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Abstract

Risk assessment of credit portfolios is of pivotal importance in the banking industry. The bank
that has the most accurate view of its credit risk will be the most profitable. One of the main
pillars in assessing credit risk is the estimated probability of default of each counterparty, i.e., the
probability that a counterparty cannot meet its payment obligations in the horizon of one year.
A credit rating system takes several characteristics of a counterparty as inputs, and assigns this
counterparty to a rating class. In essence, this system is a classifier whose classes lie on an ordinal
scale.

This thesis provides an extensive assessment of the abn amro credit rating system. The
current rating tool, an expert system, is carefully reviewed. We show that this system has several
drawbacks in both its mathematical fundamentals and its implementation. We propose a new
credit rating framework, which incorporates an improved version of the current model.

Aside from this expert system, we applied linear regression, ordinal logistic regression, and
support vector machine techniques to the credit rating problem. The latter technique is a relatively
new machine learning technique that was originally designed for the two-class problem. We propose
two new techniques that incorporate the ordinal character of the credit rating problem into support
vector machines. We show that the current rating model used at abn amro performs in line with
statistical and support vector machine techniques. The results of our newly introduced techniques
are promising.
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Notation

Boldface variables like x and A represent vectors and matrices that consist of elements xi and Aij

respectively.

‖ · ‖ 2-norm of a vector
α Lagrange multiplier vector
b Bias
c Number of rating classes
C Regularisation constant
Cov Covariance
E(·|·) Expectation
ε Residual
F Function class
ϕ(·) Mapping to feature space
G Gram matrix with elements Gij = yiyjϕ(xi)T ϕ(xj) = yiyjK(xi,xj)
H Feature space
Ii Identity matrix of size i
K(·, ·) Kernel function
` Number of training samples
l(·, ·) Loss function
L(·) Lagrange function
µ Sample mean
N (µ, σ2) Normal distribution with mean µ and variance σ2

N Set of natural numbers, i.e., all integers
ωi Rating class, i = 1, . . . , c
ν Lagrange multiplier vector
P (·), P (·, ·) Probability density function
πi Prior probability of class ωi, i = 1, . . . , c
Q1, Q2, Q3 75th, 50th and 25th percentile value respectively
r Pearson’s correlation coefficient
R Set of real numbers
R+ Set of positive real numbers
S Set of ` patterns {(x1, y1), . . . , (x`, y`)}
S(·) Soft saturation function
σ Sample standard deviation, or bandwidth of the rbf kernel function
Σ Covariance matrix
sign[i] Sign function: +1 if i > 0, 0 if i = 0, and –1 if i < 0
·T Transpose of a vector or matrix
U(a, b) Uniform distribution on the interval [a, b]
vi(·) Voting function
w Weight vector
x ∈ X Input vector and input space
ξ Slack variable vector
Xi, Y Variates with corresponding probability distribution functions P (xi) and P (y)
y ∈ Y Output scalar and output space
z Latent variable





Definitions

anova Analysis of variance
bpnn Backpropagation neural network
Capital structure The use of debt financing
Default The failure to meet a financial obligation
ec Economic capital
ead Exposure at default
el Expected loss
Exposure The maximum loss suffered from a default by a counterparty
grace Generic Rating abn amro Counterparty Engine; a wrapper system for all

rating tools of abn amro (except mra)
ird Internal Ratings Database; the historical database that contains all counter-

parties and ratings
lgd Loss given default
Leverage see capital structure
linreg (Ordinary least squares) linear regression
logreg (Ordinal) logistic regression
ls-svm Least-squares support vector machines
mda Multiple discriminant analysis
mfa Moody’s Financial Analyst1; the present spreading tool
mra Moody’s kmv Risk Advisor1; the present rating tool
Notch Distance between two subsequent rating classes
pcc Percentage correctly classified
pcc-1 Percentage correctly classified within one notch
pd Probability of default
qc-mra Quantitative Consultancy’s mra
rapid abn amro’s credit proposal system
rbf Radial basis function
svm Support vector machine
ucr Uniform Counterparty Rating
vba Visual Basic for Applications
Volatility A measure of the uncertainty or risk in the future price of an asset.

1Trademark of Moody’s kmv





Chapter 1

Introduction

A large corporation that wants to apply for a loan, obviously shops around to negotiate the best
possible price and terms. The provider of such a loan, often a bank, wants to make a decent profit
from this loan. Basically, this profit consists of two parts. Interest payments form the basis of the
profit. Even more important, however, is whether the corporation will eventually be able to pay
off the loan itself. Not surprisingly, these two aspects are tightly coupled. The larger the risk that
a corporation might not be able to meet its payment obligations in the future, the more interest
it needs to pay.

A bank therefore assesses the risk it takes when providing a loan to a corporation (or any other
customer). If the bank overestimates this risk, the price of the loan will be too high compared to
competitor banks, and the corporation will apply for a loan elsewhere. On the other hand, if the
bank underestimates the risk, the bank will issue loans to dubious debtors for a price that is too
low.

Careful risk assessment of credit portfolios is therefore of pivotal importance in the banking
industry. The bank that has the most accurate view of its credit risk will be the most prof-
itable. Moreover, since banks are the cornerstones of a country’s economy, inaccurate credit risk
assessment can have a tremendous impact.

1.1 Minimum capital requirements

In the 1970s, as banking grew more global, institutions looked for a common way to manage risk
across countries. A committee of bank regulators, among which the Dutch Central Bank (dnb),
created a treaty that would encourage management, control and regulation of banking systems:
the 1988 Basel Capital Accord (Basel-I). All Dutch banks are bound by this treaty.

Basel-I sets the minimum capital requirements for banks. It requires banks to divide their
exposures up into broad classes reflecting similar types of borrowers. Exposures to the same kind
of borrowers are subject to the same capital requirements. Ordinary corporate loans for instance
pose 100% risk to the bank, whereas mortgage loans only account for 50%.

Basel-I requires banks to keep their capital ratios above 8%, where the capital ratio is defined
as

Capital ratio =
Total capital
Credit risk

=
Total capital∑

i Riski × Exposurei

(1.1)

A bank that only has exposures to corporate borrowers, for instance, will thus be allowed to issue
loans for a maximum of 12.5 times its total capital.

The Basel-I framework does not distinguish between the relative degrees of creditworthiness
among individual borrowers. A loan issued to for instance a AAA-rated1 company poses the same

1The highest possible rating on Standard and Poor’s scale of credit rating. Appendix A.3 describes different
credit rating scales.
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amount of risk to the bank as an immature C-rated company, whereas the underlying actual risk
is clearly different.

Aside from this aspect, many other extensions to the Basel-I framework were requested through-
out the financial world. This resulted in the development of a second version of the accord: the
New Basel Capital Accord.

1.2 The New Basel Capital Accord

The New Basel Capital Accord (Basel-II) defines a refined and renewed set of rules regarding
proper banking practice (bis 2004). One of its goals is to align the Basel-I guidelines more closely
to each bank’s actual risk of economic loss. Aside from credit risk two other types of risk have
been introduced: market risk and operational risk.

Capital ratio =
Total capital

Credit risk + Market risk + Operational risk

Market risk and operational risk have been left out of the scope of this thesis. More information
on these topics can for instance be found in bis (2004). The calculation of credit risk is similar
to formula 1.1, but is now directly related to the creditworthiness of the borrower. Basel-II
describes, aside from this standardised approach to measure credit risk, the Internal Risk Based
(irb) approach. According to the irb approach, banks will be allowed to use their own measures
of a borrower’s credit risk to determine their capital requirements, subject to strict methodological
and disclosure standards.

Basel-II prescribes that credit risk should directly be related to expected loss (el). The
expected loss of a borrower is calculated by

el = pd · ead · lgd

where the probability of default (pd) is the probability that a borrower will default in the horizon
of one year, exposure at default (ead) is the expected total exposure or outstanding loans to the
borrower at the time of default; and loss given default (lgd) is the expected percentage of the
exposure which the bank will be unable to recover.

Basel-II does not prescribe a calculation method for either of these elements. Therefore, banks
are permitted to use their own best practice methods.

1.3 Economic capital

abn amro prefers an even more sophisticated and safer methodology than prescribed by Basel-II.
The bank wants to quantify the probability that it defaults itself. Moreover, abn amro wishes
to introduce risk-adjusted rates on loans. Loan pricing (i.e., the interest a borrower pays) will
depend on expected loss per borrower and worst-case expected loss among all borrowers. A final
important aspect is the correlation among defaults: if a company defaults, it might drag other
companies into default as well, which on their turn can cause other companies to default. This
way a vicious circle is created.

Therefore, the focus has shifted to economic capital (ec) rather than capital ratio. Economic
capital is a percentile (e.g., 99.95%) of the loss distribution curve, which is generated using a
Monte Carlo simulation. This percentile is the amount of capital the bank needs to cover its
unexpected losses in the best 9995 out of 10,000 possible scenarios. The bank will only default in
the five other scenarios, or, statistically, once every 2000 years. More information on Monto Carlo
simulations for economic capital calculations can be found in Caouette et al. (1998).

Figure 1.1 shows a typical loss distribution curve. In this example, the (mean) expected loss
is 1% of its total exposure. abn amro wants to be able to cover unexpected loss in 99.95% of
all scenarios. The 99.95th percentile corresponds to an economic capital of approximately 2.8%
in this example, which means that the bank’s capital should be 2.8% of its total exposure. An
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Figure 1.1 — Economic capital

economic capital of 99.95% corresponds to a AA+ company according to Standard and Poor’s (cf.
appendix A.3).

To calculate and manage the economic capital, we need to know the three elements of expected
loss pd, ead, and lgd, and the correlations among them. One model for each of these elements
does not suffice, as distinct types of borrowers show very different loss characteristics. Therefore,
separate models exist for each borrower type, such as models for insurance companies, banks,
non-financial corporate clients, and consumers.

1.4 Uniform counterparty rating

In credit rating it is common to assign a rating, or risk bucket, to a counterparty instead of
formulating a pd directly. Counterparties of the same rating are supposed to be of equal risk.
Within abn amro the ratings are called Uniform Counterparty Ratings, or ucrs. These range
from the highest rating 1, 2+, 2, 2–, 3+ all the way to 6+2. ucrs 6, 7, and 8 indicate forms
of financial distress. A comparison of ucrs and credit ratings from Moody’s and Standard and
Poor’s can be found in appendix A.3.

The most important aspect of the ucrs is that they are ordered according to their correspond-
ing probability of default, but that the actual value of the pd is irrelevant for this ranking. The
credit rating problem hence reduces to finding a function f(·) that maps a counterparty that is
described by certain characteristics to a class on the ordinal scale:

f(·) : X ⊆ Rn −→ Y ⊆ {1, . . . , c},

where X is the input space of n features, and Y is the ordinal output of c rating classes in total.
The ordinality implies that we expect the classes to be ordered, as is depicted in figure 1.2.

Although we are working with ordered ucrs, there is still an underlying distribution of prob-
abilities of default. We can assign an expected pd to a ucr class, or calculate this value based on
historical defaults. The default estimates for the different pds have not been listed in this report
for confidentiality reasons.

2Note that 2+ is a higher rating class than 2–, which might be counter-intuitive.
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1.5 Credit rating process

We will now describe the credit rating process as depicted in figure 1.3. When a corporate customer
(or counterparty) of abn amro applies for a loan, he contacts his account manager. The account
manager will then create a credit proposal, which includes an estimate of the counterparty’s
creditworthiness.

The counterparty provides annual reports including financial statements to abn amro, which
are entered into a spreading system named Moody’s Financial Analyst (mfa). The account man-
ager now opens the rating system that is currently in place: Moody’s Risk Advisor (mra). Fi-
nancial ratios are calculated from the statements in mfa and are automatically provided to this
rating system. Several subjective questions regarding the counterparty need to be answered. The
counterparty’s country of residence, main sales areas, and industry have to be provided as well.
These three main areas are inputs for the credit rating model.

The credit rating system determines the counterparty’s creditworthiness and quantifies it by
means of a ucr: the initial ucr. The account manager can correct this initial ucr according to
his insights and will come to a proposed ucr. This concludes his assessment of the customer’s
creditworthiness. A summary called the Corporate Rating Sheet will be created, which is basically
a pdf-document stating the key elements of the proposed ucr.

The credit proposal itself has to be created in rapid, abn amro’s credit proposal system.
The proposal will contain information about the counterparty, the proposed ucr, and details
concerning the requested loan. The Corporate Rating Sheet is attached to this proposal. After a
first review by a credit analyst, it will be propagated to the credit risk committee. This committee
of credit experts is allowed to make final amendments to the proposed ucr before they approve it.
The approved ucr is entered into the rapid system and the account manager receives a notification
message. He can now negotiate the terms and conditions of the loan with the customer.

1.6 Problem definition

We have seen that the rating tool is an important part of the credit rating process. It involves
both risk management and loan pricing; aspects that are central pillars of the banking industry.

Our research goal is to assess the performance of the present corporate credit rating model.
‘Corporate’ indicates this model is used for the corporate or wholesale portfolio, containing non-
financial and non-governmental borrowers that have a turnover exceeding 50 million euros. The
wholesale portfolio contains approximately 8,000 counterparties with an exposure ceiling of 269
billion euros. Its main aspect is that all counterparties are bound by similar accounting rules,
which makes them mutually comparable.
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The research goal will be tackled in a three-tier approach:

• Review of the status quo

• Benchmark the current situation with proven mathematical techniques

• Research state-of-the-art credit rating techniques

First we will thoroughly assess how well the current situation works and what its main short-
comings are. This will show that the model that is currently in place does not meet today’s
requirements. We will design and implement a new credit rating program, and incorporate an
implementation of the present model.

Credit rating data has been recorded starting in January 2004. It has thus become possible
to apply statistical approaches to the credit rating problem. A model based on statistics can
be maintained more easily since it learns from examples. The quality of prediction will become
measurable as well. Research peers have suggested several different techniques to tackle credit
rating. A state-of-the-art technique called support vector machines has only recently been applied,
but has proven to be very successful. We will therefore benchmark the present rating model with
both ordinary statistical techniques and support vector machines.

At first sight one would think that a credit rating tool should be validated based on actual
defaults. The number of defaults in the abn amro wholesale portfolio is, however, very low. It
is infeasible to design a model based upon this default information. This problem applies to the
other players in the financial world as well, and it is therefore common practice to learn from
examples based on external agency’s ratings or credit committee’s opinions (Standard and Poor’s
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2004). In our project we will benchmark the systems under research against the approved ucr,
i.e., the final opinion of abn amro regarding the creditworthiness of a borrower.

Evidently, these models can and must be validated using actual default information. In fact,
it is the opinion of the credit committee that will have to be validated, since all developed models
will be based on their decisions. Validation belongs to the world of rare event statistics and is
outside the scope of this project.

1.7 Project assignment

The general layout of the project is as follows:

1. Literature survey
2. Review of the status quo

• Gather the data
• Review the present model

3. New model
• Develop and implement a new rating system
• Incorporate techniques used in the present rating system
• Evaluate this system

4. Mathematical and artificial intelligence techniques
• Select variables
• Research possible approaches
• Implement techniques

5. Results
• Select performance measures
• Validate all systems and analyse results
• Conclusions and recommendations

Chapter 2 describes techniques that are commonly used in credit rating. A survey of the work
in which these techniques have actually been applied is presented in chapter 3. Next comes the
assessment of the present situation. Chapter 4 gives an extensive description of the data and its
characteristics. Based on an analysis of the present tool, a new credit rating framework is proposed
in chapter 5, outlining its development, implementation, and evaluation. The goal of chapter 6
is two-fold. First aspect is the revelation of characteristics of the currently used model that have
previously been unknown. The second part describes an improved version of the existing model
that is incorporated in our framework. Several support vector machines methods are presented
next, including two new approaches that take the ordinal character of credit rating into account.
A comparison of the results, including that of regression techniques, is presented in chapter 8. We
will end this report with our conclusions and recommendations in chapter 9.



Chapter 2

Preliminaries

This chapter discusses techniques suitable to solve the credit rating problem, i.e., find a function
f : X ⊆ Rn −→ Y ⊆ {1, . . . , c} that correctly assigns an unseen pattern to one of c rating classes.
We will learn this function from a training set S = {(x1, y1), . . . , (x`, y`)} of ` examples. Both the
training set and the unseen patterns are assumed to be independently and identically distributed
according to the same unknown probability distribution P (x, y).

The best function that can be obtained is the one minimising the expected risk, or error (Müller
et al. 2001),

R[f ] =
∫

l(f(x), y)dP (x, y),

where l(f(x), y) is a suitably chosen cost function. For the binary problem the 0/1 loss function
l(f(x), y) = 1

2 |(f(x)− y)| is an obvious choice. A common loss function for ordinal and regression
problems is the squared error: l(f(x), y) = (f(x)− y)2.

The risk, however, cannot be minimised directly, due to the fact that the underlying probability
distribution P (x, y) is unknown. Therefore, we will have to estimate a function that is optimal
with respect to the available information: the training set and the properties of the function class
F from which the solution f is chosen. In empirical risk minimisation, one tries to find the function
f(·) that minimises the average risk on the training set:

Remp[f ] =
1
`

∑̀
i=1

l(f(xi), yi)

The empirical risk will asymptotically converge to the expected risk when ` → ∞. However,
for smaller `, the training set might give large deviations with respect to the underlying unknown
probability distribution. One can therefore not guarantee that minimisation of the empirical risk
will result in a minimal expected risk as well, and overfitting might occur.

We can avoid overfitting by restricting the complexity of function class F from which f(·)
is chosen. This is also intuitive: we prefer the simplest model that explains the data (Occam’s
razor). Other techniques involve cross-validation and early stopping.

In the next sections we will discuss the following techniques:

• Ordinary least squares regression
• Logit and probit regression
• Multiple discriminant analysis
• Backpropagation neural networks
• Support vector machines

In the first three techniques, we make assumptions on the distribution of the data to avoid over-
fitting. Neural networks usually utilise early stopping techniques, whereas overfitting in support
vector machines is avoided using structural risk minimisation.
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2.1 Ordinary least squares regression

The earliest studies in credit rating focused on the ordinary least squares regression. Ordinary
least squares regression fits a linear multiple regression (linreg) model

Y = wT x + b + ε,

where x represents a vector of observed characteristics of a counterparty, w is a vector of coeffi-
cients, b is the offset, and ε is the residual. The Gauss-Markov theorem states that the ordinary
least squares estimators are the best linear unbiased estimators in the class of all linear unbiased
estimators of w and b when a number of assumptions are met. If all assumptions are met, the
estimators are unbiased (i.e., expected to be equal to the true value) and efficient (i.e., estimated
with smallest variances). We will list the most important ones.

1. The relationship between the dependent and independent variables is linear.

2. The expected value of the residuals equals zero: E(ε|x) = 0. Failure of this assumption
results in a biased estimate of the offset.

3. The residuals are homoscedastic: E(ε2|x) = σ2 = constant. Homoscedasticity means that
for every x, the spread of ε around x will have the same range. Failure of this assumption
results in inefficient estimates and biased tests of hypotheses. Outliers are one of the possible
causes for heteroscedasticity.

4. There is no correlation between the independent variables and the residuals (no simultaneity):
Cov(xi, ε) = 0. Failure of this assumption results in biased estimates of the coefficients of
the independent variables.

5. The independent variables are not perfectly correlated (no multicollinearity): rxixj 6= ±1,
where r is Pearson’s correlation coefficient (cf. section 4.4.2). Failure of this assumption
results in inefficient estimates and biased tests of hypotheses.

Sometimes stronger assumptions are relied on. The ‘no multicollinearity’ assumption then re-
quires the explanatory variables to be statistically independent. Second, the residuals are assumed
to be normally distributed. Hair et al. (1987) provides further reading on regression.

Ordinality

The ordinal nature of the credit rating problem causes difficulties for the definition of Y . A
common solution is to assign Y = i if the rating class is ωi, where ωi are the c ordered rating
classes and i indicates the rank. Class ω1 for instance represents AAA, ω2 AA, etcetera. Reversely,
a counterparty is assigned to class ωi when i − 0.5 < E(Y |x) ≤ i + 0.5. If E(Y |x) < 0.5 or
E(Y |x) > c + 0.5, it is assigned to ω1 and ωc respectively.

When historical probabilities of default are available, these probabilities can serve as indepen-
dent variables as well. Each class rank is thus replaced by the estimated or historical probability of
default associated to its rating class ωi: Y = pi, where pi is the pd of class ωi. Another possibility
is to replace the rank with the logit of these probabilities: logit(pi) = log((pi)/(1−pi)). This logit
transformation ensures that E(Y |x) remains on the scale [0, 1].

The use of (continuous) linear regression for an ordinal problem might lead to violations of
several assumptions. The primary problem is that this model defines Y as an interval scale with
equal intervals attached to each rating class, e.g., the risk difference between class AAA and class
AA is assumed to be the same as that between BB and B. Linear regression further assumes
that both the errors and the dependent variable follow the normal distribution and have constant
variance over the complete range. These two assumptions are violated by definition due to the
discrete character of the ratings.
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2.2 Logit and probit regression

Ordered logit1 (logreg) and ordered probit models are considered to be more appropriate for
ordinal dependent variables; they allow the dependent variable to be non-continuous. Both models
are examples of generalised linear models (glms). glms assume a link linear relationship between
the independent and the dependent variables:

g(Y ) = wT x + b,

where g(Y ) is the link function. The maximum likelihood estimates of the regression parameters
w and b are calculated using the iteratively reweighted least-squares algorithm.

In the remainder of this subsection we will discuss the glm with a logit link function. The
function used in probit regression is the inverse of the standard normal cumulative distribution
function.

logreg attempts to model the dependent variable by means of maximum likelihood estima-
tion. Suppose x is a vector of explanatory variables and Pi(x) =

∑i
j=1 p(ωi|x) is the cumulative

probability that a counterparty belongs to rating class ωi or below. The linear logistic model has
the form:

logit Pi(x) = log
(

Pi(x)
1− Pi(x)

)
= wT x + bi, i = 1, . . . , c− 1

where bi is a class-specific intercept and w is the class-independent vector of slope parameters.
The observation is then classified into the class with the highest probability Pi+1(x) − Pi(x).
Compared to mda and linreg, logreg is less strict in its statistical assumptions:

1. The relationship between the dependent and independent variables is assumed to follow the
logistic distribution.

2. The separate equations for each class differ only in their intercepts (parallel slopes or pro-
portional odds).

3. There is no multicollinearity among the independent variables.

2.3 Multiple discriminant analysis

Multiple discriminant analysis (mda) tries to differentiate between groups by identifying the vari-
ables that discriminate most. It is based on the Bayesian method to minimise the expected
misclassification costs. A counterparty characterised by vector x is assigned to class ωi if

fi(x)
fj(x)

>
πj l(i|j)
πil(j|i)

, ∀i 6= j, i, j = 1, . . . , c

where fi and fj are the multivariate probability density functions for class ωi and ωj , respectively.
πi and πj are the prior probabilities of ωi and ωj . l(i|j) and l(j|i) are the misclassification costs
of assigning a class ωi counterparty as ωj and vice versa.

The vast majority of research on mda has focused on normal density functions for fi and
fj . This model applies when the counterparties x of class ωi are continuous-valued, randomly
corrupted versions of a prototype counterparty µi. Another key element in normal discriminant
functions is the covariance matrix among the independent variables.

If the covariance matrices for all the classes are identical, the discriminant functions are linear.
The single covariance matrix can be estimated from the complete set of counterparties. We will
refer to this type of functions as linear discriminant analysis (lda).

When the covariance matrices are unequal over the different classes, the discriminant function
that maximises the likelihood of correct classification is in a quadratic form: quadratic discrim-
inant analysis (qda). The covariance matrices will have to be estimated based on the available

1Ordered logit regression is in result similar to ordered/ordinal logistic regression and proportional odds logistic
regression.
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counterparties in each class separately. In practice, this method is inefficient for high-dimensional
input spaces since it requires the estimation of many parameters.

The assumptions of normal multiple discriminant analysis largely coincide with those of linear
regression:

1. The independent variables are multivariate normally distributed: x ∼ (µ,Σ).
2. In lda, the variance/covariance matrix is homogeneous across all classes: Σi = Σj . Outliers

are a possible cause for violation of this assumption.
3. There is no multicollinearity among the independent variables.
4. The relationship is linear in its independent variables.

Both Duda et al. (2001) and Webb (2002) extensively discuss discriminant analysis as well as
other classification techniques.

2.4 Backpropagation neural networks

A neural network is used to map a data set using a recursive mathematical expression. It consists
of a set of input nodes and output nodes, which are connected through intermediate-layer nodes
named hidden-layer nodes. When the training data is fed into the input layer, it is propagated
forward through the layers. The output yj of node j is derived using the following formula:

yj = f

(
k∑

i=1

wjixi + wj0

)
= f(wT

j x),

where k is the number of input nodes, xi the value of input node i, and wji is its corresponding
weight. The bias is given by wj0, and f(·) is the activation function, which is usually an S-shaped
function. Figure 2.1 shows a node and a typical neural network.

 

w1 w2 w0

x1 x2 1 

f 

y 

(a) One node

 
I1 I2 I3 I4 

J1 J2 J3 

O1 O2 

(b) Typical neural network with one hidden
layer and two outputs

Figure 2.1 — Neural network

The final outputs that come from the output layers are compared with the desired values by
means of squared errors:

J (w) =
1
2

n∑
i=1

(di − oi)2 =
1
2
‖d− o‖2,

where n is the number of output nodes, oi is the computed output, and di the desired output. The
learning in a neural network is performed by minimising J (w). The optimal weights w are found
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by means of the gradient descent algorithm. The weights are initialised with random values, and
they are changed in the direction that will reduce the error:

∆w = −η
δJ (·)
δw

,

where η is the learning rate. After the complete training set has been fed to the network and the
errors are accumulated, the weights are adjusted backward from the output nodes to the input
nodes. This forward propagation and backward adjustment continues until J (w) converges. This
specific network is called the backpropagation neural network.

The neural network has several advantages over regression techniques. Most important im-
portantly it does not make any assumptions on the distribution of the data. It is tolerant to
incomplete and noisy data, and is able to approximate any complex non-linear mapping if enough
data is provided.

There are many disadvantages as well. The neural network operates as a black box; the hidden
layer nodes have no particular meaning. The design of the network, like the choice of activation
function and the number of hidden layers, is still based on heuristics. Large amounts of data are
required, and the net might converge to a local minimum. Last, neural networks lack statistical
properties. Hypothesis testing is hence impossible.

2.5 Support vector machines

The basic support vector machine classifiers (svms) try to find a hyperplane that separates two
classes. The class of hyperplanes that is considered is wT x + b = 0 with weight vector w and
bias b, i.e., the linear hyperplanes. There may exist many separating hyperplanes, or decision
boundaries, that separate the data of the two classes (cf. figure 2.2a). We can define a unique
separating hyperplane using the margin: the minimal Euclidean distance of a pattern to the
decision boundary. The hyperplane that maximises this margin is called the maximal margin
hyperplane, cf. figure 2.2b.
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(b) Maximal margin hyperplane

Figure 2.2 — Binary classification problem

We have rescaled w and b in such a way that all data points obey the following rules:{
wT xi + b ≥ +1, if yi = +1
wT xi + b ≤ −1, if yi = −1

(2.1)

The margin of the classifier in the canonical formulation is given by 2/‖w‖. The classifier itself
that identifies new patterns now becomes

y = sign
[
wT x + b

]
, (2.2)
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but as we will see later will never be evaluated in this form.
Maximising the margin is equivalent to minimising ‖w‖ in the canonical representation:

min
w,b

J (w, b) =
1
2
wT w

subject to yi(wT xi + b) ≥ 1, i = 1, . . . , `

Note that the single constraint is equivalent to the two decision rules from equation 2.1.
Before we explain the solution to this optimisation problem, we will add two enhancements to

the svm classifier: non-linearity and non-separability. The non-linearity is introduced by replacing
x with ϕ(x), where ϕ(·) is a non-linear function that maps x from input space into feature space:
ϕ(·) : X ⊆ Rn −→ H. This is depicted in figure 2.3: a problem that is not linearly separable in
Rn might be separable in H.
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Figure 2.3 — Mapping from input space Rn to feature space H

Non-separable data sets can be made separable by allowing for misclassifications. Slack vari-
ables ξi are added that measure the degree of violation for the ith constraint. The optimisation
problem is now given by:

min
w,b,ξ

J (w, b, ξ) =
1
2
wT w + C

∑̀
i=1

ξi, C ∈ R+

subject to

{
yi(wT ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , `

ξi ≥ 0, i = 1, . . . , `

Minimising 1
2w

T w maximises the margin between both classes in feature space, whereas min-
imising

∑`
i=1 ξi minimises the misclassification costs. The positive regularisation constant C

determines the trade-off between regularisation (C small) and empirical risk minimisation (C
large).

Dual formulation

We will now use concepts from optimisation theory. Minimising a quadratic function under linear
inequality constraints is solved using Lagrange theory. The Lagrangian to the maximal margin
problem is given by:

L(w, b, ξ;α,ν) = J (w, b, ξ)−
∑̀
i=1

αi[yi(wT xi + b)− 1 + ξi]−
∑̀
i=1

νiξi,

where αi ≥ 0 and νi ≥ 0 are the Lagrange multipliers. The solution to this problem is given by
the saddle point of the Lagrangian, i.e., by minimising L(w, b, ξ;α,ν) with respect to w, b, and
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ξ, and maximising it with respect to α and ν:

min
w,b,ξ

max
α,ν

L(w, b, ξ;α,ν)



δL(·)
δw

= 0 → w =
∑̀
i=1

αiyiϕ(xi)

δL(·)
δb

= 0 →
∑̀
i=1

αiyi = 0

δL(·)
δξi

= 0 → 0 ≤ αi ≤ C, i = 1, . . . , `

If we substitute the first expression into equation 2.2, the classifier is given by:

y = sign

[∑̀
i=1

αiyiK(xi,x) + b

]
, (2.3)

where K(xi,x) = ϕ(xi)T ϕ(x) is a positive definite kernel function satisfying the Mercer theo-
rem (Cristianini and Shawe-Taylor 2000). This is called the dual formulation of the svm classifier.
The Lagrange multipliers α are computed as the solution to the following convex quadratic pro-
gramming problem:

max
αi

− 1
2

∑̀
i,j=1

yiyjK(xi,xj)αiαj +
∑̀
i=1

αi

subject to


∑̀
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , `

The classifier construction problem has simplified to determining the αi. These αi are referred to
as the support values and give the relative weight of their corresponding support vector xi.

Neither w nor ϕ(x) has to be calculated to find the separating hyperplane. No explicit con-
struction of the non-linear mapping ϕ(x) is thus required. We will use the kernel function K(·, ·)
instead. This means the feature vector ϕ(x) is only implicitly known, and it may even become
infinite dimensional. The most commonly used kernel functions are:

• Linear K(xi,xj) = (xT
i xj)

• Polynomial K(xi,xj) = (γxT
i xj + c)d, c ∈ R, d ∈ N, γ ∈ R+

• Gaussian rbf K(xi,xj) = exp
(
−‖xi − xj‖2

σ2

)
, σ ∈ R+

The svm technique has several interesting properties. Compared to neural nets, there are two
major advantages. First there is the global and unique solution of the svm classifier, whereas
neural nets might return local minima. Second, the support vectors have a geometrical meaning,
and the support values αi give the relative importance of the support vectors. Another advantage
is the sparseness of α: the classifier is influenced only by the support vectors, i.e., the vectors that
have αi > 0. Finally, the size of the classifier is dependent on the number of data points `, not
on the dimension of the feature space. This way we can use kernel functions like the radial basis
function (rbf) that implicitly maps the data onto an infinite-dimensional feature space.

The kernel function is, on the other hand, one of the disadvantages as well. The user has to
select this kernel function and set its parameter(s). This part is still based on heuristics. The
second major limitation is speed and size. The training of the classifier is a quadratic programming
problem with a size of number of training samples.

Cristianini and Shawe-Taylor (2000) and Vapnik (1998) explain support vector machines and
the aforementioned derivations in detail.
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Multiple classes

So far we have discussed the binary svm classifier. There are two possible approaches to extend a
binary to a multi-class classifier: combine several binary classifiers, or use a single machine scheme
that considers all classes at once. Both Hsu and Lin (2002) and Rifkin and Klautau (2004) have
compared several methods for multi-class svms. They both concluded that there is little difference
in classification accuracy between the multi-class schemes2. Rifkin and Klautau pose that simple
schemes like one-against-all and all-pairs are preferable to more complex error-correcting coding
schemes or single-machine schemes. We will shortly introduce the former two coding schemes.

The one-against-all strategy constructs c binary svm classifiers with training size ` in case of
c classes. Each ith classifier is trained with data where the ith class has positive labels and all
other classes have negative labels. The resulting class is given by the index i of the classifier that
has the highest value for latent variable z that is given by the signed distance to the separating
hyperplane:

z = wT ϕ(x) + b

Note that this equation is simply the svm classifier of equation 2.2 without taking the sign of the
function.

In all-pairs a classifier between each pair of classes is constructed, which leads to 1
2c(c − 1)

classifiers for the c-class problem (Hastie et al. 1998). The training set is thus only formed by
these two classes, and will have a size of 2`/c on average. In the testing phase, all the classifiers
are applied. There are several ways to combine the outputs to determine the preferred class. The
most commonly used technique lets each classifier vote for its preferred class, and picks the class
with the most votes. This technique is known as majority voting or max-wins. Other techniques
involve estimation of the posterior probability (Hastie et al. 1998).

svm techniques that take ordinality into account are still rare. In chapter 7 we will discuss
how to address ordinality and give a more complete overview of multi-class svms.

Least squares support vector machines

Suykens et al. (2002) propose a modification of the svm classifier: least squares support vector
machines (ls-svms). The ls-svm optimisation problem differs from the ordinary svm classifier in
two aspects. It uses a least squares cost function for the slack variables, i.e., ξi is replaced with
ξ2
i . The second difference is the replacement of the inequality constraints by equality constraints.

The optimisation function is thus becomes as follows:

min
w,b,ξ

J (w, b, ξ) =
1
2
wT w +

1
2
C
∑̀
i=1

ξ2
i , C ∈ R+

subject to yi(wT ϕ(xi) + b) = 1− ξi, i = 1, . . . , `

Following the same reasoning as with standard svms, it can be shown that the ls-svm classifier
is obtained as the solution to the following linear system of equations:(

0 yT

y G + 1
C I`

)(
b
α

)
=
(

0
1

)
,

where y = [y1 . . . y`]T , 1 = [1 . . . 1]T , α = [α1 . . . α`]T , I` a unity matrix, and Gram matrix G has
elements Gij = yiyjϕ(xi)T ϕ(xj) = yiyjK(xi,xj) and satisfies the Mercer condition.

The ls-svm classifier shares most of its properties with the standard svm formulation, like
the global and unique solution, the requirements it poses to kernel functions, and the equation
of the classifier (equation 2.3). The major advantage of ls-svms is that the problem simplifies

2Hsu and Lin conclude that all-pairs and the dag approach outperform other techniques, but their tables do not
support this conclusion.
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from a quadratic optimisation problem to a linear system of equations. This approach significantly
reduces the complexity and computation time for solving the problem. The disadvantage, however,
is the lack of the theoretical background. The generalisation error of the original svm formulation
is bound (Vapnik 1998), but this property is lost in ls-svms. Furthermore, the classifier is no
longer sparse in α. It can be shown that αi = Cξi, and since ξi will practically never equal
zero, αi 6= 0. Suykens proposes a pruning technique to achieve sparseness and reports good
generalisation results. Van Gestel et al. (2004) benchmark ls-svms against ordinary svms and
conclude that both have equal prediction accuracy. It should be said, however, that Van Gestel is
part of the research group that developed ls-svms.





Chapter 3

Related work

Modern credit analysis dates back from the late nineteenth century, when credit markets began to
issue and trade bonds. At the time, a rating depended on the judgement of experts, who looked at
both the quantitative and the qualitative characteristics of a counterparty. The first works using
formal statistical models date back to the 1960s, when Horrigan (1966) used standard ordinary
least squares regression on multiple ratios to predict potential financial distress.

More recently, artificial intelligence techniques have been proposed as alternatives for the sta-
tistical methods, among which rule-based expert systems and machine learning techniques such
as neural networks. Machine learning techniques are free of the parametric and structural as-
sumptions that underlie statistical methods. These techniques learn the particular structure of a
model from the data in an inductive manner. This section describes previous work in the field of
credit rating chronologically starting from 1988. Table 3.1 provides a schematic overview of the
discussed articles.

3.1 The neural network era

Dutta and Shekhar (1988) were the first to apply backpropagation neural networks (bpnns) to the
rating replication problem. They compared neural networks with multiple regression to discern
AA-rated from non-AA counterparties. Both two- and three-layered neural networks outperformed
the regression model. A two-layered neural network with ten financial variables correctly classified
88.3%, as compared to 64.7% for the regression model. The data consisted of thirty training
samples and seventeen test samples in only two rating categories, clearly not enough to be able to
compare these results with other techniques.

Surkan and Singleton (1990) compared the neural networks with multiple discriminant analysis.
They used a population of 126 bond patterns with seven financial variables. The number of rating
classes was reduced to two: one consisting of Aaa bonds, and the other consisting of A1, A2, and
A3. They selected sixteen prototype bonds for training, and tested it on twenty samples from
each of the two classes. The result was that neural networks outperformed mda with accuracies
of 88% compared to 39%.

Utans and Moody (1991) and Moody and Utans (1995) obtained a 30.6% accuracy in neural
networks using fifteen rating categories. The complete data set of 196 firms was used to initialise
the weights in the neural network, which implies a possible bias in the model. Neural networks
significantly outperformed linear regression, but the classification accuracy for the latter have not
been given. Moody and Utans assessed neural nets in the case of five and three distinct rating
classes as well, resulting in performances of 63.8% and 85.2% respectively.

Kim et al. (1993) evaluated neural networks, linear regression, ordinal logistic regression, dis-
criminant analysis, and an id3 rule-based system. They collected 168 data points in six rating
classes ranging from AAA to B. The population was almost evenly divided over the rating classes
in both the training and the test set. Neural networks were the best performers with an accuracy
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ratio of 55.2% on an out-of-sample test set of 58 counterparties.
Maher and Sen (1997) compared the neural network approach with ordinal logistic regres-

sion. Overfitting was avoided using a separate train (60%), test (20%), and validation set (20%).
A maximum performance of 70% was obtained for neural networks on six rating classes and a
population of 299.

Kwon et al. (1997) improved neural networks to better represent the ordinal nature of rating
classes by introducing ordinal pairwise partitioning (opp). The main idea of this approach was
to partition the data set in an ordinal and pairwise manner according to the output classes.
Separate neural networks were then trained using the different partitioned data sets. Their opp
model predicted the ratings of 71–73% in five rating classes correctly, whereas conventional neural
networks scored 66–67% and multiple discriminant analysis 58–61%.

Chaveesuk et al. (1999) researched two additional supervised neural networks paradigms: radial
basis function (rbf) and learning vector quantisation (lvq). The rbf network is similar to the
backpropagation neural network, except for the behaviour of the hidden layer. The sigmoidal/sum
activation function of the bpnn is typically replaced by a Gaussian kernel, where each of the hidden
neurons calculates the ‘closeness’ between the input vector and its centre. An interesting fact is
that this design is conceptually similar to a support vector machine classifier with an rbf kernel
function. The lvq network is merely a supervised variant of Kohonen‘s self-organising maps. The
two methods were benchmarked against conventional neural nets, linear regression and logistic
regression, on a population of sixty training samples and thirty test samples. The prediction
accuracy for rbf (23.3–38.3%) and lvq networks (36.7%) was significantly worse than the linreg
(48.3%), logreg (53.3%) and bpnn implementations (51.9–56.7%).

3.2 Alternative artificial intelligence approaches

Case-based reasoning (cbr) is a problem solving technique that re-uses past cases and experiences
to find a solution to a problem. The key issue of cbr lies in the case indexing process. There are
three possible approaches to indexing: nearest-neighbour (nn), inductive, and knowledge-guided.
Shin and Han (1999, 2001) applied all three cbr variants to the credit rating problem, and included
a hybrid nn-knowledge variant based on genetic algorithms (ga). They concluded that both this
hybrid variant (75.5%) and the inductive learning variants (62.8–70.0%) had a higher prediction
accuracy than multiple discriminant analysis (60%), id3 (59%), and other cbr variants (61–62%).

Rating agency Standard and Poor’s uses support vector machines (svms) in their CreditModel
rating application. CreditModel produces quantitatively derived estimates of Standard and Poor’s
credit ratings for both public and private counterparties. Friedman (2002) discloses a few details
of the methodology in a technical white paper. The key variables mainly consist of financial
data, and the number of rating categories is nineteen (AAA to CCC- including pluses and mi-
nuses). Friedman benchmarks the proximal support vector machine (psvm) technique (Fung and
Mangasarian 2001) with neural networks and Nadaraya-Watson regression, which is a type of non-
linear regression. The psvm technique gives a 30.8% performance, compared to 23.6 and 29.5% for
neural networks and Nadaraya-Watson regression respectively. These results are averages taken
from thirteen different training and out-of-sample test sets.

Van Gestel et al. (2003) applied another svm approximation to the credit rating replication
problem: least squares support vector machines (ls-svms). The binary ls-svm classifier is ex-
tended to a multi-class classifier using a all-versus-all coding technique with majority voting de-
coding. They compared this approach to linear regression, logistic regression, and neural networks.
The data set consisted of 3599 observations of banks and 79 candidate inputs, where 30% of the
data set was used for out-of-sample testing. They concluded that the ls-svm methodology yields
significantly better results (54.5%) than linear regression (28.9%), logistic regression (36.6%), and
neural nets (27.5%). The article does not provide any details on the choice of the kernel function
and the hyperparameter selection method.

Huang et al. (2004) describe their support vector machine approach in more detail. They
experimented with different kernel functions, hyperparameter settings and multi-class approaches
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using the bsvm software package. Their best performing set-up consisted of a radial basis kernel
function with Crammer and Singer’s formulation for multi-class svm classification (Crammer and
Singer 2000), although comparable results were derived using a third-order polynomial kernel
function. They compared svms to both logistic regression and neural networks, performing ten-
fold cross-validation on a data set of 265 American companies. The support vector machines and
neural networks consistently outperformed the logistic regression model.

3.3 Discussion

Table 3.1 shows that in early work, backpropagation neural networks outperform both mda and
linreg by large. These results are, however, based on rather small data sets, which makes the
results doubtful. More carefully conducted work shows less dramatic but still prominent advan-
tages of neural nets over the standard techniques. Apparently the linear relationship assumption
that underlies both linear regression and multiple discriminant analysis does not hold.

Not surprisingly, the competition between logistic regression and bpnns proved to be more
challenging. The prediction accuracy of both techniques is roughly similar in all cited work. The
logistic model is better suited for the credit rating problem than mda and linreg; it is indeed
most often used in cases where latent probability values are estimated from binary or ordinal
multi-class observations.

Several new approaches have been presented, of which support vector machines seem the most
promising. The three most recent papers all claim that the svm approach leads to the best results.
The results presented by Van Gestel et al., however, are rather remarkable; all previous research
indicated that neural nets performed equal to or better than logistic regression. Moreover, the
performance of svms is nearly two times higher that that of neural networks. The neural network
scheme has apparently not been designed carefully. The most surprising fact is a classification
accuracy of over 50% in the fifteen-class problem. Although it is very difficult to compare the
results of different authors due to different numbers of rating classes and variables, we can easily
conclude that this value outperforms any other research. One cause is the distribution of the data
set: seven out of fifteen classes contain radically less observations than the other eight. In practice
this simplifies the problem to an eight-class problem, since new objects will hardly be classified to
these rare classes, at low misclassification costs.

Another possible cause of this implausible good result can be found in the description of the
data set. The 3599 observation are based on data from 831 companies over eight years. Since
many companies hardly in change in terms of their ratings and financial ratios, many similar
patterns occur in both the training and the test set, with similar associated rating classes. The
classifier will thus be heavily biased to companies that are already present in the data set, and its
real out-of-sample accuracy might be limited. This conclusion even further stresses the question
why neural nets underperform, since this technique is based on correctly classifying patterns.

This latter cause hold for the results of Huang et al. as well. Their data consists of 265
observations from ten years of data of 36 companies, resulting in a similar biased ‘out-of-sample’
test set.

Although the svm results might be somewhat questionable in absolute sense, we still regard
them as promising for svms do outperform other techniques. This might indicate that the relation
between the input and the rating class is more complex than a linear or logistic relation. Logistic
regression, however, remains a competing technique. We will therefore research both techniques on
the abn amro data set. The next chapter describes the data that serves as input for any technique.
Next chapter 5 introduces a new framework for classification, in which any of the techniques can
be incorporated. Chapter 7 describes the experimental set-up of our svm classifier, and chapter 8
compares the results with regression techniques and the existing credit rating system.
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Table 3.1 — Prior research to artificial intelligence techniques

Study Year Method Accuracy1 #variables #samples #classes

Dutta and
Shekhar 1988 linreg 6, 10 47 2

bpnn

Surkan and
Singleton 1990 mda 7 126 2

bpnn

Utans and
Moody

1991,
1995 bpnn 10 196 5

Kim et al. 1993

linreg

8 168 6
mda
logreg
id3
bpnn

Maher and
Sen 1997 logreg 5, 6, 7 299 6

bpnn

Kwon et al. 1997
mda

24 3085 5bpnn
bpnn w/opp

Chaveesuk
et al. 1999

linreg

8 90 6
logreg
bpnn
rbf
lvq

Shin and
Han

1999,
2001

mda

12 3886 5id3
cbr
cbr w/ga

Friedman 2002
bpnn

N/A N/A 19nwreg
svm

Van Gestel
et al. 2003

linreg

79 3599 15logreg
bpnn
svm

Huang
et al. 2004

logreg
5, 14 265 5bpnn

svm

1 The black bars indicate the classification accuracy for the worst performing architecture; the grey bars
give the accuracy of the best performing architecture.

linreg: linear regression
mda: multiple discriminant analysis
logreg: ordinal logistic regression
bpnn: backpropagation neural network
id3: inductive decision tree
opp: ordinal pairwise partitioning

rbf: radial basis function network
lvq: learning vector quantisation network
cbr: case-based reasoning
ga: genetic algorithms
nwreg: Nadaraya-Watson regression
svm: support vector machines



Chapter 4

Data description

This chapter describes the variable construction and selection process. An extensive variable selec-
tion process was performed in 1998, when abn amro was about to move to a more sophisticated
default risk model than the one used at the time. One of the candidates was an off-the-shelf pro-
gram called Moody’s Risk Advisor (mra).1 Two independent expert panels were formed to decide
on which ratios and other factors should serve as inputs for the model, using the mra default
choices as a starting point. Zondag (1998a, 1998b) describes the outcome of the panel meetings.

In this chapter we will first examine the variables that are pointed out as useful in the credit
rating literature. Then we will review the abn amro expert panels’ decisions, focusing on all
variables that have been under discussion. Next comes our own research. The third section
discusses data preprocessing, such as outlier removal and transformations. An exploratory analysis
on the data is given next, of which the conclusions are presented in the fifth section.

The data collection and cleaning process was a very time-consuming task which resulted in
several important achievements. The added value for readers interested in rating models and data
analysis is however limited, so we have decided to leave it out of the main portion of the report.
More information on this topic can be found in appendix B.

4.1 Theory

Credit rating agencies have been rating corporations since the nineteenth century. A company’s
rating depends on a variety of different inputs. The main source for these variables is the com-
pany’s annual report. All large companies have an obligation to both their shareholders and the
government to publish an annual report, including the company’s financial statement.

To determine the financial position of a company, it is common in economics to calculate ratios
from the different sheets of their financial statement. The financial statement consists of a balance
sheet, a profit and loss account, and a cash flow statement. The balance sheet reflects the value
of the company’s assets, liabilities, and the equity at a specific point in time. The profit and loss
account is compiled at the end of the fiscal year (or another accounting period) to show gross
and net profit or loss. The cash flow statement shows the borrower’s ‘free’ operational cash flow,
which will be available for debt service. Appendix A.1 gives templates for the different parts of
the financial statement.

Financial data are only one of the many possible information sources. In fact, large credit rating
firms evaluate a whole array of characteristics to assess the probability of default of borrowers.
Other aspects can include the analysis of country risk and industry risk, or the vulnerability to
competitive pressures and unexpected events. Table 4.1 gives the main characteristics used by
Standard and Poor’s (2004).

The large rating firms have informal meetings with the company’s top executives to evaluate
its prospects and access confidential information (e.g., plans for new products to be launched in

1At that time the program’s name was Lending Advisor Encore, developed by Crowe Chizek.
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Table 4.1 — Main risk factors in the analysis of corporate credit risk

Risk source Profile

Business risk

Industry characteristics
Competitive position, e.g.,
- marketing
- regulation
- technology

Financial risk

Financial characteristics
Financial policy
Profitability
Capital structure
Cashflow protection
Financial flexibility

the next year). Researchers will usually not be able to retrieve this information from a company.
Credit rating research has therefore mainly focused on the data that is available to them, i.e.,
financial data.

There are many ratios that may possibly characterise the financial situation of a company.
Extensive research has been performed by Chen and Shimerda (1981), who conclude that there
are seven factors that are crucial to the prediction of defaults. These are given in table 4.2.

Table 4.2 — Financial drivers of default risk

Factor Description Example

Volatility

A measure for agility. A higher equity
volatility implies a higher probability of
a firm’s asset value falling below its level
of debt, which implies insolvency.

Historical volatility

Size

Larger companies are generally more di-
versified in their exposure to geographies,
products, and people, and this lowers
their prospective volatility. Note that this
greatly overlaps with volatility.

Turnover

Profitability

Higher profit lowers default probabilities.
Combining profitability with interest ex-
pense makes it a combination of leverage
and profitability

Gross Profit Margin,
Total Debt to ebitda,
Interest Coverage Ratio

Leverage Higher leverage implies higher default
probabilities.

Gearing Ratio, Equity
Ratio

Liquidity Lower liquidity implies higher default
probabilities.

Current Ratio, Quick
Ratio

Growth Both high and low growth rates are asso-
ciated with higher default probabilities Annual Turnover Growth

Inventories Higher inventory levels imply higher de-
fault probabilities. Stock Days

The use of ratios has some side-effects as well. We will have to take into account that a
negative ratio is the result of either a negative numerator or a negative denominator. Both ratios,
that appear to be the same, might in fact have a completely different impact on the ucr. A
denominator can have a value close to zero, leading to an extremely high or low value (outlier).
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In general, financial ratios will not follow the Gaussian distribution. In fact, the y-axis will
be a semi-asymptote. The shape of the ratio versus the ucr is roughly known from theory. For
example, the Current Ratio is known to have a logarithmic shape, whereas the Annual Turnover
Growth has a U-shape. We will have to perform some sort of transformation to avoid overfitting
on for instance extreme values and fat tails. Falkenstein (2002) proposes four different methods:

• Replace the ratio with its percentile

• Transform the ratio into a standardised Gaussian variable (e.g., x−µ
σ )

• Apply a sigmoidal function (e.g., 1
1+e−x ) to the ratio or its standardised Gaussian variable

• Use the non-parametric univariate default estimate generated by each variable

4.2 Variable candidates

The risk posed by a counterparty consists of the financial risk and the business risk. The financial
risk will be measured by financial ratios, their derivatives trend and volatility, and answers to
subjective questions. The business risk consists of three macro-economic scores. The following
subsections treat these elements in detail.

4.2.1 Raw ratio value

Several financial ratios calculated from the latest financial statement will serve as inputs. The
experts selected fourteen financial ratios that they felt were most predictive. They are divided into
four categories: operations, liquidity, capital structure, and cash flow and debt service. Table 4.3
gives the chosen ratios and their categories. Appendix A.2 shows how to calculate the different
ratio values for the standard annual case. When we take non-annuals into account, we need to
annualise all profit and loss account elements.

Table 4.3 — Financial ratios

Category Financial ratio

Operations

Gross Profit Margin
Operating Profit Margin
Annual Turnover Growth
Return on Capital Employed

Liquidity

Current Ratio
Quick Ratio
Debtor Days
Stock Days
Creditor Days

Capital structure Gearing Ratio
Equity Ratio

Cash flow and debt
service

Interest Coverage Ratio
Total Debt to ebitda
noff to Financing Charges

When compared to Chen and Shimerda, operations correspond to profitability and growth;
liquidity is liquidity including inventories; capital structure and leverage are synonyms; and cash
flow and debt service combines leverage and profitability. A remarkable missing aspect with
respect to Chen and Shimerda’s findings is the size of the counterparty. The panels found that
this variable would largely be covered by the subjective questions. In our research we have added
the log of two different size variables (Total Assets and Turnover), to ensure that all the suggested
aspects will be covered.
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Many ratios are based on two consecutive statements. Debtor Days, for instance, gives an
average value of two statements. When financial statements are available for the past n years,
only one statement is available for calculations in year n. Most ratios will now be based on this
statement only. Annual Turnover Growth and noff to Financing Charges however require a
second statement; without this statement, the ratio is omitted, resulting in missing values. Thus,
when n financial statements are available, n − 1 of the Annual Turnover Growth and noff to
Financing Charges ratios are available, and n of the other ratios.

Some ratios are not relevant for particular industry sectors. The transportation sector, for
instance, will not have any Cost of Goods Sold and thus not have any Creditor Days or Stock
Days. For all five ratios where this is the case (Gross Profit Margin, Operating Profit Margin,
Creditor Days, Stock Days, and Debtor Days), calculating the raw value will lead to missing
values.

4.2.2 Ratio trend

The trend itself over these years is regarded as a useful variable as well, although strictly speaking
the trend is not one of the aspects pointed out by Chen and Shimerda. The trend is equal to the
slope of the ordinary least squares regression line:

trend(x,y) =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

where yi is the ratio, xi the date of the ratio, and n the number of financial statements. x1 is set
to 0 and refers to the date of the oldest statement. The other xi equal the date of statement i less
the date of the oldest statement, calculated in months.

At least three financial statements have to be available to be able to calculate the trend. In
theory two will suffice, but we have chosen to set three as a minimum to have a more reliable
estimation of the trend. In many cases less than three statements are available, resulting in
missing values. The maximum has been set to four.

4.2.3 Ratio volatility

The volatility is comparable to the standard deviation of the trend. Just as with the trend, at
least three statements must be available, which is the theoretical minimum as well. The value of
the volatility is always a non-negative value, and will have a log-shaped distribution.

The volatility is included for each of the financial ratios using the latest n financial statements,
up to a maximum of five. Among the several ways to calculate the volatility, we have chosen to
use the following formula:

∆y =
∑n−1

i=1 (yi+1 − yi)
n− 1

volatility(y) =
n∑n

i=1 yi

√∑n−1
i=1 (yi+1 − yi −∆y)2

n− 1
,

where yi is the ratio, ∆y is the average change in y, and n is the number of financial statements.
This formula only holds when the distance between the elements of x are all equal. This

happens for instance when the financial statements of 2001–2005 are all composed in December,
resulting in twelve months difference between subsequent statements. The formula that takes
unequal distances into account can be found in Dikkers (2005b).

4.2.4 Subjective questions

Not only quantitative information is taken into account. The account manager has to answer
several subjective questions. Eight questions were found to be relevant for determining the prob-
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ability of default, all of which are listed in table 4.4. The number of possible answers may differ,
but they are always ordinal, ordered from negative to positive.

Table 4.4 — Subjective questions and possible answers

Subjective question Possible answers
Competitive leadership Weak, moderate, strong, dominant
Trading area Local, national, regional, global
Market conditions Negative growth, flat market, average

growth, strong growth, high growth
Supplier risk Very high, high, average, low, very low
Accounting risk High, moderate, low
Customer concentration Very high, high, average, low, very low
Stock liquidity Very low, low, average, high, very high
Access to capital Low, average, high, very high

4.2.5 Macro-economic factors

Although industry differences are covered by peer group percentiles, this might be counterproduc-
tive if, e.g., some industries have higher default rates because of their higher-than-average leverage
(and thus risk). The abn amro Industrial Sector Research department determines a score on a
scale [0, 100] for each of the 68 different industries, which combines risk and prospects. When a
counterparty is active in multiple industries, a weighted average of the scores is calculated to come
to the final Industry Score.

An additional risk is posed by the country that a counterparty operates in. Similar to the
Industry Score, the Country Risk department calculates a score that reflects the risk of having
sales in a country: the Country of Sales Score. Again this might be a weighted average. Finally,
the residence risk is assessed to form the Country of Residence Score. This score is also provided
by the Country Risk Management department.

4.3 Preprocessing

In this section we will discuss three aspects of preprocessing: outlier detection and removal, missing
values, and the possible transformations.

4.3.1 Outliers

Outliers have a large influence on most regression and classification techniques. Fortunately they
only appear in the financial ratios and their derivatives (trend and volatility); subjective questions
and macro-economic scores always have a ‘clean’ value. Our first task is to identify the cause of
these outliers. A robust method to remove outliers is presented next.

Causes

The outliers in the trend and volatility of financial ratios are always caused by one or more extreme
values of the ratios themselves. Focusing on these raw variables will explain all outliers.

We can identify two types of outlier in the raw ratio values. Outliers with very high and low
values are regularly seen; these were mostly caused by their denominators being close to zero.
Values might even be ±∞ when the denominator equals zero.

Another form of outlier is caused by numerators or denominators having an unexpected sign.
Most of the ratios in table 4.3 have both their numerator and denominator non-negative, or
only one of these can be negative. For Interest Coverage Ratio and noff to Financing Charges,
however, difficulties might arise. The numerator can take any value and the denominator is
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expected to be non-negative. However, the denominator might in practice be negative as well,
resulting in unexpected values for these two ratios. These values will be overridden to −∞ or +∞
based on expert knowledge.

Solutions

There are many ways to handle outliers. The most common way is to replace an outlier by the
sample mean plus or minus two times the sample standard deviation, assuming that 5% of the
values are outliers. However, since infinite values appear regularly, the sample standard deviation
cannot be calculated. When we replace infinite values, with for instance ±999, the sample standard
deviation will largely depend on the choice of the value this replacement value, as will the outlier
replacement value.

A more robust method is to replace the values better than the 100(1 − i)th percentile and
the values worse than the 100(i)th percentile with their respective values. The sample mean and
standard deviation will now correspond to the Winsorised mean and standard deviation. The
mean is given by:

µW (i) = µW (j/`) =
1
`

jxj+1 +
`−j∑

i=j+1

xi + jx`−j

 , (4.1)

where j is the number of observations to skip, the total of ` observations are ordered, and j/` = i.
The standard deviation is calculated similarly.

We have set i to 2.5 in order to obey the 95%-rule. While examining the results of this outlier
removal method, it appeared that for many ratios valuable information was deleted from the data
set, whereas for other ratios too many outliers were still present. The underlying assumption that
95% of the values are correct evidently does not hold, nor would any other value.

This implies that the number of outliers has to be estimated first, which might create a bias in
the dataset. Resti (2002) circumvents this problem by having experts set maximum and minimum
acceptable values for each variable. No assumption is needed regarding the percentage of outliers.

Minimum (maximum) values have been extracted from the current mra system. These values
indicate the extremes where performing worse (better) does no longer affect the probability of
default, according to abn amro experts. The range of allowed values is very small compared to
research peers and would lead to extremely high percentages of outliers (Resti 2002). Therefore
we have tripled the range for each variable, e.g., an original range of 〈1, 3〉 would now become
〈−1, 5〉. This proved to be the most robust outlier correction method.

The results are given in table 4.5. The minimum and maximum accepted value are given in
column three and four, and the next two columns state the percentage of observations that needed
to be replaced by either the minimum or the maximum. The final column shows the percentage
of missing values, which will be discussed in the next subsection.

4.3.2 Missing values

Just as in the previous subsection, we will first try to identify the cause, and then provide a
solution to the missing values problem.

Causes

Two types of missing value are present in the data: expected and unexpected missing data.
Expected missing data only appears in ratios and their derivatives. The most common cause
is an insufficient number of financial statements, such that the trend and volatility cannot be
calculated. Another cause is the inapplicability of certain ratios to particular sectors of industry,
like the Gross Profit Margin for the services industry. Unexpected missing data is caused by the
incomplete data storage procedures that were used before August 2004. The values of Gross Profit
Margin, Operating Profit Margin, and Annual Turnover Growth were not stored up to that date.
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Table 4.5 — All available variables

Variable Min Max Replaced Replaced Missing
value value by min by max values

Raw values
R01 Gross Profit Margin -0.9 1.8 0.1% 0.0% 7.1%
R02 Operating Profit Margin -0.8 1.5 0.9% 0.1% 1.2%
R03 Annual Turnover Growth -0.4 0.5 1.2% 10.7% 8.5%
R04 Return on Capital Employed -0.2 0.4 3.1% 8.7% 0.0%
R05 Current Ratio - 5.3 - 3.6% 0.1%
R06 Quick Ratio - 3.5 - 4.4% 0.1%
R07 Debtor Days - 270.8 - 1.0% 4.4%
R08 Stock Days - 397.9 - 1.0% 12.1%
R09 Creditor Days - 516.0 - 1.9% 7.1%
R10 Gearing Ratio -2.5 7.3 3.7% 2.3% 0.0%
R11 Equity Ratio -0.4 0.9 2.5% 3.5% 0.1%
R12 Interest Coverage Ratio -5.0 11.5 4.7% 33.0% 0.6%
R13 Total Debt to ebitda -3.0 7.5 3.4% 7.8% 0.0%
R14 noff to Financing Charges -4.5 11.3 5.2% 16.1% 0.9%
Percentiles
P01 Gross Profit Margin - - - - 15.8%
P02 Operating Profit Margin - - - - 1.2%
P03 Annual Turnover Growth - - - - 8.5%
P04 Return on Capital Employed - - - - 0.0%
P05 Current Ratio - - - - 0.1%
P06 Quick Ratio - - - - 0.1%
P07 Debtor Days - - - - 4.4%
P08 Stock Days - - - - 20.0%
P09 Creditor Days - - - - 16.3%
P10 Gearing Ratio - - - - 0.0%
P11 Equity Ratio - - - - 0.1%
P12 Interest Coverage Ratio - - - - 0.6%
P13 Total Debt to ebitda - - - - 0.0%
P14 noff to Financing Charges - - - - 0.9%
Trends
T01 Gross Profit Margin -0.2 0.2 0.8% 1.0% 12.9%
T02 Operating Profit Margin -0.1 0.1 3.5% 6.5% 7.8%
T03 Annual Turnover Growth -0.3 0.3 5.8% 2.6% 26.3%
T04 Return on Capital Employed -0.3 0.3 1.7% 3.1% 6.5%
T05 Current Ratio -4.0 6.5 0.5% 0.3% 6.5%
T06 Quick Ratio -1.2 1.6 1.0% 1.0% 6.5%
T07 Debtor Days -32.0 31.0 3.1% 1.3% 9.0%
T08 Stock Days -40.0 38.0 3.7% 1.3% 13.9%
T09 Creditor Days -29.0 28.0 7.5% 3.3% 12.5%
T10 Gearing Ratio -2.8 2.6 3.6% 3.2% 6.5%
T11 Equity Ratio -0.2 0.2 2.3% 3.7% 6.5%
T12 Interest Coverage Ratio -5.0 5.5 8.7% 17.3% 7.1%
T13 Total Debt to ebitda -1.5 1.5 12.4% 7.8% 6.5%
T14 noff to Financing Charges -1.5 2.3 12.3% 14.0% 21.3%
Volatilities
V01 Gross Profit Margin - 3.0 - 0.4% 12.9%
V02 Operating Profit Margin - 3.0 - 7.0% 7.8%
V03 Annual Turnover Growth - 4.5 - 12.3% 26.3%
V04 Return on Capital Employed - 3.0 - 7.1% 6.6%
V05 Current Ratio - 1.5 - 0.7% 6.5%
V06 Quick Ratio - 1.5 - 0.7% 6.5%
V07 Debtor Days - 1.5 - 1.8% 10.3%
V08 Stock Days - 1.5 - 1.5% 16.9%
V09 Creditor Days - 1.5 - 1.7% 13.0%
V10 Gearing Ratio - 3.0 - 4.3% 10.6%
V11 Equity Ratio - 3.0 - 1.7% 6.5%
V12 Interest Coverage Ratio - 3.0 - 7.7% 7.1%
V13 Total Debt to ebitda - 3.0 - 7.2% 10.6%
V14 noff to Financing Charges - 3.0 - 8.9% 21.3%
Size variables
S01 log(Turnover) - - - - 1.1%
S02 log(Total Assets) - - - - 0.0%
Macro-economic factors
M01 Industry Score - - - - 0.0%
M02 Country of Residence Score - - - - 0.0%
M03 Country of Sales Score - - - - 0.0%
Subjective questions
Q01 Competitive Leadership - - - - 0.0%
Q02 Trading Area - - - - 0.0%
Q03 Market Conditions - - - - 0.0%
Q04 Supplier Risk - - - - 0.0%
Q05 Accounting Risk - - - - 0.0%
Q06 Customer Concentration - - - - 0.0%
Q07 Stock Liquidity - - - - 0.0%
Q08 Access to Capital - - - - 0.0%
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Solutions

The expected missing data has been replaced by median values. This is a simple yet robust method
which causes the replaced variable to have a neutral effect on the rating class.

Handling the unexpected missing values proved to be less straightforward. We were able to
retrieve the variables that are the basis for the Gross Profit Margin and Annual Turnover Growth
and have thus recalculated their values. Unfortunately it was impossible to exactly recalculate the
values of Operating Profit Margin, since one of the source variables was missing as well. Instead
values has been derived based on all but this variable. Empirical research indicates that roughly
75% of the Operating Profit Margin values will be correct, whereas the impact on the other 25%
will usually be lower but possibly higher than the real value.

4.3.3 Transformations

Section 4.1 indicated that transformations are required for proper data analysis, at least for the
financial ratios. In this section we will examine which transformations are required for the variables
given in the previous section.

We will utilise three types of transformation:

1. Standardisation to Gaussian variables
2. Percentile calculations
3. Transformations to scores based on expert opinions

The first type of standardisation can be used for all types of variable. The percentile calcula-
tions apply to the raw ratio values only. We will take industry effects on these raw ratio values
into account as well. The latter transformation is similar to the non-parametric univariate default
estimate from section 4.1, and will be calculated for all variables.

Standardisation

We have chosen to transform all variables into standardised Gaussian variables. This assumes that
the underlying population of variables is normally distributed. Although this is rarely the case, it
is a common transformation in credit rating literature, with acceptable results (Falkenstein 2002).

After the outlier replacement process from section 4.3.1, we can safely perform the standard
Gaussian normalisation:

z =
x− µ

σ

Percentiles

The quality of the value of a ratio largely depends on the industry. For example, even the top
players in the supermarket business will have very low profit margins when compared to other
industries. We will eliminate the ratio’s dependence on industry by comparing the ratio to its
industry peers.

A natural choice for this comparison is the use of percentiles. A percentile is the rank of a value
in an ordered group of values, i.e., the percentage of group members that perform worse than the
member in question. The percentile values might be either ascending or descending, depending
on whether a high value is good or bad.

For each of the 68 different industries, the 75th, 50th and 25th percentile values are determined.
These three percentile values are called quartiles, and will be referred to as Q1, Q2, and Q3

respectively. The peer group assessment calculations will be based on these three pre-determined
values and not on a real-time comparison with their peers. If a counterparty is active in multiple
industries, a weighted average is taken over each of the quartiles.

The formula for calculating the percentile will have to be an S-shaped function that maps the
variable x onto a percentile in the range [0, 1]. abn amro has chosen the following formulae, where
the percentile values are assumed to be in ascending order (Q1 ≥ Q2 ≥ Q3).
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Figure 4.1 — Percentile example for Operating Profit Margin in industry peer group Agriculture Pro-
duction, with Q1 = 0.739, Q2 = 0.285, and Q3 = 0.158

percentile(x) =


1− 2(Q2−x)/(Q1−Q2)

2
x ≥ Q2

2(Q2−x)/(Q3−Q2)

2
x < Q2

The formulae for percentile values in descending order are similar and can be found in Dikkers
(2005b). A graphical representation of these formulae is given in figure 4.1.

Because of the S-shape of the function, this type of transformation is robust to outliers. The
original variables without outlier removal have therefore been used as inputs.

For companies in certain areas of industry, particular ratios might not be relevant. A service
industry will not have any Cost of Goods Sold and thus not have any Creditor Days. The per-
centile calculations for these values will have to be omitted, for there is no peer group information
available.

Scores

The third way to transform the raw values is a translation into scores. From a research point
of view, this transformation is similar to Falkenstein’s univariate default estimate per input as
described in section 4.1. Within abn amro insufficient default data was available to use default
estimates in this mapping function. Instead, the experts estimated scores on a scale [−50, 50].

Setting scores for the answers to subjective questions is a straightforward task: a score that
represents the quality is assigned to each possible answer. The macro-economic scores are already
scores but on a scale [0, 100]. Subtracting 50 leads to the score on the required scale.

Finally the continuous inputs need to be transformed. For each of these inputs, the experts
have chosen five to seven benchmark values that they corresponded to scores. In the case of the
raw ratio value of the Current Ratio, five values in the range of 0.7 to 3 have been associated with
scores:
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Benchmark value (V ) 0.7 0.8 1 2 3
Associated score (S) -45 -20 0 20 45
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Figure 4.2 — Score example for the raw ratio value of Current Ratio

Based on these benchmark values and scores we can define a piecewise-linear non-parametric
scoring function. The score corresponding to a particular variable is calculated by means of linear
interpolation between the two closest benchmark values, cf. figure 4.2 for the Current Ratio. The
score will be cut off at the minimum and maximum, i.e., no extrapolation takes place. It will now
indicate the quality of an input on the scale [−50, 50]. In formula:

score(x) =


s1, x < v1,

si + (x− vi)
si+1 − si

vi+1 − vi
, vi ≤ x < vi+1,

sn, x ≥ vn,

subject to v1, . . . , vn ∈ V,

s1, . . . , sn ∈ S.

4.4 Exploratory data analysis

The experts have indicated many variables that could be used in further research. Before we can
develop a model, however, we will perform thorough research on the data. The distribution of
ucrs is given in the first subsection. Second, each variable should have predictive power, i.e.,
there should be a direct or indirect relation between a variable and the ucr class. The second
subsection gives the results of several ways to assess the direct relation. Next we will discuss
collinearity among the variables, and we will wrap up with the conclusions and the presentation
of the final variable sets.

In this section we have focused on the raw values with outliers removed, and on the percentile
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transformation of the financial ratios. When examining the results of the scores transformation,
we found that for nearly all of the variables the predictive value and collinearity among other
variables was similar to that of the raw value.

4.4.1 Distribution

We would expect that most of the counterparties are of average risk and thus have received an
average ucr, i.e., around 3. Figure 4.3a shows us that this assumption approximately holds.
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(b) After grouping ucrs.

Figure 4.3 — Sample distribution

Many pattern recognition techniques require a reasonable amount of data in each class, which
is clearly not the case for the outer classes. The ordinal nature of the rating problem allows us to
group two or more adjacent ucr classes. The development of the models in the next chapters has
therefore been based on data divided over only six classes. We have grouped ucr classes 1, 2+,
2, and 2− to 1/2; 4+ and 4 to 4; and 4−, 5+, 5, 5−, and 6+ to 5/6. The resulting distribution
of counterparties is nearly uniform, as can be seen in figure 4.3b. The pds associated with the
new classes are set equal to the average pd of the classes they are formed by, weighted by their
population sizes.

Another interesting aspect is to examine whether the data is indeed ordinally ranked, as we
have stated in section 1.4. Fisher discriminant analysis is a linear discriminant analysis technique
that, like all other lda variants, uses new features that are linear combinations of the independent
variables. These features are constructed in such a way that the means of the different classes are
maximally separated. Since our data is ordinal, we expect that it is easier to separate classes that
lie further apart than classes that are close to each other. More information on Fisher analysis
can be found in Duda et al. (2001).

Figure 4.4 shows the empirical distribution among the classes for the first (and most predictive)
Fisher feature. The x axis gives the value of this feature, and the y axis shows the number of
occurrences. We can easily see that our ordinality assumption holds. Another observation is the
large overlap between the different classes. This indicates it will be difficult to linearly separate
the data.

4.4.2 Predictive power

This subsection describes the predictive power of variables with respect to the ucr. The ucrs
can be interpreted in two ways: as metric values, and as ordinal values. For the metric interpre-
tation, the ucr will be replaced by the historical probability of default or its logit. The ordinal
interpretation only takes the rank of the ucr into account. After careful consideration, we have
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Figure 4.4 — Fisher analysis

chosen to research three measures of univariate predictive power:

• Pearson’s correlation coefficient

• Spearman’s rank order correlation coefficient

• Analysis of variance

The first technique regards the dependent variable as continuous, the second as ordinal, and
the third technique nominal. This way we avoid the introduction of a bias towards continuous,
ordinal, or nominal techniques.

The determination of the predictive power of the independent variables in this section is based
on the fourteen-class data. In this way we try to include as much information as possible. A
reduction to six classes yields higher observed values for the predictive power of the variables, but
hardly affects the mutual order of importance of the independent variables.
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Figure 4.5 — pd versus the logit(pd) per ucr class. The y axes have intentionally been left blank for
confidentiality reasons.
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Pearson’s correlation coefficient

The most popular method to calculate the correlation between two metric variables x and y is
Pearson’s product-moment correlation coefficient:

r =
Cov(x,y)

σxσy

where σ is the sample standard deviation. Pearson’s correlation coefficient has a range −1 ≤ r ≤ 1,
where r → ±1 indicates a strong correlation and r → 0 implies no correlation. Its significance can
be determined using the t statistic with n − 2 degrees of freedom. Pearson correlation is greatly
influenced by outliers, unequal variances, non-normality, and non-linearity.

We associate an estimate of the probability of default with each ucr class. These estimates
are the actual default percentages over the year 2004, and are shown in figure 4.5a. Both the
dependent and the independent variables are now metric, except for the answers to the subjective
questions, which are still ordinal. A logit transformation of the probability of default might provide
us with better results. This is motivated by the near-linear relationship between the rating class
rank and the logit, as can be seen in figure 4.5b. Another conclusion that can be drawn from this
observation is that the logit of the pd is merely a linear transformation of the rank of the ucr
class. There is therefore no need to include correlations with the ucr rank as well. We will only
calculate the correlation coefficient to both the original value and its logit.

The dependent variables are evidently not normally distributed, since there are only fourteen
possible values for yi. The outliers have been replaced with values set by experts, as described
in section 4.3.1. Setting all these outliers to the same values however introduces a new distor-
tion in the distribution. The Jarque-Bera test for normality indicates that only six out of 69
independent variables are normally distributed on a 0.1% significance level. Despite all of these
disadvantages and violations, Pearson’s correlation coefficient does give a good indication of the
univariate predictive power of the variables.

Spearman’s rank order correlation coefficient

Treating the dependent variables as continuous violates many assumptions. On the other hand,
ucrs can be seen as ordinal data. Spearman’s rank order correlation coefficient is widely used for
ordinal data. It does not assume a linear relationship or any specific distribution, and is robust
with respect to outliers. Therefore the original data set can be used without outlier replacements.

The two variables that we are researching, x and y, are ranked, where each xi is replaced by
its rank R(xi) and yi by R(yi). Ties are treated by averaging the tied ranks. Spearman’s ρ is now
calculated exactly as Pearson’s correlation coefficient, and will thus inherit its range −1 ≤ ρ ≤ 1.
The t test for significance can be used as well.

Analysis of variance

One-way analysis of variance (anova) tests whether the means of the groups formed by values of
the dependent variable are different enough not to have occurred by chance. The standard anova
assumes that the independent variable is normally distributed in each category of the dependent
variable. Second, the independent variable should have the same variance in each category of
the dependent variable. We have seen that this first assumption is heavily violated. A more
appropriate anova variant for this type of data is the non-parametric Kruskal-Wallis H-test.

First, the elements of variable x are ranked. For each of the i = 1, . . . , c classes, the sum of
the ranks Ri is calculated. Kruskal-Wallis’ H is now given by:

H =
12

n(n + 1)

c∑
i=1

R2
i

ni
− 3(n + 1),

where ni is the number of samples in class i. This statistic approximates a X 2 distribution with
c− 1 degrees of freedom if the null hypothesis of equal populations is true.
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Table 4.6 — Univariate predictive power of the variables

Variable Sign Pearson Pearson Spearman ANOVA Reason for
PD logit(PD) rank X2 exclusion

R01 – -9.9%∗∗ -18.7%∗∗ -21.0%∗∗ 56**

R02 – -23.5%∗∗ -26.1%∗∗ -30.5%∗∗ 122**

R03 0 +1.1% +0.5% +0.5% 8 anova value
R04 – -26.5%∗∗ -32.7%∗∗ -32.8%∗∗ 147** NE with R12

R05 – -14.6%∗∗ -20.1%∗∗ -19.7%∗∗ 69** NE with P05

R06 – -14.2%∗∗ -21.3%∗∗ -23.0%∗∗ 72** NE with P05
R07 + +3.5% +4.1% +3.3% 8 anova value
R08 + +2.0% +3.7% +1.0% 12 anova value
R09 – +4.7% +3.7% +4.4% 8 unexp. sign
R10 + +0.6% +11.1%∗∗ +18.7%∗∗ 63** NE with P10

R11 – -26.8%∗∗ -31.9%∗∗ -27.9%∗∗ 108** NE with P11

R12 – -30.3%∗∗ -44.9%∗∗ -44.0%∗∗ 252**

R13 + +9.0%∗∗ +24.2%∗∗ +26.8%∗∗ 103** NE with P13

R14 – -14.5%∗∗ -21.2%∗∗ -24.2%∗∗ 80** NE with P14

P01 – -7.7%∗ -15.5%∗∗ -16.6%∗∗ 36** NE with R01

P02 – -20.8%∗∗ -27.9%∗∗ -27.1%∗∗ 99** NE with R02
P03 – +0.2% -0.5% -0.3% 10 anova value
P04 – -22.4%∗∗ -30.4%∗∗ -29.5%∗∗ 122** NE with R12

P05 – -16.8%∗∗ -22.4%∗∗ -21.1%∗∗ 68**

P06 – -14.9%∗∗ -18.8%∗∗ -17.6%∗∗ 49** NE with P05
P07 – -4.7% -7.0%∗ -7.3%∗ 15 anova value
P08 – -5.8% -1.5% +1.1% 17 anova value
P09 – +3.8% +8.2%∗ +9.0%∗∗ 16 unexp. sign
P10 – -5.1% -19.0%∗∗ -20.8%∗∗ 81**

P11 – -26.5%∗∗ -33.3%∗∗ -30.3%∗∗ 130**

P12 – -28.9%∗∗ -42.6%∗∗ -40.7%∗∗ 208** NE with R12

P13 – -14.9%∗∗ -28.5%∗∗ -26.4%∗∗ 97**

P14 – -15.4%∗∗ -23.3%∗∗ -24.5%∗∗ 80**

T01 – -9.3%∗∗ -9.0%∗∗ -9.5%∗∗ 25*

T02 – -7.0%∗ -10.7%∗∗ -11.0%∗∗ 20 anova value
T03 0 -0.0% +0.9% +0.0% 4 anova value
T04 – -7.4%∗ -9.0%∗∗ -14.0%∗∗ 29**

T05 – -4.0% -7.5%∗ -10.7%∗∗ 35** NE with T06

T06 – -5.5% -10.1%∗∗ -11.1%∗∗ 30**

T07 + -8.2%∗∗ -2.6% +2.6% 14 unexp. sign
T08 + -2.4% -0.2% -0.2% 11 anova value
T09 – -2.9% +0.5% +1.9% 22* unexp. sign

T10 + -1.6% -0.2% +7.7%∗ 26* unexp. sign

T11 – -14.9%∗∗ -13.7%∗∗ -10.5%∗∗ 36**

T12 – -6.5%∗ -19.9%∗∗ -22.1%∗∗ 71**

T13 + +8.7%∗∗ +9.5%∗∗ +10.9%∗∗ 24*

T14 – -4.3% -5.5% -6.2% 17 anova value

V01 + +10.9%∗∗ +15.3%∗∗ +17.2%∗∗ 41**

V02 + +13.0%∗∗ +23.4%∗∗ +28.2%∗∗ 95** NE with V04
V03 + +3.9% +8.0%∗ +9.5%∗∗ 22 anova value
V04 + +14.1%∗∗ +23.6%∗∗ +27.8%∗∗ 92**

V05 + +6.0% +4.2% +1.4% 18 anova value
V06 + +6.3%∗ +5.2% +3.8% 13 anova value
V07 + +10.2%∗∗ +13.0%∗∗ +18.0%∗∗ 49** NE with V08

V08 + +12.1%∗∗ +15.1%∗∗ +15.4%∗∗ 38**

V09 + +10.7%∗∗ +11.4%∗∗ +10.6%∗∗ 34** NE with V08
V10 + +1.9% +1.5% +1.7% 10 anova value
V11 + +13.1%∗∗ +17.9%∗∗ +21.6%∗∗ 60**

V12 + +10.3%∗∗ +18.8%∗∗ +18.6%∗∗ 52** NE with V04

V13 + +9.5%∗∗ +11.9%∗∗ +12.5%∗∗ 31** NE with V04

V14 + +11.9%∗∗ +17.0%∗∗ +17.5%∗∗ 44**

S01 – -11.1%∗∗ -5.6% -5.0% 20 anova value
S02 – -9.6%∗∗ -5.2% -4.2% 18 anova value

M01 – -9.2%∗∗ -14.3%∗∗ -13.5%∗∗ 46**

M02 – -8.3%∗∗ -17.7%∗∗ -18.3%∗∗ 49**

M03 – -7.8%∗∗ -15.1%∗∗ -16.3%∗∗ 38**

Q01 – - - -29.5%∗∗ 117**

Q02 – - - -6.2%∗ 17 anova value
Q03 – - - -4.0% 12 anova value
Q04 – - - -15.3%∗∗ 35**

Q05 – - - -17.7%∗∗ 59**

Q06 – - - -18.4%∗∗ 56**

Q07 – - - -9.2%∗∗ 16 anova value
Q08 – - - -17.6%∗∗ 47**

*: 5% significance, **: 1% significance, grey variable : selected for reduced data set, NE: nearly equivalent
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Discussion

The results of both the correlation metrics and the anova analysis are given in table 4.6. The
second entry in the table is the expected sign of the correlation, based on section 4.1. Volatilities
should be positively correlated to the probability of default, whereas macro-economic scores, size
variables, and answers to subjective questions should always have a negative coefficient. Raw
values and trends should always share the same sign, but the sign itself depends on the ratio.
Note that due to its U-shape we have an expectation of zero for the trend and raw value of Annual
Turnover Growth.

The third, fourth and fifth column show Pearson’s and Spearman’s correlation coefficients.
The asterisk characters indicate whether the derived coefficients are significant, by testing the
null hypothesis that there is no correlation among the variables. Spearman’s coefficients are
systematically higher than the Pearson’s. This is presumably caused by non-linear relationships
and by the replacement of outliers with maximum and minimum values before calculating Pearson’s
correlation coefficient. The sixth column gives the X 2 value of Kruskal-Wallis anova.

When the correlation coefficients are approximately zero, but the anova value indicates that
the group means are significantly different, the variable might be interesting after all. The Annual
Turnover Growth is expected to meet these assumptions due to its hypothesised U-shape. A
graphical representation of the univariate relation might provide more insight. The mean, median,
and standard deviation are calculated for each of the fourteen ucr classes. The results for Annual
Turnover Growth are shown in figure 4.6. For comparison Interest Coverage Ratio has been
included as well. The solid line connects the mean values per ucr class; the dots represent the
median values; and the dashed lines indicate the 95% confidence intervals. We can conclude from
figure 4.6a that there is no direct relation between Annual Turnover Growth and a counterparty’s
ucr.

One observation from these and other graphs is the large 95% confidence intervals around
the extreme ucr values. This is caused by the relatively small number of observations for these
ucr classes. The estimated error around the mean decreases when the number of observations
increases.
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Figure 4.6 — Univariate relationship: mean, median, and confidence intervals

There are a number of other remarkable observations. Unexpected signs in both correlation
coefficients exist for the raw and percentile values of Creditor Days and for several trends, implying
that our hypothesis regarding these variables does not match our observations. The predictive
value of variables with a ‘wrong’ sign is questionable.
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4.4.3 Collinearity

For many statistical models, variables should have as little correlation as possible. A table con-
taining the correlations among all variables was constructed, where Pearson’s r was used for
correlations among metric variables, and Spearman’s ρ for correlations between ordinal/ordinal
and ordinal/metric combinations.2

Figure 4.7 gives a graphical representation of this table. Both the x and y axis represent the
independent variables in the same order as table 4.5: starting with raw values R01 to R14, then
percentile values P01 to P14, trends T01 to T14, volatilities V01 to V14, size variables S01 and
S02, macro-economic scores M01, M02, and M03, and finally the answers to subjective questions
Q01 to Q08. The (absolute) correlation coefficient between two variables is given by the colour of
its corresponding cell.

First we will discuss the main aspects of this table. One of the first eye-catchers is the ‘red’
diagonal in the R,P square. This indicates that R1 is strongly correlated with P01; R02 with
P02; all the way up to R14 with P14. These correlations were expected: percentile values are
transformations of the original ratio values. The orange two-by-two square in the P,R block and
the red spots in the R,R and P,P blocks have a common cause: R05 (Current Ratio) and R06
(Quick Ratio) are, not surprisingly, highly correlated because of their similar underlying formulae.
We can see that their derivatives coincide as well.

More surprising is the substantial positive correlation between any ratio and its trend: higher
ratio values coincide with steeper trend lines and vice versa. The cause is the relatively small
number of ratios that is used to calculate the trend (three to four). A high or low one-off ratio
value will have an equivalent effect on the trend. Percentiles versus trends evidently yields similar
results. Finally, many of the volatilities are correlated with one another.

Table 4.7 — Collinearity among independent variables
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2Note that the value of Spearman’s and Pearson’s coefficients do not have the same meaning.
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Table 4.8 zooms in on one of the most interesting parts of the collinearity table: the ratio values.
We have used the percentile values for easier comparison: if there would be any correlation between
two variables, their correlation coefficient should be positive.

In section 4.2.1 we divided the ratios into four groups: operations, liquidity, capital structure,
and cash flow and debt service. The groups are divided by the dotted lines. We would expect that
the correlations among variables within a group are high. This holds for most of the variables,
with a few exceptions. These exceptions coincide with our findings in the previous subsection, and
concern Annual Turnover Growth (P01), Debtor Days (P07), Stock Days (P08), and Creditor Days
(P09). Because we are working with percentile values, we would expect all positive correlation
coefficients or perhaps slightly negative ones when they are uncorrelated. The table shows large
negative values for the correlation of P01 with P08, P06 with P07, and nearly all percentiles with
P09. The cause of the large negative correlation coefficients lies in the fact that they are all based
on Cost of Goods Sold or Turnover (cf. appendix A.2). This variable becomes zero in case of
service industries, and apparently has a large influence in the correlations.

On overall we can conclude that the collinearity among the variables is substantial. We assume
that the removal of several variables from the data set will have a positive influence on the
performance of statistical and artificial intelligence techniques. The variable selection/removal
procedure is described in the next section.

Table 4.8 — Collinearity among the percentiles

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14
P01 44% -5% 21% 9% 10% -12% -40% 30% 2% 10% 13% 10% 10%
P02 12% 62% 19% 17% 1% -15% 3% 7% 24% 51% 18% 11%
P03 19% -4% -7% 15% 16% -15% -2% 2% 13% 5% 6%
P04 14% 14% 9% 12% -7% 14% 8% 67% 42% 24%
P05 85% -7% -11% -15% 25% 51% 31% 22% 4%
P06 -20% 12% -8% 16% 40% 27% 21% 3%
P07 15% -32% 12% 7% 10% 8% 7%
P08 -29% 4% -6% 11% 11% 8%
P09 -16% -21% -14% -11% -2%
P10 40% 24% 43% 21%
P11 31% 31% 11%
P12 42% 31%
P13 23%
P14

0% 20% 40% 60% 80% 100%

4.5 Conclusion and variable selection

We have seen that many variables indeed have predictive value to determine the ucr of a coun-
terparty; we have reached correlations up to 45%. In the next chapters, we will compare several
techniques to the existing mra system. This system uses the complete data set, where all vari-
ables have been converted into scores. This data set will therefore be used for comparison. Many
statistical and artificial intelligence techniques however are negatively influenced by collinearity
and variables that have no predictive power. A reduced data set might improve the results of
these techniques.

Another question is whether the information incorporated in the scores is actually useful. All
research peers have achieved reasonable to good results based on (standardised) raw values, thus
without expert knowledge. Two extra data sets are therefore added to our research: the complete
raw data set, and a reduced one.
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The procedure to reduce both the raw values data set and the scores data set is as follows. A
first set of variables is created based on the following criteria:

• the variable is significantly3 correlated according to either Pearson or Spearman
• the sign of the correlation coefficient matches the expected sign
• the variable has significantly3 different group means according to the anova value

When only the last criterion applies, the variable is plotted against the ucr to determine a possible
non-monotone relationship (cf. figure 4.6).

A final requirement is (relative) independence with respect to the other variables. When two
variables are highly correlated, the one that has the least predictive power according to the Kruskal-
Wallis anova value will be deleted. We have experimented with different settings for ‘highly
correlated’: the results were compared to the optimised input sets of several statistical techniques
(cf. section 8.2). We have concluded that 50% leads to data sets that are comparable to many
optimised sets. Highly correlated macro-economic scores and answers to subjective questions will
not be removed from the data set, as experiments showed a negative impact on the performance.

Table 4.9 — Final data sets

Description Size Variables
Full data set 69 All inputs
Full scores set 62 All inputs

Reduced data set 27
R01, R02, R12, P05, P10, P11, P13, P14, T01, T04,
T06, T11, T12, T13, V01, V04, V08, V11, V14, M01,
M02, M03, S01, S04, S05, S06, S08

Reduced scores set 28
R05, R10, R12, R13, P01, P11, P14, T01, T04, T06,
T10, T11, T12, T13, V01, V02, V03, V07, V11, V14,
M01, M02, M03, S01, S04, S05, S06, S08

In the end there are four different data sets on which the tests will be performed: two complete
sets and two reduced sets. Table 4.6 in the correlations subsection has highlighted the selected
variables in grey, and included the reason for removal from the data set. Table 4.9 gives a summary
and enables comparison with the reduced scores data set.

We can see that the reduced data set and the reduced scores set largely consist of the same
variables and are almost equal in size. This might indicate that the impact of adding expert
knowledge is rather small. We will come back to this issue in chapter 8, when we discuss the
results of applying different techniques on the two data sets.

3Significance level of 5%



Chapter 5

New rating framework

The system that is currently in place at abn amro is an expert system called Moody’s Risk
Advisor (mra). The first section discusses this system at a high level. We will see that the
implementation is lacking in many respects. Two conclusions can be drawn from this section.
There is a demand for a new rating system based on the current model. Many of the drawbacks
that are listed can hence be solved. More importantly, we should examine how the current model
performs in comparison to proven mathematical techniques. Both suggestions will be addressed
in the next chapters.

The second section of this chapter describes our new design of a generic rating framework
for corporate counterparties. This framework will serve as a starting point for the development
of multiple kinds of rating models. The third section will give a flavour of the implementation
details. The interested reader should refer to Dikkers (2005b) for further details. In the evaluation
section we will see that our newly developed framework solves many of the disadvantages that
were present in mra.

As aforementioned, the presented framework is merely the starting point for the implementation
of different rating models. An improved version of mra that is implemented in this framework
is presented in chapter 6. Possible extensions with statistical models are addressed in chapter 7
and 8.

5.1 Current system analysis

With the combination of mfa and mra, Moody’s kmv has provided a robust system for credit-
worthiness assessment. mra runs centrally on a Citrix server. The input data combined with a
derived ucr is stored on this server for future analysis. We do not intend to describe the mra
system itself. The interested reader can consult documentation of Moody’s kmv (2002, 2004) or
(Kumra et al. 2000). A description of the model will be given in chapter 6, where we present our
own implementation of the mra model. Our analysis aims at finding the drawbacks of the mra
system, which are related to the following aspects:

• Transparency
• Data storage
• Response speed
• Flexibility
• Prediction accuracy

5.1.1 Transparency

At the start of our project, there was no detailed documentation concerning the characteristics of
mra. The lack of documentation resulted in the fact that not only users regarded mra as a grey
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box, but abn amro’s model owners as well. The latter party is responsible for the tuning of the
model parameters and the calibration of the model, but was unable to perform this task properly
without the full knowledge of the model. A first attempt had been made within abn amro to
replicate the mra system in ms Excel in 2002, but this system did not predict the same ucrs as
the original system. The transparency problem thus remains relevant.

5.1.2 Data storage

When the rating of a counterparty is saved, all data that is used to derive this ucr needs to
be stored; both for internal and Basel-II purposes. The mra database, however, proved to be
incomplete. For instance several financial ratios were not saved at all, and the financial statements
lacked unique identifiers. We have performed an extensive research to ensure the storage of all
values. The resulting recommendations can be found in our internal report (Dikkers and Quere
2004). These recommendations have been implemented in July and August 2004. This research
has resulted in the bank being Basel-II compliant with respect to the input data for the wholesale
portfolio.

We have been able to recalculate most of the missing data, but as we have seen in section 4.3.2
some inputs remain missing. Several hundreds of observations before August 2004 have therefore
become unusable for further research, but data quality is guaranteed as from August 2004.

5.1.3 Response speed

It takes a few seconds to open and rate a counterparty in mra. This is an acceptable amount of time
for account managers, but is problematic when it comes to rating multiple counterparties. Research
on the impact of model changes requires a batch run on a complete portfolio of typically 10,000
counterparties. Not only abn amro’s model owners require this feature. Many departments are
interested in stress testing, i.e., running the mra system for different future scenarios. Applications
can be found in the industrial sector or for country research, or in stressing the robustness of the
calculated economic capital.

The main cause of the slow processing is evident: mra was originally designed as a production
system on a per-counterparty basis (Duda et al. 1987). The functionality to save data for one
counterparty into a database was later added by Moody’s kmv. Batch processing is performed
by automatically opening, saving, and closing each counterparty record in mra. A test run on
approximately 10,000 counterparties took over twelve hours.

5.1.4 Flexibility

mra is proprietary software of Moody’s kmv. This gives several advantages, such as maintenance
and support, but has some drawbacks as well. The software is very expensive to start with. The
main problem however lies in the inability of abn amro to experiment with model changes, such
as adding or removing a ratio. Model changes have to be tested by Moody’s kmv at high costs
and with long response times, where the impact of the proposed changes is still questionable.

5.1.5 Prediction accuracy

The prediction accuracy of mra on the cleaned data from January 2004 until December 2004 is
43%. Without benchmarks we cannot conclude whether this achievement is good or bad. For
this means we will implement statistical and artificial intelligence techniques. The results of this
comparison can be found in chapter 8.

5.1.6 Conclusion

The disadvantages of the current implementation are substantial. We have solved the data storage
problems, but the other aspects cannot be solved without taking matters into our own hands.
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Moreover, due to these problems, a demand for a new rating system has emerged within abn amro
in the past few years.

For this means we will develop a new generic rating framework in chapter 5. Within this
framework, we will be able to incorporate both a new version of mra1 and several statistical
techniques. The former addition is presented in chapter 6, whereas the statistical techniques are
addressed in chapter 7 and 8.

5.2 New framework design

5.2.1 Audience

We have identified three different types of applications for the new credit rating program:

• Parameter tuning, performed by the Credit Ratings and Portfolio Management department
• Stress testing, performed by the Industrial Sector Research and Country Risk Management

departments
• Counterparty rating for all account managers, i.e., replacement of mfa/mra as production

system

The first and second application pose similar requirements to the system. The rating system
needs to determine the ucrs of all counterparties in a portfolio based on new parameters, new
macro-economic scores, or forecasts of financial values. The portfolio used for parameter tuning
typically contains about 10,000 counterparties, implying the need for a very efficient program.
Both the input data, parameter data, and macro-economic data is provided through databases.
The output will be a database as well, containing the derived ucr per counterparty. Analysts
can assess the impact of the aforementioned renewed values, for instance by creating migration
matrices that compare the counterparties’ present ucrs with the ucr in the new situation, or by
computing statistics like concordance measures with shadow ratings (cf. section 8.1).

The third application is merely a possible future application of the system. The replacement
of mfa/mra has not been taken into account in the design phase; the focus has been on the
requirements posed by the first two applications. We will, however, discuss some implications of
the production system as well.

5.2.2 Requirements

The system should be able to accept data in two ways. The first way is to feed the data of many
counterparties, which can most easily be done by using databases. The second way is to enter
financial statements, answer subjective questions, and provide other relevant data directly. The
users are content with the user interface of the present spreading tool mfa. There is therefore no
need to implement a new user interface for the spreading part at this point in time. Moreover,
when mfa/mra is replaced, the new system will be integrated into the Generic Rating abn amro
Counterparty Engine, or grace. This engine has standard user interfaces for data entry.

The requirements therefore focus on the characteristics of the core engine:

• All input values are stored
• All intermediate output values are stored
• The response time when running the program does not exceed two minutes on a standard

abn amro workstation for a typical portfolio of 10,000 counterparties
• The system is properly documented
• The model owner is able to change model parameters very easily
• The model owner is able to change the model structure reasonably easily
• The model owner is able to add other than existing rating techniques reasonably easily

1With permission of Moody’s kmv under certain conditions that have been posed to abn amro.
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5.2.3 Model

There are two different sources of information. First, the data can originate from the spreading
tool mfa. A user can enter the financial statements of one or more counterparties in mfa. All
fields are stored in the underlying mfa database. Financial ratios have not yet been derived. We
will utilise the user interface of mfa, and only implement a procedure to retrieve the data from the
underlying database and calculate the financial ratios. The other source is a historical database
named Internal Ratings Database (ird) that contains counterparties that have been rated in the
past. This database contains all model inputs, and we therefore only have to implement a smart
copy and paste procedure to retrieve the correct data.
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Figure 5.1 — Model

We want to be able to read from any of the two sources. Since the structures of both source
databases change regularly, we will first convert the values of these databases into a common
format in the preprocessing step. For this means we have developed a database that contains
all and only the relevant inputs: the input database. Data quality in the input database will be
guaranteed by this preprocessing step.

Most rating techniques have associated model parameters that might change over time. Since
the parameters are completely independent from the data, we have implemented a different
database called the parameter database. The structure of this database depends on the rating
technique that is used. mra, for instance, uses hundreds of parameters that are complexly divided
over several tables, whereas linear regression only requires the beta coefficients to be known.

The last type of input is the macro-economic scores. Strictly spoken these are neither coun-
terparty-dependent data nor model parameters. A third database is therefore used to store the
country and industry scores: the knowledge database. The quartile values of the different ratios
for the different industries are stored in this database as well.

The three databases all serve as inputs for the centre of our rating system: the rating tool.
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The rating tool implements one or more rating models. In the next chapter, we will present our
improved implementation of the mra model. Statistical techniques can be added as well, as can
be read in chapter 7. The rating tool can thus be seen as the core and most important aspect of
our rating system.

When the calculations of the rating tool have been performed, the ucr will be stored into the
output database. This database is used to store all intermediate values that are considered useful
as well. This concludes data flow through the rating system.

5.3 Implementation

5.3.1 Choice of language

We have chosen to separate the preprocessing step from the core rating tool for several reasons.
The preprocessing step can appear in many different shapes. We will implement procedures for
both the mfa and the ird database, but others might be included as well. A stress testing
application might for instance use the core of the rating tool, but needs to populate the input
database directly instead of through the mfa or ird database. Secondly, the structure of both
the mfa and the ird database changes regularly, and so does the procedure to populate the input
database.

The rating tool itself, however, rarely changes. Only when the underlying model is changed, this
core needs updating. It does, however, need to be very fast. For tuning purposes for instance, the
model owner changes a few parameters, runs the rating tool on a large portfolio of counterparties,
and reviews the results. This implies the need for a fast and robust programming language.

It should be possible to have multiple rating methods that are based on the same data in
our rating tool. For this means it is common practice to separate the data from the functions.
This separation of data and rating methodology is best implemented using the object-oriented
programming paradigm. Object-oriented programming has several advantages. First, the code
is easier to maintain due to abstraction. Only the essential features of data are accessible from
other classes, without the inclusion of background details. If the underlying data representation
changes, we do not need to alter functions that are based on this data. Another advantage is code
reusability. We can easily add additional features to an existing class without modifying it.

We have chosen to use c++ for the rating tool itself. c++ is a fast, robust, and well developed
programming language that utilises the object-oriented paradigm. Moreover, c++ was a language
that was already used by some of abn amro’s model owners. The use of c++ would simplify the
transfer of knowledge, creating a more sustainable situation after completion of the project. The
rating tool has been developed using ms Visual Studio c++ 6.0.

As mentioned above, the preprocessing part needs regular updating. On the other hand, the
speed is not of the same pivotal importance as for the core rating program. We have therefore
chosen to use Visual Basic for Applications (vba) to implement the preprocessing procedures.
Nearly all of abn amro’s model owners are familiar with this language. A larger flexibility is thus
ensured. All databases have been implemented in ms Access, and the preprocessing program has
been built in vba within these databases.

5.3.2 Generic rating tool

In this section we will give a taste of the implementation of the new rating system. The designs
of the different databases, the vba procedures to populate these databases, and the user interface
have been left out of the report. These details can be found in Dikkers (2005b).

It should be said that the user interface that has been presented is meant to be a starting point
for stress testing and tuning applications. The way to stress and tune has been left out of scope
of this project. At the time of writing, both a tuning application and a prototype stress testing
application have been developed by abn amro colleagues based on our rating tool.
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We will now move to the implementation details. We do not attempt to give an exhaustive
description of the model, but merely point out the most interesting parts of our generic rating
tool.

80...5 1...51...51...5
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CountryOfResidence CountryOfSales Industry

Business
id : string
percentage : double

GetID() : string
GetPercentage() : double

Statement
dateFromNow : double

GetRatio(int ratioID) : Ratio&
GetDate() : double

Ratio
ratioID : int
value : double
numerator : double
denominator : double

GetRatioID() : int
GetValue() : double
GetNumerator() : double
GetDenominator() : double

Subjective
subjectiveID : int
value : int

GetSubjectiveID() : int
GetValue() : int

Customer
customerID : long
scoreID : long
customerName : string

Customer(long customerID, long scoreID, string customerName)
GetCustomerID() : long
GetScoreID() : long
GetCustomerName() : string
GetRatios(int ratioID) : vector<RatioData>&
GetSubjective(int subjectiveID) : Subjective&
GetCountriesOfResidence() : vector<Business*>&
GetCountriesOfSales() : vector<Business*>&
GetIndustries() : vector<Business*>&
Set...(...) : void

Figure 5.2 — uml diagram of class Customer

The class Customer2 characterises a counterparty at a specific point in time. Figure 5.2 shows
the corresponding uml diagram. Each Customer is described by up to five objects of the class
Statement, where each Statement consists of fourteen Ratios.3 Another important aspect of a
Statement is its date, which is used in trend and volatility calculations.

Besides the financial statements, eight subjective questions (Subjectives) are answered. Finally,
a counterparty is located in up to five CountryOfResidence, CountryOfSales, and Industry objects,
which are all derived from the class Business. The percentages for each type of Business will sum
up to 1, e.g., a counterparty is located in the Netherlands for 60% and in Belgium for 40%.

The characteristics of a Customer can be accessed by means of get functions. GetSubjective
takes the id of the subjective question as argument and returns the answer that an account
manager has given to this question. GetCountriesOfResidence returns an unmodifiable vector with
up to five pointers to the CountryOfResidence the counterparty is located in; GetCountriesSales and

2The class names are given in the sans serif font.
3All numbers that are given in this section indicate the current configuration. Due to the object-oriented nature

changing these numbers only requires one or two small amendments in the source code.
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GetCountriesIndustries are similar.
More complicated is the GetRatios function. This function provides the caller with all the

information necessary to calculate the trend or volatility over the past few years. GetRatios takes
the id of the financial ratio as an argument, and returns an unmodifiable vector of RatioData
elements. The structure RatioData consists of a Ratio and its date. This provides us with all the
necessary data to perform trend or volatility calculations.

A helicopter overview of the complete rating tool is depicted in figure 5.3. The separation
between counterparty data, model parameters, and macro-economic scores, which are provided
by three different databases, is present in our class diagram as well. The model parameters are
presented in an object of class Parameters, and the country and industry scores in an instance of
KnowledgeBase.

Now we would like to determine the ucr of a counterparty. For each Customer, a CustomerScore
object is created. The ucr of the corresponding counterparty is derived upon creation of the
CustomerScore object. These CustomerScores are collectively held in the wrapper class Scores.

5.4 Evaluation

We have proposed and implemented a framework that meets all the requirements that we have
posed in section 5.2.2. The input and output databases store all values of interest. The procedure
to read from a database can be easily adjusted by any person with vba knowledge.

The rating models themselves will be implemented in the c++ core of the rating system: the
rating tool. Amendments of these models or adding new models requires c++ knowledge and
is less straightforward. The object-oriented nature of the program, however, does enable rapid
prototyping of new rating models.

We have presented the complete credit rating framework in this chapter, including a generic
rating tool. The design and implementation of rating techniques in the generic rating tool will
be addressed in the next two chapters. We will postpone the assessment of the response speed
requirement to section 6.3, since we assume that the calculations required for the model will be
the bottleneck.
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CustomerPortfolio

CustomerPortfolio()
GetSize() : int
GetCustomer(int id) : Customer&
AddCustomer(Customer*) : void
SetCustomer...(int id, ...) : void

*

* *

*

*

*

1

1

1

Knowledgebase
countryOfSalesScores : map<string, Score>
countryOfResidenceScores : map<string, Score>
industryScores : map<string, Score>
quartileScores : vector<map<string, Quartile> >
ucrMapping : vector<pair<string, double> >

Knowledgebase()
GetCountryOfResidenceScores(vector<Business*>&) : Score
GetCountryOfSalesScores(vector<Business*>&) : Score
GetIndustryScores(vector<Business*>&) : Score
GetQuartileScores(vector<Business*>&) : Quartile
GetUCR(Score&) : string
Set...Scores(...) : void

Parameters

Parameters()

Main

main()

Customer

Customer()
GetCustomerID()
GetScoreID()
GetCustomerName()
GetRatios()
GetSubjective()
GetCountriesOfResidence()
GetCountriesOfSales()
GetIndustries()
Set...()

(from Customers)
CustomerScore

ucr : string

CustomerScore(Customer&, Knowledgebase&, Parameters&)
CalcTrend(vector<ratioData*>&) : pair<double, double>
CalcVolatility(vector<ratioData*>&) : double
CalcPercentile(vector<ratioData*>&) : double
CalcRawValue(vector<ratioData*>&) : double
GetUCR() : string

Scores

Scores(Knowledgebase&, Parameters&)
AddCustomerScore(Customer&) : void
AddMultipleCustomerScores(CustomerPortfolio&) : void

Figure 5.3 — uml diagram of generic rating tool structure



Chapter 6

Incorporating the MRA model

The mathematical foundations of the mra system were not known up to this date. This implies
that there is only little knowledge on its underlying assumptions and the violations of these assump-
tions. The first section discloses the exact mathematics behind the model and the assumptions it
is based on.

For a complete understanding, we have redesigned the mra model and incorporated it into the
rating framework from the previous chapter. As has been described in section 5.1, transparency
is not the only aspect of interest. The described model solves the other disadvantages of mra as
well, which are response speed and flexibility. We have named this specific implementation of the
rating framework ‘Quantitative Consultancy’s mra’, or qc-mra.

The evaluation of the model and its implementation are given in the third section. Several
recommendations are given to improve the transparency of the model and better meet the as-
sumptions from the first section.

6.1 Theory

The exact characteristics of mra have so far been unknown to abn amro model owners. The
major problem lies in undocumented deviations from the standard model, both in the mra im-
plementation and in abn amro tailored version. We initiated extensive research to resolve this
problem. We have interviewed mra experts at Moody’s kmv headquarters in London (Stark 2004)
and have had e-mail conversations with Syntel authors Risch and Duda (Duda 2004). Our main
source, however, is our own implementation of mra, which is described in the next section. We
have gradually come to a very close replica of mra with respect to the outcome by developing
a model, comparing the results, changing the model, comparing again, and so on. Many of the
presented results were later incorporated in a first and second version of the mra documentation
that is provided by Moody’s kmv (2004).

6.1.1 Tree structure

mra is based on the Syntel language, which is a language for designing decision networks based
on user input. This language was developed in the 1980s by Duda et al. (Duda et al. 1987; Risch
et al. 1988). We will only focus on the language aspects that have been used in the generic mra
version and leave the remainder out of the scope of this report.

Any system built in Syntel can be viewed as a directed acyclic graph, or tree, with nodes as
atomic elements. The leaves of the tree are formed by the independent variables, i.e., the model
inputs. The model inputs can be either numerical, such as raw ratio values, or categorical, such
as answers to subjective questions.

The dependent variables (non-leaf nodes) are called assessments, and indicate the quality of
the node. The parent node of a raw ratio value for instance indicates the quality of this raw
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ratio, whereas higher up the tree we can find assessments of business concepts like Operations
or Liquidity . The root node of the tree is the final output, and indicates the quality of the
counterparty. In case of the abn amro system, this root assessment will be translated into a ucr.
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Figure 6.1 — Basic structure of a Syntel system

Any dependent node Y is a function of its underlying variables: Y = f(X1, X2, . . . , Xn). A
graphical representation is given in figure 6.1. Most expert systems use if-then production rules
to infer the value of a dependent node from its children. The function f(·) is then composed
of possibly many of these production rules. These rules are however poorly suited to express
relations between continuous independents and a continuous parent variable. A more natural way
to express the relation between the children and the parent is to add votes (Duda 2004). In the
mra case, the parent has a default value v0 = 50, and each independent child can positively or
negatively change this value based on its own value. This is the weighted voting function. The
weighted voting function f(·) first maps the children into a common continuum called vote space
and then sums them:

Y = f(X1, X2, . . . , Xn) = v0 + v1(X1) + v2(X2) + . . . + vn(Xn) (6.1)

For each dependent node, the voting functions vi(·) are specified by the knowledge engineer. As
we will see in the next subsection, the summation assumes independence among the individual Xi.
In the special case that all voting functions vi(·) are linear, f(·) behaves like a linear regression
function. This is, however, not required.

6.1.2 Inexact reasoning

In mra each node has an associated probability distribution. The goal of these probability dis-
tributions is two-fold: to handle missing data, and to incorporate imperfect knowledge. The
introduction of probability theory considerably complicates the evaluation of function f(·). The
value of each dependent variable now is a probability distribution that depends on the distribu-
tions of its arguments Xi. Because we have assumed that the Xi are statistically independent,
the joint probability distribution is merely the product of the distributions of the arguments:

P (y) =
∫∫

· · ·
∫

v0(P0(x0))v1(P1(x1)) · · · vn(Pn(xn))δ((x0 + x1 + . . . + xn)− y)dx0dx1 · · · dxn,

(6.2)
where Pi(xi) and P (y) are the probability density functions of variates Xi and Y respectively,
and δ(·) is a delta function. Note that compared to equation 6.1, the default value v0 has become
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a variate instead of a constant. mra assumes that the default value for each node is normally
distributed with mean 50 and standard deviation 3: v0(P0(x0)) ∼ N (50, 32).

At the time this model was developed, it was too costly to perform this type of calculations
throughout the tree. Therefore two additional assumptions were made:

• each variate Xi, defined by Pi(xi), is normally distributed;
• the variate mapped onto vote space vi(Xi) is normally distributed as well.

This latter assumption only holds if the first assumption is met and vi(·) is a linear function. If
vi(·) is non-linear, e.g., logarithmic, vi(Xi) is no longer normally distributed. When the normality
assumptions are met, each mapped variate vi(Xi) can be represented by vi(Xi) ∼ N (µi, σ

2
i ), where

µi =
∫

vi(Pi(xi))dxi

σ2
i =

∫
Pi(xi)(vi(xi)− µi)2dxi

Now we can utilise the fact that the sum of n normally distributed variates v1(X1)+ v2(X2)+
. . .+vn(Xn) with means and variances (µ1, σ

2
1), (µ2, σ

2
2), . . . , (µn, σ2

n) respectively is another normal
distribution. Equation 6.2 then simplifies to Y ∼ N (µY , σ2

Y ), where

µY =µ1 + µ2 + . . . + µn (6.3)

σ2
Y =σ2

1 + σ2
2 + . . . + σ2

n (6.4)

6.1.3 Soft saturation

The newly calculated variate Y is on a scale 〈−∞,∞〉. mra then reduces the range of Y to
〈0, 100〉. Users that do not have knowledge of probability theory can now just focus on the mean
value of the assessment, which always lies between 0 and 100. A second advantage is that none of
the assessments can become an outlier. The following S-shaped transformation function is applied
to variate Y :

S(x) = 100 · 1

1 + exp(−(x−50)
25 )

(6.5)

This function is referred to as the soft saturation function. It takes the same form as the logistic
distribution function, which implies that the derived variate Y ′ = S(Y ) is now assumed to come
from the logistic distribution. When Y ′ is used as input for a higher level assessment, however, it
is treated as any other input and is thus assumed to be normally distributed again.

6.1.4 Discrete character

Either the complete probability distribution or the distribution parameters µY ′ and σ2
Y ′ can be

used as inputs higher up the tree. mra authors have chosen for the former, but have discretised
the distribution as follows.

Recall that each node is described by a variate Y ′ that has a probability distribution on the
scale [0, 100]. Instead of saving the complete probability distribution, the range is divided into
seven equally sized intervals of which the area is stored. We can calculate the area a under the
probability function of variate Y ′ for each bucket j with interval [bj−1, bj〉:

aj =
∫ bj

bj−1

S(P (y))dy, j = 1, . . . , 7, bi =
100i

7
,

where S(·) is the soft saturation function and P (y) is the probability distribution function of
variate Y . Each node can now be seen as a probability distribution histogram. Evidently, all the
aj sum up to one.
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One advantage of this approach is that the mappings onto vote space vi(·) can be amended
accordingly. Instead of defining a smooth continuous function, we can define a step function that
takes one value on the complete interval [bj−1, bj〉. We thus only have to assign a function value
for each of the seven buckets.

An example illustrates this point, where we have omitted variable index i to improve readability.
Suppose we want to find the discretised version of the simple linear function v(X) = 0.5X − 25.
In the discrete form, this function will become a vector multiplication

v′(a) = wT a,

where both w and a are 7 by 1 vectors. Each of the seven weights1 wj can be derived by taking the
average value of the original function v(X) on the interval [bj−1, bj〉. In case of a linear function
this simplifies to the value of the midpoint of this interval: wj = v( 1

2 (bj−1 + bj)). In our example,
w1 ' v(7.14) = −21.43, w2 ' v(21.43) = −14.28, w3 ' v(35.71) = −7.14, etc. Note that the
distance between the wj are all equal, which holds for all linear functions. The reverse holds as
well: if the weights are ordinal and equally distanced, the function v′(·) can be regarded as a
discrete variant of a linear function.

Knowledge engineers will thus have to provide seven values on each level of the tree. There
are however no restrictions on how to choose these values. This implies there are seven degrees of
freedom for each voting function, i.e., for each node of the tree.

6.1.5 Missing data

With respect to missing data, the Syntel language deviates from the procedure as has been de-
scribed in subsection 4.3.2. There are two possible ways to handle undefined or missing Xi. The
first way is to ignore the undefined node. Y is now formed by the distributions of remaining Xi.
When all inputs of the parent node (besides the default value that is always available) are missing,
the parent node will be undefined as well.

The use of prior probabilities is another way to handle missing values. A weighted vot-
ing function vi(·) typically has a minimum and a maximum value it can take, i.e., its range is
[minvi(·),maxvi(·)]. When the distribution of Xi is unknown, its value in vote space can take
any value in this range. The distribution of vi(Xi) is therefore defined as uniformly distributed:
vi(Xi) ∼ U(minvi(·),maxvi(·)). To include this distribution in its parent assessment, we will have
to assume normality again. The mean and variance of the uniform distribution are to be the
parameters of the normal distribution:

µi =
1
2
(minvi(·) + maxvi(·)) (6.6)

σ2
i =

1
12

(maxvi(·) −minvi(·))
2 (6.7)

Suppose for instance that the value Competitive Leadership has not been provided to the sys-
tem. Competitive Leadership has four associated answers: weak, moderate, strong, and dominant.
A typical voting function for this subjective question is:

v(x) =


−15 if x = weak
−2 if x = moderate
6 if x = strong
20 if x = dominant

The variate X mapped onto vote space is now uniformly distributed over the range that v(X)
can take: v(X) ∼ U(−15, 20). The assessment for Competitive Leadership can now loosely be
indicated with Y ∼ N (50, 32) + U(−15, 20). The uniform distribution is strangely assumed to be

1Often the weights are referred to as votes. To avoid confusion we use the term weights.
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normally distributed, and hence equations 6.3 and 6.4 can be applied again in combination with
equations 6.6 and 6.7:

µY = 50 +
1
2
(−15 + 20)

σ2
Y = 32 +

1
12

(20−−15)2

Evidently the soft saturation function has to be applied to complete the Competitive Leadership
assessment.

6.1.6 Evaluation

Until now, abn amro model owners have seen mra as a ‘grey’ box. Even Moody’s kmv could not
give a full explanation on the working of mra or its assumptions. In this section, we have revealed
the assumptions on which the mra system relies. In short, these are:

• Experts can correctly formulate the relation between each parent node and its children

• The children of each parent node are statistically independent

• All variables, both inputs and intermediates, are normally distributed

• The result of any transformation on a normally distributed variable is normally distributed

The latter assumption is by definition violated due to the soft saturation function. Moreover,
one idea behind the weighted voting functions is to enable experts to express non-linear relations.
Recall that we are working with ratios that might have infinitely large values, where linear functions
will lead to infinitely large (or small) votes. Non-linear mapping functions can reduce the range to
a restricted interval. The result of a non-linear function applied to a normally distributed variate,
however, no longer follows the normal distribution, and thus violates the latter assumption.

We can conclude that the model involves many shifts between probability distributions that
have no theoretical foundation. One of the authors of Syntel, Duda, admits in an e-mail con-
versation with us that Syntel (and thus mra) borrows concepts from probabilistic reasoning, but
that it is not derived from a consistent, rigorous mathematical model (Duda 2004). It further
relies heavily on normality assumptions. The last aspect worth mentioning is the lack of function
restriction in the voting functions, introducing seven degrees of freedom in each node. This implies
the need for huge amounts of data if we would like to automatically learn the weights from the
data.

6.2 Model

In this section we will discuss the implementation of the mra techniques in our new rating tool.
We will refer to this application as qc-mra: Quantitative Consultancy’s variant of mra. The focus
will be on the default behaviour of the system. There are many exceptions to this procedure; these
are listed in (Dikkers 2005a). The object-oriented nature of our generic rating tool from chapter 5
has been used to implement the described model. Several classes have been reimplemented to
serve the needs of the mra model. The source code documentation (Dikkers 2005b) contains a
more detailed description of all classes and functions. This documentation is composed of easily
browseable web pages that have been created using the Doxygen toolkit2. A class diagram of the
main classes of qc-mra can be found in figure C.1 in the appendix.

2http://www.doxygen.org

http://www.doxygen.org
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Inputs

We will follow a bottom-up approach to explain the model. Each lowest-level node, or leaf, is
represented by a raw model input. Remember that all variables in the Syntel tree are probability
distributions. Therefore, the raw input is represented by a normally distributed variate with the
raw value as its mean, and a standard deviation of zero.

Each raw model input has an associated assessment, which evidently lies one level higher up
the tree. Equations 6.3 and 6.4 from section 6.1 are applied: let Y ∼ N (µY , σ2

Y ), and simplify to

µY = 50 + v(X)

σ2
Y = 32

Note that both X and v(X) have become scalars, because the variance of X equals zero. The
value v(X) has already been introduced in section 4.3.3, where we have named it a score. To
complete the calculation of the assessment, we apply the soft saturation function.

Overall ratio assessment

The assessment of a ratio depends on four aspects: the raw ratio value, percentile value, trend,
and volatility. The subtree of a overall ratio assessment is shown in figure 6.2. All input values,
which are represented by parallelograms, are first translated into their corresponding assessments.
Next, the trend and the volatility assessments are combined using the weighted voting function.
This intermediate assessment is then aggregated with the percentile assessment. Finally, the raw
value assessment is included to lead to the overall ratio assessment.

Volatility assessment Trend assessment

Percentile assessment 

Raw value assessment 

(intermediate)

(intermediate)

Overall ratio assessment

Trend Volatility

Percentile 

Raw value

 

Figure 6.2 — Overall ratio assessment subtree

Missing values in this part of the tree are ignored. If for instance no trend and no volatility
values are available, their assessments will be undefined. This implies that the parent node of
trend and volatility is undefined as well. The parent node of the percentile assessment and this
node will thus be based on only the percentile assessment.

Higher levels

If we look at the complete tree in figure 6.3, we can find the financial ratios as the items without a
surrounding box on the left-hand side. Several ratio assessments are combined into an intermediate
node. Each of these ratio assessments represents a subtree as in figure 6.2.
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 Trading area 
 Competitive leadership 

 Supplier risk 
 Market conditions 

Operations 

(intermediate) 

Country of residence score

Industry score 

Country of sales score

Business analysis Financial assessment 

Corporate score

(intermediate) (intermediate) 

 Return on capital employed 
 Annual turnover growth 
 Operating profit margin 
 Gross profit margin 

Liquidity 

(intermediate) (intermediate) 

 Stock days 
 Debtor days 
 Quick ratio 
 Current ratio 

 Accounting risk 
 Stock liquidity 
 Customer concentration 

 Creditor days 

Cash flow and debt service 

Capital structure 

 NOFF to financing charges 
 Total debt over EBITDA 
 Interest coverage ratio 

(intermediate) (intermediate) 

 Access to capital  Gearing ratio 
 Equity ratio 

Figure 6.3 — The complete tree
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The variables without the surrounding box on the right-hand side represent the answers to
subjective questions. Similar to the other model inputs, the answers have been translated into
assessments. These assessments are combined into intermediate assessments as well. Two inter-
mediate assessments are aggregated to form the Operations, Liquidity , Capital Structure, or Cash
Flow and Debt Service assessment. These four assessments are called the financial pillars.

Missing values in this and the remaining parts of the tree will not be set to undefined, but
have associated prior probabilities as described in the previous section.

The four financial pillars are combined to form the Financial Assessment on the left-hand side
of the tree. On the right, the less complicated Business Analysis subtree is formed by the three
macro-economic model inputs: Industry Score, Country of Residence Score, and Country of Sales
Score. The latter two are first combined into an intermediate assessment. The root of the tree is
named the Corporate Score. A lookup table exists to translate this assessment into a ucr.

6.3 Evaluation

qc-mra evidently inherits all properties of the rating framework it is built in. It therefore meets
all requirements regarding data storage and flexibility (cf. section 5.4). The remaining two re-
quirements are response time and system documentation. A final requirement is that we expect
our system to produce the same results as the original mra application.

For the comparison of mra and the approximation of mra in our own model, we have created a
portfolio of 15,000 counterparties. The original mra system ran for over twelve hours to complete
the task. qc-mra was tested on the same portfolio, and finished the job in thirteen minutes,
which is a response time reduction of over 98%.

With a small amendment we can even meet our two-minute requirement from section 5.2.2.
A quick analysis learnt that storing data was the bottleneck. All intermediate assessments of
the tree are saved, which are 86 fields per counterparty. If we drop the requirement to store all
intermediate values and focus on the main few, qc-mra can process 15,000 counterparties in less
than two minutes, which does meet our speed requirement. This implies a response time reduction
of over 99.7% compared to mra.

We have included user-friendly and browseable source code documentation to our rating tool
(Dikkers 2005b). Model owners that are new to the system can hence easily get acquainted with
our generic rating tool and the mra implementation specifically.

The final question is whether qc-mra derives the same results as mra. When comparing the
output ucrs of both programs, we found identical ucrs for 96% of the counterparties, which is a
very good result. The 4% deviations were caused by undocumented unpredictable calculations in
the original mra program. One often seen deviation occurs in Interest Coverage Ratio calculations:
if the denominator of this ratio equals zero and the numerator is larger than zero, we would expect
the Interest Coverage Ratio to be +∞. In rougly one out of three times, however, its value will
strangely be −∞. The impact of changing a value from +∞ to −∞ is substantial, even in the
mra tree.

6.4 Recommendations

Several of the legacy implementation choices of Syntel and mra in particular do not seem to add
value to the system. One of the main reasons that mra is regarded as a grey box is its use of the
soft saturation function. We have seen that the idea of the the soft saturation is to restrict the
output to the scale [0, 100]. This goal can, however, also be reached by restricting the minimum
and maximum values of the independent voting functions in such a way that their addition will
never exceed 100 or come below 0. In the current mra settings, this is already the case for 95%
of the nodes. When the remaining 5% are amended accordingly, we can safely remove the soft
saturation transformation from the model. More information can be found in our confidential
report (Dikkers 2004).
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The main reason for the discrete character of the model can be found in the lack of processing
speed and storage capacity in the late 1980s. Nowadays these aspects no longer pose a problem.
It might be worthwhile to develop a continuous variant of the mra system. The discrete voting
functions can now be replaced by continuous functions. By restricting the function class of the
functions that might be used, we can reduce the degrees of freedom at each node. The impact of
this model change will be substantial; at each node both the function and its parameters need to
be estimated. This procedure is similar to the initial model development process in 1998 (Zondag
1998a, 1998b).

Other recommendations regard the model inputs. Our main concern is the frequent violation
of the independence requirement of the inputs. In section 4.4.3 we have seen that many variables
that serve as model inputs are highly correlated. The theoretical fundamentals are based on
statistical independence between the variables, and we should therefore reduce collinearity as
much as possible. A second concern is the limited (or absent) predictive value in many of the
model inputs. These variables will only add noise to the outcome of the model. We suggest a
radical reduction of the number of highly correlated inputs and inputs with poor predictive power.
Two possible sets of variables have been presented in section 4.5 at the introduction of reduced
sets.

Our final recommendation concerns the tree structure. In the current set-up, the tree is
built up from many different intermediate nodes. At each node, extra uncertainty is added, soft
saturation is applied, and values are rounded off. Moreover, at each node, the parameters for the
weighted voting function have to be estimated by experts. The current tree in its discrete nature
therefore requires model experts to estimate 437 parameters in total. The added value of having
so many intermediate nodes is questionable. In the Capital Structure pillar, for instance, only
one subjective question serves as input for the right-hand side of this pillar. The left part is given
by only two ratios. To combine these three inputs, in total 323 parameters have to be estimated
by experts. Experts will never be able to express their knowledge in such a detailed way. We
therefore suggest to reduce the model size and remove several intermediate nodes. One option
would be to let the Financial Assessment contain the four financial pillars and one extra pillar
Subjective questions. This latter pillar is then formed by all the subjective questions. All the
boxes that have intermediate as their title in figure 6.3 can thus be removed, reducing the degrees
of freedom by 43.

Similarly, on the lowest level of the financial ratios (cf. figure 6.2), we could simplify the way
the four inputs are combined. One option is to allow the Overall Ratio assessment be directly
composed of the four financial ratio inputs. Two almost meaningless intermediate nodes would
thus be removed.

6.5 Conclusion

For the first time, the characteristics and assumptions of the mra model are revealed. mra is
based upon loose statistical and mathematical grounds, but currently proves to be a reasonable
model for abn amro’s credit rating needs. We can conclude that our own implementation of
mra, qc-mra, produces ucrs similar to mra, and can therefore replace mra in tuning and
stress testing applications. Moreover, qc-mra can safely be integrated into abn amro’s rating
framework grace, without losing any of the current functionality. By this means we will solve
most of the drawbacks highlighted in the previous chapter.

If our recommendations in subsection 6.4 are followed as well, the model will be more trans-
parent and easier to maintain. This will provide a good intermediate solution for abn amro.
abn amro has decided to follow these recommendations and has started a project to implement
qc-mra into grace.

Another advantage is the fact that abn amro now has the possibility to gradually move to
more statistically underpinned models. These models can be easily added to our system. As credit

3We need to estimate 7 values for both ratio assessments, 4 for this particular subjective question, and 7 for
each intermediate node. This makes a total of 32 parameters to estimate.
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rating data from January 2004 onwards has now become available, the road to proven mathematical
techniques has been paved. The next chapter discusses several models based on statistics, both
standard regression techniques and state-of-the-art support vector machines approaches.



Chapter 7

SVMs in ordinal classification

In our problem definition we stated our desire to compare the results of mra to that of proven and
state-of-the-art techniques. Chapter 3 described the most commonly used techniques for the credit
rating problem. In earlier times, statistical credit rating models were based on linear regression
and linear discriminant analysis. Later, logistic regression was introduced and is still widely used
throughout banks. Support vector machines are a state-of-the-art technology that have only been
applied to the credit rating problem for the past two or three years.

Statistics provides useful advantages compared to expert systems like mra. The quality of
measurement can be determined, usually by means of the variance. We have seen that mra gives
a ‘variance’ as well, but this value has no theoretical foundation and only gives a rough indication
concerning the variability around the mean. Probably the most interesting aspect of statistical
techniques is that the model parameters can be estimated from the data. The model owners are no
longer dependent on the subjective opinion of experts. Overall, statistics imply easier maintenance
of the model.

We will benchmark mra against three techniques:

• Support vector machines
• Ordinary least squares regression
• Ordinal logistic regression

This chapter will outline our design choices regarding support vector machines. Both regression
techniques are more straightforward and require less explanation to the reader. We will only discuss
these techniques briefly in section 8.2. We have left source code and model details out of the scope
of this document, and have focused on the implementation choices on a higher level.

There are two important aspects in designing the support vector machine classifier: how to
utilise the ordinal nature, and how to tune the hyperparameters. These two aspects will be
discussed in the following two sections.

7.1 Support vector machines in ordinal classification

Support vector machines were originally designed for the binary case. The ordinal nature of the
credit rating problem, however, provides us with extra information that should be incorporated
in the classifiers. Ordinality borrows concepts from both classification and regression. Like in
classification, the output is a finite set, and like regression, there exists an ordering among the
elements in the set.

Support vector machines in combination with the (ordinal) credit rating problem has been
researched in three other papers (cf. chapter 3). Friedman (2002) does not provide us with imple-
mentation details, but as he merely describes the svm methodology as a classification technique,
we can safely assume that ordinality has not been applied in his CreditModel program. Van Ges-
tel et al. (2003) apply the all-pairs scheme to the credit rating problem, and determine the final
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class using the majority voting algorithm. Huang et al. use Crammer and Singer’s formulation
for multi-class svm classification, which is a single machine approach that does not take the ordi-
nal character into account. The extra information that is provided by the ordinal nature of the
problem is utilised in neither of the three papers.

Incorporation of ordinality might prove advantageous to the credit rating problem. Ordinal
problems, however, have only scarcely been researched. We will discuss two ordinal approaches
that have recently been proposed. Further, we propose a new approach that not only handles
ordinality, but is more robust for overlapping data compared to competing techniques as well.

7.1.1 A general multi-class approach

In section 2.5, we discussed several ways to extend a binary classifier to a multi-class classifier,
among which the one-against-all and the all-pairs techniques. Allwein et al. (2000) propose a
generalised framework to handle multi-class problems. Their idea is to associate each of the c
classes with a row of a coding matrix

M ∈ {−1, 0,+1}c×g

for some g. In total j = 1, . . . , g binary classifiers fj are trained with labelled data of the form
(xi,M(yi, j)) for all objects i in the training set, but omitting the objects for which M(y, j) = 0.
Each of the binary classifiers fj tries to minimise the costs l(·) on the induced binary problem,
usually the misclassification error.

In the one-against-all approach, for example, M is a c×c matrix in which all diagonal elements
are –1 and all other elements +1. The all-pairs approach involves a c×

(
c
2

)
matrix in which each

column corresponds to a distinct pair (ω1, ω2). In this column, M is –1 in row ω1, +1 in row ω2,
and 0 in the other rows. Both matrices have been given for the four-class case in table 7.1.

Table 7.1 — Coding schemes for the four-class problem. Rows represent the classes and columns the
binary classifiers.

(a) One-against-all

f1 f2 f3 f4

M =


−1 +1 +1 +1
+1 −1 +1 +1
+1 +1 −1 +1
+1 +1 +1 −1


ω1

ω2

ω3

ω4

(b) All-pairs

f1 f2 f3 f4 f5 f6

M =


−1 −1 −1 0 0 0
+1 0 0 −1 −1 0
0 +1 0 +1 0 −1
0 0 +1 0 +1 +1


ω1

ω2

ω3

ω4

Suppose we want to classify a new object x. Let f(x) be the vector that represents the outcome
of the binary classifiers:

f(x) = (f1(x), . . . , fg(x))

We will now need to decode the predictions of the fj . Let M(r) denote row r of M, which is
thus associated with class ωr. The object will be assigned to the class for which the row M(r) is
‘closest’ to f(x) with respect to some distance measure d.

One distance measure is given by the number of positions where the sign of prediction fj(x)
differs from the corresponding matrix entry M(r, j):

dH(M(r), f(x)) =
g∑

j=1

(
1− sign[M(r, j)fj(x)]

2

)
In essence this is similar to calculating the Hamming distance between row M(r) and the signs

of the fj(x). If either of these values is zero, however, this component adds 1/2 to the sum. The
pattern is thus classified to class ωi where

i = arg min
r

dH(M(r), f(x))
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This method of combining the fj is called Hamming decoding. Note that majority voting is a
special case of Hamming decoding.

7.1.2 Single machine approach

Herbrich et al. (2000) are the first to explicitly take ordinality into account in support vector
machines. In their article they present a distribution independent approach that maps objects to
scalar utility values. Their main idea is to find a classifier w such that

wT x(1) > wT x(2) > wT x(3) > . . . ,

where x(i) denotes any x in class ωi. In binary comparisons,

wT x(1) ≥ wT x(2) + 1

wT (x(1) − x(2)) ≥ 1

The classification is thus based on the difference between two vectors. For this means a new
training set S′ is created, that consists of `2 objects x′i that represent the difference between two
original objects. The corresponding class y′i is given by the sign of the rank difference:

S′ = {(xi − xj , sign[yi − yj ])}`
i,j=1 = {(x′i, y′i)}`2

i=1,

where the cases yi = yj are omitted from S′.
The problem of ordinal regression is thus reduced to a classification problem on pairs of objects,

where the number of constraints compared to the standard svm problem has grown to `2:

min
w,ξ

J (w, ξ) =
1
2
wT w + C

`2∑
i=1

ξi, C ∈ R+

subject to

{
y′iw

T x′i ≥ 1− ξi, i = 1, . . . , `2

ξi ≥ 0, i = 1, . . . , `2

Section 2.5 gives the solution to this optimisation problem. In this same section we have defined
latent variable z as the signed distance to the separating hyperplane. The aforementioned utility
value is the same as our latent variable:

z = U(x) = wT x =
`2∑

i=1

αiy
′
iK(x′i,x)

Finally, the decision boundaries are estimated.
This technique, however, involves `2 constraints in the optimisation problem and the creation

an `2× `2 Gram matrix. The credit rating data set consists of approximately 1200 counterparties,
implying over one million constraints and a matrix of more than one trillion entries. This is
currently numerically infeasible to work with.

7.1.3 Logistic regression approach

Chang and Lin (2004) describe a hybrid multi-class classifier that combines ordinal logistic regres-
sion with support vector machines. The one-against-preceding coding scheme is used to produce
c − 1 binary classifiers in the c-class problem. For each classifier 1 ≤ j < c, the objects xi are
classified as:

xi ∈

{
−1 if yi ≤ j

+1 if yi = j + 1
, i = 1, . . . , `

The latent variable zij is calculated for all training samples i = 1, . . . , ` for each classifier j =
1, . . . , c− 1. The vector xi of each object can be represented as the (c− 1)-dimensional vector zi.
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Table 7.2 — Coding schemes for the logistic regression approach in the four-class problem

(a) One-against-preceding

f1 f2 f3

M =


−1 −1 −1
+1 −1 −1
0 +1 −1
0 0 +1


ω1

ω2

ω3

ω4

(b) Succeeding-against-preceding

f1 f2 f3

M =


−1 −1 −1
+1 −1 −1
+1 +1 −1
+1 +1 +1


ω1

ω2

ω3

ω4

This vector zi is thus associated with class yi. We can now fit an ordinal logistic regression model
on the data set S = {(zi, yi)}`

i=1 using the theory from section 2.2.
Chang and Lin’s hybrid logreg-svm approach is based on the latent variables, and can thus

be solved as c− 1 binary svm problems with ` constraints and `× ` Gram matrices. Their coding
scheme, however, deviates from what we would expect from logreg theory, where c−1 classifiers
compare the first j classes with the remaining c− j classes:

xi ∈

{
−1 if yi ≤ j

+1 if yi > j
, i = 1, . . . , `

We will refer to this scheme as the succeeding-against-preceding scheme. This standard technique
is symmetric, whereas reversing the order in one-against-preceding scheme might influence its
outcome. Chang and Lin do not discuss why they deviate from the standard approach.

We do not agree with the one-against-preceding coding scheme. Inspired by Chang and Lin,
we propose a modified version of their hybrid logreg-svm approach: fitting an ordinal logistic
regression model on the succeeding-against-preceding scheme.

7.1.4 New approach: robust tree decoding

We will now describe a decoding scheme that not only utilises the ordinal character of the credit
rating problem, but is robust for overlapping data as well. Recall from section 4.4.1 that our specific
problem suffers heavily from overlapping classes. Classifiers that separate between two successive
classes might therefore not always find an appropriate decision boundary due to distortion by
the overlapping data points. This is illustrated in figure 7.1a: we would expect a nearly vertical
decision boundary, but a suboptimal and thus less reliable boundary might be found.

On the other hand, we can safely assume that separation between classes that lie further apart
(and are thus less overlapping) will be easier and hence lead to more reliable decision boundaries.
This is illustrated by the Fisher analysis depicted as in figure 4.4, where we can see that the
lowest class can easily be separated from the highest class using Fisher’s first feature only. Typical
decision boundaries of successive classes and classes that lie further apart are depicted in figure 7.1.

1 

4 

5 

 
 
     6 

2 
3 

 (a) A typical decision boundary between two
successive overlapping classes 2 and 3

3 
2 

4 

 
 
    6 

1 
5 

 (b) A typical decision boundary between two
classes 1 and 5 that lie further apart

Figure 7.1 — Two typical decision boundaries
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This inspired us to construct a new decoding technique that utilises the ordinal ranking and
the decreasing reliability of classifiers as classes lie closer to each other. We propose a robust tree
decoding scheme. This scheme is based on the results of the ordinary all-pairs coding scheme.
First, the classifier that is assumed to be most reliable is consulted: the (1 vs. c) classifier. If the
classifier decides in favour of class 1, the (1 vs. c−1) is consulted next, and the (2 vs. c) otherwise.
Basically a path through a classifier tree is followed. Figure 7.2 shows the tree for the four-class
ordinal problem. The decoding algorithm is given in figure 7.4.

 

1 vs. 4

1 vs. 3 2 vs. 4

2 vs. 3

2 

3 vs. 4 1 vs. 2 

3 4 1 

-1

-1
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1

1

1

1

Figure 7.2 — Robust decoding tree that takes the ordinal character into account

This tree has several advantages over other decoding techniques:

• Fewer evaluations
• Robustness
• Utilises the ordinal character

Since the robust tree decoding technique uses the all-pairs coding scheme, its training time
depends on the training of

(
c
2

)
classifiers. The reduction in evaluation time, however, is substan-

tial compared to ordinary Hamming or loss decoding techniques. Instead of evaluating all
(

c
2

)
classifiers, only c− 1 classifiers have to be evaluated.

We could have followed the binary search paradigm, and cut the search space in half each
time. The evaluation time would then depend on only d2log(n)e classifiers. This approach has one
large disadvantage. Since we are working with ordinal classes, we cannot assume that the distance
between each of the classes is equal. The (1 vs. c) classifier, for instance, might perfectly divide
between these two classes, but cannot be expected to separate between other classes as well. An
example is depicted in figure 7.3a. The first binary classifier assigns a new pattern that is actually
of class ‘2’ to the right part of the tree, i.e., to classes 4–6. Even if all classifiers (including the
first one) correctly classify this new pattern, it will never be classified as ‘2’. It will be assigned
to class ‘4’ at best.

This is where the robustness comes in. By proceeding with just one step at a time, we avoid
large deviations in terms of distance between classes. When i classifiers along the path of the tree
return the wrong class, the distance between the actual class and the predicted class will be i. At
the lowest level of the tree, where succeeding classes are compared, only one of the c− 1 classifiers
is consulted. All other (presumably less reliable) classifiers are left out of the decision process.

One disadvantage of robust tree decoding is its bias towards the middle classes. When all
the classifiers produce a random output, the distribution among the classes will be binomially
distributed. We might want to include a small bias towards the outer classes in each node of the
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(a) The decision boundary between class 1 and
6 might not be between 3 and 4
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(b) A correct decision of all classifiers leads to
a wrong class

Figure 7.3 — The binary tree approach might not suffice

function d = de cod e o rd i na l t r e e ( f ,M)
% Compute the d i s t ance between ’ f ’ and the rows o f ’M’
%
% >> d i s t ance = de cod e o rd i na l t r e e ( encoded data , codingscheme ) ;

[ g , c ] = s ize (M) ;

low = 1 ;
high = c ;

while low ˜= high
% f ind the r e l e v an t c l a s s i f i e r
i = find (M( low , : ) + M( : , high ) == 0 ) ;
i f f ( i ) > 0

high = high − 1 ;
else

low = low + 1 ;
end

end
d = abs ( [ 1 : c ] − low ) ;

Figure 7.4 — Robust tree decoding algorithm

tree. We should examine the latent outcome z of the classifiers instead of only the sign. Where
we would normally decide on class –1 if z < 0 and class +1 otherwise, we can now classify the
patterns to class –1 if for instance z < 0.05. The methodology used to derive this threshold is
interesting matter for future work, and can be related to estimation of prior probabilities in the
work of Hastie et al. (1998).

7.1.5 Conclusion

We have discussed three multi-class svm approaches that take the ordinal character of the credit
rating problem into account: Herbrich et al.’s single machine method, a modified version of Chang
and Lin’s logistic regression approach, and our own robust tree decoding. We have chosen to
implement the latter two. We have included two decoding approaches that are based on the
same encoding schemes and standard Hamming decoding schemes. In total we have come to four
coding/decoding scheme combinations that have been listed in table 7.3.

For a fair comparison, we will slightly change to the Hamming decoding scheme. If the max-
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Table 7.3 — Coding/decoding schemes used in our research

# Coding scheme Size Decoding scheme
1 All-pairs

(
c
2

)
Hamming (similar to majority voting)

2 All-pairs
(

c
2

)
Robust tree

3 Succeeding-against-preceding c− 1 Hamming
4 Succeeding-against-preceding c− 1 Logistic regression

imum value is reached by more than one class, the average of their indices is taken. This value
is rounded to the nearest integer to form the final class. When the average is exactly in between
two classes, it is randomly rounded off upwards or downwards.

7.2 Hyperparameter estimation

Support vector machines have two types of hyperparameters to estimate: the regularisation pa-
rameter C and zero or more kernel parameters. Recall from section 2.5 that the regularisation
parameter C > 0 determines the trade-off between regularisation and empirical risk minimisation.
A small C allows for many classification errors, whereas the large C can loosely be said to lead to
a more complex classifier.

The set of kernel parameters to estimate depends on the kernel function. Recall from section 2.5
that the most commonly used kernel functions are:

• Linear K(xi,xj) = (xT
i xj)

• Polynomial K(xi,xj) = (γxT
i xj + c)d, c ∈ R, d ∈ N, γ ∈ R+

• Gaussian rbf K(xi,xj) = exp
(
−‖xi − xj‖2

σ2

)
, σ ∈ R+

In our research we will mainly focus on the radial base function (rbf) for several reasons.
The rbf kernel non-linearly maps samples into a higher dimensional space. The rbf kernel can
handle the case when the relation between the dependent and independent variables is non-linear,
in contrast to the linear kernel. Furthermore, it is shown that the linear kernel is a special case of
the rbf kernel (Keerthi and Lin 2003). The number of hyperparameters influences the complexity
of the model selection. The polynomial kernel function has more hyperparameters (three) than
the rbf kernel function (one). The rbf function has less numerical difficulties as well, since
0 ≤ K(xi,xj) ≤ 1, whereas for the polynomial kernel the value might go to infinity when d is
large.

Loosely we can say that the rbf function gives significant response only in a ‘neighbourhood’ of
its centre, i.e., if the Euclidean distance between xi and xj is small. The size of the neighbourhood
is given by the parameter σ2, and is often referred to as the bandwidth of the kernel. In regular
support vector machines, the size of the bandwidth controls the complexity of a classifier. A larger
bandwidth results in less support vectors that are required to describe the classifier, i.e., a more
sparse classifier and thus a smoother function. If the bandwidth is too small, the system will
overfit on the data. On the other hand, if the bandwidth is too large, the system will be unable
to properly separate the data.

In the least squares variant of svms, however, we cannot easily state that a larger bandwidth
leads to a less complex classifier. ls-svms do not provide a sparse solution, so the number of
support vectors does not decrease when the bandwidth increases. Recall from section 2.5 that the
classification function is given by

y = sign[
∑̀
i=1

αiyiK(xi,x) + b]
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Since α practically never equals zero in the ls-svm approach, each K(·, ·) influences the final
decision. When the bandwidth is large, many different K(·, ·) > 0 contribute to the solution.
A large bandwidth thus might lead to a more complex classifier, in contrast with regular svms.
Without proper empirical or theoretical research, it is impossible to say in what way the bandwidth
influences the complexity of the classifier in a specific problem.

Our goal is to find a proper combination (C, σ2) such that the classifier can accurately predict
out-of-sample data. We have seen before that this goal might not be reached by simply minimising
the training error. To avoid the overfitting problem, we will use cross-validation. v-fold cross-
validation splits the training set into v subsets of equal size. Sequentially, one subset is tested
using the classifier that is trained on the remaining v − 1 subsets. Each object of the complete
training set is thus predicted once, so the cross-validation accuracy is the percentage of data that
is correctly classified.

We have adopted a grid search mechanism to tune the hyperparameters. Basically, pairs
of (C, σ2) are tried and the one with the best cross-validation accuracy is chosen. Both Hsu
et al. (2003) and Van Gestel et al. (2004) indicated that trying exponentially growing sequences
of C and σ2 is a practical method to identify good parameters. The grid search is performed
with ten samples per parameter uniformly distributed in log space. The parameter ranges were
ln(C) ∈ [−3, 12] and ln(σ2) ∈ [−3 + lnn, 9 + lnn], where n is the number of features.1 The
prediction accuracy is determined using 5-fold cross validation. The misclassification error rate
function serves as an evaluation function.

Remember that our svm classifier is built up from multiple binary classifiers. The grid search
will thus be applied to all binary classifiers, and different classifiers might have different parameters.

7.3 Implementation

Instead of ordinary support vector machines, we have chosen to implement least squares support
vector machines for several reasons. ls-svms solve a linear system of equations, and hence are faster
than regular svm implementations. Faster algorithms imply more time to experiment with different
kernels, parameter settings, and parameter optimisation methods. Secondly, Van Gestel et al. were
the first to report extremely good results in their paper (2003), where ls-svms outperformed neural
nets by a factor two and logistic regression by a factor 1.5 in classification accuracy. It would be
interesting to see whether we can achieve similar results.

We implemented our system in MathWorks matlab 2. We can easily convert matlab functions
into a c++ function library using the matlab compiler. The compiler produces both a header file
and a library file. By including the former and linking the latter we can use the full functionality
of the matlab functions from within our rating tool.

The least squares support vector machines were implemented by the ls-svm toolbox3. The
Pattern Recognition Tools (PRTools) toolbox4 provided the data structure and several functions
for data exploration purposes.

1n is taken into account since ‖xi−xj‖2 of the rbf kernel function is proportional to n (Van Gestel et al. 2004).
2http://www.mathworks.com
3http://www.esat.kuleuven.ac.be/sista/lssvmlab
4http://www.prtools.org

http://www.mathworks.com
http://www.esat.kuleuven.ac.be/sista/lssvmlab
http://www.prtools.org


Chapter 8

Experimental results and analysis

This chapter presents the results of our experiments. The performance measures are given first.
The experimental set-up of the two regression techniques is presented next. Section 8.3 discusses
the results of all four techniques: linear regression, logistic regression, support vector machines,
and mra. This chapter is concluded with the evaluation of the different results.

8.1 Performance measures

Percentage correctly classified

The percentage correctly classified (pcc) measures the proportion of correctly classified objects
on a sample of data. For the ordinal problem this might not always be the most appropriate
performance criterion. The pcc tacitly assumes equal misclassification costs for all incorrectly
classified objects. The ordinal nature of the problem however implies that a one-notch deviation
is less problematic than a five-notch difference. We will therefore include the percentage correctly
classified within one notch (pcc-1). Another implicit assumption is a relatively balanced class
distribution of the examples. The transformation from fourteen to six classes helps us meet this
requirement.

Kendall’s τ

The Basel-II committee suggests the use of Kendall’s τ to measure the degree of concordance
between two ratings in their internal rating validation report (bis 2005). The to be replicated
rating is given by data from a credit rating agency or (in our case) a credit rating committee.
Our goal is to achieve a high concordance between the predicted ratings and the to be replicated
ratings. In case of high concordance, the predicted ratings will inherit the discriminatory power
of the ratings from the agency or credit committee.

Kendall’s τ is a measure of correlation between two ordinal variables x and y of length n. For
all
(
n
2

)
possible comparisons between the pairs (xi, yi) and (xj , yj) one determines whether the

pairs are concordant (xi > xj ∧yi > yj or xi < xj ∧yi < yj), discordant (xi > xj ∧yi < yj or xi <
xj ∧ yi > yj), or tied (xi = xj or yi = yj).

Let C be the number of concordant pairs and D the number of discordant pairs. Kendall’s τ
is now calculated as:

τ =
C −D(

n
2

) .

Kendall’s τ is equivalent to Spearman’s ρ (cf. subsection 4.4.2) regarding the underlying as-
sumptions, but its interpretation is different. Spearman’s ρ is given in terms of proportion of
variability accounted for. Kendall’s τ can be seen as the difference between the probability that
in the observed data the two variables are in the same order versus the probability that the two
variables are in a different order.
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Goodman-Kruskal Γ

Another measure of the concordance degree is the Goodman-Kruskal Γ. This degree is given by
the surplus of concordant pairs over discordant pairs, as a percentage of all pairs ignoring ties.

Γ =
C −D

C + D
,

The Goodman-Kruskal Γ is basically equivalent to Kendall’s τ , except that the former explicitly
takes ties into account.

NcNemar’s X 2

We will use the McNemar’s X 2 test to examine whether the predictive performance of one model
is significantly better or worse than another. The McNemar test is a non-parametric test of the
hypothesis that two related binomial variables have the same means. First, a contingency table
is created that gives the number of objects that is correctly classified by both models (a), the
number of objects correctly classified by model 1 but incorrectly by model 2 (b), etcetera:

+ −
+ a b
− c d

The columns give the frequencies of the correctly (+) and incorrectly (–) classified counterpar-
ties for model 1, and the rows for model 2. The McNemar statistic is now calculated as:

X 2 =
(b− c)2

b + c

This value has one degree of freedom, and a p value can be derived from the X 2 distribution.

8.2 Design of regression techniques

Both the regression techniques require fewer design choices than support vector machines. Re-
gression does not involve hyperparameter tuning, and ordinality is naturally taken into account
by logistic regression. One complicating aspect in regression, however, is its sensitivity to (par-
tial) collinearity among variables. Ordinality and collinearity will be discussed in the subsections
below. We have used J.P. LeSage’s Econometrics toolbox1 for matlab.

8.2.1 Ordinality

Ordinal logistic regression has specifically been designed for ordinal problems and requires no
further tuning. Linear regression gives us several possibilities for the output that is to be estimated:
the ucr rank, the probability of default or the logit of the pd (cf. section 2.1). We have seen in
section 4.4.2 that the ucr rank and the logit of the pd are linearly related, and that researching
only the latter will suffice. We will thus research both the pd and the logit(pd) as dependent
variables.

8.2.2 Optimised sets

We attempt to determine the best predictive model using regression analysis. This involves re-
moving the variables that do not significantly contribute to the regression equation. A widely

1http://www.spatial-econometrics.com

http://www.spatial-econometrics.com
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used technique for this means is backward elimination. The steps of backward elimination are as
follows:

1. The regression equation with all of the independent variables is computed.
2. For each variable, the additional contribution of this variable on top of the contribution of

all other variables is calculated using the partial F test. We have calculated the t statistic
for each variable, which indicates whether a variable significantly differs from zero. In this
case the t statistic is the square root of the F statistic.

3. The variable with the t statistic that indicates that it makes the least contribution to the
regression equation is eliminated.

4. The regression equation is re-estimated using the remaining predictor variables.
5. If the difference between the results of the original regression model and the reduced model

is significant2 according to Wald’s F test, the process is stopped. Otherwise the process is
repeated as from step 2.

The backward elimination technique will be applied to all four data sets: both the (already)
reduced and the full sets of raw data and scores.

8.3 Results

The out-of-sample performance of the implemented techniques is estimated using an out-of-sample
test set. Cross-validation would give an even better view on predictive power. The svm hyperpa-
rameter learning, however, can take several days on an average desktop computer, which demands
as few runs as possible. We have therefore chosen to randomly select 80% of the data objects
for the training set and the remaining 20% for the test set. Since unbalanced data sets might
influence the performance of some of our techniques, we have ensured that the number of objects
in both the test and the training set remains balanced. For a fair apple-to-apple comparison, we
have used this same data set for all of the techniques.

In the following subsections, both regression and support vector machine techniques will be
discussed. A mutual comparison is given in the fourth subsection. A qualitative review of the
results is given in the evaluation section.

8.3.1 Ordinary least squares regression

We have applied ordinary least squares regression to all available data sets:

• Raw data and scores (cf. chapter 4)
• Full and reduced data set (cf. chapter 4)
• Optimised and not optimised (cf. section 8.2)
• pd and logit(pd) (cf. section 8.2)

The results are presented in table 8.1. The first column lists the models’ rank based on the out-
of-sample test set performance. The actual pcc on the test set is given in the fourth column with
the train set performance between parentheses. The fifth and sixth column list Kendall’s τ and
Goodman-Kruskal’s Γ respectively. Next comes the test set performance on the six rating classes.
The final column gives R̄2, which indicates the fraction of variation in the dependent variable
Y from its mean that is explained by the regression. This value is adjusted for the degrees of
freedom. The three best performing models with respect to the pcc have been coloured grey.

One immediate observation is the underperformance of the models that are based on the pd
compared to logit(pd) models. We can see that the pd models have extremely high accuracies in
both class 1/2 and class 4 in comparison with the other classes. This can be explained completely
in terms of intervals. The cut-off values are determined as the midpoint between the pds of two

2Significance level of 5%.
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Table 8.1 — Performance of the linear regression classifiers

Rank Data set
# pcc

τ Γ
Per-class pcc

R̄2
vars test (train) 1/2 3+ 3 3– 4 5/6

pd
11 Full data set, all 69 32.8% (31.9%) 0.34 0.63 41% 14% 10% 21% 83% 13% 0.30
5 Full data set, optimised 10 34.9% (30.7%) 0.35 0.67 60% 11% 10% 10% 89% 16% 0.29
9 Reduced data set, all 27 33.6% (32.2%) 0.36 0.68 57% 6% 5% 21% 85% 13% 0.30
10 Reduced data set, optimised 11 33.2% (30.9%) 0.34 0.67 65% 6% 5% 17% 83% 10% 0.29
15 Full scores set, all 62 31.0% (32.2%) 0.33 0.62 51% 6% 3% 12% 81% 23% 0.33
13 Full scores set, optimised 11 32.3% (30.7%) 0.34 0.64 54% 11% 10% 10% 85% 10% 0.32
7 Reduced scores set, all 28 34.1% (32.3%) 0.36 0.68 54% 14% 3% 21% 85% 13% 0.32
16 Reduced scores set, optimised 11 30.6% (31.4%) 0.35 0.66 54% 11% 3% 10% 83% 10% 0.32

logit(pd)
14 Full data set, all 69 31.9% (37.3%) 0.42 0.62 27% 37% 18% 41% 45% 19% 0.46
3 Full data set, optimised 13 35.3% (36.8%) 0.45 0.68 19% 43% 30% 48% 51% 13% 0.45
4 Reduced data set, all 27 35.3% (35.0%) 0.45 0.67 19% 40% 28% 41% 57% 19% 0.45
12 Reduced data set, optimised 14 32.3% (36.3%) 0.46 0.69 11% 34% 33% 43% 53% 10% 0.45
1 Full scores set, all 62 38.8% (36.5%) 0.44 0.65 24% 49% 25% 50% 55% 23% 0.48
6 Full scores set, optimised 14 34.1% (36.2%) 0.43 0.65 16% 40% 23% 48% 55% 13% 0.47
2 Reduced scores set, all 28 35.8% (35.7%) 0.44 0.66 24% 43% 18% 55% 49% 19% 0.47
8 Reduced scores set, optimised 14 33.6% (36.1%) 0.43 0.65 16% 37% 20% 55% 49% 16% 0.47

classes. The interval in which a counterparty is assigned to class 4 is about 25 times larger than the
interval of class 3+. Secondly, if the output of the regression model is negative, the counterparty
will be classified as class 1/2. We will leave the regression models based on the pd out of the scope
in the remainder of our report, and shift our focus to the logit(pd) models.

The McNemar test shows that there is no significant difference in predictive performance
between the top six logit(pd) models. The input space of the unoptimised full data set is apparently
too rich, whereas in the optimised reduced data set too many inputs have been eliminated. The
models that are based on scores seem to perform better than those on raw data. Surprisingly, the
two models that take many inputs perform best, where we would expect that data and scores sets
that are optimised for linear regression achieve better results.

Table 8.2 — Linear regression beta coefficients of full data set, optimised

Variable Beta t-stat

- Intercept -5.66 -189.8**

R12 Interest Coverage Ratio (raw value) -0.35 -10.1**

P11 Equity Ratio (percentile) -0.24 -7.3**

P13 Total Debt to ebitda (percentile) -0.22 -6.4**

P14 noff to Financing Charges (percentile) -0.12 -3.7**

V04 Return on Capital Employed (volatility) 0.12 3.6**

M01 Industry Score -0.15 -5.0**

M02 Country of Residence Score -0.21 -5.1**

M03 Country of Sales Score -0.15 -4.1**

Q01 Competitive Leadership -0.23 -7.3**

Q03 Market Conditions -0.11 -3.4**

Q05 Accounting Risk -0.10 -3.1**

Q06 Customer Concentration -0.10 -3.2**

Q08 Access to Capital -0.14 -4.3**

*: 5% significance, **: 1% significance

The third best performing model is based on the full raw data set that has been optimised
using backward elimination. We will use this model for further research, for it contains only
thirteen variables and still has a good performance. Table 8.2 lists the inputs that have been used.
Because we have normalised our inputs, the beta coefficients (in our notation wi in the formula
wT x) indicate the univariate strength of each variable. When collinearity is largely removed from
the model, we expect the signs of the beta coefficients to follow our hypotheses in table 4.5. The
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volatility has a positive sign, whereas all other variables are negative. This observation meets
our assumptions. Second, the Student’s t statistic is given. A large absolute value is associated
with a low probability that the beta coefficient equals zero but has another value by chance. All
coefficients are found relevant at a 1% significance level.

The results of ordinary least squares regression are theoretically only valid if all assumptions
from section 2.1 are met. The assumptions of no simultaneity, no collinearity, and expected value
0 for the residuals are met. We could not reject Spearman’s null-hypothesis of homoscedasticity
for any of the variables, which implies there is no significant heteroscedasticity. The stronger
assumption of normally distributed residuals, however, is not met. The p-value for the Jarque-
Bera test (numerically) equals zero, but the non-normality is shown even better in figure 8.1. The
straight red dash-dotted line represents the normal distribution fitted to the residuals, and the
residuals themselves are given by the blue markers.
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Figure 8.1 — Normal probability plot of the residuals

8.3.2 Ordinal logistic regression

The classification results of ordinal logistic regression are shown in table 8.3. The structure of the
table is similar to the linear regression performance table, except for the last column. The LL
stands for log-likelihood. The log-likelihood of the model is the value that is maximised by the
process that computes the maximum likelihood value for the beta coefficients.

The McNemar test does not indicate significant differences in predictive performance between
any of the logistic regression models. Like linear regression, the models that are based on scores
seem to perform better than those based on raw data. Another interesting observation is that
the (optimised) reduced scores models and reduced raw data models outperform their optimised
versions when taking all inputs. Apparently the data reduction method from section 4.4.2 leads
to a better reduced set than backward elimination on all variables.

Table 8.3 — Performance of the logistic regression classifiers

Rank Data set
# pcc

τ Γ
Per-class pcc LL

vars test (train) 1/2 3+ 3 3– 4 5/6 103

8 Full data set, all 69 35.8% (39.2%) 0.42 0.61 43% 29% 33% 26% 49% 32% -1.29
6 Full data set, optimised 15 37.9% (39.2%) 0.45 0.65 54% 29% 35% 26% 47% 36% -1.32
4 Reduced data set, all 27 38.4% (39.6%) 0.47 0.67 60% 17% 30% 29% 51% 42% -1.32
3 Reduced data set, optimised 14 38.8% (37.8%) 0.48 0.69 62% 11% 30% 29% 53% 45% -1.33
5 Full scores set, all 62 38.4% (41.6%) 0.45 0.64 51% 34% 33% 26% 45% 42% -1.27
7 Full scores set, optimised 17 37.5% (39.5%) 0.45 0.64 60% 34% 23% 29% 47% 32% -1.30
2 Reduced scores set, all 28 39.7% (40.5%) 0.45 0.65 54% 34% 35% 26% 53% 32% -1.30
1 Reduced scores set, optimised 16 40.9% (40.3%) 0.46 0.66 60% 34% 28% 31% 55% 36% -1.31
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Table 8.4 — Logistic regression beta coefficients of reduced scores set, optimised

Variable Beta t-stat

- Intercept 1 -2.53 -21.6**

- Intercept 2 -1.26 -13.8**

- Intercept 3 -0.10 -1.2

- Intercept 4 1.09 12.0**

- Intercept 5 2.95 22.0**

R12 Interest Coverage Ratio (raw value) -0.59 -7.6**

R13 Total Debt to ebitda (raw value) -0.74 -9.9**

P11 Equity Ratio (percentile) -0.38 -5.0**

P14 noff to Financing Charges (percentile) -0.35 -5.2**

T12 Interest Coverage Ratio (trend) -0.20 -2.9**

V02 Operating Profit Margin (volatility) -0.22 -3.1**

V03 Annual Turnover Growth (volatility) -0.18 -2.7**

V11 Equity Ratio (volatility) -0.22 -2.8**

M01 Industry Score -0.38 -6.0**

M02 Country of Residence Score -0.39 -4.8**

M03 Country of Sales Score -0.32 -4.3**

Q01 Competitive Leadership -0.56 -7.8**

Q04 Supplier Risk -0.13 -2.1*

Q05 Accounting Risk -0.24 -3.5**

Q06 Customer Concentration -0.21 -3.2**

Q08 Access to Capital -0.35 -5.2**

*: 5% significance, **: 1% significance

8.3.3 Support vector machines

As has been described in chapter 7, we have applied four approaches:

• All-pairs with Hamming (majority voting) decoding
• All-pairs with robust tree decoding
• Succeeding-against-preceding with Hamming decoding
• Succeeding-against-preceding with logistic regression decoding

Note that the first and third approach are merely the non-ordinal variants of the second and fourth
approach respectively. In this subsection we will first focus on the linear kernel, and proceed with
the Gaussian rbf kernel later.

Linear kernel

The linear kernel involves only one hyperparameter: the regularisation constant C. We would
expect that C converges to a minimum in our line search. This, however, does not occur. In
figure 8.2 C is plotted against the cross-validated misclassification error. We find a nearly flat
function with multiple minima instead of the desired convex function. The differences in mis-
classification error are very small; often less than one percent point. The effectiveness of the
optimisation of C therefore becomes doubtful.

The ordinal character of the problem can easily be observed from this figure as well. The (1
vs. 6) classifier, which tries to separate the highest ucr class ‘1/2’ from the lowest ucr class ‘5/6’,
has error rates of less than 10%. The (1 vs. 2) classifier, however, performs at around 40%. In
the previous chapter we posed the hypothesis that classes that lie further apart can be separated
more easily. Our results strongly support this hypothesis.

The classification results of the linear kernel are listed in table 8.5. The classification accuracy
of the linear kernel implementations range from 31.9% to 38.4%. The scores sets, both reduced and
full, usually give better results than the raw data set. We can conclude that our ls-svm classifier
with logistic regression decoding performs best, for it outperforms the other techniques on all types
of data. Both all-pairs schemes come second. Our robust tree algorithm performs similar to the
majority voting decoding scheme, both in classification accuracy and in the concordance measures.
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Figure 8.2 — Cross-validated misclassification error for different C of three typical binary classifiers
(all-pairs classifier for the reduced scores set)

The differences between neither of the models are, however, statistically significant according to
McNemar.

Another observation is a large difference between the training accuracy and the out-of-sample
test accuracy. We can conclude that the ls-svm classifiers are slightly overfit on the train data.
A solution to this problem would be to decrease the value of C in the different binary classifiers,
such that we allow for more misclassification errors and presumably improve the out-of-sample
accuracy.

Table 8.5 — Performance of the ls-svm classifiers with linear kernel

Rank Data set
# pcc

τ Γ
Per-class pcc

vars test (train) 1/2 3+ 3 3– 4 5/6
All-pairs scheme with Hamming (majority voting) decoding

12 Full data set 69 33.2% (49.4%) 0.40 0.57 49% 20% 30% 29% 34% 39%
7 Reduced data set 27 34.9% (42.4%) 0.46 0.65 65% 26% 25% 19% 38% 39%
13 Full scores set 62 32.8% (49.6%) 0.33 0.48 38% 34% 25% 29% 36% 36%
5 Reduced scores set 28 37.5% (47.1%) 0.42 0.60 54% 31% 23% 38% 36% 45%

All-pairs scheme with robust tree decoding
11 Full data set 69 34.1% (49.2%) 0.41 0.59 46% 20% 35% 29% 36% 39%
8 Reduced data set 27 34.5% (42.6%) 0.46 0.65 65% 23% 25% 19% 38% 39%
16 Full scores set 62 31.9% (49.4%) 0.33 0.47 38% 37% 23% 26% 34% 36%
3 Reduced scores set 28 37.9% (47.2%) 0.42 0.60 51% 34% 25% 38% 38% 42%

Succeeding-against-preceding scheme with Hamming decoding
15 Full data set 69 31.9% (40.9%) 0.41 0.63 14% 43% 30% 45% 34% 23%
14 Reduced data set 27 32.3% (36.6%) 0.46 0.69 8% 54% 33% 38% 43% 13%
9 Full scores set 62 34.5% (42.4%) 0.41 0.61 11% 51% 30% 45% 40% 26%
10 Reduced scores set 28 34.1% (39.3%) 0.43 0.65 8% 51% 28% 55% 40% 16%

Succeeding-against-preceding scheme with logistic regression decoding
6 Full data set, all 69 35.3% (38.5%) 0.42 0.62 43% 31% 35% 19% 51% 29%
1 Reduced data set, all 27 38.4% (38.0%) 0.47 0.69 62% 14% 33% 26% 53% 39%
4 Full scores set, all 62 37.5% (41.6%) 0.45 0.64 51% 29% 38% 21% 45% 42%
2 Reduced scores set, all 28 38.4% (40.5%) 0.44 0.64 54% 29% 33% 29% 51% 32%

Radial basis function kernel

The hyperparameter search for the Gaussian rbf kernel introduced a new challenge. A near-
equal cross-validation error was found in a complete valley around the line ln(C) = ln(σ2), as
can be seen in figure 8.3a. The optimal parameters in this case are indicated by the black dot
at (C = e9, σ2 = e13). Since this optimum lies on the boundary of our search area, we have
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experimented with search areas with boundaries up to ln(C) = 20 and ln(σ2) = 20, but we neither
achieved better results nor found an end of this ‘valley’.
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Figure 8.3 — Cross-validated misclassification error for different ln(C) and ln(σ2) of typical binary
classifiers (figures do not originate from the same data source)

If the cross-validation error is (nearly) equal, we prefer a less complex classifier. Our data set
has overlapping classes, so a smoother function that allows for relatively many errors will presum-
ably perform best. Section 7.2 discussed the impact of both the parameters. The regularisation
constant C penalises for errors. The larger the penalty, the more the classifier needs to fit outlier
data, the more complex the classifier becomes. Therefore we prefer a small C. The kernel param-
eter σ2 is the bandwidth. Due to our ls-svm choice, we cannot state from theory whether a small
or large σ2 leads to a more complex classifier. Our own experiments have showed us that binary
classifiers with a large σ2 give very bad results: all unseen objects are always assigned to the same
class. We therefore prefer to have smaller σ2.

Regularisation can provide a solution. We have chosen to slightly penalise complex models
using the following formula:

l′(f(x), y) = exp(ln(C) + ln(σ2)− λ1)/λ2)l(f(x), y)

The parameters in this function have been chosen in such a way that the penalty for the most
possible complex classifier is 5%: λ1 = −3 and λ2 = 550. Figure 8.3b shows the result of this
regularisation on a typical grid search. We can see that with regularisation, a combination with
a small C and σ2 is preferred. The obtained parameters are in this particular case approximately
(C = e0, σ2 = e6).

Table 8.6 shows the results of the different ls-svm classifiers based on the rbf kernel function.
The results are similar to those of the linear kernel; all observations for the linear kernel hold for
the rbf kernel as well. The most prominent observation again regards overfitting on the train
data. The succeeding-against-preceding classifiers achieve training accuracies of 40–55%, which
is slightly more than in the linear kernel variant. Both all-pairs schemes, however, have training
accuracies of 50–80%. Despite our regularisation, the ls-svm classifiers with rbf kernel are highly
overfit on the train data.

We had expected that the rbf kernel function, which allows for separation by non-linear
separating hyperplanes, would outperform models based on the linear kernel. There are several
possible explanations why this does not occur. First, the best decision boundaries might be
(nearly) linear. The similar performance of the rbf kernel is then explained by the fact that the
linear kernel function is merely a special case of the rbf function. Aside from similar performance
between the rbf and the linear kernel, we do not have any evidence that supports this theory.
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Table 8.6 — Performance of the ls-svm classifiers with rbf kernel

Rank Data set
# pcc

τ Γ
Per-class pcc

vars test (train) 1/2 3+ 3 3– 4 5/6
All-pairs scheme with Hamming (majority voting) decoding

9 Full data set 69 34.5% (63.9%) 0.40 0.60 3% 54% 33% 29% 47% 42%
12 Reduced data set 27 33.2% (52.0%) 0.42 0.67 3% 51% 10% 67% 30% 39%
4 Full scores set 62 37.1% (80.1%) 0.42 0.62 41% 14% 33% 38% 51% 42%
14 Reduced scores set 28 31.9% (66.9%) 0.38 0.55 49% 29% 8% 33% 38% 36%

All-pairs scheme with robust tree decoding
8 Full data set 69 34.5% (63.3%) 0.41 0.61 3% 54% 25% 36% 47% 42%
11 Reduced data set 27 33.6% (52.5%) 0.42 0.67 0% 54% 18% 67% 26% 39%
3 Full scores set 62 38.4% (80.2%) 0.43 0.62 38% 17% 38% 41% 51% 42%
13 Reduced scores set 28 32.8% (67.9%) 0.40 0.57 49% 29% 8% 33% 43% 36%

Succeeding-against-preceding scheme with Hamming decoding
16 Full data set 69 18.1% (18.0%) 0.04 0.64 0% 0% 3% 98% 0% 0%
15 Reduced data set 27 28.0% (35.1%) 0.43 0.71 19% 83% 20% 29% 19% 0%
10 Full scores set 62 34.1% (46.6%) 0.44 0.68 30% 37% 38% 55% 15% 32%
7 Reduced scores set 28 34.9% (48.5%) 0.42 0.67 38% 37% 15% 71% 32% 10%

Succeeding-against-preceding scheme with logistic regression decoding
6 Full data set 69 35.3% (55.7%) 0.42 0.65 41% 51% 15% 14% 62% 26%
5 Reduced data set 27 36.2% (44.6%) 0.43 0.63 43% 37% 33% 21% 45% 39%
1 Full scores set 62 38.8% (42.2%) 0.43 0.62 49% 40% 33% 38% 40% 32%
2 Reduced scores set 28 38.4% (47.7%) 0.42 0.62 41% 40% 33% 21% 62% 29%

Moreover, linear support vector machines are closely related to multiple discriminant analysis; an
underperforming technique according to our research peers (cf. chapter 3).

A more plausible cause can be found in the complexity of the data set. Recall that an svm
classifier is built up from binary classifiers. With our data set, this means that, on average, the
classifiers are trained on 300 samples.3 Usually this number will suffice. The data might, however,
be too complex to determine proper decision boundaries on this amount of data. In this case we
are unable to choose appropriate hyperparameters, resulting in underperforming multi-class svm
classifiers. Moreover, even if we would find appropriate hyperparameters, it might be impossible
to properly fit a model.

We suspect that the cause for this complexity lies in data pollution. In appendix B we have
explained the data retrieval and cleaning process. Despite all attempts to fully clean the data set,
many erroneous objects may still be present. The slack variables allow for some errors, but the
support vector machine technique remains vulnerable to outlier data.

8.3.4 Comparison

We have picked the best performing models from each of the categories for mutual comparison
and a comparison with mra. The performance results are given in table 8.7a, and a graphical
representation of the pcc and pcc-1 are shown in figure 8.4. In terms of pcc and concordance
measures, mra outperforms the other techniques. If we focus on the classification accuracy that
allows for a 1-notch difference, however, linear regression performs best. Again, it is clear that the
ls-svm implementation are overfit on the train data.

The McNemar values corresponding to the different pairs of models are listed in table 8.7b.
Note that high p values indicate a high similarity. We can conclude that mra does not significantly
perform better than statistical techniques. Moreover, all researched techniques lead to similar
results.

A final interesting aspect is whether one of the techniques consequently underclassifies or over-
classifies counterparties. This is depicted in the five charts of figure 8.5. Each bar is 100% of the
counterparties in a certain rating class. The blue portion is the percentage of overclassified coun-
terparties, green indicates correct classification, and the red part of the bar gives the percentage
of counterparties that has been assigned to a lower rating than their actual rating. The charts of

32/6 (two classes) of 80% (train data) of 1147 (number of observations) gives approximately 300 observations.
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the regression and support vector machine implementations behave as expected, but we can easily
see that mra consequently overestimates the ucr of counterparties. The designers of the model
have probably on purpose initiated the mra model to overestimate ratings. The account manager
is given plenty of opportunities to downgrade a counterparty according to his insights, but he can
hardly upgrade an initial ucr from mra. We can therefore not conclude the overestimation is an
error; it is merely a design choice.

Table 8.7 — Comparison of the best performing classifiers

(a) Performance indicators

Rank Data set
# pcc pcc-1

τ Γ
vars test (train) test (train)

3 linreg 62 38.8% (36.5%) 79.7% (83.0%) 0.44 0.65
2 logreg 16 40.9% (40.3%) 78.4% (80.3%) 0.46 0.66
5 ls-svm (1) 62 38.4% (80.2%) 75.0% (85.1%) 0.43 0.62
4 ls-svm (2) 62 38.8% (42.2%) 75.0% (84.8%) 0.43 0.62
1 mra 62 43.1% (42.0%) 76.7% (73.2%) 0.48 0.69

(b) McNemar values (p values between parentheses)

linreg logreg ls-svm (1) ls-svm (2) mra
linreg 0.4 (53%) 0.0 (91%) 0.0 (100%) 0.9 (33%)
logreg 0.4 (51%) 0.4 (55%) 0.3 (57%)
ls-svm (1) 0.0 (90%) 1.5 (23%)
ls-svm (2) 1.1 (29%)
mra

linreg: linear regression on logit(pd), full scores set, all
logreg: ordinal logistic regression, reduced scores set, optimised
ls-svm (1): all-pairs ls-svm (rbf kernel) with robust tree decoding,

full scores set
ls-svm (2): succeeding-against-preceding ls-svm (rbf kernel) with lo-

gistic regression decoding, full scores set
mra: original mra, i.e., without the proposed changes from sec-

tion 6.4
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8.4 Evaluation 75

1/2 3+ 3 3− 4 5/6
0

20

40

60

80

100

UCR

cl
as

si
fie

d 
(%

)

(a) linreg

1/2 3+ 3 3− 4 5/6
0

20

40

60

80

100

UCR

cl
as

si
fie

d 
(%

)

(b) logreg

1/2 3+ 3 3− 4 5/6
0

20

40

60

80

100

UCR

cl
as

si
fie

d 
(%

)

(c) ls-svm (1)

1/2 3+ 3 3− 4 5/6
0

20

40

60

80

100

UCR

cl
as

si
fie

d 
(%

)

(d) ls-svm (2)

1/2 3+ 3 3− 4 5/6
0

20

40

60

80

100

UCR

cl
as

si
fie

d 
(%

)

(e) mra

Figure 8.5 — Percentage correctly classified per notch (blue: overclassified, green: correctly classified,
red: underclassified)

8.4 Evaluation

We have achieved a similar classification accuracy in linear regression, logistic regression, svms,
and mra. In chapter 3, however, we have seen that support vector machines can significantly
outperform other techniques like linear and logistic regression. Section 3.3 indicated why our
research peers achieve such high results with svms. The fifteen-class problem of Van Gestel et al.
(2003) proved to be an eight-class problem in practice. The most important aspect, however,
is the biased ‘out-of-sample’ test sets that are used by both Van Gestel et al. and Huang et al.
(2004). Support vector machines that in practice overfit the data now seem to give good results.
The neural networks suffer from the same biased test set and will give unreliably high prediction
accuracies as well.

A comparison with research peers does thus not give a correct view of our results. A classifier
that randomly assigns classes to objects is expected to give a prediction accuracy of approximately
17%. Compared to this number, the accuracy of both our models and mra, which is around 40%,
is reasonable. If we focus on the percentage correctly classified within 1 notch, however, our models
perform around 80%, where a random classifier would only correctly classify 44%4.

The results of our two svm techniques that take the ordinal character of the credit rating
problem into account, are promising. The logistic regression decoding consequently outperforms
Hamming decoding, often even significantly. Our robust tree decoding leads to results that are
similar to the majority voting algorithm, where we had expected that the former would outperform
the latter. It would be interesting to research whether the robust tree algorithm performs better
on an ordinal data set that is easier separable. We still feel that incorporation of the ordinal
nature adds value to the classifier, although we cannot prove it with our results.

A remarkable other aspect that we have discussed is the extreme high classification accuracy
in the train set compared to the test set. The all-pairs schemes achieve training classification
accuracies of 50–80%, indicating that the classifiers are highly overtrained. We have experimented

4Due to the uniform distribution of patterns among the classes, the probability is given by the sum of the
probability per class, divided by the number of classes: 1
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with regularisation to improve the out-of-sample accuracy, with limited success. More research
is required to improve this out-of-sample accuracy; we think that a better alignment of the train
and test accuracy results in a classifier that can let support vector machines outperform regression
techniques. For this means, we could consider a different way to determine the hyperparameters
of the model, such as Bayesian methods (Suykens et al. 2002).

A number of other actions can improve our svm results. We have used the least squares variant
of svms that does not give a sparse solution. We could either experiment with regular support
vector machine approaches, or apply a pruning technique to improve sparsity (Suykens et al. 2002).
Other future work lies in the design of the classifiers. Both our robust tree and logistic regression
decoding schemes depend on the latent variables of the classifiers. Hastie et al. (1998) discuss a
way to calculate posterior probabilities for the classes out of these latent variables. This might
prove to be a valuable extension to the proposed decoding techniques.



Chapter 9

Conclusion

In the introduction we stated our project goal: assess the performance of the present corporate
credit rating model. This report has provided the requested assessment, and tackled it in a three-
tier approach:

1. Review of the status quo

2. Design and implementation of a new credit rating system

3. Comparison with mathematical and artificial intelligence techniques

First we will discuss the achievements, and we will conclude our report with suggestions for future
work.

9.1 Achievements

Status quo

We have examined both the current system and the current model. The present rating system
(mra) poses several disadvantages. The most important drawbacks regard transparency, data
storage, response speed, and flexibility. We have solved the data storage issues, but the remaining cf. 5.1

aspects demand the development of a new credit rating system.
Aside from the system, the model has been reviewed as well. The rating model that is currently

in use at abn amro is regarded as a grey box by users and model owners. We are the first to
reveal the assumptions on which the model is based. Hence, we can prove that several of the cf. 6.1

mathematical fundamentals of the model are invalid. Several recommendations are stated to
improve both the theoretical correctness and the transparency of the model. cf. 6.4

New rating system

We have designed and implemented a new rating system that overcomes the disadvantages of
the current rating system. This system has originally been designed for stress testing and model cf. 5.2

tuning purposes, but is the starting point for the move to a different model as well. The current
model has successfully been redesigned and incorporated into our new system. The new system cf. 6.2

improves the response time by over 99.7%. Hence, it is suitable for both stress testing and model
tuning. Due to its object-oriented nature, the model can easily be extended with more statistically
underpinned models. Proper documentation that is easily browseable ensures the transparancy of
our system.

We can conclude that the new system can safely replace the existing rating system. Both a
stress testing tool and a parameter estimation tool can be built on top of it.1 Moreover, the system

1Both tools have been implemented by abn amro colleagues in the spring and summer of 2005.
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can be incorporated in the generic abn amro rating framework grace, and replace the current
system.2

Benchmark with mathematical and AI techniques

Research peers have applied several statistical techniques to the credit rating problem, of which
logistic regression and support vector machines are the most promising. We have implementedcf. 3

both these techniques, and have included linear regression as well. In our research we have focused
on incorporation of the ordinal character in support vector machines. Two new approaches are
introduced: a hybrid support vector machine and logistic regression implementation, and a robust
tree decoding technique that takes ordinality into account. Both techniques are compared withcf. 7

the variants that do not utilise the ordinal character, and to all other techniques as well, including
the current model.

Both the regression techniques and our proposed support vector machine approaches achieve
classification accuracies that are similar to the present credit rating model: around 40%, and
around 80% if we allow for a 1-notch error. There is no statistical difference between the differentcf. 8.3

techniques. We can thus conclude that the present rating model performs in line with (proven) sta-
tistical techniques. All our models, both the existing and the newly proposed ones, underperform
compared to the results of research peers. We have shown, however, that their results are based
on highly biased test sets, resulting in overestimated prediction accuracies. A fair comparison ofcf. 3.3

results is therefore impossible.
We have seen that the statistical models that are based on the scores, i.e., variables that have

been transformed using expert data, consequently outperform the models with regular inputs.cf. 8.3

In this way expert knowledge adds value to the different rating systems, both to mra and to
statistical models.

Our support vector machine implementations are highly overfit on the train data, despite our
attempts to reduce the train set accuracy and improve the out-of-sample accuracy. We think this
is caused by the complexity of the data; especially the large overlap between the rating classes.
Support vector machines were originally designed for separable problems. Modifications allow for
some misclassification errors, but might not be able to cope with the large overlap in our problem.
The exact cause of the overtraining, however, merits further research.

The results of our ordinal extensions to the support vector machines are promising. The hybrid
support vector machine and logistic regression approach consequently outperforms its non-ordinal
variant. Our robust tree decoding algorithm achieves results that are similar to majority voting,
which is its non-ordinal variant.

9.2 Recommendations

Our credit rating system can safely be integrated into the existing abn amro credit rating frame-
work. As an intermediate solution, a new version of the existing model can be used, in which
our recommendations have been applied. When more data of better quality has become avail-
able, abn amro can choose to move to a model that is partly based on statistics and/or artificial
intelligence.

There are several possible options to improve our support vector machine approaches in such
a way that there is less overfitting and a better out-of-sample performance. We have speculated
about the causes of the overfitting, but have not given any proof. First we should try and find
whether our speculations hold. This will indicate the most promising directions for improvements.

Aside from the overtraining problem, it would be interesting to include posterior probabilities in
both our ordinal support vector machine techniques. But most importantly, our ordinal extensionscf. 8.4

to support vector machines should be tested on other ordinal problems. Our research only revealed
a glimpse of their characteristics.

2abn amro has decided to implement this recommendation and expects to have our system in place in December
2005.
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Appendix A

Financial background

A.1 Financial statement

A.1.1 Balance sheet

The balance sheet is the company’s basic financial statement. It reflects the value of the company’s
assets, liabilities, and the equity at a specific point in time (the date of the balance sheet).

Table A.1 — Balance sheet

Assets Liabilities

Net fixed assets Equity
Financial investments Reserves
Other non current assets + Retained earnings +

Net worth
Fixed assets Net intangibles -/-

Tangible net worth
Total inventory Subordinated debt
Accounts receivable Minority interest +
Other receivables
Cash/bank deposits + Own and associated means

Current assets Long-term provisions
Long-term debt +

Long-term liabilities

Short-term provisions
Accounts payable
Short-term bank debt
Other short-term debt +

Short-term liabilities

Total assets Total liabilities and own means
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A.1.2 Profit and loss account

The profit and loss account is compiled at the end of the fiscal year (or another accounting period)
to show gross and net profit or loss.

Table A.2 — Profit and loss account

Turnover/sales
Cost of goods sold -/-

Gross profit/loss
Salaries and wages -/-
Other expenses -/-

EBITDA
Depreciation and amortisation -/-

EBIT
Interest and other financing charges -/-

Net operating profit/loss
Extraordinary gains/losses +/-

Profit/loss before tax and minority interest
Taxation -/-
Minority interest -/-

Net profit/loss

A.1.3 Cash flow statement

Fundamental to the lending decision is an assessment of the borrower’s ability to service and repay
the debt as scheduled. The cash flow statement shows the borrower’s ‘free’ operational cash flow,
which will be available for debt service.

After taking the net profit/loss directly from the profit and loss account, the cash flow state-
ment is sensitised for both cash content (by eliminating non-cash items) and sustainability (by
eliminating non-operational items). The financing costs are added back in order to assess the cash
available to cover the total financing charges. Finally, the impact of the asset conversion cycle is
taken into account: shifts in total inventory, accounts receivable and accounts payable.

Table A.3 — Cash flow statements

Net profit/loss
Depreciation and amortisation +
Interest and other financing charges +
Extraordinary gains/losses -/+
Book gains/losses in asset sales -/+
Minority interest +

Funds from operations
Change in total inventory +/-
Change in accounts receivable +/-
Change in accounts payable +/-

Net operating funds flow (NOFF)
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A.2 Financial ratios

Table A.4 shows the ratios that are used throughout this report. The formula inputs can be found
in appendix A.1.

Table A.4 — Financial ratios that are chosen as model inputs

Ratio Formula

Gross profit margin Gross profit/loss
Turnover

Operating profit margin Net operating profit/loss
Turnover

Annual turnover growth Turnoveryear i − turnoveryear i−1

Turnoveryear i−1

Return on capital employed ebit
Total debt + net worth + minority interest

Current ratio Current assets
Current liabilities

Quick ratio Current assets − total inventory
Current liabilities

Debtor days Accounts receivable × 365
Turnover

Stock days Total inventory × 365
Cost of goods sold

Creditor days Accounts payable × 365
Cost of goods sold

Gearing ratio Total debt
Tangible net worth

Equity ratio Own and associated means
Total assets

Interest coverage ratio ebit
Interest expense

Total debt to ebitda
Total debt
ebitda

noff to financing charges noff
Interest and other financing charges



86 Financial background

A.3 Corporate credit ratings equivalents

Both Standard & Poor’s Corporation (S&P) and Moody’s Investor Service (Moody’s) are credit
rating agencies that assign ratings to bond issuers and bonds themselves. These ratings are
publicly available. abn amro uses its own internal rating system: the Uniform Counterparty
Rating (ucr). Table A.5 shows their external rating equivalents.

Table A.5 — Corporate credit ratings equivalents

UCR S&P Moody’s Grade

1


AAA Aaa

Investment grade

AA+ Aa1
AA Aa2
AA− Aa3

2+ A+ A1
2 A A2
2− A− A3
3+ BBB+ Baa1
3 BBB Baa2
3− BBB− Baa3
4+ BB+ Ba1

Non-investment grade
or high-yield

4 BB Ba2
4− BB− Ba3
5+ B+ B1
5 B B2
5− B− B3

6+


CCC+ Caa1
CCC Caa2
CCC− Caa3

CC Ca
C C
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Data collection and cleaning

This appendix describes the data collection and cleaning process. The sections can be best read
with section 1.5 concerning the credit rating process in mind.

B.1 Data collection

Recall from section 1.5 that rapid is the credit proposal system. A credit proposal contains a
proposed ucr and a Corporate Rating Sheet pdf document. None of the input variables to derive
the initial ucr is provided to rapid.

To keep track of history, abn amro stores all approved credit proposals into a historical
database named ird. The moment that an approved ucr is provided to rapid, the credit proposal
data will be stored into this database. Unfortunately the inputs to derive the initial and proposed
ucr are not fed to the rapid system and thus not be available to the ird system. Only the far
from complete Corporate Rating Sheet is attached to a credit proposal, saved in the practically
unreadable pdf-format. For validation, research and model development purposes we will need to
connect the mra inputs to approved ucrs.

The data collection task was two-fold:

• Implement a procedure to automatically include the storage of model inputs in ird

• Retrieve data as from January 2004

A logical solution for the first task would be to let all input data automatically flow from mra
into rapid. This would however be a very expensive approach that required comprehensive rapid
changes. We have chosen an approach that would only affect the data feed to ird: when a ucr is
approved, the corresponding input data is retrieved from the mra database and stored into ird
together with the rapid data. We formed a team of both business and it people to design and
implement this procedure, which is referred to as the Bridge. This procedure came into production
in November 2004.

Our secondary goal was to include historical ucr information as well. Before January 2004, all
rating data was only stored on the local machines of account managers. It is therefore infeasible to
retrieve this rating data. The present mra system however stores the data for each counterparty
centrally.

B.2 Data cleaning

The historical database eventually contained 3,059 counterparties. This data set is however highly
polluted. The step-by-step removal process is given in table B.1. At first we have removed the
counterparties that have a non-valid ucr ‘X’ or are in default (ucr 6, 7, or 8). The latter
counterparties are rare.
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Table B.1 — Data cleaning

All scores in ird 3059
Approved ucr is X, 6, 7, or 8 453

2606
Multiple ucrs for same borrower 597

2009
Higher ucr due to group support 303

1706
Various errors 195

1511
No country or industry score 171

1340
Unanswered subjective questions 138

1202
Not same output 55

1147

Counterparties should be rated at least once a year, but possibly (and preferably) more often.
ird might therefore contain multiple approved ucrs for the same borrower. In theory it would
be very useful to have different approved ucrs based on similar but different underlying data. In
practice, however, multiple ucrs are often based on the exact same underlying data, for we only
have a one-year time window, and only annual financial statements are used. Including multiple
ucrs for the same counterparty would thus create a bias in the data set. Aside from the bias,
many pattern recognition techniques cannot handle different ys for the same x. We have removed
all but the most recent approved ucr of a borrower.

Many counterparties are subsidiaries of a larger group. The parent company of a subsidiary
frequently gives a form of guarantee to a bank, in order to negotiate lower interest fees for the
subsidiary. The approved ucr of the subsidiary will now be better due to ‘group support’. It will
no longer reflect the borrower’s own strength. ucrs that have been promoted because of group
support have been deleted from the data set.

The financial statements are manually entered by account managers and therefore subject
to many errors. Some annual financial statements cover one month, where twelve months are
expected. Presumably the account manager meant one year instead of one month. Another
error is easily made when selecting the ‘previous’ statement, i.e., the statement that a statement
reconciles to. This will usually be the statement of twelve months earlier, but strange other
statements have been selected. These have been covered under ’various errors’.

Some variables appear on the Corporate Rating Sheet and are thus unlikely to be omitted.
This holds for country scores, industry scores and answers to subjective questions. When one or
more of these fields are left empty, the counterparty has been removed from the data set.

In chapter 6.3 we describe a model that should produce similar ucrs as the current mra
version. As we see in this chapter, this new model gives the same ucr in 96% of all cases. The
remaining 4% is caused by inpredictable actions of mra, usually because of the denominator of
Interest Coverage Ratio being zero.

In the end we have 1,147 customers with relatively clean data. Figure B.1 shows the sample
structure by ucr class. The rating mix looks consistent with the European market, where spec-
ulative grades are rather uncommon and only a small minority of all rated companies receive top
investment grade levels (Resti 2002).
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Figure B.1 — ucr distribution: complete versus cleaned





Appendix C

MRA model

*

*

*

*

1

1

*

1
1

Parameters

Parameters()

(from Virtual structure)
Scores

Scores()
AddCustomerScore()
AddMultipleCustomerScores()

(from Virtual structure)
CustomerScore

ucr : string

CustomerScore()
CalcTrend()
CalcVolatility()
CalcPercentile()
CalcRawValue()
GetUCR()

(from Virtual structure)

MRAParameters
ratioCombinationVotes : vector<Votes*>
subjectiveCombinationVotes : vector<Votes*>
combinationVotes : vector<Votes*>
ratioAnalysisCombinationVotes : vector<Votes*>
ratioAnalysisCombinationPercentages : vector<vector<double> >
ratioAnalysisAssessmentVotes : vector<vector<ValueVotePairs*> >
subjectiveBucketSizes : vector<int>

MRAParameters()
GetCombinationVotes(int assessmentID) : Votes&
GetRatioCombinationVotes(int ratioID) : Votes&
GetSubjectiveCombinationVotes(int subjectiveID) : Votes&
GetRatioAnalysisCombinationVotes(int assessmentID) : Votes&
GetRatioAnalysisCombinationPercentages(int assessmentID, int ratioID) : double
GetRatioAnalysisAssessmentVotes(int assessmentID, int ratioID) : ValueVotePairs&
GetSubjectiveBucketSize(int subjectiveID) : int
Set...Votes(...) : void

MRAScores

MRAScores(Knowledgebase&, MRAParameters&)

Knowledgebase
(from Virtual structure)

Main
(from Virtual structure)

CustomerPortfolio
(from Virtual structure)

MRACustomerScore
RatioScores : vector<vector<Assessment> >
SubjectiveScores : vector<Assessment>
HighLevelScores : vector<Assessment>

MRACustomerScore(Customer&, Knowledgebase&, MRAParameters&)
CalculateRatioScores() : void
CalculateSubjectiveScores() : void
CalculateOverallScore() : void

Customer

Customer()
GetCustomerID()
GetScoreID()
GetCustomerName()
GetRatios()
GetSubjective()
GetCountriesOfResidence()
GetCountriesOfSales()
GetIndustries()
Set...()

(from Customers)

Figure C.1 — uml diagram of the mra model
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