involved however. GPS can be intercepted, and positions of the clients can be revealed
in this way. Unless there is a good way to prevent this from happening we might need other
ways for the clients to locate each other. Some research has been done already about
localization without GPS. Algorithms that are able to determine locations are then often based
on the time it takes for different agents to contact each other and the angle of arrival [Bul02],
[Vel05].

Expanding and improving the intelligence

The current intelligence of the system filters out double icons and gives scenario information
and suggestions for icons that could be placed next. Room for improvement lies in the
information we are using. When there is a lot of information available about scenarios we
could improve the information in the XML files to provide for more realistic calculations of
the scenarios and icon suggestions [Cha05].

 81

Besides improving the intelligence by using more reliable and accurate information we can
also expand the intelligence. The following aspects could be investigated:

• suggestions for deleting icons
• intelligence over time
• giving the clients roles

Suggestions for deleting icons would occur if some icons are not supported by the rest of the
icons. A simple example is when flames are reported, but smoke is not. The current system
would suggest to place a smoke icon, but if this is ignored it could also suggest to delete the
flames. The system should not delete it on its own for the same reason it should not place
suggestions on its own. It is too dangerous to let a system decide such things in unexpected
emergency situations. Feedback would be required from the users. An idea to implement this
feedback would be to add the icon that should be deleted to the suggestion bar, but with a red
cross through it. When it is clicked the icon in question should draw attention to itself,
perhaps by blinking. After that a confirmation to really delete it should be asked.

Intelligence over time can be achieved by keeping track of a history. In this way there can be
reasoned about icons that may have disappeared already. Think about an explosion for
instance, this will be only there for a very short amount of time, but does have an impact on
what can be expected next. We have already taken this into consideration in the development.
We don’t actually delete the facts from Jess, but mark them as deleted. The time of arrival of
the icons can also be important in certain scenarios.

Things like cars and persons will move over time. Anticipation of moving object over time
can be a next improvement. If we can get information about what direction the icons will be
moving we can reason about their location better. If we have an ambulance on the map that is
moving north east, we can expect an ambulance there soon. If that ambulance is reported by
somebody we can suggest to remove the old icon.

An additional type of intelligence can be to give the clients different roles. We could let
certain roles constrain to only a limited set of icons. For example someone who defuses
bombs could provide more information about the status of a bomb then an ambulance driver.
This could lead to a situation where experts can provide attributes of an icon, where others
can not.

From causal relations to probabilistic relations

The current reasoning is based on causal relations. If there is smoke there is fire. In some
cases causal relations are not easy to see through, that’s when it could be convenient to use
probabilistic relations. A well known example of a probabilistic model is the use of Bayesian
belief networks, which have proven their use in a many applications. In Bayesian belief
networks one can indicate the effect a certain event has on another event. They can be
visualized as directed graphs. Given some events and the probabilities that they happened, it
can be calculated what events are likely to happen next. In contrast of causal relations we can
make use of indirect relations as well now.
When events are reported in this case, the reporter could provide a probability of the event
himself, or the server could do this, based on the credibility of the reporter. A nurse could for
example have a higher probability of reporting correctly about the status of a victim then other
reporters. This is another example of giving reporters roles, as written above.

 82

Security issues

When sending information over a network there is always a risk that it will be intercepted by
eavesdroppers. This is in particular a problem with wireless communication. Hackers can
quite easily figure out what kind of messages are send to the server, and can then either get an
overview of what is going on, or worse, send messages to the server on their own. False
reports and an incorrect world model will be the result.

To prevent messages from being intercepted and read by unauthorized people, we can use
cryptography. Cryptography is the science that focuses on ciphering messages to prevent them
from being read. [Ove00] A suggestion is to give every client and the server a public key and
a private (secret) key. The messages can then be encoded using a asymmetric cipher
algorithm. The client code their messages with the public key of the server, after which only
the server can decipher the message, using its own private key. Vice versa, the server will
have to encode the messages with the public key of the client it wants to send to.

We can add a digital signature to the message by encoding it with the clients secret key. The
server will then decode the message using the public key of that particular client. Because a
correct message could only have been made by using the clients secret key, the message is
proofed to be coming from the client.

To combine both the prevention of unauthorized reading of messages and unauthorized
senders, we can first encode the message with the public key of the server, and then code the
result with the clients secret key. The server then has to use the clients public key first, and
knows the message is really coming from the client. After that it decodes the message using
its own secret key, to actually read the original message.

 83

 84

Bibliography

[Bea94] Iconic Communication , C. Beardon, 1994.

In: Intelligent Tutoring Media, 5(2), pp.58-62. ISSN 0957-9133

[Bru00] Object-oriented Software Engineering, conquering complex and changing

systems, B. Bruegge, A.H. Dutoit, 2000, Prentice-Hall, Inc.

[Bul02] Scalable, Ad Hoc Deployable RF-based Localization, Nirupama Bulusu,

Vladimir Bychkovskiy, Deborah Estrin and John Heidemann, October 2002,
University of California at Los Angeles

[C2000] The C2000 system, designed in order of the Dutch government, see

www.c2000.nl

[Cha02] Semiotics the Basics, Daniel Chandler, 2002. Or for a similar online version

see http://www.aber.ac.uk/media/Documents/S4B/

[Cha05] MSc Thesis of Jan Chau, still under construction at this time. Delft University

of Technology

[CLIPS] Expert System tool, see http://www.ghg.net/clips/CLIPS.html

[Comb] Combined Systems group, see www.decis.nl

[DIR] Macromedia Director, a multimedia tool designed to create interactive CDs,

but also useable in fast prototyping activities. See www.macromedia.com

[Dor94] Self-Explaining Icons, Claire Dormann, 1994, In: Intelligent Tutoring Media.

Vol 5, No 2. 1994. pp. 81-85

[JADE] Java Agent DEvelopment Framework, see http://jade.tilab.com/

[JESS] Java Expert System Shell, see http://herzberg.ca.sandia.gov/jess/

[Jon96] DynamIcons as Dynamic Graphic Interfaces: Interpreting the Meaning of a

Visual Representation, D.H. Jonassen, R. Goldman-Segal, H. Maurer
In: Intelligent Tutoring Media , vol. 6 (3/4) (1996), 149-158

[Kla05] MSc Thesis of Paul Klapwijk, still under construction at this time. Delft
University of Technology

[Mea91] A Computer-based Iconic Language , S. Mealing & M. Yazdani, 1991

In: Intelligent Tutoring Media, 1(3):133-136, 1992

[Mea94] A Computer Hinterface, S. Mealing, 1994, see

http://www.intellectbooks.com/iconic/hint/hint.htm

[NRC03] Met 61 woorden de wereld rond, about the theory of Anna Wierzbicka,

NRC Handelsblad 20 september 2003.

 85

http://www.c2000.nl/
http://www.aber.ac.uk/media/Documents/S4B/
http://www.ghg.net/clips/CLIPS.html
http://www.decis.nl/
http://www.macromedia.com/
http://jade.tilab.com/
http://herzberg.ca.sandia.gov/jess/
http://www.intellectbooks.com/iconic/hint/hint.htm

[Ove00] Informatiebeveiliging onder controle, Paul Overbeek, Edo Roos Lindgreen,

Marcel Spruit, 2000, Pearson Education

[Ric94] The Use of Metaphors in Iconic Interface Design, Stephen Richards,

Philip Barker, Ashok Banerji, Charles Lamont and Karim Manji.
In: Intelligent Tutoring Media, Vol 5, No 2, 73-80, 1994

[Shn98] Designing the User Interface, Strategies for Effective Human-Computer

Interaction, Ben Shneiderman, 1998, Addison Wesley Professional

[Tat03] Iconic Communication, Iulia Tatomir, December 2003, Bachelor Thesis, Delft

University of Technology

[Vel05] MSc Thesis of Marcel van Velden, still under construction at this time. Delft

University of Technology

 86

Appendix A: Scenarios

We have considered 5 different scenarios from which we extracted concepts that can be
represented by icons. These scenarios are based on news articles. The XML file for scenarios
is constructed by looking at the icons per scenario. The other XML file, for icons and their
relations to each other, is also based on these articles. We extracted the next and previous
relations between the icons from them. The next sections explain the scenario and which icons
are extracted from them. Sometimes we extracted concepts that are not literary in the article,
but could have occurred with a big chance nonetheless.

Scenario 1: Riot

A riot is happening when a lot of people are on the streets and start to make trouble. Usually
there are a few people that start breaking things like windows and bus stops. Violent
behaviour like this often leads to escalations as more and more people join in with the
violence. In the scenario of a riot we can distinguish several concepts which can be
represented by an icon. The following list of icons is extracted from the article below.

Table 1 Icons extracted from a Riot

Icon name Icon Description Next icons Previous icons
Armed Person

Rioter, armed with knifes,
stones, Molotov cocktails.

Policeman
Crashed Car
Flames
Victim
Dead person

Person

Spectator, not fighting but
only watching.

Policeman

Trying to control the crowd
of people.

 Policecar

Policecar

To transport policemen to the
scene.

Policeman

Crashed Car

Set on fire by the rioters. Flames

Flames

Small fires, caused by
Molotov cocktails.

Smoke
Victim

Smoke

Caused by fire or by the
police (tear-gas).

Flames
Victim

Flames

Victim

Got hurt by either the rioters
or the police.

Ambulance

Dead Person

Someone that died during the
riot.

Ambulance

Helicopter

Helicopter, used by the
police.

Road Block

Caused by the police or by
rioters.

 Victim
Policeman

Ambulance

To take care of possible
victims.

 Victim

 87

Riots in Den Bosch

by our Internet desk, 18 December 2000

The southern Dutch town of Den Bosch was plunged into
serious rioting over the weekend following the death of a
local football supporter early on Saturday. 29 people were
arrested after two nights of violent disturbances, in which
an estimated 300 rioters went on the rampage, fighting
pitched battles with riot police. The authorities are bracing
for more trouble this week.

Cars on fire, bus shelters and telephone booths vandalised, youths hurling bricks and Molotov
cocktails at riot police leaving a trail of destruction. The otherwise sleepy town of Den Bosch
turned into a battleground this past weekend following the death of a 31-year-old supporter
of the local football team. He was shot dead by a police officer who intervened during a row
between neighbours. The policeman reportedly acted in self-defence when the man
threatened him with a large knife.

"Liquidation"
Later on Saturday, around 300 youths and supporters of FC Den Bosch assembled in a local
bar, responding to calls on the Internet. They prepared for a silent march to the city centre
to demonstrate their anger at what they called "the liquidation" of their fellow fan, a
prominent member of the so-called hard core of FC Den Bosch supporters. But the silent
march soon turned violent. Shop windows were smashed, police were pelted with stones,
there were arson attacks on a bar, a school and a local blood bank, journalists were
intimidated and a satellite television van was overturned.

Apparently, the supporters' fury was triggered by the Mayor's decision to cancel Saturday
evening's fixture between FC Den Bosch and VVV Venlo, which they had wanted to use to
mark their colleague's death. The Mayor later said he had called off the match amid clear
indications that it would lead to trouble.

More Disturbances
But trouble came, even without the match. An army of riot police was deployed, assisted by a
helicopter. They used tear gas and carried out charges to disperse the crowd, but failed to
quell the rioting. Police then sealed off the district to prevent the violence from spreading to
the city centre. After several hours, a tense calm returned. It lasted until Sunday evening,
when the trouble started again. The authorities and local residents say they expect more
disturbances during the week.

Source: http://www.rnw.nl/hotspots/html/denbosch001218.html

Figure 71 News article Riot

 88

Scenario 2: Car Crash

A car crash can happen in many ways, usually it involves driving at high speed or under
influence. Sometimes it involves just one car, in other cases it can involve many cars. In the
scenario of a car crash we can distinguish several concepts which can be represented by an
icon. The following list of icons is extracted from the article below.

Table 2 Icons extracted from a Car Crash

Icon name Icon Description Next icons Previous icons
Policeman

Trying to control the traffic. Policecar

Roadblock

Caused by the police to
prevent traffic from coming
near.

Car Policeman
Victim

Crashed Car

The car that has been crashed. Fireman
Policeman

Car

Cars that are not involved in
the accident, but are in the
traffic jam caused by it.

Victim

Injured person that was
involved in the accident.

Ambulance
Nurse

Helicopter

Used to transport the victims. Victim

Ambulance

Used to transport the victims. Nurse Victim

Nurse

To give first aid on the scene. Ambulance
Victim

Fire truck

To transport firemen to the
scene.

Fireman

Fireman

Sometimes firemen are
needed to free the victims
from the car.

 Firetruck

Police car

To transport policemen to the
scene.

Policeman

Person

Spectators that came to look
at the situation.

Dead person

The victims involved in the
accident could have died.

Ambulance
Nurse

 89

Persbericht Haaglanden District8.net
Bericht nummer : 14
Plaats : Fly-over, A12
Datum : 14 juni 2003, 12.00uur
Revisie : 14-06-2003/23:55uur

Zwaargewonden bij auto-ongeluk Fly-over A12
DEN HAAG - Bij een ongeval op de fly-over richting de Utrechtsebaan zijn twee mannen
zwaargewond geraakt. Vermoedelijk door veel te hard rijden verloren ze tijdens een
inhaalmanoeuvre de macht over het stuur en klapte daarbij op de vangrail.
Door de impact van de klap werden beide slachtoffers uit het voertuig geslingerd. Een van de
slachtoffers kwam hierbij tussen de vangrail terecht. Doordat er sprake was van zeer ernstig
letsel kwam ook een MMT met de traumahelikopter ter plaatse om assistentie te verlenen.
Beide slachtoffers zijn per ambulance onder poltie begeleiding met een spoed transport
overgebracht naar ziekenhuizen in de regio. De technische recherche stelt een nader
onderzoek in naar de precieze toedracht.De fly-over richting Den Haag is geruime tijd in zijn
geheel afgesloten geweest voor het verkeer.

Edited by: Richard Hijdra Internetdiensten

Tekst en foto’s: © Remco Suiker

 90

Source: www.district8.net
Figure 72 News article Car Crash

Scenario 3: Fire

A fire can occur in many places and in many varieties, but usually the fire is inside a building.
In the scenario of a fire we can distinguish several concepts which can be represented by an
icon. The following list of icons is extracted from the articles below.

 91

Table 3 Icons extracted from a Fire

Icon name Icon Description Next icons Previous icons
Flames

The actual fire. Smoke

Firetruck
Fireman
Victim
Person
Explosion
Policecar
Policeman

Smoke
Explosion

Smoke

Smoke caused by the
flames

Flames
Firetruck
Fireman
Policecar
Policeman
Person
Victim

Flames

Fire truck

To transport firemen to the
scene and to provide
equipment to extinguish the
fire.

Fireman
Person

Fireman

To extinguish the fire. Firetruck

Person

Spectator, looking at the
situation.

Policeman

To keep spectators and
traffic at a distance.

 Policecar

Police car

To transport policemen to
the scene.

Policeman

Roadblock

Caused by the police or
firemen to keep the
spectators at a distance

 Policeman

Helicopter

Used to get an overview of
the situation.

Explosion

In case of gas leaks. Flames
Policecar
Person
Victim

Flames

Victim

Person that got injured
because of the fire.

Ambulance
Nurse

Dead Person

Person that died because of
the fire.

Ambulance
Nurse

Ambulance

Used to transport medical
personnel to the scene.

Nurse Victim

Nurse

To give first aid on the
scene.

 Victim
Ambulance

 92

Grote brand kartonfabriek Eerbeek

Uitgegeven: 17 april 2004 16:01
Laatst gewijzigd: 17 april 2004 18:29

EERBEEK - Op het terrein van een kartonfabriek in het centrum van Eerbeek in Gelderland woedt een
grote brand. De politie heeft enkele villa's in de omgeving omtruimd, maar er is geen sprake van een
grootscheepse evacuatie, zei brandweercommandant Berkhout voor het Radio 1 Journaal. Meerdere
eenheden van brandweerkorpsen uit de omgeving bestrijden het vuur.

Er hebben zich geen persoonlijke ongelukken voorgedaan, zei een woordvoerder van de politie. Hij sprak van
een heel grote brand, die met hevige rookontwikkeling gepaard gaat. De rookpluimen zijn tot in het centrum van
Apeldoorn te zien. Dat is ongeveer vijftien kilometer ten noordwesten van Eerbeek.

De brand woedt bij een vestiging van de Oostenrijkse kartonfabrikant Mayr-Melnhof aan de
Coldenhovenseweg. Het bedrijf telt 250 werknemers. Op het moment dat de brand uitbrak, waren er dertig
mensen aan het werk. De brand is volgens Berkhout ontstaan in de laatste fase van de papierproductie, maar
verder is er nog geen duidelijkheid over de oorzaak. Inmiddels zijn 36 brandweerwagens ter plaatse om het
vuur te bestrijden.

Geen explosiegevaar

Er zijn volgens Berkhout geen chemische stoffen vrijgekomen. Er is vooralsnog geen explosiegevaar. Wel heeft
de politie het fabrieksterrein afgesloten. Zij houdt het toegestroomde publiek zoveel mogelijk op afstand.

Een helicopter van de KLPD is in de lucht om de brandweer aan een overzicht van de brand te helpen. Er is
weliswaar veel rookvorming, maar er is ook veel wind. Er is volgens Berkhout geen direct gevaar voor de
omwonenden. Hij verwacht dat het nog enkele uren kan duren, voordat het sein brand meester kan worden
gegeven. Het nablussen zal tot in de late avond duren.

Source: www.nu.nl
Figure 73 News article Fire 1

Hevige brand op Uithof-complex Den Haag

Uitgegeven: 5 april 2004 16:18
Laatst gewijzigd: 5 april 2004 17:17

DEN HAAG - Op het sportcomplex De Uithof aan de Lozerlaan in Den Haag woedt sinds
maandagmiddag rond 16.00 uur een enorme brand. Volgens ooggetuigen vond kort voor 16.00 uur een
explosie plaats. Een grote zwarte rookpluim trekt over Den Haag. De explosie zou hebben
plaatsgevonden in de koelinstallatie van het schaatscentrum De Uithof. Hulpdiensten zijn met groot
materieel ter plaatse.

Op het schaatscentrum zouden maandag dakwerkzaamheden zijn verricht.

 93

http://www.deuithof.nl/

Foto: Sander Hak | Enorme rookwolk boven Den Haag

Rond 16.30 uur vonden meerdere explosies plaats. Het is vooralsnog onbekend of er mensen gewond zijn
geraakt.

Foto: M. Agsteribbe |

Het sportcomplex en de directe omgeving zijn door de politie hermetisch afgesloten. Flatbewoners aan de
overzijde van De Uithof zijn geëvacueerd. Het is nog onduidelijk of er schadelijke stoffen zijn vrijgekomen. De
brandweer is bezig met een meetonderzoek.

Foto: Ferry Monsma | Brand gezien vanaf de Beresteinlaan

 94

Foto: A.P.A. Galjé | Lozerlaan te Den Haag

Source: www.nu.nl
Figure 74 News article Fire 2

Brandweer klaar met blussen Haags schaatscentrum

Uitgegeven: 6 april 2004 11:51

DEN HAAG - De brandweer is dinsdagochtend tot half elf bezig geweest met nablussen van de brand in
het Haagse schaatscentrum de Uithof, dat maandag deels werd verwoest. Het bluswerk is de hele
nacht doorgegaan, zei een brandweerwoordvoerder dinsdagochtend.

Dinsdag is het schaatscentrum de hele dag gesloten, zei een medewerkster. Aan het einde van de dag wordt
duidelijk wanneer het complex zijn deuren weer opent. De ijshockeyhal is verloren gegaan en de skibaan heeft
waterschade opgelopen doordat de sprinklers aangingen.

De brandweer vond het een lastige klus om het vuur uit te krijgen. Maandag even voor 16.00 uur brak de
brand uit op het dak van de ijshockeybaan van de Uithof, waarschijnlijk door toedoen van dakdekkers. Door de
harde wind verspreidde het vuur zich razendsnel over het hele dak. Om ongeveer half zeven werd het sein
brand meester gegeven.

Schade

De schade loopt in de miljoenen, maar het precieze bedrag is nog onbekend. Directeur E. de la Croix van de
Uithof is dinsdag onbereikbaar. Hij sprak maandag al wel van een dramatische gebeurtenis.

De telefooncentrale van het schaatscentrum is door de brand danig in de war geweest. Wie het algemene
nummer belde, werd doogeschakeld naar een nietsvermoedende inwoner van Enschede. Van maandagavond
tot dinsdag halverwege de ochtend stond zijn telefoon roodgloeiend. Hij heeft energieleverancier Eneco aan de
lijn gehad, evenals een verzekeraar en mensen die iets wilden weten over activiteiten die de komende tijd op de
overdekte ijsbaan zouden plaatsvinden.

Source: www.nu.nl
Figure 75 News article Fire 3

 95

Scenario 4: Bomb Scare

A bomb scare usually happens when someone makes a (anonymous) phone call to warn the
police. In other cases it occurs when a suspected package is reported. In the scenario of a
bomb scare we can distinguish several concepts which can be represented by an icon. The
following list of icons is extracted from the articles below.

Table 4 Icons extracted from a bomb square

Icon name Icon Description Next icons Previous icons
Bomb

Fire truck

To be prepared for fire.

Fireman

To be prepared for fire.

Police car

To transport policemen to
the scene.

Policeman

Policeman

To keep spectators at a
distance.

 Policecar

Roadblock

To keep spectators at a
distance.

 Policeman

When the bomb explodes. Bomb

Car

Bombs are often hidden
inside cars.

 A bomb or suspected
package.

Explosion
 Policecar

Firetruck
Person
Bombsquad
Roadblock

A building where the bomb
is placed in.

 Building

A person who defuses
bombs.

Explosion Bomb Bomb squad

To be prepared for a
victims.

 Ambulance

Explosion

Bommelding
Dinsdagavond even na 19.00 uur wordt de omgeving van de Botermarkt in
Haarlem afgezet i.v.m. een verdacht pakketje. Het doosje ligt tegen een
woning aan en is met tape dichtgeplakt. De omgeving wordt ruimschoots
afgezet voor het publiek en omwonende moesten hun woningen verlaten. Ook de restaurants
in de omgeving van de Botermarkt werden ontruimt.
De TS746, OVD-midden en de HOVD werden ter plaatse verzocht
evenals een ambulance. Wanneer de EOC omstreeks 20.00 uur ter plaatse is
wordt het pakketje doorgelicht en blijkt er alleen rommel in te zitten. De omgeving werd weer
rond 20.45 uur vrijgegeven.

 96

 97

 98

Fotos: Arno de Kock

Source: http://www.brandweerhaarlem.nl

Figure 76 News article Bomb Scare 1

Treinverkeer opnieuw plat door verdacht pakket

Uitgegeven: 6 april 2004 09:47
Laatst gewijzigd: 6 april 2004 10:37

GILZE-RIJEN - Het treinverkeer van en naar Gilze-Rijen is dinsdagochtend stilgelegd na de vondst van
een verdacht pakketje in een stoptrein van Breda naar Eindhoven. Dat heeft ProRail verkeersinformatie
laten weten. Het pakketje werd rond 9.15 uur aangetroffen.

Het station van Gilze-Rijen is inmiddels ontruimd. De trein stond daar toen het pakketje werd gevonden. Het
Explosieven Opruimings Commando (EOC) is onderweg naar het station om het pakketje te onderzoeken.
Treinreizigers tussen Breda en Tilburg moeten in verband met de stremming rekening houden met een
vertraging van ruim een uur.

Bommeldingen

De Nederlandse Spoorwegen ondervinden de laatste tijd veel hinder van (valse) bommeldingen en de vondst van
verdachte pakketjes op stations en in treinen. Maandag nog lag het treinverkeer tussen Utrecht en Culemborg
urenlang stil, nadat in een intercity op station Utrecht Centraal een verdacht pakketje was gevonden.
Figure 77 News article Bomb Scare 2

 99

Scenario 5: Shooting

A shooting occurs when one or more person start using or threatening to use their guns. In the
scenario of shooting we can distinguish several concepts which can be represented by an icon.
The following list of icons is extracted from the articles below.

Table 5 Icons extracted from a shooting

Icon name Icon Description Next icons Previous icons
Dead person

A person that died because
of the shooting.

Ambulance
Nurse

Armed person

A person that has a gun and
is shooting with it.

Victim
Dead person
Policeman

Victim

A person who got injured
because of the shooting.

Ambulance
Nurse

Police car

Used to transport policemen Policeman

Policeman

To render the shooter
harmless or keep the
spectators at a distance.

 Policecar

Person

Spectator that is looking at
the scene.

Ambulance

To transport victims from
the scene.

Nurse Victim

Nurse

To give first aid at the
scene.

 Ambulance

Roadblock

To prevent spectators from
coming close.

 Policeman
Victim
Dead person

Doden bij schietpartij in Tiel

Uitgegeven: 15 april 2004 20:25
Laatst gewijzigd: 16 april 2004 07:27

TIEL - Bij een schietpartij in Tiel zijn volgens een woordvoerster van de politie donderdagavond rond
half acht drie mensen om het leven gekomen. Een vierde persoon ligt zwaargewond in kritieke toestand
in een ziekenhuis, meldde de politie.

Volgens getuigen heeft de schietpartij plaatsgehad in een Aldi-supermarkt aan de Kwelkade in de Gelderse
plaats. Of er sprake is geweest van een overval is onduidelijk. De zegsvrouw van de politie wil daar nog niets
van zeggen. De advocate van de Aldi-directie laat weten dat de schietpartij niet in de Aldi-winkel heeft
plaatsgevonden, maar in het winkelcentrum, waar de Aldi is gevestigd.

Ooggetuigen

Ooggetuigen zeggen dat er een mannelijk slachtoffer in de hal bij de supermarkt lag. Een eindje verder zou een
tweede neergeschoten man hebben gelegen. De andere slachtoffers zouden in winkels zijn getroffen. Of de
slachtoffers mannen of vrouwen zijn, is nog niet bekend. Een ooggetuige zei dat ze vier schoten had gehoord.

 100

Een buurvrouw van de Aldi vertelde donderdagavond dat zij een politiewagen met hoge snelheid zag naderen.
Uit de wagen sprongen agenten in kogelvrije vesten, die de winkel binnenrenden. De buurt heeft niets gehoord
van schoten of ander lawaai. Ongeveer een uur na het incident zagen omwonenden personeelsleden van de
Aldi naar buiten komen. De politie wil niet zeggen of er mogelijk een personeelslid onder de slachtoffers is.

Plastic

De schietpartij vond plaats in een klein winkelcentrum aan de rand van een Tielse woonwijk. Er kwamen zeer
veel belangstellenden op af, maar de politie maakte voor zover mogelijk elk zicht onmogelijk door plastic te
spannen. Rond half elf verdwenen de meeste belangstellenden. Het zwaargewonde slachtoffer was toen al via
een achteruitgang van het winkelcentrum afgevoerd.

In en rond het winkelcentrum is de politie bezig met sporenonderzoek, dat nog geruime tijd zal gaan duren. De
politie is uiterst terughoudend met mededelingen, omdat het om een zeer ernstige zaak gaat, aldus de
woordvoerster. Of het winkelcentrum vrijdagmorgen weer open gaat, was donderdagavond nog niet bekend.

www.nu.nl

Figure 78 News article Shooting

 101

 102

Appendix B: XML files

The XML files as used in the latest version are listed here.

iconlist.xml

 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE icon (View Source for full doctype...)>
- <iconlist>

- <group>
- <icon>

 <icon_name>policeman</icon_name>
 <icon_image>./icons/people/policeman.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
- <previous_icon>

 <icon_name>policecar</icon_name>
 <chance>2</chance>
 <timespan>1</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>soldier</icon_name>
 <icon_image>./icons/people/soldier.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
 </icon>
- <icon>

 <icon_name>fireman</icon_name>
 <icon_image>./icons/people/fireman.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 103

 </slot>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
- <previous_icon>

 <icon_name>firetruck</icon_name>
 <chance>4</chance>
 <timespan>1</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>nurse</icon_name>
 <icon_image>./icons/people/nurse.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
- <previous_icon>

 <icon_name>ambulance</icon_name>
 <chance>4</chance>
 <timespan>1</timespan>

 </previous_icon>
- <previous_icon>

 <icon_name>victim</icon_name>
 <chance>2</chance>
 <timespan>3</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>bombsquad</icon_name>
 <icon_image>./icons/people/bomb_squad.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
- <next_icon>

 <icon_name>explosion</icon_name>
 <chance>2</chance>
 <timespan>3</timespan>

 </next_icon>
- <previous_icon>

 <icon_name>bomb</icon_name>
 <chance>4</chance>

 104

 <timespan>1</timespan>
 </previous_icon>

 </icon>
- <icon>

 <icon_name>person</icon_name>
 <icon_image>./icons/people/person.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>spectator</slot_value>
 <slot_value>evacuated</slot_value>

 </slot>
 </icon>
- <icon>

 <icon_name>armedperson</icon_name>
 <icon_image>./icons/people/armedperson.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <slot>

 <slot_name>weapon</slot_name>
 <slot_value>unknown</slot_value>
 <slot_value>gun</slot_value>
 <slot_value>knife</slot_value>

 </slot>
- <next_icon>

 <icon_name>policeman</icon_name>
 <chance>4</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>crashedcar</icon_name>
 <chance>1</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>flames</icon_name>
 <chance>1</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>victim</icon_name>
 <chance>4</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>deadperson</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>victim</icon_name>
 <icon_image>./icons/people/victim.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>

 105

 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>injured</slot_value>
 <slot_value>ill</slot_value>

 </slot>
- <slot>

 <slot_name>priority</slot_name>
 <slot_value>low</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>high</slot_value>

 </slot>
- <next_icon>

 <icon_name>ambulance</icon_name>
 <chance>4</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>nurse</icon_name>
 <chance>4</chance>
 <timespan>3</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>deadperson</icon_name>
 <icon_image>./icons/people/deadperson.jpg</icon_image>
- <slot>

 <slot_name>number</slot_name>
 <slot_value>1</slot_value>
 <slot_value>2</slot_value>
 <slot_value>3-5</slot_value>
 <slot_value>5-10</slot_value>
 <slot_value>10+</slot_value>

 </slot>
- <next_icon>

 <icon_name>ambulance</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>nurse</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 </next_icon>
 </icon>

 </group>
- <group>

- <icon>
 <icon_name>flames</icon_name>
 <icon_image>./icons/events/flames.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>under_control</slot_value>
 <slot_value>expanding</slot_value>
 <slot_value>decreasing</slot_value>

 </slot>
- <slot>

 <slot_name>size</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>
 <slot_value>huge</slot_value>

 </slot>
- <slot>

 <slot_name>intensity</slot_name>

 106

 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>
 <slot_value>huge</slot_value>

 </slot>
- <next_icon>

 <icon_name>smoke</icon_name>
 <chance>5</chance>
 <timespan>1</timespan>

 </next_icon>
- <next_icon>

 <icon_name>firetruck</icon_name>
 <chance>4</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>fireman</icon_name>
 <chance>4</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>victim</icon_name>
 <chance>2</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>explosion</icon_name>
 <chance>1</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>ambulance</icon_name>
 <chance>2</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>policecar</icon_name>
 <chance>2</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>policeman</icon_name>
 <chance>2</chance>
 <timespan>4</timespan>

 </next_icon>
- <previous_icon>

 <icon_name>flames</icon_name>
 <chance>1</chance>
 <timespan>5</timespan>

 </previous_icon>
- <previous_icon>

 <icon_name>explosion</icon_name>
 <chance>1</chance>
 <timespan>5</timespan>

 </previous_icon>
- <previous_icon>

 <icon_name>smoke</icon_name>
 <chance>5</chance>
 <timespan>5</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>explosion</icon_name>
 <icon_image>./icons/events/explosion.jpg</icon_image>

 107

- <slot>
 <slot_name>intensity</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>
 <slot_value>huge</slot_value>

 </slot>
- <next_icon>

 <icon_name>flames</icon_name>
 <chance>4</chance>
 <timespan>2</timespan>

 </next_icon>
- <next_icon>

 <icon_name>policecar</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>firetruck</icon_name>
 <chance>4</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>victim</icon_name>
 <chance>3</chance>
 <timespan>2</timespan>

 </next_icon>
- <previous_icon>

 <icon_name>flames</icon_name>
 <chance>1</chance>
 <timespan>100</timespan>

 </previous_icon>
- <previous_icon>

 <icon_name>bomb</icon_name>
 <chance>1</chance>
 <timespan>100</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>smoke</icon_name>
 <icon_image>./icons/events/smoke.jpg</icon_image>
- <slot>

 <slot_name>intensity</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>
 <slot_value>huge</slot_value>

 </slot>
- <slot>

 <slot_name>size</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>
 <slot_value>huge</slot_value>

 </slot>
- <next_icon>

 <icon_name>flames</icon_name>
 <chance>4</chance>
 <timespan>2</timespan>

 </next_icon>
- <next_icon>

 <icon_name>policecar</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 108

 </next_icon>
- <next_icon>

 <icon_name>policeman</icon_name>
 <chance>2</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>firetruck</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>fireman</icon_name>
 <chance>2</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>victim</icon_name>
 <chance>2</chance>
 <timespan>2</timespan>

 </next_icon>
- <previous_icon>

 <icon_name>flames</icon_name>
 <chance>1</chance>
 <timespan>100</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>bomb</icon_name>
 <icon_image>./icons/events/bomb.jpg</icon_image>
- <slot>

 <slot_name>size</slot_name>
 <slot_value>unknown</slot_value>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>

 </slot>
- <next_icon>

 <icon_name>explosion</icon_name>
 <chance>4</chance>
 <timespan>2</timespan>

 </next_icon>
- <next_icon>

 <icon_name>roadblock</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>policecar</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>firetruck</icon_name>
 <chance>3</chance>
 <timespan>4</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>bombsquad</icon_name>

 109

 <chance>5</chance>
 <timespan>4</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>roadblock</icon_name>
 <icon_image>./icons/events/roadblock.jpg</icon_image>
- <slot>

 <slot_name>size</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>

 </slot>
- <next_icon>

 <icon_name>car</icon_name>
 <chance>2</chance>
 <timespan>2</timespan>

 </next_icon>
- <previous_icon>

 <icon_name>victim</icon_name>
 <chance>3</chance>
 <timespan>5</timespan>

 </previous_icon>
- <previous_icon>

 <icon_name>policeman</icon_name>
 <chance>1</chance>
 <timespan>5</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>flood</icon_name>
 <icon_image>./icons/events/flood.jpg</icon_image>
- <slot>

 <slot_name>size</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>

 </slot>
- <next_icon>

 <icon_name>firetruck</icon_name>
 <chance>2</chance>
 <timespan>2</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>victim</icon_name>
 <chance>2</chance>
 <timespan>5</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>tornado</icon_name>
 <icon_image>./icons/events/tornado.jpg</icon_image>
- <slot>

 <slot_name>size</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>big</slot_value>

 </slot>
- <next_icon>

 <icon_name>flood</icon_name>
 <chance>2</chance>
 <timespan>2</timespan>

 </next_icon>
- <next_icon>

 110

 <icon_name>person</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
- <next_icon>

 <icon_name>victim</icon_name>
 <chance>2</chance>
 <timespan>5</timespan>

 </next_icon>
- <next_icon>

 <icon_name>car</icon_name>
 <chance>3</chance>
 <timespan>3</timespan>

 </next_icon>
 </icon>

 </group>
- <group>

- <icon>
 <icon_name>ambulance</icon_name>
 <icon_image>./icons/transport/ambulance.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>driving</slot_value>
 <slot_value>crashed</slot_value>
 <slot_value>idle</slot_value>

 </slot>
- <next_icon>

 <icon_name>nurse</icon_name>
 <chance>4</chance>
 <timespan>1</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>2</chance>
 <timespan>5</timespan>

 </next_icon>
- <previous_icon>

 <icon_name>victim</icon_name>
 <chance>3</chance>
 <timespan>20</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>policecar</icon_name>
 <icon_image>./icons/transport/policecar.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>driving</slot_value>
 <slot_value>crashed</slot_value>
 <slot_value>idle</slot_value>

 </slot>
- <next_icon>

 <icon_name>policeman</icon_name>
 <chance>4</chance>
 <timespan>1</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>2</chance>
 <timespan>5</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>firetruck</icon_name>
 <icon_image>./icons/transport/firetruck.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>driving</slot_value>
 <slot_value>crashed</slot_value>

 111

 <slot_value>idle</slot_value>
 <slot_value>deployed</slot_value>

 </slot>
- <next_icon>

 <icon_name>fireman</icon_name>
 <chance>4</chance>
 <timespan>1</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>2</chance>
 <timespan>5</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>tank</icon_name>
 <icon_image>./icons/transport/tank.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>driving</slot_value>
 <slot_value>crashed</slot_value>
 <slot_value>idle</slot_value>

 </slot>
- <next_icon>

 <icon_name>soldier</icon_name>
 <chance>4</chance>
 <timespan>1</timespan>

 </next_icon>
- <next_icon>

 <icon_name>person</icon_name>
 <chance>2</chance>
 <timespan>5</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>train</icon_name>
 <icon_image>./icons/transport/train.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>driving</slot_value>
 <slot_value>crashed</slot_value>
 <slot_value>idle</slot_value>

 </slot>
- <slot>

 <slot_name>type</slot_name>
 <slot_value>passenger</slot_value>
 <slot_value>cargo</slot_value>

 </slot>
 </icon>
- <icon>

 <icon_name>car</icon_name>
 <icon_image>./icons/transport/car.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>driving</slot_value>
 <slot_value>parked</slot_value>
 <slot_value>waiting</slot_value>

 </slot>
 </icon>
- <icon>

 <icon_name>crashedcar</icon_name>
 <icon_image>./icons/transport/crashedcar.jpg</icon_image>
- <slot>

 <slot_name>damage</slot_name>
 <slot_value>small</slot_value>
 <slot_value>medium</slot_value>
 <slot_value>total_loss</slot_value>

 </slot>
- <next_icon>

 112

 <icon_name>flames</icon_name>
 <chance>1</chance>
 <timespan>1</timespan>

 </next_icon>
- <next_icon>

 <icon_name>policeman</icon_name>
 <chance>3</chance>
 <timespan>1</timespan>

 </next_icon>
- <next_icon>

 <icon_name>fireman</icon_name>
 <chance>2</chance>
 <timespan>1</timespan>

 </next_icon>
 </icon>
- <icon>

 <icon_name>boat</icon_name>
 <icon_image>./icons/transport/boat.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>sailing</slot_value>
 <slot_value>anchored</slot_value>
 <slot_value>sinking</slot_value>

 </slot>
 </icon>
- <icon>

 <icon_name>helicopter</icon_name>
 <icon_image>./icons/transport/helicopter.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>landed</slot_value>
 <slot_value>moving</slot_value>
 <slot_value>pivoting</slot_value>
 <slot_value>crashed</slot_value>

 </slot>
- <previous_icon>

 <icon_name>victim</icon_name>
 <chance>2</chance>
 <timespan>2</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>airplane</icon_name>
 <icon_image>./icons/transport/airplane.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>landed</slot_value>
 <slot_value>moving</slot_value>
 <slot_value>crashed</slot_value>

 </slot>
 </icon>

 </group>
- <group>

- <icon>
 <icon_name>building</icon_name>
 <icon_image>./icons/buildings/building.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>empty</slot_value>
 <slot_value>evacuating</slot_value>
 <slot_value>occupied</slot_value>

 </slot>
 </icon>

 </group>
 </iconlist>

 113

scenariolist.xml

 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE icon (View Source for full doctype...)>
- <scenariolist>

- <scenario>
 <scenario_name>riot</scenario_name>
- <icon>

 <icon_name>policeman</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>person</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>armedperson</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>crashedcar</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>flames</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>smoke</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>victim</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>helicopter</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>roadblock</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>policecar</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>ambulance</icon_name>
 <chance>2</chance>

 </icon>
 </scenario>
- <scenario>

 <scenario_name>carcrash</scenario_name>
- <icon>

 <icon_name>policeman</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>crashedcar</icon_name>
 <chance>5</chance>

 </icon>
- <icon>

 <icon_name>roadblock</icon_name>
 <chance>2</chance>

 </icon>

 114

- <icon>
 <icon_name>victim</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>helicopter</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>policecar</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>ambulance</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>nurse</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>firetruck</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>fireman</icon_name>
 <chance>1</chance>

 </icon>
 </scenario>
- <scenario>

 <scenario_name>fire</scenario_name>
- <icon>

 <icon_name>policeman</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>roadblock</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>victim</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>helicopter</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>policecar</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>ambulance</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>nurse</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>firetruck</icon_name>
 <chance>5</chance>

 </icon>
- <icon>

 <icon_name>fireman</icon_name>
 <chance>5</chance>

 </icon>
- <icon>

 <icon_name>flames</icon_name>

 115

 <chance>5</chance>
 </icon>
- <icon>

 <icon_name>smoke</icon_name>
 <chance>5</chance>

 </icon>
- <icon>

 <icon_name>explosion</icon_name>
 <chance>2</chance>

 </icon>
 </scenario>
- <scenario>

 <scenario_name>bombscare</scenario_name>
- <icon>

 <icon_name>policeman</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>roadblock</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>victim</icon_name>
 <chance>1</chance>

 </icon>
- <icon>

 <icon_name>policecar</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>ambulance</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>firetruck</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>fireman</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>explosion</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>building</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>bombsquad</icon_name>
 <chance>8</chance>

 </icon>
- <icon>

 <icon_name>bomb</icon_name>
 <chance>8</chance>

 </icon>
 </scenario>
- <scenario>

 <scenario_name>shooting</scenario_name>
- <icon>

 <icon_name>policeman</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>roadblock</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 116

 <icon_name>victim</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>policecar</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>ambulance</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>nurse</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>armedperson</icon_name>
 <chance>5</chance>

 </icon>
 </scenario>

 </scenariolist>

 117

 118

Appendix C: User Manual ISME

This is the user manual for the ISME system. The functionality and usage of the client is
explained here in a non technical approach.

What is the Application for?

This application is a demonstration of how emergency services can communicate with each
other, by the use of icons and a map. It is a simulation for the application on a handheld, for
example the Zaurus SL-C750.

Figure 79 The Sharp Zaurus SL-C750

The application is a proof of concept, as the emergency services are very scarce with
providing information about emergency situations. Therefore the icons and AI are based on
rules that were extracted from news articles.

 119

How does it Work?

The functions of ISME will be explained by the use of the graphical user interface (GUI).

Figure 80 GUI of the report tool

On the far top left the different icon groups are represented by their first icon in the group. In
this example there are groups for people, events, transportation, and buildings. There is also
space for 3 more groups. The groups can be easily expanded and changed, as will be
explained later.

Currently the group events is selected, and there are just 2 icons in it for now. Each group can
be expanded to contain 14 different icons. The 2 icons in the grey area can be selected by
clicking on them. The icon for flames is selected now, which can be seen by the red border
surrounding the icon.

Now that an icon is selected, it can be placed by clicking on the map. Click on the location
were the icon needs to be placed, and an attribute window will be shown, to provide
additional information about the icon.

 120

Figure 81 Attribute window for Flames

Select the appropriate attribute values and click ok to place the icon, or click cancel to not
place the icon after all.

When all the icons are placed, click the send and receive button on the bottom left toolbar.
This will send the icons you placed to the (central) server which will update its world model,
and send it back to the client. This means clicking on the send/receive buttons will cause new
icons to appear on the map, namely those icons that other clients may have placed.

When an icon needs to be deleted, select the eraser tool, the first icon on the toolbar, and click
on the icon that needs to be erased. After deletion, click on the send/receive button again, so
the server can update its world model and inform the other clients. Only delete an icon when
you are absolutely sure it is necessary.

The next icon on the toolbar is an eye. Clicking this will cause the application to go in inspect
mode. Click on any icon on the map to see and alter its attributes. This means you can also
change the attributes of icons that were placed by another client.

The toolbar contains 3 more icons, which all have to do with zooming. The zoom in and zoom
out buttons will zoom in and out of the map, keeping the centre of the map in the middle. The
other zoom icon will allow users to drag a specific area of the map, and zoom in on that part.

After some icons have been send, the server will suggest new icons to be placed to the clients.
Those icons will be shown on the bottom right bar. These icons work exactly as the icons in
the icon groups; they can be selected and placed on the map immediately. Again a red border
shows which icon is selected.

Finally the server will also send its world model in the form of a most likely scenario. Each
icon will award points to certain scenarios, and the most likely will be shown on the bottom
label in the application. Click on the question mark icon to see how many points each scenario
was awarded.

 121

Adding or Editing the Icons

It is possible to easily edit and change the icons that can be used in the application. All the
icon information is stored in 2 XML files. The application will read the icons and their rules
out of these files. The scenario XML file is called scenariolist.xml and can be found in the
map icons. Do not move it to another map, or the application will not find it. The file can be
opened by any browser to see its content in an organized way. For example in MS Internet
Explorer it looks like this:

 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE icon (View Source for full doctype...)>
- <scenariolist>

+ <scenario>
+ <scenario>
+ <scenario>
+ <scenario>
- <scenario>

 <scenario_name>shooting</scenario_name>
- <icon>

 <icon_name>policeman</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>roadblock</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>victim</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>policecar</icon_name>
 <chance>4</chance>

 </icon>
- <icon>

 <icon_name>ambulance</icon_name>
 <chance>3</chance>

 </icon>
- <icon>

 <icon_name>nurse</icon_name>
 <chance>2</chance>

 </icon>
- <icon>

 <icon_name>armedperson</icon_name>
 <chance>4</chance>

 </icon>
 </scenario>

 </scenariolist>

Click on the + and – to explore the information in the different scenarios. To edit the
information open the file in any text editor. Make sure that the structure of the file remains
correct. To see how it is defined open the scenariolist.dtd, the Document Type Definition.

The AI of the server can be changed by editing these files as well. When the values of the
chance fields are changed, the server may give different suggestions and award the points for
the scenarios in another way.

The same goes for the iconlist.xml file, which is defined by the iconlist.dtd definition file.

 122

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE icon (View Source for full doctype...)>
- <iconlist>

- <group>
- <icon>

 <icon_name>policeman</icon_name>
 <icon_image>./icons/people/policeman.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
- <previous_icon>

 <icon_name>policecar</icon_name>
 <chance>2</chance>
 <timespan>1</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>soldier</icon_name>
 <icon_image>./icons/people/soldier.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
- <previous_icon>

 <icon_name>policecar</icon_name>
 <chance>2</chance>
 <timespan>1</timespan>

 </previous_icon>
 </icon>
- <icon>

 <icon_name>fireman</icon_name>
 <icon_image>./icons/people/fireman.jpg</icon_image>
- <slot>

 <slot_name>status</slot_name>
 <slot_value>busy</slot_value>
 <slot_value>idle</slot_value>
 <slot_value>wounded</slot_value>
 <slot_value>dead</slot_value>

 </slot>
- <previous_icon>

 <icon_name>firetruck</icon_name>
 <chance>4</chance>
 <timespan>1</timespan>

 </previous_icon>
 </icon>

 </group>
+ <group>
+ <group>
+ <group>

 </iconlist>

This is where the applications gets its icons from. Icons can be added to the groups, as long as
the icon_image url is a link to an existing image. Also entire groups can be added or deleted
in this file. Keep in mind that the GUI cannot support more then 7 groups of 14 icons each
while adding icons, which should be enough since there is room for 98 different icons).

The server also gets AI information from this file. Causal links between icons can be defined
in this file by adding previous_icons and next_icons to the basic icons in the groups. Editing
these, and their values, will have an effect on which icons the server will suggest.

 123

 124

Appendix D: Detailed Class Diagram

Figure 82 Detailed Class Diagram

Server

Server and Client

Client

Appendix E: Paper ISME

Paul Schooneman
Faculty of Information Technology and Systems

Delft University of Technology
Mekelweg 4, 2628 CD Delft

p.schooneman@student.tudelft.nl

Abstract

Since the terrorist attacks on 9/11 the issue about
the collaboration of emergency services has become
increasingly important. One of the conclusions is
that better communication between the different
services is needed. This motivated us to try a
different modality for communication. This thesis
describes how iconic communication can be applied
to the field of Emergency Management.

We have designed and implemented a prototype
application, ISME, which is suited for emergency
services to communicate with each other, using a
map and icons. The system is designed as a client
server application, where the client is focussed on
the GUI and the server concentrates on the
intelligence. We use a Jess knowledge and rule base
to provide a consistent world model at all times,
while we store the concepts in XML files. The
interface and network is implemented in Java.

ISME gives the users the possibility to report about
what they observe by placing icons on a map. The
maps will be send to the server, which fuses the
multiple observations and constructs a new world
model of them. Besides the world model, the server
also sends information about the most likely
scenario, and it will suggest icons that are expected
in the world model but are not placed yet.

Keywords: icon, communication, map, emergency,
crisis, interface, Jess, world model

1 Introduction

Since the terrorist attacks on September 11th 2001
the issue about the collaboration of emergency
services has become increasingly important. An

important issue that day was the total breakdown of
the communication infrastructure. One of the
conclusions is that better communication between
the different services is needed. Besides the
network issues, this could be provided by either
more communication, or communication in new
ways. The latter solution seemed most appealing for
a research project. Because our MMI department is
doing research on, among other topics, multi modal
interfaces and AI, it seemed promising to develop a
wireless, ad-hoc, intelligent system with a new
modality for communication. The chosen modality
is a graphical one, using icons and a map of the
surroundings.

The proposed goal is a system that can be used by
the emergency services to keep each other up to
date about what’s going in a particular area, e.g. a
city, by placing icons on the map and sending them
to each other. The focus of this paper is on the
interface and intelligence. What we would like to
achieve is to get a structured World Model from a
real life crisis situation. A World Model is
composed of objects, characteristic features of the
objects, and relations between the objects. Every
observer has his own World Model. Police officers,
firemen and laymen have different views of the
world. An observer will look at the situation that is
going on, from this he will form his own ideas of
what is happening. The brain will construct its own
model about the situation, the mental world model.
Thoughts like these are based on what he observes,
but also on his background knowledge.

We may assume that observers are positioned
differently in time and space. Not all observers will
be able to see the same things because they report at
another time, or from another place. What we want
to do is mould these mental models into a computer
system. To do this we need to make the mental
model more concrete, so that it can be stored in a
structured way. Next we want to fuse the different
reports into one shared World Model, see Figure 1.

Figure 83 Overview of the proposed system

The agent in the field observes what is going on in
the Real World and forms his own Mental World
Model of the situation. He then wants to report his
thoughts with the report tool of the system. The tool
will only be able to handle structured information;
concepts represented by icons. Thus the reporter
has to concretise his ideas into icons, which he can
place on the map. Next the Structured World Model
gets send to a central server, which collects

• A next aspect is the intelligence of the system,
in particular in the fusion of the different
reports. How does the system handle double or
missing information? How should it deal with
contradicting information? How does it keep
its world model unambiguous and up to date?
How does the system handle time and dynamic
events?

• Another issue is the security of the system.
Since it will be based on wireless
communication, how can we prevent outsiders
to intercept information? Should all
information be send to all the users, and if not,
how do we define different roles of users? How
can we prevent the server from going down?
And if it does go down, how can we prevent
losing the information?

reports of all the agents in the field. The server will
fuse the ideas and form its own structured world
model that gets send back to the agents, along with
suggestions that the agent might have forgotten to
report. The agent will see these suggestions, forcing
him to observe the situation again, to see if he
missed anything.

For an intelligent communication system like this
we will have to look into several aspects:

Since we are only focussing on the interface and the
intelligence of the system, the problem description
is defined as follows:

• First of all we have to define a World Model,

different sets of icons, corresponding to
different crisis situations, and a priori
information about characteristics and relations
between the objects. What icons will we need?
How are these icons related to each other, and
what are the specific characteristics of each?

Design and implement a demonstrator for a system
that is suited for iconic communication in a crisis
situation, using a map of the surroundings (1),
which is expressive enough to handle complex and
unexpected situations (2), yet intuitive enough to
use without making (a lot of) errors (3). The system
should be intelligent enough to assemble and
maintain a correct and up to date world model (4).
It should detect possible errors in the form of
missing, double and wrongly placed icons (5).
Furthermore the system should be dynamic in the
sense that new concepts and rules can easily be
added (6).

• Then there needs to be the interface of the
report tool. The interface should provide a clear
structure for the communication. What kind of
information should be reported to the system,
and what kind of information should be
distributed back to the users? How will the
information be represented to the user?

 128

Within the computing context the word icon is used
to denote a small graphical representation of a
program, resource, state, option or window. As
such, icons form an important part of the Graphical
User Interface (GUI).

In this paper we will first discuss some related
work. After that we will discuss the Model and the
Implementation of the system. The next section will
present the user test we performed and after that we
will discuss our results, conclusions and
recommendations for future work.
 An ideal icon language wouldn’t need any

explanation, the intuition of the user, based upon
his life experience, should be enough to
immediately understand it. Of course, this is not a
very realistic goal. Just as any language, icon
language is something that does need some training.
Most people already have some training in
recognizing icons however, because icons can be
found anywhere. In many public places they are
used extensively, for example to indicate the toilets,
or to show where the emergence exits are. A lot of
icons are used in traffic signs, they point out if you
are allowed to overtake other cars, if a road is one
way only, or is a dead end.

2 Related work
Prior to designing and implementing our system we
have studied some related work, which we will
present in this section.

2.1 About Icons
Icons are graphical symbols representing a concept
or thing in reality. The term icon has been adapted
from the Russian word ikon, which is a religious
painting or statue. Icons have been around for a
very long time, as early as the middle ages complex
iconic systems have been used, for example to
denote systems of astrological signs. Even the
ancient Egyptians were using graphics as a
language. [Bea94], [Cha02], [Dor94], [Jon96],
[Mea91], [Mea94], [NRC03], [Ric94], [Shn98]

The challenge in designing icons is that they should
be as easy as possible to learn, as easy as possible
to remember, and as easy as possible to recognize.
Therefore icons should be designed with the
following criteria in mind:

In the 1930s Otto Neurath developed Isotype, a
system for communication which uses stylised
graphics within a two-dimensional syntax. Neuraths
work ranges from a very specific example of how a
complex idea can be conveyed graphically, to a
proposal for an international set of iconic images.
In the 1950s, Charles Bliss developed a set of
atomic icons that represent basic objects in the
world, and their features. These can be combined to
form complex icons that map on to the set of words
found in natural languages. Figure 2 shows how we
can construct a symbol for telephone using: mouth-
ear-language-electricity-telephone

• Graphically clear
• Semantically unambiguous
• Cultural independent
• Simple

There are three styles of icons that are commonly
used, see Figure 3:

1) Silhouette style; this one is very straight

forward and clear, the drawback is that it is
somewhat limited in the range of things it can
represent.

2) Three-quarter top view; this style is very
informative, but it requires some visual
understanding.

3) Realistic style; this one is easy to recognize,
but it is not very generalizing.

 Although the use of these different styles makes it

possible to select the best one for each icon, it is not
recommended to use a mix of different styles, as it
can be confusing.

Figure 84 The construction of the Bliss symbol
for telephone

The work of Bliss has some resemblance with the
work of linguist Anna Wierzbicka, who claims to
be able to describe any concept with using only 61
different words. The combination of these atomic
words lead to a new concept, just as the atomic
pictures of Bliss lead to a new concept. Although
Wierzbicka does not use icons, the possibility of
mapping her atomic words to atomic icons seems
interesting.

Figure 3 Three styles of icons

 129

Figure 4 Overview of the C2000 system

130

In systems that have a lot of different functions, it is
not easy to design an icon for each function. To
improve the recognition of the different icons, they
may be divided in subsets. For example one could
use a single group icon for representing surfaces,
and have as subset different icons for representing
circular and rectangular surfaces. The division of
icons in subsets can also improve the overview and
layout of applications.

 different functions, it is
not easy to design an icon for each function. To
improve the recognition of the different icons, they
may be divided in subsets. For example one could
use a single group icon for representing surfaces,
and have as subset different icons for representing
circular and rectangular surfaces. The division of
icons in subsets can also improve the overview and
layout of applications.

2.2 C2000 2.2 C2000
In the Netherlands a new digital radio network for
the communication of emergency services is being
developed [C2000]. It is called C2000, and its goal
is to maximally facilitate the communication
between the fire-brigades, ambulance services,
police-brigades and military police. The mobile
communication between these emergency services
should be supported and improved. The system
should guarantee fast and secure communication,
make communication between different emergency
services possible, and help improve the safety of
the emergency personnel.

In the Netherlands a new digital radio network for
the communication of emergency services is being
developed [C2000]. It is called C2000, and its goal
is to maximally facilitate the communication
between the fire-brigades, ambulance services,
police-brigades and military police. The mobile
communication between these emergency services
should be supported and improved. The system
should guarantee fast and secure communication,
make communication between different emergency
services possible, and help improve the safety of
the emergency personnel.

The need for a reliable communication system for
these services is high. Not only for the day to day
activities, but also in case the different services
need to cooperate with each other, for example in
crisis situations as in Enschede, where a fire

occurred in a firework deposit. The emergency
services themselves are closely involved in the
development if C2000.

A closely related project involving icons and
emergency situations was done by Iulia Tatomir
[Tat03]. The goal of this project was to create an
application that allows its users to communicate

2.3 Iconic Communication

In Figure 4 the design of the C2000 network is
shown. The numbered components are explained
below:

1) Direct Mode Operation, allows for car phones

and walkie-talkies to communicate with each
other directly, without making use of the
network.

2) Air Interface. Communication of a mobile
station takes place using electromagnetic
waves, with a transmitter mast, or with another
mobile station via the Air Interface.

3) Inter System Interface. Multiple TETRA
networks can be linked using the Inter System
Interface. This is used for international
communication.

4) Direct link with the central emergency room.
5) Gateways, make it possible to link the system

to other external networks, such as the public
telephone network, or the national emergency
network.

6) Peripheral Equipment Interface, supports
communication between laptops and mobile
stations, such as car phones.

C2000 should make the communication between
emergency services fast, simple and reliable. This
one national system will replace almost 100 local
systems that are currently used by the different
services. The digital network has big advantages
over the old analogue systems:

• C2000 is suitable for multidisciplinary

communication, whereas this was impossible
with the old systems.

• C2000 is designed in a way that is easy to
secure, making it virtually impossible to
eavesdrop on it.

• C2000 has a national coverage, whereas the old
systems only have regional coverage.

• C2000 has a much better sound quality for
speech.

• C2000 is very suitable for data communication.
• All car phones and walkie-talkies are provided

with emergency buttons.
• C2000 supports communication with foreign

co-workers, improving provided services near
the borders.

with each other using an international ‘language’,
icons.

First the graphical user interface was developed,
which is designed to be as easy as possible to use.
Because it is designed to be a simulation for a PDA
application, big constraints on the applications
dimension were imposed. The interface is shown in
Figure 5. The main part of the research in this
project was done on defining the grammar of the
icon sentence. Not all combinations of icons form
correct sentences. When an icon is selected, the
sentence gets parsed and the system decides which
icons can follow. This is extended by the interface,
by only making the icons that fit correctly in the
sentence selectable.

Figure 5 Interface of the application

3 Model and Implementation

The problem description is divided in workable
numbered components from which we can extract
requirements:

1) To make the system suited for iconic

communication in a crisis situation we need to
have icons that represent concepts in a crisis,
and maps of the surroundings to place the icons
on.

2) To make the system expressive enough we will
need different categories of icons. Within these
categories several icons are needed and we will
need a way to add even more information to
the icons. The icons will therefore have several
attributes. In the case of flames these can be the
size of the flames, the intensity and the status.

3) To prevent a lot of errors, the GUI should be
intuitive and easy to use. It should be clear
which category and icon is selected and they
should be easily added to the map. To provide

extra information, an attribute window will pop
up where the values of the attributes can be
given. The values can be selected out of a small
list; this decreases the chance of making a
wrong selection, and eliminates the chance to
make an illegal selection. When icons are
placed, the user should be able to delete them
again, or to inspect or alter its attributes. To
prevent placing icons on the wrong location,
the user should be able to easily zoom in and
out of the map, to be able to place the icon
exactly where it should be.

4) In order to assemble and maintain a world
model we will collect all information at one
server. To create a world model out of this
information we should store it in a database,
which will have to be kept consistent at all
times. We will choose a client-server
implementation for this, where the many
clients are the reporters of the crisis, and the
server is the part that keeps a consistent world
model and distributes all information among its
clients.

5) To detect missing, double and wrongly placed
icons we need some intelligent agent that
constantly works on the information that’s
being gathered.

6) In order to make the system dynamic, it’s
useful to store all its information about icons
and their rules in a database. The entries of this
database should be easy to edit, and the
database should be extendible. If we keep this
database in separate files that are read by the
system on start up, it’s possible to adjust rules,
and icons in a way that does not require the
entire system to be recompiled.

In crisis situations it is not practical to use laptop
computers, that’s why we want the final system to
work with handheld computers, such as the Zaurus,
in Figure 6.

Figure 6 Sharp Zaurus SL-C760

 131

The constraints that follow from this are the
resolution and the limited speed of the client. That’s
why we need the server to do all the time intensive
calculations, and make the client as light weight as
possible. Furthermore we need to use a
programming language that can run on the Zaurus.
The system will be using wireless communication,
that’s why we need to keep the data traffic to an
absolute minimum.

The main programming language we will use is
Java. The storage of the world model of the server
and the intelligence of the server are both combined
in one component, Jess [JESS]. Jess stands for Java
Expert System Shell. In short Jess is an expert
system that works with facts, and rules that are
automatically triggered when the conditions are
met. The last part of the system is the storage of
icons and the rules that apply to them. We have
chosen XML files for this part.

In Figure 7 an overview of how the different
components interact is shown. The XML files
contain all information about the icons and
scenarios. They also contain parameters that
influence the rules in the Server. The server is
mainly done in Jess, there is only some Java
functionality that lets the server communicate with
the clients, and lets it read in the XML files. The
Client is done entirely in Java, it gets information
about what icons should be in the GUI from the
XML files, and then dynamically builds up the
interface. A change in the XML files will cause
other icons to appear in the client, and other icons
and rule parameters will be used in the server as
well.

Figure 7 Overview of the components

Besides sending back the world model to the
clients, the server will also send some information
about scenarios and will suggest some icons that
can be placed next.

The scenario information consists of the predefined
scenarios and the probability values that the server
has added to them. The scenario information is
there to give the users of the clients a quick idea of
what is happening around them, and to make better
predictions of expected icons.

The suggestions for new icons are some feedback
for the user. The server has some expectations of
what icons it will be receiving next. If an icon is
missing, the server will notice this by the
information of the XML files. If a fireman is
reported, but there is no fire truck, the system will
be likely to suggest placing one. The suggestions
for placing new icons come from both individual
icon relations (icon:flames icon:smoke) and
relations between scenarios and icons
(scenario:bomb scare icon:bomb). Providing
suggestions like these, we believe, will add to a
more accurate report. Things the reporter might
have missed, or did not find important enough to
report will be more likely to be reported now. The
user will be actively looking for the concept
represented by the icon of the suggestion.

The Jess component will act like a blackboard
where users can write and read messages on. The
knowledge base is the blackboard and the rule base
will constantly run functions on it to keep it
consistent and correct. See Figure 8.

After the rule base is applied to the knowledge base
the resulting world model is send to the clients,
together with the scenario information and next
icon suggestions. These last two outputs are
acquired by performing a function on the
knowledge base that calculates the values for the
scenarios and suggestions.

The double occurrence filter is implemented to
consider the locations of the different reporters. To
combine two icons we take a weighted average of
the reported locations, based on the distance of the
reporter to the event. The closest report from the
closest client is probably more accurate, so this
report will have a higher weight. When multiple
clients have reported the same icon, they are all
added to a list of ‘supporters’ of the icon. This is to
prevent deleting double icons that were reported by
the same client. After all, if one client reports about
two policemen, there probably are really two, so the
filter should not apply in this case.

The output to the clients consists of three parts, the
World Model is just the collection of placed (and
processed) icons and their attributes and locations.

 132

Figure 8 The Jess Component as Virtual Blackboard

The Scenario Evaluation is a suggestion for the
most likely scenario. This gets calculated by letting
each placed icon award points to certain scenarios.
The scenario that ends up with the highest score is
the most likely scenario.

 The Next Icon Suggestions are based on both the
scenario information and the inter icon relations.
The scenarios award points to each icon that could
be in the scenario, but is not placed yet. These
points are weighted by the likeliness of the
scenario. If a scenario is most likely not right, it
will not add many points to the missing icons. The
inter icon relations are direct relations, such as
flames smoke. All the placed icons will award
points to their directly related icons if they are not
placed already.

The awarded points for scenarios and icons are all
defined in the XML files. Changing these would
result in different a different scenario and icon
suggestion.

4 User Test

It is important to test the system, in order to detect
errors and unexpected or unwanted behaviour, it
can also give some conclusions of the ease of use
and the complexity of the system. We have
designed a test that will allow us to test the
usability, the correctness, and the completeness of
the system at the same time. The usability will
determine if the system is easy to use, the
correctness if the algorithms work and the
completeness to determine if we have enough icons
to express ourselves.

4.1 Design of the test
There are two users, the respondents, that will test
the system simultaneously, using a scenario
presented to them in the form of photographs. The
respondents are both not experienced in reporting
events, let alone reporting about emergency
situations. We have taken a new scenario for this
test, as opposed to using one we used to determine

the Jess rules. We have done this to make the test
less trivial, after all it wouldn’t be much of a
challenge to predict which scenario is going on, if
the test case is exactly what the rules are derived
from.

Because the system can not be tested in the real
world, the respondents are presented photographs
of the scenario. A disadvantage of this is that it is
very hard to determine your position if you can’t
look around freely to orientate on the situation.
That’s why we have added letters of the
corresponding photograph on the map,
accompanied by an arrow that represents the
viewing direction. Because in a real situation the
reporters will not both be reporting from the same
location, they will be given different pictures.

During the test the respondents are asked to think
out loud, telling what they are thinking and what
they are trying to accomplish. This will allow us to
determine if specific tasks need to be made more
intuitive, or need more functionality. In terms of the
overview in Figure 1 the photographs represent the
Real World, the explanation of what the respondent
sees and tries to accomplish is the Mental World
Model, and the Structured World Model is what the
respondent actually reports using the system.

4.2 Test results
Respondent 1 was shown the pictures in Figure 9.
She started with picture A and decided to report a
fire truck and a fireman. She found the
corresponding icons without any trouble and placed
them on the map. She then decided that she could
not place them at the correct location very well
because she had forgotten to zoom in first. She
deleted the icons, then zoomed in a few times to the
desired resolution and placed the icons again. She
decided that the woman on the picture was not
important to report about because she didn’t seem
to be a wounded victim. She didn’t notice any other
events on the picture and moved on to picture B.
She started with a fireman icon and selected with
the attributes there are 3-5 fireman. After that she
reported flames, small in size, with medium
intensity. As a next step she decided to send the
information to the server. The server made some
suggestions for next icons, and the respondent
decided that the smoke suggestion was actually an
event she had overlooked. After placing it on the
map she sent the report again, and was satisfied
with her current report. The final results are shown
in Figure 10.

Figure 9 Photographs A and B

Figure 10 Report by respondent 1

Respondent 2 was presented photographs A and B,
in Figure 11. He started with picture C and decided
to zoom in on the location first. As opposed to
respondent 1 he used the drag zoom tool, which
allowed him to see the picture at the highest
resolution at once. He then placed a fire truck and
3-5 firemen. He wasn’t sure if the light in the
window were flames or just plain illumination. He
decided to not report fire there and wished he could
have seen the building from a shorter distance.
Respondent 2 continued with picture D and
reported 3-5 firemen, a building, smoke and fire.
The result of the report is shown in Figure 12.

Figure 11 Photographs C and D

Respondent 2 pressed the send button and the two
world models were fused by the server. Both
respondents got a new map from the server with the
new world model, which can be seen in Figure 13.

 134

Figure 12 Report by respondent 2

Both respondent 1 and 2 were not surprised by the
new world model. They already expected that some
icons would have been moved a bit to take a
weighted average of the two reports. Respondent 1
noticed that she had forgotten to put a building icon
on the map at first.

Figure 13 Result of the fusion

4.3 Test Conclusions
The conclusions that can be made from the test will
be divided in the three aspects we tried to test. First
of all the usability of the system. The zooming in
and out of the map was used by both testers and
was very helpful. The suggestions that were coming
from the server where helpful as well. The overall
opinions of both tester is that the system can be
used quite easily, although some training in what to
report would be welcomed. Respondent 1 decided
that the person on photograph A was not relevant
enough to the situation to be reported. From this
can be concluded that even though we are
structuring the mental world model of the reporter,
there is still some room for an own opinion. To get
all reporters to report what they should, some
training should be given, and agreements on what
to report should be made.

The correctness of the system seemed to be ok. Of
course the respondents didn’t know exactly how the
two reported world models should have been fused,
but they did not notice any strange modifications of
their own model. Some icons were added, but that’s
exactly what they would expect, since they were
not the only one reporting. The suggestions that the
system made were understandable, although most
of the suggested events were not seen on the
photographs. This is because most of what could be
seen on the pictures was reported about already.
Finally the scenario suggestion, a fire, was
obviously correct as well.

The completeness of the system looked to be
sufficient. Neither of the respondents wanted to
report anything that was not represented by an icon,
and the icons they needed were found very quickly.
Respondent 2 was not sure if he saw a fire on
picture C. It would be nice if he could report about
this, by adding an uncertainty factor to his report.

5 Conclusions and
Recommendations

In this section we will evaluate to what extend the
project goals are achieved. We will do so by
discussing each point of the problem description.

1) We made an interface which allows to use

icons, and place them on a map.

3) It is easy to select the right icon because the
icons are distributed over logical icon groups,
which can be altered if needed by adjusting the
XML files. To provide extra information, an
attribute window will pop up where the values
of the attributes can be given. The values can
be selected out of a small list, this decreases
the chance of making a wrong selection, and
eliminates the chance to make an illegal
selection. When icons are placed, the user is
able to delete them again, or to inspect or alter
its attributes. To prevent placing icons on the
wrong location, the user can easily zoom in and
out of the map, to be able to place the icon
exactly where it should be. According to the

2) The system is expressive in a sense that there
are a lot of concepts that can be reported about.
Furthermore the icons that are used to represent
the concepts can be given attributes to add
more information. The complexity of the
system can be further increased by extending
the XML files. Unexpected situations would be
situations in which new icons are needed that
were not implemented yet. This can be done by
adjusting the XML files to add the concept and
its relation to other concepts

 135

respondents of the user test, it is an easy to use
system.

4) In order to assemble and maintain a world
model we collect all information at one server.
The Jess component in the server is responsible
for keeping the world model up-to-date.
Because the server only has 1 world model that
gets adjusted over time, the clients will all be
send the same information, which is always the
newest. During the user test, both users were
sending information, and the server fused their
world models in a correct new one.

5) To detect missing icons, the system looks at the
already placed icons and the possible scenario.
From this it gives suggestions to the user,
rather than adding icons autonomously. The
user can then decide if the suggested icon
should be placed or not. Double and wrongly
placed icons are detected by the systems
double icon filter. When two or more of the
same icons are placed very closely to each
other, the system combines them, as long as
they were reported by different clients. When
multiple reports of the same icon are made, the
system will take a weighted average of the
icons location, and thus incorrectly placed
icons will be placed on a better position. If a
client reports an icon that is too far from its
correct location, and out of the filters range, it
cannot be detected.

6) New concepts can easily be added or adjusted
by altering the XML files. The relations
between the icons can also be adjusted in this
way. Adjusting these will result in the system
to give other icon suggestions or scenario
overviews. There are however still some hard
coded functions that are not dynamical, such as
the double icon filter.

• Extending the system by non human observers:

To extend the system we could add some non
human observers, such as smart cameras,
burglar and fire alarms.

• Improving the network: The current network is
very vulnerable when the server goes down.
We could improve this by distributing the
information over several servers, or to make an
ad-hoc network of only handheld computers.
[Kla05]

• Adding GPS or other localisation techniques:
Global Positioning System provides ways to
exactly define your location. On start up the
system could place the client on the map and
even show his viewing direction. There is some
security issue involved however. GPS can be

intercepted, and positions of the clients can be
revealed in this way. Unless there is a good
way to prevent this from happening we might
need other ways for the clients to locate each
other. Some research has been done already
about localization without GPS. [Bul02],
[Vel05]

• Expanding and improving the intelligence:
Room for improvement lies in the information
we are using. When there is a lot of
information available about scenarios we could
improve the information in the XML files to
provide for more realistic calculations of the
scenarios and icon suggestions. [Cha05]

• Anticipation on moving objects: Things like
cars and persons will move over time. If we
can get information about what direction they
will be moving we can reason about their
location better.

• Giving the clients different roles: We could let
certain roles constrain to only a limited set of
icons. For example someone who defuses
bombs could provide more information about
the status of a bomb then an ambulance driver.
This could lead to a situation where experts can
provide attributes of an icon, where others can
not.

• From causal relations to probabilistic relations:
The current reasoning is based on causal
relations. If there is smoke there is fire. In
some cases causal relations are not easy to see
through, that’s when it could be convenient to
use probabilistic relations. With Bayesian
Belief Networks it can be calculated what
events are likely to happen next, given some
events and the probabilities that they happened.

• Security issues: To prevent messages from
being intercepted and read by unauthorized
people, we can use cryptography [Ove00]. A
suggestion is to give every client and the server
a public key and a private (secret) key. The
messages can then be encoded using a
asymmetric cipher algorithm and a digital
signature. We can first encode the message
with the public key of the server, and then code
the result with the clients secret key. The server
then has to use the clients public key first, and
knows the message is really coming from the
client. After that it decodes the message using
its own secret key, to actually read the original
message.

Concluding we can say that all the goals, as stated
in the problem description are met. However, there
are still many things we would like to see done in a
different or more elaborate way:

• Intelligence over time: This can be achieved by
keeping track of a history, so there can be
reasoned about icons that may have
disappeared already. Think about an explosion
for instance, this will be only there for a very
short amount of time, but does have an impact
on what can be expected next. The time of
arrival of the icons can also be important in
certain scenarios.

 136

Bibliography

[Bea94] Iconic Communication , C. Beardon, 1994.
In: Intelligent Tutoring Media, 5(2),
pp.58-62. ISSN 0957-9133

[Bul02] Scalable, Ad Hoc Deployable RF-based

Localization, Nirupama Bulusu,
Vladimir Bychkovskiy, Deborah Estrin
and John Heidemann, October 2002,
University of California at Los Angeles

www.c2000.nl

[Cha02] Semiotics the Basics, Daniel Chandler,

2002. Or for a similar online version see
http://www.aber.ac.uk/media/Documents/
S4B/

[Cha05] MSc Thesis of Jan Chau, still under

construction at this time, Delft University
of Technology

[C2000] The C2000 system, designed in order of

the Dutch government, see

[Dor94] Self-Explaining Icons, Claire Dormann,
1994, In: Intelligent Tutoring Media. Vol
5, No 2. 1994. pp. 81-85

[JADE] Java Agent DEvelopment Framework, see

 http://jade.tilab.com/

[JESS] Java Expert System Shell, see

http://herzberg.ca.sandia.gov/jess/

[Jon96] DynamIcons as Dynamic Graphic

Interfaces: Interpreting the Meaning of a
Visual Representation, D.H. Jonassen, R.
Goldman-Segal, H. Maurer
In: Intelligent Tutoring Media , vol. 6 (3/4)
(1996), 149-158

[Kla05] MSc Thesis of Paul Klapwijk, still under

construction at this time, Delft University
of Technology

[Mea91] A Computer-based Iconic Language,

S.Mealing & M. Yazdani, 1991
In: Intelligent Tutoring Media, 1(3):133-
136, 1992

[Mea94] A Computer Hinterface, S. Mealing, 1994,

see
http://www.intellectbooks.com/iconic/hint/
hint.htm

[Nrc03] Met 61 woorden de wereld rond, about the

theory of Anna Wierzbicka,
NRC Handelsblad 20 september 2003.

[Ove00] Informatiebeveiliging onder controle, Paul

Overbeek, Edo Roos Lindgreen, Marcel
Spruit, 2000, , Pearson Education

[Ric94] The Use of Metaphors in Iconic Interface

Design, Stephen Richards, Philip Barker,
Ashok Banerji, Charles Lamont and Karim
Manji. In: Intelligent Tutoring Media, Vol
5, No 2, 73-80, 1994

[Shn98] Designing the User Interface, Strategies

for Effective Human-Computer
Interaction, Ben Shneiderman, 1998,
Addison Wesley Professional.

[Tat03] Iconic Communication, Iulia Tatomir,

December 2003

[Vel05] MSc Thesis of Marcel van Velden, still

under construction at this time, Delft
University of Technology

 137

	Abstract
	Preface
	Acknowledgements

	Table of Contents
	Table of Figures
	Chapter 1: Introduction
	1.1 Project Overview
	1.1.1 Define a World Model
	1.1.2 Interface
	1.1.3 Intelligence
	1.1.4 Security

	1.2 Problem Description

	Chapter 2: Related Work
	2.1 About Icons
	2.1.1 The History of Icons
	2.1.2 Modern use of icons

	2.2 C2000
	2.2.1 Advantages
	2.2.1.1 A joint radio network with national coverage
	2.2.1.2 A high level of security
	2.2.1.3 An open European standard

	2.3 Iconic Communication

	Chapter 3: Global Design
	3.1 Requirements and Constraints
	3.2 Java, Jess and XML
	3.3 Overview
	3.4 Design of the XML Files
	3.5 Jess
	3.5.1 About Jess
	3.5.2 Design of the Jess Component

	3.6 Design of the Java Component
	3.6.1 Graphical User Interface
	3.6.2 The Network
	3.6.3 Integration

	Chapter 4: Implementation
	4.1 UML
	4.1.1 Use Case Diagram
	4.1.2 Class Diagrams
	4.1.3 Sequence Diagrams

	4.2 Jess
	4.2.1 Adding Facts to Jess.
	4.2.2 Deleting Facts from Jess
	4.2.3 Modifying Jess Facts
	4.2.4 Rules about Double Placed Icons
	4.2.5 Determining the Current Scenario
	4.2.6 The Next Icon Predictor

	4.3 Algorithms and Functions
	4.3.1 From XML to Jess
	4.3.2 Zooming
	4.3.2.1 Normal Zooming
	4.3.2.2 Drag Zooming

	Chapter 5: User Test
	
	
	
	
	Usability
	Correctness
	Completeness

	5.1 Design of the Test
	5.2 Test Results
	5.3 Test Conclusions

	Chapter 6: Conclusions and Recommendations
	6.1Results
	6.1.1 The Interface
	6.1.2 The Intelligence

	6.2 Conclusions
	6.3 Recommendations

	Bibliography
	Appendix A: Scenarios
	Scenario 1: Riot
	Scenario 2: Car Crash
	Scenario 3: Fire
	Scenario 4: Bomb Scare
	Scenario 5: Shooting

	Appendix B: XML files
	iconlist.xml
	scenariolist.xml

	Appendix C: User Manual ISME
	What is the Application for?
	How does it Work?
	Adding or Editing the Icons

	Appendix D: Detailed Class Diagram
	Appendix E: Paper ISME
	
	Abstract
	1 Introduction
	2 Related work
	2.1 About Icons
	2.2 C2000
	2.3 Iconic Communication

	3 Model and Implementation
	4 User Test
	4.1 Design of the test
	4.2 Test results
	4.3 Test Conclusions

	5 Conclusions and Recommendations
	Bibliography

