
Intelligent task scheduling in sensor networks

Wilbert van Norden*,*** Jeroen de Jong** Fok Bolderheij*** Léon Rothkrantz*

*Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Man-Machine Interaction group

P.O. box 5031, 2600 GA Delft, The Netherlands

**Thales Research & Technology
Delft Cooperation on Intelligent Systems

P.O. box 90, 2600 AB Delft, The Netherlands

***Royal Netherlands Naval College
Combat Systems Department

P.O. box 10000, 1780 CA Den Helder, The Netherlands

Abstract: Ever more complex sensors have become
available to create and maintain situational awareness
during missions. Choosing the most suited sensor for the
execution of a sensor function is based on sensor capabilities
and function attributes. When these characteristics change
rapidly, sensor allocation for sensor functions will shift. To
increase performance of the entire sensor network, the total
set of sensors should be scheduled in a single system. This
paper puts forward and compares three new methods for
scheduling prioritised tasks in sensor networks. The first is
based on fuzzy Lyapunov synthesis. The other two use a
genetic algorithm (GA) to optimise the set of schedules. The
second scheduler uses this set to (re)train a neural network
to be used online. The third approach is a novel online use of
the GA. Tests showed that the novel online GA leads to a
robust scheduling algorithm with high overall performance.

Keywords: Sensor Management, Task Scheduling,
Command & Control, Online Genetic Algorithms, fuzzy
Lyapunov

1 Introduction
 On the new Air Defence and Command Frigates of the
Royal Netherlands Navy the APAR (Active Phased Array
Radar) Multi Function Radar (MFR) is used for anti air and
surface warfare. This system is able to perform multiple
sensor functions like search, track and weapon guidance.
Since more sensor functions can now be performed by a
single sensor the underlying management structure has
increased in complexity.
 Looking for ways to improve MFR performance, it is
obvious to look at the scheduling algorithm that decides
which sensor task will be performed when (or which task
should be dropped). This scheduling problem is known as the
‘radar scheduling problem’. In light of the increasing interest
in Network Centric Warfare (NCW), the properties of a

scheduling algorithm for a single MFR should be extended to
schedule sensor functions in a sensor network.
 Currently, all tasks are generated by the combat
management system and sent to the sensor chosen by the
operator. Scheduling is done on the sensor level, using
operator input to define the priority of sensor tasks. An
undesired side effect of this way of scheduling is that sensor
tasks might be dropped while they could have been executed
by a less appropriate sensor. Making schedules for the entire
set of sensors instead of optimising for each sensor
separately seems to be a more fitting approach.
 To do so, we propose three methodologies. The first is
based on the scheduling algorithm by Margialot and
Langholz [7]. They use fuzzy Lyapunov synthesis for solving
a single machine job shop scheduling problem.
 The other two algorithms are both based on a genetic
algorithm (GA). We developed a new chromosome mapping
and a fitness function enabling the use of genetic operators.
The second algorithm uses the GA offline to find optimal
solutions of past problems. These optimal solutions are used
to (re)train a neural network (NN) that is used online for the
actual scheduling. Such an approach results in an adaptive
scheduler that combines the optimisation power of GAs and
the speed of NNs.
 The last scheduler is solely based on our GA. We
developed a way to use the GA online without the setback of
needing too much computation time.
 Current schedulers and some developments in this field
are discussed in section two. Section three of this paper
describes a novel view on the command and control process
used aboard navy ships. This view is expanded to the sensor
scheduling level in section four. Using this approach, the
scheduling algorithms can be discussed. Section five
discusses the scheduler based on fuzzy Lyapunov synthesis.

 Our genetic algorithm is discussed in section six. After
this the NN approach and the online use are discussed in
sections seven and eight. Some tests were done on all
schedulers and are described in section nine. Finally,
conclusions are drawn in section ten.

2 Related work
 Much work has already been done in the field of radar
(sensor) scheduling, especially since the introduction of the
MFR. Some of these schedulers are based on a rotating MFR
[2] and [4]. Scheduling tasks within a phased array MFR
however is very different. Huizing and Bloemen proposed a
scheduler based on queuing of dwell requests [5]. Our goal is
to find a scheduling methodology that can be expanded to
handle multiple sensors. For that reason this queuing strategy
will not work directly.
 Another new approach is to use a multi agent system for
task scheduling, proposed by Thaens in [13]. Much work
needs to be done on the negotiating scheme, rendering this
approach not yet applicable for implementation in current
sensor networks.
 A promising scheduler is the OGUPSA algorithm, from
McIntyre and Hintz, [8]. Most of the requirements for a good
scheduler (like dealing with multiple sensors and real-time
demands) are considered in their approach. A downside
however is the sensor allocation: they look only at the ability
of a sensor to perform a certain task, whereas the quality of
the execution should also be considered.
 To find a scheduler for the sensor network problem we
therefore looked at another scheduling domain, namely the
job shop scheduling problem. Algorithms used in that
domain can be adapted to fit the sensor domain. For speed
and optimality reasons we chose to implement a scheduler
based on fuzzy Lyapunov synthesis (Margialot and Langholz
[7]) and NN scheduling (Alifantis and Robinson [1]).
 Since GAs are a strong optimisation tool in large search
spaces they are chosen and adapted to generate the training
data for the NN, an example of GAs in scheduling is e.g.
Thilakawardana and Tafazolli [14].

3 Command & Control
 Generally the command and control (C2) processes are
modelled based on the well known OODA-loop. In [3],
Bolderheij proposes to prioritise sensor tasks using risk
estimation on threat objects. Both search and track tasks can
then be scheduled based on the same principles. Introducing
this concept in C2 leads to parallel processes instead of a
loop, illustrated in Figure 1.
 This new approach shows that sensor scheduling is only
dependent on an ‘object store’ containing the available
information on all detected and expected objects. All objects
have a priority based on the risk they pose to the mission.
 Figure 1 shows that the objects are the central point in the
C2 process. All processes use some of the information held
by the objects’ attributes update parts of it. The classification
process for instance, uses the characteristics of an object to
calculate the probability of this object belonging to certain

Figure 1 Command and control process aboard navy

ships

class, see Mertens [9]. If the sensor manager notices that an
object has a high uncertainty in classification, it can request
sensor functions to update the relevant information about the
object in order to help the classification process. This
example shows that even though the different processes are
decoupled, interdependency is maintained through the
‘object store’.
 An important attribute of an object is the risk it poses
with respect to the completion of a mission. Requests for
sensor functions get a priority equal to the risk posed by the
object the task refers to.

4 Sensor management
 Since the C2 processes are considered as a set of parallel
systems, we can look at the sensor scheduling in detail
without looking at other processes. This leads to the resulting
architecture of sensor network scheduling shown in Figure 2.
 Optimising the different processes in Figure 2 one at a
time, might not lead to the best picture compilation of the
environment or to minimisation of risk during the mission.
To reach an optimum the entire chain of resource allocation,
task scheduling and dwell scheduling needs to be optimised.
Dwell scheduling however is difficult to include since it is
very sensor dependent and because the manufacturer of the
sensor develops this part. We therefore only consider the
combined problem of resource allocation and task
scheduling. Since tasks are generated from the object store
they are immediately available to the scheduler. The
complexity of the ‘release date’ is therefore eliminated. The
task attributes of importance to the scheduler are:

i) type of sensor function;
ii) priority;
iii) due date;
iv) duration;
v) position of the object to determine if it is in

range for the sensors.

 In order to develop an optimal scheduler we first look at
the single MFR scheduling problem. If a successful
scheduler for this type of sensor can be constructed we will
extend this scheduler for a sensor network on a single ship.
The ultimate goal, of course, is to schedule a distributed set
of sensors, which is the case in NCW.
 Scheduling a sensor network requires performance
indicators to determine which sensor is best fitted for a
sensor task at a given time. This is necessary for the single
ship, multi sensor case as well as in NCW. By adding a range
component the single ship problem can be expanded to a
multi ship problem. Therefore the assumption can be made
that this final expansion isn’t very complex and that most
problems will arise in expanding from single sensor to a
sensor network.

5 Fuzzy Lyapunov
 Figure 2 shows that the scheduling process for sensor(s)
starts with a task request. This view on sensor scheduling can
be compared with solving JSSPs. Margialot and Langholz,
[7], introduced a scheduler based on fuzzy Lyapunov
synthesis. This approach resembles a heuristic solution with
the advantage of the stability offered by the Lyapunov
synthesis.
 The general idea here is to create different buffers for the
different types of sensor functions. Whenever a sensor
becomes available to execute a new task, the scheduler
decides from which buffer the new task should come. To do
so, it calculates the weight of the buffers () and then
chooses the buffer with the highest weight. Since Margialot
and Langholz assumed that all tasks have the same priority
the formula used in [7] is unsuited for the domain of sensor
scheduling. We therefore redefined the buffer weights as
given in Eq. (1).

WB

Figure 2 Architecture of control loop for a sensor

network

()
()∑∀ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−⋅
+⋅−

⋅⋅=
i

itdctidd

i
iiW ttt

PXkB
,,

1
γ

αταρ (1)

 In Eq. (1) the following denotations are used:

k : Weight factor of the buffer;
X : Number of tasks in the buffer;

iρ : Range factor of object i , 1 if in range
of the sensor else 0;

iP : Priority of task i in the buffer,
10 ≤≤ iP ;

iτ
: Relative processing time of task in

the buffer,
i

10 ≤≤ iτ ;

iddt , : Due date of task i in the buffer;

ctt : Current time;

itdt , : Task duration of task i in the buffer;

α : Weight factor to map relative
processing time to a different domain1,
[] []1,1,0 α→ , of course 10 ≤≤α
holds;

γ : Weight factor for due date.

 Extending the weight allocation from a single machine
(single MFR) solution to multiple machines (sensor network)
is relatively easy. The scheduler calculates the buffer weights
whenever a sensor is available to receive a new task. By
using the sensor specific values for k , τ and each
sensor receives the task type for which it is most suited at
that time.

itdt ,

 After finding the right buffer, a task has to be selected
from it. This mechanism is also straightforward: select the
task that has the highest contribution to the buffer weight is
selected. Since Lyapunov synthesis is based on stability
analysis and we choose the task with highest contribution to
this weight the number of tasks in the buffers is guaranteed
to be limited.

6 Genetic Algorithm
 Genetic algorithms are often used to find good solutions
in search spaces that are too big to be searched exhaustively.
Given the size of the search space2 for scheduling in sensor
networks GAs look promising. There are some issues when
using a GA that need to be solved prior to applying GA for
any problem.

1 This makes it possible to make the priority more important than
the required processing time.
2 E.g.: 3 tasks on two sensors can be scheduled in 24 different ways,
4 tasks on two sensors in 120 ways

 Two of these issues are inherent to using GAs: defining a
fitness function and a chromosome mapping. The third is the
speed of the algorithm. Although it doesn’t take as much
time as searching through the entire solution space, it is still
computational complex, rendering it inapplicable for direct
use in sensor scheduling due to the near-real-time
requirements of sensor scheduling. Dealing with this last
issue is discussed in sections six and seven.

6.1 Fitness function
 Before we can use the GA for optimisation we have to
define the fitness function , Eq. (2). This function has to
be maximised to find the optimal schedule. The downside of
maximisation here is that the maximum is unknown,
meaning that when we stop after a certain amount of
generations we can’t say how (sub) optimal the solution is.

FC

The choice for maximisation was made since the goal is to
execute as many tasks with high priority on the most suited
sensor. A minimisation function could be made that should
go to zero. However, it still couldn’t be said how close to
zero the most optimal schedule can get since reaching zero is
not always possible.

()(∑ ∑= =
+⋅−=

N

j

n

i jiiijjiijF
j PSC

1 1 ,,,, 1 αταδκ) (2)

In Eq. (2) the following denotations are used:

FC : Chromosome fitness;

ij ,κ : Appropriateness of sensor for task i , j
10 , ≤≤ ijκ ;

ji ,δ : Feasibility of task on sensor , 1 if

else 0;

i j

ddtdct ttt <+

ijS , : Set-up factor in sensor for task , 1 if
no set-up is needed else 0.8;

j i

Pi : Priority of tasks i , ; 10 ≤≤ iP

ji,τ : Relative processing time of task i on
sensor , j 10 , ≤≤ jiτ ;

α : Weight factor to map relative processing
time on a different domain,
[] []1,1,0 α→ , with 10 ≤≤α ;

jn : Number of tasks for sensor ; j

N : Number of sensors in the network.

6.2 Chromosome mapping
 In order to be able to use genetic operators, the mapping
between solution and chromosome should be well defined.
Chromosomes should facilitate the use of operations like
cross-over and mutation. After these operations the schedules
embedded in the new chromosomes should still be valid. To
obtain a good mapping we need to find a representation of
the problem at hand. First we look at a representation for the

single sensor problem. This mapping will then be extended
to also map the multiple sensor case.
 Assume that at a given time all task requests are placed in
a single buffer with size K and the GA finds the optimal
schedule for this buffer. A schedule can then be represented
as a string of integers with values between 1 and K. In such a
schedule each value can only appear once since each value in
the schedule refers to a position in the buffer.
 This mapping has a major advantage. Looking at the
constraints placed on the representation of the schedule a
good comparison can be made with the well known
travelling salesman problem. Much research has already been
conducted in solving this type of problem, so a mapping
strategy already exists. The mapping we use is the swapping
representation from De Jong [6].
 This however solves only part of the mapping problem.
In the multi sensor context we want to assign a sensor to
certain tasks. This problem is solved by adding values to the
schedule.
 Consider ten tasks to be scheduled, 10=K , on three
sensors. The schedule is mapped with swapping
representation to chromosome Chr. For each sensor an
element is added that says which part of Chr is to be
executed by what sensor. The schedule, S, for the set of
sensors is obtained by using the swapping representation
denoted by)(ChrswappingS = . For multiple sensors,
denotes the schedule for sensor j with

jS

NSSSS ⊕⊕⊕= ...21 .

[] []

()
()
()⎪

⎩

⎪
⎨

⎧

→=
→=
→=

=

ChrswappingofelementsS
ChrswappingofelementsS
ChrswappingofelementsS

Chrchromosome

108
75
41

334

3

2

1

 This representation however isn’t a good mapping since
cross-over and mutation are still impossible since the added
values must equal K when summed. Looking at the
additional elements as weights rather than numbers solves
this problem.

[] []

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≡++
++→+=

+→+=
→=

=

Kcba
SofcbabelementsS

SofbaaelementsS
SofaelementsS

Chrchromosome

1
1

1

472

3

2

1

3
13
40

472
4

5
13
70

472
7

1
13
20

472
2

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

++
⋅

=

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

++
⋅

=

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

++
⋅

=

floorKfloorc

floorKfloorb

floorKfloora

352

1

===→

<++

cba

end
valuesmallesttoadd

Kcbawhile

 This type of mapping enables cross-over and mutation.
Since this mapping is highly dependent on the problem
domain, the construction of new generations should be made
to fit the problem.
 Note that this is a simple mapping that works. Other
mappings, e.g. the mapping used in vehicle routing problem
(see [11]), might prove to result in a faster convergence to
maximal chromosome fitness. We will not discuss other
mappings since the goal here is only to give a conceptual
proof of using GA in sensor scheduling.

6.3 Creating the new population
 The new population is generated from the old population
with the use of cross-over and mutation. The biggest part of
the new population, 65%, is made by using cross-over on the
chromosomes with highest fitness. On this part a mild form
of mutation is applied. The next part is constructed by
copying the fittest chromosomes from the old population into
the new population. On the fittest chromosomes in this group
no mutation is applied. On the others the elements for sensor
allocation are mutated.
 The final part of the new population is made by adding
new randomly generated chromosomes. These random
chromosomes build up 5% of the new population and are
added to avoid local optima and to introduce new genetic
material for cross-over in the next generation.
 The values for these percentages were determined by
tests and seemed to give good results. Before GAs can be
used for sensor scheduling more tests should be done to
optimise the construction of new populations. This however
is also dependent on the optimal mapping solution.

7 Training a neural network
 As mentioned in section five, the down side of a GA is
the computation time needed to find optimal solutions. This
problem can be solved by running the GA in the background
and use its solutions to train a feed-forward NN, Figure 3.
 To train a NN, we used the back propagation algorithm.
Different network configurations can be used depending on
user input. The number of in- and output nodes are of course

defined by the size of the sensor network and the number of
tasks in the buffer.
 For the hidden layers the user can choose the number of
nodes freely. The number of hidden layers can be chosen
with a maximum of three. This choice was made since most
practical systems never use more than three hidden layers,
see [10]. The number of nodes and hidden layers can be
chosen but the network structure is of course based on the
general theories discussed in e.g. [12].
 Figure 3 shows the general outline of the resulting
scheduler. Incoming task request are placed in a buffer. This
buffer is then scheduled by the NN. Over-training is
prevented by using the GA offline to find optimal schedules.
These solutions are used to retrain another NN that replaces
the NN used online when it is fully trains. The result is a fast
and adaptive scheduler.

8 Online use of GA
 Using our GA for training NNs is not the only option to
overcome the problem of time constraints. Online use of the
GA was accomplished by using a buffering scheme similar to
the one used in the Lyapunov based scheduler. Here only one
buffer is used with a fixed size K. This buffer is filled with
default tasks until task requests are received. These requests
then replace default tasks in the buffer.
 Whenever a sensor becomes available to execute a new
task the scheduler looks at the current best solution given by
the GA. It identifies the correct schedule for the sensor and
only uses the first entry, meaning that only one task is sent to
the sensor. Doing so means the buffer only changes slightly.
Since the GA is constantly running, only few generations are
needed to find a new optimal solution.
 In this setting the GA does not have any stop criteria. We
therefore can say nothing about the optimality of the
schedule that is used. Although this might seem to be a large
setback, it most likely is not due to the real-time demands on
the system. In the military domain a sub-optimal solution in
time is better than an optimal solution that is too late.

Figure 3 Architecture of the genetic-neural network

 The solutions that are found should be as good as
possible, given the available amount of computation time.
The maximum fitness in consecutive populations should
therefore increase as fast as possible. Some techniques for
obtaining this result are:

i) injecting heuristic solution into the initial
population;

ii) make the initial population large enough so all
genetic material is available;

iii) use parallel processing to speed up the
generation process;

iv) find optimal values for the mutation
probabilities.

As already said in section five, the mapping could also be
optimised leading to faster convergence of chromosome
fitness.

9 Test results
 To evaluate the three schedulers a test case was defined
for a difficult scheduling problem. The problem was defined
in such a way that not all requests can be scheduled. This
causes the scheduler to drop certain tasks, which tasks are
dropped can be used for evaluation purposes. In this
simulation four sensor functions are defined: search, track,
midcourse guidance (MG) and terminal illumination (TI). To
make the problem large enough all the tasks have a long
duration. A set-up time is required when switching to and
from TI representing the time needed to switch from
waveform generator in actual MFRs.
 The scheduling was done for the single sensor situation
and for the duration of one minute. It is assumed that all task
requests are made at the beginning of the second in which
they should be performed. The problem is illustrated in
Figure 4 where the required time for all requested tasks is
shown for each second. Since the single sensor problem is
used, the available time is, of course, one second.

Figure 4 The simulated scheduling problem

 To compare the different schedulers we used the utility as
given in Eq. (3). This measure for scheduling efficiency was
introduced by Thaens [13].

∑
∑

∀

∀=
i i

i ii

P

P
U

δ
 (3)

 In Eq. (3):

U : Utility;
δ : 1 if task is scheduled

correctly, else 0;
P : Priority.

 Before the scheduler based on fuzzy Lyapunov could be
used for solving the simulation, tests were done to determine
values for α and γ . The latter proved to be no factor of
importance and was therefore set to 1. The test also showed
that 8.0=α was a reasonable value (tests with our GA
confirmed this value for Eq. (2) as well). These values are
not surprising when looking at Eq. (1) and Eq. (3). The
evaluation is based on the priorities of the executed tasks
where α reduces the influence of the task duration with
respect to the priority. A high value for α is therefore to be
expected.

Table 1 Results of four different schedulers

Dropped budget requests (%) Scheduler Utility Search Track MG TI
FIFO 0.5938 28.9 38.5 49.3 49.8

Lyapunov 0.6805 61.4 37.7 39.6 13.4

GNN 0.5730 19.0 42.3 47.6 46.6
Online

GA 0.6720 48.5 41.3 49.0 10.9

 Since the scheduling problem is highly dependent on
time, the utility in time is as important as the average utility.
For each of the four schedulers the utility in time is given in
Figure 5-8. The average utility in the simulated minute is
given in table 1 for each of the three schedulers. For
comparison the results of a First-In-First-Out (FIFO)
scheduler are also given. In table 1 the percentage of sensor
budget that is not executed is also given for each of the four
sensor function types.
 Looking at the results of the utility, the choice would be
to use the scheduler based on Lyapunov synthesis. This
scheduler shows a high average utility. The extreme points in
time also show that it performs at least as good as the FIFO
scheduler when the demand is higher then the available
budget. An additional advantage in the military domain is the
system predictability: for equal demand, the resulting
schedule is the same.

Figure 5 Utility of the FIFO-scheduler

Figure 6 Utility of the fuzzy Lyapunov scheduler

 A scheduler that is perhaps faster due to fewer
computations than the fuzzy Lyapunov based scheduler is the
GNN. Our simulation however showed some downsides of
this approach. In table 1 we can see that the scheduler drops
more TI tasks than search tasks. In practise this means that
some of our guided missiles will miss a target. Most likely
this effect is due to the NN since the online GA doesn’t have
this side effect.
 The online GA shows promising results. The utility is
almost equal to that of the Lyapunov scheduler and it drops
less TI tasks. In practise this means that more missiles will
hit a target, thus minimising the risk to the mission.
 Another advantage of our online GA is that the minimum
utility in time is higher when compared to the Lyapunov
scheduler. Again this means that it performs slightly better in
difficult scheduling situations. This is probably due to the
lower percentage of dropped TI tasks. A final remark for all
schedulers is the high percentage of dropped MG tasks
compared to track tasks. Since the first are of more
importance we should consider adjusting our equations
somewhat to ensure that MG tasks are dropped less.
Furthermore, all three schedulers outperform the FIFO
scheduler based on the percentage of dropped tasks.

Figure 7 Utility of the GNN scheduler

Figure 8 Utility of the online GA for scheduling

10 Conclusions
 This paper introduced three new scheduling mechanisms
for task scheduling in sensor networks. All of those were
based on a novel view of the C2 process.
 The Lyapunov scheduler proved to be a fast scheduling
algorithm that can be implemented relatively easily. The
results showed that it can outperform the often used first-in-
first-out heuristic. We also suggested that this scheduler can
be expanded to accommodate a multi sensor system. An
advantage of this scheduler over the others is that it is a
predictable method.
 Genetic algorithms are a very strong optimisation tool.
Using this power in a dedicated parallel process renders it
usable in an online scheduler. This results in a high
performance scheduler that can be made to be at least as
good as any scheduler available today due to the copying
without mutation of the fittest chromosomes. The online
setting however should be developed and tested further to
improve the results.

 The disappointing results of NN scheduling are probably
due to the complexity of the sensor scheduling problem.
Based on the training data no generalisation can be made
causing the network to give scheduling results that are worse
than the simple FIFO heuristic. A possible solution could be
the use of more sophisticated training algorithms that enable
the network to generalise better. Since the online
implementation seems to work well this however might be
unnecessary.
 One setback of the GA however remains: a prediction
about the optimality of the chosen solution can’t be given.
Injecting heuristic solutions in the initial population could be
a way to guarantee a certain level of optimality.
 Further work needs to be done in testing the schedulers in
simulation environments. This would show their scheduling
efficiency with respect to more realistic task sets. Another
important test is to find the saturation points of the
schedulers. This boundary indicates the possibility to track a
certain number of objects while maintaining some search
tasks as well.
 Other work that has to be done is to optimise the
chromosome mapping in the GA and fine tune its
parameters. In Lyapunov some further research could be
done on the calculation the buffer weight.

Acknowledgements
 This research was conducted at the Delft Cooperation on
Intelligent Systems (DECIS) laboratory. This lab is
supported by Thales Research and Technology Netherlands,
Applied Physics Laboratory (TNO), Delft University of
Technology and the University of Amsterdam.
 The new approach to the C2 process was developed as
part of the STATOR research program supported by Thales
Naval Netherlands, the Royal Netherlands Naval College and
the International Research Centre for Telecommunications-
transmission and Radar of the Delft University of
Technology.

References

[1] Alifantis T. and Robinson S., ‘Using simulation and
neural networks to develop a scheduler advisor’,
Proceedings of the 2001 Winter Simulation
Conference

[2] Barbato A., Giustiniani P., ‘An improved scheduling
algorithm for naval phased array radar’, Alenia
Defense Systems, Italy

[3] Bolderheij F. and Genderen, van P., ‘Mission driven
sensor management’, 7th International Conference
on Information Fusion, Stockholm, Sweden, 2004

[4] Duron C. and Proth J.M., ‘Multifunction radar: Task
scheduling’, Journal of Mathematical Modelling and
Algorithms 1:105-116, 2002

[5] Huizing A.G. and Bloemen A.A.F., ‘An efficient
scheduling algorithm for a multifunction radar’,
IEEE int. symp. on Phased Array Systems and
Technology. 0-7803-3232-6/96, IEEE, 1996

[6] Jong, de J.L., ‘Different representations for the
travelling salesman problem using genetic
algorithms’, Vrije Universiteit Amsterdam

[7] Margialot M. and Langholz G., ‘Design and analysis
of fuzzy schedulers using fuzzy Lyapunov
synthesis’, Engineering Applications of Artificial
Intelligence, 14:2, p183-188, 2001

[8] McIntyre G.A., Hintz J.E., ‘Sensor measurement
scheduling: an enhanced dynamic preemtive
algorithm’, Optical Engineering, 37:2, p517-523,
1998

[9] Mertens B.G.M., 'Reasoning with uncertainty in the
situational awareness of air targets', TNO-FEL 2004,
FEL03-S211, TNO The Hague, 2004

[10] Negnevitsky M., Artificial Intelligence; A guide to
intelligent systems, Person Education Limited, 2002

[11] Reeves C.R., Modern heuristic techniques for
combinatorial problems, McGraw-Hill, 1995

[12] Russell S. and Norvig P., Artificial Intelligence: A
Modern Approach 2/E, Pretence Hall, Pearson
Education Inc., 2002

[13] Thaens R., ‘Sensor scheduling using intelligent
agents’, 7th International Conference on
Information Fusion, Stockholm, Sweden, 2004

[14] Thilakawardana S. and Tafazolli R., ‘Use of genetic
algorithms in efficient scheduling for multi service
classes’, 2004,
http://research.ac.upc.es/EW2004/papers/15.pdf

