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Abstract

Every native speaker can hear the difference between (English) sibject and
subjéct or between (Dutch) voorkémen and vdorkomen. Human listeners use
lexical stress for segmentation and disambiguation. However, lexical stress is
not normally modelled in automatic continuous speech recognisers. In this work
it is modelled how lexical stress can be used in a speech recogniser. Though
earlier efforts have not modelled stress for consonants, they appear to contain
stress information as well. Furthermore, different spectral features are needed
for different phonemes.

A baseline speech recogniser for Dutch and one that uses lexical stress infor-
mation are trained. The stress-enabled recogniser’s word error rate is lower by
2.6 %.
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Orthography

Literature about automatic speech recognition sometimes uses acronyms, appar-
ently because authors wish to save trees or key strokes. The latter argument is
obsolete; the former is better served by using another typeface or point size, or
a smaller leading. I will therefore solely use understandability as a criterion for
abbreviating terms. ASR for Automatic Speech Recognition does not pass this
criterion. On the other hand, I trust the opaqueness to the general reader and
the familiarity to the specialist reader will warrant the use of HMM (for Hidden
Markov Model), MFcC (for Mel-Frequency Cepstral Coefficients), and Lpc (for
Linear Predictive Coding).

The dialects used in phonemic examples are ABN (Algemeen Beschaafd Ne-
derlands, the prestige dialect of the Netherlands) and rRP (Received Pronun-
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ciation, the prestige dialect of Great Britain), unless noted otherwise. The
conventions used for the transcriptions are shown in appendix A on page 85.



Cbapter 1

Introduction

Substantives should be wrote with a Capital Letter.
Daniel Fenning, The universal spelling-book

The first edition of Daniel Fenning’s highly successful spelling book appeared in
1756. In the beginning of the eighteenth century English printed prose had come
to use capital letters for virtually all nouns (“substantive Nouns” or “Substan-
tives”, as Fenning calls them), just like in present-day German. Writers would
introduce an initial capital for any noun “if it bear any considerable Stress of
the Author’s Sense upon it”. Their printers needed to deal with increasing, and
sometimes haphazard, use of capitals in manuscripts; the result was that all
nouns were capitalised. When after 1750 “the ‘extra’ initial capital had become
merely a marker of word-class” (Osselton 1984), and thus fully predictable, it
was dropped again (Osselton 1985). How come Fenning recommends initial
capitals for nouns even in his 13th edition (Fenning 1770)?

Table 1.1 reproduces a table from this book that contains pairs of words “of
the same Sound but of different Signification” and different stress patterns, as

Table 1.1 Table XX from Fenning (1770, p. 60). The initial capitals
on nouns are meant to set them apart from the verbs and render visible
the differences in the stress patterns. The acutes are after rather than on
capitals. ‘Rebel’ without an acute and ‘presén’ without a ‘t’ are supposedly

mistakes.
A’bsent To absént A Minute mintite
An  A’ttribute To attribute An  O’bject To objéct
Atgust August A Présent To presén
A Collect To colléct A Project To projéct
A Coémpact To compéact A Rebel To rebél
A  Compound To compotnd A Récord To record
The Confines He confines Reéfuse To reftse
A Conduct To condict A Subject To subjéct
A Désert To desért A Toérment To  tormént
A Férment To fermént An  U'nit To unite
Fréquent To frequént




CHAPTER 1 INTRODUCTION

shown by the acutes “. That they form different parts of speech, which is audible
when they are pronounced, is shown in writing: nouns start with a capital. In
other words, schoolchildren are told to capitalise their nouns to differentiate
between stress patterns. This makes for an easier understanding of the text.

Even though the current-day orthography of languages like Dutch and En-
glish does not show lexical stress (word stress, as shown in a dictionary), the
stress pattern is important for understanding the syntax and semantics of speech.
Some examples are:

(1) English récord (n.)—recérd (v.)
English portrait — portrdy
Dutch dvervallen ‘robberies’ (n.)— overvdllen ‘to rob’ (v.)

(2) English shorthand — short hdnd
Dutch danbod ‘offer’— aan béd ‘first in line’

(3) English trdsty — trustée
English thirty — thirtéen
English digréss — tigress
Dutch vdorkomen ‘happen’—voorkémen ‘prevent’
Dutch avontiur ‘adventure’ — dvonduur ‘evening hour’
Dutch Sérvisch ‘Serbian’— servies ‘tea-set’

Fenning’s examples and those in (1) show how word classes for semantically
related words may be signalled by the stress pattern. In (2) the spelling (word
division) changes to form a different meaning depending on the stress pattern,
though the pronunciation is otherwise the same. (3) has orthographically and
phonemically similar words with different stress patterns and meanings, often
because one is morphologically simplex and on complex. The pairs that are so
similar phonemically that the stress pattern may be vital for telling them apart.

I.I Human speech perception

Different languages have different ways of pronouncing and using stress. Ger-
manic languages, such as English and Dutch, are stress-timed languages: the
time between stressed syllables is roughly the same. In languages like French
all syllables are evenly distributed over time; these languages are called sylla-
ble-timed (Ewen and van der Hulst 2001, p. 206). According to Jespersen (1952),
Germanic languages stress the important parts (the root of lexical words), while
there are languages “whose traditional stress rests or may rest on other syllables
than the root”.* I will consider stress in Germanic languages only, and focus
on Dutch and English. How regular is stress assignment in those languages?
Collins and Mees (1999, p. 230) say that in certain languages

the stress falls overwhelmingly on a syllable in a particular position
in the word (positional stress). For instance, in Czech and Slovak
the stress is regularly on the first syllable. In many languages, it is
on the penultimate (last but one) syllable, e.g. Italian, Welsh and

*The root is the element that carries the main component of meaning in a word. Affixes
or inflectional endings can be attached to it.



1.1 HUMAN SPEECH PERCEPTION

Polish. Some languages have stress on the final syllable, e.g. Farsi.
In certain languages, e.g. French and many Indian languages, e.g.
Hindi, Gujarati, native speakers do not appear to consider stress of
significance. For instance, in French, although the tendency is for
the word in isolation to have stress on the final syllable, this is often
shifted to other syllables in connected speech.

In English and Dutch, stress behaves in none of these ways.
Stress is not easily and regularly predictable (an effect which may
be termed dynamic). On the other hand, it is of importance to
the word shape, and is not (as a rule) shifted from one syllable to
another in connected speech. Consequently, we may say that for En-
glish and Dutch, and many other languages (e.g. Frisian, German,
Russian, Danish, Spanish), stress is usually fixed for each word, but
may occur on any syllable. Furthermore, in these languages, stress
is of paramount importance to the native speaker in determining the
meaning of the word.

Germanic used to have stress on the first syllable of the root. Though English
and Dutch now have a stress assignment rule that works backwards from the last
syllable (see section 2.1.1.1 on page 10), they have a general tendency to stress
the first syllable of words, inherited from Germanic. Harley (2001, p. 221), in a
book on psycholinguistics, describes how speakers use this for speech perception.

[S]trategies that we develop to segment speech depend on our ex-
posure to a particular language. Strong syllables bear stress and
are never shortened to unstressed neutral vowel sounds; weak sylla-
bles do not bear stress and are often shortened to unstressed neutral
vowel sounds. In English, strong syllables are likely to be the ini-
tial syllables or main content-bearing words, while weak syllables
are either not word-initial, or start a function word (Cutler and But-
terfield 1992; Cutler and Norris 1988). A strategy that makes use
of this type of information is called the metrical segmentation strat-
egy. It is possible to construct experimental materials that violate
these expectations, and these reliably induce mishearings in listeners.
For example, Cutler and Butterfield described how one participant,
given the unpredictable words “conduct ascends uphill”® presented
very faintly, reported hearing “The doctor sends the bill”, and an-
other “A duck descends some pill”. The listeners have erroneously
inserted word boundaries before the strong syllables and deleted the
boundaries before the weak syllables. This type of segmentation
procedure, whereby listeners segment speech by identifying stressed
syllables, is called stress-based segmentation.

It appears that English-hearing infants have already learned to associate
stressed syllables with word onsets at the age of seven months (Thiessen and
Saffran 2003). Native speakers of Dutch appear to use the stress pattern to
discriminate between words more than native speakers of English do, even when
listening to English words. For example, when hearing the beginning of a word
octo-, Dutch listeners will decipher whether it is octd- or dcto- and reconstruct
october or octopus, respectively (Cooper et al. 2002).

2Note that two of the three words have a Romance (i.e. non-Germanic) origin. [RvD]
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Though word segmentation and discrimination are major problems for cur-
rent-day automatic speech recognisers, they do not recognise nor use stress. If
the importance of lexical stress has been known since the eighteenth century, and
psycholinguists have shown that listeners first identify stressed syllables to seg-
ment speech, why do automatic speech recognisers not even contain the notion
of a ‘stressed syllable’? This is probably because it is perceived as difficult to
recognise stress, as it does not have one clear acoustic correlate (Sluijter 1995).
Also, the literature on speech recognition often uses the English language, while
Dutch apparently uses stress for discrimination as well. Furthermore, many
speech recognition systems try and convert speech into text, and as we have
seen, stress patterns have not been encoded in writing since over 200 years ago.
That should not be an excuse, however: (4a) and (4b) differ both in stress
pattern and spelling.3

(4) a. Wanneer komt dat aan bod?
[azm'bot]4

When  comes that first in line?
‘When will that be discussed?’

b. Wanneer komt dat aanbod?
['azmbot]
When  comes that offer?
‘When will that offer come?’

Current speech recognition systems typically assume that speech consists
of just a concatenation of phonemes®. They do not use the properties of the
syllable as a whole. An automatic speech recogniser tries and find the sequence
of words (and thus the sequence of phonemes) that best matches what it hears.
Thus, a speech recogniser may mistake (5a) for (5b).

(5) a. In Africa, one can meet a lion face-to-face!
[o'laron]

b. In Africa, one can meet alien face-to-face!
['erlion]

The fact that the difference in stress placement between a lfon and dlien is
overlooked is unfortunate. It means that information that is encoded in speech
is not used for recognition —and we are talking information that can be found
in every dictionary, not something exotic or overly difficult to formulate. This
information may not be strictly necessary to recognise what is said (as in the
a lion — alien case) but humans encode the message in various channels to ensure
the message gets across. This redundancy appears to be very much intertwined
with prosodic structure (Aylett 2000), of which lexical stress is a part. Not using
information from speech in a speech recogniser while the information is there

3Aan is a clitic that attaches to bod to form a prosodic word (Booij 1999), so the two
sentences can be compared. See section 5.7 on page 62 for more information.

4 Phonetic transcriptions are delimited by square brackets []. A stress mark ' is put in front
of a stressed syllable. See Collins and Mees (1999) for the conventions of phonetic notations
of English and Dutch.

5 Phonemes are the smallest units of sound speakers are aware of. Hor and hoor contain a
phonemic difference (/hor/ vs. /howr/). Lel /lel/ has the same phoneme, /1/, twice, but with
different realisations, which are called allophones.



1.2 DEFINITIONS

and humans do use it is hardly recommendable considering the deplorable state
speech recognition is in, especially when compared to the dazzling foresights
science fiction writers and technological experts alike (e.g. Baker 1975) have
provided us with.

1.2 Definitions

Linguistic terms in the area of prosody often have different meanings. This
actually means that terms used interchangeably by some are used with totally
different meanings by others, and their meanings may be swapped by even
other authors (the terms prosody and intonation come to mind). I shall use a
demarcation that is more or less common in the field of research I am interested
in: the following definitions are from Ladefoged (1975) or based on a linguistic
tradition (Sluijter 1995; Ladd 1996).

Prosody Speech attributes that are not bound to phonemes.

Pitch The auditory property of a sound that enables a listener to place it on a
scale going from low to high, without considering the acoustic properties,
such as the frequency of the sound.

Fundamental frequency (or Fj) The acoustic correlate of pitch.

Intonation The pattern of pitch changes that occur during a phrase, which
may be a complete sentence.

Accent A kind of prominence that accents semantically important words in an
utterance, the main acoustic correlate of which is usually described (e.g.
Bolinger 1986) as a pitch peak. An example in writing: “I didn’t drown
his hamster; I drowned his cactus!”.

Stress The use of extra respiratory energy during a syllable. In utterances of
more than two syllables multiple levels of stress may be distinguished.

Lexical stress Word stress. This makes the difference between subject and
subjéct; it is what this work is about.

1.3 Scope

There is much more to prosody than just lexical stress. However, the word level
is consistently defined in phonological theory and automatic speech recognition
practice alike. Speech recognisers have a list of words called the lexicon from
which the words to be recognised are taken. Linguistic theory assumes a similar
lexicon from which words are extracted with their stress pattern specified to
form phrases when speaking. This work will not take into account higher-level
phenomena than lexical stress, such as phrase stress and accent. This is for two
reasons.

The first is the lack of knowledge about the sentence structure during recog-
nition. For recognising stress on a phrase level, it must be known what parts of
speech are concatenated and how these interact (see section 2.1.1.2 on page 12).



CHAPTER 1 INTRODUCTION

This requires knowledge about the syntax to be available during recognition,
i.e. when the words are not yet known. Knowledge about word stress, on the
other hand, may be built into the lexicon, a tool that is available in every typical
speech recognition system.

The second is the lack of a theory about the phonological level. Kompe
(1997, p- 109), trying to use intonation in a dialogue system, uses the “form”
of the pitch contour to directly find its “function” (“a rising contour indicates
a question”). However, this may be an oversimplification. Ladd (1996, p. 19)
thinks that efforts to find things like the physical or auditory cues to question
intonation while skipping the phonological level are misguided. It would be
like studying the “physical cues to properties like plurality or verb aspect or
negation —it seems obvious that it would be pointless to do so”.

Many aspects of human speech come together in prosody. Phonologically,
phrasal stress rules take lexical stress and prosodic phrase structure and produce
difference in relative prominence (see section 2.1.1.2 on page 12). Semantics
interact with this: words can be accented and thus be made more prominent as
well. Syntactic structure is important for both, but the mapping from syntactic
to prosodic structure is not straightforward (see section 5.7 on page 62 for an
example). A comprehensive theory taking in all these aspects is necessary for a
full account of lexical stress.

This overarching theory is yet to be found. Taglicht (1998) shows that for a
satisfactory account of the interaction of syntax and phonology it is necessary to
introduce “syntactic constraints on intonational phrasing”. Hyde (2002) proposes
a new theory to account for the interaction of stress and metrical structure.
From a more psychological viewpoint, Port (2003) finds a “perceptual ‘beat’ that
occurs near the onset of vowels” and suggests “a phonological grammar should
probably be built on top of this sloshy, dynamical timing system”. It seems that
a proper model of intonation needs to derive from a phonological description of
intonation, derived from a morphological description, which in its turn needs to
derive from a syntactic description. A metrical system probably interacts with
it. None of these are already well enough defined and comprehensive enough to
be used in a computerised recognition system.

Though we know in advance that the contents of the lexicon cannot fully
account for stress, let alone of the whole area of prosody, we do know that lexical
stress has a set of acoustic correlates (Sluijter 1995). Recognising lexical stress
should be a major first step in recognising phrasal stress. Though much variance
from factors that cannot yet be modelled is expected, future linguistic research
will make the intonation part easier to separate from the stress part. To cope
with the variance now we shall use probability functions, as is usual in speech
processing.

1.4 Research questions

If lexical stress information should be an important subject of research in speech
recognition, where to start? First, we must find out how stress is realised acous-
tically. It is not straightforward, however, to implement in a computer system
a comprehensive set of rules for all subtleties of stress. It should however be
possible to model at least the basics of lexical stress.

6



1.4 RESEARCH QUESTIONS

Question 1 What are the acoustic correlates of lexical stress?

Even with a good qualitive description of the acoustic correlates of stress—
and even with a quantitative description to match it—it may not be obvious
how to convert lexical stress information in the speech signal into the best form
for automatic recognition. The representation should consist of few values and
contain as little noise as possible.

Question 2 How can the acoustically coded stress information be extracted from
recorded speech and be represented as feature values?

Computers can take into account only a finite number of possibilities in
finite time. This has led to a number of simplifying assumptions represent-
ing a trade-off between recognition accuracy and feasibility. Such assumptions
are found in the probability functions used by Hidden Markov Models (see sec-
tion 2.2.3 on page 26). These model the phonemes in most of today’s speech
recognition systems and are used in this work as well.

Question 3 How can lexical stress data best be processed using the technology
at hand — Hidden Markov Models?

As noted, current-day speech recognition systems do not take syllables into
account. This may be a problem since lexical stress is specified per syllable.

Question 4 How can lexical stress information from the segments in one sylla-
ble be integrated?

Even if lexical stress is recognised correctly in an overwhelming majority of
cases, it will not necessarily improve overall recognition. For example, minimal
pair recognition (think subject — subjéct) may improve while confusion between
phonemes and words increases.

Question 5 What influence does automatic lexical stress recognition influence
have on what is recognised? To what extent can it theoretically help recognition?
Does it help recognition in practice?

It has already been hinted that current speech recognition technologies may
limit the implementation of lexical stress recognition. Hidden Markov Models
and search algorithms (see section 2.2.4 on page 27), if reasonable for everyday
speech recognition, may pose such constraints on a speech recogniser that make
the recogniser incapable of capturing the acoustic properties of stress to their
full extent. Thus, it might be rewarding to look into new technologies that
better suit lexical stress recognition and can be used in the future.

Question 6 What speech processing technologies may in the future be used to
integrate lexical stress information into speech recognisers?
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1.5 Operational

Answering the research questions in section 1.4 requires looking into the phonol-
ogy and acoustics of stress, and the relevant properties of speech recognisers. I
will take the following steps:

e Identify the properties of lexical stress, both phonological and acoustic,
from the literature. Find the features of lexical stress that can help au-
tomatic speech recognition from the literature. Test whether these are
also found in continuous speech corpora; find out how they can best be
represented in a speech recognition system. This will require modelling
how lexical stress can be mapped onto speech recognition building blocks.

e Identify a subset of lexical stress-related speech recognition techniques to
model lexical stress within the given constraints. Implement these in a
speech recogniser and test it to whether recogition improves.

e Identify what can not yet be modelled and how this may be done in the
future.

Chapter 2 on the facing page goes into lexical stress and speech recognition
theory. Chapter 3 on page 31 discusses the tools that will be used for the
implementation. Chapter 4 on page 35 proposes speech recogniser models that
enable stress modelling. Chapter 5 on page 57 discusses the system that will be
built to test the hypotheses. Chapter 6 on page 69 goes into the results from the
experiments. Chapter 7 on page 79 concludes this thesis and discusses future
work.



Chapter 2

Theory

The one is the to poiein, or the principle of synthesis, and bas for its objects
those forms which are common to universal nature and existence itself; the
other is the to logizein, or principle of analysis, and its action regards
the relations oft/aings, simply as relations; considering tbougbts, not in their
integral unity, but as the algebraical representations which conduct to certain
general results. Percy Bysshe Shelley, A Defence of Poetry

Computers do not have intuitions about language. As advanced as they some-
times seem to be, they cannot work with vague descriptions of phenomena they
are supposed to spot. Uncertainty must be coded using statistical probabili-
ties. This shows in the building blocks of speech recognition as presented in
section 2.2 on page 23, which also discusses the connection between speech
recognition and linguistic sciences and some outstanding problems in relating
the two. Information on stress in linguistics can be found in section 2.1, which
discusses the actual properties of lexical stress and should be uncontroversial,
quite informal, and understandable to the non-linguist.

2.1 What is stress?

Before embarking on our journey towards the best way to make an automatic
speech recogniser use lexical stress, we have to make sure we understand what
lexical stress is.

The definition of stress from section 1.2 on page 5 indicates that stress is
relative. Lexical stress is related to syllable prominence within a word. For
example, the verb to permit and the noun a pérmit form a minimal pair*, with
the verb having stress on the second syllable and the noun having stress on the
first syllable.” It is not perfectly clear what the phonetics and acoustics of lexical
stress are. One major problem is where to draw the thin line between stress and
intonation. Conceptually, lexical stress is no more than a phonological indication
of prominence. As is indicated by the word “lexical”, the difference between to

*I.e. they only differ on one point, in this case: the placement of lexical stress.
2For the intuitive meaning of ‘syllable’ for native speakers of Germanic languages (e.g.
English, Dutch, German).
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permit and a permit is clear from a dictionary: the phonemic transcription of
the former is /po'mit/ and of the latter /'p3mmit/.3 What influence does that
have on a speech recogniser’s input? How can these vague notions be put in
more specific terms?

.1 Phonologically

Traditionally, phonetic literature does not distinguish between lexical stress and
other prosodic traits clearly. There are good reasons for this. When you want to
make a word stand out in a sentence (“It wasn’t his teacher, it was his father!”),
you use intonation by putting an accent on the word: you pronounce the word
louder and with a higher pitch. More specifically, though, the accent is on the
stressed syllable.# You do not say fathér; you say fdather. There is no specific
reason for the position of the stress mark3, other than how the word is specified
in your internal ‘dictionary’, like it is in a conventional dictionary. If you call
this internal dictionary the lexicon, as linguists do, you can call the kind of stress
indicated in the dictionary lezical stress.

Bolinger (1986) looks at sentences in which words stand out and concludes
“[t]he stressed syllable is the one that carries the potential for accent.” In other
words: a syllable may have lexical stress in the lexicon, but this abstract type of
stress is only pronounced if the word has the accent, i.e. if the word is made to
stand out in the sentence. This explains why pitch sometimes is such a reliable
cue for detecting lexical stress (the syllable has a pitch accent when the word is
accented) and is virtually irrelevant for words in unaccented positions.

Later theories (e.g. Ladd 1996) suppose there are two different categories of
prominence features, separating stress and accent. Accents are explicitly linked
to the structure of the intonation contour. Lexical stress, though interacting
with accent structure, does have acoustic correlates of its own, which arise from
differences in pronunciation such as an increase in respiratory energy, and is
defined rhythmically. This makes sense of Bolinger’s observations and at the
same time introduces the notion that lexical stress has a phonetic reality. Before
looking at the phonetic and acoustic impact of lexical stress, though, let us skim
over some of its phonological properties.

1.1 Syllables

Though the word syllable came up a number of times, no definition was given
yet. There are considerable theoretical difficulties in defining it.5 However, for
discussing stress a notion of what a syllable is must be established. The absence
of a definition so far should not have mattered much, because native speakers of
English and Dutch appear to have a quite consistent feeling for what a syllable
is. However, computers do not share these feelings. So what is a syllable??
Apparently it is a vowel surrounded by consonants. As this vowel is the centre

3According to Procter (1995). Note that /3:/ becomes /o/ when it is not stressed.

4 Accents can also be on a lexically unstressed syllable, for example in I didn’t pour milk
into my coffin, but into my coffee, but that needs not concern us here.

5No synchronic reason, at least; we are not now, however, concerned with historical
phonology.

6Some (e.g. Harris 1994) do not believe there is such a thing as a syllable.

7This explanation is based on Ewen and van der Hulst (2001).
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2.1 WHAT IS STRESS?

of the syllable, we call it the nucleus. It does not have to be surrounded by
consonants, however. Let us look at the syllabification of various words.

(1) albatross [el],[bo],[trps],
America  [0],[me]y[r1]s ko]
slender [slen], [do] s

(1) seems to suggest that indeed every vowel forms a nucleus, and the conso-
nants are pasted onto it. However, the word confusion consists of three syllables,
as any native speaker can tell, but is pronounced with two vowels only.

(2)  confusion [ken],[fjui],[31],
bottles [bo?],[tz],®

The last syllable of [kenfjurzn] has no vowel. The nucleus here is the conso-
nant [n], which is called syllabic. A syllabicity mark below the consonant can
be used to show this: [n]. But why does [n] form the nucleus in [3n], while [9],
and not [n], does in [ken]? It appears that it is not the kind of segment, but the
relative sonority (something like ‘loudness’) that makes a syllable a syllable: the
vowel or syllabic consonant is surrounded by less sonorous segments, forming a
sonority peak.

What parts does a syllable consist of, other than the nucleus? Something
may come before the nucleus, and something after it. Because ‘first bit’ and
‘last bit” sound decidedly unacademic, these parts are commonly referred to as
onset and coda.

(3) o

TN

onset rhyme

nucleus coda

The structure in (3), with the rhyme consisting of the nucleus and the coda,
is commonly used. Why is the rhyme a constituent? First of all, it is the part
of a syllable that makes it rhyme with other words (hence the name), but also
the position of English lexical stress is sensitive to rhyme structure. Let us take
a look at stress assignment for nouns.

(4) a. arena [0]o['1ii] 5 [n0],
angina [een],['dzai], [no],
b.  America [0]o['me],[r1]s ko]
cholesterol  [ko],['le]y[sto]o [rDl]»
c. agenda [0]s['gen]s[do],

Stress assignment in English works from the last syllable (Liberman and
Prince 1977).9 The rule for nouns is:

e if the penultimate syllable’s rhyme consists of more than one element, it
will be stressed;

81In dialect speech (for example, Cockney). [?] is used rather than rp [t] for expository
purposes: it makes the syllable division clearer, but does not affect the argument.
9The first syllable of many content words is stressed because they are often short.
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e otherwise, the antepenultimate syllable will be stressed (whether it is long
or not).

Thus, we have aréna (thyme /i:/*°, angina (rthyme /a1/) and agénda (rhyme
/en/), but not America (rthyme /1/) or cholestérol (rthyme /e/). This demon-
strates that the number of elements in the rhyme does indeed determine stress
assignment: the rhyme must therefore be a constituent.

This shows that there is a difference between the onset and the coda. This is
not trivial: do not consonants after one vowel usually precede another? There is
also a difference in the realisation of consonants in the onset and in the coda. For
example, Dutch roer ‘ruther’ /rur/ may be realised as [riioz]. This realisation,
which is used by many speakers of ABN, the Dutch prestige dialect, shows the
tendency of /r/ to become an approximant in the coda.

An example where the stress of the syllable, the segment’s position in the
syllable, and its neighbouring segments influence the realisation of the segment
is English /t/.

(5) a. tile [thail],
try [tra1],
b. stile [stal],
strive [strav],
c. light [lart],
(6) a. retire [r1][tPa10]
retry [r1] [ trat],
b. distend [di],['stend],
distress [di] 5 ['stres],
(7) a. mutter ['ma],[to] s
mattress  [me)],[tros],
b. muster ['ma],[sto]s
nostril ['np],[strol],

In (5) the only syllable of the word is stressed. When /t/ is in the coda, as
in (5c), it is not aspirated. It is aspirated in (5a), where it is in the onset; and
if it is followed by a liquid, /r/ in this case, the aspiration spreads to the liquid,
which becomes voiceless. However, before /s/ (5b) /t/ is unaspirated. From (6)
it appears that the aspiration depends on stress rather than the position of the
syllable: the same pattern is exhibited in the second syllable when it is stressed.
In (7), the syllable containing /t/ is unstressed; thus, it is never aspirated.

This shows that stress of the syllable, the position of the segment (in the
onset or in the coda) and the neighbouring segments may have an influence on
a segment’s realisation. English fortis stops (/p, t, k/) are aspirated when they
are in the onset of a stressed syllable and not preceded by /s/.

2.1.1.2 Rbytkmicality

The rhythmicality of stress and the correlation with pitch accent can be ex-
pressed in a bracketed metrical grid (Ewen and van der Hulst 2001).** A grid of

1°/i:/ means /ii/.
*Ewen and van der Hulst (2001)’s definitions of the terms “accent” and “stress” are quite
different from mine (see section 1.2 on page 5); the latter will be used for consistency.
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this type shows stress on various levels. Let us use the phrase a lengthy oratorio
/o 'lenbr -pro'tomrreu /*2 to show this.

(8) H tone
|
(- X ) phrasal stress
(x ) ( X ) word stress
(x )(x )(x - ) foot stress

c o 0o 0 0 0 0O
oley 61 b ro tor 1 ou

Every line in (8) represents a level in the rhythmic hierarchy. So far, we have
only dealt with word level stress. A syllable with a cross over it is the head of
a domain, which is delimited by brackets. At the top level of (8) an abstract
accent is depicted on a ‘tone’ tier. This is where stress interfaces with sentence
accent.

Before deciding which part of (8) is going to be relevant for the speech
recogniser, let us take a look at more complicated examples. Some of the more
intriguing aspects of stress assignment become visible when we look at com-
pound formation. Inserting a new level for compounding, we get the following
for White House politics:

(9) (- X ) phrasal stress
(x ) (x ) (x ) compound stress
(x) (x) + (x = (x) (%) (% ) word stress
(x) (x)  (x -)(x) (x) (x) (x ) (x) foot stress

o o o o o
wart havs + po It tiks — wart havs po It tiks

o g o g

Note that the first syllable of politics, which is not a compound, vacuously
receives a cross from the compound stress rule, now that we have introduced
a new level. Other than that, this all looks pretty straightforward. However,
what happens when we make a compound from two elements such that the stress
pattern at one level has two adjacent crosses? Let us take New York pizza. First
try it out aloud. You should find that even though you say New York, in New
York pizza, Néw has more prominence than York (but still less than pizza).

(10) X

X compound stress

( ) (- )

(- x)(x ) (x ) (x ) phrasal stress
(X) (x)(x ) = (x)(x)(x ) word stress
(x) (x) (x ) (x) (x) (x ) foot stress

njur jotk pir tso njur jork pir tso

On the left side of (10) a rhythmic clash occurs because the two rhythmic
‘beats’ corresponding with the lexical stress, /njur 'jork/ and /'pitse/, are adja-
cent, yielding /nju: ok 'pirtse/. The clash is resolved by moving the secondary
stress to the left: the result is a /mjur jork 'pittse/.

How difficult is it for a speech recogniser to cope with this effect? The
speech recogniser is going to parse Dutch, and not English; however, Dutch has

12The symbol is used to indicate secondary stress.
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pairs similar to the English ones, like Nieuweschdns and Nieuweschans-Odst.
The problem is that Nieuweschans is transcribed in the lexicon we use for the
recogniser (yes, it is actually there) as /ni:we'sxans/, which is wrong whenever a
stress shift happens. Using the obvious remedy, adding to the recogniser lexicon
all possible combinations that yield an exception, would lead to a combinatorial
explosion of the lexicon size. This information is very difficult to build into a
speech recogniser. This can be a problem if it hears a stress pattern different
from what is specified in the lexicon: it may not recognise the word at all.

2.1.1.3 Feasibility

In the theoretical corner we have now found two major problems:

e It is not clear whether stress is always realised phonetically, and whether
it can always be detected.

e It is not clear whether lexical stress often enough leads to actual stress: as
we have seen, different mechanisms work together to yield a stress pattern
in a way that is rather more complex than looking up transcriptions in a
dictionary and blindly copying them.

As for the first point, more elaborate phonological theories than Bolinger’s
assume there is a phonetic reality to stress. Whether the computer will be able
to detect stress must be determined. These very phonological theories, however,
also significantly complicate the prediction of stress patterns. For now, we will
disregard those theories; however, see section 4.2 on page 41 for ideas on how
they may be incorporated into a more sophisticated speech recognition system.

2.1.2 Acoustically

If stress is formulated as prominence from a phonological point of view, how
can it be seen acoustically? This is not an idle question: if a speech recogniser
is to detect stressed and unstressed segments, we have to tell it how to detect
those. Stress seems to have to do with effort and taking the time to pronounce a
sound properly. Intuitively, it would seem that stressed syllables are in general
pronounced with more force and care than unstressed ones, which are subject
to all kinds of reduction, especially in ‘careless’ speech.

De Jong et al. (1993) claim that “[s]tressed syllables have more distinctive
articulations, whereas unstressed syllables have ‘undershoot’ due to greater coar-
ticulatory overlap with their neighboring segments’ gestures.” This basically
means that the influence of adjacent sounds on the unstressed syllable is larger
than the influence on stressed syllables. It is as though stressed syllables are
so strong they can ‘fight off’ the influence of neighbouring segments. Ewen and
van der Hulst (2001) speak of duration, amplitude and pitch as phonetic expo-
nents of stress, at least in Dutch and English. They mean, one may presume,
that stressed segments have a longer duration, higher amplitude and most likely,
higher pitch (or something like a pitch peak).

Let us do a small experiment showing what properties have actually been
found to be useful for automatic recognition of lexical stress from sound record-
ings. We will look at a minimal pair from the Dutch language: kandn /ka:'non/
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‘gun’ and cdnon /kamon/ ‘canon’. We use these words because they are also
used by Sluijter (1995), and because the words differ only in stress, and not in
phonemes.*3 We will look at a number of different representations of the sound
as pronounced by a native speaker of the language (i.e. me). I pronounced them
in isolation, so that the effects will be quite clearly visible, similarly to Sluijter’s
laboratory experiment. Magnified though the effects may therefore be, they are
found in more real-world scenarios as well (van Kuijk and Boves 1999). The
pictures have been made with the Praat program (Boersma 2001).

2.1.2.1 Wave form

The first way we will represent the sound is by a graph showing the air pressure
over time. The most interesting thing we can see here is the amplitude (the
loudness) of the sounds. In figure 2.1(a) on the next page the final syllable
/mon/ is much louder than the final syllable in figure 2.1(b) /non/.

2.1.2.2 Pitch

An obvious candidate for showing which syllable is stressed is a picture showing
the fundamental frequency. This is the string of ‘notes’ the utterance is on.
Stressed parts of words, phrases and sentences are commonly signalled by higher
pitch in Dutch. If you look at the two pitch contours in figure 2.2 on page 17, it
is immediately clear which represents kandn and which represents cdnon, given
that the segmental content (i.e. the sounds) is /kamon/. This makes it seem that
it is easy to figure out the stress pattern by just looking at the pitch contour.

However, it is not that easy. In figure 2.3, where I pronounced the two
words with question intonation, it is clear that word stress is not in all cases
as directly linked to intonation contour as it seemed just now. And this is
just one example, copied more or less from Ladd (1996). Ladd uses the English
minimal pair pérmit — permit though, and the intonation contours are even more
similar. Another problem is that though I pronounced the words in isolation (in
citation form) for this experiment, in fluent speech there often are effects from
the intonation of the sentence as a whole breaking the seemingly nice pattern
of a higher fundamental frequency accompanying word stress. As Collins and
Mees (1999) say, the pitch change “may be either to a higher or lower pitch, or
may involve a sustained pitch on a low or high tone”.

There is not in general a relation between word stress and a high fundamental
frequency: sentence intonation interferes with the citation form pattern. Ladd
(1996, p. 55) draws a distinction between (phonetic) alignment and (phonolog-
ical) association. Even if in an abstract sense pitch peaks are associated with
stressed syllables, in a phonetic and acoustic sense “the peak may be early in
the syllable or late, and indeed it may be outside the temporal limits of the
syllable altogether. For example, it is particularly common in accented syllables
at the beginning of an utterance to see the high Fyy peak aligned in time with the
following unstressed syllable.” This would make using pitch for interpreting the
position of lexical stress difficult without modelling and overlaying a prosodic
or intonational tier to be matched later with the segmental content; this would
be outside the scope of this thesis (see section 1.3 on page 5).

13 According to Geeraerts (2000).
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(b) /'kamnon/ ‘canon’

Figure 2.1 Waveforms for the kanén —cdnon minimal pair. Stressed
syllables are notably louder and longer.
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(b) /'kamon/ ‘canon’

Figure 2.2 Pitch contours for the kanon —canon minimal pair. The pitch
peaks are more or less on the stressed syllables.

17



CHAPTER 2 THEORY

400
~
T
5
.a:-'
0]
0 0.5
Time (s)
| k | ax | n | ) | n
(a) /karnon?/ ‘gun?’
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(b) /'kammon?/ ‘canon?’. (There is a gap in the contour that should not be there: the

Praat program failed to pick up my voice at that position. This does not influence the
argument, but if you wish, you can fill in the obvious missing line yourself.)

Figure 2.3 Pitch contours for the kanén? —canon? minimal pair. Due
to the interaction with the intonation the pitch peaks are much less clear

than those in figure 2.2.



2.1 WHAT IS STRESS?

2.1.2.3 Duration

The diagrams have so far included a transcription of the sounds underneath
them, showing which sound is pronounced at what exact point in time, and for
how long it lasts. The latter is clearly of interest to us: stressed vowels are
longer than unstressed vowels. This phenomenon appears to be quite robust
and it has been consistently found in works like Sluijter (1995) and van Kuijk
and Boves (1999).

2.1.2.4 Reduction

According to Carr (1999), “We have said that English is stress-timed, and that
the number of unstressed syllables may be quite high. Given that it is possible
to have many such intervening unstressed syllables, this put pressure on such
intervening syllables to simplify in various ways.” It is not easy to see from a
diagram, even for experienced phoneticians, but unstressed vowels tend to be
reduced. Shall we claim that this is due to speakers not taking care when they
pronounce unstressed vowels, pronouncing things sloppily? Shall we claim that
unstressed vowels tend to be reduced to certain vowels, which are not necessarily
the ‘easy’ ones, but apparently the number of ‘target vowels’ is small?

Being in the lucky situation of having to consider only Dutch, and maybe
the language this is written in, English, we will skip the phonological theories
and generalities, and just look at a few examples in text. The reason we chose
kanon — canon as an example was that both are pronounced /kamon/. If you
speak Dutch, now pretend not to notice whoever is currently sitting next to you,
and say out aloud, but quickly, the word kandn ‘gun’. Does your pronunciation
start with /ka:/? Mine does not, if I say it quickly. I say /ko/. This is reduction
of what ‘ought to be’ /a:/ to /o/, which is the vowel Dutch reduces basically
every other vowel to. (Shall we claim this is because /o/ is the easiest vowel to
pronounce we have? We shall not, though for Dutch it is a defensible notion.)
/o/ is the symbol for schwa, which is like the vowel you get when you let your
mouth hang open and make a sound. It occurs in many Dutch words, for
example: praten ‘talk’ /'praito/. Note that the word praten also has reduction
of /n/ to /0.

Of course there are all kinds of stages in between the full and the reduced
form of a vowel. A bit of reduction might yield something like /kanon/ (which
starts with the same sounds as kan /kan/). You could say that because you
take less time to put your articulators (tongue, lips, and jaw) in the proper posi-
tion, the result tends more towards the neighbouring segments, and on average,
towards the ‘default’ position.

Reduction has also led to historical changes. Two well-known dialects of
English, American English and British English (the official varieties of which
are called General American, or GA, and Received Pronunciation, or RP, re-
spectively) differ in how much reduction is used even in dictionary forms. The
word secondary may be pronounced by an American as /'sekon-deri/, which is
the more historical form, while a British speaker will use /'sekondri/ or even
/'sekndri/ (Procter 1995). The third syllable has been reduced; its vowel which
was /¢/ has been reduced to /@/, nothing, and the second vowel, /o/, optionally
undergoes the same treatment. Deletion, of course, is the most drastic form of
reduction.
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But how will a computer recognise vowel reduction, if even a trained pho-
netician cannot tell from a diagram? Let it suffice for now that computers can
recognise different vowels, and often are as good as humans at it (Chang et al.
2000), so introducing a number of new vowels should in principle not be much
of a problem. As we have seen, reduction comes in various shapes and sizes;
but recognising large or even overlapping ranges of sounds as one vowel is some-
thing a computer can do as well. This enables it to hypothesise that something
sounding like [a:], [a], [o], or even [@] is a realisation of unstressed /a:/.

2.1.2.5 Spectrum

The spectrum of a sound is the energy at the different frequencies. A spec-
trogram is a plot of this information as a function of time. What you see in
figure 2.4 on the facing page is the plots for the by now well-known kanon—
cdnon pair. The frequencies are on the y-axis. The more energy is output, the
darker the colour. The interesting thing here is that stressed vowels have more
energy in the higher frequencies relative to the lower frequencies than unstressed
vowels. This can be checked by comparing the upper halves of the plots at the
position where /o/ is pronounced. In figure 2.4(a) this area is darker than in
figure 2.4(b). This effect is called ‘spectral balance’ or ‘spectral tilt’, both signi-
fying that relatively much energy goes into the higher frequency band. ‘Spectral
tilt’ refers to the tilt of a line in a plot for one point in time.

Note that this difference in pronunciation between the two words does not
disappear under question intonation: in figure 2.5, which contains the spectro-
grams for kanon? —cinon? (with question intonation), the difference between
stressed /'a:/ and unstressed /a:/ can easily be seen. Sluijter (1995) also finds
that the spectral tilt consistently correlates with lexical stress.

Note also that the occurrence of more high frequencies seems to coincide
with increased overall energy. The actual correspondence lies in the amount of
‘effort’ that goes into pronouncing the vowel. Sluijter (1995) has this tying in
nicely with “older literature” that claimed that stressed syllables were louder: “A
stressed syllable might be perceived as louder, and therefore more prominent,
than an unstressed one due to the increased intensity levels in the higher part
of the spectrum.”

2.1.2.6 Consonants

So far, consonants did not enter the picture. Consonants are generally disre-
garded in the literature about stress. This may be because vowels are the most
noticeable4 part of syllables, and they most strikingly carry acoustic informa-
tion about stress. However, the stress property of all segments in a syllable
should match. For example, in /kamon/ either both /k/ and /a:/ are stressed,
or they are both unstressed. All segments in the second syllable /non/ should
be unstressed if the first syllable is stressed, and they should be stressed if the
first syllable is not. This may be perceived as difficult to model in an automatic
speech recognition system (see section 4.3.1 on page 43.)

However, there is information available in the literature about the influence
of another type of ‘sloppiness’ on consonants. Van Son and Pols (1996) recorded

*4With a phonological term, the most sonorous.
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Figure 2.4 Spectrograms for the kanon —cénon minimal pair. That
stressed syllables have more high frequencies than unstressed ones is easily
seen in the spectrum for /o/.
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Figure 2.5 Spectrograms for the kanén? —canon? minimal pair. FEven
with different intonation /'s/ has more higher frequencies than /5/.
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a newscaster telling anecdotes and afterwards reading out aloud the transcrip-
tion of what he had produced spontaneously, so that they had two recordings
of the same text with different speaking styles. In his spontaneous speech the
consonants were pronounced more ‘sloppily’ in three ways:

1. Reduction in terms of formant frequency lowering. This is essentially the
kind of thing we’ve seen in 2.1.2.4, applied to consonants rather than to
vowels.

2. “Consonant realizations shorten like vowels”. This is clearly the ‘duration’
property of 2.1.2.3.

3. “Except for the plosives, all consonants and vowels showed a decrease in
[centre of gravity].” This is about the spectral tilt that was discussed
in 2.1.2.5 (the “centre of gravity” term has to do with yet another way of
looking at the diagrams, but they mean ‘spectral tilt’). Plosives are con-
sonants like /k, p, b, t/, for which this feature is apparently not relevant.
For all other consonants, like /v, f, y, x, v, r/ (as in wvoet, fout, gracht,
wat, Rogier), spectral tilt was relevant.

Assuming these features can be used for extracting stress too, it seems like
precisely the same features we use for consonants can be used for vowels. This
is fortunate because it is not really possible in speech recognisers to use some
acoustic features for vowels only, and other features for consonants only.

Now, is consonant reduction in spontaneous speech similar to consonant
reduction in unstressed syllables? Is the newscaster’s spontaneous speech really
relevant for recognition of lexical stress? There is no way to know for sure at this
moment. We should hope so, because this would enable the speech recogniser
to use the same machinery for consonants as for vowels. And even then it will
probably be more difficult to extract stress information for consonants than it
is for vowels. However, any extra information we can give the computer may be
useful, as long as it can work with the uncertainty. See section 5.6 on page 61
for information about incorporating consonantal features in the recogniser.

2.2 Automatic speech recognition

The assumption underlying automatic speech recognition is that the speech sig-
nal is the realisation of a message consisting of a sequence of symbols. The
challenge is to perform the reverse operation of this encoding. The speech
signal is first converted to sequence of feature vectors. The vectors typically
contain Mel-frequency cepstral (MFCC) or linear predictive coding (LPC) coef-
ficients. The MFCC transformation is based on the Mel scale, which models
human perception of frequencies. LPC “provides a complete model for speech
production, and it analyzes the speech signal such that the characteristic effects
of the vocel tract and its formants can be separated from the excitation” (Paulus
and Hornegger 1998, p. 309). Values are extracted every 10ms, which is short
enough to make the assumption that the feature information is stationary.
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2.2.1 Words and phonemes

An assumption often made for continuous speech is that utterances contain
words. This is usually a valid assumption, though the term “word” may not
correspond to the meaning it has in spelling. (Does New York really consist
of two words? Is can’t really one word?) It also sometimes means relevant
morphological information is omitted (e.g. inflections in wordforms like oak and
oaks are different words). Typically, all words are contained in the lezicon. The
same term is used for the word list in human beings’ heads. Note that the
lexicon in automatic speech recognition is similar to the Minimalist Program’s
(Chomsky 1995) lexicon®®: both contain all inflections of all words. A speech
recogniser’s lexicon contains entries like (11) (notation adapted from the caN
lexicon; see section 3.3.2 on page 32).

(11)  aambeeld ‘anvil’ ‘axmberlt
dankbaar ‘thankful’ 'daggba:r
denken ‘to think’ 'degko
gezaagd ‘sawn’ X0 'zaxt
incheckbalie ‘check-in’ 'infegba:li:
makkelijke ‘easy’ ‘makoloko
melk ‘milk’ ‘melk
postbode ‘postman’ ‘pozdbo:do
projectbureau  ‘project agency’  pro:'jegdbyro:
rasecht ‘genuine’ ‘rasext
weekdag ‘weekday’ 'vergdax

The symbols in the third column contain transcriptions for the words whose
regular spelling is given in the first column. These consist of strings of phonemes
(or something similar) that are used in speech recognition. An assumption that
is often made is that these phonemes are always pronounced in a similar way.
This assumption is not phonologically correct. Though much of the juggling
around with sounds throughout the centuries has had effects on the phonemes
(e.g. Dutch logisch ‘logical’ from /'lo:xif/ has become /'lo:xis/), how the words
are actually formed (their phonetics) is decided from their internal representa-
tion at the moment they are pronounced.

The transcriptions in the lexicon are the results of half-hearted attempts
to encode the words’ phonetics. Thus, the proper phonemic transcription for
postbode is /'postboide/ (according to Geeraerts 2000), much like the spelling
suggests. The transcription in the lexicon through a subset of the rules that
may apply has become ['pozdbo:ds], whereas the proper phonetic transcription
is usually ['posbo:do], which may become ['pozboide]. Something similar hap-
pens to weekdag /'verkdax/, which is usually pronounced ['ve:gdax], where /k/
is realised as [g]. However, /g/ is not a phoneme of Dutch,*® so it cannot be rep-
resented in a lexicon with phonemic transcriptions. On the other hand, rasecht
may become [razext] (Collins and Mees 1999), but the lexicon does not encode
this. Melk ‘milk’ /'melk/ is often realised as ['melok] (Warner et al. 2001); this

*5The Minimalist Program is a framework for syntax that emphasises economy contraints
more than previous theories. This supposedly means that it is more likely to be correct from
a cognitive psychology point of view; the same should then go for lexica in speech recognition.

16/g/ may be seen as a marginal consonant. Some speakers use it in foreign words like goal
/go:l/, whereas others use /k/ and say /ko:l/.

24



2.2 AUTOMATIC SPEECH RECOGNITION

is not encoded either. Often, phonological rules apply across words: should you
/'Juodjuz/ may become ['Judzuz]. These rules cannot be applied in a lexicon con-
taining only words at all (but see Kessens et al. 1999, for an approach where
22 oft-occurring multi-words sequences are explicitly included in the lexicon to
yield an impressive increase in performance).

A word for which a full phonetic transcription would be particularly useful
is aambeeld. This will usually be pronounced as [a:mbe:tt], with a nasalised
[a:] (the spectrum of which is noticeably different from the spectrum for [a:])
and a velarised [1] (which sounds more like [o] than like [1]). A word for which
the phonemic transcription may be too much modified is denken. Geeraerts
(2000) gives /'degko(n)/. The final /n/ is usually left out in ABN, the Dutch
prestige dialect, to form ['denke], but Eastern and Northern dialect speakers
may pronounce it ['denky].

Though phonemic tra'nscriptions are used in speech recogniser lexica, in prac-
tice the transcriptions are modified to include some phonetic effects in an arbi-
trary way. Kessens et al. (1999) add pronunciation variants, generated through
a few phonological rules, to a Dutch lexicon and see recognition improve. The
funny thing is, they use the CELEX lexicon with its /'pozdbo:ide/ transcription,
which is probably not effected by their phonological rules: /d/ is not deleted,
while /t/ in rechtstrecks ‘straight away’ /rext'stretks/ [rex'stretks] is. On the
other hands, psycholinguistic (Pierrehumbert 2000) and phonetic (Chang et al.
2000) research suggests that more complex patterns than straightforward phono-
logical rules are used by humans.

2.2.2 Probabilistic speech recognition

In a probabilistic sense the goal of speech recognition can be formulated as
follows (Jurafsky and Martin 2000):

(12) What is the most likely sentence out of all sentences in the language L
given some acoustic input O?

Consecutive slices from the acoustic input (for example, feature vectors), the
observations, can be called

(13) O =01,092,03,...,07
The sequence of words of a actually pronounced sentence is called
(14) W = wy,wq, ws, ..., wWN
The probabilistic implementation of the goal (12) can be expressed as

(15) W = argmax P(W|O)
weL

Through Bayes’ rule, (15) can rewritten as

v POWwW)PW)
(16) W = arv%rggxw

P(W) is called the language model (often approximated straightforwardly through
a word n-gram model). P(O|W) gives the acoustic model. P(O) is always the
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Figure 2.6 A three-state HMM. States 1 and 5 are non-emitting states:
they exist to facilitate concatenation of HMMs and do not themselves model
acoustic input.

same for a given O; thus, W can be found by calculating

(17) W = argmax P(O|W)P(W)
WeL

2.2.3 Hidden Markov Models

Having simply, but incorrectly, reduced phonemic and phonetic levels to one,
every phoneme can be modelled separately. Phonemes’ acoustic properties are
usually modelled using Hidden Markov Models (or HMMs). These are models
that use Markov chains, which contain a number of states with the probabilities
of the transition from one state to another. For speech recognition, the actual
transition probabilities depend on the input signal.

Figure 2.6 depicts an HMM with three states, let us say for the phoneme /a:/.
The model depicted only has transitions from one state to itself and the next,
but a more complex topology is possible. The idea of this Markov model is that
the properties of the first part of the vowel are captured by state 2, the middle
part by state 3, and the final part by state 4. If the middle part of the vowel
is the longest, the probability of the next state being state g if it is also the
current state (i.e. of remaining in state 3), ass, will be large. In this way the
probability of lingering longer in one state is increased.

But how is it decided whether an input fits a state? Every state has a func-
tion b;(s) that returns the probability that the observation s matches the state.
If a sequence of observations O in the form of feature vectors o1,09,...,07p
is given, the probability of it being the encoding of the symbol /a:/ may be
calculated by summing over the probabilities of all possible state sequences
X =z(1),2(2),...,2(T) that start in state 1 and end in state 5:

T
(18) P(O|M) = Z Az (0)2(1) H b () (04) A (1) (t41)
X t=1

The description has so far used a three-state HMM, though it can be any
length. A motivation for using three states may be found in the supposed
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pure phone

Figure 2.7 The three phases of a phone, conceptionally.

structure of phonemes: coarticulation effects may be seen as gestural overlap
that results in uncertainty about the exact realisation of the phoneme at the
start and end (see figure 2.7, after Wiggers 2001). The canonical form (as seen
in textbooks) of an HMM has three states.

A problem is that a particular symbol can have different acoustic realisations
in different circumstances (depending on, for example, speaker, mood, gender,
environment). Another problem is that the boundaries between symbols cannot
be explicitly identified from the speech waveform. Only if the boundaries are
known (e.g. when the input is known to consist of exactly one word from a
lexicon) can all possible interpretations of the input be iterated over.

2.2.4 The Viterbi algorithm

Now that the acoustics of phones on a 10 ms time slice are modelled, how to use
the information about all phone models at all times to decode the words of a
whole utterance? The problem is that decoding a sequence of phonemes means
checking probabilities for all possible sequence, with the possible exception of
those that can not be obtained through concatenating words from the lexicon.
This is basically what the forward algorithm does (see Jurafsky and Martin
2000). Using that algorithm for continuous speech, however, is not feasible.

The Viterbi algorithm uses dynamic programming: it makes the assumption
that if the best path to point @) goes through P, it contains the best path
to point P. Applied to the speech recognition, Viterbi finds the maximum
likelihood state sequence rather than the total likelihood P(O|M). Instead of
using the sum of probabilities it uses the maximum. The following explanation
has been adapted only cosmetically from Young et al. (2002):

For a given model M, let ¢;(t) represent the maximum likeli-
hood of observing speech vectors o to o; and being in state j at
time ¢. This partial likelihood can be computed efficiently using the
following recursion:

(19) ¢j(t) = max {$i(t — 1)ai;} bj(o).
where

(20) $1(1) =1

(21) ¢;(1) = a1 b;(01)
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Figure 2.8 The duration modelled by one HMM state.

for 1 < j < N. The maximum likelihood P(O|M) is then given by
(22) on(T) = max {6i(T)ain'}

This recursion forms the basis of the Viterbi algorithm.

2.2.5 Duration

Section 2.1.2.3 on page 19 has shown that duration is an important correlate of
stress. However, HMMs do not model duration explicitly; the parameters that
come nearest are the transition probabilities a;; (as in figure 2.6 on page 26) that
influence how often self-transitions occur. Many authors have tried to come up
with variants of Hidden Markov Models that describe duration better: Russell
and Moore (1985) come up with Semi-HMMs; Ramesh and Wilpon (1992) think
of Inhomogeneous HMMs; Sitaram and Sreenivas (1997) after a lucid introduction
into the need for modelling duration in HMMs introduce the Trend-HMM and then
take the reader on a rambling ride to all kinds of combinations of T-, I-, LC-
and S-HMMs. Another overview, one claiming that explicit duration modelling
is not needed, is given in Wang et al. (1996b).

The usual method of depicting duration as modelled by HMMs is by calculat-
ing the probabilities of reaching a specific state at a specific time, given that the
probability of being in the first state at ¢ = 1 is 1.0. A graph for the probability
of exiting one HMM state is given in figure 2.8. As the probability of remaining
in the state decreases with a constant factor over time, the result looks like a
geometric distribution (Ross 1997).

So what is the problem? HMMs are memoryless, but model time through
transition probabilities. Sitaram and Sreenivas claim that from statistics it
seems that actual phone duration is gamma-distributed (see Wang et al. 1996a,
and section 6.1.1 on page 70 for my measurements). They shrewdly mix up
phone duration and state duration in their argument, but what they argue
—duration of parts of phonemes, as represented by HMM states, should be
modelled —seems sensible, especially for diphthongs.
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Figure 2.9 The duration modelled by a three-state HMM (see figure 2.6 on
page 26 for a depiction) with a;; = 0.8, which is binomial-like.
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Figure 2.10 The duration modelled by the same three-state HMM as in
figure 2.9, mow processed by the Viterbi algorithm. It is similar to the
one-state case (see figure 2.8 on the preceding page).

Wang et al. (1996b) look only at the phone model as a whole and conclude
that an HMM is perfectly well able to model duration, as long as their algorithm
is used for training rather than the standard Baum-Welch one. Bilmes (2002)
shows that a sequence of HMM states is like a negative binomial distribution.
This is a discrete version of the gamma function, which seems to be the proper
distribution for phone duration modelling. The graph in figure 2.9 shows this as
well. The number of paths that can be taken to end up in state 5 of the model
is much larger for ¢ = 13 than it is for t = 5, though the probability of each of
these paths decreases. Thus, it seems like an HMM can model any duration by
giving it enough states, as Bilmes claims. Neither Wang et al. (or Wang 1997)
nor Bilmes seem to realise that there is more to this story than HMMs’ transition
probabilities.
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The Viterbi algorithm messes things up. The forward algorithm (e.g. see
Jurafsky and Martin 2000, p. 172) uses the sums of all possible paths.
Viterbi search however uses only the most probable path to a point (see
section 2.2.4 on page 27). Figure 2.10 on the page before shows the effect
of the dynamic programming assumption on the duration: it is not now
binomial anymore; rather, we are back at square one, with an exponen-
tial-like duration.

The influence of the phone likelihood estimation is disregarded. This es-
timation not only influences the duration of one state; if the length of the
onset and the offset of a phone (as in figure 2.7 on page 27) is only a frame
or so, this will effectively turn the duration modelled by a three-state HMM
as a whole back into an exponential-like one, with a constant time added.
Moreover, the effects of the state transitions a,; should be assessed relative
to the effect of the Gaussians b; in equation (18) on page 26: if the influ-
ence of the Gaussians varies in terms of thousands, transition probabilities
in terms of tenths will not be able to change the scene much. This is the
scenario that will most often occur in practice.

The speaking rate is not taken into account. While recognising an utterance,
the speaking rate of previous utterances or words must be used to properly
account for phone duration.

Though some researchers are inclined to believe that HMM transition prob-
abilities can help modelling duration, the Viterbi algorithm and the Gaussians
undo the theoretical advantage. Modelling phone duration using only ordinary
HMMs and the Viterbi algorithm remains impossible without adding HMM states
in numbers in the order of the maximum phone length that is to be modelled.
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Tools

OV O’ dpouy Yev Eua xAuta tedyea duth! Homer, Iliad XvI

3.1 Hidden Markov Toolkit

To implement a speech recogniser from scratch would take too much time; how-
ever, there are toolkits that can help constructing a recogniser. I use the Hidden
Markov Toolkit, or HTK, which is documented in Young et al. (2002). Wiggers
(2001) has an introduction to its architecture and purpose:

HTK is a portable software toolkit for building and manipulating
systems that use continuous density Hidden Markov models. It has
been developed by the Speech Group at Cambridge University En-
gineering Department.

HMMs can be used to model any time series and the core of HTK
is similarly general purpose. However, HTK is primarily designed
for building HMM based speech processing tools, in particular speech
recognizers. In can be used to perform a wide range of tasks in
this domain including isolated or connected speech recognition using
models based on whole word or subword units, but it is especially
suitable for performing large vocabulary continuous speech recogni-
tion.

HTK includes nineteen tools that perform tasks like manipulation of
transcriptions, coding data, various styles of HMM training including
Baum-Welch re-estimation, Viterbi decoding, results analysis and
extensive editing of HMM definitions. HTK tools are designed to run
with a traditional command-line style interface, each tool has a large
number of required and optional arguments and most tools require
one or more script files. ...

Although this style of command-line working results in complex com-
mands, that actually have more resemblance with programming lan-

*‘Nevertheless, now gird my armor around your shoulders’ (translation Samuel Butler).
Telyoc ‘a tool, implement’ (< http://www.perseus.tufts.edu/>).
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guages than with commands, it has the advantage of making it sim-
ple to write shell scripts or programs to control HTK tool execution.
Furthermore it allows the details of system construction or experi-
mental procedure to be recorded and documented.

It is clear that for a work like this, where an off-the-shelf speech recogniser
would not do, the HTK is a suitable toolkit.

3.2 Praat

Praat (Boersma 2001) is a program for speech analysis and synthesis. Its user
interface provides a variety of functions for speech recordings: the user can
perform many types of acoustic analyses, transcribe recordings and even make
Optimality Theory grammars. Its functions are also available from a scripting
interface; scripts can be recorded. This combination makes it possible to quickly
move from editing sound files by hand to an automatic workflow. The program
is free and can be found at <http://www.praat.org/>

3.3 Corpora

A speech recogniser must be trained on audio recordings. The audio recordings
should come with orthographic or phonetic transcriptions. Two corpora are used
in this work: the small buTAVSC, and the large CGN.

3.3.1 DUTAVSC: Duich Audio-Visual Speech Corpus

The Dutch Audio-Visual Speech Corpus (dutavsc, see Wojdel et al. 2002),
was originally recorded to provide a combined audio-visual corpus for combin-
ing lip-reading with speech recognition. It contains prompts derived from the
POLYPHONE dataset. POLYPHONE is telephone-recorded, however, whereas the
DUTAVSC has high quality recordings. The corpus contains read words, phoneti-
cally rich sentences, digits, and spellings. As it is rather small, and for technical
reasons (see section 5.9 on page 64), the corpus was used for initial experiments.

3.3.2 CGN: Corpus Gesproken Nederlands

The cGN corpus (Oostdijk 2000) is a nine-million-word corpus of contemporary
standard Dutch as spoken in the Netherlands and Flanders. It contains about
1000 hours of speech. The entire corpus has been transcribed orthographically
and some phonetic transcriptions, part-of-speech tagging, and prosodic annota-
tions are available for parts of the data. (None of these contain stress information
though: the prosodic annotation only indicates sentence-level accents.)

The corpus aims to serve different people’s purposes. It could be used to
train speech recognisers (as in this work), but it also provides data for linguis-
tic research of various kinds. It contains various kinds of recordings: conver-
sations (face-to-face and telephone), discussions, lectures, radio and television
programmes, and read speech.
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The transcriptions are linked to the lexicon the CGN provides. The lexicon
is produced from various sources, and includes different phonetic transcriptions
for Dutch and Flemish. Not all kinds of information are available for all words,
however: for example, the only transcriptions encoding lexical stress are from
the CELEX corpus. This corpus contains only a subset of the total CGN lexicon.
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Chapter 4

Model

Still a man hears what he wants to hear and disregards the rest
Paul Simon, The Boxer

The previous chapters have given a more or less uncontroversial overview of
the relevant literature. From here on all material will be new —and possibly
more controversial. After a short overview of the apparent shortcomings of the
literature, a conceptual model will be presented. This will enable a constructive
way of deciding how to use lexical stress.

4.1 Previous work

Figure 4.1 on the next page shows the relevant components of a typical speech
recognition system. It must be considered where lexical stress information can be
used in a speech recognition system to increase recogniser performance. Earlier
work has not always used the properties of lexical stress to increase the recogni-
tion rate. Van Kuijk and Boves (1999) merely examine the acoustic properties
of telephone speech. Xie et al. (2004) have an automatic recogniser check lan-
guage learners’ stress patterns: the words are known in advance. Bouwman and
Boves (2001) use the stress pattern only in a second pass, after the recogniser is
done, for utterance verification. They use the syllable length and probabilities
of phonemes having been recognised incorrectly to build a confidence measure.
This approach is depicted in figure 4.2 on page 37.

Improving reliability modelling is a clear objective. Researchers that try to
use lexical stress information in an earlier stage (van Kuijk et al. 1996; Wang
and Seneff 2001; van den Heuvel et al. 2003) do not specify as clearly what their
objective is. They probably want to improve recogniser performance, but how
this is to be effected is not discussed. It is not clear what information authors en-
vision to have what influence on the recognition at what stages: “distinguishing
stressed and unstressed vowel models may have a general impact on recognition
results” (van den Heuvel et al. 2003) is one of the more enlightening comments
in this respect.

What one cannot help noticing when looking at the literature on automatic
lexical stress recognition is a total disregard of consonants. It is known from
phonology that lexical stress has a profound influence on the realisation of
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Figure 4.1 Components of a typical speech recogniser. The two levels
of Viterbi are shown separately for expository purposes: elements will be
inserted in between later on.
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Figure 4.2 Bouwman and Boves’s (2001) approach to using lexical stress.
The new parts are coloured red. Lexical stress is used only for confidence
measures, after recognition has taken place. In the example ‘alien’ is

probably wrong; hence the question mark.
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phonemes (see Ewen and van der Hulst 2001, and section 2.1.1.1 on page 10);
van Son and Pols (1996) show how consonants are influenced by speaking style;
Sluijter (1995, p. 33) calculates duration over the whole of a syllable, including
consonants; Greenberg et al. (2003) show that consonants in stressed syllables
have longer durations. It seems this knowledge is not used in lexical stress
recognition, nor is it regarded, nor is phonological literature cited.

Wang and Seneff (2001) choose a strategy where “[o|nly syllable nucleus
vowels are scored by the lexical stress models: for segments that do not carry
lexical stress, such as consonants and silences, the stress scores are simply ig-
nored.” That consonants should not carry stress is not true. It may be viewed
as a half-truth, though: the sonority peak of syllables is on the nucleus (see
section 2.1.1.1 on page 11). Still, in other work on automatic recognition of
lexical stress not even shaky motivations can be found.

Van den Heuvel et al. (2003) use context-dependent models, which appears
not to bring about any recognition improvement compared to the context-in-
dependent ones. A swap condition (where stress markers are swapped) is used,
which does degrade recognition. This is taken to show “that the models indeed
capture some stress-related information”. When the swap condition yields worse
results with context-dependent models than for context-independent models, the
obvious conclusion (not made explicitly in the article) is that context-dependent
models capture more stress-related information. This is speculated to be because
“context-dependent acoustic models may have been better tuned for lexical stress
(in a spectral sense)”; no arguments for this are given though. Let me put
forward more speculation: context-dependent models take parts of consonants
into account; maybe they contain relevant information. The article features
an abundant amount of discussion about which consonants come with which
stressed and which unstressed vowels; why are they not used, and why is there
not even speculation on their use?

Earlier efforts to model stress in speech recognisers seem to be driven by
the fact that there is stress information that is not encoded anywhere, and thus
must be thrown in: the technology push at work. Now there is not much wrong
with using the amount of information as a motivation for research, but an issue
as important as what information is available is how that information can be
used to improve recognition. That is the side of the chain where we will start,
and then we will link that to what information is needed; an implementation
will follow after that. First presenting a model of how stress recognition could
work has the advantage of being able to compare the implementation with the
model and see what things it can and what things it cannot model.

4.2 Objectives

To determine what aspects of lexical stress are important to use in a speech
recogniser, its conceived effects on continuous speech recognition must be clear.
These objectives will form the motivation for the model considerations in sec-
tion 4.3 on page 42. Imagine a speech recognition system that recognises whether
phonemes are stressed. This means that stress information is incorporated in the
acoustic model (P(O|W) from equation (17) on page 26). What improvements
should we expect from such a system compared to a conventional system?
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(a) Vowel scope for conventional HMMs: vowel models span a whole area from fully realised
to schwa-like.

(b) Vowels are split into stressed and unstressed versions. Stressed vowels, which are not
usually reduced have a full realisation, are distinguished from unstressed ones. This does
not eliminate overlap, but it does increase accuracy.

Figure 4.3 Conceptual depiction of the scope of vowel models. Modelling
lexical stress makes the phoneme models more accurate.
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Phone model accuracy Several studies in speech processing and phonetics
literature have strived to model phonemic and phonetic properties more
closely (for example Kessens et al. 1999; Greenberg 1999; Greenberg et al.
2003). The idea is that this will decrease the scope that the phone mod-
els (e.g. the HMMs) have to cover by providing more accurate and more
specialised examples for training. The same goes for lexical stress. For
example, a recogniser trained on lexical stress should have phone models
for stressed /'o/ and unstressed /o/ that cover two sub-areas of the former
/o/ model. The variation within the phone model becomes smaller, which
should improve performance. Figure 4.3 on the page before shows this.

Word segmentation Lexical stress information should be used at an early
stage —when deciding the word segmentation. For example, the Dutch
phrase aan bdd ‘first in line’ may be distinguished from danbod ‘offer’.
The advantage for word segmentation really starts to kick in for languages
that have fully regular stress patterns. In Icelandic, Hungarian, and Czech,
for example, the stress is always on the first syllable of the word. In
languages that have stress on a fixed syllable of the word (be it counted
from the first or from the last syllable) stress assignment has a demarcative
function (Ewen and van der Hulst 2001). English, like Dutch, has strayed
from the Germanic Stress Rule, which stressed the first syllable of every
word. The stress domain is still the word, and it appears that enough
English content words have stress on the first syllable to make listeners
use the stress pattern for segmentation (see Harley 2001, p. 221). This is
something a speech recogniser could also do.

Application of phonological rules Many phonological rules require informa-
tion about the stress of a syllable. Aspiration of English fortis stops (see
section 2.1.1.1 on page 10), which is motivated by stress, exemplifies a
more general rule that is particularly useful in speech recognition. Reali-
sations of phonemes in stressed syllables appear to be ‘stronger’ than in
unstressed syllables. Shoup (1980, p. 135) says that English vowels

becme [sic] reduced to a more central vowel position when un-
stressed or with reduced stress, for example [ritzn] for rétdrn
and [rit3n] or [rot3n] for rétirn. Schwas can actually be elimi-
nated when they occur in unstressed positions, such as chocolate
becoming choclate. Syllable-final schwa followed by [1] or a nasal
can become syllabic [1] or nasal, such as in bottle [batl] or button
[batn].*

Greenberg (1999) analyses the pronunciation variation of both vowels and
consonants in the Switchboard corpus and finds that “canonical pronun-
ciation and prosodic stress [...]| often travel together”. Later research
(Greenberg et al. 2003) shows that unstressed segments tend to have a
shorter duration. Phonemes in unstressed syllables tend to have more re-
duced realisations than those in stressed syllables. With knowledge about
stressed, a speech recogniser can make allowance for more reduced realisa-
tions of phonemes in unstressed syllables while requiring fuller realisations

*Notation altered slightly to agree with this work’s conventions.
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in stressed positions. This may especially improve accuracy for recognition
of fast spontaneous speech.

Kessens et al. (1999) do use phonological models to account for pronun-
ciation variation, but they explicitly state they leave out the distinction
between stressed and unstressed segments because of limitations of their
phone set. As an example of the different behaviour of /r/ in stressed and
unstressed contexts their recogniser cannot model they give Arnhem ‘Arn-
hem (city)’ /'arnem/ *['anem]? as opposed to Leeuwarden ‘Leeuwarden
(city)’ /'lezvarden/ [lervaden].3

Word category There are pairs of words with the same segmental content,
where the stress pattern signals that they have different categories. Be-
cause of the stress assignment rules of English, it has hundreds of verb—
noun pairs like subjéct — sibject (Higgins 2000). Recognition of those min-
imal pairs is impossible without knowledge of lexical stress. Note that
if the recogniser recognises all other words in the utterance correctly, it
might be able to deduce the correct category without knowledge about the
stress pattern: in text sentences like “The subject of this thesis is lexical
stress” do not usually lead to confusion.

Semantic difference Words with the same segmental content but different
morphological structure often have different stress patterns. Thus, we
find Dutch overdrijven ‘exaggerate’— dverdrijuven ‘float by’. If a speech
recogniser does not recognise the stress difference in this case, the ambigu-
ity has to be solved at the semantic level. Still, sentences like ‘Je kunt ook
overdrijven’ cannot unambiguously be parsed without proper knowledge of
the context, or the stress pattern. Since automatic syntactic and semantic
parsing is far from perfect yet, any information about lexical stress should
be most welcome.

Stress patterns on higher levels than the word, though not being ‘lexical
stress’ they do not strictly belong in this work, may have an influence on speech
recognition as well. Some areas in which stress information can be used in the
future are:

Phrasal properties Stress assignment at a higher level than the word level
may be used to express both a syntactic and semantic difference that is
not clear otherwise. For example, in an earlier version of this thesis this
enumeration of objectives used the phrase “sound knowledge”. It was re-
moved because in writing it was not clear that I meant ‘proper knowledge’
/-savn'nolidz/ rather than ‘knowledge about sound’ /'savn-nplidz/, which
could have made sense in the context of this thesis as well. An advanced
speech recognition system could interpret stress patterns like this and dis-
tinguish between the former version, with sound (adj.), and the latter,
with sound (n.). Apparently, differences like these really do occur. Recog-
nising them in speech, however, does require more sophisticated modelling
of stress than simply specifying lexical stress, and is thus outside the scope
of this thesis. See section 2.1.1.2 on page 12 for an introduction, Ewen

2 Asterisks * are used to mark ungrammatical examples in linguistics.
3As for the [n] in [lervaden]: sic.
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and van der Hulst (2001) to get a better idea of how stress assignment on
higher level works in English, and Langeweg (1988) for a theory on stress
assignment in Dutch.

Information value Greenberg et al. (2003) sees a correlation between canoni-
cal realisation and information value. For example, function words like the
and are occur very often, and are almost never pronounced fully (Collins
and Mees 1999), while less frequent words have at least one stressed syl-
lable. Greenberg et al. say that “the ability to understand spoken lan-
guage largely depends on the presence of relatively long, highly stressed
syllables and words”. This suggests that the words with a low probabil-
ity in an information theory sense are the most prominent and the most
canonically pronounced. This is exactly what van Son et al. (2004) find:
“there is a consistent correlation between redundancy at the word level,
i.e., word-frequency, and acoustic vowel reduction.” Obvious as this may
seem from a human speech perception perspective, it could provide use-
ful information for speech recognisers in deciding when to use the whole
lexicon and when to select the smaller subset of ‘expected words’.

4.3 Considerations

It seems sensible to try and map the segmental information (e.g. phonemes,
syllables) that humans use to produce speech onto computer-usable symbols as
closely as possible and model the acoustic properties that coincide with them.
The symbolic and acoustic representations are much intertwined. In making
a speech recogniser spot additional dichotomies (in this case, stressed versus
unstressed) these two aspects must be handled at the same time. It does not
make sense to try and differentiate between stressed and unstressed /a:/ leav-
ing out information about what the difference sounds like. On the other hand,
without the symbolic information additional acoustics merely introduce noise
in the mapping from acoustics to symbols. However, even if the symbolic rep-
resentations are adapted, extracting extra acoustic information that cannot be
explained through the symbols might degrade recognition.

The considerations given here combine the properties of lexical stress from
chapter 2 on page g and objectives in section 4.2 on page 38.

4.3.1 Symbolic repesentation

In making a system that aims at recognising lexical stress the following should
be considered:

Model reduction Unstressed phonemes are the first to be reduced; stressed
phonemes are, in the words of Lea (1980, p. 169), “islands of phonetic reli-
ability; detected phonetic structure is more nearly identical to underlying
phonemic structure in stressed syllables”. The system should allow for
and anticipate a greater range of reduction for unstressed syllables than
for stressed ones. According to the same study, on the other hand, sono-
rants in unstressed syllables tend to be more often categorised correctly
than those in stressed syllables. How come? Unstressed syllables more
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often have only a sonorant in the nucleus (e.g. /'ba-ton/ becomes /'batn/)
so that the sonorant gets a fuller realisation than when it is in the coda.

Integration Recognition of lexical stress should begin at an early stage. How
stress may interact with phone realisation was depicted in figure 4.3 on
page 39. If an unstressed /a/ is reduced to sound much like /o/, the
recogniser should indeed hypothesise that this is unstressed /a/ rather
than stressed /'a/. The models for stressed vowels should not be polluted
with reduced variants of those same vowels. Furthermore, if “the stressed
vowels of speech are one of the first groups of sounds to be recognized”
(Shoup 1980), then it should be a great help to know where the stressed
vowels are in the words that may be recognised.

Syllables All phonemes in one syllable have the same specification for stress.
This fact must be used by the system to find a consistent hypothesis for
the stress of the whole syllable. There seems to have been no use of stress
information from consonants in earlier research; this is apparently a silly
oversight that is totally unmotivated. Greenberg et al. (2003) manually
assemble information from the Switchboard corpus about duration of seg-
ments, correlating them with (actual) stress. They concludes that vowel
length correlates well with stress (this is consistent with Sluijter 1995; van
Kuijk and Boves 1999). Although the duration difference for consonants
in the onset “is not nearly half as great as observed among vocalic nuclei,
the general patterns observed are broadly consistent.” The coda shows a
mixed picture: some fricatives [f, 0, z, [, {f] and fortis stops [p, t, k] show
a similar amount of disparity to segments in the onset. The liquids [r, 1]
pattern with the vowels. Other consonants show little or no difference.

Note that for fully explaining behaviour of consonants with respect to syl-
lables, phonological and morphological modelling is necessary to account
for resyllabification. For example, at all /ot '0:1/ may become [0't"o:1] and
for eight /for ert/4 may be realised [for'rert]. On the other hand, there may
be a difference between nitrate [nartrert] and night rate [nartrert].

Adaptability The recogniser must be able to adapt to speaking conditions.
Supposing that lexical stress is realised differently depending on the speak-
ing rate and ‘sloppiness’, the variability in actual stress may be too great
to be handled by a non-adaptive system in practice. This is an issue
for speech recognition in general. However, phonemes that are split into
stressed and unstressed variants are supposed to model smaller areas. Let-
ting these areas be confused by other factors will undo the advantage at
least partially.

4.3.2 Acoustic representations

The acoustic features that may indicate stress for phonemes and must be ex-
tracted for detection of lexical stress (see 2.1.2 for a more detailed explanation
of the features) are:

Intensity (see section 2.1.2.1 on page 15)

4In rP and other non-rhotic dialects.
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Pitch (see section 2.1.2.2 on page 15)

Stress is typically thought to be connected to the pitch; this goes for some
syllables in slower, more articulated speech in any case. The F{ slope may
be relevant more than its value, especially for consonants: a pitch peak
on a stressed nucleus should mean that the pitch rises in the onset and
decreases in the coda. However, from Ladd (1996) it is to be expected that
the relation between stress and pitch peaks is not straightforward (see sec-
tion 2.1.2.2 on page 15). Wang and Seneff (2001) find that pitch “yielded
the poorest results” for lexical stress classification. Xie et al. (2004) are
“surprised that the pitch features did not turn out to be particularly use-
ful.” Judging from earlier research they should not have expected the
fundamental frequency to give much information for lexical stress directly.

Vowel quality (see section 2.1.2.4 on page 19)

The vowel quality is often captured in speech recognisers through MFCcC
(Mel-frequency cepstral coefficient) features that indirectly model formant
frequency. Separating these data for stressed and unstressed vowels is not
much of a departure from current-day garden variety speech recognition.

It could however yield quite a performance boost: though MFCCs basically
capture formant frequencies, they do so by each measuring the energy in
a specific frequency band. On the range of realisations of one phoneme,
from full to wholly reduced ones, formants may shift from one coefficient
to other ones. When models for stressed and unstressed realisations are
separated, both become more specialised: they model a smaller range
of formant values, making better use of the properties of MFCCs. See
figure 4.3(b) on page 39 for a depiction.

Spectrum (see section 2.1.2.5 on page 20)

Sluijter (1995) uses the frequency bands o—o0.5kHz, o.5-1kHz, 1—=2kHz
and 2—4 kHz to capture the ‘spectral tilt’ she finds is an good correlate of
lexical stress. Including this information in a speech recogniser directly
is an option; however, MFCC features also contain spectral information.
Though Sluijter’s bands may be appropriate for expository purposes, a
speech recogniser may find enough data in the MFCC features to go by.

If spectral features are added explicitly, it may be necessary to use the
difference between the energy for frequency bands rather than the absolute
values, so that it is indeed the spectral ‘slope’ that is measured.

Derivatives Wang and Seneff (2001) find that pitch slope is more relevant than
maximum or average pitch over a segment. Indeed, intensity, Fy, vowel
quality and spectral tilt are all expected to have a peak on the nucleus
of a stressed syllable. Therefore, these features will show some kind of
raising in the onset, and lowering in the coda. (Sluijter does not look into
subsegmental behaviour of these features.) Derivatives over time could
be used for capturing the temporal effects on these features. This should
enable the recogniser to recognise those effects both within a phoneme
and within the syllable: for example, consonants may be expected to have
raising pitch in onsets of a stressed syllables and decreasing pitch in codas.
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Also, using derivatives has the advantage of not having to rely on absolute
values: sentences with different tunes or spoken with different vocal chords
(think differing in sex) are provided for more easily. If the time between
stressed syllables remains largely the same under different speaking rates
for stress-timed languages, the feature slopes will be similarly normalised.

Duration (see section 2.1.2.3 on page 19)

The length of a phoneme is the primary indicator of its stress according
to Sluijter (1995). To use duration during phoneme recognition, however,
both the time-independent and temporal properties must be modelled si-
multaneously.

Another complication may be that duration not only depends on lexical
stress. It appears than a context-dependent duration model is more per-
ceptually adequate: not only the position within the word but also the
neighbouring segments should be taken into account (Kompe 1997). An
example where duration makes all the difference is in the pronunciation of
the words lap and lab. There is only a slight, and often absent, difference
in the pronunciation of the final consonant (see Harris 1994), but /a/ be-
fore /b/ is much longer than before /p/ (Collins and Mees 1999, p. 52).
In a Viterbi-based recogniser, for example, the difference between the two
realisations of /a/ cannot easily be modelled.

The duration depends on the overall speaking rate, which could be calcu-
lated by taking the ratio of the duration of the utterance and the expected
duration from the phonemes.

Z NDuT(Vi)

(1) Speaking rate = m

This equation is from Wang and Seneff (2001), but they use V;, the ith
vowel, whereas using the ith segment would be a better approach. (See
section 5.8 on page 64 for an off-line implementation.) However, as shown
in section 2.2.5 on page 28, it is not trivial to add duration modelling to
a speech recogniser that uses HMMs and Viterbi.

4.4 Architecture

In considering speech recogniser architectures that will allow lexical stress recog-
nition, the point of departure will be the current-day garden variety speech
recogniser. One that uses HMMs and Viterbi search is depicted in figure 4.1 on
page 36. The new elements in the systems that will be introduced will be
coloured red, as in figure 4.2 on page 37. This figure shows an approach with
verification; the new models proposed here, however, will aim to come up with
new hypotheses for utterances.

The aim of this enumeration is not to exhaustively discuss the possibilities
for lexical stress recognition; rather, broad sketches will give an idea of models’
advantages and drawbacks in terms both of practicalities and the considerations

45



CHAPTER 4 MODEL

}

Stress
Feature
. feature
extraction .
extraction

}

ar 'ar o er Viterbi:
HMMS |—— ‘eri'il'l — phoneme
m'mn 'n level
HEHETI RS,
, ar p o
er 1 ‘ n
ar
Y
. a  fol Viterbi:
Lexicon |— alien /'er-li-on/ —»
. ‘ word level
lion /'laron/
‘a lion’

Figure 4.4 A speech recognition system that uses extra features in the
feature vectors.

from section 4.3. Common to all these models is a split set of phonemes to ac-
commodate the differences between stressed and unstressed ones. The lexicon is
modified accordingly: a stress mark is added to all segments in stressed syllables.
Thus, the lexicon contains only syllables with matching phonemes. This forces
the recogniser to find consistent hypotheses over the segments in one syllable,
though syllable stress is not modelled explicitly. For example, assume an En-
glish lexicon contains both /'s'a'bdzekt/ and /sab'd'z'e 'k't/; the recogniser
could never hypothesise /s'ab'd3'ek 't/.

An architecture for a system that uses acoustic information for a given time
are discussed first, then systems will be proposed that explicitly model duration.
After that, these two aspects will be combined into one system.
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4.4.1 Time-independent

Figure 4.4 on the facing page shows a method of modelling stress that uses only
the acoustic information from one time slice, similar to the approaches found in
van Kuijk et al. (1996); Wang and Seneff (2001). No new algorithms need to be
invented compared to conventional speech recognition, but the feature vectors
as well as the phoneme set are modified to model stress. These modifications are
catered for in many available recognisers. The acoustic properties of stress are
extracted from the audio data in the block labelled “Stress feature extraction”.
The symbolic properties are implemented as a doubling of the number of phones:
phone models are separated into stressed and unstressed versions. Accordingly,
the transcriptions in the lexicon specify which syllable is stressed. The main
difference between earlier efforts and mine is that all phonemes, consonants as
well as vowels, are marked for stress.

For capturing the acoustic properties, features that can be inserted into
feature vectors are:

e the fundamental frequency (Fp);
e an overall energy measure, if it has not been included yet;
e spectral tilt features as proposed by Sluijter (1995).

The delta of these may be needed as well, effectively as numerical derivatives
over time (see the item Derivatives on page 44). This should not be difficult to
implement, since conventional speech recognisers already calculate derivatives
of MFcC features. Derivatives may be useful more than in Sluijter’s experi-
ments because we use multiple-state HMMs, which can model different stages of
a phoneme (see section 2.2.3 on page 26). For example, the spectral slope may
increase more over the first part of a stressed vowel than the first part of an
unstressed one.

Adding the new features to the conventional feature vectors may be done by
concatenation, as shown in figure 4.5 on the next page. However, HMMs make
the assumption that the features are statistically independent. We expect the
MFCC features to contain at least some information about spectral tilt, so simple
concatation may form a problem for the required statistical independence.

There are methods to reduce the dimensionality of data, removing unneces-
sary information from feature vectors. Principal Component Analysis (PCA) is
often used to reduce the interdependence between feature values. Linear Dis-
criminant Analysis (LDA), on the other hand, clusters data given examples from
classes. Since we are looking for a way to use feature data to obtain an op-
timal separation between stressed and unstressed phonemes, LDA is the more
promising method. The classes can be formed by grouping the feature vectors
per phoneme from segmented data. The transformation found through LDA can
then be used as a preprocessing step for all feature vectors before feeding them
into the HMMs, as shown in figure 4.6 on the following page.

4.4.2 Temporal

Various authors have found a correlation between lexical stress and duration
(Sluijter 1995; van Kuijk and Boves 1999; Greenberg et al. 2003, and see sec-
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~

Figure 4.5 Concatenating feature vectors from different sources. ‘Stan-
dard’ features, e.g. MFCC features, are displayed as black items. Those
coloured red are added for recognition of lexical stress.

/

Figure 4.6 Using LDA to combine feature vectors from different sources.
‘Standard’ features, e.g. MFCC features, are displayed as black items.
Those coloured red are added for recognition of lexical stress.
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Figure 4.7 Two HMMs sharing state distributions, but each having their
own set of transition probabilities.

tion 6.1.1 on page 70 for my measurements). However, there is a lack of dura-
tional modelling in today’s speech recognisers (as proposed by Russell and Moore
1985; Ramesh and Wilpon 1992; Wang 1997, and see section 2.2.5 on page 28
for a discussion). Whereas spectral modelling as discussed in section 4.4.1 on
page 47 takes much more processing for every time slice than for conventional
speech recognisers, modelling phone duration would not have to take much time.
However, there are three problems:

e It is not clear which algorithm must be used; in practice duration modelling
either takes much processing or, for the simple variants, does not work (see
section 2.2.5 on page 28).

e Duration modelling is all not there is to temporal modelling. As Sitaram
and Sreenivas (1997) point out, subphone models should model duration
as well.

e Duration is much dependent on speaking rate. A system must keep track
of the speaking rate to be able to work out whether a given phone is longer
or shorter than its expected rate.

4.4.2.1 State tying

Figure 4.7 shows a naive way to model duration. Stressed and unstressed
phoneme models share their Gaussian distributions, but do have their own transi-
tion probabilities. This technique is called state tying. It has the advantage that
training the distributions is as fast and as correct as conventional training (the
amount of training data for the feature vectors is still the same), but the transi-
tion probabilities are handled differently according to stress. It seems that even
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Figure 4.8 A simple HMM whose end state splits into different phonemes.
Here, asg, and ase, should depend on the time spent in the model.

subphone duration would be modelled. However, as shown in section 2.2.5 on
page 28, HMM transition probabilities do not work well for modelling duration.

4.4.2.2 Deferred split

Rather than introducing many HMMs to model the phonemes, it may be more
efficient to defer this split to the final state of the HMM (see figure 4.8). The split
should incorporate the duration calculation. That is to say, ase, and asg, should
not be constants, but rather functions that depend on the length of the most
likely path through the HMM. This strategy has the advantage of modelling
phone duration explicitly (as a gamma distribution, for example). However,
modelling subphone duration is not possible. Also, the required change to the
algorithm, though not too large, is quite pervasive.

The architecture of a system that uses this strategy is depicted in figure 4.9 on
the facing page. The figure shows that the difference between stressed and un-
stressed phonemes is detected through rescoring phoneme hypotheses for dura-
tion.

4.4.3 Combinations

Lexical stress is signalled by a number of different acoustic features. Considering
only time-independent or only temporal features was a simplification mostly
for explanatory purposes. How can the two features be combined into one
recogniser?

4.4.3.1 Rescore hypotheses

Figure 4.10 on page 52 shows a not too pervasive method of integrating stress in
a speech recogniser, conceptually similar to the verification approach. However,
the Viterbi algorithm here outputs not the one most likely sequence, but the
n most likely sequences according to the standard algorithm and phoneme set.
When those n sequences, calculated without stress data and using a lexicon
without stress marks, have been found, the alternatives are rescored on the
basis of feature vector and duration information.

The benefit of using a system that rescores hypotheses in a second pass is
that processing time is not unduly increased. Generating the hypotheses usually
takes much more time than reevaluating them. Note that this rescoring method
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Figure 4.9 A speech recognition system that uses duration to rescore
phoneme hypotheses before they are used at the word level.
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Figure 4.10 A speech recognition system that uses stress to rescore alter-
native hypotheses in a final pass.
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would be valid for modelling only temporary properties as well. Another great
advantage is that the speaking rate can be calculated by comparing the expected
duration of the phonemes to the actual duration of the current utterance rather
than previous utterances. This information can be used to properly account for
duration differences (see section 5.8 on page 64 for an elaboration).

A disadvantage of modelling stress so late is that it cannot be integrated
into processes taking place early, such as segmentation. Furthermore, phoneme
models will not account for reduction of unstressed phonemes during actual
recognition.

4.4.3.2 Full stress modelling

Figure 4.11 on the next page shows a system that uses a stressed —unstressed di-
chotomy throughout, like in figure 4.4 on page 46. It also uses duration through-
out, similarly to figure 4.9 on page 51. The advantage of this system is that
no stress information is lost: the integration (see 4.3.1 on page 43) is perfect.
However, it does take more processing time because more features have to be
considered, and it does have the disadvantages of durational modelling discussed
in section 4.4.2 on page 47.

4.4.4 More advanced

As discussed in section 2.2.5 on page 28, various methods of including knowledge
about phone and subphone duration have been proposed. However, they are
not available in standard speech recognition toolkits. This may be due to their
computing-intensive methods. However, if it were straightforward to implement
more sophisticated temporal modelling than HMMs provide into a stress-enabled
speech recogniser, this would help a great deal. The system would look like
the one in figure 4.11 on the next page except that temporal modelling and
subphone recognition would be intertwined.

Modelling of elision, reduction to (), would be possible with HMMs: a connec-
tion from the start state to the end state would do the job. However, it is not
straightforward to find for which phonemes this optimisation would go, while
incorrectly adding loops may cause more harm than good. To properly account
for elision, context-sensitive models should probably be used.

Until now the symbolic part of lexical stress has been modelled by adding
stress marks to the lexicon. However, using multiple levels of stress might be
more sensible. Greenberg et al. (2003) distinguish five levels of actual, phonetic,
stress. A corpus with actual stress annotated per phone would make it possible
to separate concerns when using stress in a speech recogniser. Now lexical stress
is directly determined from the acoustics. A more sophisticated recogniser would
recognise the level of phonetic stress more precisely from the acoustics. The
level of phonetic stress would be used to find the phonological stress. For two
levels of lexical stress, a simple approximation for phonological stress, this would
mean a probabilistic mapping. This may make the mapping from acoustics to
phonological stress more accurate; it also makes it easier to introduce a more
sophisticated system for phonological stress, modelling phrase stress and the
like.
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Figure 4.11 A speech recognition system that uses both extra features
and phoneme duration; a combination of the systems in figures 4.4 on
page 46 and 4.9 on page 51.
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4.4.5 System proposal

Figure 4.4 on page 46 shows the architecture of a system that extracts stress-re-
lated features for each time slice and adds them to the feature vectors. This
system shows the following properties, when related to the considerations from
section 4.3 on page 42:

e Reduction is modelled through MFCCs.

e The stress feature information is already available before the phonemes
are recognised, so that it is used at an early stage. This, it can improve
reduction and segmentation.

e Consonants are taken into account in the way described in section 4.4 on
page 45. The features used for vowels will be used for consonants as well.

e Duration is not modelled, since this would require more advanced HMMs
(to measure duration) and an adaptive recogniser, both of which are not
available in the HTK; nor are they straightforwardly implemented from
scratch.

This architecture will be used for the speech recognition system that imple-
ments lexical stress recognition. The implementation of the system is described
in the next chapter.
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Chapter 5

System

ignotas animum dimittit in artes
naturamque novat. nam ponit in ordine pennas,
a minima coeptas, longam breviore sequentil
Ovid, Metamorphoses VIII

To test many of the ideas and claims made thus far, and to give them more
practical weight, they are implemented in a speech recognition system. This
will be used both to gather statistics from corpora and to see the effect on
recogniser performance. A system that does not use stress has been set up as
well as one that does. This system is based on earlier work. This chapter will
not give a full overview of how the Hidden Markov Toolkit’s modules work or
how to concatenate feature vectors from various sources. The tools I use for
such things have been written earlier (see Wiggers 2001).

What this chapter will give is an overview of relevant practical decisions I
make, most of them based on findings in the literature and, where the literature
did not give plain answers, on common sense.

The implementation structure is given in figure 5.1 on the next page. HCopy
is an HTK tool that converts the sound recording into feature vectors with MFCCs.
Praat and sox edit sound files. They are used to gather spectral and fundamen-
tal frequency features from the sound file. cuf (Wiggers 2001) concatenates fea-
ture vectors from different sources. HCompV initialises the HMMs from scratch;
HERest retrains them. Finally, HVite runs the speech recogniser.

5.1 Base system

The speech recognition system by Wiggers (2001), implemented using HTK (see
section 3.1 on page 31), has provided me with the possibility to plug in stress
recognition-specific features right away (for the system that uses DUTAVSC). As

*‘to uncoth Arts he bent the force of all his wits
To alter natures course by craft. And orderly he knits
A rowe of fethers one by one, beginning with the short,
And overmatching still eche quill with one of longer sort’
(translation Arthur Golding, from <http://www.perseus.tufts.edu/>.)
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Figure 5.1 The system architecture.
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his objective was to complement speech recognition with lipreading, even the
architecture and the tools to concatenate feature vectors are readily available.
A system trained on the POLYPHONE corpus, ready to be retrained on DUTAVSC
(see section 5.9 on page 64) is there.

Though many of the shell scripts connecting the HTK tools were available
for the DUTAVSC system (see section 5.9 on page 64), all scripts were rewritten
for the recogniser based on the CGN (see section 5.10 on page 65), adapting to
another operating system, enhancing their customisability and enabling paral-
lel processing. The system that uses CGN (see section 5.10 on page 65) was
bootstrapped from a flat start.

Producing the extra feature vectors (so that there actually is something to
be concatenated) is done with Praat (see section 3.2 on page 32) and, where that
program fails due to preposterous memory requirements, the Linux program sox
(Sound Ezchange). The extra features have their derivatives added. The feature
values themselves are normalised over one utterance to reduce the influence of
factors like microphones and sex on recognition.

The information from the corpora must be converted to HTK-compatible
formats. Since the transcriptions my system require stress marks, which are not
available in garden-variety systems, the transcriptions and lexica for both the
DUTAVSC and CGN systems have to be converted.

5.2 Technical requirements

The memory some programs require is rather too much for current-day per-
sonal computers (exceeding 3 gigabytes of internal memory). Praat fails when
extracting the energy in spectral bands from sound files over 25 megabytes. To
overcome this problem, I add the Linux program soz to the toolchain.

The HTK tool HERest fails on feature vector files larger than 3 megabytes.
This is overcome by cutting up the recordings into smaller pieces; the program
that does so is called cut_up. It separates the speech data into smaller phrases,
as indicated in the CGN transcriptions by punctuation.

Training one iteration, when six high-end personal computers were used,
takes about one hour for the first iterations (where one Gaussian mixture per
distribution was used), but eight hours for the final iterations (with sixteen
mixtures). Evaluation the recogniser (i.e. trying it out on the evaluation set)
takes about four hours at first, and ten hours in the end.

5.3 Levels of stress

Neither in simple nor in more elaborate theories is stress ever seen as an on-or-off
thing. Section 2.1.1.2 on page 12 has shown how phonological theories handle
levels of phrasal stress. In many dictionaries (e.g. Procter 1995) syllables can
have primary stress, secondary stress, or no stress at all. Collins and Mees (1999,
p. 229) show that one may hear 5 degrees of stress in the word eccentricity. In
(1), numbers 1-5 are used: 1 indicates strong stress, 5 weak stress.

(1) €k son trr so tr
2 4 153
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However, a practical implementation has to work with limited resources. Time
and comprehensive theories on phrasal stress are lacking, and the resource called
‘lexicon’ (see section 3.3.2 on page 32) is limited too—it only knows one type of
stress. A consolation may be that Wang and Seneff (2001) do not find any im-
provement from adding multiple levels of stress to a speech recognition system;
also, having only two levels does make the graphs easier to read.

5.4 Fundamental frequency

Section 2.1.2.2 on page 15 has shown that though fundamental frequency may be
perceived as an important feature of stress, implementation of this notion is far
from straightforward. Notwithstanding, it will be included in the feature vector.
There is a problem: not every segment has a fundamental frequency, because
not every segment is voiced. This may be a phonological thing (e.g. /p/ is not
normally voiced), but it may be a phonetic thing as well (e.g. lose /luiz/ realised
with final [z]). T use the Praat program (see section 3.2 on page 32) to extract
the fundamental frequency from the audio recordings. It emits undefined as a
value when it cannot find the fundamental frequency. There are two possible
courses for mapping undefined unto a feature vector value.

e Setting the feature to zero or some other out-of-range number. This
will make a clear separation between slices that have a fundamental fre-
quency and those without. A drawback is that the ability to generalise
over these values is crippled, for example when voiced phonemes are de-
voiced phonetically, or when voiceless phonemes are voiced (e.g. vijfen-
twintig ‘twenty-five’ /veifontumtex/ [feivontumtox]).

Using an out-of-range value would mean adding an extra feature of voiced-
ness too. By this we would inadvertently introduce new data.

Another drawback is that using an out-of-range number makes it more
difficult to normalise the Fy values. Using derivatives to recognise pitch
raising and lowering would become impossible.

e Linearly interpolating the undefined values between neighbouring known
values. This approach borders on thinking up values that are not actu-
ally there; it will however allow better generalisation. However, its main
merit is that it formalises the notion about intonational tune in works
like Bolinger (1986; 1989); Ladd (1996). These works show intonation
contours as uninterrupted curves, which is supposedly the representation
people use internally. The fact that there is no voicing, i.e. no carrier for
the intonation contour, in voiceless stops is a mere detail.

The practical counterpart of this argument is robustness: if by accident
Praat found no fundamental frequency where there is one, this would be
mitigated because the interpolation would fill in a sensible contour. For
example, figure 2.3(a) on page 18 shows such a gap, and clearly linear
interpolation would fix up this contour well.

Furthermore, interpolation may have the practical advantage of enabling
the recogniser to detect stress on voiceless consonants in the onset or coda
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of a syllable that has a pitch peak: the pitch could rise in the onset, and
lower in the coda.

Interpolation seems a sensible choice. The fundamental frequency will ex-
tracted from the audio data using the custom Praat (Boersma 2001) script
fo.praat that analyses the pitch and writes it to a file. I wrote a program to
interpolate linearly between these values and called it nterpolate.

5.5 Spectral tilt

According to Sluijter (1995), stressed vowels receive more energy, which is found
most prominently in the higher spectral bands. In a graphical representation the
spectrum normally has a downward slope, which is smaller for stressed syllables;
hence the property is called “spectral tilt”. Operationally, this is defined as the
relative energy in a number of spectral bands. She uses four spectral bands:
okHz—.5kHz, .5kHz—1kHz, 1 kHz—2kHz, and 2kHz—4kHz. The energy of
these bands is inserted into the feature vectors by integrating over the energy
of each band. This is done with a Praat script spectrum.praat that extracts
spectral information from every 10ms slice. The difference between the energy
in different bands is also included. Together with the deltas and the delta-deltas,
this makes an extra 30 features.?

5.6 Consonants

In phonological literature a difference is made between realisations in the coda
and in the onset (see section 2.1.1.1 on page 10). Phonetic literature (e.g. Green-
berg et al. 2003) has found more fine-grained differences. A speech recogniser
could use this difference by modelling stress in onsets and codas differently.

Another effect that may be seen is different slopes. Stressed syllables often
have a pitch peak associated with them; this could yield raising pitch in the
onsets, and lowering pitch in the codas of stressed syllables. Spectral features
are measures for the effort with which phonemes are pronounced. The speaking
effort is a continuous measure: it probably increases over the beginning of a
stressed syllable and decreases over the end. We therefore expect that derivatives
for spectral features also may be correlated with lexical stress, especially for
consonants.

This is where the remarks in section 4.3 on page 42 come in: to properly
model the acoustic effects, the symbols must reflect them. In this case, a differ-
ence must be made between consonants in the onset and those in the coda. This
gives us four models for each consonant. How the specifications for onset, nu-
cleus, and coda for a given syllable are matched through the lexicon is described
in section 4.4 on page 46.

2] experimented with classifiers to identify the most important features, but they did not
seem to favour a certain set of features.
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5.7 Function words

It appears that the lexica used, the POLYPHONE and CGN lexica, both have all
one-syllable function words specified as stressed. Not only van /'van/ ‘from’
and dus /'dus/ ‘so, thus’ but also reduced forms like de /'do/ ‘the (m./f.)” and
het /'at/ ‘the (n.)’ are stressed. This is rather strange, especially for the articles,
where the phoneme /o/, which can only occur in unstressed syllables, is marked
as stressed.

To alleviate this problem and to potentially increase recogniser performance,
a number of function words are not marked as stressed at all (as was done by
van Kuijk et al. 1996; van Kuijk and Boves 1999; Wang and Seneff 2001; van den
Heuvel et al. 2003). It may seem bad practice to remove lexical stress informa-
tion from function words, but it is backed up by linguistic theory. Syntactic
literature (Cook and Newson 1996, p. 187; Poole 2002, Ch. 3) often makes a
distinction between functional phrases (or categories, phrase types) and lexi-
cal phrases. According to Cook and Newson, functional phrases form a “closed
class”; they have “no descriptive content” but “grammatical features”, and are
“usually unstressed”. Booij (1999) describes function words as clitics that are
phonologically dependent on a host word to form a prosodic words, because they
are not stressed themselves.5

(2) Zij  kochten 't boek
(zel)y ((kox)y(t0)s(not)s)w (buik),
‘They bought the book’

(2) demonstrates how the clitic # ‘the (n.)’ is embedded in the prosodic
word headed by kochten. It also demonstrates how the phonological division is
different from the syntactical division: ’t boek is a syntactical constituent, while
kochten ’t is a phonological one. Thus, function words are marked unstressed
as a model of effects of the phonological rules that does not require modelling
the rules themselves.

Collins and Mees (1999) give a list of Dutch function words that are subject
to reduction and seem to fit the bill (see table 5.1 on the facing page). These
words are marked as unstressed in the recogniser lexicon.

Some implementation notes:

e The Dutch orthographical system can show reduction for a number of func-
tion words, as shown in table 5.2 on page 64. These words have not been
selected rationally: centuries of spelling conventions have produced them.
However, the CGN corpus does use the reduced forms in the transcriptions,
so these can be unstressed as well. (Most of them are already.) Note that
this does not mean that canonical versions of function words should be
stressed.

e The word de ‘the (m./f.)’ has a reduced orthography already; the CGN
lexicon (unlike CELEX) specifies it as unstressed.

e The CGN lexicon differentiates between homographs. The words haar ‘her’
and was ‘was/were’ will be marked unstressed, while haar ‘hair’ and was
‘(I) wash’ will not.

50 indicates a syllable; w a (prosodic) word.
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Table 5.1 Function words that are specified as unstressed, as found as
“weak forms” in Collins and Mees (1999, pp. 239—40). Though the CGN
transcription is documented to be taken directly from CELEX, they differ
on some words (e.g. het ‘the (n.)’ is not stressed in the CGN lexicon).

Orthog- Canon- Weak form CGN tran-
raphy ical scription
form
Deter- een Jem/ Jon/ /'em/
miners het /het/ /ot, t/ /ot /
aan Jam/ /on, n/ /'am/
met /met/ /mot/ /'met/
. naar /nair/ /ner, nr, no/ /mar/
1132?5)051- ten /ten/ /ton/ /'ten/
ter /ter/ /tor, tr, to/ /'ter/
van /van/3  /ven, fon, fn/3 /'van/
voor /vorr/3  [ver, vr, vo, for, fo, fr/3  /'voir/
ik /1k/ /k/ /k/
i e/ fiof Viei/
hij /hei/ /i/ /'hei/
zij zel 70 zel
Personal het ;het// ;at; ;‘at //
and pos- .. . ol
sessive wij Jvei/ Jwo/ /'vei/
haar /hair/ /der, dr, de, or, o/ /'hazr/
pronouns - jem /hem/ Jom, m/ /hem/
mijn /mein/  /moen, mn/ /mein/
jouw, jou  /jau/ /jo/ /jauw, jau/4
zijn /zein/ /zon, zn/ /'zein/
ben /ben/ /bon/ /'ben/
is /18/ /os, s/ /'1s/
was Jvas/ Jvos/ /'vas/
Auxiliary  heb /hep/ /op, hep/ /'hep/
verbs heeft /heift/  Joft/ /'hexft/
had /hat/ Jot/ /'hat/
kan /kan/ /kon, kn/ /'kan/
zal Jzal/ /zol, z1/ /'zal/
als Jals/ /ols, os/ /'als/
daar /dair/ /der, dr, do/ /'dar/
dan /dan/ /den/ /'dan/
dat /dat/ /dot/ /'dat/
eens /ems/ /ons, os, s/ /'ems/
Miscella-  en /en/ /on, n/ /'en/
neous er Jer/ /or, r, 9, dor, dr/ /'er/
maar /maxr/  /mor, mr, mo/ /'mar/
of /of/ /of, f/ /of/
waar Jvar/ /ver, ve, ur/ /var/
wat Jvat/ Jvet/ /'vat/
wel Jvel/ Jval, vl/ /'vel/

3Collins and Mees (1999) write /f/ rather than /v/

4/jauw/: sic.
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Table 5.2 Additional forms for reduced orthography versions of function
words in the CGN lexicon.

Canonical Reduced
Orthogra- Transcrip- Orthogra- Transcrip-

phy tion phy tion

Determiners  het /'ot/ 't /ot/
i [iei/ je [0/
hij /'hei/ ie /'it/

Personal and Zi‘?. / ZSI/ ze /7]
. wij /'vei/ we Jvo/

possessive haar /'har/ d’r /dor/

pronouns hem /'hem/ 'm Jom/
jouw, jou  /jau/ je o/

zijn /'zein/ z'n /zon/

daar /'dar/ d’r /dor/

Miscellaneous er /'er/ d’r /dor/
eens /'ems/ s /os/

5.8 Duration

Due to such factors as the overall speaking rate, phone duration is not easily
measured objectively. As an approximation of the relative length of a phone by
a certain speaker in a specific utterance, it is normalised. Define p; as a phone
from the corpus. p; is the realisation of the phoneme ¢ = r(p;); n; is the number
of realisations of the phoneme . d(p;) is the actual duration of p;. Uy is one
utterance. The expected duration for a phoneme ¢ is defined as

iji7‘(m)=i d(p;)

(3) pi =
The normalised duration of p; is
(4) d'(p;) = d(p;) - ax, p; € Uy

where «ay, is the speaking rate of utterance Uy, which is defined as

(5) a = Zp]‘GUk 'u“’"(pj)
ZpgeUk d(p])

The duration_ normalise program calculates d’(p;) for all phones in the cor-
pus. It excludes non-speech phonemes (sil and sp) from the calculation.

5.9 DUTAVSC system

To get a feel for the kind of data and improvements that are to be expected, a
system is built on a small corpus, the DUTAVSC (see section 3.3.1 on page 32).
A speech recogniser bootstrapped on the POLYPHONE corpus is readily available
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CGN transcriptions Lexical transcriptions

Phoneme transcriptions

CGN lexicon
transcribe
Lexicon adaptations i
Word list
Phonemes Lexicon

Figure 5.2 The information flow around the transcribe program.

(see section 5.1 on page 57). Its phone models are copied to stressed and un-
stressed versions (no difference is made between the onset and the coda yet)
and get four training iterations. This system is used to gather statistics (see
section 6.1 on page 69).

5.10 CGN system

Two systems are trained on the CGN corpus (see section 3.3.2 on page 32):
one baseline system without stress marks and one that does make a difference
between stressed and unstressed phonemes. The systems are the same in other
respects, so that their performance can be sensibly compared.

772 recordings are selected for their degree of preparation, which are divided
into 54 842 files containing a phrase each (see section 5.2 on page 59). These com-
prise almost 53 hours of recording with 775034 words. The recognition system
cannot adapt to varying speaking styles and speaking rates (see sections 4.3.1 on
page 42 and 2.2.5 on page 28). To get the kind of speech in the selected record-
ings as consistent as possible, only those the corpus marks as “scripted” are used.
They are split into groups: 80 % are used as training data, 10 % for testing, and
another 10 % for evaluation. No group has data from speakers that also occur
in other groups.

5.10.1 Data preparation

To convert the transcriptions that come with the CGN to a form with stress
information and readable by the HTK components, I write a program called
transcribe. Its main purpose is to convert transcriptions from CGN’s XML files
into a HTK-readable MLF file. The problems it deals with are phonemes of
which not enough examples are found, unknown words, unavailable or invalid
transcriptions, and recordings that are too long to be processed by HTK (see
section 5.2 on page 59 for the last problem). Figure 5.2 shows the inputs and
outputs of the program. The information going into it consists of information
that comes with cGN and information that is added.
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The

The

The

The

CGN transcriptions contain the words in all recorded utterances. The
words are described through their orthography and a word ID.

CGN lexicon contains different pronunciation transcriptions for all words.
transcribe maps the lexical transcriptions onto transcriptions consisting of
separate phonemes with stress marks. The lexical transcriptions taken
from the CELEX lexicon have stress marks, but are not available for all
words.

adaptations to the lexicon are necessary for marking function words
unstressed (see section 5.7 on page 62) and for adding hesitation fillers eh
and ehm.

phonemes contain the mapping of phonemes in the CELEX transcription
to phoneme symbols suitable for processing with HTK. This is where the
difference between the conventional and stress-enabled recognisers is made.
For the former, all phonemes are mapped to symbols with stress marks; for
the latter, the destination symbols are different in terms of stress marking.

The entries in the transcriptions are first matched with the ones in the lexicon
by word ID. This enables transcribing the difference between for example haar

‘her’

/harr/ and haar ‘hair’ /'hair/. The orthography is used only for words

without an ID or CELEX transcription. sil phonemes are appended and prepended
to the transcriptions to account for silence at the start and end of recordings.
Non-speech sounds are transcribed as ggg in the CGN transcription; these are
retained. CGN transcribes unknown words with xxx. Some words do not pass
through the system and are replaced by xxx.

The CELEX transcription, which is the only pronunciation transcription in
which syllables are marked for stress, is not available for 4.5 % of the tran-
scribed word instances of the training set.® These words are transcribed
as xxx. (To retain consistency this also goes for the non-stress-marked
system, even though more comprehensive transcriptions are available.)

The lexicon contains words with transcriptions with syllabic consonants
(’s ‘once’ [s/, sst ‘sh’ /st/ and pst ‘psh’ /pst/) and words with invalid
transcriptions for Dutch (pass ‘pass (soccer)’ /pais/). For the reduced
form ’s for eens ‘once’ (but used much more often than English ‘once’) the
pronunciation should be /os/, notwithstanding the orthography. Assigning
a stress valuation to /s/ in context is not trivial, so /os/ (unstressed) is
used. The other words (sst, pst and pass) are hapaz legomena: there are
too few instances of the phonemes to be trained; furthermore, their number
is fairly low compared to the words already transcribed as xxx. Adding
those few words will not significanty add to the number of unknown words.

The CGN lexicon includes the marginal nasalised phonemes /5/ and /&/,
of which the training data has no examples, and /€/, of which the training
data contains only two examples (point (French) /'pwé/). These phonemes
are deleted from the list of phonemes; the transcribe program, seeing that
/&/ does not exist, shrewdly replaces point by xxx as well.

6To be precise, 29 goq words out of 665 353.
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Table 5.3 Outline of the structure of the speech recognisers through the
training iterations.

Iteration Structure
1...4

5...19 sp phoneme introduced; sil and xxx phonemes altered
20...24 2 mixtures per phoneme

25...29 4 mixtures per phoneme

30...34 6 mixtures per phoneme

35...39 8 mixtures per phoneme

40...44 10 mixtures per phoneme

45---49 12 mixtures per phoneme

50...60 16 mixtures per phoneme

The outputs of the transcribe program are the following.

Transcriptions that come in two flavours: lexical transcriptions (i.e. a list of
word IDs per recording) and phoneme transcriptions (a list of phonemes
per recording). The former is basically the same as the CGN transcrip-
tions; why not simply convert this one? This is not done because the
phoneme transcriptions need to be consistent with the lexical ones, espe-
cially since there are a large number of changes (due to word ID processing
and replacing unknown words by xxx).

Lexical transcriptions are used to compare the recogniser output to when
testing. Phoneme transcriptions are used for training.

The lexicon contain the words (as word IDs) with the new phonemic transcrip-
tions.

The word list contains all words, which, though not fundamentally different
from the lexicon, some HTK tools need.

Though this is not shown in figure 5.2 on page 65, the lexicon and the transcrip-
tions come in different flavours as well, depending on whether an sp phoneme is
needed in between words (see the next section).

5.10.2 Training

The systems are initialised from a flat start (using the HTK tool HCompV'). To
account for silence at the beginning and end of recordings, a silence (sil) phoneme
is introduced. I set both this phoneme and the xxx phoneme to a straightforward
three-state HMM to prevent them from eating up all the recording through their
general nature. After four re-estimations with the HTK tool HERest 1 introduce
a short pause (sp) phoneme between words to account for the optional pause
between words. This phoneme contains one optional state, which it shares with
the sil phoneme. The sil and xxx phones get an extra loop from the fourth to
the second state to take care of their variable length.

From the 20th training iteration Gaussian mixtures are introduced in the
phone likelihood estimation for more precise modelling of the feature vectors’
properties. Table 5.3 shows the number of mixtures used for which iterations.
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The number of mixtures is increased in steps of two. (The HTK tools cannot
determine the number of mixtures per phone model automatically. However,
when increasing the number globally the mixtures with the highest variance are
split up.) The minimum number of examples for a phone model to be retrained
is increased when more mixtures are included, to prevent the models from losing
their general quality.
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Experiments

[T [be saddler’s next end is to make a good saddle, but bis further end to serve
a noblerfamlty, which is bomzmansbip.
Sir Philip Sidney, The Defence of Poesy

Sir Philip Sidney would have agreed: good ideas are not enough; they must be
put into practice. If the theories on lexical stress and their implementation have
enough bearing on speech recognition, this should be reflected in the statistics
from the recogniser. This chapter contains four different types of results.

e The statistics from collected data on vowels, which are obtained from
forced alignment, will be used to corroborate the results from Sluijter
(1995) and van Kuijk and Boves (1999).

e The statistics from similarly collected data for consonants will be used
to find how much stressed and unstressed consonants’ acoustics differ.
This may also shed light on whether Greenberg et al.’s (2003) results (on
duration differences between stressed segments in English) are valid for
lexical stress in Dutch as well.

e Statistics on the separability by the speech recogniser of stressed and un-
stressed phonemes will tell whether the phoneme models’ Gaussians are
able to model stress from the acoustic data.

e The statistics comparing the baseline speech recogniser performance with
the stress-enabled recogniser’s will tell whether the recogniser is able to
use lexical stress.

6.1 DUTAVSC

A system trained on the DUTAVSC corpus, which was described in section 5.9 on
page 64, is used to gather statistics from a relatively small collection of data.
The results are assembled by collecting feature vectors from phones that are
segmented with forced alignment. (Forced alignment is a technique where the
speech recogniser is run on the recordings, giving it the correct transcriptions.
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Figure 6.1 Distributions of durations of /'iz/ (solid line) and /iz/ (dashed
line).
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Figure 6.2 Distributions of durations of /'ar/ (solid line) and /a:/
(dashed line).

If done with a trained recogniser this should give a pretty accurate phone align-
ment.) No significant result from the fundamental frequency data is found;
duration and spectral features, however, do show much separation. This will
be demonstrated with histograms that have the probability on the vertical axis
and the feature value on the horizontal one.

6.1.1 Duration

The duration statistics are extracted from the forced alignment data. The nor-
malisation procedure is described in section 5.8 on page 64.

Similarly to Sluijter (1995); van Kuijk and Boves (1999), I find that duration
is in general a good indicator of stress. Stressed vowels are quite consistently
longer than their unstressed counterparts (see figure 6.1). Still, the distribution
of /a:/ (figure 6.2) is more muddled than the one van Kuijk and Boves (1999)
have. Not all consonants are, as shown in figure 6.6 on page 72: for stops the
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Figure 6.3 Distributions of durations of /'l/ (solid line) and /1/ (dashed
line).
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Figure 6.4 Distributions of durations of /'n/ (solid line) and /n/ (dashed
line).
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Figure 6.5 Distributions of durations of /'v/ (solid line) and /v/ (dashed
line).
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"
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Figure 6.6 Distributions of durations of /'b/ (solid line) and /b/ (dashed
line).

duration does not seem to differ at all, probably because stops’ complete closure
makes it difficult to produce lengthened ones sensibly: only the silence would be
longer. Liquids consistently show a large difference, as exemplified by /1/ and
/n/ in figures 6.3 and 6.4 on the page before, while fricatives are in between
(figure 6.5 on the preceding page).

6.1.2 Spectral rilt

Different spectral tilt features appear to apply for different phonemes. For
many phonemes stress correlates well with some spectral tilt measure. This may
be why Sluijter (1995) found clear correlations on a limited set of phonemes,
while van Kuijk and Boves (1999) had troubles finding correlates with a limited
set of features (two). My results show much more difference than the latter
found; this may also be due to the telephone speech they used being spectrally
impoverished. Spectral features correlate with stress for vowels, both for long
vowels (figure 6.7 on the next page) and for short vowels (figure 6.8 on the facing
page).

Most interestingly, the features that work for vowels give similar results for
consonants. Figures 6.9 on the next page and 6.10 on page 74 show how stressed
and unstressed consonants differ in terms of their spectrum. On the other hand,
/n/ (figure 6.11 on page 74) does not show spectral disparity at all. Two factors
could play a role here:

e The effect of speaking effort for fricatives and stops on the spectrum may
be greater due to their friction-based realisation.

e From a perception perspective, stressed and unstressed /n/ already differ
greatly in duration (see figure 6.4 on the preceding page) so the difference
in spectrum is not as necessary to distinguish the two.
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Figure 6.7 Distributions of the energy in 0.5 -1 kHz for /'a:/ (solid line)
and /a:/ (dashed line).
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Figure 6.8 Distributions of the difference between the energy in 1 —2kHz
and in 2 -4 kHz for /'t/ (solid line) and /1/ (dashed line).
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Figure 6.9 Distributions of the energy in 0—o0.5kHz for /'d/ (solid line)
and /d/ (dashed line).
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Figure 6.10 Distributions of the energy delta in 1 —2kHz for /'v/ (solid
line) and /v/ (dashed line).
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Figure 6.11 Distributions of the energy in 0.5 — 1 kHz for /'n/ (solid line)
and /n/ (dashed line).
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Table 6.1 The confusion between phones of the phoneme-only speech
recogniser on DUTAVSC. Stress is recognised incorrectly for only very few

phones.
Short vowels Long vowels Consonants Total
Correct 81.1% 84.1% 82.1% 821%
Incorrect stress 0.9 % 1.5% 1.9% 1.6%
Deleted 5.8 % 3.8% 1.9% 56%
Others 12.2% 10.6 % 10.1% 107%

6.1.3 Conclusion

Lexical stress has been demonstrated to influence acoustically not only vowels,
but also consonants. The same features that are canonically associated with
stressed vowels (duration, spectral tilt, intensity) are correlates of stress for
consonants. Various spectral tilt features apply to various phonemes.

To test whether they help a speech recogniser in determining whether a
segment is stressed, a phoneme recogniser without a language model is tested
on a subset of the DUTAVSC corpus. The recogniser has a deplorable 43 % overall
error rate; but this is mostly due to insertions. Table 6.1 contains the number
of substitutions, split into short vowels and long vowels. The recogniser does
rather well: only 1.6 % of the correctly recognised phones’ stress is classified
incorrectly.

6.2 CGN

As discussed in section 5.10 on page 65, two systems are trained. One is a
conventional recogniser, which does distinguish between consonants in the onset
and in the coda. It will be labelled the “baseline” recogniser throughout. The
other is a stress-enabled recogniser, which distinguishes two types of vowels
(stressed vs. unstressed) four types of consonants (stressed vs. unstressed and
onset vs. coda).

The speech recognisers are not state-of-the-art ones: the HMMs have only
three states, no biphones or triphones are used, and they are trained on a corpus
with 4.5 % untranscribed material. Furthermore, the feature vectors are not
as lean as they could have been: some features may not not help phoneme
classification but provide mere noise, and LDA (see section 4.4.1 on page 47) is
not used. Therefore, the baseline recogniser is expected to have a pretty low
recognition rate. Its purpose in life is not to recognise speech well, though, but
to be compared to the stress-enabled speech recogniser.

Similar set-ups have been used by others. Some have not been able to effect
an improvement in recognition performance at all (van Kuijk and Boves 1999;
van den Heuvel et al. 2003). However, Wang and Seneff (2001) made the word
error rate decrease from 7.6 % to 7.2 %, which is a relative improvement of 5.3 %.

Notwithstanding the greater number of phoneme models to be trained, the
stress-enabled recogniser set up for this work performs better than the baseline
recogniser at all points during training. Figure 6.12 and table 6.2 show the
recognition rates after every fifth training iteration. The recognition rate of
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Figure 6.12 Recognition rates on the evaluation set while training.
The black lines describe the baseline system’s progress; the red lines the
stress-enabled system’s.

Table 6.2 Recognition rates on the evaluation set while training.

Iteration Baseline Stress-enabled

10 23.25 % 24.88%
15 25.46 % 26.14 %
20 25.50 % 27.06 %
25 28.29 % 30.77 %
30 30.83 % 33.40 %
35 33-87% 36.28 %
40 35.68 % 38.57%
45 37-32% 39.58 %
50 38.25 % 40.30 %
55 39-47 % 41.21 %
60 39.96 % 41.62%

Table 6.3 Recognition rates for the test set.

Baseline Stress-enabled

Correct 30875 31694
Deletions 4647 3499
Substitutions 35820 35659
Insertions 13921 20885
Recognition rate 43.28% 44.73%
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the stress-enabled system is consistently over 1.5% higher than the baseline
system’s. At some points during training, the difference is almost 3 %. Table 6.3
shows the recognition rate and details from iteration 6o on the test set. The
difference in recognition rate is 1.45% as an absolute value. The word error
rates are 56.72 % and 55.27 %; this is a relative decrease of 2.6 %. To be able
to compare the rates objectively, such parameters as the word insertion penalty
were kept at their default values. However, the difference between the numbers
of insertions in table 6.3 suggests that there is room for improvement by tuning
the word insertion penalty.
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Chapter 7

Conclusion

Now when this was noised abroad, the multitude came together, and were
confounded, because that every man beard them speak in his own language.
The Bible, Acts 2: 6

This last chapter will answer the research questions as formulated in sec-
tion 1.4 on page 6. This overview will be short; the references in the margin
point to places where extensive descriptions can be found. The objective of
the thesis work was to model lexical stress in a speech recogniser, and thus
to improve recognition accuracy. I made a model of how lexical stress could
be used and a proof of concept implementation. The part of the model that
was implemented is discussed first; section 7.3 on page 81 deals with future
improvements.

7.1 Model

The final objective was to improve recogniser performance by modelling human
speech more accurately. Gains that were expected from modelling lexical stress 1.1 on page 2
are 4.2 on page 38

e better segmentation of continuous speech into words;

e better recognition both of minimal pairs (dverkomen— overkémen) and
words with similar parts (octéber — dctopus);

e more accurate modelling of phone properties.
Properties that are relevant at the symbolic level are 4.8.1 ON page 42

e modelling of reduction, because stressed syllables are less likely to be re-
duced than unstressed syllables;

e integration of stress recognition with phoneme recognition, as stressed Figure 4.9 on page 39
phonemes are pronounced differently;

e stress on consonants; hypotheses for stress should be consistent for sylla-
bles.
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7.1.1 Acoustics

The acoustics of lexical stress were found to be consistent with Sluijter (1995)
in general. Differences may be ascribed to the laboratory setting in which her
research was conducted. The acoustic correlates for consonants had never before
been looked into. It appeared that similar features were relevant for consonants.

e Duration was found to be most correlated with lexical stress. This goes
for consonants as well, and is quite in line with Greenberg et al.’s (2003)
results (who looked into phonetic rather than lexical stress, though).

e Spectral tilt was found to be related to lexical stress. Unlike Sluijter’s
results, the exact frequency bands appeared to vary. Varying frequency
features showed better separation than van Kuijk and Boves’s (1999) fixed
features from telephone speech. Furthermore, consonants showed similar
results to vowels.

e The fundamental frequency appeared to be not directly correlated with
lexical stress.

e Deltas of feature values had not been discussed by anyone yet. Still, these
appeared to be relevant for the spectral tilt features.

7.1.2 Implementation

Spectral features are straightforwardly collected from audio data. Energy fea-
tures are pretty standard in speech recognisers. Phoneme reduction is modelled
partially: the MFCC features capture formant frequency differences. However,
duration differences and deletion are not modelled.

Current-day speech recognition systems typically use feature vectors and
HMMs. The features that correlate with lexical stress can be concatenated to
feature vectors, except for duration. Duration needs more elaborate modelling.
The speech recogniser must also distinguish between stressed and unstressed
phones at the symbolic level. All phonemes can be marked as such in the
recogniser lexicon, vowels as well as consonants. The latter had not been used in
earlier efforts. By limiting the entries in the lexicon to valid syllable structures,
the recogniser is limited to matching hypotheses for syllables.

7.2 Discussion

The relative decrease in word error rate was 2.6 %. Thus, the answer to the
question “Does it help recognition in practice?” is affirmative. Using lexical
stress in speech recognition improves recognition performance.

Table 7.1 on the next page compares my result to that of earlier efforts.
Three factors that I believe helped in improving recognition by using stress in
a speech recogniser for Dutch are:

e because Sluijter’s (1995) results appeared not to generalise directly to
natural continuous speech, I picked an array of spectral features;
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Table 7.1 The performance gain of modelling lexical stress from different

researchers.
‘Work Language Improvement
Van Kuijk et al. (1996) Dutch 0%
Wang and Seneff (2001) English 5.6 %
Van den Heuvel et al. (2003) Dutch 0%
This work Dutch 2.6 % %

e the data were not spectrally impoverished, as I speculate the POLYPHONE
data used by the previous efforts using a Dutch-language corpus were;

e I have used consonants, which other researchers have not done.

That Wang and Seneff (2001) got such a large recognition rate improvement
may be due to the limited domain of the JUPITER corpus they use, which is
from a telephone dialogue system that answers questions about the weather.
The POLYPHONE corpus that van Kuijk et al. (1996) and van den Heuvel et al.
(2003) used is more general. However, whereas the part of the cGN I used
contains scripted texts, the POLYPHONE corpus has read speech only. Therefore, 5.10 on page 65
the difference cannot be explained away through the kind of speech used.

7.3 Future

In this work a proof of concept implementation of the model has been provided.
This section will tie the loose ends about future improvements together.

7.3.1 Acoustics

The data that is input to the speech recogniser may need more analysis. Initially,
the spectral features in this work were included for observation. Experiments 5.5 on page 61
with classifiers did not result in any conclusive information on which features
were relevant and which were not. Therefore, all features were kept, which may
be comparable to using a cannon to kill a mosquito. Using LDA to find a linear
dependency and to get rid of the high dimensionality may be possible, though.
It may also be useful not to use any stress marks for phonemes for which there is
not much difference acoustically between stressed and unstressed versions. This
should probably be done using some kind of automatic analysis.
Explicit modelling of reduction in the lexicon has been known to lead to
better recognition performance (Kessens et al. 1999). My system does not ex-
plicitly model reduction, though it is in theory possible to adapt the HMMS’
topology to the kinds of reduction the phones can be subjected to. For ex- 4.4.4 on page 53
ample, it might be useful for unstressed vowels that can be reduced to /o/ to
optionally share a Gaussian. Sounds that can be reduced to /0/ could optionally
be skipped by linking the first state directly to the final state. These strategies
require either a large amount of manual tuning, though, or a tool that auto-
matically performs such analyses. Furthermore, since reduction often depends
on the context, explicit reduction modelling may make much more sense when
using context-dependent phoneme models. The current system does account 4.3.1 on page 42
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for reduction of unstressed phonemes through the normal generalising nature of
HMMS.

Duration modelling with HMMs and the Viterbi algorithm is not possible.
Also, speech recognisers that use duration must keep track of the speaking rate.
This requires another architecture than current systems have. However, lexical
stress modelling will increase performance more if duration is modelled; and
duration-enabled recognisers should gain more when stress recognition is built
in. In the future other ways of modelling speech than using HMMs and Viterbi
may be explored that make it more beneficial to model the correlation of stress
and duration.

7.3.2 Phonology

Modelling lexical stress can be seen as inspired by Greenberg’s (1999) warning
that “the contents of the lexicon needs [sic|] to accurately reflect the range of
phonetic variation observed, otherwise, performance is impaired”. However,
lexical stress will never be quite the same as phonetic stress. In the current
system the acoustic models for stressed and unstressed phonemes have to cover
all phonetic variation. If phonetic stress could be recognised separately and
through a more or less sophisticated system be transferred to phonological stress,
accuracy could be much improved. However, modelling phonetic stress will take
explicit training. This will require rigorous manual phonetic transcriptions,
like Greenberg et al. (2003) have made for part of an English-language corpus.
Recognising phonetic stress could be done on a syllable level.

The question is, then, how to derive phonological stress from phonetic stress
and how to relate this to the lexicon and the syntactic structure. In my system,
stress is copied directly from the lexicon. Function words may be seen as an
exception to that rule; and their not being stressed could be called a poor man’s
prosody model. Proper prosodic modelling could make all the world’s difference
for the mapping of the phonological and the phonetic levels. To find the prosody
from the syntax, though, something about the syntax needs to be known; thus,
a multi-pass system would be appropriate.

7.33 There’s no two ways about it

You may have noticed a recurring theme throughout this work; it was introduced
in section 4.3 on page 42, and it has occurred in this chapter a number of
times. This is the need to model things on two sides at the same time, because
modelling only one side is senseless. Those two sides often are the acoustic
and the symbolic level. For example: mathematical duration modelling (e.g.
Wang 1997) may not improve recognition without building knowledge about
stress into the recogniser. Building knowledge about lexical stress into a speech
recogniser with very limited duration modelling, while duration is the most
important acoustic correlate of lexical stress, will not yield results as good as
they could be. Yet I have tried the latter; and I have been able to effect quite
an improvement in recogniser performance, solely because there are yet other
correlates of stress than duration. Still, recognition would benefit from a more
elaborate phonological model, and from a more accurate acoustic model, but
more than any of the two, from the two at once.
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A similar issue stems from my modelling an extra property of phonemes.
Using more accurate phoneme models enhances rather than alleviates the inap-
propriateness of using one phoneme model for all kinds of speech and speakers —
more adaptive and therefore more accurate models could yield better recognition 4.9.1 on page 43
performance. Another area where adaptation is important is duration, which
depends much on speaking rate. Clearly, the whole is more than the sum of the
parts.

7.3.4 Science fiction

What will the future bring for speech recognition? I think automated language
processing in general will need much more sophistication. The theme I outlined
in section 7.3.3 on the facing page —Ilet’s call it “Rogier’s Law”—will be heard
over and over again at different levels, I believe. For example, while processing
spontaneous speech syntax may not have much practical use today because no
speech recognition system is good enough to figure out all words correctly, such
processing is needed just to fill in the words that cannot be heard correctly.
Tying in with that, what parts of utterances are the ones that are pronounced
most canonically? Obviously, the important parts, semantically and syntacti-
cally; the latter coincide with what I have called “stress”. Stressed syllables are
perceived clearest; they are the “islands of reliability” (Lea 1980) in a stream
of reduced phonemes. Should not a speech recogniser try to reconstruct those
words and syllables correctly, and then try to fill in the gaps between? This
seems to be what humans do when they perceive “conduct ascends uphill” as
“the doctor sends the bill”. Probably, the stressed syllables are decoded first: 1.1 on page 2

“[..] duct [..] cends [..] hill” becomes “[..] doct [..] sends [..] bill”. The unstressed
syllables must be reconstructed mainly from other factors than the acoustics:
“con [..] as [..] up [..]” does not straightforwardly map onto “the [..] or [..] the”.

I believe that copying this human behaviour to speech recognisers will enable
major recognition improvements. For this, much theory and experience not only
with stress will be necessary, but also with spontaneous speech syntax.

A problem preventing speech recognition research from implementing heaps
of linguistic features has been the availability of resources. Splitting up phonemes
into groups of stressed and unstressed, or groups of those preceded by conso-
nants and those preceded by vowels, or Dutch /r/s pronounced with a uvular
fricative and those with a Randstad approximant, or using syntactic knowledge
to handle higher levels of prosody, all require data. Training speech recognisers
on more groups with more sophistication on more data requires faster comput-
ers. The latter requirement is seemingly automatically fulfilled with the passing
of time. As for the former: a full-blown corpus of Dutch containing many hours
of recording with many different speakers, speaking styles, and conditions, the
CGN, was quite recently released. I trust that this release will enable the speech
recognition community to take more sophisticated models or linguistic theories,
like I have done, and use them to improve speech recognition of Dutch.
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Appendix A

Phonemic symbols

The conventions for phonemic symbols used in this work are similar to those in
Ewen and van der Hulst (2001) and Collins and Mees (1999). The vowels are
in tables A.1 and A.2 on the following page. The consonants follow the obvious
conventions. I have used /v/ in Dutch where Collins and Mees use /f/.
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Table A.1 The vowels of Dutch (Algemeen Beschaafd Nederlands).

Checked Keyword Free Keyword
steady-state
I 71t it ZIE
€ zEt yi nu
a ZAt u: moOE
b) 7Ot e ZEE
t nut @ bEU
) werkElijk o: z0
ar 1A
Free Keyword Free vowels Keyword
diphthongs sequences
€l mEI a:i SAAI
ey lut oi moOOI
au kou wii bOEI
i nIEUW
yiu ruw
em MEEUW

Table A.2 The vowels of English (Received Pronunciation).

Checked Keyword Free Keyword
steady-state

I kit ir flEECe

€ drEss a: PALmM

P trAp o) thouGHt

D lot w g0O0se

U foot 31 nuRse

A strut

) bonuUs

Free Keyword

diphthongs

er face

ar price

o1 choice

) gOAt

auv moUuth

19 nEAR

U9 CURE

€0 SQUARE
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Appendix B

Paper

This paper was submitted to the Text, Speech and Dialogue conference 2005 as
Rogier C. van Dalen, Pascal Wiggers, and Leon J. M. Rothkrantz, “Modelling
Lexical Stress”. The layout is changed; this appendix shares the bibliography
with the rest of the thesis.

Abstract Human listeners use lexical stress for segmentation and disambigua-
tion. We look into using lexical stress for speech recognition by examining
a Dutch-language corpus. We propose that different spectral features are
needed for different phonemes and that, besides vowels, consonants should
be taken into account.

B.1 Introduction

Prosody is an important part of the spoken message structure. The foundation
of prosody of stress-timed languages is laid by lexical stress (Ewen and van der
Hulst 2001). Higher prosodic levels attach to the words at stressed syllables
(Ladd 1996).

Lexical stress may be used by listeners to identify words. Though the orthog-
raphy does not normally encode stress, English has many minimal noun—verb
pairs like subject — subjéct, but also pairs like thirty — thirtéen or digréss — tigress
that differ very little except in the stress pattern.

Even though in English and Dutch stress is not on a fixed syllable of the
word, in many cases content words do start with a stressed syllable. Listeners
use this for segmentation of speech into words (Harley 2001). English-hearing
children appear to associate stressed syllables with word onsets at the age of
seven months already (Thiessen and Saffran 2003).

Dutch listeners use the stress pattern to identify words before they have
been fully heard as well. When hearing the beginning of a word octo-, Dutch
listeners will decipher whether it is octé- or dcto- and reconstruct octéber or
dctopus (Cooper et al. 2002).

Garden-variety speech recognisers do not use lexical stress, useful though
it may be. This paper will describe how it can be automatically detected
whether phonemes are stressed. It will be determined what features correlate
most strongly with lexical stress, with an eye on how this can benefit speech
recognition.
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B.2 Related Work

There has been research on the acoustic correlates of lexical stress. Sluijter
(Sluijter 1995) in fundamental linguistic research on the acoustic properties of
stress minimal pairs demonstrated that lexical stress in English and Dutch is
signalled mostly through duration, formant frequencies, intensity, and spectral
tilt. The latter is a feature that denotes the energy in high frequency bands
relative to the energy in low frequency bands. Van Kuijk (van Kuijk and Boves
1999) examined the acoustic properties of a larger corpus of Dutch telephone
speech and found similar results: a combination of duration and spectral tilt
was the best predictor for lexical stress.

Lexical stress has been used to generate a confidence metric (Bouwman and
Boves 2001). From those that have actually used lexical stress recognition in
a speech recogniser (van Kuijk et al. 1996; Wang and Seneff 2001; van den
Heuvel et al. 2003), only Wang and Seneff (Wang and Seneff 2001) have been
able to effect a performance gain. This is probably what the other authors are
after as well; but how this is to be done is not discussed. Van den Heuvel hopes
“distinguishing stressed and unstressed vowel models may have a general impact
on recognition results.”

Notably, none of the authors model lexical stress for consonants, though even
textbooks show that stressed and unstressed consonants are realised differently
(Ewen and van der Hulst 2001) and though stressed consonants have a longer
duration (Greenberg et al. 2003). Consonants are influenced by speaking style
in the same ways vowel are: duration, spectral tilt and formant frequencies (van
Son and Pols 1996). This suggests similar effects can be found for lexical stress
on consonants. The closest thing to a rationale for not regarding consonants in
automatic lexical stress recognition is the claim that consonants do not carry
lexical stress in (Wang and Seneff 2001). This claim is not further motivated,
and it will be demonstrated to be incorrect.

B.3 Model

B.3.1 Objectives

Since humans use lexical stress in processing speech, modelling it could help
speech recogniser performance. We expect the following advantages from using
lexical stress.

Phone model accuracy Current speech recognition systems have severe prob-
lems coping with speech that is pronounced much faster or slower than
the speech it is trained on. Phonemes in unstressed syllables are less often
realised canonically than those in stressed syllables. Therefore separating
phone models into stressed and unstressed versions may increase predictive
strength of the models, improving recognition. For example, unstressed
vowels tend to become /o/*. Because the range /o/—/a:/ is split into into
/o/—/a:/—/'a:/, the phone models may become more accurate.

*In both Dutch and English.
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Word segmentation English hearers, when presented with a faint recording
“conduct ascends uphill”, will reconstruct words starting at stressed syl-
lables, for example, “the doctor sends a pill” (Harley 2001). Humans use
stress for segmentation; a speech recogniser could use this strategy too.

Word recognition Lexical stress signals differences between:

1. words with the same segmental content and different meanings (e.g.
Du. véorkomen ‘happen’—wvoorkdmen ‘prevent’);

2. words of different categories (e.g. En. récord —recdrd);

3. similar words with different stress patterns (e.g. En. portrdy — portait).

B.3.2 Syllables

Lexical stress is specified for syllables as a whole. This poses a problem for
speech recognisers, which typically use phonemes as units. Earlier approaches
have circumvented this problem by using only vowels for stress detection. When
consonants are included as well, their specification must match the vowels’ in the
same syllable. This can be done by using a consistently stress-marked lexicon:
if it contains both /'s'a'bdzekt/ and /sab'd'z'e'k't/, the recogniser would
never hypothesise /s'ab'dz'ek't/.

In the phonological literature a difference is made between realisations in
the coda and in the onset. For example, English /t/ is pronounced as [t"] in
tdil, but as [t] in rétail and light (Ewen and van der Hulst 2001): /t/ is only
aspirated in the onset of a stressed syllable. We expect that similar effects can
be found in the acoustics of lexical stress.

B. 3.3 Acoustic representation

To integrate recognition in a speech recogniser, stress can be modelled a phoneme
at a time. We look into acoustic correlates of lexical stress that can be fed into
a speech recogniser, for example by including them in the feature vectors.

Fundamental frequency Stress is typically thought to be connected to pitch.
However, from linguistic literature (Ladd 1996) and literature on auto-
matic stress recognition (Xie et al. 2004) it is expected that the funda-
mental frequency is not straightforwardly correlated with lexical stress. It
can straightforwardly be included in a speech recogniser’s feature vector
though.

Formants Unstressed phonemes can have more reduced realisations than their
stressed counterparts; this is visible in the formant values. Standard
MFCCs should be able to capture this difference. Note that MFCCs do not
directly model formants, but frequency bands. Separating MFCC-based
phone models into stressed and unstressed models, whose formant values
are confined to a smaller area, will therefore increase MFCCs’ ability to
recognise the phonemes.

Spectrum The energy in a number of frequency bands can be extracted from
the waveform to yield information about the spectral tilt.
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Intensity Overall intensity is generally thought to be associated with lexical
stress. However, (Sluijter 1995) claims that what is often perceived as
loudness variation may actually be spectral tilt: speaking effort would be
the common cause.

Duration Lexical stress is generally found to be correlated with phoneme du-
ration (Sluijter 1995; van Kuijk and Boves 1999; Greenberg et al. 2003).
However, information about phoneme duration is not available during
first-pass recognition. Standard HMMs can encode duration through tran-
sition probabilities, but this does not work well in recognition. A number
of alternatives have been proposed though (Wang 1997; Russell and Moore
1985; Ramesh and Wilpon 19g2; Sitaram and Sreenivas 1997).

Derivatives In (Wang and Seneff 2001) it is found that fundamental frequency
slope is a better predictor of stress than the raw fundamental frequency.
Spectral features are measures for the effort with which phonemes are
pronounced. The speaking effort is a continuous measure: it probably
increases over the beginning of a stressed syllable and decreases over the
end. We therefore expect that derivatives for spectral features also may
be correlated with lexical stress, especially for consonants.

B.4 Experimental set-up

We bootstrapped a speech recogniser, made with HTK (Young et al. 2002),
from Wiggers’ system (Wiggers et al. 2002) and did measurements on the Delft
DUTAVSC corpus (Wojdetl 2003). We used the stress marks from the CELEX
lexicon. All phonemes in stress syllables were marked as stressed, except for
function words, which were marked as unstressed. All features were normalised
over the whole of one utterance. The intensity measure was included in the
feature vectors by HTK. For the energy in spectral bands we used the Linux
program soz and Praat. (Sluijter 1995) chooses spectral bands so that the for-
mants least influence the results; we use the same bands: o—o0.5kHz, 0.5—1kHz,
1—2kHz, and 2—4kHz.

The fundamental frequency was extracted with Praat (Boersma 2001). Where
Praat did not find the fundamental frequency, it was linearly interpolated. This
has a number of advantages over using an out-of-range value:

e It formalises the notion of the intonational tune in the linguistic literature
(Bolinger 1986; 1989; Ladd 1996), where it is pictured as a non-interrupted
curve.

e From the linguistic literature, a pitch peak on or near the stressed syllable
is expected. Through interpolation, even voiceless phonemes will include
pitch information, so that a pitch peak at the onset or the coda of the
syllable will be noticed.

e If Praat does not find voicing where there is, linear interpolation provides
a reasonable workaround. This increases the algorithm’s robustness.

e An out-of-range value, rather than giving the recogniser information about
stress, would inject inappropriate information about apparent voicedness.
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(a) /i/ () /1/

(c) /v/ (d) /b/

Figure B.1 Distributions of durations stressed and unstressed (dashed
lines) phonemes in ms.

B.5 Results

The results were assembled by collecting feature vectors from phones that were
segmented with forced alignment. The most discriminating features are candi-
dates for inclusion in a speech recogniser that aims at recognising lexical stress.
We did not find any significant results from the fundamental frequency data;
duration and spectral features, however, do show much separation.

B.s.1 Duration

Similarly to (Sluijter 1995; van Kuijk and Boves 1999), we found that duration
is in general a good indicator of stress. Stressed vowels are quite consistently
longer than their unstressed counterparts (see Fig. B.1(a)). Not all consonants
are, as shown in Fig. B.1(d): for stops the duration does not seem to differ
at all, probably because stops’ complete closure makes it difficult to produce
lengthened ones sensibly: only the silence would be longer. Liquids consistently
show a large difference, as exemplified by /1/ in Fig. B.1(b), while fricatives are
in between (Fig. B.1(c)).
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(a) /ar/: 0.5—1kHz (b) /1/: The difference
between 1-2kHz and
2—-4kHz

Figure B.2 Distributions of spectral tilt features for stressed and un-
stressed (dashed lines) vowels in ms.

B.5s.2 Spectral tilt

We find that different spectral tilt features apply for different phonemes. For
many phonemes stress correlates well with some spectral tilt measure. This may
be why (Sluijter 1995) found clear correlations on a limited set of phonemes,
while (van Kuijk and Boves 1999) had troubles finding correlates with a limited
set of features (two). Our results show much more difference than the latter
found; this may also be due to the telephone speech they used being spectrally
impoverished. Figure B.2 shows how spectral features correlate with long vowels
(as in Fig. B.2(a)) and with short vowels (as in Fig. B.2(b)).

Most interestingly, the features that work for vowels give similar results
for consonants. Figures B.3(a) and B.3(b) shows how stressed and unstressed
consonants differ in terms of spectrum. On the other hand, /n/ (Fig. B.3(c))
does not show spectral disparity at all. We suspect two factors play a role here:

e The effect of speaking effort for fricatives and stops on the spectrum may
be greater due to their friction-based realisation.

e From a perception perspective, stressed and unstressed /n/ already differ
greatly in duration (similarly to Fig. B.1(b)) so the difference in spectrum
is not as necessary to distinguish the two.

B.6 Conclusion

This paper has described the importance and the feasibility of detecting lexical
stress in speech. That stress works on the syllable level can be modelled effec-
tively by adding stress marks to the phonemes in the lexical entries of a speech
recogniser.

Lexical stress has been demonstrated to influence acoustically not only vow-
els, but also consonants. The same features that are canonically associated
with stressed vowels (duration, spectral tilt, intensity) are correlates of stress
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(a) /d/: o—o0.5kHz (b) /v/: Delta of 1—2kHz

(¢) /n/: 0.5—1kHz

Figure B.3 Distributions of spectral tilt features for stressed and un-
stressed (dashed lines) vowels in ms.

for consonants. Various spectral tilt features apply to various phonemes. Us-
ing the duration of a phoneme while it is being recognised is not well possible
with Viterbi and standard HMMs. Another algorithm should be used if duration
modelling is considered important.

Given the fact that many consonants will participate in the decision whether
a syllable is stressed, we hope that implementing lexical stress recognition, even
without extensive duration modelling, will improve general recognition perfor-
mance on three accounts: general phone recognition, word segmentation and
word recognition.
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