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Abstract. Human listeners use lexical stress for word segmentation and
disambiguation. We look into using lexical stress for speech recognition
by examining a Dutch-language corpus. We propose that different spec-
tral features are needed for different phonemes and that, besides vowels,
consonants should be taken into account.

1 Introduction

Prosody is an important part of the spoken message structure. The foundation
of prosody of many languages is laid by lexical stress [1]. Higher prosodic levels
attach to the words at stressed syllables [2].

Lexical stress is used by listeners to identify words. Though the orthography
does not normally encode stress, English has minimal pairs like súbject – subjéct,
trústy – trustée, and désert – dessért. Pairs like th́ırty – thirtéen or digréss – t́ıgress

differ very little except in the stress pattern.
Even though in English and Dutch stress is not on a fixed syllable of the

word, all morphologically simplex words of Germanic origin and many others do
start with a stressed syllable. Listeners use this for segmentation of speech into
words [3]. English-hearing children appear to associate stressed syllables with
word onsets at the age of seven months already [4].

Dutch listeners use the stress pattern to identify words before they have been
fully heard as well. When hearing the beginning of a word octo-, Dutch listeners
will decipher whether it is octó- or ócto- and reconstruct octóber or óctopus [5].

Garden-variety speech recognisers do not use lexical stress, useful though it
may be. This paper will describe how lexical stress can be automatically detected.
It will be determined what features correlate most strongly with lexical stress,
considering benefits for speech recognition.

2 Related Work

There has been research on the acoustic correlates of lexical stress. Sluijter [6]
in fundamental linguistic research on the acoustic properties of stress minimal
pairs demonstrated that lexical stress in English and Dutch is signalled mostly



through duration, formant frequencies, intensity, and spectral tilt. The latter is a
feature that denotes the energy in high frequency bands relative to the energy in
low frequency bands. Van Kuijk [7] examined the acoustic properties of a larger
corpus of Dutch telephone speech and found similar results: a combination of
duration and spectral tilt was the best predictor for lexical stress.

Lexical stress has been used to generate a confidence metric [8]. Of those
that have actually used lexical stress recognition in a speech recogniser [9–11],
only Wang and Seneff [10] have been able to effect a performance gain. This is
probably what the other authors are after as well; but how this is to be done is
not discussed. Van den Heuvel [11] hopes “distinguishing stressed and unstressed
vowel models may have a general impact on recognition results.”

Notably, none of the previous approaches has taken into account the well-
observed influence that stress has on consonants: stressed and unstressed conso-
nants are realised differently [1] and stressed consonants have a longer duration
[12]. Consonants are influenced by speaking style in the same ways as vowels are:
duration, spectral tilt and formant frequencies (for consonants with a formant
structure) [13]. This suggests similar effects can be found for lexical stress on
consonants. The closest thing to a rationale for not regarding consonants in auto-
matic lexical stress recognition is the claim that consonants do not carry lexical
stress in [10]. This claim is not further motivated, and it will be demonstrated
to be incorrect.

3 Model

3.1 Objectives

Since humans use lexical stress in processing speech, modelling it could help
speech recogniser performance. We expect the following advantages from using
lexical stress.

Phone model accuracy Current speech recognition systems have severe prob-
lems coping with speech that is pronounced much faster or slower than
the speech it is trained on. Phonemes in unstressed syllables are less often
realised canonically than those in stressed syllables. Therefore separating
phone models into stressed and unstressed versions may increase predic-
tive strength of the models, improving recognition. For example, unstressed
vowels tend to become /@/1. Because the range /@/–/a:/ is split into into
/@/–/a:/–/"a:/, the phone models may become more accurate.

Word segmentation English hearers, when presented with a faint recording
“conduct ascends uphill”, will reconstruct words starting at stressed syl-
lables, for example, “the doctor sends a pill” [3]. Humans use stress for
segmentation; a speech recogniser could use this strategy too.

Word recognition Lexical stress signals differences between:
1. words with the same segmental content and different meanings (e.g. Du.

vóorkomen ‘happen’ – voorkómen ‘prevent’);

1 In both Dutch and English.



2. words of different categories (e.g. En. récord – recórd);
3. similar words with different stress patterns (e.g. En. portráy – pórtait).

3.2 Syllables

Lexical stress is specified for syllables as a whole. This poses a problem for
speech recognisers, which typically use phonemes as units. Earlier approaches
have circumvented this problem by using only vowels for stress detection. When
consonants are included as well, their specification must match the vowels’ in the
same syllable. This can be done by using a consistently stress-marked lexicon:
if it contains both /"s "2 "b d Z E k t/ and /s 2 b "d "Z "E "k "t/, the recogniser would
never hypothesise /s "2 b "d Z "E k "t/.

In the linguistic literature a difference is made between realisations in the
coda and in the onset. For example, English /t/ is pronounced as [th] in táil,
but as [t] in rétail and ĺıght [1]: /t/ is only aspirated in the onset of a stressed
syllable.

3.3 Acoustic representation

To integrate recognition in a speech recogniser, stressedness can be modelled one
phoneme at a time. We look into acoustic correlates of lexical stress that can
be fed into a speech recogniser, for example by including them in the feature
vectors.

Fundamental frequency Stress is typically thought to be connected to pitch.
However, from linguistic literature [2] and literature on automatic stress
recognition [14] it is expected that pitch is not straightforwardly correlated
with lexical stress. Its acoustic correlate, the fundamental frequency, can
straightforwardly be included in a speech recogniser’s feature vector though.

Formants Unstressed phonemes can have more reduced realisations than their
stressed counterparts; this is visible in the formant values. Standard mfccs
should be able to capture this difference. Note that mfccs do not directly
model formants, but frequency bands. Separating mfcc-based phone mod-
els into stressed and unstressed models, whose formant values are confined
to a smaller area, will therefore increase mfccs’ ability to recognise the
phonemes.

Spectrum The energy in a number of frequency bands can be extracted from
the waveform to yield information about the spectral tilt.

Intensity Overall intensity is generally thought to be associated with lexical
stress. However, [6] claims that what is often perceived as loudness variation
may actually be spectral tilt: speaking effort would be the common cause.

Duration Lexical stress is generally found to be correlated with phoneme dura-
tion [6, 7, 12]. However, information about phoneme duration is not available
during first-pass recognition. Standard hmms can encode duration through
transition probabilities, but this does not work well in recognition. A number
of alternatives have been proposed though [15–18].



Derivatives In [10] it is found that fundamental frequency slope is a better
predictor of stress than the raw fundamental frequency. Spectral features are
measures for the effort with which phonemes are pronounced. The speaking
effort is a continuous measure: it probably increases over the beginning of
a stressed syllable and decreases over the end. We therefore expect that
derivatives for spectral features also may be correlated with lexical stress,
especially for consonants.

4 Experimental set-up

We bootstrapped a speech recogniser, made with htk [20], from Wiggers’ system
[21] and did measurements on the Delft Dutavsc corpus [19]. We used the stress
marks from the celex lexicon. All phonemes in stressed syllables were marked
as stressed, except for function words, which were marked as unstressed. All
features were normalised over the whole of one utterance. The intensity measure
was included in the feature vectors by htk. For the energy in spectral bands
we used the Linux program sox and Praat. [6] chooses spectral bands so that
the formants least influence the results; we use the same bands: 0 – 0.5 kHz, 0.5 –
1 kHz, 1 – 2 kHz, and 2 – 4 kHz.

The fundamental frequency was extracted with Praat [22]. Where Praat did
not find the fundamental frequency, it was linearly interpolated. This has a
number of advantages over using an out-of-range value:

– It formalises the notion of the intonational tune in the linguistic literature
[23, 24, 2], where it is pictured as a non-interrupted curve.

– From the linguistic literature, a pitch peak on or near the stressed syllable is
expected. Through interpolation, even voiceless phonemes will include pitch
information, so that a pitch peak at the onset or the coda of the syllable will
be noticed.

– If Praat does not find voicing where there is, linear interpolation provides a
reasonable workaround. This increases the algorithm’s robustness.

– An out-of-range value, rather than giving the recogniser information about
stress, would inject inappropriate information about apparent voicedness.

5 Results

The results were assembled by collecting feature vectors from phones that were
segmented with forced alignment. The most discriminating features are candi-
dates for inclusion in a speech recogniser that aims at recognising lexical stress.
We did not find any significant results from the fundamental frequency data;
duration and spectral features, however, do show much separation.

5.1 Duration

Similarly to [6, 7], we found that duration is in general a good indicator of
stressedness. Stressed vowels are quite consistently longer than their unstressed



counterparts (see Fig. 1(a)). Not all consonants are, as shown in Fig. 1(d): for
stops the duration does not seem to differ at all, probably because stops’ com-
plete closure makes it difficult to produce lengthened ones sensibly: only the
silence would be longer. Liquids consistently show a large difference, as exempli-
fied by /l/ in Fig. 1(b), while fricatives are in between (Fig. 1(c)).
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(d) /b/

Fig. 1. Distributions of durations of stressed (stroked lines) and unstressed (dashed
lines) phonemes in ms.

5.2 Spectral tilt

We find that different spectral tilt features apply for different phonemes. For
many phonemes stressedness correlates well with some spectral tilt measure.
This may be why [6] found clear correlations on a limited set of phonemes,
while [7] had troubles finding correlates with a limited set of features (two). Our
results show much more difference than the latter found; this may also be due
to the telephone speech they used being spectrally impoverished. Figure 2 shows
how spectral features correlate with long vowels (as in Fig. 2(a)) and with short
vowels (as in Fig. 2(b)).

Most interestingly, the features that work for vowels give similar results for
consonants. Figures 3(a) and 3(b) shows how stressed and unstressed consonants
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Fig. 2. Distributions of spectral tilt features for stressed (stroked lines) and unstressed
(dashed lines) vowels in ms.

differ in terms of spectrum. On the other hand, /n/ (Fig. 3(c)) does not show
spectral disparity at all. We suspect two factors play a role here:

– The effect of speaking effort for fricatives and stops on the spectrum may be
greater due to their friction-based realisation.

– From a perception perspective, stressed and unstressed /n/ already differ
greatly in duration (similarly to Fig. 1(b)) so the difference in spectrum is
not as vital for distinguishing the two.

6 Conclusion

This paper has described the importance and the feasibility of detecting lexical
stress in speech. That stress works on the syllable level can be modelled effec-
tively by adding stress marks to the phonemes in the lexical entries of a speech
recogniser.

Lexical stress has been demonstrated to influence acoustically not only vow-
els, but also consonants. The same features that are canonically associated with
stressed vowels (duration, spectral tilt, intensity) are correlates of stress for con-
sonants. Various spectral tilt features apply to various phonemes. Using the
duration of a phoneme while it is being recognised is not well possible with
the Viterbi algorithm and standard hmms. Another algorithm should be used if
duration modelling is considered important.

Given the fact that many consonants will participate in the decision whether
a syllable is stressed, we hope that implementing lexical stress recognition, even
without extensive duration modelling, will improve general recognition perfor-
mance on three accounts: general phone recognition, word segmentation and
word recognition.
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(a) /d/: 0 – 0.5 kHz
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Fig. 3. Distributions of spectral tilt features for stressed (stroked lines) and unstressed
(dashed lines) vowels in ms.
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