
GeNIeRate: An Interactive Generator of Diagnostic

Bayesian Network Models

Pieter Kraaijeveld

THESIS
Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Knowledge Based Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Graduation Committee:
Dr. Drs. L.J.M. Rothkrantz

Dr. A.H.J. Oomes
Dr. K. van der Meer

Dr. Ir. Marek J. Druzdzel

June 13, 2005

Abstract

Constructing diagnostic Bayesian network models is a complex and time
consuming task. In this thesis, we propose a methodology to simplify and
speed up the design of very large Bayesian network models. The models
produced using our methodology are based on two simplifying assumptions:
(1) the structure of the model has three layers of variables and (2) the inter-
action among the variables can be modeled by canonical models such as the
Noisy-MAX gate. The methodology is implemented in an application named
GeNIeRate, which aims at supporting construction of diagnostic Bayesian
network models consisting of hundreds or even thousands of variables. Pre-
liminary qualitative evaluation of GeNIeRate shows great promise. The
prediction is that GeNIeRate can reduce the model building time for an
inexperienced Bayesian network model builder by 20-30%. We conducted
an experiment comparing our approach to traditional techniques for build-
ing Bayesian network models by rebuilding a diagnostic Bayesian network
model for liver disorders, HEPAR-II. We found that the performance of the
model created with GeNIeRate is better than the performance of the original
HEPAR-II.

iii

Acknowledgements

I want to thank several people who made it possible for me to do my thesis
work at the Decision Systems Laboratory (DSL) of the University of Pitts-
burgh.

First of all, I want to thank my advisor at the University of Pittsburgh,
Dr. Ir. Marek J. Druzdzel. Marek showed me how exciting research can be.
During my six months in Pittsburgh I learned a lot of him. Without Marek
it would not be possible for me to publish my first paper. Second, I want
to thank Dr. Drs. L.J.M. Rothkrantz, who made it possible for me to visit
the University of Pittsburgh and who has provided me with guidance and
feedback in my work.

Next, I also want to thank several people who helped me with my thesis
work: Tomek Loboda, Doug Campbell, Adam Zagorecki, Agnieszka Onísko,
Tomek Sowinski, John Mark Agosta, Thomas Gardos, Mark Voortman,
Hanna Wasyluk and last but not least my girlfriend Anna-Gerdien Bruna
who supported me during my stay in Pittsburgh and helped making Ge-
NIeRate look better due to her excellent graphical design skills.

Furthermore, my stay at the University of Pittsburgh from October 2004
to March 2005 would not have been possible without the financial support
of:

• My parents, Kees & Jetty Kraaijeveld

• Fundatie van de Vrijvrouwe van Renswoude

• Stimuleringsfonds voor Internationale Universitaire Samenwerkingsre-
laties (STIR)

• Faculteitsfonds

• Universiteitenfonds Delft

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem domain . 2
1.3 Objectives and assignment . 3
1.4 Overview of the thesis . 4

2 Background material 5
2.1 Bayesian networks . 5
2.2 Automating diagnosis . 7

2.2.1 Diagnosis . 7
2.2.2 Automated diagnosis 8
2.2.3 Diagnostic Bayesian network models 10

2.3 Canonical interaction models 11
2.3.1 The Noisy-OR gate . 12
2.3.2 The Noisy-MAX gate 14

3 Related work 17
3.1 BATS Author . 17
3.2 A user-friendly development tool for medical diagnosis based

on Bayesian networks . 19
3.3 The Design for Serviceability (DFS) Tool 19
3.4 MEDICUS . 20
3.5 Nokia: Knowledge Acquisition Tool (KAT) 21
3.6 Evaluation . 22

4 The BN3M model 25
4.1 Qualitative design . 26
4.2 Quantitative design . 27
4.3 Theoretical evaluation and methodology 28

vii

viii CONTENTS

5 GeNIeRate 31
5.1 SMILE and GeNIe . 31
5.2 System design . 34

5.2.1 Process . 34
5.2.2 Application architecture 34

5.3 Graphical User Interface . 36
5.3.1 GUI design . 36
5.3.2 GeNIeRate’s GUI . 37

6 Empirical evaluation 47
6.1 Qualitative evaluation . 47

6.1.1 DSL members . 47
6.1.2 Professional consultant 48

6.2 Quantitative evaluation . 49
6.2.1 The Hepar-II model 49
6.2.2 HEPAR-II-BN3M . 50
6.2.3 The diagnostic performance 51
6.2.4 Results and Discussion 52

7 Conclusions and Future Research 57
7.1 Conclusions . 57
7.2 Future Research . 59

A Learning CPT parameters from a data set 61

B Screen shots of GeNIeRate 63

C GeNIeRate tutorial 65

D Paper version 67

Chapter 1

Introduction

This thesis describes my research work done at the Decision Systems Lab-
oratory (DSL) of the School of Information Science (SIS) of the University
of Pittsburgh. Basically, I developed an interactive application to speed up
building large diagnostic Bayesian networks based on a methodology with
several simplifying assumptions.

1.1 Context

Diagnosis is the process of finding the root cause of a system failure given
a set of system observations: symptoms, sensor readings, error codes, test
results, historical findings etc. While diagnosis applied in the medical do-
main is well known, it is also applied in industry, management and various
other domains. Over the years researchers tried to automate diagnosis with
various techniques. These techniques help finding the cause(s) of the failure
faster and, therefore, minimize the loss caused by that failure. The mod-
eling methods include for example fault trees, rule bases, and probabilistic
models. In the last two decades, the probabilistic models found great inter-
est. One prominent tool for modeling diagnosis using probability theory is
known as Bayesian networks, which we will use in this thesis as the modeling
technique.

Bayesian networks (BN) [Pearl, 1988] are acyclic directed graphs with
each node representing a variable and each arc representing typically a causal
relation among two variables. Although exact and approximate inference in
Bayesian networks are both worst-case NP-hard [Cooper, 1990; Dagum and
Luby, 1997], they still perform well for practical diagnostic models consisting
of several hundreds or even thousands of variables.

1

2 1. Introduction

A BN consists of a qualitative and a quantitative part. The qualita-
tive part is an acyclic directed graph reflecting the causal structure of the
domain, the quantitative part represents the joint probability distribution
over its variables. Every variable has a conditional probability table (CPT)
representing the probabilities of each state given the states of the parent
variables. If a variable does not have any parent variables in the graph,
the CPT represents the prior probability distribution of the variable. A BN
is able to calculate the posterior probability of an uncertain variable given
some evidence obtained from related variables. This is called evidence prop-
agation or belief updating. This property and the intuitive way BN model
complex relationships among uncertain variables makes it a very suitable
technique for building diagnostic models. Diagnosis is quite likely the most
successful practical application of BNs.

1.2 Problem domain

While the existing diagnostic BN models perform well, the technique is still
not widely used and accepted. One of the main reasons for this is that
building a BN model is a laborious and time consuming task. During the
model building process, both the qualitative and quantitative parts of the
BN have to be designed. This can be done in three different ways: (1) learn-
ing both structure and parameters from data without human interaction, (2)
consulting a domain expert to design the structure and the parameters, or
(3) combining learning from data and expert knowledge. In order to learn
successful diagnostic BN models from data one would need a very large data
set, which is rarely available for diagnostic models. It is never available for
new devices or devices that are designed for high reliability such as, for ex-
ample airplanes, nuclear reactors, oil refineries, etc. So building a diagnostic
BN model will most of the time come down to an interaction of a knowl-
edge engineer and a domain expert. They will consult technical manuals,
test procedures, and repair databases to define the variables in that domain,
determine the interactions among them, and to elicit the parameters. To
give an idea of the time needed to develop a diagnostic BN model: the con-
struction of the HEPAR-II model [Onísko et al., 2001] used to diagnose liver
disorders took more than 300 hours of which roughly 50 hours were spent
with domain experts. The model consists of 70 variables and the numer-
ical parameters were learned from a data set of patient cases. In another
diagnostic Bayesian network, the PATHFINDER system [Heckerman et al.,
1992], used for lymph node pathology, 14000 conditional probabilities had

1.3. Objectives and assignment 3

to be assessed by expert pathologists. One could imagine that a lot of errors
will be made when eliciting such a big amount of probabilities, this, because
of tiring out the expert pathologists.

Software to build Bayesian networks is widely available. However, most
of this software is developed for educational use or for users who are BN
experts. Thus, for example, if a medical doctor decides to build a BN to
diagnose lung cancer, the doctor will need a BN model building expert to
build the model using this software. Now, as is discussed above, the BN
expert will help the doctor to identify the variables in the domain, creating
the interactions among them, and eliciting the probabilities. The elicitation
of the probabilities is a very difficult task. The BN expert will help the
doctor to quantify the probabilities by asking questions. Most of the time a
domain expert does have some feeling about the probabilities in a relative
sense (X bigger/smaller than Y) but thinks it is hard to quantify them in
an absolute matter. Most BN model building software do not support any
visual feed-back of the elicited probabilities, like, for example, thickness of
the arcs, to indicate the impact of the elicited probabilities. This means that
when a large model is created, which does not perform as expected, it is very
hard to debug the model and find the erroneous conditional probabilities.

1.3 Objectives and assignment

This being said, the main objective to be met in this thesis is to develop a
methodology for building large diagnostic Bayesian network models in a fast
and easy way. The methodology has to be such that a diagnostic Bayesian
network model, which is complete and comprehensive for its domain, can
be built by users who are not necessarily Bayesian network experts. The
methodology has to be implemented in an application and has to meet some
goals listed below. The application must:

• be a general purpose application, which means it can be applied to a
variety of diagnostic domains.

• have an intuitive graphical user interface which helps a domain ex-
pert without knowledge of Bayesian networks to construct a diagnostic
model.

To fulfill these requirements, we made the following two simplifying as-
sumptions that will reduce the complexity of the models. The application,
therefore, must:

4 1. Introduction

• generate Bayesian networks which have a simple structure, consisting
of only a few layers of variables.

• use special models of interaction among variables that (1) minimize the
number of numerical parameters that used to be elicited from experts
and (2) can be used in specialized belief updating algorithms.

With these simplifications some theoretical modeling power and precision
will be sacrificed. However, our study shows that the resulting models will
not be significantly less accurate in terms of diagnostic performance, while
being much easier and faster to build.

To summarize the objectives into an assignment. The assignment of this
thesis is to:

• design a predefined Bayesian network model, which is based on the
simplifying assumptions described above, and can be used as a “tem-
plate” model to build very large diagnostic Bayesian networks.

• design a methodology to build very large diagnostic BN models using
the designed “template”.

• implement a prototype application, based on the methodology, to sup-
port the user, who is not necessarily a BN expert, to build a very large
diagnostic BN model.

• test the idea’s of the “template”, the methodology, and the prototype,
and test whether the diagnostic performance of the created models
suffered, because of the simplifying assumptions it is based on.

1.4 Overview of the thesis

The remainder of this thesis report is structured as follows. Chapter 2 dis-
cusses some background material about Bayesian networks, diagnosis, and
specialized canonical interaction models. Chapter 3 discusses related work
on this topic. Chapter 4 explains our proposed “template” of diagnostic BN
models, and the methodology to build them. Chapter 5 gives a complete
description of our prototype application: GeNIeRate. Chapter 6 discusses
a qualitative study of GeNIeRate, and a quantitative empirical study com-
paring our methodology to traditional model building techniques. Finally,
Chapter 7 states the conclusions and discusses different ideas for future re-
search.

Chapter 2

Background material

This chapter provides some background material, it is a survey about Bayesian
networks (Section 2.1), automating diagnosis (Section 2.2), and canonical
interaction models (Section 2.3).

2.1 Bayesian networks

Bayesian networks [Pearl, 1988] are acyclic directed graphs in which nodes
represent random variables and arcs represent direct probabilistic dependen-
cies among them. A Bayesian network encodes the joint probability distrib-
ution over a set of variables {X1, . . . , Xn}, where n is finite, and decomposes
it into a product of conditional probability distributions over each variable
given its parents in the graph. In case of nodes with no parents, prior
probability is used. The joint probability distribution over {X1, . . . , Xn}
can be obtained by taking the product of all of these prior and conditional
probability distributions:

Pr(x1, . . . , xn) =
n∏

i=1

Pr(xi|Pa(xi)) . (2.1)

Figure 2.1 shows a highly simplified example Bayesian network modeling
causes of a car engine failing to start. The variables in this model are: Age of
the car (A), dead Battery (B), dirty Connectors (C), Engine does not start
(E) and Radio does not work (R). For the sake of simplicity, we assumed
that each of these variables is binary. For example, R has two outcomes,
denoted r and r, representing “Radio fails” and “Radio works,” respectively.

A directed arc between B and E denotes the fact that whether or not
the battery is dead will impact the likelihood of the engine failing to start.

5

6 2. Background material

Similarly, an arc from A to B denotes that the age of the car influences the
likelihood of having a dead battery.

����

���� ����

���� ����

�
��	

?

@
@@R

�
��	

@
@@R

�
��	

A

B C

R E

Figure 2.1: An example belief network for engine problem

Lack of directed arcs is also a way of expressing knowledge, notably
assertions of (conditional) independence. For instance, lack of a directed
arc between A and R encodes the knowledge that the age of the car does
not influence the chance whether the radio of the car works or not, only
indirectly through the variable dead battery B. These causal assertions can
be translated into statements of conditional independence: R is independent
of A given B. In mathematical notation,

Pr(R|B) = Pr(R|B,A) . (2.2)

Similarly, the absence of arc B → C means that whether or not the car
has a dead battery will not influence the chance of having dirty connectors.

These independence properties imply that:

Pr(a, b, c, r, e) = Pr(a) Pr(b|a) Pr(c|a) Pr(r|b) Pr(e|a, b, c) , (2.3)

i.e., that the joint probability distribution over the graph nodes can be
factored into the product of the conditional probabilities of each node given
its parents in the graph. Please note that this expression is just an instance
of Equation 2.1.

The assignment of values to observed variables is usually called evidence.
The most important type of reasoning in a probabilistic system based on
Bayesian networks is known as belief updating or evidence propagation, which
amounts to computing the probability distribution over the variables of in-
terest given the evidence. This evidence propagation makes Bayesian net-
works very suitable for diagnosis. For example, in the model of Figure 2.1,
the variables of interest for diagnosis could be B and C and the focus of com-
putation could be the posterior probability distribution over B and C given

2.2. Automating diagnosis 7

the observed values of A, R, and E, i.e., Pr(b, c|a, r, e), often approximated in
practice as marginal probability distributions, Pr(b|a, r, e) and Pr(c|a, r, e).
Bayesian network software can be applied to calculate these posterior prob-
abilities. Although exact and approximate inference in Bayesian networks
are both worst-case NP-hard [Cooper, 1990; Dagum and Luby, 1997], algo-
rithms embedded in today’s software are capable of very fast belief updating
in models consisting of hundreds or even thousands of variables. After the
belief updating, the software can make a decision or support the user in
making a decision what actions to perform given that probability.

2.2 Automating diagnosis

In Chapter 1, a short description of diagnosis is already given. This section
will cover a more thorough description of diagnosis and it will give some
historical background of techniques to automate the diagnostic process.

2.2.1 Diagnosis

Diagnosis is a common and important problem that is performed daily in
many different domains. The medical domain is probably the best known
example but diagnosis is also applied in engineering, business, and several
other domains. Diagnosis (from the Greek words δια = by and γνoσις =
knowledge) is the process of identifying the disorders, diseases or malfunc-
tions of an object by considering signs, symptoms, tests, historical facts,
various diagnostic procedures, or other facts which caused or are caused by
the disorder. De Kleer [1990] described it a little different. He claims that
the diagnostic task is to determine why a correctly designed system is not
functioning as it was intended. This task comes down to identifying what
is wrong in a system given some observations. Both descriptions describe
diagnosis as a process of searching the causes of a misbehavior.

After identifying that something is not working correctly in a system, the
diagnostic process consists of two different steps, the first step is to acquire
as much information as possible explaining the misbehavior of the system
by sequentially performing different tests. The second step is to, given all
the gathered information, identify which component, or which combination
of components of the system, is most probable of having a faulty behavior.
After this process the (most probable) faulty components of the system can
be repaired. Figure 2.2 shows this sequential process graphically.

In the diagnostic process the diagnostician has to make a decision when
to stop the process and conclude what is wrong. This has to be done as

8 2. Background material

Figure 2.2: The diagnostic process

fast and cheap as possible. Therefore, it becomes an optimization problem
which is of great interest of AI research. Over the years, several ways are
developed to automate diagnosis and to support the decision making. The
next section will give some historical remarks and an overview of some of
the main approaches how to automate diagnosis.

2.2.2 Automated diagnosis

Early research to automate the diagnosis process used Bayesian reasoning
and decision theory [Ledley and Lusted, 1959] and proposed different tech-
niques to help a medical doctor making a diagnosis. Their pioneering paper
was followed by papers written by others describing a huge variety of tech-
niques and methods to automate the (medical) diagnosis process. This inter-
est became less at the end of 1970s because the computers at that time were
not powerful enough to compute the complex probabilistic queries within
reasonable time.

2.2. Automating diagnosis 9

In the beginning of the 1980’s, there was some success to automate di-
agnosis with expert systems using rule-bases. One of the first of these sys-
tems, used to diagnose acute abdominal pain, was developed by De Dombal
[1972]. This system was intended for a narrow, well-defined diagnostic prob-
lem where the clinician had to decide between a limited number of diagnoses.
Another rule-based expert system is the INTERNIST-I system for internal
medicine [Miller et al.,]. The most valuable product of INTERNIST-I sys-
tem was its medical knowledge base. This knowledge base was later used as
a basis of successor systems. One of these successor systems was the Quick
Medical Reference (QMR), which is a commercialized decision support sys-
tem for internists [Myers, 1987]. While the rule-based systems to automate
diagnosis had some successful results they also had some disadvantages. The
main disadvantages of rule-based systems are that they have a strong do-
main dependent character, they are very hard and time consuming to build
and they are not practical to use.

Other approaches to automate diagnosis include decision trees [Quinlan,
1986], fault trees [Madden and Nolan, 1999], multi-layer perceptrons, and
probability estimation [Stensmo and Sejnowski, 1994]. Almost all of these
techniques have one common main disadvantage which is the need of a
complete data set when inferring a diagnostic query. It takes a long time
before such a data set is created and is therefore almost never available for
diagnostic problems.

The development of Bayesian networks (BNs) (Section 2.1) used as prob-
abilistic graphical models encouraged researchers to focus again on the prob-
abilistic techniques to automate diagnosis. One of the first large diagnostic
systems that used Bayesian networks was the QMR-DT system [Shwe et al.,
1991; Middleton et al., 1991]. This system was a probabilistic reformulation
of the Quick Medical Reference (QMR) described above. The QMR-DT
system contains approximately 5000 variables. Other examples of diagnos-
tic BN models are the PATHFINDER system [Heckerman et al., 1992] used
for lymph node pathology, and the HEPAR-II system as mentioned already
before in Chapter 1. An example of a non medical domain model is the
SACSO project [Jensen et al., 2001]. This system was built to diagnose
printer failures and helps users to solve their printer problems themselves
without calling a help desk or sending the printer back to the factory.

Bayesian networks are able to calculate the posterior probability of a
variable given some evidence from related variables (i.e., evidence prop-
agation, see Section 2.1). This property and the intuitive way Bayesian
networks model complex relationships among uncertain variables makes it
a very suitable technique for building diagnostic models. Therefore, we will

10 2. Background material

use Bayesian networks as the modeling technique to build diagnostic models.
The next section will give a more thorough description of Bayesian networks
applied in diagnosis.

2.2.3 Diagnostic Bayesian network models

There are various techniques to model the graphical structure (qualitative
part) of a Bayesian network when it is applied for diagnosis. The most simple
one is based on the assumption that only one fault can occur at the same
time and that observations are conditionally independent. The structure
of this model is such that there is only one fault variable, which has a
separate state for each single fault, with one or more observation variables
as its children. This structure is called: Naive-Bayes model or Idiot’s Bayes
model [Friedman et al., 1997], since the single fault assumption is a somewhat
naive assumption. The main advantage of this single fault model is that the
number of conditional probabilities is low which makes it attractive from
the computational point of view. Figure 2.3 shows an example Naive-Bayes
structure, with one fault variable F and three observation variables O1. . .O3.

����

������������

�
�

�
�

�
��� ?

A
A
A
A
A
AAU

F

O1 O2 O3

Figure 2.3: Naive-Bayes model

It is also possible to model diagnosis supporting more than one fault.
Models like this are called: Multiple fault models. Multiple fault models
have typically separate fault variables for every fault state. These fault
variables are connected to the observation variables which are caused by
them. A multiple fault structure gives a more realistic model, however,
using this model will result in eliciting a lot more conditional probabilities.
For example, if we have a binary observation variable which is caused by two
binary parent fault variables, the CPT already consists of 8 entries. The size

2.3. Canonical interaction models 11

of the CPT of the observation variable grows exponentially in the number
of parent variables. There are various techniques available to reduce this
exponential growth, these techniques are discussed in Section 2.3. Figure 2.4
gives an example of the multiple fault model with two fault variables F1 and
F2 and three observation variables O1, O2, and O3.

��������

�������������
���

A
AAU

���
���

�
���

A
AAU

F1 F2

O1 O2 O3

Figure 2.4: Multiple fault model

The multiple fault model in the example above is also based on two
independence assumptions. There are no relations among the fault variables
and also no relations among the observation variables. By allowing these
relations an extended multiple fault model will be created. This can make
the model more accurate but again it will increase the number of parameters
that have to be elicited. Figure 2.5 shows an example of an extension of the
multiple fault model presented in Figure 2.4.

��������

�������������
���

A
AAU

���
���

�
���

A
AAU

-

-

F1 F2

O1 O2 O3

Figure 2.5: Multiple fault model with dependencies among variables of the
same type

2.3 Canonical interaction models

In a Bayesian network, every variable contains a Conditional Probability
Table (CPT) representing the probabilities of each state given the state of
the parent variable. If a variable does not have any parent variables in the
graph, the CPT represents the prior probability distribution of the variable.
Figure 2.6 shows a simple CPT of the variable E representing “Engine does
not start” of the example of Figure 2.1. E has three parent variable: A, C,

12 2. Background material

and B representing the Age of the car, dirty Connectors, and dead Battery
respectively. This CPT now consist of 24 entries representing all possible
scenarios among the four variables. The probabilities within the table are
either learned from a data set or elicited by a domain expert.

�������� ����

����?
@

@@R

�
��	

B A C

E

Figure 2.6: The CPT of the variable: Engine does not start

The size of a CPT grows exponentially in the number of parents of
that variable. Thus, in the example above, if the variable E gets one more
parent variable, the size of the CPT will grow from 24 to 48 entries. In
order to gain speed in the model building process, researchers developed
canonical interaction models which approximate the CPTs and require fewer
parameters. These canonical interaction models are known as: gates.

One type of canonical interaction, widely used in Bayesian networks, is
known as the Noisy-OR gate. This gate was first introduced outside the BN
domain by [Good, 1961]. Later it was applied in the context of BNs [Pearl,
1986]. It became very popular among BN model builders since it reduces
the growth of a CPT of a variable from exponential to linear in the number
of parents. The Noisy-OR gate can only be used for binary variables, an
extension for multi-valued variables is the Noisy-MAX gate [Henrion, 1989;
Dı́ez, 1993]. For the sake of simplicity, we will discuss the Noisy-OR gate
in depth in Section 2.3.1 and give a shorter description of the extended
Noisy-MAX gate in Section 2.3.2.

2.3.1 The Noisy-OR gate

The Noisy-OR gate models a non-deterministic interaction among n binary
parent cause variables X and a binary effect variable Y . Every variable
has two states: a distinguished state, which represents that the variable
is in its normal working state. Commonly this is absent or false and a

2.3. Canonical interaction models 13

non-distinguished state: truth or present. The effect variable Y works as a
deterministic OR gate. This means that if all the parent variables are absent,
the child variable is also absent. However, if a parent variable Xi is present
and all other parent variables are absent, it has a probability pi of causing
the effect y. These probabilities pi address the noisy property of the gate
and have to be elicited by the model builder or can be learned from data.
Every interaction now only consist of one parameter. The probabilities are
fairly easy to understand since they can be represented by questions like:
What is the probability that the effect y will occur, given that only one cause
Xi is present and all other causes are absent? In other words,

pi = Pr(y|x1, x2, . . . , xi, . . . , xn−1, xn) . (2.4)

The probability of an effect y to occur given a subset X of causes which
are present is now formally given by:

p(y|X) = 1−
n∏

i=1

(1− pi) . (2.5)

This formula is sufficient to derive the complete CPT of Y conditional on
its predecessors X1, X2, . . . , Xn.

Henrion [1989] proposed a direct extension of the Noisy-OR gate which
models that an effect y can also occur if all the causes are absent. He called
this extension: leaky Noisy-OR gate. This can be modeled by introducing
an additional parameter p0, which is called the leak probability. This leak
probability is formally given by:

p0 = Pr(y|x1, x2, . . . , xn) . (2.6)

The leak probability represents the phenomenon that an effect occurs spon-
taneously, i.e., in absence of any of the causes that are modeled explicitly.

In the leaky Noisy-OR gate, pi (i 6= 0) no longer represents the proba-
bility that Xi causes y given that all other parent variables are absent, but
rather the probability that Y is present when Xi is present and every other
explicit parent causes (all the Xj ’s such that j 6= i) are absent.

An alternative way of eliciting the parameters of a leaky Noisy-OR gate
is given in [Dı́ez, 1993]. Dı́ez defined p′i as the probability that Y will be
true if Xi is present and every other parent of Y including unmodeled causes
(the leak) are absent:

1− p′i =
1− pi

1− p0
. (2.7)

14 2. Background material

His method amounts essentially to asking the expert for these parameters
p′i.

Converting the parameters p′i to pi is straightforward:

pi = p′i + (1− p′i)p0 . (2.8)

Now when we extend Equation 2.5, it follows that the probability of y
given a subset of parent variables X is given in the leaky Noisy-OR gate by
the following formula:

p(y|X) = (1− (1− p0))
n∏

i=1

1− pi

1− p0
. (2.9)

The difference between the two proposals (Henrion versus Dı́ez) has to
do with the leak variable. While Henrion’s parameters pi assume that the
answers of the expert include a combined influence of the parent cause in
question and the leak, Dı́ez’s parameters p′i explicitly refer to the mech-
anism between the parent cause in question and the effect with the leak
absent. Conversion between the two parameters is straightforward using
Equation 2.8. If the Noisy-OR parameters have to be elicited by a domain
expert, Dı́ez’s definition is more convenient, since the question to be an-
swered is more intuitive for the expert: What is the probability that the
effect y will occur when you know that all modeled and unmodeled causes
X are absent? It has been found both preferred by experts [Onísko et al.,
2001] and results in higher elicitation accuracy [Zagorecki and Druzdzel,
2004]. Henrion’s definition is more convenient if the parameters are learned
from data.

2.3.2 The Noisy-MAX gate

The Noisy-OR gate can be generalized to multi-valued variables. These
variables are allowed to have more than two states. The difference with the
Noisy-OR gate is that the CPT of the multi-valued effect variable Y now is
the deterministic MAX function instead of the deterministic OR function.
Therefore, it is called Noisy-MAX gate or, if the leak probability is included,
leaky Noisy-MAX gate. The variables will, when using the Noisy-MAX gate,
still contain one distinguished state.

When applying the Noisy-MAX gate for every interaction in the example
above (Figure 2.6), the CPT of the variable E now contains 10 entries instead
of 24, see Figure 2.7 (The gray columns represent the distinguished states

2.3. Canonical interaction models 15

�������� ����

����?
@

@@R

�
��	

B A C

E

Figure 2.7: The Noisy-MAX parameters of the variable: Engine does not
start

of the parent variables). The user will now only have to elicit 5 parameters
since all the columns should add up to one.

To give another example of the reduction of the number of parameters
that have to be elicited by the user, we define the number of states of a
parent variable Xi as nXi and the number of states of an effect variable y
as ny. The total number of parameters N that have to be elicited by the
model builder using leaky Noisy-MAX becomes:

N =
n∑

i=1

(nXi − 1)(ny − 1) + 1 , (2.10)

compared to the exponential number of parameters using CPT:

N = (ny − 1)
n∏

i=1

nXi . (2.11)

If n = 10 and nXi = ny = 3, we have 2 ∗ 310 = 118, 098 parameters with
CPT compared to 10 ∗ 2 ∗ 2 + 1 = 41 parameters using Noisy-MAX. Every
additional parent of y increases this number by multiplying the current
number of parameters by 3 in the CPT compared to just adding 4 in case
of Noisy-MAX.

Using Noisy-OR and Noisy-MAX gates for some (not all interactions
could be approximated by these gates) of the conditional distributions in
the HEPAR-II model [Onísko et al., 2001], not only reduced the number of
parameters that had to be elicited from 3,714 to 1,488 but also improved the
diagnostic performance of the model. Research shows that many interactions
in practical models can be approximated by the Noisy-MAX gates [Zagorecki
and Druzdzel, 2005].

Chapter 3

Related work

Software to build Bayesian networks is widely available. Examples are: Ge-
NIe,1 Hugin,2 or the Microsoft MSBNx Tool.3 However, the user must pos-
sess knowledge of Bayesian networks when building a diagnostic Bayesian
network with one of these tools. Although research addressing the labori-
ous and time consuming task of building large diagnostic Bayesian network
models for inexperienced BN model builders is still in its early stages, sev-
eral applications have already been developed. This chapter evaluates these
applications.

3.1 BATS Author

The most prominent work to build a diagnostic BN model for inexperi-
enced domain experts is done by Skaanning [2000]. In the paper Skaanning
describes a model building tool for the Systems for Automated Customer
Support Operations (SACSO) [Jensen et al., 2001] project. SACSO is a step-
by-step troubleshooting tool for Hewlett Packard printers based on Bayesian
networks. The Bayesian Automated Troubleshooting System (BATS) Au-
thor,4 developed for the SACSO project, is the knowledge acquisition tool
for building diagnostic BN models. To keep model building simple, the
models built with BATS Author are based on the simplifying assumption
that at most one fault can occur at the same time when diagnosing the sys-
tem (single-fault assumption). The graphical structure of this single-fault

1http://www.sis.pitt.edu/∼genie
2http://www.hugin.com
3http://research.microsoft.com/adapt/MSBNx
4http://www.dezide.com

17

18 3. Related work

Bayesian network model (Naive-Bayes model) is discussed in Section 2.2.3.
The elicitation of probabilities in the BATS Author is supported in a natural
and intuitive way (Figure 3.2).

Figure 3.1: The BATS Author tool

Figure 3.2: An example of the elicitation of probabilities in the BATS Author
tool

After building the model with BATS Author other SACSO software can
be used which suggests an optimum sequence of troubleshooting steps to
arrive at a service action. A major assumption with the SACSO project is

3.2. A user-friendly development tool for medical diagnosis based
on Bayesian networks 19

that the agents know which model to use in diagnostics.
We evaluated the BATS Author application with all the members of

the Decision Systems Laboratory. We found that, although the elicitation
of the probabilities is done in a natural and intuitive way, the application
has some drawbacks. First, the single fault assumption may lead to good
diagnostic results but is not always very realistic, an observation of an ab-
normality in the system can be caused by a combination of faults. Second,
the BATS Author is designed specifically for the printer domain. We were
more interested in a general application which can be applied in any given
domain. Furthermore, the BATS Author hides the causality of the models
from the user. We found that doing so does not help the model builder in
understanding his diagnostic problem as a probabilistic model.

3.2 A user-friendly development tool for medical
diagnosis based on Bayesian networks

Another example of a system to construct diagnostic Bayesian networks is
discussed by Milho and Fred [2000]. The tool described in the paper sup-
ports users in building medical diagnostic Bayesian network models. When
the model has been built, it can be used for diagnosis by a web page in-
terface, in this way it supports diagnosis through the internet. One of the
goals of the development tool was to offer experts the possibility of designing
their particular applications without Bayesian network background knowl-
edge. The models created with the application are based on the simplifying
assumption of only having two layers of variables.

Although this system does support diagnosing multiple faults, it has
the drawback of being designed specifically for the medical domain. Fur-
thermore, the paper gives a minimal description of the application for the
knowledge acquisition. Therefore, it is not possible to understand how the
diagnostic BNs are being modeled by the medical expert (the user). Unfor-
tunately, a demo application or some screen-shots of their development tool
are not given in the paper and can not be found on the Internet.

3.3 The Design for Serviceability (DFS) Tool

A third diagnostic BN model building tool is described in [Chen, 2003]. Chen
describes a “Design for Serviceability” (DFS) Tool for easy and intuitive cre-
ation of causality engines for diagnosing complex medical imaging machines
based on Bayesian network theory. The tool is used in two phases: first by

20 3. Related work

design engineers to synthesize knowledge necessary to automatically build
a constrained Bayesian model and to assess the serviceability capability of
the current system. Second, after the tool is deployed as a web application,
field engineers will use the tool to diagnose failures given observations from
automated logs of user initiated and manual observations.

Again, this paper lacks a thorough description of the authoring applica-
tion and how the Bayesian network models are built by the user. The paper
does not provide any screen shots of the application and a demo application
of this DFS tool is also not available on the web. The paper does describe
a good high-level view of the process of authoring, model refinement, and
using the model (reporting). The domain for which this tool can be used is
very narrow, namely, diagnosing complex medical imaging machines.

3.4 MEDICUS

The next example of a methodology to construct diagnostic Bayesian net-
work models is MEDICUS (Modeling, Explanation, and DIagnostic support
for Complex, Uncertain Subject matters) [Schroder et al., 1996]. MEDICUS
uses a simplified-natural-language model editor (“linguistic model editor”)
to build a diagnostic Bayesian network model. After expressing the model

Figure 3.3: Five sentences created in the linguistic model editor of
MEDICUS

in this editor, the system can generate an initial graph automatically. Fig-
ure 3.3 shows five example sentences created with the linguistic model edi-
tor. Alternatively, the user may also create a graph directly in the graphical
model editor.

Obviously, MEDICUS only aims at the medical domain. The linguistic
model editor helps users without knowledge about Bayesian networks to
build an initial model. After an initial graph was created the user can ask the
system to propose graph modifications. This means that the system asks the

3.5. Nokia: Knowledge Acquisition Tool (KAT) 21

user to add or remove edges from the graph if the system thinks it is required.
The drawbacks of the linguistic model editor is that the sentences of the user
can be misinterpreted by the system and second, complex relations among
several variables may lead to even more complex sentences. This means
that, even though the user does not has to be a BN expert, the user does
need some training before starting to model a diagnostic problem.

3.5 Nokia: Knowledge Acquisition Tool (KAT)

The last example of an application is developed at Nokia [Barco et al., 2002].
The authors present an automated troubleshooting tool for cellular networks
based on Bayesian networks. Next to this troubleshooting tool, a knowledge
acquisition tool (KAT) is presented. KAT converts the knowledge of trou-

Figure 3.4: KAT main window

bleshooting experts into Bayesian network models by means of a friendly
user interface. The application makes use of “Noisy” gates (Section 2.3)
to reduce the number of parameters that have to be elicited by the user.

22 3. Related work

Although a demo application of this KAT tool cannot be found on the in-
ternet, the paper does provide one screen-shot of the main window of this
application (Figure 3.4).

The domain of this tool is again not general but for a specific field: cel-
lular networks. The screen shot (Figure 3.4) gives a small idea of how KAT
acquires knowledge from the domain experts. Unfortunately, the causal
structure of the graph is hidden from the user just like in the BATS Author
application described earlier in this chapter.

3.6 Evaluation

This chapter presented several applications which are related to the assign-
ment stated in the introduction of this thesis (Chapter 1). Unfortunately,
only one demo of an application (BATS Author) can be found on the in-
ternet, and two more screen shots of other applications. It is remarkable
that all authors of the papers state they had good results using their tool to
acquire the knowledge from the domain experts. We think that this is be-
cause all these tools were developed for one specific domain or problem and
therefore it will fit well in the domain or on the problem it is designed for.
Unfortunately, we did not found an example of a methodology or an appli-
cation that aims at developing diagnostic BN models for any domain, which
is one of the goals of this thesis. Table 3.1 compares all the applications
presented in this chapter on the following properties:

• The domain of the application.

• Is a demo application available?

• Does the system support single fault or multiple fault diagnosis?

• Does the system also provides software to apply diagnostic reasoning?

• Do the users have to be Bayesian network model building experts?

• Does the application support canonical interaction models (“Noisy”
gates) to reduce the number of parameters that have to be elicited by
the model builder?

As can be seen, none of the applications is designed specifically for a
general domain. This does not mean they cannot be used outside their
domain. But since there is a lack of formal tests evaluating this we do
not know if this is true. Furthermore, since the one demo application that

3.6. Evaluation 23

Table 3.1: Evaluation of the applications discussed in this chapter

BATS Milho DFS MEDICUS KAT
Domain printer medical machines medical mob. netw.
Demo available yes no no no no
Single/multiple fault single multiple multiple multiple multiple
Diagnosis software yes yes yes yes yes
Users BN experts no no no no no
Noisy gates no no no no yes

can be found on the internet does not satisfy our goals, and the software
developed at the Decision Systems Laboratory does not contain a tool to
build diagnostic BN models for user who are not BN experts, we had to
develop a methodology and an application by ourself.

Chapter 4

The BN3M model

One of the main goals of this thesis was to develop a methodology to build
large diagnostic Bayesian network models in a fast and intuitive way. In
order to accomplish this goal the models that are being produced by the
methodology have to lean on some strong simplifying assumptions. This
chapter discusses the predefined model that is used as a “template” for all
the models build with the methodology.

The predefined model we propose can be seen as an extension of the
QMR-DT model described in Section 2.2. The authors made several sim-
plifying assumptions to deal with the complexity of constructing this large
network. The system was a multiple fault BN with only two layers of vari-
ables representing two different types of variables: diseases and findings.
The structure was such that the disease variables influence the outcome of
the findings. While this structure was simple, its performance was close
to the original QMR. But since the independence assumptions made were
explicit, the inconsistencies of QMR-DT could easily be explained. Inspired
by the graphical structure of the QMR-DT system and its performance, we
developed an extension of this model. This model will be called: 3-layer
Bayesian network using Noisy-MAX gates (BN3M). Section 4.1 describes
the qualitative part of the model (its structure). Section 4.2 discusses the
quantitative part of the model, i.e., how the interactions among all the vari-
ables are approximated. Finally, Section 4.3 summarizes the motivation of
choosing this model and describes the methodology of building the BN3M
models.

25

26 4. The BN3M model

4.1 Qualitative design

We believe that there are three fundamental types of variables in diagnostic
models. The first type (1) are variables representing the failures of the device
or a specific part of the device. We will call these failure variables Faults.
The second type (2) are variables which have an observable effect if the
device is in some faulty state. When the effect of the given fault can not be
observed clearly, a test can be performed which will give information about
the state of the device. These observation or test variables will be called:
Evidence variables. The last type of variables (3) are variables which indicate
context properties of the device that may influence the risk of causing a fault.
These variables can also be seen as enabling conditions of the faults. We
will call these variables: Context variables. Example context variables are
the age of the device or the history of failures of the device.

In the QMR-DT model, the authors distinguish only two types of binary
variables: diseases and findings. These variables are graphically structured
in two layers where the disease variables influence the findings. This struc-
ture is based on some independence assumptions. First is the marginal
independence of the diseases, which amounts to no arcs among the disease
variables. Second is the conditional independence of the findings, which
amounts to no arcs among finding variables. Figure 4.1 shows an example
of the graphical structure of the QMR-DT model.

��������

�������������
���

A
AAU

���
���

�
���

A
AAU

Diseases

Findings

Figure 4.1: The two-level QMR-DT model

The structure of the QMR-DT model was simple, yet the performance
of the model was close to that of the original rule-based QMR system. This
motivated us to design an extension of this structure to connect our three
types of variables in a diagnostic BN model. The authors of the QMR-
DT system already mention that assuming a two layered structure is not
always very accurate. They state that it would be more accurate to model
some of their findings representing, for example, historical findings, as parent
variables of the diseases. We decided to cover this inaccuracy by making our
defined context variables the parents of the fault variables. While keeping

4.2. Quantitative design 27

the independence assumptions as in the QMR-DT system it follows that no
arcs are allowed among variables within the same layer. This means that
the structure becomes a three layered structure with the context variables on
top, fault variables in the middle, and the evidence variables at the bottom.
We also thought about the possibility of having more layers of variables
between the fault and evidence variables. However, there were two main
disadvantages of implementing additional layers in our predefined structure.
First, a study of Provan [1995] shows that adding more layers of variables in
a BN between the faulty variables and its observations will not improve the
diagnostic performance. Second, adding more layers of variables will increase
the complexity of building such a model and makes it therefore not useful
for the goals of this thesis. An example of the proposed BN3M structure is
showed in Figure 4.2. Section 4.2 discusses the use of the Noisy-MAX gates.

������������

��������

������������
A
AAU

H
HHHHj

�
���

�
���

�
���

A
AAU

�
�����

�
���

A
AAU

Context

Faults

Evidence

Figure 4.2: The structure of the BN3M model

As mentioned in the introduction, this structure sacrifices some mod-
eling power and precision. For example, the arc between variables A and
E of the example given in Figure 2.1 of Chapter 2 can not be created in
our methodology. However, a model that is theoretically very precise may
turn out to be inferior in practice because elicitation of a huge number of
parameters from a human expert may decrease their quality. This, because
of tiring out the expert.

4.2 Quantitative design

Next to the graphical extension of the QMR-DT to three layers of variables,
another extension is that our model supports multi-valued variables instead
of binary variables used in QMR-DT. In order to approximate the interac-
tion of these multi-valued variables using the canonical interaction models

28 4. The BN3M model

as described in Section 2.3, all interaction among the variables are approx-
imated using (leaky) Noisy-MAX gates. The main reason for doing this is
to decrease the number of parameters that have to be elicited by the model
builder. Remember that using Noisy gates instead of straightforward CPTs
will decrease the growth of the parameters of a variable in the number of
parents from exponential to linear (Section 2.3.1). Second, Noisy-MAX pa-
rameters are easy to understand even for inexperienced BN model builders.
Section 2.3.1 state some example questions which can be answered by a
domain expert in order to acquire the parameters of the model.

In the proposed methodology we set the leak probability distribution
of an effect variable p0(Y) by default to 0 for the non-distinguished states
yi, . . . , yn−1 and 1 for the distinguished state y:

p0(Y) =

{
1 if Y = y
0 otherwise

. (4.1)

In this way the interaction among variables is by default Noisy-MAX and
it becomes leaky Noisy-MAX if the model builder defines a specific leak
probability distribution for the effect variable.

The disadvantage of using only Noisy-MAX gates for all the interactions
of the model is that not all interactions are appropriate to be approximated
by this gate. Take for example the binary variable Sex with the states:
female, and male. Assigning the distinguished state for this variable is in
almost all cases impossible. In this case, approximating it with a Noisy gate
is theoretically inaccurate, here it would be better to use a normal CPT or
other more specialized canonical gates.

4.3 Theoretical evaluation and methodology

Before describing the methodology of how the predefined BN3M models are
build, let us summarize the motivation of choosing this model by giving a
theoretical evaluation of the BN3M model:

1. The three layer structure is simple, and the expectation is that the
diagnostic performance will be reasonable, this, since a quite similar
two layer network also performs reasonably well [Middleton et al.,
1991].

2. Using only three types of variables keeps it easy for the user to identify
which variables belong to what type. Adding more layers of variables,
and therefore, more types of variables, will increase the complexity

4.3. Theoretical evaluation and methodology 29

of building such a model, and second, a study shows that it will not
increase the diagnostic performance of the final model [Provan, 1995].

3. Using Noisy-MAX gates as a canonical interaction model for all in-
teractions among the variables, will decrease the growth of the num-
ber of parameters that have to be elicited from exponential to lin-
ear in the number of parents. Thus, using the Noisy-MAX gate will
speed up the time to build a model since less parameters have to
be elicited. Although not all interactions are appropriate to be ap-
proximated with the Noisy-MAX gate, different studies show that
the Noisy-MAX gate can be used frequently and will not decrease
the diagnostic performance of a model [Zagorecki and Druzdzel, 2005;
Onísko et al., 2001].

Since the predefined BN3M model is simple, the methodology of building
such a model only consists of three different steps:

1. Add general information of the model, such as, name of the model,
description of the model etc.

2. Identify the types of the different variables within the domain and add
them to the model.

3. Add relations between the different layers of variables and elicit the
prior probabilities for the variables without any parents, and the Noisy-
MAX parameters for the variables with parents.

The three steps of the methodology are implemented in a prototype
application which is described in the next chapter.

Chapter 5

GeNIeRate

The ideas presented in Chapter 4 are embedded in an interactive environ-
ment for generation of diagnostic BN models that we will call GeNIeRate.
This chapter will give a complete description of GeNIeRate. The main
goal of GeNIeRate is to support a user in building the simplified diagnos-
tic BN3M models in a fast and intuitive way. In Appendix C a complete
step-by-step tutorial/help file of GeNIeRate is given to built a simple diag-
nostic Bayesian network model. GeNIeRate can also be downloaded from:
http://www.sis.pitt.edu/~genie. GeNIeRate is a member of the fam-
ily of software developed at the Decision Systems Laboratory (DSL) of the
University of Pittsburgh. This software is developed for the purpose of prob-
abilistic modeling with special extensions for diagnostic inference, such as
rank ordering, tests, and case management. The most important software
developed at DSL are GeNIe and SMILE. Section 5.1 provides some infor-
mation about GeNIe and SMILE. Section 5.2 discusses how GeNIeRate is
integrated in the process of diagnostic BN model building, also the archi-
tecture and the design of the application is given in this section. Section 5.3
gives a description of the Graphical User Interface (GUI) of GeNIeRate.

5.1 SMILE and GeNIe

SMILE (Structural Modeling, Reasoning, and Learning Engine) is a fully
platform independent library of C++ classes implementing graphical prob-
abilistic and decision-theoretic models, such as Bayesian networks, influence
diagrams, and structural equation models. Its individual classes, defined in
the SMILE Application Programmer Interface (API), allow to create, edit,
save, and load graphical models, and use them for probabilistic reasoning

31

32 5. GeNIeRate

and decision making under uncertainty. These classes are accessible from
C++ or (as functions) from the C programming language. In order to access
the SMILE library from other programming languages some “wrappers” are
developed: jSMILE for Java, SMILE.NET for a Microsoft .NET environ-
ment and pocketSMILE for the Pocket PC. Additional to the SMILE plat-
form and its wrappers is the development of SmileX, an ActiveX Windows
component that allows SMILE to be accessed from any Windows program-
ming environment, including World Wide Web pages [Thijssen, 1999]. This
makes SMILE accessible from practically any language on any system. Also,
SMILE may be embedded in programs that use graphical probabilistic mod-
els as their reasoning engines. Furthermore, models developed in SMILE can
be equipped with a GUI that suits the user of the resulting application most.

GeNIe is a versatile and user-friendly development environment for build-
ing graphical decision models and is developed at the Decision Systems
Laboratory. Its name with its uncommon capitalization originates from the
name “Graphical Network Interface”. The original interface was designed
for SMILE which is described above. GeNIe may be seen as an outer shell
to SMILE. GeNIe is implemented in Visual C++ and draws heavily on the
Microsoft Foundation Classes. Other applications with a GUI using SMILE
are: ImaGeNIe which is a general purpose model building interface and Ge-
NIeRate which is discussed in this thesis. Figure 5.1 shows the structure of
all the DSL software.

Figure 5.1: The probabilistic modeling software developed at DSL

5.1. SMILE and GeNIe 33

GeNIe also provides an interface to perform diagnosis. Once a diagnostic
model is created with for example GeNIeRate, the model can be loaded in
GeNIe and used to apply diagnosis. After setting evidence for some of the
context and evidence variables, GeNIe is able to calculate the most probable
fault(s) given that evidence. Figure 5.2 shows the GUI of the diagnostic tool
of GeNIe applied on the HEPAR-II model.

Figure 5.2: Diagnostic tool in GeNIe

Some example applications, built using GeNIe or SMILE, are: battle
damage assessment (Rockwell International and U.S. Air Force Rome Lab-
oratory), group decision support models for regional conflict detection (De-
cision Support Department, U.S. Naval War College), intelligent tutoring
systems (Learning and Development Research Center, University of Pitts-
burgh), medical therapy planning (National University of Singapore), med-
ical diagnosis (Medical Informatics Training Program, University of Pitts-
burgh and Technical University of Bialystok, Poland). GeNIe and SMILE
have also been used in teaching statistics and decision-theory at several uni-
versities, including the Technical University of Delft.

34 5. GeNIeRate

5.2 System design

5.2.1 Process

Building and using a diagnostic Bayesian network model consists of three
consecutive steps: (1) model building, (2) model refinement, and (3) using
the model for diagnosis. GeNIeRate was developed as a model building tool
(1). After an initial model has been created, the model can be “fine-tuned”
by using for example GeNIe, other BN building software, or user applications
using (j)SMILE. At the same time the model can be applied to diagnosis.
In Section 5.1, the diagnostic tool of GeNIe is described which can be used
as software to apply diagnosis. Next to this tool it is also possible to write
software using (j)SMILE to perform diagnosis. Figure 5.3 shows this process
of model building and using the model.

Figure 5.3: Model building with GeNIeRate and using the model with other
DSL software

5.2.2 Application architecture

GeNIeRate is developed in Java, therefore it uses jSMILE as its modeling
library. GeNIeRate is built upon a Model-View-Controller (MVC) architec-
ture. This architecture applied in GeNIeRate works as follows:

• The Model stores the Bayesian Network structure and parameters by
interacting with the jSMILE libraries.

• The View provides the Graphical User Interface (GUI) of the applica-
tion representing the different steps of building a diagnostic BN model.

5.2. System design 35

• The Controller part provides the control of the application. Dispatch-
ing user requests from the view to the model and communicating the
responses from the model to the view.

Using the MVC architecture has the advantage of having a separate envi-
ronment for storing the data (the Model) and presenting it to the user (the
View). Changing the GUI of the application while maintaining the same
functionalities becomes easy using this architecture. Furthermore, the ar-
chitecture of MVC is very clear and easy to understand. Figure 5.4 shows
how the MVC architecture is used in GeNIeRate.

Figure 5.4: Model-View-Controller architecture of GeNIeRate

When looking in more detail, GeNIeRate consists of 65 Java classes. The
Model is implemented in one big class. The main function of this class is
storing the BN structure and parameters by calling the jSMILE functions
and passing the returned values to the controllers. Since only one class
maintains the data for the BN model being developed by the user, consis-
tency is secured. Next to this large class there are 7 Controller classes, 49
View classes, and 8 supporting classes. As stated above, the View classes
represent the GUI of GeNIeRate. This GUI will be discussed in the next
section. Figure 5.5 shows a small part of the class diagram of GeNIeRate.

36 5. GeNIeRate

Figure 5.5: A part of the class-diagram of GeNIeRate

5.3 Graphical User Interface

This Section discusses the Graphical User Interface (GUI) of GeNIeRate.
Section 5.3.1 describes the design process of the GUI and in Section 5.3.2 a
complete description of the final GUI of GeNIeRate is given.

5.3.1 GUI design

When designing the GUI of GeNIeRate Microsoft Visio was useful to support
making various designs of possible GUI’s. The descriptions of the applica-
tions given in the papers presented in Chapter 3 helped in creating different
designs. After evaluating the BATS Author software ([Skaanning, 2000],

5.3. Graphical User Interface 37

Chapter 3) with all the members of DSL we decided that our application
must provide some visual feed-back presenting the causality of the model.
This, by showing the graph or a part of the graph to the model builder. We
thought that this would help even an inexperienced BN model builder to
understand the diagnostic problem as a causal probabilistic model. After
this evaluation, we designed three different interfaces. Again we evaluated
with all the members of DSL these interfaces and concluded that one of
them was the most promising. This interface is implemented as the final
GUI of GeNIeRate and presented in the next section.

5.3.2 GeNIeRate’s GUI

In order to keep the model building process simple GeNIeRate contains three
different screens, representing three steps of the methodology for building a
BN3M model: (1) add general information, (2) add the variables, and (3)
add the relations and the probabilities. For every step GeNIeRate has a
different screen. This section gives a step-by-step explanation of the GUI.
Appendix B provides some full screen shots of GeNIeRate.

General information

In the first tab, the user can define general model information: name, and
description of the model. Sometimes a model will not have any context
variables but only consist of fault and evidence variables. In this case a two

Figure 5.6: Part of the model info panel

level network will be created (BN2M) representing the fault and evidence
variables. For this reason, the context variables can be switched on or off
in this screen. If the context variables are switched off, these variables can
not be added in the second screen and no relations can be created from

38 5. GeNIeRate

context to fault variables in the third screen. This, to secure the consistency
of the model. Furthermore, in this first screen, feedback can be enabled.
This feedback amounts to natural language feedback given by GeNIeRate
in a dialog for each action of the user. If the user is not a BN expert, this
natural language feedback will help to get familiar with this technique and
give the user some insight about the causality of the graphical structure of
the model. Figure 5.6 shows a part of this first tabbed screen.

Adding variables

In the second tab, the variables of the model can be added, edited, or deleted.
For each type of variable (context, fault and evidence) a tree structure rep-
resents the variables of that type added to the model. Figure 5.7 shows a
part of this screen containing the different tree structures.

Figure 5.7: Part of the model variables panel

When adding a variable the user can define if the variable is a mandatory
variable for diagnosis. This means that it is mandatory to give information
about the value of that variable when applying final diagnosis with the
model. States of the variable can be added or removed. One state can
be set as the default state which means that the variable is initially set in
that state when performing diagnosis. Furthermore, documentation can be
added to the variables and the states of the variables. This documentation
can be a treatment for each non-distinguished (Section 2.3.1) state of a fault
variable or a question for each context or evidence variable. The documented
questions and treatments can later be used when the model is applied in
diagnostic software. Answers to these questions can be used as evidence for
belief updating (Chapter 2) to calculate the most probable fault(s). After
this calculation, the documented treatment of that fault can be presented
to help the user make a decision how to fix his problem. Figure 5.8 shows
the screen of adding a variable.

GeNIeRate uses the concept of a system to divide large diagnostic models
into manageable parts. A system is typically a module of a device that, while

5.3. Graphical User Interface 39

Figure 5.8: Adding a variable

interconnected with other modules, can be thought of in separation from
the rest of the device. Typically devices, whether natural or artificial, are
composed hierarchically and have clearly identifiable modules, for example
electrical system, power train, break, or steering system in an automobile
[Simon, 1996]. Systems are the largest entities through which the user can

Figure 5.9: Systems in the tree structures

interact with a model, i.e., the users can view a system’s variables after
selecting that system and add variables to it or remove variables from it.

40 5. GeNIeRate

This supports working on a specific part of the model, ignoring the rest of
the model and, since humans can only focus on a small number of things
at a time, limiting the amount of information presented to the user [Miller,
1956]. Figure 5.9 shows how GeNIeRate presents the systems in the tree
structures.

Adding relations

The last screen supports creating relations among the variables and defin-
ing the Noisy-MAX parameters for the interactions. When in this screen,
for example, a fault variable is selected, context variables can be added as
parents or evidence variables as children of that fault. After a relation has
been created, the right side of the screen will present the relevant part of
the model as a graphical structure (see Figure 5.10).

Figure 5.10: Part of the model relations panel

A system can be selected to show only the relations of the selected vari-
able with the variables within that system. Navigating the graph can be
done by clicking on the icon on top or the bottom of a node, to show the
parents or children of that node respectively.

All the parameters can be defined by double-clicking on a node or an
arc in the graph. If a node has parents, the leak-probability distribution for
that variable can be defined, otherwise the prior probability distribution can
be defined. If an arc in the graph is selected, the Noisy-MAX parameters
for the relation represented by that arc can be defined (see Figure 5.11).

Thickness of arcs

The thickness of an arc indicates the strength of influence of the relation.
This means that if one of the parent states has a big influence of causing a
faulty state of the child variable, the arc has to be thick. This property will

5.3. Graphical User Interface 41

Figure 5.11: Adding Noisy-MAX parameters

make eliciting the Noisy-MAX parameters easier. Human beings are better
at comparing quantities relative to each other (x is bigger/smaller than y)
than at eliciting them in an absolute way.

To calculate the thickness of the arcs, we first looked at the distance
of two probability distributions. The idea was that this measure could say
something about the strength of influence between two variables. For exam-
ple, if we have the two variables dead Battery (B) and Engine does not start
(E) (Chapter 2), where having a dead battery will influence the chance of
the engine failing to start, the CPT of the variable E representing the Noisy-
MAX parameters will look like Figure 5.12. Now, to calculate the distance

����

����@
@@R

B

E

Figure 5.12: CPT of variable Engine does not start

among these two variables we need to calculate the distance of the probabil-
ity distribution of the non-distinguished state(s) of the parent variable and
the leak probability distribution of the child variable. In this case, [0.95,

42 5. GeNIeRate

0.05] and [0, 1]. When the parent variable has more than two states, the
maximum of all the distances would represent the strength of influence of
the arc.

When P and Q represent two probability distributions, and pi and qi

represent items/states in those distributions respectively, and D represents
the distance between the two probability distributions, D can be calculated
in various ways:

1. Euclidian distance
D =

√∑
i

(pi − qi)2 . (5.1)

2. Kullback-Leibler distance

D =
∑

i

(pilog2(
pi

qi
)) . (5.2)

3. Hellinger distance

D =
√∑

i

(
√

pi −
√

qi)2 . (5.3)

Although the distance among the two distributions intuitively represents the
strength of influence, there were some disadvantages of using one of these
measures. The main disadvantage was that all the measures represent fairly
complicated solutions to a simple problem, we thought that this could be
done in a much easier way. Next to this main disadvantage, all the different
measures had their own specific advantages and disadvantages for different
situations. We aimed at one measure which could be used in all cases.

After evaluating the different ways to calculate the distances among
two probability distributions we found a much easier way to represent the
“strength of influence” of an arc. To calculate the strength of influence,
we decided to use the cumulative distribution function (CDF). Formally, a
CDF is given by:

Fx(x) = Pr[X ≤ x] ∀x , (5.4)

where X is a discrete random variable and x is a state of X. The area
below this CDF also represents a “distance” among the distribution and an
imaginary deterministic distribution consisting of all zeros and a one. This
distance becomes bigger when the first states of the variable, representing the
faulty non-distinguished states, become larger. The mathematical notation
is as follows:

D =
∑
x

1
n

Pr[X ≤ xi] . (5.5)

5.3. Graphical User Interface 43

However, when taking the full area below the CDF the last column will
some sort of normalize the distance since it always represents a relative big
amount of the arced area. For example, the probability distribution of the
engine failing to start given that there is a dead battery can be represented
by the CDF given in Figure 5.13. As can be seen the last column represents

Figure 5.13: The CDF of the variable E given B, the last column “normal-
izes” the total arced area

a relative large area of the arced part. Therefore, when adjusting the Noisy-
MAX parameters the change in line thickness will not be big enough to see
any difference.

A fairly simple solution to this was to neglect the area below the last
column. In this way only the area below the non-distinguished states is
calculated, this measure does react better on changes in the Noisy-MAX
parameters and represents exactly what we wanted to achieve. Mathemati-
cally Equation 5.5 is changed in:

D =
n−1∑
i=0

1
n− 1

Pr[X ≤ xi] . (5.6)

In Figure 5.14 the same CDF as in Figure 5.13 is shown but now only the
area below the non-distinguished state is arced. If the parent variable has
more than two states the maximum value of all the columns of the Noisy-
MAX parameter table will be used for the thickness of the arc. As can be
seen, having a dead battery will have a strong effect on the engine failing
to start so the arced area will be large and that will result in a thick arc
(Figure 5.15).

The implementation of calculating the line thickness was based on Equa-
tion 5.6 and shown in Figure 5.16.

44 5. GeNIeRate

Figure 5.14: The thickness of the arc is represented by the arced area below
the non-distinguished state of the CDF

Figure 5.15: GeNIeRate shows a thick line when the influence of the parent
is strong

Model consistency

The consistency of the model has to be secured at all times during the model
building process. Due to the design of the part of the interface where the
relations can be added and deleted, the structure of the model will always
be a BN3M model. This, since there are only fixed ways to add relations to
variables of different types. For example, only fault variables can be added
as children of a context variable.

Keeping the Noisy-MAX parameters consistent was a little bit more
complicated. At all times all columns of a CPT should add up to one, since
it represents a probability distribution. When, for example, the user decides
to add or remove states of a variable which already is connected to other
variables, the columns of the CPT will be changed. Therefore, if something
like this happens, the CPT of the relevant variables will be reset, and the
user will be warned by the application. Figure 5.17 shows an example of
the warning of GeNIeRate. Furthermore, when eliciting probabilities of a
certain relation and the probabilities do not count up to one GeNIeRate will
also warn the user to change the probabilities (Figure 5.18).

5.3. Graphical User Interface 45

Figure 5.16: Implementation of the thickness of an arc

Figure 5.17: Warning given by GeNIeRate when the number of states of a
variable is changed

Figure 5.18: Warning given by GeNIeRate when a column in a CPT does
not count up to one

Chapter 6

Empirical evaluation

This chapter describes the empirical evaluation of the predefined BN3M
model, the methodology and GeNIeRate. Section 6.1 discusses a qualitative
evaluation performed by the members of DSL and a professional consul-
tant in building diagnostic BN models. Section 6.2 describes an experiment
testing the diagnostic performance of the structure of the BN3M model.

6.1 Qualitative evaluation

6.1.1 DSL members

A first qualitative evaluation of the methodology and GeNIeRate was per-
formed by the members of DSL. They were asked to perform the task of
building a diagnostic BN model with GeNIeRate and with GeNIe. After
this, they had to answer the following questions:

1. How much time did it take to create your BN with GeNIe?

2. How much time did it take to create your BN with GeNIeRate?

3. On a scale from one to ten how would you value the easiness of creating
your network with GeNIe?

4. On a scale from one to ten how would you value the easiness of creating
your network with GeNIeRate?

5. On a scale from one to ten how intuitive was it to create your network
in GeNIe?

47

48 6. Empirical evaluation

6. On a scale from one to ten how intuitive was it to create your network
in GeNIeRate?

7. If you have to build a very large diagnostic model for diagnosis do you
think you will use GeNIe or GeNIeRate?

8. List tasks you would run GeNIeRate for, you may propose a task which
is not yet there.

Table 6.1 presents a summary of the answers of questions 1 to 6. All
members say they will use GeNIeRate for building a large diagnostic BN
model (question 7). However, they state they will use other BN model
building software to “fine-tune” the model after an initial model has been
created. The answers for question 8 all came down to using GeNIeRate
as an initial model building tool and after that switch to other BN model
building software, like GeNIe, to “fine-tune” the model. It must be said
that all members of DSL are experienced BN model builders. Therefore,
and since only four members answered the questions, this experiment does
not give a very reliable representation of how easy it is to build a model
using GeNIeRate.

Table 6.1: Scores for the first 7 questions

DSL members
Questions 1 2 3 4 Average
Question 1 n/a 4 min. 3 min. n/a 3.5 min.
Question 2 n/a 3 min. 5 min. n/a 4 min.
Question 3 5 7 8 n/a 6.7
Question 4 7 8 8 8.5 7.9
Question 5 5 7 8 n/a 6.7
Question 6 7 8 9 n/a 8

6.1.2 Professional consultant

GeNIeRate was also evaluated by Mr. M. D. Campbell, a professional con-
sultant with 5 years of practical experience in building diagnostic BN mod-
els. GeNIeRate was received warmly and Mr. Campbell estimated that
this methodology will be of great help especially in building large diagnostic
models. He mentioned that a domain expert usually spends 90% of the time
in analyzing and understanding his diagnostic problem as a probabilistic

6.2. Quantitative evaluation 49

model. However, his opinion was that our approach will reduce the model
building time for an inexperienced Bayesian network model builder. He
estimated that this model building time could be reduced by 20-30%.

6.2 Quantitative evaluation

Next to the qualitative evaluation we also performed an empirical study
evaluating the diagnostic performance of the BN3M structure. The goal
of this experiment was to see the influence of the simplifying assumptions
made in the BN3M model on the final diagnostic performance of the model.
In order to do this, we rebuilt an existing diagnostic BN model using Ge-
NIeRate. After rebuilding, we compared the diagnostic performance of the
BN3M model against the original model. The existing model that we rebuilt
is the HEPAR-II model [Onísko et al., 2001]. This section gives a detailed
description of this experiment and its results.

6.2.1 The Hepar-II model

“Hepatology is the branch of medicine that is concerned with disorders of
the liver, gall bladder and biliary ducts. Although occasionally practiced by
specialized hepatologists, it is most often considered the terrain of gastroen-
terology”.1

An early statistical approach to automate diagnosis in hepatology is the
HEPAR system [Bobrowski, 1992] which is a computer-based tool designed
for gathering and processing the clinical data of patients with liver disor-
ders and it aimed at reducing the need for hepatic biopsy. The HEPAR
system was integrated with a medical database and it consisted of various
numerical tools to process and analyze data. Another example used the
rule-based approach to automate diagnosis in hepatology. This rule-based
HEPAR [Lucas et al., 1989] aims at assisting clinicians in the appropriate
selection of patients who need to be submitted to invasive tests, such as liver
biopsy. The system is able to differentiate among nearly 80 disorders of the
liver and biliary tract. Later, Bayesian network theory was used to make a
probabilistic computer-based diagnostic model of liver disorders [Onísko et
al., 2001], this new probabilistic system was called: the HEPAR-II model
and is used in the experiment.

The HEPAR-II model (Figure 6.1) consist of 70 variables of which 10
variables are liver diseases (faults), the 60 other variables are test results,

1http://en.wikipedia.org/wiki/Hepatology

50 6. Empirical evaluation

observations, and risk factors (context and evidence variables).

Figure 6.1: The HEPAR-II model

6.2.2 HEPAR-II-BN3M

In collaboration with Agnieszka Onísko, who developed the HEPAR-II model,
we rebuilt the structure of the model from scratch using GeNIeRate. Since
Agnieszka had a lot of knowledge about the original HEPAR-II model, she
was able to identify which variable belonged to what type, and how these
variables should be related in the new BN3M structure. We will refer to
this new structure as HEPAR-II-BN3M. It took us approximately 8 hours
to build HEPAR-II-BN3M. Building the original HEPAR-II model took 300
hours, but comparing that to the 8 hours we spent is not fair since the orig-
inal 300 hours spent on building HEPAR-II included learning, interaction
with experts and literature study. All this knowledge was already available
when rebuilding it in the new BN3M form. We decided to focus especially
on the diagnostic performance of the BN3M structure by comparing the
performance of the new BN3M model against that of the original model.

When rebuilding the HEPAR-II model, we had to add and remove several
arcs since the assumptions of the BN3M model do not allow all interactions
among the variables. As can be seen in Figure 6.1 there are several arcs
among variables of the same type. We had to decide to remove these arcs or

6.2. Quantitative evaluation 51

replace them by direct influences from other variables. Figure 6.2 shows a
good example of how we initially converted a part of the original HEPAR-II
to the new HEPAR-II-BN3M.

Figure 6.2: Example of some modifications of the original HEPAR-II model
(top) and the new HEPAR-II-BN3M model (bottom)

6.2.3 The diagnostic performance

After we rebuilt the structure of the model, we were interested in the di-
agnostic performance of this new model. The diagnostic performance is
whether, after setting some evidence in the model, the most probable diag-
nosis (fault) given by the model is indeed the correct diagnosis. To do this,
one would need the parameters to be set in the BN model. Since these pa-
rameters were learned from a data set in the original HEPAR-II, we decided

52 6. Empirical evaluation

to do this too in our model. To learn the parameters, we used the same
data set, created in 1990 and thoroughly maintained since then. This data
set contains approximately 700 patient cases and it is still growing.

To get a good idea of the diagnostic performance, we learned the para-
meters using the “leave-one-out” algorithm. This means that we learned the
parameters iteratively 700 times with 699 cases (700 minus one) where in
each iteration the case that was not used in the learning algorithm was used
for testing. Thus after 700 loops of 700 cases you can see how many times
the model states the correct diagnosis as the most probable diagnosis. Next
to the most probable diagnosis, we were also interested whether the set of k
most probable diagnoses contains the correct diagnosis for small values of k
(we chose a “window” of k=1, 2, 3, and 4).

The learning algorithm used to learn the parameters of the original
HEPAR-II model was able to learn the CPTs of a model, thus no “Noisy”
gates. So, in order to use the same learning algorithm to get a fair com-
parison, we had to transform the variables of HEPAR-II-BN3M from Noisy-
MAX to normal CPTs. This is a trivial operation using GeNIe.

Fortunately, all the algorithms to learn the parameters and to test the
diagnostic performance were already available. A description how this learn-
ing method works is given in Appendix A and was copied from Section 3.4.2
of [Onísko, 2002].

6.2.4 Results and Discussion

The results of the first model we build were: 40% (compared to 59% for the
original HEPAR-II model), 47% (72%), 55% (79%), and 63% (85%) for a
window size of k=1, 2, 3, and 4 respectively, see Table 6.2. Figure 6.3 shows
a graphical interpretation of these first results.

Figure 6.3: Diagnostic accuracy of our first HEPAR-II-BN3M compared to
the original HEPAR-II as a function of different window sizes

6.2. Quantitative evaluation 53

Table 6.2: Diagnostic accuracy of the initial HEPAR-II-BN3M for all differ-
ent diseases for four different window sizes

Window size (k)
Disease 1 2 3 4
Hepatic steatosis 11.94% 17.91% 23.88% 31.34%
Chronic hepatitis: Active 68.13% 71.43% 73.62% 80.22%
Chronic hepatitis: Persistent 0% 0% 5.56% 27.78%
Hepatic fibrosis 6.25% 6.25% 12.5% 31.25%
Cirrhosis: Compensate 38.71% 70.97% 96.77% 100%
Cirrhosis: Decompensate 0% 32.76% 65.52% 96.55%
Carcinoma 0% 0% 20% 30%
PBC 68.93% 72.5% 73.93% 76.79%
Toxic hepatitis 0% 0% 3.70% 3.70%
Reactive hepatitis 0% 0% 0% 0%
Hyperbilirubinemia 7.14% 8.93% 33.93% 35.71%
Total: HEPAR-II-BN3M 40% 47% 55% 63%
(HEPAR-II) (59%) (72%) (79%) (85%)

When looking closely to the table it is clear that these results are not
good. Some diseases get a reasonable diagnostic performance for a window
size of 4, for example, Cirrhosis: Compensate (100%) and Cirrhosis: De-
compensate (96.55%). However, most of the diseases perform very poorly,
one disease even keeps a diagnostic performance of 0% (Reactive Hepatitis).
We did not expect these bad results (23% off), we expected that due to the
simplifying assumptions the diagnostic performance would decrease a little
bit (approximately 5% to 10%) but not that much. We discovered that in
the CPTs of the new model many columns still had a uniform distribution.
This means that those columns were not learned from the data. This could
be caused by the fact that our data set of patient cases is too small. In order
to get better results we tried to remove some arcs. We used our knowledge
of the HEPAR-II model to remove some of the arcs which in our opinion
were irrelevant. The result of this was that some variables got fewer parent
variables and in that way the size of the CPTs, and thus the number of pa-
rameters that had to be learned decreased. After applying this to the model,
we obtained its second version, a fragment of which is shown in Figure 6.4.

54 6. Empirical evaluation

Figure 6.4: Same part of the model in Figure 6.2 after new modifications

The results of this new model were 64% (compared to 59% for the original
HEPAR-II model), 75% (72%), 82% (79%), and 87% (85%) for a window
size of k=1, 2, 3, and 4 respectively, see Table 6.3. Figure 6.5 shows these
results graphically. As can be seen in the table, the difference of the

Figure 6.5: Diagnostic accuracy of the modified HEPAR-II-BN3M compared
to the original HEPAR-II as a function of different window sizes

diagnostic accuracy between the diseases is in some cases big. When the
window size is 1, the best diagnostic performance is achieved by PBC with
98.92%, compared to the worst disease Reactive hepatitis with 0%. This
bad result can be explained by the amount of data that is available for that

6.2. Quantitative evaluation 55

Table 6.3: Diagnostic accuracy of the modified HEPAR-II-BN3M for all
different diseases for four different window sizes

Window size
Disease 1 2 3 4
Hepatic steatosis 31.34% 55.22% 73.13% 86.57%
Chronic hepatitis: Active 50.55% 82.42% 93.41% 94.51%
Chronic hepatitis: Persistent 28.57% 48.57% 62.85% 82.85%
Hepatic fibrosis 6.25% 12.5% 43.75% 50%
Cirrhosis: Compensate 68.97% 75.86% 82.75% 87.93%
Cirrhosis: Decompensate 19.35% 41.94% 48.38% 54.83%
Carcinoma 50% 60% 70% 70%
PBC 98.92% 100% 100% 100%
Toxic hepatitis 11.11% 18.51% 33.33% 55.56%
Reactive hepatitis 0% 0% 11.76% 23.53%
Hyperbilirubinemia 64.29% 69.64% 76.79% 82.14%
Total: HEPAR-II-BN3M 64% 75% 82% 87%
(HEPAR-II) (59%) (72%) (79%) (85%)

specific disease. In the data set of 700 patient cases, only 16 were diagnosed
with Reactive hepatitis, compared to 279 patients having PBC. If more data
would be available for every specific disease, the diagnostic performance of
all the diseases could increase.

However, surprisingly, the results of the new HEPAR-II-BN3M model
show, on the average, a better diagnostic performance for every window size
than the original HEPAR-II model (2-5%). The most plausible explana-
tion of this surprising result is that the original HEPAR-II model contained
erroneous conditional independence assumptions. If, for example, in the
situation of Figure 6.6 we have information of all the context and evidence
variables: History of hospitalization, History of transfusion, Total bilirubin
and Itching. Now, in the situation of the original HEPAR-II model, in-
formation of the variables History of hospitalization and Itching does not
influence the fault variable Chronic hepatitis since the information about
History of transfusion and Total bilirubin eliminates the other information.
In the new HEPAR-II-BN3M model we assume that the variables History of
hospitalization and Itching will influence the chance of having Chronic he-
patitis directly. The difference of independence assumptions like these can
be the cause of the better results we found with the new HEPAR-II-BN3M

56 6. Empirical evaluation

model. We expect that results like this will not always be observed in other
models. However, we believe that the BN3M model and our methodology
supported with GeNIeRate should take some credit for facilitating building
a better quality model.

Figure 6.6: Possible erroneous independence assumption in the original
HEPAR-II model

Chapter 7

Conclusions and Future
Research

7.1 Conclusions

This thesis has presented a methodology implemented in a prototype appli-
cation for building large diagnostic Bayesian networks. In the introduction
of this thesis (Chapter 1) the assignment was given which is repeated below:

1. design a predefined Bayesian network model, based on some simpli-
fying assumptions, that can be used as a “template” model to build
very large diagnostic Bayesian networks.

2. design a methodology to build very large diagnostic BN models using
the designed “template”.

3. implement a prototype application, based on the methodology, to sup-
port the user, who is not necessarily a BN expert, to build a very large
diagnostic BN model.

4. test the idea’s of the “template”, the methodology, and the prototype,
and test whether the diagnostic performance of the created models
suffered, due to the simplifying assumptions it is based on.

The predefined model was presented in Chapter 4 called: the Bayesian
Network of three layers of variables using Noisy-MAX gates (BN3M). The
BN3M model has two main simplifying assumptions. First, the structural
part of the model only consist of three layers of variables representing three
different types of variables: context, fault, and evidence variables. Inter-
actions are only possible between two consecutive layers. Second, all the

57

58 7. Conclusions and Future Research

interactions among the variables are approximated by Noisy-MAX gates to
reduce the number of parameters that have to be elicited, and therefore, to
reduce the time needed to build a large diagnostic model.

The methodology to build the BN3M models consist of three different
steps:

1. Add general information of the model, such as, name of the model,
description of the model etc.

2. Identify the types of the different variables within the domain and add
them to the model.

3. Add relations between the different layers of variables and elicit the
prior probabilities for the variables without any parents, and the Noisy-
MAX parameters for the variables with parents.

The methodology is implemented in a prototype application called: Ge-
NIeRate. Chapter 5 discussed a complete description of the design of this
application. Next to the implementation of the methodology, GeNIeRate
contains different features to make the model building process easier: an
intuitive Graphical User Interface, natural language feed-back for the ac-
tions of the user, and visual feed-back for the elicitation of probabilities.
Furthermore, GeNIeRate assures at all times that the model being build is
consistent.

Finally, the ideas of the BN3M model, the methodology, and GeNIeRate
were tested in Chapter 6. GeNIeRate was received well by a professional
consultant in building diagnostic Bayesian networks. His estimate is that
using this methodology for building large diagnostic BN models will reduce
the model building time for an inexperienced BN model builder with ap-
proximately 20-30%. Next to Mr. Campbell, the members of DSL also
state that GeNIeRate will help developing an initial diagnostic BN model
for inexperienced BN model builders in an easy way. An empirical study
comparing the BN3M structure to a traditional model shows that the di-
agnostic performance of the model created by traditional model building
techniques is close to the performance of the same model created by our
methodology. It seems that a model that can be build significantly faster
does not necessarily suffer in terms of its diagnostic performance.

7.2. Future Research 59

7.2 Future Research

For future research the following items must be recommended:

• Extend the experiments with the new HEPAR-II-BN3M model. For
example, learn the parameters with the initial Noisy-MAX assump-
tions and compare the diagnostic performance to the original HEPAR-
II model and the HEPAR-II-BN3M with the learned CPTs.

• Perform more experiments to test GeNIeRate by applying it in various
domains and by letting inexperienced BN model builders (engineers,
medical doctors etc.) built a diagnostic BN model for their own do-
main. These experiments can be designed such that model building
with GeNIeRate is compared with general BN model building soft-
ware like GeNIe. There are two fundamental ways of doing this: (1)
within-subject design and (2) between-subject design. The first means
that a person will built a model with GeNIeRate and GeNIe and will
compare those two models afterwards on the following features: time,
model building process, diagnostic performance. The latter means
that there will be a randomization of experts building a model with
GeNIeRate and experts building the same model with GeNIe. These
models will be compared afterwards on the same features mentioned
above. A disadvantage of the between-subject design is that there
will be a variance in the level of experience and the expertise of the
different experts who build the models.

• Support GeNIeRate with a connection to a database for fast generation
of all the variables and to learn the parameters from data if a data set
is available.

• Support more specialized gates for the interaction among the variables.
Using the Noisy-MAX gate for all the interactions is not always very
accurate.

Appendix A

Learning CPT parameters
from a data set

Learning CPTs amounts essentially to counting data records for different
conditions encoded in the network. Roughly speaking, prior probability
distributions are obtained from relative counts of various outcomes for each
of the nodes without predecessors. Conditional probability distributions are
obtained from relative counts of various outcomes in those data records that
fulfill the conditions described by a given combination of the outcomes of
the predecessors.

Suppose we have a set of cases: D = {d1, d2, . . . , dn} and a graphical
structure of a Bayesian network M . Let Xi be one of the variables of the
model M , and Πi the set of parents of Xi in the graph M . To estimate the
conditional probabilities for Xi from D, we apply the following equation:

Θijk = Pr(Xi = xik|πij) . (A.1)

Let us indicate Xi = xik by xik, where k represents the k-th state of Xi.
With respect to term πij , j indicates the j-th combination of the parents
states of Xi. Then for each frequency the following estimate is computed:

Θijk =
n(xik|πij)

n(πij)
, (A.2)

where: n(xik|πij) is the frequency of (xik, πij), and n(πij) =
∑

k n(xik|πij)
is the frequency of πij .

Considering a set of Dirichlet prior parameters αijk, Equation A.3 takes
the form:

61

62 A. Learning CPT parameters from a data set

Θijk =
n(xik|πij) + αijk

n(πij) + αij
, (A.3)

where: αij =
∑

k αijk.

Appendix B

Screen shots of GeNIeRate

63

Appendix C

GeNIeRate tutorial

65

Appendix D

Paper version

This appendix contains the paper which was submitted to the “21st Con-
ference on Uncertainty in Artificial Intelligence”. Unfortunately, this paper
was rejected. Another paper that we wrote was submitted to the “16th In-
ternational Workshop on Principles of Diagnosis (DX-05)”. This paper did
get accepted but was actually an older version than the UAI paper, it did
not contain the results of the empirical study, since we did not have those
experiments yet. Therefore the UAI paper was selected for this appendix.

67

Bibliography

[Barco et al., 2002] Raquel Barco, Rafael Guerrero, Gustavo Hylander, Lars
Nielsen, Martti Partanen, and Sagar Patel. Automated troubleshoot-
ing of mobile networks using Bayesian networks. In Proceedings of the
IASTED International Conference on Communications Systems and Net-
works, pages 105–110. ACTA Press, 2002.

[Bobrowski, 1992] Leon Bobrowski. HEPAR: Computer system for diagnosis
support and data analysis. Prace IBIB 31, Institute of Biocybernetics and
Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland,
1992.

[Chen, 2003] Cathy Chen. Bayesian serviceability tool for diagnosing com-
plex medical imaging machines. GE Global Research, Technical Informa-
tion Series, JAN 2003.

[Cooper, 1990] Gregory F. Cooper. The computational complexity of prob-
abilistic inference using Bayesian belief networks. Artificial Intelligence,
42(2–3):393–405, MAR 1990.

[Dagum and Luby, 1997] Paul Dagum and Michael Luby. An optimal ap-
proximation algorithm for Bayesian inference. Artificial Intelligence, 93:1–
27, 1997.

[de Dombal et al., 1972] F.T. de Dombal, D.J. Leaper, J.R. Staniland, A.P.
McCann, and Jane C. Horrocks. Computer-aided diagnosis of acute ab-
dominal pain. British Medical Journal, 2:9–13, APR 1972.

[de Kleer et al., 1990] J. de Kleer, A. K. Mackworth, and R. Reiter. Char-
acterizing diagnoses. In G. Gottlob and W. Nejdl, editors, Expert Systems
in Engineering: Principles and Applications: Proc. of the International
Workshop, Vienna, Austria, pages 1–15. Springer, Berlin, Heidelberg,
1990.

69

70 BIBLIOGRAPHY

[Dı́ez, 1993] F. J. Dı́ez. Parameter adjustement in Bayes networks. The
generalized noisy OR–gate. In Proceedings of the 9th Conference on Un-
certainty in Artificial Intelligence, pages 99–105, Washington D.C., 1993.
Morgan Kaufmann, San Mateo, CA.

[Friedman et al., 1997] Nir Friedman, Dan Geiger, and Moises Goldszmidt.
Bayesian network classifiers. Machine Learning, 29(2-3):131–163, 1997.

[Good, 1961] I. Good. A causal calculus (I). British Journal of Philosophy
of Science, 11:305–318, 1961.

[Heckerman et al., 1992] David Heckerman, E.J. Horvitz, and B.N. Nath-
wani. Toward normative expert systems: Part I. The Pathfinder Project.
Methods of Information in Medicine, 31, 1992.

[Henrion, 1989] M. Henrion. Some practical issues in constructing belief
networks. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Un-
certainty in Artificial Intelligence 3, pages 161–173. North-Holland, Am-
sterdam, 1989.

[Jensen et al., 2001] Finn V. Jensen, Uffe Kjærulff, Brian Kristiansen,
Helge Langseth, Claus Skaanning, Jiŕl Vomlel, and Marta Vomlelová.
The SACSO methodology for troubleshooting complex systems. Arti-
ficial Intelligence for Engineering Design, Analysis and Manufacturing
(AIEDAM), 2001. To Appear in a Special Issue on AI in Equipment
Service.

[Ledley and Lusted, 1959] R. Ledley and L. B. Lusted. Reasoning founda-
tions of medical diagnosis. Science, 130:9–21, 1959.

[Lucas et al., 1989] P. J. F. Lucas, R. W. Segaar, and A. R. Janssens. HE-
PAR: an expert system for diagnosis of disorders of the liver and biliary
tract. Liver, 9:266–275, 1989.

[Madden and Nolan, 1999] Michael G. Madden and Paul J. Nolan. Moni-
toring and diagnosis of multiple incipient faults using fault tree induction.
In IEEE proceedings Control Theory and Applications, 1999.

[Middleton et al., 1991] B. Middleton, M.A. Shwe, D.E. Heckerman,
M. Henrion, E.J. Horvitz, H.P. Lehmann, and G.F. Cooper. Probabilistic
diagnosis using a reformulation of the INTERNIST–1/QMR knowledge
base: II. Evaluation of Diagnostic Performance. Methods of Information
in Medicine, 30(4):256–267, 1991.

BIBLIOGRAPHY 71

[Milho and Fred, 2000] Isabel Milho and Ana Fred. A user-frienly develop-
ment tool for medical diagnosis based on Bayesian networks. In Proceed-
ings of the Second International Conference on Enterprise Information
Systems, pages 176–180, 2000.

[Miller et al.,] Randolph A. Miller, Harry E. Pople, Jr., and Jack D. My-
ers. Internist–1, an experimental computer-based diagnostic consultant
for general internal medicine. New England Journal of Medicine, 307,
NUMBER =.

[Miller, 1956] George A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing information. Psychological
Review, 63:81–97, 1956.

[Myers, 1987] Jerome L. Myers. The background of Internist-I and QMR. In
Proceedings of ACM conference on history of medical informatics, pages
195–197. ACM Press, 1987.

[Onísko et al., 2001] Agnieszka Onísko, Marek J. Druzdzel, and Hanna Wa-
syluk. Learning Bayesian network parameters from small data sets: Ap-
plication of Noisy-OR gates. International Journal of Approximate Rea-
soning, 27(2):165–182, 2001.

[Onísko, 2002] Agnieszka Onísko. Probabilistic Causal Models in Medicine:
Application to Diagnosis of Liver Disorders. PhD thesis, Department
of Computer Science, Bialystok University of Technology, Wiejska 45-A,
15-351, Bialystok, Poland, FEB 2002.

[Pearl, 1986] Judea Pearl. Fusion, propagation, and structuring in belief
networks. Artificial Intelligence, 29(3):241–288, 1986.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc., San
Mateo, CA, 1988.

[Provan, 1995] Gregory Provan. Abstraction in belief networks: The role of
intermediate states in diagnostic reasoning. In Proceedings of the 11th An-
nual Conference on Uncertainty in Artificial Intelligence (UAI-95), pages
464–471, San Francisco, CA, 1995. Morgan Kaufmann Publishers.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

72 BIBLIOGRAPHY

[Schroder et al., 1996] Olaf Schroder, Claus Mobus, Jorg Folckers, and
Heinz-Jurgen Thole. Supporting the construction of explanation mod-
els and diagnostic reasoning in probabilistic domains. In Proceedings of
the ICLS 96, pages 60–67, Northwestern University, Evanston, IL, USA,
1996. Charlottesville, VA: Association for the Advancement of Computing
in Education (AACE).

[Shwe et al., 1991] M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion,
E.J. Horvitz, H.P. Lehmann, and G.F. Cooper. Probabilistic diagnosis
using a reformulation of the INTERNIST–1/QMR knowledge base: I. The
probabilistic model and inference algorithms. Methods of Information in
Medicine, 30(4):241–255, 1991.

[Simon, 1996] Herbert A. Simon. The Sciences of the Artificial - 3rd Edition.
The MIT Press, October 1996.

[Skaanning, 2000] Claus Skaanning. A knowledge acquisition tool for
Bayesian-network troubleshooters. In Uncertainty in Artificial Intelli-
gence: Proceedings of the Sixteenth Conference (UAI-2000), pages 549–
557, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

[Stensmo and Sejnowski, 1994] Magnus Stensmo and Terrence Sejnowski. A
mixture model diagnosis system, 1994.

[Thijssen, 1999] C. R. T. Thijssen. SmileX: An ActiveX decision-analytic
reasoning engine and its application to evaluation of credit applicants.
Master’s thesis, Delft University of Technology, 1999.

[Zagorecki and Druzdzel, 2004] Adam Zagorecki and Marek Druzdzel. An
empirical study of probability elicitation under Noisy-OR assumption. In
Proceedings of the Seventeenth International Florida Artificial Intelligence
Research Symposium (FLAIRS) Conference, Miami Beach, Florida, USA,
pages 880–885. AAAI Press, 2004.

[Zagorecki and Druzdzel, 2005] Adam Zagorecki and Marek Druzdzel.
Knowledge engineering for building Bayesian networks: How common are
Noisy-MAX distributions in practice?, 2005.

