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Abstract: Ever more complex sensors have become 
available to create and maintain situational awareness 
during missions. Choosing the most suited sensor for the 
execution of a sensor function is based on sensor capabilities 
and function attributes. When these characteristics change 
rapidly, sensor allocation for sensor functions will shift. To 
increase performance of the entire sensor network, the total 
set of sensors should be scheduled in a single system. This 
paper puts forward and compares three new methods for 
scheduling prioritised tasks in sensor networks. The first is 
based on fuzzy Lyapunov synthesis. The other two use a 
genetic algorithm (GA) to optimise the set of schedules. The 
second scheduler uses this set to (re)train a neural network 
to be used online. The third approach is a novel online use of 
the GA. Tests showed that the novel online GA leads to a 
robust scheduling algorithm with high overall performance. 
 
Keywords: Sensor Management, Task Scheduling, 
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1 Introduction 
 On the new Air Defence and Command Frigates of the 
Royal Netherlands Navy the APAR (Active Phased Array 
Radar) Multi Function Radar (MFR) is used for anti air and 
surface warfare. This system is able to perform multiple 
sensor functions like search, track and weapon guidance. 
Since more sensor functions can now be performed by a 
single sensor the underlying management structure has 
increased in complexity. 
 Looking for ways to improve MFR performance, it is 
obvious to look at the scheduling algorithm that decides 
which sensor task will be performed when (or which task 
should be dropped). This scheduling problem is known as the 
‘radar scheduling problem’. In light of the increasing interest 
in Network Centric Warfare (NCW), the properties of a 

scheduling algorithm for a single MFR should be extended to 
schedule sensor functions in a sensor network. 
 Currently, all tasks are generated by the combat 
management system and sent to the sensor chosen by the 
operator. Scheduling is done on the sensor level, using 
operator input to define the priority of sensor tasks. An 
undesired side effect of this way of scheduling is that sensor 
tasks might be dropped while they could have been executed 
by a less appropriate sensor. Making schedules for the entire 
set of sensors instead of optimising for each sensor 
separately seems to be a more fitting approach. 
 To do so, we propose three methodologies. The first is 
based on the scheduling algorithm by Margialot and 
Langholz [7]. They use fuzzy Lyapunov synthesis for solving 
a single machine job shop scheduling problem. 
 The other two algorithms are both based on a genetic 
algorithm (GA). We developed a new chromosome mapping 
and a fitness function enabling the use of genetic operators. 
The second algorithm uses the GA offline to find optimal 
solutions of past problems. These optimal solutions are used 
to (re)train a neural network (NN) that is used online for the 
actual scheduling. Such an approach results in an adaptive 
scheduler that combines the optimisation power of GAs and 
the speed of NNs. 
 The last scheduler is solely based on our GA. We 
developed a way to use the GA online without the setback of 
needing too much computation time. 
 Current schedulers and some developments in this field 
are discussed in section two. Section three of this paper 
describes a novel view on the command and control process 
used aboard navy ships. This view is expanded to the sensor 
scheduling level in section four. Using this approach, the 
scheduling algorithms can be discussed. Section five 
discusses the scheduler based on fuzzy Lyapunov synthesis. 



 Our genetic algorithm is discussed in section six. After 
this the NN approach and the online use are discussed in 
sections seven and eight. Some tests were done on all 
schedulers and are described in section nine. Finally, 
conclusions are drawn in section ten. 
 
2 Related work 
 Much work has already been done in the field of radar 
(sensor) scheduling, especially since the introduction of the 
MFR. Some of these schedulers are based on a rotating MFR 
[2] and [4]. Scheduling tasks within a phased array MFR 
however is very different. Huizing and Bloemen proposed a 
scheduler based on queuing of dwell requests [5]. Our goal is 
to find a scheduling methodology that can be expanded to 
handle multiple sensors. For that reason this queuing strategy 
will not work directly. 
 Another new approach is to use a multi agent system for 
task scheduling, proposed by Thaens in [13]. Much work 
needs to be done on the negotiating scheme, rendering this 
approach not yet applicable for implementation in current 
sensor networks. 
 A promising scheduler is the OGUPSA algorithm, from 
McIntyre and Hintz, [8]. Most of the requirements for a good 
scheduler (like dealing with multiple sensors and real-time 
demands) are considered in their approach. A downside 
however is the sensor allocation: they look only at the ability 
of a sensor to perform a certain task, whereas the quality of 
the execution should also be considered. 
 To find a scheduler for the sensor network problem we 
therefore looked at another scheduling domain, namely the 
job shop scheduling problem. Algorithms used in that 
domain can be adapted to fit the sensor domain. For speed 
and optimality reasons we chose to implement a scheduler 
based on fuzzy Lyapunov synthesis (Margialot and Langholz 
[7]) and NN scheduling (Alifantis and Robinson [1]). 
 Since GAs are a strong optimisation tool in large search 
spaces they are chosen and adapted to generate the training 
data for the NN, an example of GAs in scheduling is e.g. 
Thilakawardana and Tafazolli [14]. 
 
3 Command & Control 
 Generally the command and control (C2) processes are 
modelled based on the well known OODA-loop. In [3], 
Bolderheij proposes to prioritise sensor tasks using risk 
estimation on threat objects. Both search and track tasks can 
then be scheduled based on the same principles. Introducing 
this concept in C2 leads to parallel processes instead of a 
loop, illustrated in Figure 1. 
 This new approach shows that sensor scheduling is only 
dependent on an ‘object store’ containing the available 
information on all detected and expected objects. All objects 
have a priority based on the risk they pose to the mission. 
 Figure 1 shows that the objects are the central point in the 
C2 process. All processes use some of the information held 
by the objects’ attributes update parts of it. The classification 
process for instance, uses the characteristics of an object to 
calculate the probability of this object belonging to certain  
 

 
Figure 1 Command and control process aboard navy 

ships 
 
class, see Mertens [9]. If the sensor manager notices that an 
object has a high uncertainty in classification, it can request 
sensor functions to update the relevant information about the 
object in order to help the classification process. This 
example shows that even though the different processes are 
decoupled, interdependency is maintained through the 
‘object store’. 
 An important attribute of an object is the risk it poses 
with respect to the completion of a mission. Requests for 
sensor functions get a priority equal to the risk posed by the 
object the task refers to. 
 
4 Sensor management 
 Since the C2 processes are considered as a set of parallel 
systems, we can look at the sensor scheduling in detail 
without looking at other processes. This leads to the resulting 
architecture of sensor network scheduling shown in Figure 2. 
 Optimising the different processes in Figure 2 one at a 
time, might not lead to the best picture compilation of the 
environment or to minimisation of risk during the mission. 
To reach an optimum the entire chain of resource allocation, 
task scheduling and dwell scheduling needs to be optimised. 
Dwell scheduling however is difficult to include since it is 
very sensor dependent and because the manufacturer of the 
sensor develops this part. We therefore only consider the 
combined problem of resource allocation and task 
scheduling. Since tasks are generated from the object store 
they are immediately available to the scheduler. The 
complexity of the ‘release date’ is therefore eliminated. The 
task attributes of importance to the scheduler are: 
 

i) type of sensor function; 
ii) priority; 
iii) due date; 
iv) duration; 
v) position of the object to determine if it is in 

range for the sensors. 



 In order to develop an optimal scheduler we first look at 
the single MFR scheduling problem. If a successful 
scheduler for this type of sensor can be constructed we will 
extend this scheduler for a sensor network on a single ship. 
The ultimate goal, of course, is to schedule a distributed set 
of sensors, which is the case in NCW. 
 Scheduling a sensor network requires performance 
indicators to determine which sensor is best fitted for a 
sensor task at a given time. This is necessary for the single 
ship, multi sensor case as well as in NCW. By adding a range 
component the single ship problem can be expanded to a 
multi ship problem. Therefore the assumption can be made 
that this final expansion isn’t very complex and that most 
problems will arise in expanding from single sensor to a 
sensor network. 
 
5 Fuzzy Lyapunov 
 Figure 2 shows that the scheduling process for sensor(s) 
starts with a task request. This view on sensor scheduling can 
be compared with solving JSSPs. Margialot and Langholz, 
[7], introduced a scheduler based on fuzzy Lyapunov 
synthesis. This approach resembles a heuristic solution with 
the advantage of the stability offered by the Lyapunov 
synthesis. 
 The general idea here is to create different buffers for the 
different types of sensor functions. Whenever a sensor 
becomes available to execute a new task, the scheduler 
decides from which buffer the new task should come. To do 
so, it calculates the weight of the buffers ( ) and then 
chooses the buffer with the highest weight. Since Margialot 
and Langholz assumed that all tasks have the same priority 
the formula used in [7] is unsuited for the domain of sensor 
scheduling. We therefore redefined the buffer weights as 
given in Eq. (1). 

WB

 
 

 
Figure 2 Architecture of control loop for a sensor 

network 
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 In Eq. (1) the following denotations are used: 
 

k  : Weight factor of the buffer; 
X  : Number of tasks in the buffer; 

iρ  : Range factor of object i , 1 if in range 
of the sensor else 0; 

iP  : Priority of task i in the buffer, 
10 ≤≤ iP ; 

iτ  
: Relative processing time of task  in 

the buffer, 
i

10 ≤≤ iτ ; 

iddt ,  : Due date of task i  in the buffer; 

ctt  : Current time; 

itdt ,  : Task duration of task i  in the buffer; 

α  : Weight factor to map relative 
processing time to a different domain1, 
[ ] [ ]1,1,0 α→ , of course 10 ≤≤α  
holds; 

γ  : Weight factor for due date. 
 
 Extending the weight allocation from a single machine 
(single MFR) solution to multiple machines (sensor network) 
is relatively easy. The scheduler calculates the buffer weights 
whenever a sensor is available to receive a new task. By 
using the sensor specific values for k , τ  and  each 
sensor receives the task type for which it is most suited at 
that time. 

itdt ,

 After finding the right buffer, a task has to be selected 
from it. This mechanism is also straightforward: select the 
task that has the highest contribution to the buffer weight is 
selected. Since Lyapunov synthesis is based on stability 
analysis and we choose the task with highest contribution to 
this weight the number of tasks in the buffers is guaranteed 
to be limited. 
 
6 Genetic Algorithm 
 Genetic algorithms are often used to find good solutions 
in search spaces that are too big to be searched exhaustively. 
Given the size of the search space2 for scheduling in sensor 
networks GAs look promising. There are some issues when 
using a GA that need to be solved prior to applying GA for 
any problem. 

                                                 
1 This makes it possible to make the priority more important than 
the required processing time. 
2 E.g.: 3 tasks on two sensors can be scheduled in 24 different ways, 
4 tasks on two sensors in 120 ways 



 Two of these issues are inherent to using GAs: defining a 
fitness function and a chromosome mapping. The third is the 
speed of the algorithm. Although it doesn’t take as much 
time as searching through the entire solution space, it is still 
computational complex, rendering it inapplicable for direct 
use in sensor scheduling due to the near-real-time 
requirements of sensor scheduling. Dealing with this last 
issue is discussed in sections six and seven. 
 
6.1 Fitness function 
 Before we can use the GA for optimisation we have to 
define the fitness function , Eq. (2). This function has to 
be maximised to find the optimal schedule. The downside of 
maximisation here is that the maximum is unknown, 
meaning that when we stop after a certain amount of 
generations we can’t say how (sub) optimal the solution is. 

FC

The choice for maximisation was made since the goal is to 
execute as many tasks with high priority on the most suited 
sensor. A minimisation function could be made that should 
go to zero. However, it still couldn’t be said how close to 
zero the most optimal schedule can get since reaching zero is 
not always possible. 
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In Eq. (2) the following denotations are used: 
 

FC  : Chromosome fitness; 

ij ,κ  : Appropriateness of sensor  for task i , j
10 , ≤≤ ijκ ; 

ji ,δ  : Feasibility of task  on sensor , 1 if 

else 0; 

i j

ddtdct ttt <+

ijS ,  : Set-up factor in sensor  for task , 1 if 
no set-up is needed else 0.8; 

j i

Pi : Priority of tasks i , ; 10 ≤≤ iP

ji,τ  : Relative processing time of task i  on 
sensor , j 10 , ≤≤ jiτ ; 

α  : Weight factor to map relative processing 
time on a different domain, 
[ ] [ ]1,1,0 α→ , with 10 ≤≤α ; 

jn  : Number of tasks for sensor ; j

N  : Number of sensors in the network. 
 
6.2 Chromosome mapping 
 In order to be able to use genetic operators, the mapping 
between solution and chromosome should be well defined. 
Chromosomes should facilitate the use of operations like 
cross-over and mutation. After these operations the schedules 
embedded in the new chromosomes should still be valid. To 
obtain a good mapping we need to find a representation of 
the problem at hand. First we look at a representation for the 

single sensor problem. This mapping will then be extended 
to also map the multiple sensor case. 
 Assume that at a given time all task requests are placed in 
a single buffer with size K and the GA finds the optimal 
schedule for this buffer. A schedule can then be represented 
as a string of integers with values between 1 and K. In such a 
schedule each value can only appear once since each value in 
the schedule refers to a position in the buffer. 
 This mapping has a major advantage. Looking at the 
constraints placed on the representation of the schedule a 
good comparison can be made with the well known 
travelling salesman problem. Much research has already been 
conducted in solving this type of problem, so a mapping 
strategy already exists. The mapping we use is the swapping 
representation from De Jong [6]. 
 This however solves only part of the mapping problem. 
In the multi sensor context we want to assign a sensor to 
certain tasks. This problem is solved by adding values to the 
schedule. 
 Consider ten tasks to be scheduled, 10=K , on three 
sensors. The schedule is mapped with swapping 
representation to chromosome Chr. For each sensor an 
element is added that says which part of Chr is to be 
executed by what sensor. The schedule, S, for the set of 
sensors is obtained by using the swapping representation 
denoted by )(ChrswappingS = . For multiple sensors,  
denotes the schedule for sensor j with 

jS

NSSSS ⊕⊕⊕= ...21 . 
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 This representation however isn’t a good mapping since 
cross-over and mutation are still impossible since the added 
values must equal K  when summed. Looking at the 
additional elements as weights rather than numbers solves 
this problem. 
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 This type of mapping enables cross-over and mutation. 
Since this mapping is highly dependent on the problem 
domain, the construction of new generations should be made 
to fit the problem. 
 Note that this is a simple mapping that works. Other 
mappings, e.g. the mapping used in vehicle routing problem 
(see [11]), might prove to result in a faster convergence to 
maximal chromosome fitness. We will not discuss other 
mappings since the goal here is only to give a conceptual 
proof of using GA in sensor scheduling. 
 
6.3 Creating the new population 
 The new population is generated from the old population 
with the use of cross-over and mutation. The biggest part of 
the new population, 65%, is made by using cross-over on the 
chromosomes with highest fitness. On this part a mild form 
of mutation is applied. The next part is constructed by 
copying the fittest chromosomes from the old population into 
the new population. On the fittest chromosomes in this group 
no mutation is applied. On the others the elements for sensor 
allocation are mutated. 
 The final part of the new population is made by adding 
new randomly generated chromosomes. These random 
chromosomes build up 5% of the new population and are 
added to avoid local optima and to introduce new genetic 
material for cross-over in the next generation. 
 The values for these percentages were determined by 
tests and seemed to give good results. Before GAs can be 
used for sensor scheduling more tests should be done to 
optimise the construction of new populations. This however 
is also dependent on the optimal mapping solution. 
 
7 Training a neural network 
 As mentioned in section five, the down side of a GA is 
the computation time needed to find optimal solutions. This 
problem can be solved by running the GA in the background 
and use its solutions to train a feed-forward NN, Figure 3. 
 To train a NN, we used the back propagation algorithm. 
Different network configurations can be used depending on 
user input. The number of in- and output nodes are of course 

defined by the size of the sensor network and the number of 
tasks in the buffer. 
 For the hidden layers the user can choose the number of 
nodes freely. The number of hidden layers can be chosen 
with a maximum of three. This choice was made since most 
practical systems never use more than three hidden layers, 
see [10]. The number of nodes and hidden layers can be 
chosen but the network structure is of course based on the 
general theories discussed in e.g. [12]. 
 Figure 3 shows the general outline of the resulting 
scheduler. Incoming task request are placed in a buffer. This 
buffer is then scheduled by the NN. Over-training is 
prevented by using the GA offline to find optimal schedules. 
These solutions are used to retrain another NN that replaces 
the NN used online when it is fully trains. The result is a fast 
and adaptive scheduler. 
 
8 Online use of GA 
 Using our GA for training NNs is not the only option to 
overcome the problem of time constraints. Online use of the 
GA was accomplished by using a buffering scheme similar to 
the one used in the Lyapunov based scheduler. Here only one 
buffer is used with a fixed size K. This buffer is filled with 
default tasks until task requests are received. These requests 
then replace default tasks in the buffer. 
 Whenever a sensor becomes available to execute a new 
task the scheduler looks at the current best solution given by 
the GA. It identifies the correct schedule for the sensor and 
only uses the first entry, meaning that only one task is sent to 
the sensor. Doing so means the buffer only changes slightly. 
Since the GA is constantly running, only few generations are 
needed to find a new optimal solution. 
 In this setting the GA does not have any stop criteria. We 
therefore can say nothing about the optimality of the 
schedule that is used. Although this might seem to be a large 
setback, it most likely is not due to the real-time demands on 
the system. In the military domain a sub-optimal solution in 
time is better than an optimal solution that is too late. 
 
 

 
Figure 3 Architecture of the genetic-neural network 

 
 



 The solutions that are found should be as good as 
possible, given the available amount of computation time. 
The maximum fitness in consecutive populations should 
therefore increase as fast as possible. Some techniques for 
obtaining this result are: 
 

i) injecting heuristic solution into the initial 
population; 

ii) make the initial population large enough so all 
genetic material is available; 

iii) use parallel processing to speed up the 
generation process; 

iv) find optimal values for the mutation 
probabilities. 

 
As already said in section five, the mapping could also be 
optimised leading to faster convergence of chromosome 
fitness. 
 
9 Test results 
 To evaluate the three schedulers a test case was defined 
for a difficult scheduling problem. The problem was defined 
in such a way that not all requests can be scheduled. This 
causes the scheduler to drop certain tasks, which tasks are 
dropped can be used for evaluation purposes. In this 
simulation four sensor functions are defined: search, track, 
midcourse guidance (MG) and terminal illumination (TI). To 
make the problem large enough all the tasks have a long 
duration. A set-up time is required when switching to and 
from TI representing the time needed to switch from 
waveform generator in actual MFRs. 
 The scheduling was done for the single sensor situation 
and for the duration of one minute. It is assumed that all task 
requests are made at the beginning of the second in which 
they should be performed. The problem is illustrated in 
Figure 4 where the required time for all requested tasks is 
shown for each second. Since the single sensor problem is 
used, the available time is, of course, one second. 
 

 
Figure 4 The simulated scheduling problem 

 

 To compare the different schedulers we used the utility as 
given in Eq. (3). This measure for scheduling efficiency was 
introduced by Thaens [13]. 
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 In Eq. (3): 
 

U  : Utility; 
δ  : 1 if task is scheduled 

correctly, else 0; 
P  : Priority. 

 
 Before the scheduler based on fuzzy Lyapunov could be 
used for solving the simulation, tests were done to determine 
values for α  and γ . The latter proved to be no factor of 
importance and was therefore set to 1. The test also showed  
that 8.0=α  was a reasonable value (tests with our GA 
confirmed this value for Eq. (2) as well). These values are 
not surprising when looking at Eq. (1) and Eq. (3). The 
evaluation is based on the priorities of the executed tasks 
where α  reduces the influence of the task duration with 
respect to the priority. A high value for α  is therefore to be 
expected. 
 
 
Table 1 Results of four different schedulers 

Dropped budget requests (%) Scheduler Utility Search Track MG TI 
FIFO 0.5938 28.9 38.5 49.3 49.8 

Lyapunov 0.6805 61.4 37.7 39.6 13.4 

GNN 0.5730 19.0 42.3 47.6 46.6 
Online 

GA 0.6720 48.5 41.3 49.0 10.9 

 
 
 Since the scheduling problem is highly dependent on 
time, the utility in time is as important as the average utility. 
For each of the four schedulers the utility in time is given in 
Figure 5-8. The average utility in the simulated minute is 
given in table 1 for each of the three schedulers. For 
comparison the results of a First-In-First-Out (FIFO) 
scheduler are also given. In table 1 the percentage of sensor 
budget that is not executed is also given for each of the four 
sensor function types. 
 Looking at the results of the utility, the choice would be 
to use the scheduler based on Lyapunov synthesis. This 
scheduler shows a high average utility. The extreme points in 
time also show that it performs at least as good as the FIFO 
scheduler when the demand is higher then the available 
budget. An additional advantage in the military domain is the 
system predictability: for equal demand, the resulting 
schedule is the same. 



 
Figure 5 Utility of the FIFO-scheduler 

 

 
Figure 6 Utility of the fuzzy Lyapunov scheduler 

 
 
 A scheduler that is perhaps faster due to fewer 
computations than the fuzzy Lyapunov based scheduler is the 
GNN. Our simulation however showed some downsides of 
this approach. In table 1 we can see that the scheduler drops 
more TI tasks than search tasks. In practise this means that 
some of our guided missiles will miss a target. Most likely 
this effect is due to the NN since the online GA doesn’t have 
this side effect. 
 The online GA shows promising results. The utility is 
almost equal to that of the Lyapunov scheduler and it drops 
less TI tasks. In practise this means that more missiles will 
hit a target, thus minimising the risk to the mission. 
 Another advantage of our online GA is that the minimum 
utility in time is higher when compared to the Lyapunov 
scheduler. Again this means that it performs slightly better in 
difficult scheduling situations. This is probably due to the 
lower percentage of dropped TI tasks. A final remark for all 
schedulers is the high percentage of dropped MG tasks 
compared to track tasks. Since the first are of more 
importance we should consider adjusting our equations 
somewhat to ensure that MG tasks are dropped less. 
Furthermore, all three schedulers outperform the FIFO 
scheduler based on the percentage of dropped tasks. 

 
Figure 7 Utility of the GNN scheduler 

 

 
Figure 8 Utility of the online GA for scheduling 

 
 
10 Conclusions 
 This paper introduced three new scheduling mechanisms 
for task scheduling in sensor networks. All of those were 
based on a novel view of the C2 process. 
 The Lyapunov scheduler proved to be a fast scheduling 
algorithm that can be implemented relatively easily. The 
results showed that it can outperform the often used first-in-
first-out heuristic. We also suggested that this scheduler can 
be expanded to accommodate a multi sensor system. An 
advantage of this scheduler over the others is that it is a 
predictable method. 
 Genetic algorithms are a very strong optimisation tool. 
Using this power in a dedicated parallel process renders it 
usable in an online scheduler. This results in a high 
performance scheduler that can be made to be at least as 
good as any scheduler available today due to the copying 
without mutation of the fittest chromosomes. The online 
setting however should be developed and tested further to 
improve the results. 



 The disappointing results of NN scheduling are probably 
due to the complexity of the sensor scheduling problem. 
Based on the training data no generalisation can be made 
causing the network to give scheduling results that are worse 
than the simple FIFO heuristic. A possible solution could be 
the use of more sophisticated training algorithms that enable 
the network to generalise better. Since the online 
implementation seems to work well this however might be 
unnecessary. 
 One setback of the GA however remains: a prediction 
about the optimality of the chosen solution can’t be given. 
Injecting heuristic solutions in the initial population could be 
a way to guarantee a certain level of optimality. 
 Further work needs to be done in testing the schedulers in 
simulation environments. This would show their scheduling 
efficiency with respect to more realistic task sets. Another 
important test is to find the saturation points of the 
schedulers. This boundary indicates the possibility to track a 
certain number of objects while maintaining some search 
tasks as well. 
 Other work that has to be done is to optimise the 
chromosome mapping in the GA and fine tune its 
parameters. In Lyapunov some further research could be 
done on the calculation the buffer weight. 
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