
GeNIeRate: An Interactive Generator of Diagnostic Bayesian
Network Models

Pieter Kraaijeveld
Man Machine Interaction Group
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, the Netherlands

p.c.kraaijeveld@ewi.tudelft.nl

Marek Druzdzel
Decision Sys. Lab.

University of Pittsburgh
Pittsburgh, PA, 15260
marek@sis.pitt.edu

Agnieszka Onísko
RODS Laboratory

University of Pittsburgh
Pittsburgh, PA, 15219

aonisko@cbmi.pitt.edu

Hanna Wasyluk∗

Polish Academy of Sciences
Warsaw, Poland

hwasyluk@cmkp.edu.pl

Abstract

We propose a methodology to simplify and
speed up the design of very large Bayesian
network models. The models produced us-
ing our methodology are based on two sim-
plifying assumptions: (1) the structure of the
model has three layers of variables and (2) the
interaction among the variables can be mod-
eled by canonical models such as the Noisy-
MAX gate. The methodology is implemented
in an application named GeNIeRate, which
aims at supporting construction of diagnostic
Bayesian network models consisting of hun-
dreds or even thousands of variables. Pre-
liminary qualitative evaluation of GeNIeRate
shows great promise. We conducted an ex-
periment comparing our approach to tradi-
tional techniques for building Bayesian net-
work models by rebuilding a Bayesian net-
work model for diagnosis of liver disorders,
HEPAR-II. We found that the performance
of the model created with GeNIeRate is com-
parable to the performance of the original
HEPAR-II.

1 Introduction

Bayesian Networks (BNs) [Pearl, 1988] are acyclic di-
rected graphs with each node representing a variable
and each arc representing a direct probabilistic in-
fluence between two variables. Although exact and
approximate inference in Bayesian networks are both
worst-case NP-hard [Cooper, 1990; Dagum and Luby,
1997], they still perform well, in our experience, for
practical diagnostic models consisting of several hun-
dred or even thousand nodes.

∗The Medical Center of Postgraduate Education, and
Institute of Biocybernetics and Biomedical Engineering

A BN consists of a qualitative and a quantitative part.
The qualitative part is an acyclic directed graph re-
flecting typically the causal structure of the domain,
the quantitative part represents the joint probabil-
ity distribution over its variables. Every variable is
equipped with a conditional probability table (CPT)
representing the probabilities of each state given the
state of the parent variable. If a variable does not have
any parent variables in the graph, the CPT represents
the prior probability distribution over the variable. A
BN is able to calculate the posterior probability distri-
bution over an uncertain variable given some evidence
obtained from related variables. This property and
the intuitive way BNs model complex relationships
among uncertain variables makes it a very suitable
technique for building diagnostic models. Diagnosis
is quite likely the most successful practical application
of BNs.

While the existing diagnostic BN models perform very
well, the technique is still not widely used and ac-
cepted. One of the main reasons for this is that build-
ing a BN model is a laborious and time consuming
task. During the model building process, both the
qualitative and quantitative parts of the BN have to
be created. This can be done in three different ways:
(1) both structure and parameters can be learned from
data without human interaction, (2) a domain expert
can be consulted to design the structure and the pa-
rameters, or (3) learning from data and consulting a
domain expert can be combined. In order to learn
successful diagnostic BN models from data one would
need a very large data set, which is rarely available for
diagnostic models. It is never available for new devices
or devices that are designed for high reliability (such
as, for example, airplanes). So building a diagnostic
BN model will most of the time come down to an inter-
action of a knowledge engineer and a domain expert.
They will consult technical manuals, test procedures,
and repair databases to define the variables in that do-
main, determine the interactions among them, and to
elicit the parameters. To give an idea of the time used

to design a diagnostic BN model: the construction of
the HEPAR-II model [Onísko et al., 2001] used to di-
agnose liver disorders took approximately 300 hours
of which roughly 50 hours were spent with domain ex-
perts. The final version of the model consisted of 73
variables. Its numerical parameters were learned from
a data set of patient cases.

One of the first large diagnostic systems that used
Bayesian networks was the QMR-DT system [Shwe
et al., 1991; Middleton et al., 1991]. This system
was a probabilistic reformulation of the Quick Medical
Reference (QMR), a rule-based system based on the
INTERNIST-1 knowledge base developed at the Uni-
versity of Pittsburgh [Miller et al., 1982]. The QMR-
DT system contained approximately 5,000 variables.
The authors made several simplifying assumptions to
deal with the complexity of constructing this network.
The system was a BN with only two layers of nodes
representing two different types of variables: diseases
and findings. The structure was such that the disease
variables influenced the finding variables. While this
structure was simple, its performance was close to that
of the original QMR. But since the the independence
assumptions were made explicitly, the inconsistencies
of QMR-DT could easily be explained.

Inspired by the QMR-DT system, we propose in this
paper a methodology to build diagnostic BN models
in an intuitive and fast way for users who are not
necessarily experts in Bayesian networks. Using our
methodology, a domain expert will be able to build a
model without any interaction with a knowledge en-
gineer. Skaanning [2000] addresses the same problem
applied in an application called BATS Author. The
BATS Author is domain specific, hides the causality
of the models from the user, and is build around the
single fault assumption. Our methodology can be ap-
plied in any domain, shows the causal structure of the
graph, and supports multiple faults. We believe that
showing the causality of the model helps the model
builder in understanding the model building process
better.

To make the model building easy for the user, our
methodology is based on two simplifying assumptions.
The first assumption is in the qualitative part of the
model. The structure is such that it can only con-
sist of three layers of variables. The top layer rep-
resents context variables, the middle layer represents
the fault variables and the bottom layer represents ev-
idence, which are observable effects of faults. Relations
are only allowed in a top-down way: from contexts to
faults and from faults to evidences. The second simpli-
fication is in the quantitative part. All the variables
are modeled using canonical probabilistic interaction
models currently the Noisy-MAX gate. The Noisy-

MAX gate is a generalization of the Noisy-OR gate for
multi-valued variables. The goal of using the Noisy-
MAX gate is to reduce the size of the CPTs of the
variables. It implies that the number of parameters
that have to be elicited by the user decreases from ex-
ponential to linear in the number of parents of that
variable. Research shows that many interactions in
practical models can be approximated by the Noisy-
MAX gates [Zagorecki and Druzdzel, 2004b]. With
these simplifications we sacrifice some theoretical mod-
eling power and precision. However, we found, after
having tested this in practice, that the resulting mod-
els are not significantly less accurate while being much
easier to build.

The remainder of this paper is structured as follows.
Section 2 gives an introduction to Bayesian networks.
Section 3 discusses our proposed three layer structure
of diagnostic BN models. Section 4 explains the Noisy-
MAX gate. Section 5 gives a complete description of
GeNIeRate our implementation of the methodology.
Finally, Section 6 discusses an experiment comparing
GeNIeRate to traditional model building techniques.

2 Bayesian Networks

Bayesian networks are acyclic directed graphs in which
nodes represent random variables and arcs represent
direct probabilistic dependencies among them. A
Bayesian network encodes the joint probability distri-
bution over a set of variables {X1, . . . , Xn}, where n is
finite, and decomposes it into a product of conditional
probability distributions over each variable given its
parents in the graph. In case of nodes with no parents,
prior probability is used. The joint probability distri-
bution over {X1, . . . , Xn} can be obtained by taking
the product of all of these prior and conditional prob-
ability distributions:

Pr(x1, . . . , xn) =
n∏

i=1

Pr(xi|Pa(xi)) . (1)

Figure 1 shows a highly simplified example Bayesian
network modeling causes of a car engine failing to
start. The variables in this model are: Age of the car
(A), dead Battery (B), dirty Connectors (C), Engine
does not start (E) and Warning lights on your dash-
board (W). For the sake of simplicity, we assumed
that each of these variables is binary. For example,
W has two outcomes, denoted w and w, representing
“Warning lights are present” and “Warning lights are
absent,” respectively.

A directed arc between B and E denotes the fact that
whether or not the battery is dead will impact the like-
lihood of the engine failing to start. Similarly, an arc

from A to B denotes that the age of the car influences
the likelihood of having a dead battery.

����

���� ����

���� ����

�
��	

?

@
@@R

�
��	

@
@@R

�
��	

A

B C

W E

Figure 1: An example Bayesian network for engine
problem

Lack of directed arcs is also a way of expressing knowl-
edge, notably assertions of (conditional) independence.
For instance, lack of a directed arc between A and W
encodes the knowledge that the age of the car does not
influence the chance of the car having warning lights
at the dashboard, only indirectly through the variable
dead battery B. These causal assertions can be trans-
lated into statements of conditional independence: W
is independent of A given B. In mathematical nota-
tion,

Pr(W |B) = Pr(W |B,A) .

Similarly, the absence of arc B → C means that
whether or not the battery is dead will not influence
the chance of having dirty connectors.

These independence properties imply that:

Pr(a, b, c, w, e) =
Pr(a) Pr(b|a) Pr(c|a) Pr(w|b) Pr(e|a, b, c) ,

i.e., that the joint probability distribution over the
graph nodes can be factored into the product of the
conditional probabilities of each node given its parents
in the graph. Please note that this expression is just
an instance of Equation 1.

The assignment of values to observed variables is usu-
ally called evidence. The most important type of rea-
soning in a probabilistic system based on Bayesian
networks is known as belief updating or evidence prop-
agation, which amounts to computing the probabil-
ity distribution over the variables of interest given the
evidence. This evidence propagation makes Bayesian
networks very suitable for diagnosis. For example, in
the model of Figure 1, the variables of interest for di-
agnosis could be B and C and the focus of compu-
tation could be the posterior probability distribution
over B and C given the observed values of A, W , and
E, i.e., Pr(b, c|a,w, e), often approximated in practice

as marginal probability distributions, Pr(b|a,w, e) and
Pr(c|a,w, e). Bayesian network software can be ap-
plied to calculate these posterior probabilities. To-
day’s software is capable of very fast belief updating
in models consisting of hundreds or even thousands of
variables. After the belief updating, the software can
make a decision or support the user in making a deci-
sion what actions to perform given that probability.

3 The BN3M model

We believe that there are three fundamental types of
variables in diagnostic models. The first type (1) are
variables representing the failures of the device or a
specific part of the device. We will call these failure
variables Faults. The second type (2) are variables
which have an observable effect if the device is in some
faulty state. Sometimes you cannot observe the ef-
fect of the given fault clearly, then you can perform a
test which will give you information about the state of
the device. These observation or test variables will be
called Evidence variables. The last type of variables
(3) are variables which indicate context properties of
the device that may influence the risk of a fault. We
will call these variables Context variables. Example
context variables are the age of the device or the his-
tory of failures of the device.

In the QMR-DT model, mentioned in the introduction,
the authors distinguish two types of binary variables:
diseases and findings. These variables are graphically
structured in two layers in which the disease vari-
ables influence the findings. This structure is based on
strong independence assumptions. The first of these is
marginal independence of the diseases, which amounts
to no arcs among the disease variables. The sec-
ond is conditional independence of the findings, which
amounts to no arcs among finding variables. Figure 2
shows an example of the graphical structure used in
the QMR-DT model.

��������

�������������
���

A
AAU

��
����

�
���

A
AAU

Diseases

Findings

Figure 2: The two-layer QMR-DT model

The structure of the QMR-DT model was simple, yet
the performance of the model was close to that of the
original rule-based QMR system. This motivated us to
design an extension of their structure to connect our
three types of variables in a diagnostic BN model. The
authors of the QMR-DT system already mention the

fact that assuming their two layer structure is not al-
ways very accurate. They state that it would be more
accurate to model some of their findings representing,
for example, historical findings as parent variables of
the diseases. We decided to cover this inaccuracy in
our model in making our context variables the par-
ents of the fault variables. We also decided to support
multi-valued variables instead of binary variables used
in QMR-DT. This means that our structure becomes a
three layer structure with the context variables on top,
fault variables in the middle and the evidence variables
at the bottom. We call this structure: 3-layer Bayesian
network using Noisy-MAX gates (BN3M). An example
of this structure is showed in Figure 3. We will discuss
the Noisy-MAX gate in Section 4.

������������

��������

������������
A
AAU

HH
HHHj
�

���
�

���

�
���

A
AAU

��
����

�
���

A
AAU

Context

Faults

Evidence

Figure 3: The BN3M model

As mentioned in the introduction, this structure sac-
rifices some modeling power and precision. For exam-
ple, the arc between variables A and E of the example
given in Figure 1 cannot be created in our method-
ology. We tested whether this theoretical imprecision
has a big impact on the practical performance of mod-
els. We found that a model created by our methodol-
ogy performs similarly to its original version, which is
not a BN3M model. A large model that is theoretically
very precise may turn out to be inferior in practice be-
cause elicitation of a huge number of parameters from
a human expert may decrease their quality.

4 Canonical interaction models

In order to gain speed in designing the quantitative
part of the model, the interaction among the vari-
ables in our structure is approximated by canonical
interaction models that require fewer parameters. One
type of canonical interaction, widely used in Bayesian
networks, is known as the Noisy-OR gate. This gate
was first introduced outside the BN domain by [Good,
1961]. Later it was applied in the context of BNs
[Pearl, 1986], and it became very popular among BN
model builders because it reduces the growth of a CPT
of a variable within a BN from exponential to linear in
the number of parents. An extension of the Noisy-OR

gate for multi-valued variables is the Noisy-MAX gate
[Henrion, 1989; Dı́ez, 1993]. For the sake of simplicity,
we will discuss the Noisy-OR gate in depth and give
a short description of the extended Noisy-MAX gate
later in this section.

4.1 Noisy-OR

The Noisy-OR gate models a non-deterministic inter-
action among n binary parent cause variables X and a
binary effect variable Y . Every variable has two states:
a distinguished state, which represents that the vari-
able is in its normal working state. Commonly this is
absent or false and a non-distinguished state: truth or
present. The effect variable Y works as a deterministic
OR gate. This means that if all the parent variables
are absent, the child variable is also absent. However
if a parent variable Xi is present and all other parent
variables are absent, it has a probability pi of causing
the effect y. These probabilities pi address the noisy
property of the gate and have to be elicited by the
model builder or can be learned from data. The prob-
abilities are fairly easy to understand since they can be
represented by questions like: What is the probability
that the effect y will occur, given that only one cause
Xi is present and all other causes are absent? In other
words,

pi = Pr(y|x1, x2, . . . , xi, . . . , xn−1, xn) . (2)

The probability of an effect y occuring given a subset
X of causes which are present is now formally given
by:

p(y|X) = 1−
n∏

i=1

(1− pi) . (3)

This formula is sufficient to derive the complete CPT
of Y conditional on its predecessors X1, X2, . . . , Xn.

Henrion [1989] proposed a direct extension of the
Noisy-OR gate which models that an effect y can also
occur if all the causes are absent and called it: leaky
Noisy-OR gate. This can be modeled by introducing
an additional parameter p0, which is called the leak
probability, formally given by:

p0 = Pr(y|x1, x2, . . . , xn) . (4)

The leak probability represents the phenomenon that
an effect occurs spontaneously, i.e., in absence of any
of the causes that are modeled explicitly.

In the leaky Noisy-OR gate, pi (i 6= 0) no longer rep-
resents the probability that Xi causes y given that
all other parent variables are absent, but rather the
probability that Y is present when Xi is present and
every other explicit parent causes (all the Xj ’s such
that j 6= i) are absent.

Let p′i be the probability that Y will be true if Xi is
present and every other parent of Y including unmod-
eled causes (the leak) are absent:

1− p′i =
1− pi

1− p0
. (5)

From here we have

pi = p′i + (1− p′i) p0 . (6)

It follows that the probability of Y given a subset of
parent variables X is given in the leaky Noisy-OR gate
by the following formula:

p(y|X) = (1− (1− p0))
n∏

i=1

1− pi

1− p0
. (7)

An alternative way of eliciting the parameters of a
leaky Noisy-OR gate is given in [Dı́ez, 1993]. It
amounts essentially to asking the expert for the pa-
rameters p′i as defined by Equation 5. The difference
between the two proposals has to do with the leak
variable. While Henrion’s parameters pi assume that
the expert’s answer includes a combined influence of
the parent cause in question and the leak, Dı́ez’s pa-
rameters p′i explicitly refer to the mechanism between
the parent cause in question and the effect with the
leak absent. Conversion between the two parameters
is straightforward using Equation 6. If the Noisy-OR
parameters have to be elicited by an domain expert,
Dı́ez’s definition is more convenient, since the question
to be answered is more intuitive for the expert: What
is the probability that the effect y will occur when you
know that all modeled and unmodeled causes X are
absent? It has been found both preferred by experts
[Onísko et al., 2001] and results in higher elicitation
accuracy [Zagorecki and Druzdzel, 2004a]. Henrion’s
definition will be more convenient if the parameters
are learned from data.

4.2 Noisy-MAX

The Noisy-OR gate can be generalized if it is used for
multi-valued variables. These variables are allowed to
have more than two states. However, these variables
still contain a distinguished state. The difference is
that the CPT of the effect variable Y is the determin-
istic MAX function instead of the deterministic OR
function. Therefore it is called Noisy-MAX gate or,
if the leak probability is included, leaky Noisy-MAX
gate.

In our proposed methodology we set the leak probabil-
ity distribution of an effect variable p0(Y) by default

to 0 for the non-distinguished states yi, . . . , yn−1 and
1 for the distinguished state y:

p0(Y) =
{

1 if Y = y
0 otherwise . (8)

In this way, the interaction among variables is by de-
fault Noisy-MAX, it becomes leaky Noisy-MAX if an
user defines a specific leak probability distribution for
the effect variable.

To give an example of the reduction of the number
of parameters that have to be elicited by the user we
define the number of states of a parent variable Xi as
nXi and the number of states of an effect variable y as
ny. The total number of parameters N that have to be
elicited by the model builder using leaky Noisy-MAX
becomes:

N =
n∑

i=1

(nXi
− 1)(ny − 1) + (ny − 1) , (9)

compared to the exponential number of parameters
using CPT:

N = (ny − 1)
n∏

i=1

(nXi − 1) . (10)

If ni = 3 and n = 10, we have 2,048 parameters with
CPT compared to 42 parameters using Noisy-MAX.
Every additional parent of y increases this number by
multiplying the current number of parameters by 2 in
CPT compared to adding 4 in Noisy-MAX.

Using Noisy-OR and Noisy-MAX gates for some of
the conditional distributions in the HEPAR-II model
[Onísko et al., 2001] not only reduced the number of
parameters that had to be elicited from 3,714 to 1,488
but also improved the diagnostic performance of the
model.

5 GeNIeRate

We embedded the ideas presented in Sections 3 and 4
in an interactive environment for generation of diag-
nostic BN models that we call GeNIeRate. GeNIeR-
ate is a member of the family of software developed
at the Decision Systems Laboratory (DSL) of the Uni-
versity of Pittsburgh. This software is developed for
the purpose of probabilistic modeling with special ex-
tensions for diagnostic inference, such as rank order-
ing, tests, and case management. The main part
of this family is SMILE (Structural Modeling Rea-
soning, and Learning Engine) which is a library of
C++ classes implementing graphical probabilistic and
decision-theoretic models. In order to use SMILE in
other programming languages some wrappers are de-
veloped: jSMILE for Java, SMILE.NET for a Mi-
crosoft .NET environment and pocketSMILE for the

Pocket PC. Next to the libraries, there are some ap-
plications with a Graphical User Interface (GUI) using
these libraries. GeNIe is the main application, it is a
development environment for building graphical deci-
sion models. Other applications are ImaGeNIe which
is a general purpose model building interface and Ge-
NIeRate which is discussed in this paper. GeNIeRate
is developed in Java therefore it uses jSMILE as its
modeling library. All the software can be downloaded
at: http://www.sis.pitt.edu/~genie.

The main goal of GeNIeRate is to support a user in
building the simplified diagnostic BN3M models in a
fast and intuitive way. In order to keep the model
building process simple, GeNIeRate contains three dif-
ferent screens, representing three steps for building a
BN3M model: (1) add General information, (2) add
the Variables, and (3) add the Relations and the prob-
abilities (G-V-R). We will discuss these three steps in
this section and support our description with different
screen-shots of GeNIeRate.

5.1 General information

In the first tab, the user can define general model infor-
mation: name, identifier, and description of the model.
Since not all designed models will contain context vari-
ables, these variables can be switched on or off. Fur-
thermore, feedback can be enabled which amounts to
verbal feedback given by GeNIeRate for each action
of the user. If the user is not a BN expert, this feed-
back will help with natural language dialogs to get
familiar with this technique and give the user some in-
sight about the causality of the graphical structure of
his model. Figure 4 shows a part of this first tabbed
screen.

Figure 4: Part of the model info panel

5.2 Adding variables

In the second tab, the variables of the model can be
added, edited or deleted. For each type of variable

(context, fault, and evidence) there is a tree structure
representing the variables of that type added to the
model. Figure 5 shows a part of this screen containing
different tree structures.

Figure 5: Part of the model variables panel

GeNIeRate uses the concept of a system to divide large
diagnostic models into manageable parts. A system is
typically a module of a device that, while intercon-
nected with other modules, can be thought of in sep-
aration from the rest of the device. Typically devices,
whether natural or artificial, are composed hierarchi-
cally and have clearly identifiable modules, for exam-
ple electrical system, power train, break, or steering
system in an automobile. Systems are the largest enti-
ties through which the user can interact with a model,
i.e., the users can view a system’s variables after se-
lecting that system and add variables to it or remove
variables from it. This supports working on a spe-
cific part of the model, ignoring the rest of the model
and, since humans can only focus on a small number
of things at a time, limiting the amount of information
presented to the user.

Furthermore, documentation can be added to the vari-
ables and the states of the variables. This documen-
tation can be a treatment for each non-distinguished
state of a fault variable or a question for each context
or evidence variable. The documented questions and
treatments can later be used when the model is applied
in diagnostic software. Answers to these questions can
be used as evidence for the belief updating (Section 2)
to calculate the most probable fault(s). After this cal-
culation, the documented treatment of that fault can
be presented to help the user make a decision how to
fix his problem.

5.3 Adding relations

The last screen allows for creation of relations among
the variables. When, for example, a fault variable is
selected, context variables can be added as parents or
evidence variables as children of that fault. After re-
lations are created, the graph at the right side of the
screen shows the relevant part of the graph (see Fig-
ure 6).

A system can be selected to show only the relations

Figure 6: Part of the model relations panel

of the selected variable with the variables within that
system. Navigating the graph can be done by clicking
on the top or the bottom of a node to show the parents
or children of that node respectively.

All the parameters can be defined by double-clicking
on a node or an arc in the graph. If a node has parents,
the leak-probability distribution for that variable can
be defined, otherwise the prior probability distribution
can be defined. If an arc in the graph is selected the
Noisy-MAX parameters for the relation represented by
that arc can be defined.

After the diagnostic BN model has been created, it can
be saved and used for applying diagnosis. This can
be done after loading the network into GeNIe, which
contains a tool for diagnosis. The network could also
be loaded in user applications using (j)SMILE or other
BN building software (Figure 7).

Figure 7: GeNIeRate architecture and interaction with
other DSL software

6 Empirical Evaluation

A qualitative evaluation of our methodology and Ge-
NIeRate was performed by Mr. M. D. Campbell, a
professional consultant with 5 years of practical ex-
perience in building diagnostic BN models. GeNIeR-
ate was received warmly and Mr. Campbell estimated
that this methodology will be of great help especially
in building large diagnostic models. He mentioned

that a domain expert usually spends 90% of the time
in analyzing and understanding his diagnostic prob-
lem as a probabilistic model. However, his estimate
was that our approach will reduce the model building
time by 20-30% for an inexperienced Bayesian network
model builder.

We also performed an empirical study evaluating the
performance of our methodology by rebuilding the
HEPAR-II model mentioned in the introduction. We
rebuilt the structure of the model from scratch us-
ing GeNIeRate, which took approximately 8 hours.
We will refer to this new structure as HEPAR-II-
BN3M. Because the original 300 hours spent on build-
ing HEPAR-II included learning, interaction with ex-
perts and literature study, comparing it to the 8 hours
that took us to develop HEPAR-II-BN3M is not fair.
However, we are primarily interested in the perfor-
mance of the new model compared to the original.
The CPTs of the HEPAR-II model were learned from
a data set of patient cases. This data set was created
in 1990 and thoroughly maintained since then. It con-
tains approximately 700 patient cases and it is still
growing. In order to use the same learning algorithm
to get a fair comparison, we had to transform the vari-
ables of HEPAR-II-BN3M from noisy-MAX to normal
CPTs. After learning we were interested whether, af-
ter setting some evidence in the model, the most prob-
able diagnosis (fault) given by the model is indeed the
correct diagnosis. Furthermore we were also interested
whether the set of k most probable diagnoses contains
the correct diagnosis for small values of k (we chose
a “window” of k=1, 2, 3, and 4). Results were 64%
(compared to 59% for the original HEPAR-II model),
75% (72%), 82% (79%), and 87% (85%) for k=1, 2, 3,
and 4 respectively. Figure 8 shows the results graphi-
cally.

Figure 8: Diagnostic accuracy as a function of different
window sizes

We did not expect that the new HEPAR-II-BN3M
model would show a better diagnostic performance.
The most plausible explanation of this surprising
results is that the original HEPAR-II models con-

tained erroneous conditional independence assump-
tions. However, we believe that GeNIeRate should
take some credit for facilitating building a better qual-
ity model. We expect that results like this will not
always be observed in other models.

7 Concluding remarks

This paper has presented a methodology for building
large diagnostic Bayesian networks. An implementa-
tion of the methodology was received well by a profes-
sional consultant in building diagnostic Bayesian net-
works. His estimate is that using this methodology for
building large diagnostic BN models will reduce the
model building time with approximately 20-30%.

An empirical study comparing our methodology to tra-
ditional model building techniques shows that the di-
agnostic performance of the model created by tradi-
tional model building techniques is close to the perfor-
mance of the same model created by our methodology.
It seems that a model that can be build significantly
faster does not necessarily suffer in terms of its perfor-
mance.

Acknowledgments

This research was supported by the Air Force Office
of Scientific Research under grant F49620-03-1-0187,
Intel Research, CMKP grant 501-2-2-02-11/04 and the
IBIB PAN grant 16/ST/2005. We would like to thank
Mr. M. D. Campbell whose suggestions have improved
GeNIeRate enormously.

References

[Cooper, 1990] Gregory F. Cooper. The computa-
tional complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence,
42(2–3):393–405, March 1990.

[Dagum and Luby, 1997] Paul Dagum and Michael
Luby. An optimal approximation algorithm for
Bayesian inference. Artificial Intelligence, 93:1–27,
1997.

[Dı́ez, 1993] F. J. Dı́ez. Parameter adjustement in
Bayes networks. The generalized noisy OR–gate. In
Proceedings of the 9th Conference on Uncertainty
in Artificial Intelligence, pages 99–105, Washington
D.C., 1993. Morgan Kaufmann, San Mateo, CA.

[Good, 1961] I. Good. A causal calculus (I). British
Journal of Philosophy of Science, 11:305–318, 1961.

[Henrion, 1989] M. Henrion. Some practical issues
in constructing belief networks. In L. N. Kanal,

T. S. Levitt, and J. F. Lemmer, editors, Uncertainty
in Artificial Intelligence 3, pages 161–173. North-
Holland, Amsterdam, 1989.

[Middleton et al., 1991] B. Middleton, M.A. Shwe,
D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P.
Lehmann, and G.F. Cooper. Probabilistic diag-
nosis using a reformulation of the INTERNIST–
1/QMR knowledge base: II. evaluation of diagnostic
performance. Methods of Information in Medicine,
30(4):256–267, 1991.

[Miller et al., 1982] Randolph A. Miller, Harry E.
Pople, Jr., and Jack D. Myers. Internist–1, an
experimental computer-based diagnostic consultant
for general internal medicine. New England Journal
of Medicine, 307(8):468–476, August 1982.

[Onísko et al., 2001] Agnieszka Onísko, Marek J.
Druzdzel, and Hanna Wasyluk. Learning Bayesian
network parameters from small data sets: Applica-
tion of Noisy-OR gates. International Journal of
Approximate Reasoning, 27(2):165–182, 2001.

[Pearl, 1986] Judea Pearl. Fusion, propagation, and
structuring in belief networks. Artificial Intelli-
gence, 29(3):241–288, 1986.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers, Inc., San Ma-
teo, CA, 1988.

[Shwe et al., 1991] M.A. Shwe, B. Middleton, D.E.
Heckerman, M. Henrion, E.J. Horvitz, H.P.
Lehmann, and G.F. Cooper. Probabilistic diagnosis
using a reformulation of the INTERNIST–1/QMR
knowledge base: I. The probabilistic model and in-
ference algorithms. Methods of Information in Medi-
cine, 30(4):241–255, 1991.

[Skaanning, 2000] Claus Skaanning. A knowledge ac-
quisition tool for Bayesian-network troubleshooters.
In Uncertainty in Artificial Intelligence: Proceed-
ings of the Sixteenth Conference (UAI-2000), pages
549–557, San Francisco, CA, 2000. Morgan Kauf-
mann Publishers.

[Zagorecki and Druzdzel, 2004a] Adam Zagorecki and
Marek Druzdzel. An empirical study of probability
elicitation under Noisy-OR assumption. In Proceed-
ings of the Seventeenth International Florida Arti-
ficial Intelligence Research Symposium (FLAIRS)
Conference, Miami Beach, Florida, USA, pages
880–885. AAAI Press, 2004.

[Zagorecki and Druzdzel, 2004b] Adam Zagorecki and
Marek Druzdzel. Knowledge engineering for build-
ing Bayesian networks: How common are noisy-
MAX distributions in practice?, 2004.

