

 ���������
	��� ��������������������������������� !�
"$#���%��&�������('��������)�����#���'��� �&����������� �*

+,#��)����-.#��/����0#���1.2(��-.3�%��)���546�7��������
+,#���89+,#��7��&���;:<���)����#����)����=����3�#����)-.�����

��������	
�������������

� �� � ��	���� � � �
>@?BA�C!DFE(GIHJD0KLAM?BG

NPOQG�RQAM?TS
� � �	��� �� �	UWV@G7D;SPXJY[Z\O,]&^_X�`J`aY

b�c<d�egf\h�i0jlk
m�f5c<n6oqp�dFc<p�r
sutTv cBwxf\p�n v5yIz f�cu{ v p�i

|$f(d y~} d�i t
� c v5y i��

Personality Model for Companion AIBO Iulia Dobai

 2

“ I t is better to know some of the questions than all of the answers.”

James Thurber

Personality Model for Companion AIBO Iulia Dobai

 3

Abstract
In this report the author describes a complex set of models and architectures that allow the
embodiment of an emotionally intelligent robot in interacting with other humans or robots.
The robot used for deploying these ideas and concepts is AIBO (a quadruped autonomous
dog-like robot) made available by Sony.

The work that has been done has the somewhat difficult mission to propose a new
cognitive model that allows reasoning with emotions for robots and in the same time to
offer a prototype implementation.

This report has two focus-points: one on the personality model that has been developed in
order to execute emotional reasoning and the second focus-point on the software that
renders valuable the model by including it in a running prototype.

Taking into consideration the realities concerning an emotionally intelligent AIBO, that
acts in an unpredictable and changing environment, the existing models of personality need
improvement, modifications and adaptations to the current situation. Most existing
personality models that are used in virtual humans and agents take into consideration three
layers: personality, mood and emotions or just two: personality and emotions. We, on the
other hand will try to add a new set of parameters: needs that will not constitute a new layer
but together with the personality layer, a pillar for the top two layers of mood and emotions.

From a software point of view the entire system has been developed using Java, Jess and
URBI over a wireless TCP/IP architecture with the server resident on AIBO and the client
(that incorporates the cognitive component) running on a computer. The artificial
intelligence technique used to apply the reasoning component in practice is made up of two
highly coupled rule-based systems running in parallel. While the complex ideas of robot -
learning, memory and instinct have not been tackled by this project they are not excluded
by the existing model and architecture and are considered subjects for further investigation.

Keywords: AIBO, robot, human-robot interaction, human-AIBO interaction, JESS,
URBI, emotions, reasoning.

Personality Model for Companion AIBO Iulia Dobai

 4

Preface
This report is in order to conclude my 9 month assignment in the Man Machine Interaction
group of the faculty Electrical Engineering, Mathematics and Computer Science at the
Delft University of Technology in The Netherlands. This project was done as part of the
AIBO Team in the MMI group that is conducting a series of AIBO related projects.

The work that I have conducted at TU Delft was possible due to a Huygens Grant that I
received from Nuffic (Nuffic is the Netherlands organization for international cooperation
in higher education). I am deeply grateful to the people in the Huygens Program for
awarding the grant to me and therefore opening in front of me a world of opportunities and
challenges.

Personality Model for Companion AIBO Iulia Dobai

 5

Acknowledgement
First of all I would like to thank my supervisors Leon Rothkrantz and Char les van der
Mast for inspiring me and offering guidance in the crucial moments of the project when I
most needed it. I deeply appreciate the way Mr. Rothkrantz always offered me new
perspectives, different approaches or simply lead me to the right track. Our meetings were
an incubator of innovative ideas that became solutions for my work.

I will always be grateful for Mr. van der Mast’s support and inputs regarding my work and
achievements. He always brought a different light in the work being done and helped shape
up the project in the way it is now. I deeply appreciate that he believed in me and he issued
the invitation to come here and gave me the opportunity to work on such a challenging
project.

Second of all I would like to show my great appreciation to the members of the AIBO
Team in the MMI group at TU Delft. Our weekly meetings prevented me a lot of times
from slipping out of the correct track as well as provided me with a lot of valuable
information. Special thanks to: Zhenke Yang, Siska Fitrianie, Stijn Oomes and Dragos
Datcu, they offered advice, inspiration, guidance and very valuable solutions.

Third but not last I would like to show my appreciation to my family and fr iends most of
who are in Romania and despite the distance they continued to encourage and support me.

Last but not least I would like to thank Nuffic for offering me a Huygens Grant that made
this experience possible, an experience that I will never forget and which definitely
represents the starting point in my professional career.

Personality Model for Companion AIBO Iulia Dobai

 6

Table of Contents:

Abstract .. 3

Keywords: .. 3
Preface.. 4
Acknowledgement ... 5
Table of Contents:.. 6
Table of Figures... 8
1 Introduction.. 9

1.1 Project Motivation ... 10
1.2 Project Overview ... 11
1.3 Problem Definition... 12
1.4 Extended Example... 12

1.4.1 Context description: ... 12
1.4.2 Description of the interaction... 13
1.4.3 The power of a picture... 13

2 Background and Theory... 15
2.1 What or who is AIBO?.. 16
2.2 AIBO – Sony’s Entertainment Robot in brief.. 16
2.3 From Computers to Actors... 18
2.4 Related Research.. 20

3 Modeling a “brain” .. 21
3.1 Concepts Used ... 22

3.1.1 Personality.. 22
3.1.2 Mood.. 26
3.1.3 Goals, Preferences, Standards.. 26
3.1.4 Needs.. 27
3.1.5 Emotional States.. 28
3.1.6 Emotional Expressions... 29

3.2 Personality Model .. 29
3.2.1 Transforming concepts into modeled pieces.. 29
3.2.2 Overview of the model... 30

4 A Software Implementation Perspective ... 33
4.1 Software premises.. 34

4.1.1 Programming AIBO... 34
4.1.2 Why use URBI?... 37
4.1.3 Architecture.. 38
4.1.4 Java.. 38
4.1.5 Rule-based systems.. 40
4.1.6 Jess... 41

4.2 UML Diagrams.. 41
4.2.1 The user model view.. 42
4.2.2 The structural model view ... 44
4.2.3 The behavioral model view.. 50
4.2.4 The implementation model view ... 52
4.2.5 The environment model view .. 55

Personality Model for Companion AIBO Iulia Dobai

 7

4.3 Design Patterns.. 56
4.3.1 Singleton Pattern.. 57
4.3.2 Other Patterns... 58

4.4 Implementation.. 58
4.4.1 Threads and Groups of Threads... 58
4.4.2 Java Beans and Jess... 60
4.4.3 AIBOExceptions.. 61
4.4.4 Functionality of the Rule-Based Systems.. 61
4.4.5 URBI Scripts.. 65

5 Evaluation and Tests.. 67
5.1 Results.. 68

5.1.1 Emotions and Actions.. 68
5.1.2 System flexibility... 69

5.2 Emotion Perception on AIBO.. 69
5.2.1 Test Description... 69
5.2.2 Test Results.. 70
5.2.3 Conclusions.. 72

5.3 Recommended User Test ... 73
5.3.1 Psychological Validity... 73
5.3.2 Rule-Base Correctness... 74

6 Conclusion ... 75
6.1 Conclusions.. 76
6.2 Recommendations.. 77
6.3 Possible applications.. 78

7 Bibliography .. 81
Appendix A: AIBO from a hardware perspective... 83
Appendix B: Implementation... 85
Appendix C: expert system files.. 90

persRules.clp.. 90
gpsRules.clp... 100

Appendix D: RobotOutput Package... 110
Appendix E: ACE Paper .. 111
8 INTRODUCTION ... 111
9 The nPME Model... 112

9.1 Concepts... 112
9.1.1 Personality.. 112
9.1.2 Needs.. 112
9.1.3 Mood.. 113
9.1.4 Emotional States and Expressions... 113
9.1.5 Goals, Preferences and Standards.. 114

9.2 Personality model overview... 114
9.2.1 A schematic approach.. 114

10 DESIGN CONCEPT FOR COMPANION AIBO... 115
10.1 A modular architecture .. 115

10.1.1 Input translation... 115
10.1.2 Processing.. 115

Personality Model for Companion AIBO Iulia Dobai

 8

10.1.3 Mapping... 115
10.1.4 Output translation... 115

10.2 Development perspective... 115
10.2.1 Implementation.. 116

11 CONCLUSIONS.. 116
12 ACKNOWLEDGMENTS... 116
13 REFERENCES.. 116

Table of Figures
Figure 1: AIBO ERS 7... 16
Figure 3: Personality Traits in the Big Five Model ... 23
Figure 4: The big five model and correlations... 26
Figure 5 Maslow Pyramid of Needs.. 28
Figure 6: Basic Emotional States... 29
Figure 7: Emotional Expressions /Emotional States.. 29
Figure 8:nPME model at moment t=i .. 31
Figure 9: nPME Model at moment t=0.. 31
Figure 11: System Architecture... 38
Figure 12: Use Case Diagram.. 43
Figure 13: Class Diagram for Main ... 45
Figure 14: Class Diagram for package <initialization>... 46
Figure 15: Class Diagram for package <eventGenerators>... 47
Figure 16: Class Diagram for package <engines>... 48
Figure 17: Class Diagram <engines.gps> (not-detailed) ... 49
Figure 18: Class Diagram for package <engines.events> (not-detailed)............................. 50
Figure 19: Sequence Diagram.. 51
Figure 20: Activity Diagram.. 52
Figure 21: Component Diagram .. 53
Figure 22: Programming Units Diagram: Companion AIBO Overview............................. 54
Figure 23: Package Diagram: Reasoning Component ... 55
Figure 24: Deployment Diagram... 56
Figure 25: Emotion Perception User Test Chart.. 71
Figure 26: Interpretation of "fear" - Chart ... 72
Figure 27: Interpretation of "disgust" - Chart .. 72
Figure 28: AIBO Sensors and Actuators - Front View.. 84
Figure 29: AIBO Sensors and Actuators - Back View .. 84
Figure 30: RobotOutput class diagram.. 110

Personality Model for Companion AIBO Iulia Dobai

 9

1 Introduction
“ There are no secrets to success. It is the result of preparation, hard work, and learning

from failure.”
Colin Powell

Somebody once said: “To create an artificial being has been the dream of man since the
birth of science." This project is nothing more and nothing less then a mare pebble on the
way for accomplishing this dream. Unfortunately there’s infinitely more pebbles needed in
order for the road to an “artificial being” to be completely paved.

The project presented in this report aims at developing a new cognitive system that models
human personality to be implemented and tested on AIBO (a quadruped robot made by
Sony). We start with the existing hardware (the robot itself that is complete and operable)
and a limited choice of software development platforms. The purpose of developing such a
model for AIBO is to have him realistically respond emotionally to external stimuli. At the
end of this project we will see AIBO reason about events and show emotions according to
his internal structures rather then on what a human factor would like to see. Another sub-
goal of the project is to make AIBO act based on his needs and therefore accomplishing the
goal of having it act in changeable and unpredictable environments. The framework
developed during this can be seen as a one of the first iterations in a long line of many
more iterations to come.

The software developed under this project was made in order to prove the concept of the
personality model itself and in order to provide a starting point in future development.

The paper is structured in six chapters with the first chapter entirely dedicated to presenting
the problem being solved, the second chapter giving relevant background information for
the understanding of the system. The third chapter provides the concepts enclosed in the
cognitive model developed and the model itself and is completed by the forth chapter that
presents the software perspective on the system. The fifth chapter is reserved for tests that
were conducted while the last chapter concludes the work that has been done.

Chapter Overview:

 Project Motivation

 Project Overview

 Problem Definition

Personality Model for Companion AIBO Iulia Dobai

 10

1.1 Project Motivation
“ Ability is what you're capable of doing. Motivation determines what you do. Attitude

determines how well you do it.”
Lou Holtz

There’s no doubt that robots will become part of our future lives much sooner than we
expect. Out of the many possible uses for robots entertainment applications are likely to be
here sooner than others. (Current technologies are not sufficiently mature yet to solve the
reliability problem that “a useful” robot acting in a home environment requires).
Entertainment robots still leave us with a big pool of possibilities including remote
controlled robots in various ways and also autonomous robots. The creation of autonomous
robots for entertainment seemed like the most challenging job for researchers but also
proved to be a major door opener for future technologies and research platforms. Sony was
among the first companies to provide the world with an autonomous entertainment robot:
AIBO. Before anything else Sony focused on its “ lifelike appearance” and tried to answer
the major question in the field: “how are humans going to interact with this robot?” In
order to answer this question we have to start turning the problem on all its faces and more
than anything we have to try and answer the question on how else can we take advantage of
the interaction with humans than the pure interaction itself. When Sony developed their
first entertainment robot they took care of both the hardware and the software aspects. The
AIBO developed by Sony was designed to run around the house and bring a little bit of
excitement in a home environment. There is sufficient proof that they managed to
accomplish this and mostly everyone that interacts with AIBO in any way will fall in love
with it. It is the experience of the author that the first impact with AIBO on almost any new
user brought about a big smile. You don’ t have to be a computer professional or electronics
engineer and AIBO will still make you curious.

Going further with the interaction with AIBO, scientists started to question weather AIBO
and interacting to AIBO can have other benefices also. Therefore a number of scientist and
psychologists conducted tests on elderly interacting with AIBO or people with disabilities
interacting with AIBO. Masahiro Fujita concluded most of these researches in two
elaborate papers: “On Activating Human Communications with Pet-Type Robot AIBO”
and “AIBO: Towards the Era of Digital Creatures” . Studies conducted by Masahiro Fujita
asses that AIBO seems to be a good partner with users, having a positive effect on their
emotional state. Some very recent experiments in the United States and Japan show that
AIBO is useful for mental therapy from a medical point of view [12].

This conclusion was enough to trigger our project. If AIBO as it is was developed by Sony
with its stimuli-response emotions was able to prove efficient in therapy then we can
develop a mental model for AIBO that can provide more complex emotional and action
response.

Furthermore according to the same author the current implementation of AIBO software
provided by Sony uses behaviors that come from a “manually designed database” . Next
steps would be an open-ended system or an ever-evolving system by which new behaviors
are emerged through the interaction with human and environment. While some efforts are
being put by others into developing unknown-word technologies and unknown-object

Personality Model for Companion AIBO Iulia Dobai

 11

learning technologies we thought about improving the personality model that judges upon
the interaction with human or environment.

On the other hand, the researches that conducted experiments with AIBO had no control
over the way AIBO will interact with the humans. This was a good reason for us to decide
to develop a mental model for AIBO where some aspects of the way AIBO will interact
with humans (like traits of personality for example: extraversion) will be subject to change
for the researchers. These two observations triggered our two main goals: developing a
complex mental model for AIBO to output emotions and actions and make certain aspects
of the model adaptable to the context in which AIBO will be used.

A third and very important motivation to run this project is to develop a framework that is
flexible and open enough to absorb new components in the future (like learning,
motivation, curiosity, etc), a framework that for now can present itself like a testing
platform for different research focus-areas.(like complex vision algorithms for face
detection, gesture and emotion recognition, etc)

1.2 Project Overview
“ The world is moving so fast these days that the man who says it can't be done is generally

interrupted by someone doing it.”
Harry Emerson Fosdick

After finding the reasons for conducting this project we started on finding the path to the
solution. The difficulty of the project was increased by the fact that the challenges came
from a lot of places including: software, hardware, psychology, not enough past
experiences and interaction with humans.

The author started the journey by finding out what is behind the name “AIBO” including
hardware and software and a lot of the conclusions are to be found in Chapter Two of this
report. The findings brought about a few of the limitations that our newly developed
systems will have. Therefore the decisions we had to make were:

• Sacrifice the autonomy of the robot in order to develop fast a complex framework.
Therefore our system consists of two components: AIBO that receives inputs from
humans through his sensors and acts with emotions in real life situations and a PC
that does the reasoning behind AIBO’s actions and emotions. There is however
huge differences to a remote controlled AIBO application.

• Focus on solely one issue: AIBO portrays emotions of a result of a complex
cognitive reasoning. We therefore left out the very important concept of robot-
learning.

Following the author concentrated on the development of the psychological model that will
allow AIBO to reason. Therefore, a lot of study has been conducted on other mental
models for game characters or actors that reason and output emotional reactions. We first
decided on the concepts that will be included in our model, on the things that our model
will bring new to existing models and we finally developed our model that is fully adapted

Personality Model for Companion AIBO Iulia Dobai

 12

to AIBO. Most conclusions and decisions regarding our model are presented in Chapter
Three of this report as well as explanations regarding the functionality of our system.

Further we tried to decide regarding the place of our cognitive module in the context of the
entire system that is functioning. Therefore we designed the software framework that is the
basis for our system. Later came the implementation decisions and constraints that lead to
our system. A few decisions were also made regarding what will be implemented during
the course of this project and what will be left out. As a result the major focus of this
project was on the cognitive component leaving uncovered the input component that would
do sound and image recognition. Details regarding the system and the implementation are
to be found in Chapter Four of this report.

Just a few experiments were conducted to insure the integrity of the system and of the
model and the results are presented in Chapter Five of this report.

Chapter Six concludes the work that has been done and presents the authors view regarding
possible future approaches of the matter.

1.3 Problem Definition
“ A problem is a chance for you to do your best.”

Duke Ellington

Taken into consideration the complexity of the matter assumed by this subject it is
understandable that only a few matters were approached in a very serious way. Therefore
the problem definition for this project is:

1.4 Extended Example
“ The path of precept is long, that of example short and effectual.”

Seneca (5 BC - 65 AD)

In this chapter we will present a self-explanatory example of the expected outcome of this
project.

1.4.1 Context descr iption:

AIBO is part of a family of four: Jane and Mathew and their two children Josh (12) and
Linda (6). Josh received AIBO as a gift for his birthday and ever since they became very
good friends. Occasionally Mathew also likes to play with AIBO.

Design and implement a mental model for AIBO that represents the basis for
showing emotions and actions dur ing interaction with humans in some specified
contexts. The mental model developed needs to be presented in a software
framework that is flexible and open.

Personality Model for Companion AIBO Iulia Dobai

 13

1.4.2 Descr iption of the interaction

 AIBO is able to give emotional response while interacting to humans according to his own
judgment rather then what humans would expect. Therefore AIBO will be careful to satisfy
his needs in turns and show emotions according to this.

1.4.3 The power of a picture

I am so
bored! I wish

I had a
companion!

T = 2 T = 3

I feel so
lonely!!! I am
very sad and
depressed.

T = 4

Finally I have a friend! I
am so happy and I even
managed to pick up the
bone! Wow!!!

AIBO! Let’s play!!!
Follow me

Get a life! I am
still sleeping!

T = 1

AIBO! Let’s
play!!! Follow

Are you out of your
mind? I am sleeping!!!

T = 0

AIBO! Bring
me my

Personality Model for Companion AIBO Iulia Dobai

 14

Personality Model for Companion AIBO Iulia Dobai

 15

2 Background and Theory
“ The Past: Our cradle, not our prison; there is danger as well as appeal in its glamour.

The past is for inspiration, not imitation, for continuation, not repetition.”
Israel Zangwill

In this chapter the author will try to present the various elements that made up the study
conducted in order to reach conclusions and solutions in this project. First we will
introduce the subject of the investigation: AIBO with its hardware and possible
programming environments that are available when we want to create new software for
AIBO. Secondly we will investigate the characteristics of AIBO and especially those of the
software that makes up the Sony Entertainment Robot: AIBO from the point of view of
personality-emotions. Thirdly we will present some conclusions and ideas from the field of
virtual humans, game characters, etc generally models of ideas that helped shape up our
cognitive model for AIBO.

In order to conclude, the following chapters will present a cognitive model that was put in
practice on AIBO. This chapter will present ideas and prerequisite that is required in order
to understand and set the context for the following chapters.

Chapter Overview:

 What or who is AIBO?

 AIBO – Sony’s Entertainment Robot in brief

 From Computers to Actors

 Related Research

Personality Model for Companion AIBO Iulia Dobai

 16

2.1 What or who is AIBO?
AIBO is Sony at its very best, combining its flagship technologies to conceive a fully
autonomous companion to accompany and entertain man in day-to-day life. Sometimes a
picture says more than a 1000 words therefore take a look at Figure1.

Figure 1: AIBO ERS 7

AIBO receives information from the outside world through his sensors: video camera (a
350,000 CMOS image sensor), stereo microphones in its ears, two distance sensor, and
various touch sensors on head, back, chin, paws, acceleration sensor, and a vibration
sensor.

In order to show reactions AIBO is equipped with speaker on its chest, LED Lights (on
face, ears and back) and a series of movable parts: head (3 DOF1), mouth (1 DOF), legs
(4*3 DOF), ears (2*1 DOF) and tail (2 DOF). Apart from this AIBO is also equipped with
a wireless card and a blue LED to show its status. For more information regarding the
physical capabilities of AIBO please refer to Appendix A and the references.[29, 30]

2.2 AIBO – Sony’s Entertainment Robot in brief
The centerpiece of AIBO’s artificial intelligence is the AIBO Mind 2 software, located on a
removable Memory Stick™. This controls AIBO’s behavior and the applications that you
can use via PC or a mobile device. [29, 30]

In day-to-day life, this software enables AIBO to entertain and communicate with you. A
privileged companionship will flourish with you thanks to AIBO cleverly recognizing your
face and voice. When battery life runs low, AIBO will swiftly locate the energy station to
replenish its battery. [29, 30]

With AIBO's skills being located on the Memory Stick, its memory and personality traits
are saved to the onboard memory, making your AIBO unique. The AIBO Mind 2 software
also offers you the choice of nurturing a fresh AIBO from babyhood to adulthood, or
having a mature AIBO, ready fully educated with all AIBO skills. Over time, new skills
can be added to AIBO by upgrading the AIBO Mind2Memory Stick. [29, 30]

1 DOF = Degrees of Freedom

Personality Model for Companion AIBO Iulia Dobai

 17

AIBO is a great companion and a born entertainer. Throw the pink bone, and it will fetch it
for you. The same with the pink ball, AIBO will gladly play with it. AIBO’s skill level can
improve through encouragement from its owner. [29, 30]

With the Navigator interface you can instruct AIBO wirelessly from your PC to even
greater heights of performance. With Navigator remote control, obstacle avoidance and
recovery time is greatly enhanced. [29, 30]

AIBO enjoys music and being a natural performer; it will play your favorite music on
demand, and even dance for you! AIBO plays internet radio, MP3 or CD. You can have
AIBO play a particular CD simply by showing the cover, isn’ t that particularly clever? [29,
30]

Truly autonomous, AIBO can see, hear, feel for itself and walk.
Uniquely skilful, AIBO is able to connect wirelessly with other
electronic devices, transmitting photos, sound files and messages.
AIBO can even record movie clips. [29, 30]

In House Sitting mode, AIBO takes pictures or records sounds from its
Energy Station in response to moving objects, faces, or sounds. When
it detects a movement, face or sound, you can set it to snap a picture
and notify you by e-mail. [29, 30]

Make AIBO adapt to your daily routine, what’s more remind you of it.
Thanks to the Scheduler feature you can import calendars and have
AIBO read the schedules out. There’s no need for a clock radio either
as Scheduler ensures that AIBO will play music at your programmed
wake-up time. [29, 30]

Through sharing your memories, learning your likes, getting to know your environment,
AIBO will become in every way a truly unique individual. Entertaining and comforting you
when you’ re glad, sad or angry. Reflecting a wide range of emotions through its uniquely
LED-guided face, AIBO will become, in fact, your best friend. [29, 30]

The question that arises regarding AIBO is what is its cognitive process? Unfortunately
Sony seems unlikely to ever disclose the algorithms and models that represent the way
AIBO reasons with emotions. Work that was done in our department earlier tried to answer
this question experimentally. Results of the experiments conducted were summarized in the
paper: “Emotional AIBO” by Chi Hyun Angela Lee. According to our experiments the
following were speculated regarding AIBO’s cognitive model:

• The user interaction can be classified into three different categories: positive
(encouragement), negative (scolding) and neutral (commands).

• Positive emotional behaviours include: green LEDs, some white LEDs, tail
wagging, raising a paw to be stroked, dancing, some sound/music playing etc.

• Negative emotional behaviours include: red LEDs, purple LEDs, some white LEDs,
head shaking, some sound/music playing etc.

• However, it seems unlikely that these behaviours are the representation of the
different intensity of AIBO’s emotional states. They are more likely to be random
displays.

Personality Model for Companion AIBO Iulia Dobai

 18

• Positive and negative interactions with user always trigger corresponding emotional
responses in AIBO irrespective of its instinctive state (e.g. even when AIBO is
hungry and is in search for the charge station, or when it is feeling sleepy and is
inactive, it will still react happily when stroked on the back).

• However, these responses and even its emotional state appear to be only momentary,
that is, AIBO does not seem to have an on-going emotional state. For instance,
when AIBO was scolded by being tapped on the third back button, it showed its
anger by flashing red LEDs. However, it soon approached the user and raised its
paw to be stroked. It’s frustration of only few minutes ago seem to have been soon
forgotten.

• The emotional behaviours, such as flashing of the green, purple and red LEDs,
expressed when there was no interaction with the user, that is, the emotional
behaviours linked to the instinctive states of AIBO, seem to be displayed at random
or are displayed at such low probabilistic figure that its patterns are difficult to
recognise. For example, AIBO would flash green LEDs for no apparent reason even
when there is no positive interaction with the user. Further observation may be
needed in order to determine the pattern of these behaviours, if there is a pattern.
[23]

2.3 From Computers to Actors
The social factor of computers was spotted by Fogg awhile ago and thus his interpretation
and classification stands proof for how much more needs to be developed in the field of
human-computer interaction. B.J. Fogg introduced the “ functional triad” [10] that is a
conceptual framework that illustrates the different roles that computing technology can
play from the perspective of the user. The “ functional triad” shows that interactive
technologies can operate in three basic ways: as tools, as media and as social actors. One
basic function of computers is to serve as tools (this is the first corner of the functional
triad). In their role as tools, the goal of computing products is to make activities easier or
more efficient to do or to do things that would be virtually impossible without technology.
Computers also function as symbolic (when they use symbols to convey information, e.g.
text and graphics) and sensory media (when they provide sensory information, e.g. audio).
The third corner of the functional triad depicts the role that computers play as social actors
or living entities. (e.g. digital pets) [10]

TOOL

MEDIUM

SOCIAL ACTOR

The
functional

tr iad

Figure 2: The functional tr iad

Personality Model for Companion AIBO Iulia Dobai

 19

The functional triad [10] :

• Computers as tools – create capability (by making targeted behaviors easier to do,
by leading people through a process, performing calculations or measurements)

• Computers as mediums – provide experience (by allowing people to explore cause-
and-effect relationships, providing people with vicarious experiences that motivate
and by helping people rehearse behavior)

• Computers as social actors – create relationship (by showing and giving feedback,
by modeling a behavior or attitude, by providing social support)

Most computing products are a mix of these three functions and practically computing
products have evolved from being just tools to blends of tools and mediums or tools and
social actors. In our project the computing system that results (a socially responsive AIBO)
is a blending of the two corners of medium and social actor . By framing AIBO in this
category (medium and social actor) we place it on the top layer of computing products
giving it the ultimate role in computing systems.

Extensive research has been put into developing real social actors from computers. This
work was an inspiration for this project. Virtual actors are used nowadays in chat systems
and games. Such an example is the “Conversational Agents” project at MIRALab –
University of Geneva.The model proposed by this project is a layered personality-mood-
emotion model that can be used in generic characters.

A short overview of a few mental models for believable agents or synthetic actors is
presented in [28]. In this paper the authors present the “OZ Project “ that tried to build
synthetic actors to exhibit goal-driven behavior in interactive environments. Even though
this model uses the same OCEAN Model of personality, in this system personality is seen
as a dynamic variable and changes over time. In the “Virtual Theater Project” presented in
the same paper, agent behaves like intelligent actors portraying fictions characters. In this
model only preferences are used and goals and standards are left apart. In the “GULL
Project” of the same paper, the personality is taken much more in serious somehow alike in
our nPME model, but preferences and standards are not accounted for. The last model
presented by the paper is used in conversational agents and relies on personality as seen in
the OCEAN model, on mood. While standards are left out of the model and needs are not
taken into consideration the reasoning is being done solely on actions and not on emotions.
For the implementation the system uses 3 well coupled expert systems. [28]

Finally the mental model that was developed by this project started from an already
existing layered model of personality presented in [20]. The model is used to develop
virtual humans which are then integrated into a chat application. The model uses Bayesian
Belief Networks for implementation and inspired a lot of the decisions made in the
development of the current model including: transforming the five traits of personality in
parameters, using a layered approach for the model, including personality, mood and the
goals, preferences and standards.

Personality Model for Companion AIBO Iulia Dobai

 20

2.4 Related Research
Ever since the release of AIBO, the research community oriented activities on the study
and development of new applications for the robot.

The first research area that exploded after the release of AIBO was AIBO soccer teams.
Currently there are world championships with autonomous AIBOs. Except for the common
hardware our system and the software systems for soccer AIBOs have nothing in common.

Later research was focused on testing interaction with humans as explained in previous
chapter, and conclusions are encouraging research to develop further and more complex
cognitive models. [13]

In the last years research started to concentrate on small problems and address them
separately in order to find better answers. Such problems addressed were: curiosity,
attention, motivation, vision and sound recognition, etc. Sony research lab in Paris
concentrates on learning and motivation, thus their work concentrates on developing a
generic reward system that drives an agent to increase the complexity of its behavior. This
reward system does not reinforce a predefined task, its purpose is to drive the agent to
progress in learning given its embodiment and the environment is which it is placed. [17] A
second focus point is concentrated on motivational principles, thus the experiment
investigates an AIBO that develops visual competences from scratch driven only by
internal motivation. The motivational principles used by the robot are independent of any
particular task, as a consequence the developers believe it can constitute the basis for a
general approach for sensory-motor development.[18]. A third focus research is on verbal
interactions with AIBO. According to this experiment, AIBO learns to interact with
humans using real words. AIBO is able to build a vocabulary concerning the objects it
perceives visually. [16] Further research was conducted in developing curiosity in AIBO.
Therefore the “playground experiment” was started, where AIBO is placed in a child’s
playground and focuses on situations which are neither too predictable nor too
unpredictable. The developers claim that this mechanism of Intelligent Adaptive Curiosity
is the source of autonomous mental development for AIBO.[26]

Other projects investigate different issues regarding two robots like: “ joint attention” in
[19] where the authors conclude that the key for developing joint attention between two
robots is in modeling the mechanism responsible for the emergence of the intentional
stance. Another independent project focused on perception while two AIBO’s interact [3].

While these research activities have been conducted outside of our department, in the MMI
Department of TU Delft several research areas are exploited including: vision and sound
recognition with AIBO’s, fulfilling rescue missions in maze situations by AIBO and
performing watch Dog actions. This is the context in which this project was born.

Personality Model for Companion AIBO Iulia Dobai

 21

3 Modeling a “ brain”
“ Emotion, far from being a biological oddity, is actually an integral part of cognition.
Reasoning and emotions are not separate: in fact, they cooperate.”

Antonio Damasio

This chapter will present the rationale behind the implementation of the system. The
complexity of this project is given by the fact that it does not consist solely on software but
it heavily relies on psychological knowledge and requires the modeling of a cognitive
model that should resemble that of humans. Due to this we encountered also the first major
challenge of the project: the human brain is still an open issue in psychological research.
The main problem in designing a model for human mind is not the limitation of the
machine but the fact that we do not know what the problem is, we do not know what
capabilities humans actually have.

This chapter will concentrate on these aspects of the project presenting first some concepts
and existing models that we used in building up our model like: personality, mood,
standards, goals, emotions, preferences, needs etc. Later we will introduce the cognitive
model for AIBO that we developed - the nPME model. The reader will also find here the
reasons that made us adopt different types of existing models as well as the way these
interact in order to create a working system.

Concepts and ideas like: values, vision, intuition, cur iosity and instinct have been
omitted from the discussion but the existing model does not exclude the possibility of later
integrating them. A lot of questions in these matters will remain though unanswered for the
time being and require close and careful future examination.

Learning and memory are also two issues that are just superficially regarded in this
project and should be later researched in detail.

Chapter Overview:

 Concepts Used

 Personality Model

Personality Model for Companion AIBO Iulia Dobai

 22

3.1 Concepts Used
“ Emotions are the brain's interpretation of reactions to changes in the world.”

Antonio Damasio

Assuming that Damasio is right and changes in the world affect emotions, then all we have
to develop here is a system that models the way the brain interprets these changes and
reacts to them.

Following we will explain the concepts and models that were taken into consideration in
the design of the nPME model for AIBO: personality, mood, needs, goals, preferences and
standards, emotional states and expressions.

3.1.1 Personality

The study of personality includes multiple approaches to the question of who we are and
how and why we are similar and different to other individuals. Some of the ways in which
we study personality are developing descriptive taxonomies of individual differences.

“ Zimbardo defines personality as the psychological qualities that bring continuity to an
individual’s behavior in different situations and at different times. I t is the thread of
continuity in an individual in different situations. Some theories attribute personalities to
stable patterns known as traits, types, and temperaments. Traits are the stable personality
characteristics that are presumed to exist within the individual and guide his or her
thoughts and actions under various conditions.” (Zimbardo)

A trait is a temporally stable, cross-situational individual difference. Currently the most
popular approach among psychologists for studying personality traits is the five-factor
model or Big Five dimensions of personality.

3.1.1.1 The Big Five
The five-factor model of personality asserts that personality differences can be described
by the five independent factors of openness, conscientiousness, extraversion,
agreeableness, and neuroticism.

For all the popularity and evident orienting usefulness of the big five, two issues remain
problematic. The first concerns whether the five traits are independent of each other. A
second and more important issue concerns whether the big five subsume all there is to say
about personality. The answer is almost certainly no: Whereas almost any personality
construct can be mapped onto the big five, you cannot derive every personality construct
from the big five.

Trait North Pole Name South Pole Name

neuroticism negative affectivity, nervousness, anxiety,
emotionality

Emotional stability,
emotional control

extraversion energy, enthusiasm, social adaptability,
assertiveness, sociability, boldness, self-
confidence

Introversion

Personality Model for Companion AIBO Iulia Dobai

 23

openness to experiences Originality, Open-mindedness, Inquiring
intellect, imagination, curiosity,
independence, cultured

Closed to experience, close-
mindedness

agreeableness altruism, affection, conformity, likeability,
friendly, compliance, warmth

Antagonism, coldness,
negativity

conscientiousness control,constraint,dependability,cautiousness,
perseverance,superego, strength, prudence

Lack of direction,
impulsiveness, carelessness,
irresponsibility

Figure 3: Personality Traits in the Big Five Model

(Adapted from John (1999), and Zimbardo (2002))

The acronym OCEAN can be used to help recall the letter designations.

3.1.1.2 Extraversion
Extraversion is marked by pronounced engagement with the external world. Extraverts
enjoy being with people, are full of energy, and often experience positive emotions. They
tend to be enthusiastic, action-oriented, individuals who are likely to say "Yes!" or "Let's
go!" to opportunities for excitement. In groups they like to talk, assert themselves, and
draw attention to themselves.

Introver ts lack the exuberance, energy, and activity levels of extraverts. They tend to be
quiet, low-key, deliberate, and disengaged from the social world. Their lack of social
involvement should not be interpreted as shyness or depression; the introvert simply needs
less stimulation than an extravert does and prefers to be alone. The independence and
reserve of the introvert is sometimes mistaken as unfriendliness or arrogance. In reality, an
introvert who scores high on the agreeableness dimension will not seek others out but will
be quite pleasant when approached.

3.1.1.3 Agreeableness
Agreeableness reflects individual differences in concern with cooperation and social
harmony. Agreeable individuals value getting along with others. They are therefore
considerate, friendly, generous, helpful, and willing to compromise their interests with
others'. Agreeable people also have an optimistic view of human nature. They believe
people are basically honest, decent, and trustworthy.

Disagreeable individuals place self-interest above getting along with others. They are
generally unconcerned with others' well being, and therefore are unlikely to extend
themselves for other people. Sometimes their skepticism about others' motives causes them
to be suspicious, unfriendly, and uncooperative. Agreeableness is obviously advantageous
for attaining and maintaining popularity. Agreeable people are better liked than
disagreeable people. On the other hand, agreeableness is not useful in situations that
require tough or absolute objective decisions. Disagreeable people can make excellent
scientists, critics, or soldiers.

Personality Model for Companion AIBO Iulia Dobai

 24

3.1.1.4 Conscientiousness
Conscientiousness concerns the way in which we control, regulate, and direct our impulses.
Impulses are not inherently bad; occasionally time constraints require a snap decision, and
acting on our first impulse can be an effective response. Also, in times of play rather than
work, acting spontaneously and impulsively can be fun. Impulsive individuals can be seen
by others as colorful, fun-to-be-with, and zany. Nonetheless, acting on impulse can lead to
trouble in a number of ways. Some impulses are antisocial. Uncontrolled antisocial acts not
only harm other members of society, but also can result in retribution toward the
perpetrator of such impulsive acts. Another problem with impulsive acts is that they often
produce immediate rewards but undesirable, long-term consequences. Examples include
excessive socializing that leads to being fired from one's job, hurling an insult that causes
the breakup of an important relationship, or using pleasure-inducing drugs that eventually
destroy one's health.

Impulsive behavior, even when not seriously destructive, diminishes a person's
effectiveness in significant ways. Acting impulsively disallows contemplating alternative
courses of action, some of which would have been wiser than the impulsive choice.
Impulsive behavior also sidetracks people during projects that require organized sequences
of steps or stages. Accomplishments of an impulsive person are therefore small, scattered,
and inconsistent. A hallmark of intelligence, what potentially separates human beings from
earlier life forms, is the ability to think about future consequences before acting on an
impulse. Intelligent activity involves contemplation of long-range goals, organizing and
planning routes to these goals, and persisting toward one's goals in the face of short-lived
impulses to the contrary. The idea that intelligence involves impulse control is nicely
captured by the term prudence, an alternative label for the Conscientiousness domain.
Prudent means both wise and cautious. Others in fact, perceive persons who score high on
the Conscientiousness scale as intelligent. The benefits of high conscientiousness are
obvious. Conscientious individuals avoid trouble and achieve high levels of success
through purposeful planning and persistence. Others also positively regard them as
intelligent and reliable. On the negative side, they can be compulsive perfectionists and
workaholics. Furthermore, extremely conscientious individuals might be regarded as stuffy
and boring.

Un-conscientious people may be criticized for their unreliability, lack of ambition, and
failure to stay within the lines, but they will experience many short-lived pleasures and
they will never be called stuffy.

3.1.1.5 Neuroticism
Freud originally used the term neurosis to describe a condition marked by mental distress,
emotional suffering, and an inability to cope effectively with the normal demands of life.
He suggested that everyone shows some signs of neurosis, but that we differ in our degree
of suffering and our specific symptoms of distress. Today neuroticism refers to the
tendency to experience negative feelings. Those who score high on Neuroticism may
experience primarily one specific negative feeling such as anxiety, anger, or depression,
but are likely to experience several of these emotions. People high in neuroticism are
emotionally reactive. They respond emotionally to events that would not affect most
people, and their reactions tend to be more intense than normal. They are more likely to

Personality Model for Companion AIBO Iulia Dobai

 25

interpret ordinary situations as threatening, and minor frustrations as hopelessly difficult.
Their negative emotional reactions tend to persist for unusually long periods of time, which
means they are often in a bad mood. These problems in emotional regulation can diminish
a neurotic's ability to think clearly, make decisions, and cope effectively with stress.

At the other end of the scale, individuals who score low in neuroticism are less easily
upset and are less emotionally reactive. They tend to be calm, emotionally stable, and free
from persistent negative feelings. Freedom from negative feelings does not mean that low
scorers experience a lot of positive feelings; frequency of positive emotions is a component
of the Extraversion domain.

3.1.1.6 Openness to Exper ience
Openness to Experience describes a dimension of cognitive style that distinguishes
imaginative, creative people from down-to-earth, conventional people. Open people are
intellectually curious, appreciative of art, and sensitive to beauty. They tend to be,
compared to closed people, more aware of their feelings. They tend to think and act in
individualistic and nonconforming ways. Intellectuals typically score high on Openness to
Experience; consequently, this factor has also been called Culture or Intellect. Nonetheless,
Intellect is probably best regarded as one aspect of openness to experience. Scores on
Openness to Experience are only modestly related to years of education and scores on
standard intelligent tests.

Another characteristic of the open cognitive style is a facility for thinking in symbols and
abstractions far removed from concrete experience. Depending on the individual's specific
intellectual abilities, this symbolic cognition may take the form of mathematical, logical, or
geometric thinking, artistic and metaphorical use of language, music composition or
performance, or one of the many visual or performing arts. People with low scores on
openness to experience tend to have narrow, common interests. They prefer the plain,
straightforward, and obvious over the complex, ambiguous, and subtle. They may regard
the arts and sciences with suspicion, regarding these endeavors as abstruse or of no
practical use. Closed people prefer familiarity to novelty; they are conservative and
resistant to change.

Openness is often presented as healthier or more mature by psychologists, who are often
themselves open to experience. However, open and closed styles of thinking are useful in
different environments. The intellectual style of the open person may serve a professor
well, but research has shown that closed thinking is related to superior job performance in
police work, sales, and a number of service occupations.

3.1.1.7 How to use the five factor model
The descr iptions of the 5 personality traits together with the table above are not the
product of this author and do not present the author ’s view on the subject but is text
adapted from psychology literature and summarized in the paper: “ Five factor
Constellations and Popular Personality Types” by Leland R. Beaumont (2003). While
the definitions and descriptions presented do not represent the knowledge of the author
itself the author strongly believes in the correctness of them and intensively used the
knowledge in developing the system and the software. [5

Personality Model for Companion AIBO Iulia Dobai

 26

Figure 4: The big five model and cor relations

3.1.2 Mood

Mood is a conscious and prolonged state of mind that directly controls the emotions. While
emotions are instantaneous, mood is constant for longer time spans [9].

I categorized mood intro 3 basic categories: good, bad and neutral. The emotions
categorized by the OCC model under the negative group are more likely to be expressed
when in bad mood. The same strategy applies for positive group. It is possible though that
our mood forbids us from being expressive – this is the neutral mood. In this mood AIBO
will tend to not change his expression and the expressions will tend to be less intense. The
presence of mood in a well established personality model is doubtless, without mood we
can not properly link personality which is in a sense “eternal” to emotional expressions that
are instantaneous. Unfortunately there isn’ t sufficient literature in psychology that would
allow a systematic theory of mood. Therefore the mood in our model will only have one
interpretation with different values ranging from positive to negative.

The mood model we have used has its fundamentals in the mood model proposed by Lang
in 1995 [21that basically plots mood on a two dimensional system with valence and
arousal as axes. Valence refers to weather the mood is positive or negative and arousal
refers to the intensity of the mood.

3.1.3 Goals, Preferences, Standards

In order to explain the importance of these three concepts in the model we will give the
following example. Let’s imagine AIBO likes bones and his owner gives him a whole
bunch of bones. AIBO should evaluate the consequence of this event for itself, and it will
result in satisfaction since it received a big bunch of bones. In the same time AIBO should

Personality Model for Companion AIBO Iulia Dobai

 27

evaluate the consequence of the event for his owner. (Should result in pity because the
owner lost a whole pile of bones. This however can be correlated with the knowledge that
the owner doesn’ t need/likes bones). In order to do this kind of judgment a robot needs
knowledge. First it has to know the relationship to the user, and it needs to know what this
event means for the user. Going back to strictly the consequences of the event on itself
AIBO should have the following knowledge:

• It should have a goal: “staying alive” to which the bones contribute.

• It should know what kind of actions it can expect from the user – standards.

• It should know weather it likes or not bones - preferences

Since I decided to use the OCC Model as a guiding line for the model, including the
preferences, standards and goals in the model is a must.

By goals we understand tasks orientated objectives that are SMART (simple, measurable,
acceptable, realistic, time frame) (e.g.: AIBO find ball).

By preference we understand appealing ness to aspects of objects (e.g. like/dislike of ball).

By standards we understand approval/disapproval regarding actions of agents. Standards
can focus on self agent or other agents (e.g. approval of being touched on back).

The goals, preferences and standards parameters will be set dynamically based on needs
and personality. Every time changes have occurred in the parameters of needs the goals,
preferences and standards (abbreviated as the GPS system) will also be updated.

3.1.4 Needs

It is generally agreed that the simpler emotions, those whose expression and recognition
Eckman (1972, 1989) has shown to be universal are driven by the basic need of organisms
such as mating, defense or avoidance of predators, and social affiliation [9]. Therefore here
is the theoretical framework we were looking for. In order to develop a realistic AIBO
companion dog that shows emotions in a changing and unpredictable environment we have
to take into consideration his needs. There are a few need theories known in human
psychology but one stands up among all: “Maslow Pyramid of Needs” [24] (see Figure 5).

The use of Maslow Pyramid of Needs is not accidental but based on very solid reasons: it
seems the one most widely accepted, it has been used successfully in other occasions and in
other ways for modeling human behaviors and it is a model simple enough to be
implemented and sufficiently complex to show realistic results. The needs model proposed
by Maslow is based on a structure (the pyramid), is based on some rules and principles that
can easily be translated into implementation and uses priorities that will be in our case a
way to support a priority management system in AIBO.

Personality Model for Companion AIBO Iulia Dobai

 28

Figure 5 Maslow Pyramid of Needs

The pyramid of needs that Maslow introduced as a base for motivation theory contains 5
categories of needs: physiological, safety, love and belonging, self esteem and self
actualization. The first 4 categories of needs have been introduced by Maslow as “deficit
needs” while the last category of needs is known as “being needs” . In our nPME model for
AIBO we will take into consideration only the “deficit needs” since these needs can be met
fully while self actualization needs are seen as growing (a continuous driving
force).Maslow supports our decision by explaining that not everyone ultimately seeks self-
actualization [24]. Maslow's Hierarchy of Needs states that we must satisfy each need in
turn, starting with the first, which deals with the most obvious needs for survival itself.
Only when the lower order needs of physical and emotional well-being are satisfied we are
concerned with the higher order needs of influence and personal development. Conversely,
if the things that satisfy our lower order needs are swept away, we are no longer concerned
about the maintenance of our higher order needs.

To use the pyramid of needs in AIBO’s architecture we translated the different categories
into AIBO specific needs (e.g. physiological needs are represented by the battery level,
etc.). Needs have priorities and act as thermometers, once critical values have been reached
by different categories of needs depending on their priorities they lead to different
structures of goals, preferences and standards. (e.g. once the battery reaches a critical value
of 10 % a new goal with the highest priority is being generated that states: recharge, etc.).

3.1.5 Emotional States

By emotional state I understand a particular state of mind that is reflected visually by way
of an emotional expression.

Both emotional state and emotional expression refers to the same thing. I will use the
emotional categories proposed by the OCC Model [26]. The model categorizes various
emotional states based on positive or negative reactions to events, actions and objects. The
OCC model defines 22 such emotions. Due to the complexity of the model only 12 of these
emotional states will be taken into consideration in this model.

The emotional states are presented in the Figure6:

Positive Negative

Personality Model for Companion AIBO Iulia Dobai

 29

Even though the difference between emotional states and expressions it is big enough, and
it was taken into consideration initially the two were not implemented as such in the system
in order to simplify the prototype.

3.1.6 Emotional Expressions

To reduce the computational complexity and because of the limitations of the robot itself I
will use only 6 basic emotional expressions to represent the emotional states.

Expression State
Joy joy, pride, love, hope, relief,

gratitude
Sadness distress, remorse, disappointment
Anger anger, hate
Fear fear

Figure 7: Emotional Expressions /Emotional States

In addition to these emotional expressions AIBO will also be able to show surpr ise and
disgust. They are not present in the OCC model mainly because they do not involve much
cognitive processing and they do not correspond to reactions.[4]

3.2 Personality Model
“ The ancestor of every action is a thought.”

Ralph Waldo Emerson

Below we will introduce the model that unifies these concepts in a mental model for robots
and virtual characters.

3.2.1 Transforming concepts into modeled pieces

Personality – a continuous thread in the life of the application

Conventional wisdom has long set that our personality is genetic and therefore set in stone
but according to some scientist those five key personality characteristics change throughout
our lives. In the case of robots that don’ t really have a life span, it is acceptable to have a
persistent personality that does not change due to external influences. We based our
decision on Paul Costa Jr. whose work revealed that we don’ t see major personality
changes but we see “nuanced” changes [8] that we consider to be insignificant in the case
of robots. Therefore in the model we introduce, personality is not changed through time
and the values for the 5 dimension of personality are constant through the application.

Joy Distress
Pride Hate
Love Fear
Hope Remorse
Relief Anger
Gratitude Disappointment

Figure 6: Basic Emotional States

Personality Model for Companion AIBO Iulia Dobai

 30

Mood – a slightly changing var iable in the life of a character

Mood is the one variable of the system that is influenced by both changes in personality
and by changes in emotions. Therefore mood is constantly changing with little amounts.
Special care needs to be taken in order to prevent mood from oscillating between extreme
positive and negative values in very short amounts of time.

Emotions

Emotional expressions and states became one single unit in the system that is presented in
this paper (even though the model can encapsulate both concepts). The six emotional
reactions that AIBO can show are: happy, sad, angry, fear, surprise, disgust.

3.2.2 Overview of the model

Until now in the design of virtual humans, agents or game characters, two categories of
personality models were mostly used: PME models that take into consideration
personality, mood and emotions and PE models that are based solely on personality and
emotions.

In designing our nPME model we started with a layered PME architecture as described in
[20]. Here mood is seen as an intermediate layer between personality and emotions and
therefore is influenced by both. Since we want AIBO to act independently in a changing
environment we have to take into consideration his individual needs, therefore we included
in the layered architecture the needs parameter. By adding needs we also had to make some
major changes in the existing architecture and therefore mood is not directly influenced
anymore by neither emotions or personality, but it is indirectly influenced by them as a
consequence of the evaluation of the goals, preferences and standards and the needs factor.

Figure 8 introduces the time based nPME model developed by us that has as ultimate goal
the development of a companion AIBO that acts independently in a changing environment.
According to this design AIBO shows an emotional reaction and will follow a specific set
of actions only if some kind of event triggers the engine that will generate them.

Initial set-up requires values for all traits of personality (that will remain constant) and an
initial set of needs. Every time there is a new set of needs present in the system a small
engine will be activated to update values for goals, preferences and standards. If an event
occurs (by event we understand a registered happening that is detected by AIBO) the
response engine is triggered and based on the evaluation of goals, preferences and
standards and on the current mood a new emotional state and a set of actions results.

Figure 9 presents the initialization of the entire system at moment t=0. At this moment we
have to take into consideration the possibility that no event happens in a certain amount of
time, therefore based on the personality of AIBO and its needs we decide on a few actions
randomly chosen from the list of possible actions. It is important to mention that even if no
event occurs in a specified amount of time an event will be generated. (e.g. the absence of
any human for prolonged amounts of time in the vicinity of an AIBO represents an event
that will lead to an increase of the need for love and belonging and a decrease of the
positive value of mood with a precise amount.)

Personality Model for Companion AIBO Iulia Dobai

 31

Figure 8:nPME model at moment t=i

Figure 9: nPME Model at moment t=0

Personality Model for Companion AIBO Iulia Dobai

 32

Personality Model for Companion AIBO Iulia Dobai

 33

4 A Software Implementation Perspective
“ I have made my world and it is a much better world than I ever saw outside.”

Louise Nevelson

More then anything this system is considered by the author a software development
process. In order to develop a quality system from the point of view of the programming
effort the process was aligned with the Unified Process. (UP)

The UP promotes several best practices, but one stands above the others: iterative
development. In this approach, development is organized into a series of short, fixed-
length (for example, four week) mini-projects called iterations; the outcome of each is a
tested, integrated, and executable system. Each iteration includes its own requirements
analysis, design, implementation, and testing activities. [22]

Although this was not followed thoroughly the approach taken in the development of this
system is an iterative and incremental development

This chapter explains all the software issues that arise without trying to present the
development process neither in the time-line that it took place neither based on the
components is made up of. The system is presented divided on the issues that addressed.
Hopefully the reader will find this approach easy to understand.

Chapter Overview:

 Software premises

 UML Diagrams

 Design Patterns

 Implementation

Personality Model for Companion AIBO Iulia Dobai

 34

4.1 Software premises
“ The greatest challenge to any thinker is stating the problem in a way that will allow a

solution.”
Bertrand Russell

This sub-chapter presents the technical concepts used to develop the prototype for the
system. I used a bottom-up approach in deciding what programming tools and languages I
should use. Starting with the bottom layer that directly communicates to AIBO I made the
decision of using URBI . The reasons behind this are explained below. Further by using
URBI I was faced with choosing a programming language (in between C, C++ and Java)
and an operating system. Choices for development environment were: a Linux machine, a
Windows machine using the Linux emulator: cygwin and a pure Windows machine. I
made my choice for the last one and choose Java to assure flexibility. By choosing Java it
is fairly realistic to later move the application to any other kind of machines including
PDA’s or anything else. (Attention: choosing the development environment (the place
where you do your development) can be different then the environment that you use to test
and run your application.) Making the choice for developing environment forced in a way
making a choice for the architecture of the system therefore it is also described in this
section. Further in development a choice had to be made regarding the method used to
implement the cognitive component. It was obvious that an AI method needed to be used.
Due to time constraints the choice was made for using rule-based systems (the simplest AI
technique). Therefore I made the choice of using Jess for the implementation which is an
expert system shell for java. A very brief introduction to all of these technologies is
presented above. Some of the details regarding them are included in section 4.5.

4.1.1 Programming AIBO

Even though a lot of effort has been put into developing programming kits to aid
development of different types of applications for the AIBO one can find them scarce and
never able to provide everything one might need. Even Sony had put considerable effort in
providing tools but as far as the low-level tool is concerned: Open-R programming,
debugging and developing was found way too complicated by the author (and rather
restrictive then permitting).

More details regarding all of the tools presented above are to be found in the references and
the following web sites: http://www.urbiforge.com/, https://openr.aibo.com/openr/eng/,
http://www-2.cs.cmu.edu/~tekkotsu/ .

4.1.1.1 Sony Development Tools
Although AIBO was created initially as an entertainment robot for the home, it has been
embraced by many academics and researchers looking for a low-cost programmable robot
platform. AIBO is completely programmable at a variety of different levels and is an
excellent platform for research as well as education. Sony has developed a family of
different programming kits for AIBO, suitable for a wide variety of applications.

4.1.1.1.1 Remote Framework

Personality Model for Companion AIBO Iulia Dobai

 35

The AIBO Remote Framework is a Windows PC application development environment
based on Visual C++ with which you can make software that works on a Windows PC. The
software can control AIBO (ERS-7) via a wireless LAN. Commercial usage is allowed, and
the license fee is free. [see 31]

4.1.1.1.2 R-Code SDK

R-CODE is a high-level scripting language for AIBO, similar to BASIC. R-CODE allows
you to very easily create simple programs for AIBO to follow. While it does not allow the
detailed control that the OPEN-R SDK has, what it lacks in power it makes up for in
simplicity. Sony offers freely-available R-CODE interpreters for all AIBO models.
Commercial usage is allowed, and the license fee is free.[see 31]

4.1.1.1.3 OPEN-R SDK

The OPEN-R SDK is a C++ based programming development environment, based on
open-source tools (like gcc), that allows you to make software that works on AIBO
Entertainment Robots. The kit is considered "low-level" and allows you to control
everything from the gain values of AIBO's actuators to retrieving AIBO's camera data and
doing computer vision computations. It is an excellent choice for researchers doing low-
level robotic research. [see 31]

4.1.1.2 Tekkotsu Framework
Tekkotsu is an application framework for robotic platforms. An application framework is
code which handles the low level or routine tasks for you, so that you can concentrate on
whatever is unique to your application. If you are looking to program your AIBO to do
new things, and are comfortable with C++, this may be for you.Tekkotsu has been
designed with portability in mind, and currently runs on the ERS-210, ERS-220, and ERS-
7. Tekkotsu is an object oriented and event passing architecture, similar in design to Java.
Events and class interfaces make it a snap to add new functionality, because you don't have
to edit the framework to add hooks to your code. [see 33]

4.1.1.3 URBI
URBI (Universal Robotic Body Interface) is a scripted language designed to work over a
client/server architecture in order to remotely control a robot or, in a broader definition,
any kind of device that has actuators and sensors. The main characteristics of URBI, which
make it different from other existing solutions, are:

Ø URBI is a low level command language. Motors and sensors are directly read and
set. Although complex high level commands and functions can be written with
URBI, the raw kernel of the system is low level by essence.

Ø URBI includes powerful time or iented control mechanisms to chain commands,
serialize them or build complex motor trajectories.

Ø URBI is designed to be independent from both the robot and the client system. It
relies on TCP/IP or Inter-Process Communication if the client and the server are
both running onboard.

Personality Model for Companion AIBO Iulia Dobai

 36

Ø URBI is designed with a constant care for simplicity. There is no "philosophy" or
"complex architecture" to be familiar with. It is understandable in a few minutes
and can be used immediately.

URBI robot-specific server code and libraries are released under the GNU General Public
License. The URBI Language, the URBI Kernel and the URBI Language Specification are
protected by a separate and specific license. [1]

The main component of the URBI framework is the URBI Server which practically is an
OPEN-R object running on AIBO and accomplishing some tasks. The URBI Server is a C
object compiled with gcc and copied on the memory stick. The server comprises of a
server kernel that is robot independent and a robot specific add-on. The URBI server
receives commands from a client and returns messages to this client. The normal way of
using a URBI controlled robot is to send commands using TCP/IP on the URBI port
(54000) and wait for messages in return. A simple telnet client is enough to do that for
simple applications, otherwise libraries (liburbi) are available in most programming
languages to wrap the TCP/IP sending/receiving job in simple functions.[see 32]

Using URBI with a telnet is too limited. You need to be able to send commands and
receive messages based on tag filter, using a programming language of your choice. This is
what liburbi is made for. There is currently a C++ and java version of liburbi if you want
to control your robot using C++ or Java from an independent device like a PC/PDA and a
liburbi-OPENR version if you want to recompile a liburbi-C++ based program to let it
run on the robot.

To know what you can do with AIBO through URBI, simply check the list of available
devices and their fields and methods. This is already enough to control your robot. But
URBI is more than that. You can give complex motor commands with complex
trajectories, you can set several commands in ser ies or in parallel, you can do some usual
C programming using while, for, if. There are also some advanced features for event
catching (at, whenever). [2]

A schematic approach to the way the entire URBI framework is composed is presented in
Figure 10. The scheme is a representation of all alternatives in URBI rather then a concrete
functional scheme of the system.

URBI Kernel v.0.9.4

AIBO ERS 7 AIBO ERS 2.xx

URBI AIBO ERS
2.xx SERVER

URBI AIBO ERS 7
SERVER

AIBO MEMORYSTICK

SERVER

JAVA
Client

C++ Client

OPEN-R
Client

Matlab
Client

AIBO/PC/PDA

CLIENT

URBI Scripting Language
Figure 10: A schematic approach to URBI

Personality Model for Companion AIBO Iulia Dobai

 37

Actually URBI (Universal Robotic Body Interface) is a client/server based interpreted
language that can be used to control robots or complex systems of any kind. (The author
prefers to call URBI – the URBI scripting language in order to identify it from the rest of
the components of the framework) The URBI language is the core of the framework and it
defines a standard protocol to give commands and receive messages from the machine to
be controlled. The code written in the URBI language that can be executed by AIBO are
called URBI Scr ipts. The creators of URBI provide some example scripts that proved to
be more than helpful in creating new scripts. (please refer to:
http://www.urbiforge.com/urbiscripts.html and to [2] for a specification of the URBI
language)

4.1.2 Why use URBI?
There’s no doubt that all development choices have their advantages and disadvantages. If
the author learned one thing during the development of this project is that the choices you
make have to be tightly related to the outcomes that you expect. Therefore choosing one of
these tools (or any other that will be available in the near future) is a matter of personal
taste combined with well structured reasons related to the goals that you have.
Among the selection criteria that the author took into consideration in choosing a
developing platform one can count: reusability on other platforms and robots, ease of use,
programming language, testing and debugging methods, and flexibility, development
speed.
URBI was preferred for this author because it is a new solution, under development and
continuous improvement. Apart from being practical and offering a big speed in
development this solution was found by the author to be innovative and oriented towards
the future. Future developments in URBI promise to make it “ the choice” for AIBO
programming. (Please refer to http://www.urbiforge.com/whatisurbi.html)
The author wanted to concentrate the attention of this project on a new personality model
and on the implications it has rather then concentrating on developing movements for a
specific kind of robot. In this approach URBI helped a lot, first it is not dependent on
AIBO and thus it will allow for the current prototype (with minor adaptations) to be tested
on other robots also, and second writing scripts that make AIBO do actions is quick, easy
to test and approachable even by non-software developers. Another aspect proffered in
URBI was the division of actions in scripts. Thus AIBO’s actions can be divided in small
sub-actions that can be implemented by very small URBI scripts. Taking advantage of the
fact that URBI scripts are represented as Strings in java, the author created a library of
scripts that can be concatenated in order to create complex AIBO actions.
For example in creating an emotion for AIBO, taking “happiness” as an example the
following scripts have been used:

St r i ng HappyEmot i on = “ ” ;
…
HappyEmot i on = Face. HAPPY(1) + " &" + Head. BARK(3. 0) + " &" + Tai l . WAG(3, 20) + " &" +
Speak. BARKI NG(3) + " ; wai t 2000; " ;

Personality Model for Companion AIBO Iulia Dobai

 38

So the string that represents the command for an emotion is a concatenation of smaller
commands and time operators. For example Face.HAPPY(1) returns a string that looks like
this:

where sInt is the string representation of the intensity of the emotion that is given as a
parameter.
The library that sums all the URBI scripts used in this system is called RobotOutput and a
Java API is available while the structure is presented in Appendix E.

4.1.3 Architecture
Choosing URBI had its consequences on the architecture of the system. Therefore I
decided to place URBI Server on AIBO and don’ t bring any modifications to it and in
return build the mind from AIBO on liburbi-java on a PC. While the system has the
configuration of a remote control it runs differently and does not need human input. The
unfortunate consequence of this system is that AIBO by itself is just a piece of hardware,
only wirelessly connected to the PC it ketches life.

Figure 11: System Architecture

4.1.4 Java

In the development process of this system one major programming language was used:
Java version 1.4. There are intrinsic and extrinsic reasons for choosing Java over other
development environments or programming languages.

The intrinsic reasons for using java are practically the reasons that made is successful as
stated by Bruce Eckel in [8].

Ø The reason Java has been so successful is that the goal was to solve many of the
problems facing developers today. The goal of Java is improved productivity. This
productivity comes in many ways, but the language is designed to aid you as much
as possible, while hindering you as little as possible with arbitrary rules or any
requirement that you use a particular set of features. Java is designed to be
practical; Java language design decisions were based on providing the maximum
benefits to the programmer.

Ø Classes designed to fit the problem tend to express it better. This means that when
you write the code, you’ re describing your solution in the terms of the problem

St r i ng sI nt = St r i ng. val ueOf (i nt ensi t y) ;
HAPPY = " l edF7. val = " + sI nt + " | l edF8. val = " +sI nt +" | l edF11. val = " +sI nt +" |
l edF12. val = " +sI nt +" | modeG. val = 1" ;

Personality Model for Companion AIBO Iulia Dobai

 39

space rather than the terms of the computer, which is the solution space. You deal
with higher-level concepts and can do much more with a single line of code.

Ø The other benefit of this ease of expression is maintenance, which (if reports can be
believed) takes a huge portion of the cost over a program’s lifetime. If a program is
easier to understand, then it’s easier to maintain. This can also reduce the cost of
creating and maintaining the documentation.

Ø The fastest way to create a program is to use code that’s already written: a library.
A major goal in Java is to make library use easier. This is accomplished by casting
libraries into new data types (classes), so that bringing in a library means adding
new types to the language. Because the Java compiler takes care of how the library
is used—guaranteeing proper initialization and cleanup, and ensuring that functions
are called properly—you can focus on what you want the library to do, not how you
have to do it.

Ø Error handling in C is a notorious problem, and one that is often ignored—finger-
crossing is usually involved. If you’ re building a large, complex program, there’s
nothing worse than having an error buried somewhere with no clue as to where it
came from. Java exception handling is a way to guarantee that an error is noticed,
and that something happens as a result.

Ø Many traditional languages have built-in limitations to program size and
complexity. BASIC, for example, can be great for pulling together quick solutions
for certain classes of problems, but if the program gets more than a few pages long,
or ventures out of the normal problem domain of that language, it’s like trying to
swim through an ever-more viscous fluid. There’s no clear line that tells you when
your language is failing you, and even if there were, you’d ignore it. You don’ t say,
“My BASIC program just got too big; I’ ll have to rewrite it in C!” Instead, you try
to shoehorn a few more lines in to add that one new feature. So the extra costs come
creeping up on you.

Ø Java is designed to aid programming in the large—that is, to erase those creeping-
complexity boundaries between a small program and a large one. You certainly
don’ t need to use OOP when you’ re writing a “hello world” style utility program,
but the features are there when you need them. And the compiler is aggressive
about ferreting out bug-producing errors for small and large programs alike.

The biggest issue with Java is performance. Interpreted Java has been slow, even 20 to 50
times slower than C in the original Java interpreters. This has improved greatly over time,
but it will still remain an important number. Given the fact that our system need to perform
as a real-time system the question of speed was crucial but I decided to take the risk.

The extrinsic reasons for using java:
Ø Java is platform independent, meaning that it should have little problems running

on a handheld or any other platform in the future (including other future robots,
etc).

Ø There is a lot of knowledge available about how to handle problems that may arise
and the author feels the most comfortable with this language.

Ø The availability of a package of URBI classes written in Java (liburbi_java_0.9.1
that was a major speed up in the development).

Personality Model for Companion AIBO Iulia Dobai

 40

4.1.5 Rule-based systems

Rule-based programs are everywhere. Their applications include everything from mail
filtering to order configuration, and from monitoring chemical plants to diagnosing medical
problems. Rule-based programs excel at solving problems that are difficult to solve using
traditional algorithmic methods, and they work even when the input data is incomplete. A
rule is a kind of instruction or command that applies in certain situations. [Jess in Action]
Using this very general definition, you might conclude that all the knowledge you have
about the world can be encoded as rules. Experience shows that this is often (but not
always) the case. In general, any information you can think about in logical terms can be
expressed as rules. Rules are a lot like the if-then statements of traditional programming
languages. The if part of a rule is often called its left-hand side (often abbreviated LHS),
predicate, or premises; and the then part is the right hand side (RHS), actions, or
conclusions. The domain of a rule is the set of all information the rule could possibly work
with. A rule-based system is a system that uses rules to der ive conclusions from
premises.

Expert systems, rule-based computer programs that capture the knowledge of human
experts in their own fields of expertise, were a success story for artificial intelligence
research in the 1970s and 1980s. Early, successful expert systems were built around rules
(sometimes called heuristics) for medical diagnosis, engineering, chemistry, and computer
sales. Today, general rule-based systems, both those intended to replace human expertise
and those intended to automate or codify business practices or other activities, are a part of
virtually every enterprise.

A typical rule engine contains:
Ø An inference engine
Ø A rule base
Ø A working memory

The inference engine, in turn, consists of:
Ø A pattern matcher
Ø An agenda
Ø An execution engine

The inference engine controls the whole process of applying the rules to the working
memory to obtain the outputs of the system.
The rule base contains all the rules the system knows
You also need to store the data your rule engine will operate on. In a typical rule engine,
the working memory, sometimes called the fact base, contains all the pieces of information
the rule-based system is working with. The working memory can hold both the premises
and the conclusions of the rules.
Your inference engine has to decide what rules to fire, and when. The purpose of the
pattern matcher is to decide which rules apply, given the current contents of the working
memory.
Once your inference engine figures out which rules should be fired, it still must decide
which rule to fire first. The list of rules that could potentially fire is stored on the agenda.
The agenda is responsible for using the conflict strategy to decide which of the rules, out of
all those that apply, have the highest priority and should be fired first.

Personality Model for Companion AIBO Iulia Dobai

 41

Finally, once your rule engine decides what rule to fire, it has to execute that rule’s action
part. The execution engine is the component of a rule engine that fires the rules.

4.1.6 Jess

The reasoning component of AIBO’s mind is developed using Jess [JESS]. Jess stands for
Java Expert System Shell. In short Jess is an expert system that works with facts, and rules
that are automatically triggered when the conditions are met. Jess is actually the Java
version of CLIPS [CLIPS], with some added functionality to cooperate better with other
Java classes. The fact that Jess is written in Java made the choice of using it easy. It should
give little problem to embed the Jess component in the rest of the application, written in
Java.

Jess uses a very efficient version the rules finding facts algorithm, known as the Rete
algorithm. Briefly, the Rete algorithm eliminates the inefficiency in the simple pattern
matcher by remembering past test results across iterations of the rule loop. Only new or
deleted working memory elements are tested against the rules at each step. The Rete
algorithm is implemented by building a network of nodes; each representing one or more
tests on a rule LHS. [11]

In the current prototype AIBO’s central cognitive unit comprises of two coupled rule-based
systems where the first one generates the fact-base for the second one. In the same way the
second rule-based system modifies facts in the first one and resumes its execution. The two
rule-based systems run in parallel if necessary and control each other’s execution. The two
expert systems present here extensively use shadow facts (Java Beans) and comprise of
very large rule-bases that are set according to the goals of any specific application.

4.2 UML Diagrams
“ The indispensable first step to getting the things you want out of life: decide what you want.”

Ben Stein

The Unified Modeling Language (UML) is a modeling language for specifying,
visualizing, constructing, and documenting the artifacts of a system intensive process. It
was originally conceived by Rational Software Corporation and three of the most
prominent methodologists in the information systems and technology industry, Grady
Booch, James Rumbaugh, and Ivar Jacobson (the Three Amigos). The language has gained
significant industry support from various organizations via the UML Partners Consortium
and has been submitted to and approved by the Object Management Group (OMG) as a
standard (November 17, 1997). [22]

Diagrams depict knowledge in a communicable form. The UML provides the following
diagrams, organized around architectural views, regarding models of problems and
solutions:

• The User Model View
o Use case diagrams depict the functionality of a system.

• The Structural Model View
o Class diagrams depict the static structure of a system.
o Object diagrams depict the static structure of a system at a particular time.

Personality Model for Companion AIBO Iulia Dobai

 42

• The Behavioral Model View
o Sequence diagrams depict the specification of behavior.
o Collaboration diagrams depict the realization of behavior.
o State diagrams depict the status conditions and responses of participants

involved in behavior.
o Activity diagrams depict the activities of participants involved in behavior.

• The Implementation Model View
o Component diagrams depict the organization of solution components.

• The Environment Model View
o Deployment diagrams depict the configuration of environment elements and

the mapping of solution components onto them.

Fundamentally, diagrams depict knowledge (syntax).

Because the foundation of the UML constitutes the necessary and sufficient engineering
practices for problem solving, processes that utilize the UML are assured of resting upon a
foundation that provides the potential for success.[22]

In the next sections we will describe the system according to these five model views, and
will use one UML diagram per model. Due to the complexity of the software presented and
to only some of the most relevant diagrams will be shown and explained.

4.2.1 The user model view

Use cases are used during requirements elicitation and analysis to represent the
functionality of the system. Use cases focus on an external view of the system.

A Use Case represents a discrete unit of interaction between a user (human or machine)
and the system. A Use Case is a single unit of meaningful work; for example login to
system, send input, reason, are all Use Cases. Each Use Case has a description which
describes the functionality that will be built in the proposed system. A Use Case may
'include' another Use Case's functionality or 'extend' another Use Case with its own
behavior.

Use Cases are typically related to 'actors'. An Actor is a user of the system. This includes
both human users and other computer systems. An Actor uses a Use Case to perform some
piece of work which is of value to the business. The set of Use Cases an actor has access to
define their overall role in the system and the scope of their action.

Figure 12 presents the Use Case diagram developed in the analysis phase of this project.

Actors:
• Human User- under this category we include: any human, robot or animal that will interact

in any way with AIBO: family, best-human friend, other AIBOs, other animals, etc
• AIBO - this actor symbolizes practically the physical AIBO with it’s sensors and actuators.

This actor is practically represented by the URBI Server present on AIBO.
• AIBO Brain – this actor is practically the central unit of the robot that takes all decisions

regarding the actions and emotions of the robot itself. This actor is practically represented
by the URBI Client running on a PC/PDA.

Personality Model for Companion AIBO Iulia Dobai

 43

Figure 12: Use Case Diagram

Use-cases
• Touch AIBO – The human actor can interact with the physical robot by touching

one of his sensors.
• Give direct command to AIBO – The human actor interacts with the physical robot

by giving AIBO a direct command. In this prototype the human gives AIBO a
direct command by activating a window and choosing one of the possible
predefined commands.(“play ball” , “ follow me”, etc) We expect that in the future
AIBO will receive commands from humans by recognizing designated cards or
designated voice commands.

• Give characterization word to AIBO - The human actor interacts with the physical
robot by encouraging or discouraging him. In this prototype the human praises
AIBO by activating a window and choosing one of the possible predefined
commands (“good boy” , etc). We expect that in the future humans will praise AIBO
through designated cards or voice commands.

• Send Input – AIBO Server monitors all sensors and sends corresponding messages
to AIBO Client.

• Receive Response – AIBO Server receives from AIBO Client commands to be
executed by actuators.

• Execute Action – AIBO Server interprets the commands received and activates the
corresponding actuators resulting in actions like motions, etc

• Show Emotion - AIBO Server interprets the commands received and activates the
corresponding actuators resulting in displaying an emotion. (a combination of small
movements of body parts, sound and LEDS)

• Receive Input – AIBO Client receives from the Server messages representing
sensor inputs.

Touch AIBO

give caracterization word to AIBO

Human User

give direct Command to AIBO

AIBO_Brain

ReceivesInput

Reasons

SendsResponse

ExecutesAction

ReceivesResponse

ShowsEmotion

AIBO

SendsInput

Personality Model for Companion AIBO Iulia Dobai

 44

• Reason – AIBO Client judges based on the inputs he receives and the constant
elements in the system resulting in reactions.

• Send Response – AIBO Client takes the reaction outputted by the reasoning use
case and sends it back to the server for interpretation and execution.

4.2.2 The structural model view
The Structural Model is at the core of object-oriented development and design - it
expresses both the persistent state of the system and the behavior of the system. A class
encapsulates state (attributes) and offers services to manipulate that state (behavior). Class
Diagrams are used to describe the structure of the system. Classes are abstractions that
specify the common structure and behavior of a set of objects. Objects are instances of
classes that are created, modified and destroyed during the execution of the system. An
object has a state which includes the values of its attributes and its relationships with other
objects.

Due to the complexity of the system the classes are practically divided in a few class
diagrams presented and explained in the following pages.

First the author will introduce the class diagram for the sub-unit that controls the running of
the entire system. The sub-unit is symbolically named Main (see Figure 13), even though it
does not exist as an entity. In this diagram are presented just the classes that have a central
role in the running of the entire system: AIBOClient and CompanionAIBO.

AIBOClient is a singleton class that manages the connection to the server on AIBO. This
class initializes UClient from liburbi and has a RobotCallback attribute. All
communication with AIBO is made through this class. AIBOClient uses RobotOutput
package that is a collection of commands that can be interpreted by the Server on AIBO.
One of this classes attribute is <COMMANDS> a string that contains at any given time the
string that is sent to AIBO for execution. Any class that needs to send commands to AIBO
has to append the command string to <COMMANDS> (which is static) and then call the
method <SendCommands()>. For explanations regarding a singleton class and the
singleton pattern please refer to section 4.4.1.

RobotCallback is the class that implements CallbackListener interface from liburbi
package. Its role is to signal AIBOClient that AIBO have finished executing the previous
command.

CompanionAIBO is the class that contains the main of the entire system and in the same
time is the class that initializes and runs the main threads of the system. Indirectly
CompanionAIBO initializes the entire system in a ready to run state.

These classes have been included in package companionAIBO solely for organizational
purposes.

Personality Model for Companion AIBO Iulia Dobai

 45

AIBOClient

client : UClient
dog : String
call : RobotCallback
callbackName : String
COMMANDS : String
busy : boolean
<<singleton>> _instance : AIBOClient

<<constructor>> AIBOClient()
Instance:AIBOClient()
setDog()
getDog()
getClient:UClient()
sendCommands()
initialize()
destroy()

CompanionAIBO

pRete
gpsRete
eventsGroup

<<constructor>> CompanionAIBO()
main()

<<main>>

RobotCallback

actionPerformed()

engines
<<subsystem>> eventGenerators

UCallbackListe
ner

(from l iburbi)

AIBOException
<<trow>>

UClient
(from l iburbi)

RobotOutput

<<import>>

<<instantiates>>

<<implements>>

<<has a>>

<<import>>

<<import>>

Class Diagram for package
<CompanionAIBO>
This package is the "main" of the system.

import java.io.*

Figure 13: Class Diagram for Main

The system includes a package that has the responsibility of initializing the cognitive
module of AIBO. This package makes up the initialization component. The class diagram
for this package is presented in Figure14.

InitPersonality has the responsibility of reading a text file (traits.txt) that contains the
values for the five traits of personality.
InitNeeds has the responsibility of reading a text file (needs.txt) that contains the values for
the 6 need layers in Maslow’s pyramid of needs.

traits.txt

O = openess 0
C = consci ent i ousness 0
E = ext r aver si on 75
A = agr eabl eness 85
N = neur ot i c i sm 60

needs.txt

BATTERY = 0 1
SAFETY = 0 2
LOVE = 40 3
BELONGI NG = 40 3
ACHI EVEMENT = 60 4
RECOGNI TI ON = 60 4
FULLFI LMENT = 60 5

Personality Model for Companion AIBO Iulia Dobai

 46

InitPersonality

trait : Properties
O : String []
C : String []
E : String []
A : String []
N : String []

<<constructor>> InitPersonality()
setTraits()
tokanize()
getTrait()
initializePersonality()
defaultPersonality()

InitNeeds

ba : String []
sa : String []
lo : String []
be : String []
ac : String []
re : String []
trait : Properties

<<constructor>> InitNeeds()
setTraits()
tokanize()
getNeed()
initializeNeeds()
defaultNeeds()

traits.txt

needs.txt

1
1

<<reads>>

11
<<reads>>

Package <initialization>
Class Diagram

import java.io.*
import java.util.*

import java.io.*
import java.util.*

InitializePersonality

initializePersonality()
defaultPersonality()

InitializeNeeds

initializeNeeds()
defaultNeeds()

InitMood

InitMood()
initializeMood()
defaultMood() InitializeMood

initializeMood()
defaultMood()

Figure 14: Class Diagram for package <initialization>

Package eventGenerators contains the classes that control the generation of events (input)
upon which AIBO reasons (see Figure15). Each of the event generators runs in it’s own
thread that are controlled by a thread group. Thread groups provide a mechanism for
collecting multiple threads into a single object and manipulating those threads all at once,
rather than individually.
EventsGroup instantiates all threads that generate events and starts them. The start function
is only called once in the system. This group dies only when the system dies since we want
the brain continuously listening for events.

Personality Model for Companion AIBO Iulia Dobai

 47

SensorEvents has the responsibility of creating events that come from the external sensors
of AIBO (touch, distance).
EventGenerator throws events that relate to internal factors in AIBO: timer and battery.
CaracterizationGenerator creates characterization events received through the
CaracterizationForm from the user.
DirComGenerator creates command events received through the DirectCommandsForm
from the user.
All event generator threads instantiate event classes contains in package engines.events.

SensorEvents

uClient : UClient
dog : String
callB : CallbackListener

<<Thread>> SensorEvents()
getClient()
run()

<<Thread>>

EventsGroup

<<Thread>> intE : Thread
<<Thread>> extE : Thread
<<Thread>> dirCom : Thread
<<Thread>> caract : Thread
<<DaemonThread>> events : GroupThread

<<constructor>> EventsGroup()
getEvents()
start()

EventGenerator

date : Date
ie : InternalEvent

<<constructor>> EventGenerator()
run()

<<Thread>>

DirectCommandsForm

dc : DirectCommand

DirComGenerator

directCommandsForm : DirectCommandsForm

<<constructor>> DirComGenerator()
run()

<<Thread>>

CaracterizationGenerator

caractForm : CaracterizationForm

<<constructor>> CaracterizationGenerator()
run()

CaracterizationForm

caract : Caracterization

CallbackListener

extEvent : ExternalEvent

actionPerformed()

AIBOExceptions

<<throws>>

engines
<<subsystem>>

engines.events

engines.gps
<<import>>

<<throw>>

<<throw>>

Figure 15: Class Diagram for package <eventGenerators>

Below we present the central unit of the system: the brain that reasons on input and
generates reactions (actions and emotions). This unit is comprised in package engines that
contains two other sub-packages: engines.events and engines.gps. As was explained before
the central unit comprises of two rule-based systems that are tightly coupled and that run in
parallel. The functioning of the two rule-based systems is explained in section 4.5.3.
Personality, Mood, Needs and Emotion are all classes that represent circumstances for the
reasoning. They have been implemented as Java Bean components (see section on Java
Beans) all implement the Serialisable interface in order to assure a coherent functioning of
the system. Personality, Mood and Needs are all singleton classes (see section on Singleton

Personality Model for Companion AIBO Iulia Dobai

 48

Pattern) since we want to allow the existence of only one instance of these classes in the
system. The existence of two Personality objects in the system would compromise the
entire functioning therefore the singleton pattern enforces the initialization of solely one
object.

The two rule-based systems are encapsulated in two .clp files: persRules.clp and
gpsRules.clp. These two expert systems are wrapped in two threads that control their
execution in the system. The two expert systems run in an infinite loop in parallel until the
system is stopped by an external factor. PersThread and GPSThread both are thread that
instantiate a Rete object. PersThread is started by the main class of the system:
CompanionAIBO. GPSThread is started by PersThread and further the two threads control
each others sleeping and resume time.

engines.events
engines.gps

GPSThread

rete : Rete

GPSThread()
makeFact()
makeFact()
makeFact()
makeFact()
run()

<<Thread>>

PersThread

rete : Rete

run()

<<Thread>>

Emotion

<<final>> HAPPY : int
<<final>> SAD : int
<<final>> ANGRY : int
<<final>> FEAR : int
<<final>> DISGUST : int
<<final>> SURPRISE : int
type : int
intensity : int
pcs : PropertyChangeSupport

<<implicit constructor>> Emotion()
<<constructor>> Emotion()
getType()
setType()
getIntensity()
setIntensity()
addPropertyChangeListener()
removePropertyChangeListener()

<<Bean>>
Mood

MIN : int = -50
MAX : int = 50
_instance : Mood (Logical View::Mood)
valence : int
arousal : int
pcs : PropertyChangeSupport

<<constructor>> Mood()
Instance()
getValence()
setValence()
getArousal()
setArousal()
toString()
increaseValence()
decreaseValence()
increaseArousal()
decreaseArousal()
addPropertyChangeListener()
removePropertyChangeListener()

<<Bean>>

Personality

NEUROTICISM : int
OPENESS : int
CONSCIENTIOUSNESS : int
EXTROVERT : int
AGREABLENESS : int
_instance : Personality
pcs : PropertyChangeSupport

<<constructor>> Personality()
Instance()
toString()
getNeuroticism()
getOpeness()
getConscientiousness()
getExtrovert()
getAgreableness()
addPropertyChangeListener()
removePropertyChangeListener()

<<Bean>>

Needs

battery
safety
love
belonging
accomplishment
recognition
_intance
pcs : PropertyChangeSupport

<<constructor>> Needs()
Instance()
toString()
getBattery()
getSafety()
getLove()
getBelonging()
getAccomplishment()
getRecognition()
setRecognition()
setAccomplishment()
setBelonging()
setLove()
setSafety()
setBattery()
addPropertyChangeListener()
removePropertyChangeListener()

<<Bean>>Serializable

jess

persRules.clpgpsRules.clp

Class Diagram for
package <engines>

Figure 16: Class Diagram for package <engines>

Part of package engines is engines.gps. The package is fairly simple and not presented in
detail. It practically encapsulates the concepts of preferences, standards and goals.

Personality Model for Companion AIBO Iulia Dobai

 49

Everything has been created as a bean in order to ensure that object that instantiate these
classes can be used by the two expert systems and in the same time they can be accessed by
external applications to be used in other contexts. This is one of the key elements that
confer to this system flexibility and in the same time extensibility. For example it would be
easy to collect all preferences in a data structure and output results in other application or
do some other kind of operation with them. Classes Goal, Preference and Standard extend
the main class GPS that contains all the common attributes of the child classes.

Class Diagram for
package <eng ines.gps>

GPS

value : int
name : String
<<final>> MINV : int = -100
<<final>> MAXV : int = 100
<<final>> MINT : int = 0
<<final>> MAXT : int = 7200000
pcs : PropertyChangeSupport

GPS()
GPS()
GPS()
GPS()
setValue()
setName()
testValue()
toString()
getName()
getValue()
addPropertyChangeListener()
removePropertyChangeListener()

<<Bean>>

Goal
<<Bean>> Preference

category : int

<<Bean>>
Standard

action : int
agent : int

<<Bean>>

PreferenceC
ategory Action

1..1

1..1

<<has a>>

1..1

1..1

<<has a>>

Serializable

(from Logical View)

AIBOExceptions
(from Logical View)

1..1

1..1

<<has a>>

Figure 17: Class Diagram <engines.gps> (not-detailed)

In the same global package engines, I also included a sub-package engines.events. This
package includes all the possible events that can be signaled to the reasoning component.
As in the case of the engines.gps package, there is a parent class Event that is inherited by
all categories of events: internal, external, direct commands and characterizations. Also all
classes are Java Beans in order to be able to use the instances of the class as facts in the
expert system and in the same time are able to handle the object separately as needed. In
the same way the child classes implement the Serializable interface in order to make sure
that only one access is permitted at a given time. The class diagram for this package is

Personality Model for Companion AIBO Iulia Dobai

 50

presented in Figure 18. Details regarding the contents of this package are to be found in
Appendix B.

Event

counter : int
eventName : String
ID : int
eventTime : Long
pcs : PropertyChangeSupport

<<constructor>> Event()
getEventName()
setEventName()
getID()
setID()
getEventTime()
setEventTime()
addPropertyChangeListener()
removePropertyChangeListener()

InternalEvent

eventGenerator : int

<<Bean>>
ExternalEvent

eventGenerator : int

<<Bean>>

Caracterization
<<Bean>>

DirectCommand
<<Bean>>

Serialize

import java.io
import java.util
import java.beans

AIBOExceptions
(from Logical View)

Action
(from engines.gps)

<<static>>

<<access>>

Class Diag ram for package
<eng ines.ev ents>

Figure 18: Class Diagram for package <engines.events> (not-detailed)

4.2.3 The behavioral model view
UML provides a graphical means of depicting object interactions over time in Sequence Diagrams.
These typically show a user or actor, and the objects and components they interact with in the
execution of a use case. One sequence diagram typically represents a single Use Case 'scenario' or
flow of events. Sequence diagrams are an excellent way to document usage scenarios and to both
capture required objects early in analysis and to verify object usage later in design. Sequence
diagrams show the flow of messages from one object to another, and as such correspond to the
methods and events supported by a class/object.
A sequence diagram is presented below to give an overview of the way objects mainly in the
“ reason” use-case are interacting between themselves and with the other components of the system.
(Please consider this an overview diagram made in order for the reader to understand the way the
system is created. The diagram presented below is not a detailed sequence diagram for any of the
use-cases)
The second expert system is initialized by the first expert system when this is creating part of its
fact-base. Then they both go to sleep until an event generator throws to the second expert system an

Personality Model for Companion AIBO Iulia Dobai

 51

event. This starts the pattern matching and executes one of the rules. Executing a rule has some
consequences one of them being starting an interpreting thread and the second one being waking up
the first expert system to execution. The first expert system then updates the fact-base for the
second one.

EventGenerators

Initialization ExpertSystem1 Expert System 2

Interpreters

Figure 19: Sequence Diagram

Activity diagrams are used to show how different workflows in the system are constructed, how they
start and the possibly many decision paths that can be taken from start to finish. They may also illustrate
the where parallel processing may occur in the execution of some activities.
The following activity diagram gives an overview of the main threads in the application. (Please
consider this a scheme for an actual activity diagram. The diagram is presented below just to make sure
the reader understands the way the threads are scheduled in the application)
The application starts and the first things it does is to take care to create a connection to the
robot AIBO, to initialize the first expert system and to start the event generators. The
application terminates when the event generators stop running. All event generators are
grouped in a thread group. Each event generator owns its own thread but this is not shown
in the diagram. The two rule-based engine threads run in parallel in an endless loop and are
destroyed only when there are no more event generators that send them events. The entire
engine is awakening only when an event is caught; in the absence of any events being
caught the two engines are sleeping and waiting for events to activate them. In the
eventuality of events coming in very quickly the processor allocates time is turns to each
thread creating the impression of a parallel application.

Personality Model for Companion AIBO Iulia Dobai

 52

startEventGener
ators

throw an event

close
eventGenerators

receive robot
states

destroy threads

destroy connection to
AIBO

Initialize PERS
rule-based system

resume
PERSThread

fire some rules

change facts in GPS
rule-based system

start GPS
rule-based system

sleep inference
engine

match event

catch event

fire rule

create Emotion
or Activity

change facts in PERS
rule-based system

resume
GPSThread

start interpreter
Thread

interpret emotion or
action

send command
to AIBO

sleep thread

connect to
Robot

send robot state

receive
command

RobotConnec tionin terpretati onGPSThreadPers ThreadEv entGenerators GroupM ain

Figure 20: Activity Diagram

4.2.4 The implementation model view

Component Diagrams:
The component model illustrates the software components that will be used to build the system.
These may be built up from the class model and written from scratch for the new system, or may be
brought in from other projects and 3rd party vendors. Components are high level aggregations of
smaller software pieces, and provide a 'black box' building block approach to software construction.

A component represents a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces. It may, for example, be source
code, binary, or executable. Examples include executables such as a browser or HTTP server, a
database, a DLL, or a JAR file. [22]

Personality Model for Companion AIBO Iulia Dobai

 53

initialization

RobotOutput.jar

liburbi.jar

AIBOException.
jar

jess6.jar

CompanionAIBO
<<Application>>

CaracterizationForm DirectCommandForm

engines.gps
<<Java Beans>>

engines.events
<<Java Beans>>

engines
<<Application>>

eventGenerators

interpreters

Figure 21: Component Diagram

Package Diagrams:
Even though Package Diagrams are not a compulsory part of a correctly modeled system,
in this case the author presents the diagram in order to make the system more
understandable for the reader.
Figure 22 presents an overview of the units that make up the entire system that resides on
the PC. The URBI Server and the software that runs on the AIBO will not be presented
since it was not altered in any way by the author and is presented in the literature
referenced.
Since the Response and Reasoning units are comprised of more packaged that are
correlated are presented in detail in Figure 23 and 24. These diagrams are important mainly
to explain the coupling of the different parts of the system and their roles in the
architecture.
Practically the system is based on a input-reason-response architecture. Where input is
encapsulated in a eventGenerator package, reason is a complex framework that comprises
of more packages and response is a unit made up on more output packages. There are two
external components being used: liburbi that is a package that offers an easy link towards
the URBI Server on AIBO, and jess6 which is a package used to create the two rule-based
systems in the reasoning component.
Package eventGenerators – contains all threads and classes that encapsulate the
mechanisms that transform internal and external happening in events that are recognizable
by the central reasoning unit.

Personality Model for Companion AIBO Iulia Dobai

 54

Package AIBOException is a package that contains all possible exceptions thrown by our
system. A class diagram is not presented since all exceptions inherit java.Exception and the
diagram and implementation is trivial.
Unit Reasoning comprises of packages: initialization, engines, engines.gps and
engines.events.

Figure 22: Programming Units Diagram: Companion AIBO Overview

Ø Package initialization comprises of the classes and external files that assure the

initialization of the circumstances for reasoning: personality and needs.
Ø Package engines comprises of the thread classes that assure the running of the central

unit of the system: AIBO’s brain. The two rule based systems running in parallel are
present here.

Ø Package engines.gps contain all the classes that instantiated represent facts in the first
rule-based systems (goals, preferences and standards).

Ø Package engines.events contains all the classes that encapsulate possible events that are
thrown into the system by the event generators and that instantiated represent facts in
the second rule-based system. (Internal and external events, etc)

Unit Response comprises of packages: interpreters and RobotOutput

Personality Model for Companion AIBO Iulia Dobai

 55

Ø Package Interpreters is a trivial containing just two classes that act as dictionaries in-
between the results of the reasoning component and the messages sent to the server.

Ø Package RobotOutput compiles in java class files strings representing URBI – AIBO
commands. This package is presented in detail in Appendix D.

Class diagrams for all these packages are described in section 4.3.2 therefore no further
details will be added.

Figure 23: Package Diagram: Reasoning Component

Figure 24: Package Diagram: Response Component

4.2.5 The environment model view

The Physical/Deployment Model provides a detailed model of the way components will be
deployed across the system infrastructure. It details network capabilities, server

Personality Model for Companion AIBO Iulia Dobai

 56

specifications, hardware requirements and other information related to deploying the
proposed system. The physical model shows where and how system components will be
deployed. It is a specific map of the physical layout of the system. A deployment diagram
illustrates the physical deployment of the system into a production (or test) environment. It
shows where components will be located, on what servers, machines or hardware. It may
illustrate network links, LAN bandwidth & etc.

Figure 25 presents the deployment diagram for our system. The system comprises of two
entities: the server on the physical AIBO hardware and a client that runs on a PC/PDA
without restrictions concerning the operating system since the entire system is written in
java 1.4. The two communicate through a TCP/IP wireless connection.

PC/PDA

nonpreemptive

PersT hread
GPST hread
EventGenerators
Interpreters
CompanionAIBO

AIBO

preemptive

AIBOServer

Wireless TCP/IP

Figure 25: Deployment Diagram

4.3 Design Patterns
“ Few things are harder to put up with than a good example.”

 Mark Twain

The term “ design patterns” sounds a bit formal to the uninitiated and can be somewhat
off-putting when you first encounter it. But, in fact, design patterns are just convenient
ways of reusing object-oriented code between projects and between programmers. The idea
behind design patterns is simple-- write down and catalog common interactions between
objects that programmers have frequently found useful.

The definition of patterns favored by the author is the one given by Gamma in 1993:
“Patterns identify and specify abstractions that are above the level of single classes and
instances, or of components.” [14]

The 23 design patterns selected for inclusion in the original “Design Patterns” [14] book
were ones which had several known applications and which were on a middle level of
generality, where they could easily cross application areas and encompass several objects.
The authors divided these patterns into three types creational, structural and behavioral.

Personality Model for Companion AIBO Iulia Dobai

 57

• Creational patterns are ones that create objects for you, rather than having you
instantiate objects directly. This gives your program more flexibility in deciding
which objects need to be created for a given case.

• Structural patterns help you compose groups of objects into larger structures, such
as complex user interfaces or accounting data.

• Behavioral patterns help you define the communication between objects in your
system and how the flow is controlled in a complex program.

Several of these patterns have been spotted by the author in the course of the development
of the prototype and are described below together with some characteristics.

4.3.1 Singleton Pattern

The Singleton pattern is grouped with the other Creational patterns, although it is to some
extent a “non-creational” pattern. There are many numbers of cases in programming where
you need to make sure that there can be one and only one instance of a class. For example,
your system can have only one window manager or print spooler, or a single point of
access to a database engine. In our case it is crucial that in the entire system there is only
one instance of the personality, mood, and needs classes therefore the singleton pattern is
used. There are many ways to implement the singleton pattern and it is not the purpose of
this paper to present them.

For this system the author choose to use the approach suggested by “Design Patterns” in [14],
in which a Singletons is created using a static method to issue and keep track of instances. To
prevent instantiating the class more than once, we make the constructor private so an instance can

only be created from within the static method of the class.

For an example please see an extract from “Personality.java” class above.

If the singleton already exists-- you simply get a null return from the Instance method:

publ i c c l ass Per sonal i t y i mpl ement s Ser i al i zabl e
{
 pr i vat e st at i c Per sonal i t y _i nst ance = nul l ;

 pr ot ect ed Per sonal i t y()
 {
 / / const r uct or

 }
 / * *
 * r et ur n t he cur r ent i nst ance f or t he per sonal i t y c l ass
 * @r et ur n Per sonal i t y - t he i nst ance of t hi s c l ass
 * /
 publ i c st at i c Per sonal i t y I nst ance()
 {
 I f (_i nst ance == nul l)
 {
 _i nst ance = new Per sonal i t y() ;
 }
 r et ur n _i nst ance;
 }

}

Personality Model for Companion AIBO Iulia Dobai

 58

And, should you try to create instances of the Personality class directly, this will fail at
compile time because the constructor has been declared as protected.

In a large, complex program it may not be simple to discover where in the code a Singleton
has been instantiated. In Java, global variables do not really exist, so you can’ t save these
Singletons conveniently in a single place. One solution is to create such singletons at the
beginning of the program and pass them as arguments to the major classes or functions that
might need to use them.

Normally it can be difficult to subclass a Singleton, since this can only work if the base
Singleton class has not yet been instantiated. In our case the constructors of Singleton
classes have been declared protected, therefore it is easier to subclass the base classes if in
the future this will be needed.

4.3.2 Other Patterns

Other patterns are also present in the system but the author did not allocate enough time to
the study of them and therefore are not presented here in detail.

4.4 Implementation
“ In theory, there is no difference between theory and practice. But, in practice, there is.”

Jan L.A. van de Snepscheut

In the course of the implementation there are a few ideas and concepts that are widely used
and deserve to be expemplified and explaind here. Likewise in this section I will explain
the functioning of the central reasoning unit of AIBO from a software point of view.

4.4.1 Threads and Groups of Threads

A thread is a single sequential flow of control within a program. There is nothing new in
the concept of a single thread. The real hoopla surrounding threads is not about a single
sequential thread. Rather, it's about the use of multiple threads in a single program, running
at the same time and performing different tasks. The r un method gives a thread something

Per sonal i t y p1 = Per sonal i t y. I nst ance() ;

/ / f ai l s at compi l e t i me because const r uct or i s pr ot ect ed
Per sonal i t y p2 = new Per sonal i t y() ;

publ i c c l ass Per sThr ead ext ends Thr ead
{
 publ i c st at i c Ret e r et e = new Ret e() ;
 publ i c Per sThr ead() {
 t r y {
 r et e. execut eCommand(" (bat ch engi nes/ per sRul es. cl p) ") ;
 r et e. execut eCommand(" (set - r eset - gl obal s ni l) ") ;
 r et e. execut eCommand(" (r eset) ") ;
 r et e. execut eCommand(" (f ocus PERS) ") ;
 }
 cat ch(JessExcept i on j essE) {
 j essE. pr i nt St ackTr ace() ;
 }
 }

 publ i c synchr oni zed voi d r un() {
 t r y{
 r et e. r unUnt i l Hal t () ;
 }
 cat ch(JessExcept i on j e) { }
 }
}

Personality Model for Companion AIBO Iulia Dobai

 59

to do. Its code implements the thread's running behavior. It can do anything that can be
encoded in Java statements. There are two techniques for providing a run method for a
thread. The first way to customize what a thread does when it is running is to subclass
Thr ead (itself a Runnable object) and override its empty r un method so that it does
something. This was the proffered method used by the author. Please see the PersThread
class below for an example:

Every Java thread is a member of a thread group. Thread groups provide a mechanism for
collecting multiple threads into a single object and manipulating those threads all at once,
rather than individually. For example, you can start or suspend all the threads within a
group with a single method call. Java thread groups are implemented by the ThreadGroup
class in the java.lang package.

The runtime system puts a thread into a thread group during thread construction. When you
create a thread, you can either allow the runtime system to put the new thread in some
reasonable default group or you can explicitly set the new thread's group. The thread is a
permanent member of whatever thread group it joins upon its creation--you cannot move a
thread to a new group after the thread has been created.

In our system all event generating threads are placed in a generic thread group. The class
that groups all threads is presented below:

It is important to explain the reasons that conducted to this approach. By placing all event
threads in one group we have the control over all of them with one single command,
therefore if a rule-based system thread needs processor time it will cease all event
generating threads. On the other hand with this we make sure that only one event is
generated at a given moment of time giving time for the rule based systems to reason upon
it before another event is thrown.

publ i c c l ass Event sGr oup
{
 pr i vat e st at i c Thr eadGr oup event s;
 pr i vat e Thr ead i nt E;
 pr i vat e Thr ead ext E;
 pr i vat e Thr ead di r Com;
 pr i vat e Thr ead car act ;

 publ i c Event sGr oup() {
 event s = new Thr eadGr oup(" Event s") ;
 event s. set Daemon(t r ue) ;
 i nt E = new Event Gener at or (event s, " I nt er nal Event sGener at or ") ;
 di r Com = new Di r ComGener at or (event s, " Di r ect CommandsGener at or ") ;
 car act = new Char act er i zat i onGener at or (event s, " Char act er i zat i onGener at or ") ;
 t r y {
 AI BOCl i ent . I nst ance() ;
 ext E = new Sensor Event s(AI BOCl i ent . get Cl i ent () , event s, " Ext er nal Event s") ;
 }
 cat ch(UnI ni t i al i zedExcept i on ui e) {
 Syst em. out . pr i nt l n(ui e. get Message()) ;
 }
 }
 publ i c st at i c Thr eadGr oup get Event s() [. . .]
 publ i c voi d st ar t () {
 i nt E. st ar t () ;
 di r Com. st ar t () ;
 car act . st ar t () ;
 ext E. st ar t () ;
 }
}

Personality Model for Companion AIBO Iulia Dobai

 60

4.4.2 Java Beans and Jess

JavaBeans is a portable, platform-independent component model written in the Java
programming language. It enables developers to write reusable components once and run
them anywhere -- benefiting from the platform-independent power of Java technology.
JavaBeans acts as a Bridge between proprietary component models and provides a

seamless and powerful means for developers to build components that run in ActiveX
container applications. JavaBeans, like other kinds of software components (for instance,
Visual Basic controls), often serve as interfaces to more complex systems such as databases
or special hardware. An example of a generic Java Bean present in our system is presented
below: (all beans in the system fulfill this minimal scheme)

Jess ingeniously usess Java Beans to create facts (actually shadow-facts). We used this feature
extensively in our system and it is practically the way we assure extensibility.

You can view Jess’s working memory as sort of an electronic organizer for your rule-based
system. A piece of data must be part of the working memory for it to be used in the
premises of a Jess rule. Ordered and unordered facts are useful in many situations, but in
many real-world applications, it’s useful to have rules respond to things that happen outside
of the rule engine. Jess lets you put regular Java objects in working memory—instances of
your own classes that can serve as hooks into a larger software system—as long as those
objects fulfill the minimal requirements necessary to be JavaBeans. [11]

The similarity between JavaBeans and unordered facts is that both have a list of slots (for
JavaBeans, they’ re called properties) containing values that might change over time. There’s
plenty more to JavaBeans than just properties; however, those features are not taken into
consideration here. A JavaBean property is most often a pair of methods named in a
standard way. If the property is a St r i ng named l abel , the Java methods look like this:

A shadow fact has one slot for each Java Bean property. If a Java Bean has array

properties, those properties become multi-slots, and all other properties become normal
slots. The slots are automatically populated with the values of the Java Bean’s properties. If

i mpor t j ava. beans. Pr oper t yChangeLi st ener ;
i mpor t j ava. beans. Pr oper t yChangeSuppor t ;
i mpor t j ava. i o. Ser i al i zabl e;

publ i c c l ass ANYBEAN i mpl ement s Ser i al i zabl e
{
 pr i vat e St r i ng l abel ;
 publ i c St r i ng get Label () { . . . }
 publ i c voi d set Label (St r i ng l abel) { . . . }

 pr i vat e Pr oper t yChangeSuppor t pcs = new Pr oper t yChangeSuppor t (t hi s) ;
 publ i c voi d addPr oper t yChangeLi st ener (Pr oper t yChangeLi st ener pcl)
 {
 pcs. addPr oper t yChangeLi st ener (pcl) ;
 }
 publ i c voi d r emovePr oper t yChangeLi st ener (Pr oper t yChangeLi st ener pcl)
 {
 pcs. r emovePr oper t yChangeLi st ener (pcl) ;
 }
}

St r i ng get Label () ;
voi d set Label (St r i ng) ;

Personality Model for Companion AIBO Iulia Dobai

 61

you want to have a shadow fact continuously track property changes in a Java Bean, Jess
needs to be notified whenever a property changes in that Java Bean. The Java Bean can
notify Jess by sending it a special kind of Java event, a java.beans.PropertyChangeEvent.

The following classes in our system have been encapsulated as Java Beans: Personality,
Mood, Needs, Emotion, InternalEvent, ExternalEvent, Caracterization, DirectCommand,
Goal, Preference and Standard. The reason for this is that all this classes when instantiated
represent facts in the two rule-based systems used.

4.4.3 AIBOExceptions

All exceptions thrown by any function or classes of this system are contained in a global package
AIBOExceptions. The implementation for these classes is trivial. An example exception is
presented below:

4.4.4 Functionality of the Rule-Based Systems

This section is dedicated to explaining the way the two rule-based systems work and the
way they relationate to each other.

The first rule-based system is encapsulated in the thread: PersThread that starts a first Rete
object. The fact-base and the rule-base for this system lives in the file: persRules.clp. The
second rule-based system is encapsulated in the thread: GPSThread that starts a second
Rete object. The fact base and the rule-base of this system lives in the file: gpsRules.clp.
(please refer to Appendix C)

4.4.4.1 persRules.clp and the first rule-based system
In this system the only facts present are: personality and needs that are created from the
respective JavaBeans like this:

package AI BOExcept i ons;

/ * *
 * The r ol e of t he cl ass i s t o pr ovi de a pr oj ect speci f i c except i on
 *
 *
Pr oj ect : Compani on AI BO
 *
Package: AI BOExcept i ons
 *
Jar Fi l e: AI BOExcept i ons
 *
Uni ver si t y: TU Del f t , MMI Gr oup
 *
Last modi f i ed - 5 Apr i l 2005.
 * @aut hor I ul i a Dobai
 * /
publ i c c l ass I nval i dAr gument Except i on ext ends Except i on
{
 / * *
 * Def aul t Const r uct or f or t he except i on
 * @par am msg - message t o be di spl ayed i n case except i on i s t hr own.
 * /
 public InvalidArgumentException(String msg)
 {
 super (msg);
 }
}

Personality Model for Companion AIBO Iulia Dobai

 62

Since both this classes are singletons there is just one fact for each. The rule-base on the
other hand is very consistent being made up mainly of rules examining the traits of
personality in combination with the values for the different needs.

There are 3 kinds of rules to accomplish this task: rules that examine each triat of
personality on its own, rules that examine every combination of two traits of personality
and rules that examine the combination of each trait and needs. Each of these rules results
in creating facts in the fact-base of the second rule-based system. There are a few functions
that encapsulate the rutines necessary for this:

The same style of funtion is used to create goals and standards also.

A forth function takes care of changing values for the mood that is a unique fact in the
second rule-based system also:

Except for the rules that take care of assuring a fact-base for the second rule-based system
there are is a low-salience rule that turns the control to the second expert system:

(def cl ass per sonal i t y engi nes. Per sonal i t y)
(def cl ass needs engi nes. Needs)
. . .
(bi nd ?per sonal i t y (cal l engi nes. Per sonal i t y I nst ance))
(def i nst ance per sonal i t y ?per sonal i t y dynami c)

(bi nd ?needs (cal l engi nes. Needs I nst ance))
(def i nst ance needs ?needs dynami c)

(def f unct i on makePr ef er ence(?cat egor y ?val ue)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)
 (bi nd ?pr ef (new engi nes. gps. Pr ef er ence))
 (def i nst ance pr ef er ence ?pr ef)
 (cal l ?pr ef set Val ue ?val ue)
 (cal l ?pr ef set Cat egor y ?cat egor y)
 (pr i nt out t " Gener at ed pr ef er ence i s " ?cat egor y " wi t h val ue "
?val ue " . " cr l f)
 ; (f act s)
 (r eset)
)
)

(def f unct i on changeMood(?val ue)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)
 (bi nd ?mood (cal l engi nes. Mood I nst ance))
 (cal l ?mood set Val ence ?val ue)
 (pr i nt out t " mood was changed t o " ?val ue " . " cr l f)
 (r eset)
)
)

(def r ul e not hi ng
; Thi s i s t he l owest sal i ence r ul e. I t i s cal l ed when Per sonal i t y Engi ne have f i ni shed
f i r ei ng al l act i ve r ul es
 (decl ar e (sal i ence - 200))
 =>
 (r unGPS)
)

Personality Model for Companion AIBO Iulia Dobai

 63

This rule has no LHS therefore the rule is always matched and is fired anytime the salience
reachis this low level. The rule calls a function that is exemplified below:

4.4.4.2 gpsRules.clp and the second rule-based system
The second rule-based system is actually the core of the system. It’s fact-base comprises of
facts of the type: preference, standard, goal, mood, internalEvent, externalEvent,
caracterization, directCommand, emotion and action.

The mood fact is created like this:

A global variable stores also the values for the needs fact from the first rule-based system
because these values are modified in the course of the execution:

Facts that shadow event objects are created within the Java classes that generate them. An
example of such a function in class GPSThread is shown below:

The vast majority of rules in the rule-base evaluate the events that occur on the premises of
goals, preferences and standards that are represeted by facts in the fact-base. The output of
such a rule consists in the following:

• retraction of the fact representing the event that activated the rule
• change values for the mood fact
• output of a emotion or action fact that needs to be interpreted
• change in the values for the needs fact in the first rule-based system

(def f unct i on r unGPS()
 (r eset)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)

 (pr i nt out t " St ar t i ng GPS Engi ne . . . " cr l f)
 ; (f act s)
 (f ocus GPS)
 (r un- unt i l - hal t)
)
)

(def cl ass mood engi nes. Mood)
(def cl ass pr ef er ence engi nes. gps. Pr ef er ence)
(def cl ass i nt Event engi nes. event s. I nt er nal Event)
(def cl ass ext Event engi nes. event s. Ext er nal Event)
(def cl ass di r ect Com engi nes. event s. Di r ect Command)
(def cl ass car act engi nes. event s. Car act er i zat i on)
(def cl ass emot i on engi nes. Emot i on)
(def cl ass st andar d engi nes. gps. St andar d)
(def cl ass goal engi nes. gps. Goal)

(bi nd ?mood (cal l engi nes. Mood I nst ance))
(def i nst ance mood ?mood dynami c)

(def gl obal ?* needs* = ni l)
(bi nd ?* needs* (cal l engi nes. Needs I nst ance))

 publ i c st at i c voi d makeFact (Di r ect Command dc) t hr ows JessExcept i on
 {
 r et e. execut eCommand(" f ocus GPS") ;
 r et e. def i nst ance(" di r ect Com" , dc, f al se) ;
 }

Personality Model for Companion AIBO Iulia Dobai

 64

• a call to the first rule based system and resume of its activity.

The trigger for the typical rule consists of the identification of an event, a value for mood
and a specific preference, standard or goal.

An example of such a hypotethical rule is given above:

Function runPers is shown below:

Functions interpretEmotion and/or interpretAction have two very important role in the
system. Every time a new emotion is created an interpreter thread for that emotion is
activated and run:

The lowest salience rule ceases the execution of the Rete algorithm untill a valid event is
being thrown into the system:

The function waitEvent si described below:

(def r ul e wai t Event s
 ; Thi s i s t he r ul e wi t h t he l owest sal i ence. . . i t has t o be cal l ed af t er al l ot her
r ul es have f i r ed.
 (decl ar e (sal i ence - 200))
 =>
 (pr i nt out t " GPS Engi ne i s wai t i ng f or event s t o f i r e . . . " cr l f)
 (wai t Event)
)

(def f unct i on wai t Event ()
 (f ocus GPS)
 ((engi ne) wai t For Act i vat i ons)
)

(def r ul e event NamedRul e_no
 (preference(category ?cat&: (? ?cat ?)) (value ?val&: (? ?val ?)))
 ?id<-(intEvent(eventName ?name&: (? ?name ?)))
 ?m<-(mood (valence ?valence&: (? ?valence ?)))
 =>
 ; t he event t hat gener at ed t he emot i on i s r et r act ed because i t i s no f ur t her needed
 (retract ?id)
 ; change mood. Mood decr eases wi t h ? uni t s.
 (modify ?m (valence (- ?valence 10)))
 ; AI BO' s emot i on i s gener at ed and t he Emot i onI nt er pr et er i s cal l ed
 (intrepretEmotion (get-member engines.Emotion SAD 40))
 ; change needs.
 (call ?*needs* setNeed ?)
 (runPERS)
)

(def f unct i on r unPERS()
 (r eset)
 (cal l - on- engi ne
 (get - member engi nes. Per sThr ead r et e)
 (pr i nt out t " St ar t i ng Per sonal i t y Engi ne. . . " cr l f)
 (f ocus PERS)
 (r un- unt i l - hal t)
)
)

(def f unct i on i nt r epr et Emot i on(?t ype ?i nt ensi t y)
 (bi nd ?eI nt er pr et er (new i nt er pr et er s. Emot i onI nt er pr et er))
 (cal l ?eI nt er pr et er makeEmot i on ?t ype ?i nt ensi t y)
 (cal l ?eI nt er pr et er st ar t)
)

Personality Model for Companion AIBO Iulia Dobai

 65

4.4.5 URBI Scr ipts

URBI Scripts are tiny pieces of code written in the URBI language in order to control the
execution of commands by AIBO. URBI Scripts can be as simple as moving some AIBO
joint from a position to a different one or as complex as a walking algorithm. The
advantage of the URBI language however, is that it allows writing complex movement
sequences in a very simple way making use of loops and the sin and cosin functions.

I will try to illustrate in a few examples some of the main strengths of URBI. In order to
assure reusability of scripts in an elegant way I developed a package of classes
(RobotOutput) that contains a structural organization of all URBI scripts needed by the
system. The package comprises of five main classes: Face, Head, Posture, Speak, Tail.
Each of these classes is a collection of static parameterized functions that return Strings
containing URBI commands.

The following is a java function that returns a string representing a URBI command for
making AIBO play through his speakers a barking sound consecutively for x times with a
number of y breaks in-between. (e.g. ham-ham ham-ham ham-ham (3 units each with 2
sounds) or ham-ham-ham ham-ham-ham ham-ham-ham ham-ham-ham (4 units each with 3
sounds)). The actual URBI script is highlighted:

The following function returns a string for an URBI command that makes AIBO wave his
head:

This command makes use of the sin function.

The following code sniffed represents a command for AIBO to screech his ear with the left
foot:

publ i c st at i c St r i ng BARKI NG(doubl e noBr eaks, doubl e noBar k) t hr ows
I nval i dAr gument Except i on
 {
 i f (noBr eaks<0 | | noBr eaks>20 | | noBar k<0 | | noBar k>20)
 {
 t hr ow new I nval i dAr gument Except i on(" Par amet er s have t o be i n t he r ange 0
and 20") ;
 }
 el se
 {
 St r i ng sNoBar k = St r i ng. val ueOf (noBar k) ;
 St r i ng sNoBr eaks = St r i ng. val ueOf (noBr eaks) ;
 r et ur n "for (j=0; j<" + sNoBreaks + "; j++)" +
 "{" +
 "for(i=0;i<"+ sNoBark +";i++) {speaker.play(\"bark.wav\"); wait
200;};" +
 "wait 1000;" +
 "}";
 }
 }

publ i c st at i c f i nal St r i ng NO()
 {
 r et ur n "headPan.valn = 0.5 sin:1000 ampli:0.2 timeout:1500" ;
 }

SCRECHEAR = "legLF2.valn=0.15& legLF1.valn=0.8& legLF3.valn=0.7 &" +
 Head.POSITION(0.25, 0.95)+ "&"+Head.NECKPOSITION(0.30)+
 ";legLF3.valn = 0.7 sin:1000 ampli:0.1 timeout:3000 ";

Personality Model for Companion AIBO Iulia Dobai

 66

Code reusability is made obvious here by using functions like Head.POSITION and
Head.NECKPOSITION available in the Head class.

Some more complex movements (like walk and turn) have been provided by the developers
of URBI and are incorporated on the memory stick.

The package containing all URBI Scripts that have been developed under this project are
presented in Appendix E.

Personality Model for Companion AIBO Iulia Dobai

 67

5 Evaluation and Tests
“ Even with the best of maps and instruments, we can never fully chart our journeys.”

Gail Pool

This chapter will present the concrete place in development that was reached on the
journey to achieving our initial goals. A model for reasoning with emotions was created
and implemented and portrayed on AIBO. Unfortunately not a lot of usability tests have
been conducted due to lack of time. The author was hoping that the successful
implementation of this model will lead to conclusions regarding a lot of issues raised by
cognitive science but unfortunately a lot more questions were raised and sadly enough
some remained unanswered. Following we summarize tests that we conducted together
with recommended tests taking into consideration the domain of the problem itself: at the
crossroad of more than a few complex and emerging sciences: cognitive science,
psychiatry, artificial intelligence, robotics.

Two tests have been conducted to study perception of the emotions showed by AIBO and
they are presented in sub-chapter: “Emotion Perception on AIBO”. The second subchapter
will present some tests that the author thinks should be conducted in order to improve the
system itself as well as questions that aroused during the implementation. (Should we put
vision, values, other kinds of mood, autonomy, how to test interaction, etc)

Chapter Overview:

 Results

 Emotion Perception on AIBO

 Recommended User Tests

Personality Model for Companion AIBO Iulia Dobai

 68

5.1 Results
“ The reward of a thing well done is to have done it.”

Ralph Waldo Emerson

The results that this project reveals are both intrinsic and extrinsic. First a model for
emotional cognition was developed for AIBO, the model itself has more then one
applications. The development of the model itself raises a lot of questions regarding what
should be in a personality model that is valid for robots. On the other hand the model that
was developed was encapsulated in a working prototype, while the prototype is pretty
fragile and far from being complete it helped proof the concept and also brought some
more light on the questions that should be addressed and answered by future research.
Thirdly an entire gamma of small pieces emerged that can be reused in various ways in
different other applications: like the RobotOutput package that is a wrapper around a pretty
big group of URBI Scripts. Another extrinsic result of the project is regarding the emotions
that AIBO can portray and the best way it can do so. The project also answers at least in
part the question regarding the types of interactions we can have with an AIBO robot.
Looking from a broader perspective the project shows a few possible new applications of
this system: like configuration for elderly-care, entertainment for people with disabilities
and so on. Some ideas regarding these issues make the content of this chapter.

5.1.1 Emotions and Actions
One of the end results of this project is that AIBO shows emotion in a context dependent
way. The following images portray the emotions AIBO is able to show :

Personality Model for Companion AIBO Iulia Dobai

 69

The above showed emotions are concurrent with some small actions: like wagging tail,
head moving backwards, etc. Each emotion is a sequence of about 5-6 seconds of small
movements.
Other small actions have been developed in the course of this project including: scratching
ear, stretching, waking up, etc. Movies presenting these actions can be found on the
website of the author.
These actions become relevant in the context of the project when the remote brain decide
the way to combine them to show different complex actions. The same actions and
emotions can be used by any other AIBO application that uses URBI and Java.

5.1.2 System flexibility
The plus of this system resides in its flexibility. The system is flexible from a lot of points
of view: the robot personality is parameterized, since users can customize it according to
their desires, the robots mind is customizable since the rules of the two expert systems that
make up the brain can be easily changed or maintained. Hence the few rules that are in the
system right now are there just for the purpose of giving examples of what can be achieved.
In order to write new rules for the two expert systems, the user has to know what are the
circumstances in which AIBO can act. Therefore the developer needs to be aware of some
files that contain static variables. These files are present in Appendix B.

5.2 Emotion Perception on AIBO
"Test fast, fail fast, adjust fast."

Tom Peters

In order to test the way the system works a lot of tests would be necessary. Just a few of
these tests have been conducted but a lot more are required in order to validate the system.
In this section we present a user test developed in order to test the way human perceive the
emotions showed by AIBO.

5.2.1 Test Descr iption

As explained before AIBO at any given time AIBO will shoe one of the 6 possible
emotions that have been implemented. A small test has been conducted in order to test if
humans find it easy to grasp AIBO’s emotion and interpret it as the desired emotion. The
experiment was conducted as follows: AIBO in a neutral sit position showed in turns six
emotions labeled Emotion1, Emotion2, etc. It is important to mention that AIBO showed
these emotions out of any context. The test taker was asked to label each of the 6 emotions
with one of the following: happy, sad, angry, fear, disgust and surprise. Also some space
was left out for the user to include ideas and inputs in order to make the labeled emotion
more realistic. The user had to fill in 6 tabels that looked exactly like the following:

Emotion 1
Please choose one of the above that best
matches the emotion AIBO shows
1 Disgust
2 Surprise

Personality Model for Companion AIBO Iulia Dobai

 70

3 Angriness
4 Sadness
5 Fear
6 Happiness
Please give your comments below:

Emotions were showed in the following order:

1 Happy
2 Sad
3 Angry
4 Fear
5 Surprise
6 Disgust

5.2.2 Test Results

A total number of 15 people were interrogated mainly from the area of computer science.
The table above mentions the number of people that recognized each emotion from the
total number of 15 that took the test.

Happy Sad Angry Fear Surprise Disgust
14 11 14 3 13 9

Personality Model for Companion AIBO Iulia Dobai

 71

Happy

Sad

Angry

Fear

Surprise

Disgust

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

Happy

Sad

Angry

Fear

Surprise

Disgust

Figure 26: Emotion Perception User Test Char t

As the test proves there are a few emotions that were very clearly identified by the test
takers: happiness, angriness and surprise. Sadness was identified by more then 2/3 of the
test takers and therefore I will consider it realistic enough to be identifiable in a context. On
the other hand fear and disgust were wrongly interpreted as other emotions by most test
takers and a lot of time confused. Therefore a decision was made to improve the way AIBO
shows that emotion in order to become more realistic.

The following table shows the choices test takers made when trying to identify fear . Fear
was most commonly mistaken by surprise.

Fear Disgust Anger Surprise Sadness Happiness
3 2 0 8 0 2

One of the problems concerning the interpretation of this emotion was dependant on the
order the emotions were showed. Since surpr ise was presented after fear it is very
probable that by excluding it people would not have interpret it wrongly. The problem still
stays and the “ fear” emotion needs to be improved.

Personality Model for Companion AIBO Iulia Dobai

 72

0

1

2

3

4

5

6

7

8

Series1 3 2 0 8 0 2

Fear Disgust Anger Surprise Sadness Happines

Figure 27: Interpretation of " fear" - Char t

Test subjects trying to interpret emotion disgust made the following choices:

Disgust was the last emotion to interpret and therefore it should have been very easy to
recognize. This justifies the pretty high amount of people that did recognize it correctly. On
the other hand more then 1/3 of the test takers were not able to recognize it therefore we
consider necessary to improve the way this emotion is displayed.

0

1

2

3

4

5

6

7

8

9

Series1 9 3 1 1 1 0

Disgust Fear Surprise Angry Sad Happy

Figure 28: Interpretation of " disgust" - Char t

5.2.3 Conclusions

The test that was conducted proved that the emotions that were designed were somewhat
distinguishable by humans in a context independent environment. The test proved that
emotions like: happy, sad, angry and surpr ise are easy to recognize while fear and

Disgust Fear Surprise Angry Sad Happy
9 3 1 1 1 0

Personality Model for Companion AIBO Iulia Dobai

 73

disgust are not easily perceivable by human actors. Therefore further effort will be put in
trying to develop a better way to portray these 2 emotions.

A few problems were indicated in the test itself. First thing that should be taken into
account when doing another test like this should be that the order of displaying the
emotions matters a lot in the result of the test. Secondly, it would be better to show the test
takers either more emotions and ask them to identify the 6 emotions that we are looking for
but this kind of test has the disadvantage of having to actually implement those 10-12
choices to choose from. Another alternative would be to display only the 6 emotions that
have been implemented but ask the test takers to choose the emotion from a list of 10-12
emotions. A third issue that arises is weather the user should see or not all the possible
emotions before taking the test. This also can have an influence in the result of the test.

A second test will be conducted after the two emotions of: fear and disgust will be
improved.

5.3 Recommended User Test
“ The best thing about the future is that it only comes one day at a time.”

Abraham L incoln

5.3.1 Psychological Validity

The main test the author feels should be conducted on the system is in order to validate the
psychological model developed and proof its realism in the case of robots. While this
model is a very simplified model and pretty different from that of a human it resembles in
some way human personality model. Therefore psychological tests should be conducted to
decide weather the model is valid in the case of robots and/or virtual characters.

I think it is worth mentioning that this is not a trivial test and it might consist of more then
one test and I would recommend it to be conducted by somebody with psychological
background.

In order to conduct this research the author suggests the following complex method. The
entire system has 4 text files configurable by users and that act as parameters for the entire
system. Two text files: traits.txt and needs.txt are simple word files that can be changed by
anyone. The other two files: persRules.clp and gpsRules.clp can be modified only by
someone with knowledge in expert system rules and the jess or clips syntax. (The two
syntaxes are basically the same. The model that is to be found in the .clp files should be
followed in writing rules).

The recommended steps for such a test are:

1. Decide upon the rules that make up the inference engines from a psychological
point of view. (They should then be translated in jess rules)

2. Start by choosing two or more personalities with significant differences. (ex. A very
open and friendly personality). Based on these a decision regarding the absolute
values the traits of personality should have is to be made.

Personality Model for Companion AIBO Iulia Dobai

 74

3. Design a scenario of a designated time for AIBO. (ex. 4-5 minutes). The scenarios
should be made in such a way that some emotional behavior is triggered and
personality characteristics are identifiable by humans interacting with AIBO.

4. Start the test by choosing a number of subjects and ask them to interact with AIBO
in the given scenario.

5. The questionnaire for the user should include questions to extract their opinion
regarding AIBO’s personality. The user should not be asked to identify exact values
for the 5 traits of personality but rather ask for characterization words for the robot
and the interaction with it.

6. The output of the questionnaire should be compared to the traits AIBO was started
with. If there is a close enough match than the psychological validity of the model
for robots was proved.

A trick that can be included is to ask a group of subjects to interact with AIBO and to the
questionnaire and ask a separate group of subjects to just watch and observe the interaction
and fill in the same questionnaire.

A few questions need to be asked before starting this test: what kind of human interaction
is necessary for a human to be able to decide on AIBO’s character, how long should the
interaction be, how many subjects should the test include, what personalities should be
tested, etc.

Please remember this research should be done in order to decide upon the validity of the
model in the case of robots, not to proof the correctness of the model.

AIBO can be tested regarding this issue also by taking a standardized personality test.
Decisions regarding this should be made by the ones administrating the research.

5.3.2 Rule-Base Correctness

The second main question that should be answered regarding this system is weather the
rules that make up the central cognitive unit accomplish the desired output. In other words,
if we start by trying to develop an AIBO that accomplishes a simple task in a maze like
environment than the way this task is accomplished should be tested. On the other hand if
the rules that control AIBO’s mind (the central processing unit) make him act as a cute dog
entertaining humans this aspect should be tested. In order to conduct such a test: decisions
should be made regarding the rules that should be contained in the two rule-based systems,
then a personality (values for the 5 traits that represent personality in our model) should be
chosen considering what personality would be the best that task. Further interaction tests
should be conducted with humans in order to decide on the system.

Personality Model for Companion AIBO Iulia Dobai

 75

6 Conclusion
“ The best way to predict the future is to invent it.”

Alan Kay

When we started this project we wanted to end up with a companion robot-dog acting in
different contexts independently and giving emotional response to events that take place.
We ended up with a model that allows customization for AIBO to react by conducting
small actions and emotions depending on the context.

This chapter will introduce the main results of the project, the reusable components
together with possible uses. Later we will proceed in concluding the work that has been
done and provide recommendation in case further work will be done on the basis of this
system.

I hope this project will prove to be the right combination of ability and effort, lead by the
right motivation and done with the right attitude.

Chapter Overview:

 Conclusions

 Recommendations

 Possible applications

Personality Model for Companion AIBO Iulia Dobai

 76

6.1 Conclusions
“ A man builds a fine house; and now he has a master, and a task for life; he is to furnish,

watch, show it, and keep it in repair, the rest of his days.”
Ralph Waldo Emerson

This project tried to accomplish the task of creating a mental model for robots to reason
with emotions. As a result of this, a cognitive model was developed, a model of personality
that relies on the concepts of: personality as a five dimensional space, mood, needs as in
Maslow’s pyramid of needs, and emotions as in the OCC Model. The reasoning is triggered
by events that are relevant for the system. This model was then transformed in a working
prototype and run on AIBO. In order to test the cognitive module on AIBO some more
components were developed and put together in a more complex framework. The result of
this study and development process is a system and architecture that runs on AIBO and that
is highly flexible and customizable.

The exact same software can be used for AIBO to reason in very different contexts.
Therefore there are a few variable parameters in the system: values for the traits of
personality, initial values for AIBO’s needs and at a higher development level: the rules
upon which AIBO reasons are subject for modification and adaptation to whatever context.
Thus, considering that we have a well established set of rules for the reasoning component,
AIBO can transformed in a very shy, closed, not-communicative, lazy robot or in a very
active, jovial, cute dog. On the other hand with little adaptation in the rule set of the
reasoning, AIBO can be adapted to perform various tasks including searching objects,
acting as a rescue dog, a companion for elderly or for people with disabilities and special
needs. It is needless to say, there’s lot more that can be improved in this framework
including: adding a complex history and memory level, adding a learning mechanism to
assure that a robot can be thought by an owner. Further a complex set of concepts can be
tested including: creativity, instinct, etc.

On the other hand the mental model that was developed is based on existing models of
personality that were tested on virtual characters in games or for chat conversations. This
model is in many ways adapted to a human environment where the character (that is
applied on) is unpredictable. This model could further be tested with virtual characters in
chat conversations or game settings.

Considering now the development process and the software implementation perspective,
the system is a complex architecture, over a TCP/IP wireless connection and it makes use
of an existing framework: URBI. This eased the development process and assured in many
ways reusability of code with other robots and on other platforms, therefore knowledge and
development effort will not be lost and hopefully can be reused later with humanoid robots.
The current model has to face the disadvantage of not being a step towards an intelligent
autonomous robot. According to this system, AIBO is a complex hardware structure
(therefore lacking any kind of reasoning or knowledge) that is controlled by an intelligent
computer. The focus of this project was in assuring that the computer is in fact “ intelligent”
emotionally. Since the system is practically on a computer Java was used for the
development process with several of its features including threads, exception handling,
polymorphism, encapsulation, etc. A special part of the “brain” (the software system that
was developed) is made off the central cognitive unit. For this part an artificial intelligence

Personality Model for Companion AIBO Iulia Dobai

 77

technique needed to be used. Therefore the brain makes use of rule-based systems (expert-
systems). A simple expert system could have been used but the author choused to use two
expert systems tightly coupled where one assures the fact-base for the second one. The
rules of the rule-based systems are statically added before running the application but in
this way assure adaptability to the system.

The field of robotics and artificial intelligence are growing at a very fast pace, when you
combine it with human-computer interaction it simply explodes. Right now a lot of
companies and research institutions are putting a lot of effort in studying the interaction
between humans and all other kinds of robots (for home use, for entertainment, for security
situations, etc) and even in studying interactions between robots of the same kind or of
different types. In the near future robots will be an active part of our lives, studies have
revealed that future robots have to be able to show emotional response to humans and
bonds between robots and humans are inevitable. Thus working in this project was a
continuous self-rewarding job, triggered by the desire to grasp the way robots will function
and respond to human actions in the future.

6.2 Recommendations
“ Nothing great was ever achieved without enthusiasm.”

Ralph Waldo Emerson

The major challenge of this project resides in the fact that it is part of a field that is
changing so fast that by the end of one project the premises of the project have already
changed. Even though some premises of this project have changed already, more are likely
to change in the near future. Extra effort was put into assuring a certain level of
extensibility and flexibility for this project but some things are simply unpredictable.

Following some recommendations can be made in order to improve the overall system, to
extend it to a more complex stage and to better respond to future issues. The
recommendations I have for future work rely mostly on weaknesses of the current system.
Therefore the first thing that should be addressed is to create the memory/history module
that in the implementation of this prototype is missing. This will open space for reasoning
modules to be developed on top of the history module. Further the system can be enriched
with many more possible actions to be done by AIBO and reasoning rules. This will offer
strength and also the possibility of various other user and non-user tests to be conducted. A
special effort should then be directed on integrating vision and sound recognition modules
in the system. (Right now these are being simulated with 2 user-interfaces). Connecting
recognition components with the current system will raise a lot of problems including time
synchronization, robot connectivity, etc. As a general recommendation I would suggest
using URBI scripts as much as possible to incorporate a lot of functionality. For example: a
walking script can be enriched to be a walking script where AIBO is also detecting
obstacles and is avoiding them.

The second type of possible improvements relies on further development in the field of
robotics. Sooner or later the issues of learning including: unknown-word learning, action
learning, feedback-based learning, etc and curiosity need to be addressed by this system.

Personality Model for Companion AIBO Iulia Dobai

 78

Some effort has been put into these concepts by others and work can be adapted to run
within this system.

At a very abstract level further improvements can be brought also to the personality model
that has been developed. Since a lot of things in psychology are not yet known regarding
humans and the human mind it is hard to spot the exact concepts that will do the job for
robots. Stretching the idea I strongly believe that robots can be a way to discover more
about humans themselves in two ways: first of all by doing research for robots we find out
new things about the human mind, but on the other hand, close models of the human mind
on robots can answer questions that only complicated and unreliable psychological tests
have answered until now. In this area it is extremely important to know exactly where to
stop and use just as much as we need to accomplish our goals. Overdoing can be
destructive.

I would also like to stress the idea of autonomy of AIBO. In this project AIBO is not
autonomous; anything that will interrupt the wireless connection with the PC will “kill”
also AIBO. Until now we have two major examples of AIBO’s autonomy: AIBO playing
soccer and AIBO as an entertainment dog in the way Sony developed it. Even though
autonomy is hard to achieve in the context of complex processes that need to be run (in the
circumstances of the hardware and software limitations) this is a major challenge. Robots
of the future are autonomous and responsible; therefore the wireless connectivity is used
better for other situations, communicating with other hardware devices for the use of
exchanging knowledge.

6.3 Possible applications
“ The sign of an intelligent people is their ability to control emotions by the application of

reason.”
Marya Mannes

Although the system was developed as a prototype no direct practical applications resulted.
With small configurations and adaptations the system can be developed in a wide range of
applications including:

• AIBO offering companionship for elderly
• AIBO offering companionship for people with different disabilities and special

needs
• AIBO offering entertainment in family and home environments
• AIBO acting as a watch dog.
• AIBO acting as a motivating factor in lab – work environments.

AIBO can play the role of a mediator and game server for a game developed specially for
people working in the same environment in order to increase productivity and performance.
AIBO is cute and funny, and it has an incredibly big power to become adorable, basing our
idea on these observations I think we can stimulate people in work environments. A game
can be invented to measure and keep productivity and AIBO can act as an intermediate and
server for the game since it has the mobility and the capacity to act as one.

• AIBO acting as a home character in intelligent home environments.
Lots of research is being conducted nowadays to develop intelligent home environments
where all electronic devices communicate and synchronies each other. AIBO can act as

Personality Model for Companion AIBO Iulia Dobai

 79

intermediate level in-between such as intelligent system and humans since AIBO is proven
to have a good level of possible interactions with humans. There has been a continuous
conflict weather we need or not a virtual character to welcome us and follow us through
our journey in an intelligent home where: TV, PC, PDA, fridge, microwave, washing
machine, etc communicate and act intelligently. I strongly believe AIBO can play the role
of such a character (and the current model can be adapted to act as one) and further tests
could be developed in order to decide if such a character is necessary or not.

• AIBO acting as a rescue dog in simulated environments
Even though due to its size and current physical limitations AIBO cannot act as a rescue
dog in real situations, research can be conducted in simulated environments to prepare a
model for the future when humanoid robots will be able to operate rescue missions.

• AIBO as a game or play situations
AIBO can have a great entertainment value in home environments and a new series of
games can be adapted or invented to transform AIBO in a play-mate. Currently we have
seen AIBO play X-and-O in an experiment conducted by another university. There’s no
reason to believe AIBO will be able to play many other games in the future, maybe even
chess. The future of gaming industry is currently evolving, and lots of accent is on games
that combine virtual reality and physical reality. I strongly believe AIBO can be a nice
interface between the two.

Personality Model for Companion AIBO Iulia Dobai

 80

Personality Model for Companion AIBO Iulia Dobai

 81

7 Bibliography

[1] Baillie, J.C., “URBI: A UNIVERSAL LANGUAGE FOR ROBOTIC CONTROL”, International Journal of

Humanoid Robotics, 2004, World Scientific Publishing Company

[2] Baillie, J.C., “URBI Language Specification” , v. 1.0, 2005.

[3] Baillie, J.C., “Grounding symbols in Perception with two interacting Autonomous Robots”

[4] Bartneck, C., “ Integrating the OCC Model of Emotions in Embodied Characters” , Workshop on Virtual
Conversational Characters, 2002

[5] Beaumont, R., L., “Five Factor Constellations and Popular Personality Types” , Psychology 106, 2003

[6] Costa, P.T., McCrae, R.R, “Normal personality assessment in clinical practice: The NEO personality inventory” .
Psychological Assessment, 1992

[7] Dobai, I., Rothkrantz, L., van der Mast, C. “Personality Model for a Companion AIBO”, ACM SIGCHI
International Conference on Advances in Computer Entertainment Technology, Broadway New York, June 2005,
pp. 438-441.

[8] Eckel, B., “Thinking in Java” , Prentice-Hall Inc, 2000, 2nd edition.

[9] Ekman, P., Friesen, W.V., “The argument and Evidence About Universals in Facial Expressions of Emotion” . In
Handbook of Social Psychophysiology. New York: John Wiley and Sons, Ltd, 1989

[10] Fogg, B.J., “Persuasive Technology. Using Computers to change what we think and do” , Morgan Kaufmann
Publishers, 2003, p.23-29.

[11] Friedman-Hill, E., “Jess in Action. Rule-Based Systems in Java” , Manning Publications Co., 2003

[12] Fujita M., “On Activating Human Communication With Pet-Type Robot AIBO”, Proceedings of the IEEE,Vol.92,
NO.11, November 2004

[13] Fujita, M, Kageyama, K, “An open architecture for Robot Entertainment” , In Proceedings of the First International
Conference on Autonomous Agents, ACM Press, 1997, pp. 435-442.

[14] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Elements of reusable Object-Orientated Software” , Design
Patterns CD

[15] Hopgood, A. A., “ Intelligent Systems for Engineers and Scientists”, CRC Press LLC, 2001

[16] Kaplan, F, “Talking AIBO: First Experiment of Verbal Interactions with an Autonomous Four-legged Robot” , In
Proceedings of the CELE-Twente workshop on interacting agents.

[17] Kaplan, F, Oudeyer, P.Y., “Maximizing learning progress: an internal reward system for development” .

[18] Kaplan, F, Oudeyer, P.Y., “Motivational principles for visual know-how development”

[19] Kaplan, F, Hafner, V.V., “The challenges of joint attention”

[20] Ksirsagar, S and N. Magnenat-Thalmann, “A Multilayer Personality Model” , In: Proceedings of 2nd International
Symposium on Smart Graphics, 2002

[21] Lang, P., J., “The Emotion Probe: studies of motivation and attention” , A study in the Neuroscience of Love and
Hate. Hillside, NJ: Lawrence Erlbaum Associates, Publishers, 1995.

[22] Larman, C., “Applying UML and Patterns”

[23] Lee, C.H.A., “Emotional AIBO”, Internal Report, 2004.

[24] Maslow, A.H., Motivation and Personality, 2nd. ed., New York, Harper & Row, 1970

[25] Ortony, A., Clore, G.L., Collins, A., The Cognitive Structure of Emotions, Cambridge University Press, 1988

[26] Oudeyer, P.Y., Kaplan, F, Hafner, V.V., Whyte, A, “The playground experiment: Task-Independent Development of
Curious Robot” , In the Proceedings of the AAAI Spring Symposium on Developmental Robotics, 2005

[27] Shalloway, A., Trott, J, “Design Patterns Explained”

[28] Silva, R.D., Siebra, A.C., Valadares, L.J, Almeida, A.L., Frery, C.A., Falcao, J.R., Ramalho, L.G., “A synthetic actor
model for Long-Term Computer Games”.

[29] http://www.sony.net/Products/aibo/ - Sony AIBO Global web site.

[30] http://www.eu.aibo.com/ - Sony AIBO European web site

[31] https://openr.aibo.com/openr/eng/perm/main_menu.php4 - Sony AIBO development tools

[32] http://www.urbiforge.com/eng/index.html URBI official web page.

Personality Model for Companion AIBO Iulia Dobai

 82

[33] http://cogrob.ensta.fr/

[34] http://www.csl.sony.fr/Research/Topics/DevelopmentalRobotics/index.html

[35] http://www-2.cs.cmu.edu/~tekkotsu/

[36] http://mmi.tudelft.nl/~iulia/aibo/ – Author’s web site on AIBO

[37] http://www.mmi.tudelft.nl/~siska/aibo/index.php - MMI AIBO Team

[38] http://aibo.cs.uu.nl/ - Dutch AIBO Team

Note: All Java API files for the entire system are to be found on the CD accompanying this
report and on the author’s web-site.

Personality Model for Companion AIBO Iulia Dobai

 83

• CPU 64-bit RISC Processor
• CPU clock speed 576 MHz
• RAM 64 MB
• Program media

o Dedicated AIBO robot "Memory Stick™" media
• Moveable par ts (Total 20 degrees of freedom)

o Head - 3 DOF
o Mouth - 1 DOF
o Legs - 3 DOF x 4 (legs)
o Ears - 1 DOF x 2 (ears)
o Tail - 2 DOF

• Input section
o Charging contacts

• Setting switches
o Volume control switch
o Wireless LAN switch

• Image input 350.000-pixel CMOS image sensor
• Audio input Stereo microphones
• Audio output Speaker 20.8mm, 500mW
• Integrated sensors

o Infrared distance sensors x 2
o Acceleration sensor
o Vibration sensor

• Input sensors
o Head sensor
o Back sensor
o Chin sensor
o Paw sensors (* 4)

• Power consumption Approx. 7 W (in standard mode)
• Operating time Approx. 1,5 hours (with fully charged ERA-7B1, in standard

mode)
• Dimensions Approx. 180 (w) x 278 (h) x 319 (d) mm
• Weight Approx. 1.65 kg (including battery pack and "Memory Stick™"

media)
• Wireless LAN function Wireless LAN module (Wi-Fi certified) Internal

standard compatibility: IEEE 802.11b/IEEE 802.11 Frequency band: 2,4 GHz
 Wireless channels: 1 – 11 Modulation : DS-SS (IEEE 802.11 – compliant)
Encryption : WEP 64 (40 bits), WEP 128 (104 bits)

Appendix A: AIBO from a hardware perspective
AIBO presents itself as a complex piece of hardware enriched by sensors and actuators.
Following you will find a description of various components that make up AIBO:

Personality Model for Companion AIBO Iulia Dobai

 84

The following two pictures (Figure 2 and 3) present the position of sensors and actuators
on AIBO from a front view and a rear view.

Figure 29: AIBO Sensors and Actuators - Front View

Figure 30: AIBO Sensors and Actuators - Back View

Personality Model for Companion AIBO Iulia Dobai

 85

Appendix B: Implementation

package engi nes. event s;
i mpor t j ava. i o. Ser i al i zabl e;
i mpor t AI BOExcept i ons. * ;

/ * *
 * Pr oj ect : Compani on AI BO
 * @aut hor I ul i a Dobai
 * Apr 14, 2005
 *
 * /
publ i c c l ass I nt er nal Event ext ends Event i mpl ement s Ser i al i zabl e
{
 / * *
 * possi bl e event gener at or s ar e t he bat t er y and t he i nt er nal t i mer of ai bo
 * /
 publ i c st at i c f i nal i nt BATTERY = 1;
 publ i c st at i c f i nal i nt TI MER = 2;

 / * *
 * possi bl e i nt er nal event names
 * /
 publ i c st at i c f i nal i nt NOEVENT = 0;

 publ i c st at i c f i nal i nt MORNI NG = 1;
 publ i c st at i c f i nal i nt EVENI NG = 2;
 publ i c st at i c f i nal i nt LUNCH = 4;
 publ i c st at i c f i nal i nt THI SYEAR = 5;

 / * *
 * Thi s f i el d pr act i c l y r epr esent s t he devi ce t hat gener at ed t he i nt er nal Event
 * For a begi nni ng t he gener at or s wi l l be j ust t he Bat t er y and t he I nt er nal Ti mer
 * /
 pr i vat e i nt event Gener at or ;

 publ i c synchr oni zed i nt get Event Gener at or () [. . .]

 publ i c synchr oni zed voi d set Event Gener at or (i nt event Gener at or)
 {
 i nt t mp = t hi s. event Gener at or ;
 t hi s. event Gener at or = event Gener at or ;
 get Pcs() . f i r ePr oper t yChange(" evt Gen" , t mp, event Gener at or) ;
 }

 publ i c St r i ng t oSt r i ng() [. . .]

 publ i c I nt er nal Event (i nt event Gener at or , i nt name) t hr ows I nval i dEvent Gener at or ,
I nval i dEvent Name
 {
 super (name) ;
 i f (event Gener at or <1 | | event Gener at or >2)
 {
 t hr ow new I nval i dEvent Gener at or (" i nval i dEvent Gener at or ") ;
 }
 el se
 {
 t hi s. event Gener at or = event Gener at or ;
 }
 }

Personality Model for Companion AIBO Iulia Dobai

 86

package engi nes. event s;
i mpor t j ava. i o. Ser i al i zabl e;
i mpor t engi nes. gps. * ;
i mpor t AI BOExcept i ons. I nval i dEvent Gener at or ;
i mpor t AI BOExcept i ons. I nval i dEvent Name;

/ * *
 * Pr oj ect : Compani on AI BO
 * @aut hor I ul i a Dobai
 * Apr 14, 2005
 *
 * /
publ i c c l ass Ext er nal Event ext ends Event i mpl ement s Ser i al i zabl e
{
 / * *
 * possi bl e ext er nal event names ar e Act i ons def i ned f or St andar ds
 * /
 / * *
 * possi bl e event gener at or s ar e t he bat t er y and t he i nt er nal t i mer of ai bo
 * /
 publ i c st at i c f i nal i nt AUDI O = 1;
 publ i c st at i c f i nal i nt VI DEO = 2;
 publ i c st at i c f i nal i nt TOUCH = 3;
 publ i c st at i c f i nal i nt DI STANCE = 4;
 publ i c st at i c f i nal i nt ACCELERATI ON = 5;

 pr i vat e i nt event Gener at or ;

 publ i c Ext er nal Event (i nt name, i nt event Gener at or) t hr ows
I nval i dEvent Gener at or , I nval i dEvent Name
 {
 super (name) ;
 i f (event Gener at or >=1 && event Gener at or <=5)
 {
 t hi s. event Gener at or = event Gener at or ;
 }
 el se
 {
 t hr ow new I nval i dEvent Gener at or (" i nval i dEvent Gener at or ") ;
 }
 }

 / * *
 * @r et ur n Ret ur ns t he event Gener at or .
 * /
 publ i c i nt get Event Gener at or ()
 {
 r et ur n event Gener at or ;
 }
 / * *
 * @par am event Gener at or The event Gener at or t o set .
 * /
 publ i c voi d set Event Gener at or (i nt event Gener at or)
 {
 i nt t mp = t hi s. event Gener at or ;
 t hi s. event Gener at or = event Gener at or ;
 get Pcs() . f i r ePr oper t yChange(" evt Gen" , t mp, event Gener at or) ;
 }

 publ i c St r i ng t oSt r i ng() [. . .]
}

Personality Model for Companion AIBO Iulia Dobai

 87

package engi nes. gps;
publ i c c l ass Pr ef er enceCat egor i es
{
 publ i c st at i c f i nal i nt ALLHUMANS = 10;
 publ i c st at i c f i nal i nt OWNER = 11;
 publ i c st at i c f i nal i nt HUMANFRI ENDS = 12;
 publ i c st at i c f i nal i nt HUMANENEMI ES = 13;
 publ i c st at i c f i nal i nt VI CTI MS = 14;
 publ i c st at i c f i nal i nt UNKNOWNHUMAN = 15;

 publ i c st at i c f i nal i nt ALLAI BO = 20;
 publ i c st at i c f i nal i nt AI BOMATE = 21;
 publ i c st at i c f i nal i nt AI BOFRI ENDS = 22;
 publ i c st at i c f i nal i nt AI BOENEMI ES = 23;
 publ i c st at i c f i nal i nt UNKNOWNAI BO = 24;

 publ i c st at i c f i nal i nt ALLTOYS = 30;
 publ i c st at i c f i nal i nt AI BOBONE = 31;
 publ i c st at i c f i nal i nt AI BOBALL = 32;
 publ i c st at i c f i nal i nt UNKNOWNTOY = 33;
 publ i c st at i c f i nal i nt WEAPON = 34;

 publ i c st at i c f i nal i nt SELF = 1;

 publ i c st at i c f i nal i nt NOCATEGORY = 0;

}

/ *
 * Last Revi si on May 19, 2005
 * /
package engi nes. event s;
i mpor t j ava. i o. Ser i al i zabl e;
i mpor t AI BOExcept i ons. I nval i dEvent Name;
/ * *
 * Pr oj ect : Compani on AI BO
 * @aut hor I ul i a Dobai
 * May 19, 2005
 *
 * /
publ i c c l ass Car act er i zat i on ext ends Event i mpl ement s Ser i al i zabl e
{
 / * *
 * possi bl e car act er i zat i on f or AI BO
 * /
 publ i c st at i c f i nal i nt STUPI DDOG = 103;
 publ i c st at i c f i nal i nt SMARTDOG = 104;
 publ i c st at i c f i nal i nt GOODDOG = 101;
 publ i c st at i c f i nal i nt BADDOG = 102;

 publ i c Car act er i zat i on(i nt name) t hr ows I nval i dEvent Name
 {
 super (name) ;
 }

 publ i c St r i ng t oSt r i ng() [. . .]
}

Personality Model for Companion AIBO Iulia Dobai

 88

package engi nes. gps;
publ i c c l ass Act i on
{
 publ i c st at i c f i nal i nt TOUCH = 10;
 publ i c st at i c f i nal i nt PETTI NG = 11;
 publ i c st at i c f i nal i nt HI TBACK = 12;
 publ i c st at i c f i nal i nt TOUCHCHI N = 13;
 publ i c st at i c f i nal i nt TOUCHHEAD = 14;
 publ i c st at i c f i nal i nt TOUCHPAWLF = 15;
 publ i c st at i c f i nal i nt TOUCHPAWLB= 16;
 publ i c st at i c f i nal i nt TOUCHPAWRF = 17;
 publ i c st at i c f i nal i nt TOUCHPAWRB = 18;
 publ i c st at i c f i nal i nt TOUCHBACK = 19;

 publ i c st at i c f i nal i nt HI TBALL = 20;
 publ i c st at i c f i nal i nt MI SSBALL = 21;
 publ i c st at i c f i nal i nt STEALBALL = 22;
 publ i c st at i c f i nal i nt PLAYBALL = 23;

 publ i c st at i c f i nal i nt PI CKBONE = 30;
 publ i c st at i c f i nal i nt MI SSBONE = 31;
 publ i c st at i c f i nal i nt STEALBONE = 32;
 publ i c st at i c f i nal i nt PLAYBONE = 33;

 publ i c st at i c f i nal i nt SPEAK = 40;
 publ i c st at i c f i nal i nt YELL = 41;
 publ i c st at i c f i nal i nt WI SPER =42;

 publ i c st at i c f i nal i nt PLAY = 50;
 publ i c st at i c f i nal i nt HELP = 60;
 publ i c st at i c f i nal i nt HARM = 70;

 publ i c st at i c f i nal i nt GOODDOG = 81;
 publ i c st at i c f i nal i nt BADDOG = 82;
 publ i c st at i c f i nal i nt SMARTDOG = 83;
 publ i c st at i c f i nal i nt STUPI DDOG = 84;

 publ i c st at i c f i nal i nt NOACTI ON = 0;
}

Personality Model for Companion AIBO Iulia Dobai

 89

package engi nes. event s;
i mpor t j ava. i o. Ser i al i zabl e;
i mpor t AI BOExcept i ons. * ;

/ * *
 * Pr oj ect : Compani on AI BO
 * @aut hor I ul i a Dobai
 * Apr 14, 2005
 * /

publ i c c l ass Di r ect Command ext ends Event i mpl ement s Ser i al i zabl e
{
 / * *
 * possi bl e di r ect commands event names
 * /
 / / pl ay
 publ i c st at i c f i nal i nt PLAY = 5;
 / / Bal l
 publ i c st at i c f i nal i nt PLAYBALL = 20;
 publ i c st at i c f i nal i nt FI NDBALL = 3;
 publ i c st at i c f i nal i nt BRI NGBALL = 15;
 / / Bone
 publ i c st at i c f i nal i nt PLAYBONE = 19;
 publ i c st at i c f i nal i nt BRI NGBONE = 14;
 publ i c st at i c f i nal i nt FI NDBONE = 4;

 / / f ol l ow
 publ i c st at i c f i nal i nt FOLLOWME = 6;
 publ i c st at i c f i nal i nt FOLLOWAI BO = 7;
 publ i c st at i c f i nal i nt FOLLOWHUMAN = 8;
 publ i c st at i c f i nal i nt GOAWAY = 9;

 / / sound
 publ i c st at i c f i nal i nt SHUTUP = 10;
 publ i c st at i c f i nal i nt BARK = 16;
 publ i c st at i c f i nal i nt SI NG = 1;

 / / movement s
 publ i c st at i c f i nal i nt WALK = 11;
 publ i c st at i c f i nal i nt CROWL = 12;
 publ i c st at i c f i nal i nt TURN = 13;

 publ i c st at i c f i nal i nt DANCE = 2;

 / / f i ght
 publ i c st at i c f i nal i nt DEFENDME = 17;
 publ i c st at i c f i nal i nt JUMPENEMY = 18;

 publ i c Di r ect Command(i nt name) t hr ows I nval i dEvent Name
 {
 super (name) ;
 }
 publ i c St r i ng t oSt r i ng() [. . .]
}

Personality Model for Companion AIBO Iulia Dobai

 90

Appendix C: exper t system files
Please take these files as example rule files for the two expert systems. These files can be
configured and adapted to reason in different contexts and circumstances:

persRules.clp
(def modul e PERS)
(def cl ass per sonal i t y engi nes. Per sonal i t y)
(def cl ass needs engi nes. Needs)

(def f act s i dl e- f act
 (i dl e))

;
; ; Addi ng t he 2 f act s
;

(bi nd ?per sonal i t y (cal l engi nes. Per sonal i t y I nst ance))
(def i nst ance per sonal i t y ?per sonal i t y dynami c)

(bi nd ?needs (cal l engi nes. Needs I nst ance))
(def i nst ance needs ?needs dynami c)

;
; ; Funct i ons
;

(def f unct i on r unGPS()
 (r eset)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)
 (pr i nt out t " St ar t i ng GPS Engi ne . . . " cr l f)
 ; (f act s)
 (f ocus GPS)
 (r un- unt i l - hal t)
)
)

(def f unct i on makePr ef er ence(?cat egor y ?val ue)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)
 (bi nd ?pr ef (new engi nes. gps. Pr ef er ence))
 (def i nst ance pr ef er ence ?pr ef)
 (cal l ?pr ef set Val ue ?val ue)
 (cal l ?pr ef set Cat egor y ?cat egor y)
 (pr i nt out t " Gener at ed pr ef er ence i s " ?cat egor y " wi t h val ue " ?val ue
" . " cr l f)
 ; (f act s)
 (r eset)
)
)

(def f unct i on changeMood(?val ue)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)
 (bi nd ?mood (cal l engi nes. Mood I nst ance))
 (cal l ?mood set Val ence ?val ue)
 (pr i nt out t " mood was changed t o " ?val ue " . " cr l f)
 (r eset)
)
)

(def f unct i on makeSt andar d(?act i on ?agent ?val)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)
 (bi nd ?st and (new engi nes. gps. St andar d))
 (def i nst ance st andar d ?st and)

Personality Model for Companion AIBO Iulia Dobai

 91

 (cal l ?st and set Act i on ?act i on)
 (cal l ?st and set Agent ?agent)
 (cal l ?st and set Val ue ?val)
 (pr i nt out t " AI BO appr oves/ di ssapr oves " ?act i on " done by ot her agent "
?agent " wi t h val ue " ?val " . " cr l f)
 (r eset)
)
)

(def f unct i on makeGoal (?cat egor y ?val ue)
 (cal l - on- engi ne
 (get - member engi nes. GPSThr ead r et e)
 (bi nd ?goal (new engi nes. gps. Goal))
 (def i nst ance goal ?goal)
 (cal l ?goal set Val ue ?val ue)
 (cal l ?goal set Cat egor y ?cat egor y)
 (pr i nt out t " Gener at ed goal i s " ?cat egor y " wi t h val ue " ?val ue " . "
cr l f)
 (r eset)
)
)

;
; ; Rul es t hat t ake i nt o consi der at i on one t r ai t of per sonal i t y
;
(f act s)
(def r ul e Hi ghOpeness
 ; I F OPENESS i s hi gh (>=70)
 (per sonal i t y(OPENESS ?open&: (>= ?open 70)))
 =>
 (pr i nt out t " cr eat i ve, i magi nat i ve, phi l osophi cal " cr l f)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es UNKNOWNTOY) 100)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es UNKNOWNHUMAN) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLTOYS) 80)
 (makeSt andar d (get - member engi nes. gps. Act i on PLAY) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 90)
 (makeSt andar d (get - member engi nes. gps. Act i on PLAY) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 90)
 (undef r ul e Hi ghOpeness)
)

(def r ul e LowOpeness
 ; I F OPENESS i s l ow (<30)
 (per sonal i t y(OPENESS ?open&: (< ?open 30)))
 =>
 (pr i nt out t " uncr eat i ve, uni nt el ect ual , uni nt el l i gent " cr l f)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es UNKNOWNHUMAN) 20)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es UNKNOWNTOY) 0)
 (makeSt andar d (get - member engi nes. gps. Act i on PLAY) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 20)
 (makeSt andar d (get - member engi nes. gps. Act i on PLAY) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 20)
 (undef r ul e LowOpeness)
)

; (def r ul e t O3
 ; I F OPENESS i s medi um- l ow (>=30 and <50)
; (per sonal i t y (OPENESS ?open&: (and (>= ?open 30) (< ?open 50))))
; =>
;)

; (def r ul e t O4
 ; I F OPENESS i s medi um- hi gh (>=50 and <70)
; (per sonal i t y (OPENESS ?open&: (and (>= ?open 50) (< ?open 70))))
; =>
;)

(def r ul e Hi ghConsci ent i ousness
 ; I F CONSCI ENTI OUSNESS i s hi gh (>=70)
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (>= ?con 70)))
 =>

Personality Model for Companion AIBO Iulia Dobai

 92

 (pr i nt out t " t hr ough, st eady, consi st ent " cr l f)
 (undef r ul e Hi ghConsci ent i ousness)
)

(def r ul e LowConsci ent i ousness
 ; I F CONSCI ENTI OUSNESS i s l ow (<30)
 (per sonal i t y(CONSCI ENTI OUSNESS ?com&: (< ?com 30)))
 =>
 (pr i nt out t " i nconsi st ent , scat t er br ai ned, unst abl e" cr l f)
 (undef r ul e LowConsci ent i ousness)
 ; mor e r el at ed t o goal s
)

; (def r ul e t C3
 ; I F CONSCI ENTI OUSNESS i s medi um- l ow (>=30 and <50)
; (per sonal i t y (CONSCI ENTI OUSNESS ?con&: (and (>= ?con 30) (< ?con 50))))
 ; =>
 ; not hi ng
 ; mor e r el at ed t o goal s
;)

; (def r ul e t C4
 ; I F CONSCI ENTI OUSNESS i s medi um- hi gh (>=50 and <70)
; (per sonal i t y (CONSCI ENTI OUSNESS ?con&: (and (>= ?con 50) (< ?con 70))))
; =>
 ; not hi ng
 ; mor e r el at ed t o goal s
;)

(def r ul e Hi ghExt r aver si on
 ; I F EXTRAVERSI ON i s hi gh (>=70)
 ; Hi gh on Ext r aver si on means t hat we have an AI BO hi gh i n need f or st i mul at i on
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 70)))
 ?needs <- (needs(l ove ?l ove) (bel ongi ng ?bel ongi ng) (achi evement ?achi evement)
(r ecogni t i on ?r ecogni t i on))
 =>
 (pr i nt out t " t al kat i ve, ext r aver t ed, aggr essi ve" cr l f)
 ; make pr ef er ences
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOFRI ENDS) 100)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANFRI ENDS) 100)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANENEMI ES) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOENEMI ES) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es OWNER) 100)
 ; change need so t hat need f or bel ongi ng and l ove i s bi gger
 (modi f y ?needs (l ove (+ ?l ove 20)))
 (modi f y ?needs (bel ongi ng (+ ?bel ongi ng 20)))
 (modi f y ?needs (achi evement (+ ?achi evement 20)))
 (modi f y ?needs (r ecogni t i on (+ ?r ecogni t i on 20)))
 ; make st andar ds - AI BO apr oves on ALLHUMANS t o TOUCH, SPEAK, PLAY
 (makeSt andar d (get - member engi nes. gps. Act i on TOUCHHEAD) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 100)
 (makeSt andar d (get - member engi nes. gps. Act i on TOUCHCHI N) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 100)
 (makeSt andar d (get - member engi nes. gps. Act i on PETTI NG) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 100)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 100)
 (makeSt andar d (get - member engi nes. gps. Act i on HI TBACK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 0)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 100)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 100)
 (makeSt andar d (get - member engi nes. gps. Act i on PLAY) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 100)
 ; modi f y mood - swi t ch t o a posi t i ve mood
 (changeMood 50)
 (undef r ul e Hi ghExt r aver si on)
)

Personality Model for Companion AIBO Iulia Dobai

 93

(def r ul e LowExt r aver si on
 ; I F EXTRAVERSI ON i s l ow (<30)
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (< ?ext r a 30)))
 ?needs <- (needs(l ove ?l ove) (bel ongi ng ?bel ongi ng) (achi evement ?achi evement) (r ecogni t i on
?r ecogni t i on))
 =>
 (pr i nt out t " shy, qui et , i nt r over t ed" cr l f)
 ; make pr ef er ences
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOFRI ENDS) 30)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANFRI ENDS) 30)
 ; change need so t hat need f or bel ongi ng and l ove i s bi gger
 (modi f y ?needs (l ove (- ?l ove 20)))
 (modi f y ?needs (bel ongi ng (- ?bel ongi ng 20)))
 (modi f y ?needs (r ecogni t i on(+ ?r ecogni t i on 20)))
 ; make st andar ds - AI BO dowsn' t l i ke t al k i ng,
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 0)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 0)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 30)
 ; modi f y mood - swi t ch t o a posi t i ve mood
 (changeMood 10)
 (undef r ul e LowExt r aver si on)
)

(def r ul e Medi umLowExt r aver si on
 ; I F EXTRAVERSI ON i s medi um- l ow (>=30 and <50)
 ; Medi um- l ow ext r aver i on changes need f or l ove and bel ongi ng (decr ease) and f or
r ecogni t i on (decr ease)
 (per sonal i t y (EXTRAVERSI ON ?ext r a&: (and (>= ?ext r a 30) (< ?ext r a 50))))
 ?needs <- (needs(l ove ?l ove) (bel ongi ng ?bel ongi ng) (achi evement ?achi evement) (r ecogni t i on
?r ecogni t i on))
 =>
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 30)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 30)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es OWNER) 50)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOFRI ENDS) 40)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANFRI ENDS) 40)
 (modi f y ?needs (l ove (- ?l ove 10)))
 (modi f y ?needs (bel ongi ng (- ?bel ongi ng 10)))
 (modi f y ?needs (r ecogni t i on(+ ?r ecogni t i on 10)))
 ; make st andar ds - AI BO dowsn' t l i ke t al k i ng,
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 30)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 30)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 50)
 (undef r ul e Medi umLowExt r aver si on)
)

(def r ul e Medi umHi ghExt r aver si on
 ; I F EXTRAVERSI ON i s medi um- hi gh (>=50 and <70)
 ; Medi um- hi gh on Ext r aver si on means t hat we have an AI BO hi gh i n need f or st i mul at i on
 (per sonal i t y (EXTRAVERSI ON ?ext r a&: (and (>= ?ext r a 50) (< ?ext r a 70))))
 ?needs <- (needs(l ove ?l ove) (bel ongi ng ?bel ongi ng) (achi evement ?achi evement) (r ecogni t i on
?r ecogni t i on))
 =>
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOFRI ENDS) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANFRI ENDS) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es OWNER) 70)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANENEMI ES) 50)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOENEMI ES) 50)
 ; change need so t hat need f or bel ongi ng and l ove i s bi gger
 (modi f y ?needs (l ove (+ ?l ove 10)))
 (modi f y ?needs (bel ongi ng (+ ?bel ongi ng 10)))
 (modi f y ?needs (achi evement (+ ?achi evement 10)))
 (modi f y ?needs (r ecogni t i on (+ ?r ecogni t i on 10)))
 ; make st andar ds - AI BO apr oves on ALLHUMANS t o TOUCH, SPEAK, PLAY

Personality Model for Companion AIBO Iulia Dobai

 94

 (makeSt andar d (get - member engi nes. gps. Act i on TOUCHHEAD) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 70)
 (makeSt andar d (get - member engi nes. gps. Act i on TOUCHCHI N) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 70)
 (makeSt andar d (get - member engi nes. gps. Act i on PETTI NG) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 70)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 70)
 (makeSt andar d (get - member engi nes. gps. Act i on HI TBACK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 0)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 70)
 (makeSt andar d (get - member engi nes. gps. Act i on SPEAK) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 70)
 (makeSt andar d (get - member engi nes. gps. Act i on PLAY) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 70)
 ; modi f y mood - swi t ch t o a posi t i ve mood
 (changeMood 25)
 (undef r ul e Medi umHi ghExt r aver si on)
)

(def r ul e Hi ghAgr eeabl eness
 ; I F AGREEABLENESS i s hi gh (>=70)
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 70)))
 ?needs <- (needs(achi evement ?achi evement))
 =>
 (pr i nt out t " sympat het i c, k i nd, war m" cr l f)
 ; pr ef er ences
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLTOYS) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es VI CTI MS) 100)
 ; need f or hel pi ng ot her s, achi evement i s bi g = Symphat y
 (modi f y ?needs (achi evement (+ ?achi evement 30)))
 ; st andar ds
 ; al t r ui sm - doi ng t hi ngs f or ot her s i s sel f - f ul l f i l ment . They l i ke.
 (makeSt andar d (get - member engi nes. gps. Act i on HELP) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 100)
 (makeSt andar d (get - member engi nes. gps. Act i on HELP) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 100)
 (undef r ul e Hi ghAgr eeabl eness)
)

(def r ul e LowAgr eeabl eness
 ; I F AGREEABLENESS i s l ow (<30)
 (per sonal i t y(AGREEABLENESS ?agr &: (< ?agr 30)))
 ?needs <- (needs(achi evement ?achi evement))
 =>
 (pr i nt out t " unsympat het i c, unki nd, har sh" cr l f)
 ; pr ef er ences
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 40)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 40)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es SELF) 100)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es VI CTI MS) 0)
 ; needs
 (modi f y ?needs (achi evement (- ?achi evement 30)))
 ; I don' t know what t o say about st andar ds
 (undef r ul e LowAgr eeabl eness)
)

(def r ul e Medi umLowAgr eeabl eness
 ; I F AGREEABLENESS i s medi um- l ow (>=30 and <50)
 (per sonal i t y (AGREEABLENESS ?agr &: (and (>= ?agr 30) (< ?agr 50))))
 ?needs <- (needs(achi evement ?achi evement))
 =>
 ; pr ef er ences
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es SELF) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es VI CTI MS) 20)
 ; needs

Personality Model for Companion AIBO Iulia Dobai

 95

 (modi f y ?needs (achi evement (- ?achi evement 10)))
 (undef r ul e Medi umLowAgr eeabl eness)
)

(def r ul e Medi umHi ghAgr eeabl eness
 ; I F AGREEABLENESS i s medi um- hi gh (>=50 and <70)
 (per sonal i t y (AGREEABLENESS ?agr &: (and (>= ?agr 50) (< ?agr 70))))
 ?needs <- (needs(achi evement ?achi evement))
 =>
 ; pr ef er ences
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es SELF) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es VI CTI MS) 80)
 ; need f or hel pi ng ot her s, achi evement i s bi g = Symphat y
 (modi f y ?needs (achi evement (+ ?achi evement 10)))
 ; st andar ds
 (makeSt andar d (get - member engi nes. gps. Act i on HELP) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 70)
 (makeSt andar d (get - member engi nes. gps. Act i on HELP) (get - member
engi nes. gps. Pr ef er enceCat egor i es ALLAI BO) 70)
 (undef r ul e Medi umHi ghAgr eeabl eness)
)

(def r ul e Hi ghNeur ot i c i sm
 ; I F NEUROTI CI SM i s hi gh (>=70)
 (per sonal i t y(NEUROTI CI SM ?neur &: (>= ?neur 70)))
 ?needs <- (needs(saf et y ?saf et y) (r ecogni t i on ?r ecogni t i on))
 =>
 (pr i nt out t " moody, j eal ous, possessi ve" cr l f)
 ; pr ef er ences f or danger ous si t uat i ons i s ver y l ow
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOENEMI ES) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANENEMI ES) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es WEAPON) 60)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es ALLHUMANS) 40)
 ; modi f y mood - swi t ch t o a negat i ve mood
 (changeMood - 50)
 (modi f y ?needs (saf et y 70))
 (modi f y ?needs (r ecogni t i on 60))
 (makeSt andar d (get - member engi nes. gps. Act i on HELP) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 70)
 (undef r ul e Hi ghNeur ot i c i sm)
)

(def r ul e LowNeur ot i c i sm
 ; I F NEUROTI CI SM i s l ow (<30)
 (per sonal i t y(NEUROTI CI SM ?neur &: (< ?neur 30)))
 ?needs <- (needs(saf et y ?saf et y) (r ecogni t i on ?r ecogni t i on))
 =>
 (pr i nt out t " unenvi ous" cr l f)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOENEMI ES) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANENEMI ES) 80)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es WEAPON) 80)
 ; modi f y mood - swi t ch t o a negat i ve mood
 (changeMood - 10)
 (modi f y ?needs (saf et y 20))
 (modi f y ?needs (r ecogni t i on 40))
 (undef r ul e LowNeur ot i c i sm)
)

; (def r ul e t N3
 ; I F NEUROTI CI SM i s medi um- l ow (>=30 and <50)
; (per sonal i t y (NEUROTI CI SM ?neur &: (and (>= ?neur 30) (< ?neur 50))))
; =>
 ; not hi ng
;)

; (def r ul e t N4
 ; I F NEUROTI CI SM i s medi um- hi gh (>=50 and <70)
; (per sonal i t y (NEUROTI CI SM ?neur &: (and (>= ?neur 50) (< ?neur 70))))

Personality Model for Companion AIBO Iulia Dobai

 96

; =>
 ; not hi ng
;)

;
; ; Rul es t hat t ake i nt o consi der at i on t wo t r ai t s of per sonal i t y
;
(def r ul e HExt r aver si onHAgr eabl eness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 70)))
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 50)))
 =>
 (pr i nt out t " soci al bl e, soci al , ent husi ast i c" cr l f)
 (undef r ul e HExt r aver si onHAgr eabl eness)
)

(def r ul e HExt r aver si onLAgr eabl eness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 70)))
 (per sonal i t y(AGREEABLENESS ?agr &: (< ?agr 50)))
 =>
 (pr i nt out t " domi nant , domi neer i ng, f or cef ul l " cr l f)
 (undef r ul e HExt r aver si onLAgr eabl eness)
)

(def r ul e HExt r aver si onHConsci ent i ousness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 70)))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (>= ?con 50)))
 =>
 (pr i nt out t " act i ve, compet i t i ve, per si st ent " cr l f)
 (undef r ul e HExt r aver si onHConsci ent i ousness)
)

(def r ul e HExt r aver si onHOpeness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 70)))
 (per sonal i t y(OPENESS ?open&: (>= ?open 50)))
 =>
 (pr i nt out t " expr essi ve, advent ur ous, dr amat i c" cr l f)
 (undef r ul e HExt r aver si onHOpeness)
)

(def r ul e LExt r aver si onLAgr eabl eness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (<= ?ext r a 30)))
 (per sonal i t y(AGREEABLENESS ?agr &: (< ?agr 50)))
 =>
 (pr i nt out t " unsoci abl e, uncommuni cat i ve, secl usi ve" cr l f)
 (undef r ul e LExt r aver si onLAgr eabl eness)
)

(def r ul e LExt r aver si onHNeur ot i c i sm
 (decl ar e (sal i ence - 50))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (<= ?ext r a 30)))
 (per sonal i t y(NEUROTI CI SM ?neur &: (< ?neur 50)))
 =>
 (pr i nt out t " l onel y, weak, cowar dl y" cr l f)
 (undef r ul e LExt r aver si onHNeur ot i c i sm)
)

(def r ul e LExt r aver si onLOpeness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (<= ?ext r a 30)))
 (per sonal i t y(OPENESS ?open&: (< ?open 50)))
 =>
 (pr i nt out t " passi ve, meek, dul l " cr l f)
 (undef r ul e LExt r aver si onLOpeness)
)

(def r ul e HAgr eabl enessHExt r aver si on

Personality Model for Companion AIBO Iulia Dobai

 97

 (decl ar e (sal i ence - 50))
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 70)))
 (per sonal i t y(EXTRAVERSI ON ?ext r &: (>= ?ext r 50)))
 =>
 (pr i nt out t " mer r y, cheer f ul l , happy" cr l f)
 (undef r ul e HAgr eabl enessHExt r aver si on)
)

(def r ul e HAgr eabl enessHConsci ent i ousness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 70)))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (>= ?con 50)))
 =>
 (pr i nt out t " hel pf ul , cooper at i ve, consi der at e" cr l f)
 (undef r ul e HAgr eabl enessHConsci ent i ousness)
)

(def r ul e HAgr eabl enessHNeur ot i c i sm
 (decl ar e (sal i ence - 50))
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 70)))
 (per sonal i t y(NEUROTI CI SM ?neur &: (>= ?neur 50)))
 =>
 (pr i nt out t " sent i ment al , af f ect i onat e, sensi t i ve" cr l f)
 (undef r ul e HAgr eabl enessHNeur ot i c i sm)
)

(def r ul e HAgr eabl enessLConsci ent i ousness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 70)))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (< ?con 50)))
 =>
 (pr i nt out t " i nconsi der at e, r ude, i mpol i t e" cr l f)
 (undef r ul e HAgr eabl enessLConsci ent i ousness)
)

(def r ul e HAgr eabl enessLNeur ot i c i sm
 (decl ar e (sal i ence - 50))
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 70)))
 (per sonal i t y(NEUROTI CI SM ?neur &: (< ?neur 50)))
 =>
 (pr i nt out t " t r ust f ul l , pl easant , t ol er ant " cr l f)
 (undef r ul e HAgr eabl enessLNeur ot i c i sm)
)

(def r ul e LAgr eabl enessLNeur ot i c i sm
 (decl ar e (sal i ence - 50))
 (per sonal i t y(AGREEABLENESS ?agr &: (<= ?agr 30)))
 (per sonal i t y(NEUROTI CI SM ?neur &: (< ?neur 50)))
 =>
 (pr i nt out t " i nsensi t i ve, unaf f ect i onat e, passi onl ess" cr l f)
 (undef r ul e LAgr eabl enessLNeur ot i c i sm)
)

(def r ul e LAgr eabl enessHNeur ot i c i sm
 (decl ar e (sal i ence - 50))
 (per sonal i t y(AGREEABLENESS ?agr &: (<= ?agr 30)))
 (per sonal i t y(NEUROTI CI SM ?neur &: (> ?neur 50)))
 =>
 (pr i nt out t " demandi ng, sel f i sh, i l l - t emper ed" cr l f)
 (undef r ul e LAgr eabl enessHNeur ot i c i sm)
)

(def r ul e HConsci ent i ousnessHExt r aver si on
 (decl ar e (sal i ence - 50))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (>= ?con 70)))
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 50)))
 =>
 (pr i nt out t " al er t , ambi t i ous, f i r m" cr l f)
 (undef r ul e HConsci ent i ousnessHExt r aver si on)
)

Personality Model for Companion AIBO Iulia Dobai

 98

(def r ul e HConsci ent i ousnessHAgr eeabl eness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (>= ?con 70)))
 (per sonal i t y(AGREEABLENESS ?agr &: (>= ?agr 50)))
 =>
 (pr i nt out t " r esponsi bl e, dependabl e, r el i abl e" cr l f)
 (undef r ul e HConsci ent i ousnessHAgr eeabl eness)
)

(def r ul e HConsci ent i ousnessLNeur ot i c i sm
 (decl ar e (sal i ence - 50))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (>= ?con 70)))
 (per sonal i t y(NEUROTI CI SM ?neur &: (< ?neur 50)))
 =>
 (pr i nt out t " t hr ough, st eady, consi st ent " cr l f)
 (undef r ul e HConsci ent i ousnessLNeur ot i c i sm)
)

(def r ul e HConsci ent i ousnessLExt r aver si on
 (decl ar e (sal i ence - 50))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (<= ?con 30)))
 (per sonal i t y(EXTRAVERSI ON ?ext r &: (< ?ext r 50)))
 =>
 (pr i nt out t " i nef f i c i ent , l azy, i ndeci si ve" cr l f)
 (undef r ul e HConsci ent i ousnessLExt r aver si on)
)

(def r ul e LConsci ent i ousnessHNeur ot i c i sm
 (decl ar e (sal i ence - 50))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (< ?con 30)))
 (per sonal i t y(NEUROTI CI SM ?neur &: (> ?neur 50)))
 =>
 (pr i nt out t " i nconsi st ent , scat t er br ei ned, unst abl e" cr l f)
 (undef r ul e LConsci ent i ousnessHNeur ot i c i sm)
)

(def r ul e LConsci ent i ousnessLOpeness
 (decl ar e (sal i ence - 50))
 (per sonal i t y(CONSCI ENTI OUSNESS ?con&: (<= ?con 30)))
 (per sonal i t y(OPENESS ?open&: (< ?open 50)))
 =>
 (pr i nt out t " haphazar d, i l l ogi cal , i mmat ur e" cr l f)
 (undef r ul e LConsci ent i ousnessLOpeness)
)

;
; ; Rul es t hat r el at e t o per sonal i t y and needs t oget her
;

(def r ul e Hi ghExt r aver si onLove1
 (decl ar e (sal i ence - 100))
 ; Hi gh on ext r aver si on and need f or l ove i s smal l . . . t hen I need t o i ncr ease t he need f or
l ove
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 70)))
 ?needs <- (needs(l ove ?l ove&: (< ?l ove 50)) (bel ongi ng ?bel ongi ng))
 =>
 (modi f y ?needs (l ove (+ ?l ove 20)))
 (modi f y ?needs (bel ongi ng (+ ?bel ongi ng 20)))
)

(def r ul e Medi umHi ghExt r aver si onLove2
 (decl ar e (sal i ence - 100))
 ; Medi um- Hi gh on ext r aver si on and need f or l ove i s smal l . . . t hen I need t o i ncr ease t he
need f or l ove
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (and (< ?ext r a 70) (>= ?ext r a 50))))
 ?needs <- (needs(l ove ?l ove&: (< ?l ove 50)))
 =>
 (modi f y ?needs (l ove (+ ?l ove 10)))
 (modi f y ?needs (bel ongi ng (+ ?bel ongi ng 10)))
)

Personality Model for Companion AIBO Iulia Dobai

 99

(def r ul e Hi ghExt r aver si onBel ongi ng1
 (decl ar e (sal i ence - 100))
 ; Hi gh on ext r aver si on and need f or bel ongi ng i s smal l . . . t hen I need t o i ncr ease t he
need f or bel ongi ng
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (>= ?ext r a 70)))
 ?needs <- (needs(bel ongi ng ?bel ongi ng&: (< ?bel ongi ng 50)))
 =>
 (modi f y ?needs (l ove (+ ?l ove 20)))
 (modi f y ?needs (bel ongi ng (+ ?bel ongi ng 20)))
)

(def r ul e Medi umHi ghExt r aver si onBel ongi ng2
 (decl ar e (sal i ence - 100))
 ; Medi um- Hi gh on ext r aver si on and need f or bel ongi ng i s smal l . . . t hen I need t o
i ncr ease t he need f or bel ongi ng
 (per sonal i t y(EXTRAVERSI ON ?ext r a&: (and (< ?ext r a 70) (>= ?ext r a 50))))
 ?needs <- (needs(bel ongi ng ?bel ongi ng&: (< ?bel ongi ng 50)))
 =>
 (modi f y ?needs (l ove (+ ?l ove 10)))
 (modi f y ?needs (bel ongi ng (+ ?bel ongi ng 10)))
)

(def r ul e HAgr eeabl enessHAchi evement
 (decl ar e (sal i ence - 100))
 (per sonal i t y (AGREEABLENESS ?agr &: (>= ?agr 70)))
 ?needs <- (needs(achi evement ?ach&: (< ?ach 30)) (r ecogni t i on ?r ec&: (< ?r ec 50)))
 =>
 (pr i nt out t " i mmodest y, ar r ogant " cr l f)
)

(def r ul e Hi ghNeur ot i c i smNSaf et y
 (decl ar e (sal i ence - 100))
 ; I F NEUROTI CI SM i s hi gh (>=70)
 (per sonal i t y(NEUROTI CI SM ?neur &: (>= ?neur 70)))
 ?needs <- (needs(saf et y ?saf et y&: (> ?saf et y 50)))
 =>
 (pr i nt out t " AI BO i s af r ai d even i n nor mal s i t uat i ons" cr l f)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es AI BOENEMI ES) 0)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es HUMANENEMI ES) 0)
 (makePr ef er ence (get - member engi nes. gps. Pr ef er enceCat egor i es WEAPON) 0)
 (changeMood - 20)
 (makeSt andar d (get - member engi nes. gps. Act i on HELP) (get - member
engi nes. gps. Pr ef er enceCat egor i es SELF) 100)
)

(def r ul e hi ghNeedRecogni t i on
 (decl ar e (sal i ence - 120))
 ?needs <- (needs(r ecogni t i on ?r ecogni t i on&: (> ?r ecogni t i on 50)))
 =>
 (makeSt andar d (get - member engi nes. event s. Car act er i zat i on GOODDOG) (get - member
engi nes. gps. Pr ef er enceCat egor i es OWNER) ?r ecogni t i on)
 (makeSt andar d (get - member engi nes. event s. Car act er i zat i on SMARTDOG) (get - member
engi nes. gps. Pr ef er enceCat egor i es OWNER) ?r ecogni t i on)
)

(def r ul e hi ghNeedAchi evement
 (decl ar e (sal i ence - 120))
 ?needs <- (needs(achi evement ?achi evement &: (> ?achi evement 50)))
 =>
 (makeSt andar d (get - member engi nes. event s. Car act er i zat i on GOODDOG) (get - member
engi nes. gps. Pr ef er enceCat egor i es OWNER) ?achi evement)
 (makeSt andar d (get - member engi nes. event s. Car act er i zat i on SMARTDOG) (get - member
engi nes. gps. Pr ef er enceCat egor i es OWNER) ?achi evement)
)

(def r ul e al ways
 (decl ar e (sal i ence 100))
 =>
 (makeSt andar d (get - member engi nes. event s. Car act er i zat i on BADDOG) (get - member
engi nes. gps. Pr ef er enceCat egor i es OWNER) 100)

Personality Model for Companion AIBO Iulia Dobai

 100

 (makeSt andar d (get - member engi nes. event s. Car act er i zat i on STUPI DDOG) (get - member
engi nes. gps. Pr ef er enceCat egor i es OWNER) 100)
)

;
; ; Thi s r ul e i s necessar y t o gi ve back t he handl e t o t he GPS engi ne
;
(def r ul e not hi ng
 ; Thi s i s t he l owest sal i ence r ul e. I t i s cal l ed when Per sonal i t y Engi ne have
f i ni shed f i r ei ng al l act i ve r ul es
 (decl ar e (sal i ence - 200))
 =>
 (r unGPS)
)

gpsRules.clp

(c l ear)
(def modul e GPS)
(def cl ass mood engi nes. Mood)
(def cl ass pr ef er ence engi nes. gps. Pr ef er ence)
(def cl ass i nt Event engi nes. event s. I nt er nal Event)
(def cl ass ext Event engi nes. event s. Ext er nal Event)
(def cl ass di r ect Com engi nes. event s. Di r ect Command)
(def cl ass car act engi nes. event s. Car act er i zat i on)
(def cl ass emot i on engi nes. Emot i on)
(def cl ass st andar d engi nes. gps. St andar d)
(def cl ass goal engi nes. gps. Goal)

(def f act s i dl e- f act
 (i dl e))

(def gl obal ?* needs* = ni l)
(bi nd ?* needs* (cal l engi nes. Needs I nst ance))

(def quer y emot i onSear ch
 (emot i on (t ype ?t) (i nt ensi t y ?i))
)

;
; ; Addi ng t he " mood" f act
;

(bi nd ?mood (cal l engi nes. Mood I nst ance))
(def i nst ance mood ?mood dynami c)

;
; ; Funct i ons
;

(def f unct i on makeEmot i on (?t ype ?i nt ensi t y)
 (bi nd ?emot i on (new engi nes. Emot i on))
 (def i nst ance emot i on ?emot i on)
 (cal l ?emot i on set Type ?t ype)
 (cal l ?emot i on set I nt ensi t y ?i nt ensi t y)
 (pr i nt out t " Gener at ed emot i ons i s " ?t ype " wi t h i nt ensi t y " ?i nt ensi t y " . " cr l f)
 (r et ur n ?emot i on)
)

(def f unct i on i nt r epr et Emot i on(?t ype ?i nt ensi t y)
 (bi nd ?eI nt er pr et er (new i nt er pr et er s. Emot i onI nt er pr et er))
 (cal l ?eI nt er pr et er makeEmot i on ?t ype ?i nt ensi t y)
 (cal l ?eI nt er pr et er st ar t)
)

(def f unct i on i nt r epr et Act i on(?name)
 (bi nd ?aI nt er pr et er (new i nt er pr et er s. ReAct i onI nt er pr et er))
 (cal l ?aI nt er pr et er makeReAct i on ?name)
 (cal l ?aI nt er pr et er st ar t)

Personality Model for Companion AIBO Iulia Dobai

 101

)

(def f unct i on r unPERS()
 (r eset)
 (cal l - on- engi ne
 (get - member engi nes. Per sThr ead r et e)
 (pr i nt out t " St ar t i ng Per sonal i t y Engi ne. . . " cr l f)
 (f ocus PERS)
 (r un- unt i l - hal t)
)
)

(def f unct i on wai t Event ()
 (f ocus GPS)
 ((engi ne) wai t For Act i vat i ons)
)

;
; ; Rul es t hat eval uat e t he pr ef er ences upon occur ance of event s
; ; Al l r ul es t hat change t he needs need t o cal l t he PERSONALI TY ENGI NE
;
; ; ; ; ; ; ; ; ; ; Thi s i s how a r ul e i n t hi s sect i on i s st r uct ur ed. Pl ease f ol l ow t hi s st r uct ur e
cl osel y! ! !
; (def r ul e event NamedRul e_no
 ; (pr ef er ence(cat egor y ?cat &: (? ?cat ?)) (val ue ?val &: (? ?val ?)))
 ; ?i d<- (i nt Event (event Name ?name&: (? ?name ?)))
 ; ?m<- (mood (val ence ?val ence&: (? ?val ence ?)))
 ; =>
 ; t he event t hat gener at ed t he emot i on i s r et r act ed because i t i s no f ur t her needed
 ; (r et r act ?i d)
 ; change mood. Mood decr eases wi t h ? uni t s.
 ; (modi f y ?m (val ence (- ?val ence 10)))
 ; AI BO' s emot i on i s gener at ed and t he Emot i onI nt er pr et er i s cal l ed
 ; (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD 40))
 ; change needs. set Need - i s t he name of a set t er i n t he needs cl ass and ? shoul d be
r epl aced wi t h a val ue f or t hat need
 ; (cal l ?* needs* set Need ?)
 ; (pr i nt out t " I f you want t o pr i nt out somet hi ng do i t her e" cr l f)
 ; Cal l t he Per sonal i t y Engi ne. . . s i nce change i n needs mi ght ef f ect t he GPS.
 ; (r unPERS)
;)
; ; ; ; ; ; ; ; ; END OF COMMENT r epr esent i ng an exampl e of a r ul e i n t hi s sect i on

;
; ; ; ; ; ; ; ; ; ; ; ; I NTERNAL EVENTS;
;

(def r ul e bor edomRul e1
 ; event t hat f i r es t hi s r ul e i s i nt er nal event : NOEVENT
 ; pr ef er ence t owar ds ALLHUMANS i s bi gger t hen 50% and mood i s posi t i ve
 (pr ef er ence(cat egor y ?cat &: (and (>= ?cat 10) (< ?cat 20))) (val ue ?val &: (> ?val
50)))
 ?i d<- (i nt Event (event Name ?name&: (eq ?name 0)))
 ?mood<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (r et r act ?i d)
 (modi f y ?mood (val ence (- ?val ence 10)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD) ?val)
 (cal l ?* needs* set Love 20)
 (pr i nt out t " bor edomRul e1" cr l f)
 (r unPERS)
)

(def r ul e bor edomRul e2
 ; event t hat f i r es t hi s r ul e i s i nt er nal event : NOEVENT
 ; pr ef er ence t owar ds ALLHUMANS i s bi gger t hen 50% and mood i s negat i ve
 (pr ef er ence(cat egor y ?cat &: (and (>= ?cat 10) (< ?cat 20))) (val ue ?val &: (> ?val
50)))
 ?i d<- (i nt Event (event Name ?name&: (eq ?name 0)))
 ?mood <- (mood (val ence ?val ence&: (<= ?val ence 0)))
 =>

Personality Model for Companion AIBO Iulia Dobai

 102

 (r et r act ?i d)
 (modi f y ?mood (val ence (- ?val ence 20)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD) 100)
 (cal l ?* needs* set Love 100)
 (pr i nt out t " bor edomRul e2" cr l f)
 (r unPERS)
)

(def r ul e bor edomRul e3
 ; event t hat f i r es t hi s r ul e i s i nt er nal event : NOEVENT
 ; pr ef er ence t owar ds ALLHUMANS i s l ess t hen 50% and mood i s negat i ve
 (pr ef er ence(cat egor y ?cat &: (and (>= ?cat 10) (< ?cat 20))) (val ue ?val &: (< ?val
50)))
 ?i d<- (i nt Event (event Name ?name&: (eq ?name 0)))
 ?mood <- (mood (val ence ?val ence&: (< ?val ence 0)))
 =>
 (r et r act ?i d)
 (modi f y ?mood (val ence (+ ?val ence 10)))
 (pr i nt out t " bor edomRul e3" cr l f)
 (r unPERS)
)

(def r ul e bor edomRul e4
 ; event t hat f i r es t hi s r ul e i s i nt er nal event : NOEVENT
 ; pr ef er ence t owar ds ALLHUMANS i s l ess t hen 50% and mood i s posi t i ve
 (pr ef er ence(cat egor y ?cat &: (and (>= ?cat 10) (< ?cat 20))) (val ue ?val &: (< ?val
50)))
 ?i d<- (i nt Event (event Name ?name&: (eq ?name 3)))
 ?mood<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (r et r act ?i d)
 (pr i nt out t " bor edomRul e4" cr l f)
 (r unPERS)
)

;
; ; ; ; ; ; ; ; ; ; ; ; DI RECT COMMANDS EVENTS;
;
(def r ul e f i ndBone1
 ?dc<- (di r ect Com(event Name ?name&: (eq ?name (get - member engi nes. gps. Di r ect Command
FI NDBONE))))
 ?mood<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " f i ndBone1 command was caught " cr l f)
 (r et r act ?dc)
 (modi f y ?mood (val ence (+ ?val ence 10)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on FEAR) 60)
 (cal l ?* needs* set Love 40)
 (r unPERS)
)

(def r ul e br i ngBone1
 ?dc<- (di r ect Com(event Name ?name&: (eq ?name (get - member engi nes. gps. Di r ect Command
BRI NGBONE))))
 ?mood<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " br i ngBone1 command was caught " cr l f)
 (r et r act ?dc)
 (modi f y ?mood (val ence (+ ?val ence 10)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on FEAR) 60)
 (cal l ?* needs* set Love 40)
 (r unPERS)
)

(def r ul e pl ayBone1
 ?dc<- (di r ect Com(event Name ?name&: (eq ?name (get - member engi nes. gps. Di r ect Command
PLAYBONE))))
 ?mood<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " pl ayBone1 command event was caught " cr l f)
 (r et r act ?dc)

Personality Model for Companion AIBO Iulia Dobai

 103

 (modi f y ?mood (val ence (+ ?val ence 10)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on FEAR) 60)
 (cal l ?* needs* set Love 40)
 (r unPERS)
)
;
; ; ; ; ; ; ; ; ; ; ; ; CARACTERI ZATI ON EVENTS;
;

(def r ul e t est Car act GOODDOG1
 ?car act <- (car act (event Name ?name&: (eq ?name 101)))
 ?mood<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " GOODDOG event was caught " cr l f)
 (r et r act ?car act)
 (modi f y ?mood (val ence (+ ?val ence 20)))
 (i nt r epr et Act i on (cal l compani onAI BO. Head NO))
 (i nt r epr et Act i on (cal l compani onAI BO. Head NO))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on HAPPY) (+ ?val ence 50))
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 20))
 (r unPERS)
)

(def r ul e t est Car act GOODDOG2
 ?car act <- (car act (event Name ?name&: (eq ?name 101)))
 ?mood<- (mood (val ence ?val ence&: (< ?val ence 0)))
 =>
 (pr i nt out t " GOODDOG event was caught " cr l f)
 (r et r act ?car act)
 (modi f y ?mood (val ence (+ ?val ence 10)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on HAPPY) (+ ?val ence 50))
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 20))
 (r unPERS)
)

(def r ul e t est Car act BADDOG1
 ?car act <- (car act (event Name ?name&: (eq ?name 102)))
 ?mood<- (mood (val ence ?val ence&: (< ?val ence 0)))
 =>
 (pr i nt out t " BADDOG1 event was caught " cr l f)
 (r et r act ?car act)
 (modi f y ?mood (val ence (- ?val ence 10)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 80)
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 20))
 (r unPERS)
)

(def r ul e t est Car act BADDOG2
 ?car act <- (car act (event Name ?name&: (eq ?name 102)))
 ?mood<- (mood (val ence ?val ence&: (>= ?val ence 0)))
 =>
 (pr i nt out t " BADDOG2 event was caught " cr l f)
 (r et r act ?car act)
 (modi f y ?mood (val ence (- ?val ence 10)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SURPRI SE) (+ ?val ence 50))
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 20))
 (r unPERS)
)

(def r ul e t est Car act STUPI DDOG1
 ?car act <- (car act (event Name ?name&: (eq ?name 103)))
 ?mood<- (mood (val ence ?val ence&: (< ?val ence 0)))
 =>
 (pr i nt out t " STUPI DDOG1 event was caught " cr l f)
 (r et r act ?car act)
 (modi f y ?mood (val ence (- ?val ence 20)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SURPRI SE) 100)
 (i nt r epr et Act i on (cal l compani onAI BO. Head NO))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD) 60)
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 40))
 (r unPERS)

Personality Model for Companion AIBO Iulia Dobai

 104

)

(def r ul e t est Car act STUPI DDOG2
 ?car act <- (car act (event Name ?name&: (eq ?name 103)))
 ?mood<- (mood (val ence ?val ence&: (>= ?val ence 0)))
 =>
 (pr i nt out t " STUPI DDOG2 event was caught " cr l f)
 (r et r act ?car act)
 (modi f y ?mood (val ence (- ?val ence 20)))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SURPRI SE) 100)
 (i nt r epr et Act i on (cal l compani onAI BO. Head NO))
 ; (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD) (- 50 ?val ence))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD) 40)
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 40))
 (r unPERS)
)

(def r ul e t est Car act SMARTDOG1
 ?car act <- (car act (event Name ?name&: (eq ?name 104)))
 ?mood<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " SMARTDOG event was caught " cr l f)
 (r et r act ?car act)
 ; (modi f y ?m (val ence (+ ?val ence 10)))
 (i nt r epr et Act i on (cal l compani onAI BO. Head YES))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on HAPPY) 100)
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 20))
 (cal l ?* needs* set Achi evement (+ (cal l ?* needs* get Achi evement) 10))
 (r unPERS)
)

(def r ul e t est Car act SMARTDOG2
 ?car act <- (car act (event Name ?name&: (eq ?name 104)))
 ?mood<- (mood (val ence ?val ence&: (< ?val ence 0)))
 =>
 (pr i nt out t " SMARTDOG event was caught " cr l f)
 (r et r act ?car act)
 ; (modi f y ?m (val ence (+ ?val ence 10)))
 (i nt r epr et Act i on (cal l compani onAI BO. Head YES))
 (i nt r epr et Emot i on (get - member engi nes. Emot i on SURPRI SE) (- 50 ?val ence))
 (cal l ?* needs* set Recogni t i on (+ (cal l ?* needs* get Recogni t i on) 20))
 (cal l ?* needs* set Achi evement (+ (cal l ?* needs* get Achi evement) 10))
 (r unPERS)
)

;
; EXTERNAL EVENTS;
;

(def r ul e headTouch1
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHHEAD))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " HeadTouch1 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on HAPPY) ?val)
 (modi f y ?m (val ence (+ ?val ence 5)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e headTouch2
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHHEAD))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (< ?val ence 0)))
 =>
 (pr i nt out t " HeadTouch2 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))

Personality Model for Companion AIBO Iulia Dobai

 105

 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e headTouch3
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHHEAD))))
 (pr ef er ence(cat egor y 1| 4| 5| 6| 15) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 30)))
 =>
 (pr i nt out t " HeadTouch3 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on(get - member engi nes. Emot i on HAPPY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e headTouch4
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHHEAD))))
 (pr ef er ence(cat egor y ?cat &: (eq ?cat (get - member engi nes. gps. Pr ef er enceCat egor i es
ALLHUMANS))) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " HeadTouch4 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e chi nTouch1
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHCHI N))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " Chi nTouch1 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on HAPPY) ?val)
 (modi f y ?m (val ence (+ ?val ence 5)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e chi nTouch2
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHCHI N))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (< ?val ence 0)))
 =>
 (pr i nt out t " Chi nTouch2 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e chi nTouch3
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHCHI N))))
 (pr ef er ence(cat egor y 1| 4| 5| 6| 15) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 30)))
 =>
 (pr i nt out t " Chi nTouch3 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on(get - member engi nes. Emot i on HAPPY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e chi nTouch4

Personality Model for Companion AIBO Iulia Dobai

 106

 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHCHI N))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " Chi nTouch4 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e BackTouch1
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackTouch1 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)
(def r ul e BackTouch2
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackTouch2 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)
(def r ul e BackTouch3
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackTouch3 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)
(def r ul e BackTouch4
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackTouch4 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e BackHi t 1
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on HI TBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackHi t 1 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))

Personality Model for Companion AIBO Iulia Dobai

 107

 (r unPERS)
)

(def r ul e BackHi t 1
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on HI TBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackHi t 1 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e BackHi t 2
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on HI TBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackHi t 2 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e BackHi t 3
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on HI TBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackHi t 3 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e BackHi t 4
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on HI TBACK))))
 ; (pr ef er ence(cat egor y ?cat &: (eq ?cat 1)) (val ue ?val &: (< ?val 50)))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " BackHi t 4 event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

; YES
(def r ul e PawLF
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHPAWLF))))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " PawLF event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Act i on (cal l compani onAI BO. Head NO))
 ; (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (+ ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

; NO
(def r ul e PawRF

Personality Model for Companion AIBO Iulia Dobai

 108

 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHPAWRF))))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " PawRF event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Act i on (cal l compani onAI BO. Head YES))
 (pr i nt out t " cucu" cr l f)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)
(def r ul e PawLB
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHPAWLB))))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " PawLB event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

(def r ul e PawRB
 ?ext E<- (ext Event (event Name ?n&: (eq ?n (get - member engi nes. gps. Act i on TOUCHPAWRB))))
 ?m<- (mood (val ence ?val ence&: (> ?val ence 0)))
 =>
 (pr i nt out t " PawRB event was caught " cr l f)
 (r et r act ?ext E)
 (i nt r epr et Emot i on (get - member engi nes. Emot i on ANGRY) 60)
 (modi f y ?m (val ence (- ?val ence 10)))
 (cal l ?* needs* set Bel ongi ng (- (cal l ?* needs* get Bel ongi ng) 10))
 (r unPERS)
)

;
; ; Rul es t hat eval uat e t he st andar ds upon occur ance of event s
; ; Al l r ul es t hat change t he needs need t o cal l t he PERSONALI TY ENGI NE
;
; ; ; ; ; ; ; ; ; ; Thi s i s how a r ul e i n t hi s sect i on i s st r uct ur ed. Pl ease f ol l ow t hi s st r uct ur e
cl osel y! ! !
; (def r ul e event NamedRul e_no
 ; (st andar d(agent ?agent &: (? ?agent ?)) (act i on ?act i on&: (? ?act i on ?)) (val ue
?val &: (? ?val ?)))
 ; ?i d<- (i nt Event (event Name ?name&: (? ?name ?)))
 ; ?m<- (mood (val ence ?val ence&: (? ?val ence ?)))
 ; =>
 ; t he event t hat gener at ed t he emot i on i s r et r act ed because i t i s no f ur t her needed
 ; (r et r act ?i d)
 ; change mood. Mood decr eases wi t h ? uni t s.
 ; (modi f y ?m (val ence (- ?val ence 10)))
 ; AI BO' s emot i on i s gener at ed and t he Emot i onI nt er pr et er i s cal l ed
 ; (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD 40))
 ; change needs. set Need - i s t he name of a set t er i n t he needs cl ass and ? shoul d be
r epl aced wi t h a val ue f or t hat need
 ; (cal l ?* needs* set Need ?)
 ; (pr i nt out t " I f you want t o pr i nt out somet hi ng do i t her e" cr l f)
 ; Cal l t he Per sonal i t y Engi ne. . . s i nce change i n needs mi ght ef f ect t he GPS.
 ; (r unPERS)
;)
; ; ; ; ; ; ; ; ; END OF COMMENT r epr esent i ng an exampl e of a r ul e i n t hi s sect i on

;
; ; Rul es t hat eval uat e t he goal s upon occur ance of event s
; ; Al l r ul es t hat change t he needs need t o cal l t he PERSONALI TY ENGI NE
;
; ; ; ; ; ; ; ; ; ; Thi s i s how a r ul e i n t hi s sect i on i s st r uct ur ed. Pl ease f ol l ow t hi s st r uct ur e
cl osel y! ! !
; (def r ul e event NamedRul e_no
 ; (goal ())

Personality Model for Companion AIBO Iulia Dobai

 109

 ; ?i d<- (i nt Event (event Name ?name&: (? ?name ?)))
 ; ?m<- (mood (val ence ?val ence&: (? ?val ence ?)))
 ; =>
 ; t he event t hat gener at ed t he emot i on i s r et r act ed because i t i s no f ur t her needed
 ; (r et r act ?i d)
 ; change mood. Mood decr eases wi t h ? uni t s.
 ; (modi f y ?m (val ence (- ?val ence 10)))
 ; AI BO' s emot i on i s gener at ed and t he Emot i onI nt er pr et er i s cal l ed
 ; (i nt r epr et Emot i on (get - member engi nes. Emot i on SAD 40))
 ; change needs. set Need - i s t he name of a set t er i n t he needs cl ass and ? shoul d be
r epl aced wi t h a val ue f or t hat need
 ; (cal l ?* needs* set Need ?)
 ; (pr i nt out t " I f you want t o pr i nt out somet hi ng do i t her e" cr l f)
 ; Cal l t he Per sonal i t y Engi ne. . . s i nce change i n needs mi ght ef f ect t he GPS.
 ; (r unPERS)
;)
; ; ; ; ; ; ; ; ; END OF COMMENT r epr esent i ng an exampl e of a r ul e i n t hi s sect i on

;
; ; The r ul e t hat set s t he engi ne wai t i ng unt i l l event s ar e gener at ed
;
(def r ul e wai t Event s
 ; Thi s i s t he r ul e wi t h t he l owest sal i ence. . . i t has t o be cal l ed af t er al l ot her r ul es
have f i r ed.
 (decl ar e (sal i ence - 200))
 =>
 (pr i nt out t " GPS Engi ne i s wai t i ng f or event s t o f i r e . . . " cr l f)
 (wai t Event)
)

Personality Model for Companion AIBO Iulia Dobai

 110

Appendix D: RobotOutput Package

Face

RESETALL()
RESETMODE()
RESETFACE()
RESETFOREHEAD()
RESETWIFI()
HAPPY()
SAD()
ANGRY()
FEAR()
SURPRISE()
DISGUST()
STOP()
WOW()
ALTERNATIVE()

Head

NO()
YES()
BALLTRACKINGHEAD()
NECKBACK()
NECKFRONT()
CIRCLES()
MOUTHOPEN()
MOUTHCLOSE()
RECOVER()
KICK()
BARK()
BARK()
MOUTHPOSITION()
POSITION()
POSITION()
POSITIONH()
POSITIONV()
NECKPOSITION()

Posture

STRETCH()
STANDUPSTRAIGHT()
STANDUPKNEES()
MIRRORLEGS()
MIRROR()
SLEEP()
SLEEP()
TURNL()
TURNR()
WALKF()
BALKB()
STRIFEL()
STRIFER()
STANDCROWL()
STANDREADY()
CROWLF()
CROWLF()
CROWLB()
CROWLB()
CROWLL()
CROWLR()
SHAKELEG()
KICK()
SCRECHEAR()
PLANE()
POINT()
RECOVERLEGS()

Tail

RECOVER()
WAG()
WAG()
POSITION()
POSITION()
POSITIONH()
POSITIONH()
POSITIONV()
POSITIONV()

Emotion

HAPPY()
SAD()
ANGRY()
AFRAID()
SURPRISED()
DISGUSTED()

Speak

BEEP()
START()
CLIENT()
BARKANGRY()
BARK()
BARKHAPPY()
WIGGLE()
ALARM()
BARKING()
BARKING()

RobotAll

START()
END()
initializePosition()
initializeHead()

Figure 31: RobotOutput class diagram

More details on all these functions and their roles are to be found in the Java API.

Personality Model for Companion AIBO Iulia Dobai

 111

Appendix E: ACE Paper

Personality model for a companion AIBO

Iulia Dobai
Delft University of Technology

Mekelweg 4, Delft, 2628CD

The Netherlands
+31 610700219

i.dobai@ewi.tudelft.nl

Leon Rothkrantz
Delft University of Technology

Mekelweg 4, Delft, 2628CD

The Netherlands
+31 15 2787504

l.j.m.rothkrantz@ewi.tudelf
t.nl

Charles van der Mast
Delft University of Technology

Mekelweg 4, Delft, 2628CD

The Netherlands
+31 152787504

c.a.p.g.vandermast@ewi.tu
delft.nl

ABSTRACT
In this paper we describe the architecture that
allows the modeling of an emotionally intelligent
robot. We chose to implement these architectures
on AIBO, which is a quadruped autonomous
robot, developed by Sony. AIBO was developed
as an entertainment robot with its “mind” resident
on a memory stick. Our goal is to develop a new
mind for a companion AIBO with a more
complex personality model. The focus of this
paper is on a model of personality. Taking into
consideration the realities concerning an
emotionally intelligent AIBO, that acts in an
unpredictable and changing environment, the
existing models of personality need
improvement, modifications and adaptations to
the current situation. Most existing personality
models that are used in virtual humans and agents
take into consideration three layers: personality,
mood and emotions or just two: personality and
emotions. We, on the other hand will try to add a
new set of parameters: needs that will not
constitute a new layer but together with the
personality layer, a pillar for the top two layers of
mood and emotions. This paper introduces the

architecture that renders valuable the personality
model discussed above.

Categor ies and Subject Descr iptors
D.2.11 [Software Engineer ing]: Software
Architectures - domain-specific architectures

General Terms
Design, Human Factors.

Keywords
AIBO-robot, human-computer interaction,
companion robot, personality modeling.

8 INTRODUCTION
Studies conducted by Masahiro Fujita asses
that AIBO seems to be a good partner with
users, having a positive effect on their
emotional state [5]. Very recent experiments
show that AIBO is useful for mental therapy
from a medical point of view. According to
the same author the current implementation of
AIBO software provided by Sony uses
behaviors that come from a “manually
designed database” . Next steps would be an
open-ended system or an ever-evolving system
by which new behaviors are emerged through
the interaction with human and environment.
While some efforts are being put by others
into developing unknown-word technologies
and unknown-object learning technologies we
thought about improving the personality
model that judges upon the interaction with
human or environment.

Personality Model for Companion AIBO Iulia Dobai

 112

Work has been done until now in developing
AIBOs that can perform well different tasks
(entertainment, watch-dog, etc.). All these
task-focused behaviors have in common the
physical/hardware components of an AIBO.
While some might argue that a watch dog for
example does not need personality, moods or
emotions it is our believe that all these task
orientated AIBOs need to have in common
also a complex personality model. The
division on tasks should be made at a higher
cognitive level, while the personality model
has to act as a ground field.

 This paper is organized as follows: first we
will introduce the personality model that we
have developed which will be followed by the
architecture that we used to implement it on
an AIBO.

9 The nPME Model
Until now in the design of virtual humans, agents
or game characters, two categories of personality
models were mostly used: PME models that take
into consideration personality(P), mood(M) and
emotions(E) and PE models that are based solely
on personality(P) and emotions(E).

In designing our nPME model we started with a
layered PME architecture as described in [6].
Here mood is seen as an intermediate layer
between personality and emotions and therefore
is influenced by both. Since we want AIBO to act
independently in a changing environment we
have to take into consideration his individual
needs, therefore we included in the layered
architecture the needs parameter (nPME). By
adding needs we also had to make some major
changes in the existing architecture and therefore
mood is directly influenced by neither emotions
nor personality, but it is indirectly influenced by
them as a consequence of the evaluation of the
goals, preferences and standards in regards with
the events that take place.

9.1 Concepts

9.1.1 Personality
The first important factor of the personality
model is personality itself. Of all the existing
psychological models of personality the one most
widely accepted is the Five Factor Model. This
model is based on the idea that personality can be
described and measured on five broad
dimensions: Openness, Conscientiousness,
Extraversion, Agreeableness and Neuroticism.
(Known as the OCEAN Model)[2]. Conventional
wisdom has long set that our personality is
genetic and therefore set in stone but according to
some scientist those five key personality
characteristics change throughout our lives. In the
case of robots that don’ t really have a life span, it
is acceptable to have a persistent personality that
does not change due to external influences. We
based our decision on Paul Costa Jr. whose work
revealed that we don’ t see major personality
changes but we see “nuanced” changes [2] that
we consider to be insignificant in the case of
robots. Therefore in the model we introduce,
personality is not changed through time and the
values for the 5 dimension of personality are
constant through the application.

9.1.2 Needs
It is generally agreed that the simpler emotions,
whose expression and recognition Ekman (1989)
has shown to be universal are driven by the basic
need of organisms such as mating, defense or
avoidance of predators, and social affiliation [3].
Therefore here is the theoretical framework we
were looking for. In order to develop a realistic
AIBO companion dog that shows emotions in a
changing and unpredictable environment we have
to take into consideration his needs. We chose to
use the highly appreciated theory of needs
introduced by Maslow [8] (see Figure 1). The use
of Maslow Pyramid of Needs is not accidental
but based on very solid reasons: it seems the one
most widely accepted and it is a model simple
enough to be implemented and sufficiently
complex to show realistic results. The needs
model proposed by Maslow is based on a

Personality Model for Companion AIBO Iulia Dobai

 113

structure (the pyramid), a well defined set of
rules and principles and uses priorities that will
be in our case a way to support a priority
management system in AIBO.

The pyramid of needs that Maslow introduced as
a base for motivation theory contains 5 categories
of needs: physiological, safety, love and
belonging, self esteem and self actualization. The
first 4 categories of needs have been introduced
by Maslow as “deficit needs” while the last
category of needs is known as “being needs” . In
our nPME model we will take into consideration
only the “deficit needs” since these needs can be
met fully while self actualization needs are seen
as growing (a continuous driving force). Maslow
supports our decision by explaining that not
everyone ultimately seeks self-actualization [8].
The hierarchy of needs states that we must satisfy
each need in turn, starting with the first, which
deals with the most obvious needs for survival
itself. Only when the lower order needs of
physical and emotional well-being are satisfied
we are concerned with the higher order needs of
influence and personal development. Conversely,
if the things that satisfy our lower order needs are
swept away, we are no longer concerned about
the maintenance of our higher order needs. In
practice we translated the different categories of
needs into AIBO specific needs (e.g.
physiological needs are represented by the battery

level, etc.). Needs have priorities and act as
thermometers, once critical values have been
reached by different categories of needs
depending on their priorities they lead to different

structures of goals, preferences and standards.
(e.g. once the battery reaches a critical value of
10 % a new goal with the highest priority is being
generated that states: recharge, etc.).

9.1.3 Mood
Mood is a conscious and prolonged state of mind
that directly controls the emotions. While
emotions are instantaneous, mood is constant for
longer time spans [6]. The presence of mood in a
well established personality model is doubtless,
without mood we can not properly link
personality which is in a sense “eternal” to
emotional expressions that are instantaneous. The
mood model we have used has its fundamentals
in the mood model proposed by Lang [7] that
basically plots mood on a two dimensional
system with valence and arousal as axes. Valence
refers to whether the mood is positive or negative
and arousal refers to the intensity of the mood.

9.1.4 Emotional States and Expressions
By emotional state we understand a particular
state of mind that is reflected visually by
means of an emotional expression. We use
the emotion categories proposed by Orthony,
Clore and Collins, commonly known as the
OCC model [9]. The model categorizes 22
different emotions based on positive or
negative reactions to events, actions and
objects. We will not use the cognitive
processing proposed by the OCC model
directly but all entities in the model are
developed based on ideas included in the
OCC model. We based our decision regarding
this on [1]. To date cognitive science does not
seem to have provided any crucial tests to
decide between competing models of the
mind. What does seem well established in the
light of cross-cultural research is that a
number of emotions have inter-translatable
names and universally recognizable
expressions [3]. According to Ekman and
Friesen [4] these are happiness, sadness, fear,
anger, surprise and disgust. Another idea in
the field of emotions that is becoming widely
accepted is that emotions, are capable of

Figure 1. Maslow Pyramid of Needs

Personality Model for Companion AIBO Iulia Dobai

 114

being not only explained but also justified -
they are closely related to the reasons that
give rise to them. Emotions can be
categorized in terms of their associated
cognitions [3].

9.1.5 Goals, Preferences and Standards
The goals, preferences and standards
parameters will be set dynamically based on
needs and personality. Every time changes
have occurred in the parameters of needs the
goals, preferences and standards (GPS
system) will also be updated.

By goals we understand tasks orientated
objectives that are SMART (simple,

measurable, acceptable, realistic, time frame)
(e.g.: aibo find ball). By preference we
understand appealingness to aspects of
objects (e.g. like/dislike of ball). By standards
we understand approval/disapproval
regarding actions of agents. Standards can
focus on self agent or other agents (e.g.
approval of being touched on back).

9.2 Personality model overview

9.2.1 A schematic approach

Figure 2 introduces the time based nPME model
developed by us that has as ultimate goal the
development of a companion AIBO that acts
independently in a changing environment.
According to this design AIBO shows an
emotional reaction and will follow a specific set
of actions only if some kind of event triggers the
engine that will generate them.

Initial set-up requires values for all traits of
personality (that will remain constant) and an
initial set of needs. Every time there is a new set
of needs present in the system a small engine will
be activated to update values for goals,
preferences and standards. If an event occurs (by
event we understand a registered happening that
is detected by AIBO) the response engine is
triggered and based on the evaluation of goals,
preferences and standards and on the current
mood a new emotional state and a set of actions
results.

Figure 3 presents the initialization of the entire
system at moment t=0. At this moment we have
to take into consideration the possibility that no
event happens in a certain amount of time,
therefore based on the personality of AIBO and
its needs we decide on a few actions randomly
chosen from the list of possible actions. It is
important to mention that even if no event occurs
in a specified amount of time an event will be
generated. (e.g. the absence of any human for
prolonged amounts of time in the vicinity of an
AIBO represents an event that will lead to an
increase of the need for love and belonging and a

Figure 2. Time based nPME model

Figure 3. Personality model initialization.

Personality Model for Companion AIBO Iulia Dobai

 115

switch of the mood from positive to negative with
different degrees).

10 DESIGN CONCEPT FOR
COMPANION AIBO
10.1 A modular architecture
Figure 4 presents the architecture we designed to
integrate the personality model described above
and the division of logical parts into system
components.

10.1.1 Input translation
AIBO has the capacity of giving input
information through a multimodal set of sensors:
camera for vision, microphone for sound, touch
sensors for tactile and a set of other useful
sensors like distance, vibration, etc. The
existence in AIBO of so many ways to receive
input and information concerning the context has
opened up space for complex modules to analyze
and convert this information into the entities the
next component needs. This component is an
AIBO dependent component and it’s major roles
are to read sensor data, to do preprocessing
(pattern recognition, sound recognition, etc) and
to convert it into events that are seen as triggers
by the next component. Events that are thrown by
this component are beforehand registered with
the next component.

AIBO receives information from the outside
world through his sensors: video camera (a
350,000 CMOS image sensor), stereo
microphones in its ears, two distance sensor, and
various touch sensors on head, back, chin, paws,
acceleration sensor, and a vibration sensor.

10.1.2 Processing
This component does the central processing for
the entire system, is not robot dependent and is
basically the implementation of the personality
model described above. This component is
designed to act standalone and was implemented
with a constant desire for flexibility. The output
of this component at moment t=i is an emotional
state and a possible set of actions.

10.1.3 Mapping
This component will interpret the output of the
processing component and will translate the
somewhat abstract notions like: happiness and
play with ball into procedures for accomplishing
them. The output of this component is a complex
set of data structures containing information that
can be directly transformed into robot specific
commands.

10.1.4 Output translation
This component takes the output of the mapping
component and handles the connection to AIBO
and the specific robot commands AIBO needs to
execute in order to have the desired output. In
order to give output responses AIBO is equipped
with speaker on its chest, LED Lights (on face,
ears and back) and a series of movable parts:
head (3 DOF2), mouth (1 DOF), legs (4*3 DOF),
ears (2*1 DOF) and tail (2 DOF). Apart from this
AIBO is also equipped with a wireless card and a
blue LED to show its status.

10.2 Development perspective
The modular architecture we introduced is based
on the existence of another architecture
developed in the URBI Project at ENSTA
Laboratories. URBI (Universal Robotic Body
Interface) [10] is a scripted language designed to
work over a client-server architecture in order to
remotely control a robot. URBI is released under
the GNU General Public License. Our present
prototype runs the server on AIBO (the original
URBI server) and the client on a PC (developed

2 DOF = Degrees of Freedom

Figure 4. System Architecture

Personality Model for Companion AIBO Iulia Dobai

 116

by us), therefore the mind is resident on the PC
and AIBO is in charge of sending raw data
information from the sensors and executing
complex commands written in the URBI scripting
language. Our long term goal is to have both
client and server running on AIBO and in this
way having a perfectly autonomous robot.

10.2.1 Implementation
A prototype has been developed to test the
personality model using two expert systems: one
generating the data for the second one. Practically
the first expert system has as facts values for
personality and needs and rules that generate
preferences, standards and goals. The second
expert system is generating emotions and actions
while also updating the values for needs and
mood. The facts of the second expert system are:
preferences, goals, standards, mood and events.
Events are added dynamically to the expert
system when their occurrence is signaled through
the sensors of AIBO. Once an event was
evaluated in regards with the goals, preferences
and standards it is retracted from the input set.
The complete architecture presented in Figure 4
is still under development due to the high
complexity of some modules like the Input
Translation Module which does the difficult job
of analyzing all sensor data. Sound and vision
recognition in the context of this framework are
the subject of other research projects.

11 CONCLUSIONS
A personality model to be implemented in robots
acting in a changing and unpredictable
environment has to take into account the needs of
the robot in that specific environment. A robot
that can not evaluate his needs is not capable of
autonomously acting in a dynamic environment.
We make sure that we respect the integrity of the
systems proposed by transforming all input
information into relevant events for the system.
Further work will include integrating the
implementation with complex vision and sound
recognition that will generate an extra effort in
developing a complex event management system.
Further work should also include integrating

learning modules and also more elaborated
history management systems.

12 ACKNOWLEDGMENTS
Our thanks to “The URBI Project” , an
excellent alternative to the Sony development
platform for AIBO.

13 REFERENCES
[39] Bartneck, C., “ Integrating the OCC Model of Emotions in

Embodied Characters” , Workshop on Virtual Conversational
Characters, 2002

[40] Costa, P.T., McCrae, R.R, “Normal personality assessment in
clinical practice: The NEO personality inventory” .
Psychological Assessment, 1992

[41] de Sousa, R., "Emotion", Stanford Encyclopedia of
Philosophy (Spring 2003 Edition), Edward N. Zalta (ed.),
http://plato.stanford.edu/archives/spr2003/entries/emotion

[42] Ekman, P., Friesen, W.V., “The argument and Evidence
About Universals in Facial Expressions of Emotion” . In
Handbook of Social Psychophysiology. New York: John
Wiley and Sons, Ltd, 1989

[43] Fujita, M. “On activating Human Communication with Pet-
Type Robot AIBO”. In Proceedings of the IEEE, Vol. 92,
No. 11, 2004, 1804-1813

[44] Ksirsagar, S., Magnenat-Thalmann, N., “A Multilayer
Personality Model” , In Proceedings of 2nd International
Symposium on Smart Graphics, 2002, 107-115

[45] Lang, P.J., The Emotion Probe: studies of motivation and
attention, A study in the Neuroscience of Love and Hate.
Hillside, NJ: Lawrence Erlbaum Associates, Publishers,
1995.

[46] Maslow, A.H., Motivation and Personality, 2nd. ed., New
York, Harper & Row, 1970

[47] Ortony, A., Clore, G.L., Collins, A., The Cognitive Structure
of Emotions, Cambridge University Press, 1988

[48] www.urbiforge.com

