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Abstract 
 

Computer vision has become one of the most challenging subjects nowadays. The need to extract 

information from images is enormous. Face detection and extraction as computer-vision tasks 

have many applications and have direct relevance to the face recognition and facial expression 

recognition problem. Potential application of face detection and extraction are in human-

computer interfaces, surveillance systems, census systems and many more. 

 

In this thesis the focus is on the realization of a fully automatic emotion recognition system. The 

exploited approach splits the system into four components. Face detection, facial characteristic 

point extraction, tracking and classification. Face detection is employed by boosting simple 

rectangle features that give a decent representation of the face. These features also allow the 

differentiation between a face and a non-face. The boosting algorithm is combined with an 

Evolutionary Search to reduce the overall search time. Facial characteristic points (FCP) are 

extracted from the detected faces. The same technique applied on faces is utilized for this 

purpose. Additionally, FCP extraction using brightness distribution has also been considered. 

Finally, after retrieving the required FCPs the emotion of the facial expression can be determined. 

The Relevance Vector Machine (RVM) is the classification method that is used where a classifier 

is required. 

 

Index terms - face detection, facial feature extraction, facial characteristic point extraction, facial 

expression recognition, Relevance Vector Machine, corner detection, AdaBoost, evolutionary 

search, hybrid projection. 
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��
Introduction  

 

For the past decades, many projects have been started with the purpose of learning the machine to 

recognize human faces and facial expressions. Computer vision has become one of the most 

challenging subjects nowadays. The need to extract information from images is enormous. Face 

detection and extraction as computer-vision tasks have many applications and have direct 

relevance to the face-recognition and facial expression recognition problem. Potential application 

of face detection and extraction are in human-computer interfaces, surveillance systems, census 

systems and many more. It is not so hard to imagine the importance of face detection in the 

means of face and emotion recognition. The importance of this subject can be ratified by the 

recent terrorism bombings in London. In London, monitoring of people especially in the public 

places is done by closed-circuit cameras and televisions, which are linked via cables and other 

direct means (see Figure 1). These can also be found in casinos and banks for instance. 
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Figure 1: Closed-circuit television (CCTV) network. 
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The CCTV systems [Dick03] transmit their digital images over the network and the images are 

analyzed with face- and behavioural-recognition software to identify unusual patterns. After the 

incidents the authorities were able to identify the attackers with the help of the recordings of these 

cameras. As they have done in London, video shots of faces allow for the prompt identification of 

suspects soon after security events happen. The set-up is very simple. Some cameras exist to 

capture the faces of people as they pass through critical locations. Other cameras like the 

complementing overview cameras are able to detect a threat, which clearly failed in doing its job 

to prevent the terror. 

 

The surveillance systems like the CCTV have the same main principle. First, a face is detected. 

Then, the detected face can be tracked and enables important features to be extracted for analysis. 

The type of features that is extracted depends strongly on what the system wants to achieve. 

Features can be obtained for either the recognition of a face (identification) or the recognition of 

an emotion/expression. Face identification is relevant in retrieving a person’s identity and 

emotion recognition has its contribution in prevention of crime and calamities for instance. In the 

latter it concerns aggression detection, unusual or nervous behavioural detection. That is also why 

extraction and recognition of facial expression has been a hot topic last decades. It is important to 

note that face detection and facial expression recognition are distinct subjects. In face detection 

the different expressions are considered as noise, where as in facial expression recognition the 

identity is considered as noise. The latter implies that different persons have different neutral 

faces with different feature shapes (big/small eyes, big/small mouth, etc.). 

 

Facial expressions are crucial in human communication. Human communication is a very 

complex phenomenon as it involves a huge number of factors: we speak with our voice, but also 

with our hands, eyes, face and body. The interpretation of what is being said does not only 

depend on the meaning of the spoken words. Our body language i.e. gestures modify, emphasize, 

and contradict what we say. Facial expressions provide sensitive cues about emotional responses 

and play an important role in human communication. Therefore, it is valuable if this aspect of 

human communication can also be applied for more effective and friendly methods in man-

machine interaction. In verbal communication, the conversation becomes very difficult if neither 

participant understands the language the other is speaking. The same applies for nonverbal 

communication: both parties must have the same interpretation of the nonverbal signals. Like 

language, nonverbal signals are not universal. Moreover, they are context and culture dependant. 

Research has shown that the ability to communicate nonverbally is something that has to be 

learnt. According to (Eckman & Friesen 1972) people are born with the ability to generate and 

interpret only six facial expressions: happiness, anger, disgust, fear, surprise and sadness. All 
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other facial expressions have to be learned from the environment the person grows up. Humans 

are capable of producing thousands of expressions that vary in complexity, intensity, and 

meaning. Subtle changes in a facial feature such as tightening of the lips are sufficient to turn the 

emotion from happy to angry. And to think that the eyes and eyebrows can also take on different 

shapes, one may imagine how complex the problem gets. 

 

With the ability to recognize facial expressions and thus getting information about the 

psychological state of a person, a lot of applications can be considered. Systems can be made 

smarter and safer. Consider for example the Driver Vigilance Monitoring System [Dikk04]. The 

idea is that the system will alert the driver when it sees that he/she is in a state of somnolence. As 

the name already indicates, the system is installed in the car for monitoring the driver’s facial 

expression continuously. The input to this system is a sequence of images of the driver’s face 

captured by a camera. The system will then make an assessment based on the movements of parts 

of the face, especially the eyes and eye lids. Another interesting application that emphasizes the 

importance of nonverbal communication is the Facial Expression Dictionary (FED). This is an 

online dictionary that allows us to find the meaning of certain facial expressions. In fact, given a 

facial expression, the system is able to extract and recognize the given facial expression. More 

about this system will follow in the next chapters, as this thesis project is an extension to the FED 

framework. 

 
 

Figure 2: Generic emotion recognition system. 
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For a system to recognize a facial expression the system first needs to detect and locate the faces 

in the image or video (see Fig. 1 for a generic face recognition system). Depending on the used 

system, the face in the image needs to satisfy some constraints like full frontal view, silhouette 

view, rotations of the frontal face within some boundaries and certain light conditions. The 

constraints all depend on the face model that the system uses. Having found a face, the next step 

is to extract the facial features: eyes/eyebrows, nose/nostrils, mouth/lips, cheeks/forehead, chin, 

etc. Not all of these features are of equally importance for facial expression recognition. The final 

step in this face analysis process is to pass the obtained data to an expert system that determines 

in what kind of psychological state the person was.  

 

In the past, Morishima et al. [Mori93] implemented a five-layered manual-input neural network 

which is used for recognition and synthesis of facial expressions. In [Zhao96] they explained a 

singular emotional classification of facial expressions using a three-layered manual-input 

backpropagation neural network. [Kearney and McKenzie] developed a manual-input memory-

based learning expert system, which interprets facial expressions in terms of emotion labels given 

by college students without formal instruction in emotion signals. Rothkrantz et al. [Roth00] 

proposed a point-based face model composed of two 2D facial views, namely the frontal- and the 

side view. Based on a point-based face model, expression-classification rules can be converted 

straight-forwardly into the rules of an automatic classifier. In [Chan04] we tried to detect a face 

and extract facial features using the Relevance Vector Machine classifier. In order to recognize 

facial expressions, the additional step to do is to find the facial feature points which will be used 

for analyzing the facial expression. This facial expression recognition method will be examined 

and explained in this report. 

 

A critical step in detecting a face with its facial features is to distinguish the face and non-faces. 

This is done by using a classifier. There are different kinds of classifying methods. Some well 

known examples are K-Nearest Neighbours (KNN), Tree-Augmented Naive-Bayes (TAN) and 

Support Vector Machines (SVM). The latter, being a state-of-the-art classification method, is 

based on some rather simple ideas and provides a clear intuition of what learning from examples 

is about. Practical applications have already shown outstanding high performances of this 

classification method. Some examples of recent applications of SVM are in handwritten digit 

recognition [Vapn96, Burg97], face detection in images [Osun97] and text categorization 

[Duma98, Joac97]. However, despite its success, there are some significant and practical 

disadvantages in the SVM learning methodology. A recently introduced classification method 

based on the idea of the Support Vector Machine is the Relevance Vector Machine (RVM) 

[Tipp00]. RVM is a Bayesian framework for regression and classification with analogous sparsity 
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properties to the SVM. It can be seen as a probabilistic version of SVM but without the 

disadvantages and simultaneously providing a number of additional advantages (see Chapter 4 for 

more details).    

 

1.1 Related works 

In [Chan04] an extensive overview is given of related works in the area of face detection and 

facial expression recognition. To provide a context for our problem definition we review some of 

them globally. Section 1.1.1 to 1.1.3 discuss about some existing face detection work. Section 

1.1.4 to 1.1.6 describes some of the projects done on facial expression recognition. 

 

1.1.1 Applying Support Vector Machine to face detection 

A Support Vector Machine (SVM) is introduced for detecting human faces in grey-level images 

[Osun97]. First, face-like patterns are scanned at many possible scales and then SVM is used to 

classify them into the appropriate class (face/non-face). The SVM is trained with a second degree 

polynomial as kernel function and an upper bound C=200. This upper bound is the expected 

value of the ratio between the number of support vectors and the total number of data points on 

the generalization error. Also a database is used consisting of face and non-face 19x19 pixel 

patterns, assigned to classes +1 and -1 respectively. Once the SVM has been trained it is 

primarily used over images that do not contain faces. Misclassifications are stored for use as 

negative examples in subsequent training phases. Images with many different texture patterns are 

good resources for false positives. This way of reusing misclassified examples is called the 

‘bootstrap’ method which was successfully used by Sung and Poggio [Sung98]. This method will 

also reduce the size of the non-face class which is much broader and richer than the face class. 

After the SVM is fully trained it is incorporated as a classifier in the system for pattern 

recognition of face/non-face.  

                                              
Figure 3: Geometrical interpretation of how the SVM separates the face and non-face classes. The 
patterns are real support vectors after training the system. 
 

Non-faces 

Faces 
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This SVM face detection system is compared to Sung and Poggio’s on two sets of images. On test 

set A, which contains 313 high-quality images with the same number of faces, SVM has a 

detection rate of 97.1% with 4 misclassifications, while Sung and Poggio’s has a detection rate of 

94.6% with 2 misclassifications. On test set B containing 23 images of mixed quality with a total 

of 155 faces, SVM has a slightly poorer performance. While having a same detection rate, SVM 

has 20 misclassifications against 11 of Sung and Poggio’s.  

 

1.1.2 Neural-network-based face detection 

Rowl et al. [Rowl98] present a neural network-based face detection system for upright frontal 

views of faces. In their work only gray-scale images are considered. The algorithm works by 

applying one or more neural networks directly to parts of the input image, and judging their 

results. Each network is trained to output the presence or absence of a face. The algorithms and 

training methods are designed to be general, with little customization for faces. The neural 

networks are trained with images containing faces and images not containing any faces. It is also 

using the “bootstrap” method so as to reduce the size of the training set that is needed for images 

not containing faces.  

 

 
Figure 4: Face detection algorithm in [Rowl98]. 

 
The system operates in two stages. The first component uses a neural network-based filter which 

receives as input a 20x20 pixel region of the image. The output will be positive or negative for 

the presence, respectively absence of a face in the sub-window. Because a face can appear in 

every part of an image, the filter is applied at every pixel position in the image. In order to detect 

faces larger than the window size, the input image is repeatedly reduced in size by sub sampling. 

Before the 20x20 pixels are passed to the neural networks, it is preprocessed with lighting 

corrections and histogram equalization. Experiments show that the raw output from a single 

network can contain a number of false detections. The second stage of the system consists of 
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ways to deal with this problem. Two strategies for improving the reliability of the neural 

network’s outputs are presented: merging overlapping detections from a single network and 

arbitrating among multiple networks.  

 

The authors also compared the performance of their system to other illustrious face detection 

systems. Amongst them are Sung and Poggio’s system [Sung98] and the SVM face detection 

system of Osuna, Freund and Girosi [Osun97]. The support vector machine has a number of 

interesting properties, including the fact that it makes the boundary between face and non face 

images more explicit. In the comparison using the same set of 23 images, Sung and Poggio’s 

system results in a slightly poorer performance than Rowley’s system with a difference of 6 faces 

out of 155.  

 

Another neural network-based face detection system is that of Kah-Kay Sung and Tomaso Poggio 

[Sung98]. They developed a generic human face detection system that finds vertically oriented 

and un-occluded frontal views of human faces in gray-level images. Their system starts with 

passing a small 19x19 sub-window over all portions of the image. The system is using a 

clustering method with six “face” and six “non-face” clusters. Each cluster is a multi-dimensional 

Gaussian with a centroid location and a covariance matrix that describes the local data 

distribution. These clusters measure the “difference” between the sub-window and some 

prototype distribution. The last step is to use a neural network to classify the sub-window as face 

or non face using this ‘difference’.  

 

 
Figure 5: Face detection system as in [Sung98]. 

 

The most critical part of their system is the learning algorithm for classifying window patterns as 

faces or non-faces. The key components of this algorithm are: 1) this system uses a distribution-

based face model. So, they used a normalized window of 19x19 pixels to model the distribution 

of canonical frontal face patterns. 2) In order to classify new patterns the “difference” between 

each sub-window (after preprocessing and resizing) and the face distribution model is measured 

and the result of these measurements are passed to a trained neural network which determines 
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whether or not the new window pattern contains a face. This training procedure is done in the 

‘bootstrap’ fashion as described before. The system is trained with 4150 positive and nearly 

43000 negative examples.  

 

They tested their system on two test databases. For the first database, consisting of 301 high 

quality digitized images with frontal and near-frontal faces of 71 different people, the system 

correctly finds 96.3 percent of all the face patterns and it makes only three false detects. For the 

second database, consisting of 23 images of mixed quality with 149 face patterns in complex 

backgrounds, the system achieves a 79.9 percent detection rate with five false detections. They 

have not compared their system to other face detection systems.  

 

1.1.3 Real-time object detection 

P. Viola and M. Jones [Viol01] presented a face detection system based on their real-time object 

detection framework. This framework involves three key contributions to the very positive 

experimental results. The first one is the introduction of a new image representation called 

integral image. An integral image makes it possible for the detection procedure, which classifies 

images based on the value of simple features, to process an image very fast. Once an integral 

image is computed, any of its features can be extracted at any scale or location in constant time. 

The second is a learning algorithm, based on AdaBoost. This learning algorithm’s goal is to 

construct classifiers by selecting a small number of important features. The third contribution is a 

method for constructing complex classifiers by combining different classifiers in a cascade 

structure. This increases the speed of the image processing process dramatically; it allows the 

detector to discard background regions very quickly and consequently use more time for more 

promising regions of the image. In the cascade structure, a series of classifiers are applied to 

every sub-window. They will first pass through the initial classifier which eliminates a large 

number of negative examples with very little processing. Then it will be passed to the subsequent 

layers which will in turn eliminate additional negatives but require additional computation. In the 

end the number of sub-windows will be reduced. This process is based on the fact that within any 

single image a great majority of negative sub-windows exists.   

 

The training dataset that is used for this face detection system consisted of 4916 hand labeled 

faces scaled and aligned to a base resolution of 24 by 24 and 10000 24x24 non-faces. The final 

detector is a 32 layer cascade of classifiers which included a total of 4297 features. This system 

was compared to Rowley’s face detection system described above [Rowl98], which was by that 

time widely considered as the fastest. The result was really promising. While having comparable 

face detection performance, it was about 15 times faster. 
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1.1.4 Expert system for automatic analysis of facial expressions 

Rothkrantz et al. [Roth00] is working on the development of an intelligent automated system for 

the analysis of non-verbal communication. The result was implemented as Integrated System for 

Facial Expression Recognition (ISFER). In contrast to existing facial feature detectors which 

utilize single image processing technique, a hybrid approach to facial feature detection is 

presented. Instead of fine-tuning existing facial feature detectors, they combine multiple feature 

detection techniques that are applied in parallel. The system deals with static face actions, which 

mean that only the end-state of the facial movement is measured and compared to the neutral 

position. The face model is defined as a point-based model composed of two 2D facial views, 

namely the frontal- and the side view. The features defined by the model are extracted 

automatically from the inputs which are still full-face/profile images. Different techniques are 

used for extracting the facial features. The used algorithm first locates all facial features with 

namely ANN for eye-, nose-, and mouth-detection. Once the windows containing the features are 

found, different ANNs and other algorithms are applied for defining the facial characteristic 

points for each feature. The changes in position of these points are observable and so the validity 

of the model can be visually inspected. 

  

 
Figure 6: Kobayashi and Hara face model. 

 

1.1.5 Automatic feature extraction 

In [Koba97] the authors developed an animated 3D face robot for real-time interaction with 

human beings. The aim is to let the robot produce realistic human-like responses. In order to react 

appropriately, the robot must first recognize the facial expression of the human. Then it has to 

make a proper decision for an action, and finally it has to perform the action. The face model used 

for this system is described in [Hara97]. The authors proposed a face model with 19 facial 

characteristic points (see Figure 6). Movement of groups of facial characteristic points indicates a 
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certain facial expression. These points are used in their system for facial expression recognition 

and facial expression production. 

  

Also different image processing algorithms are presented for extracting features of facial organs 

and face contour. The facial organs include eyes, eyebrows, nose and mouth. Given face image 

data, the irises can be positioned with an uncertainty of 3 mm in their location. This iris allocation 

algorithm uses a correlation technique using brightness distribution data. Referencing to the iris 

positions, the image processing procedure will continue with finding sub-areas containing the 

facial organs described above with 100% certainty. For each found sub-area, there is an algorithm 

to extract the contour lines of the facial organ. Following, the algorithm for finding the contour of 

an eyebrow is described. 1) Reinforcement of the horizontal edge, (of the original image) 2) 

template matching for eyebrow positioning, 3) and 4) lower and upper edges of eyebrow are 

approximated by quadratic curves, 5) inner and outer parts of the closed contour of eyebrow are 

binarized in terms of black and white, 6) find the maximum dark area by labeling technique. 

 

1.1.6 Feature point tracking by optical flow in facial expression 

Kanade et al. [Kana98] developed and implemented an optical-flow based approach (feature point 

tracking) to capture the full range of emotion expression. This approach is sensitive to subtle 

changes in facial expressions. Because face position in an image sequence may be slightly 

transformed a transformation is adequate to normalize the face position. The positions of the 

feature points are normalized by automatically mapping them to a standard face model. This 

model is based on three facial feature points: the medical canthus of both eyes and the uppermost 

point of the philtrum. In the facial feature point tracking phase, key feature points are manually 

marked in the first digitized frame with a mouse around facial landmarks. The facial feature 

points within 13x13 pixel windows are tracked by using a hierarchical optical flow method. The 

displacement of each feature point is calculated by subtracting its current normalized position by 

its normalized position in the first frame. 

 

1.2 Thesis overview 

The structure of this thesis report is chosen so that chapter 2 discusses the problem definition and 

the thesis assignment. In the following chapter (chapter 3) models and algorithms, which gives an 

important overview of our models, will be presented. In chapter 4 and 5 the discussion continues 

with the face detector. All techniques, methods and algorithms used will be considered in more 

detail, for instance the Adaboost algorithm and RVM classification model. After these chapters 

the second part of this project will be presented. It starts with the examination of corner detectors 
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and then using these corners detectors to extract the characteristic points or landmarks in chapter 

6. Further classification of the detected corners is needed, which leads to the extraction of 

relevant corner feature combined with the RVM classificator in chapter 7. Chapter 8 proceeds 

with a technique called the projection method. This is used to track other remaining corners that 

cannot be found with the corner detector algorithm. The analysis, design and implementation of 

the prototype which demonstrates the result of our findings is included as chapter 9. Chapter 10 is 

engaged with the test results of the prototype. We will conclude this thesis report with 

conclusions, discussions and recommendations for future works. 
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��
Problem Definition and Thesis Assignment 
 

This chapter describes the outline of our thesis. This thesis-project can be considered as the 

extension of a previous work, named FED (an online Facial Expression Dictionary [Jong02]) 

concerning a nonverbal dictionary. As the name already points out, FED is an online application 

and it can be accessed via the World Wide Web. First, FED will be described in section 2.1. After 

that, the objectives and the scope of our research will be defined in section 2.2 and 2.3. In the last 

section, we will define our thesis assignment. 

2.1 Facial Expression Dictionary – FED 

 

 
Figure 7: Global design of the FED system 
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A verbal dictionary can be described as a tool that aims to provide a partial solution for the 

problem where two persons neither understand the language the other is speaking but still want to 

communicate. One can just look up the meaning of the words of another language. A nonverbal 

dictionary has the same concept of a verbal dictionary, but it differs in the type of information 

that is stored. Instead of words, a nonverbal dictionary contains information about all the ways 

people communicate with each other nonverbally: facial expressions, gestures, posture, eye 

movement and contact, speech rate, loudness, pitch, tone of voice and the placing of inflections.  

 

The FED system is an online nonverbal dictionary. Figure 7 illustrates how the FED system 

works. Currently, there are several ways to find an entry in FED. It is possible to have a label, 

active action units, geometric features, a FaceShop-generated facial expression or an image as 

input. A label is the specification of the expression by a keyword. Examples of label queries are 

happiness, stressed, surprised, and so on. The keyword will be matched on three parts: the facial 

expression label, the label synonyms and the description. Analogous to the label queries, a user 

can look for FED entries by specifying which action units are active with the facial expressions 

he is looking for. Also possible is to specify some specific geometric features like mouth open, 

eyes closed or mouth open AND eyes closed. If a certain facial expression is unknown, the user 

can use FaceShop to sketch the facial expression. The facial characteristic points (FCP) are 

determined automatically while sketching. Another option to query FED entries is to submit a 

picture of a face. The user has to mark the FCPs manually. The results for all queries are of the 

same form and are illustrated in Figure 8. 

 

 
Figure 8: Result of FED. The result panel displays the result in the same panel with the original 

image and other details. 
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FED handles query requests via client-server architecture. Figure 7 shows the global design of the 

FED system. Below a short description of the individual components of FED are given. 

 

• The FED user GUI (Graphical User Interface) enables the users to issue queries into 

FED. It consists of a number of HTML pages and Java applets for handling each of the 

query alternatives. 

• The FED administrative GUI provides the GUI for the management part of the FED 

system. 

• The communication layer of the FED system resides on the server and handles all data 

traffic between the client and the server.  

• The Query Processing Module (QPM) takes care of all kind of queries that are issued by 

the user. 

• The Admin Processing Module (APM) implements the functionality needed to manage 

the FED system. 

• The FED Database contains all the entries in the dictionary, admin user information, and 

log info. The PostGreSQL database management system is used to implement the 

database. 

 

With this description of the FED, we can continue with the problem definition to see what our 

research project will change in FED. 

 

2.2 Research question and objectives 

Before we define our research question and objectives, we summarize the idea of a specific part 

of FED.  We only focus on that part of FED, which allows the user to send a picture. This image 

input will be labelled by emotional word (happiness, sad, etc.). FED requires the user to manually 

locate the face and facial characteristic points (FCPs). The FCPs are predefined conform the 

Kobayashi and Hara face model. After manually selecting and submitting the points an emotional 

word will be output. Thus, FED lacks the ability of automatic extraction of facial characteristic 

points that are needed for the facial expression recognition process. In the current situation user 

interaction is needed to complete the whole procedure (see Figure 9). 

 

This research is a first step towards a fully automatic emotion recognition system. We define a 

fully automatic emotion recognition system as: given an input image containing one or more 

human faces the corresponding emotions are output without any further interaction from the user. 
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Since this research can be seen as an elaboration of the FED we will concentrate only on the 

specific parts of the framework to make fully automatic emotion recognition as much as possible.  

 

Our goal is thereby to fully automate the face detection and the extraction of facial characteristic 

points. These characteristic points depend on the face model that is used in the emotion analyzing 

module in FED. In this case the Kobayashi and Hara face model is used. Further, we want to 

mention that this fully automatic emotion recognition system is built on a relative new and 

promising classifier RVM. The use of RVM for face detection is described in our previous work 

[Chan04]. In the following we will define the research question and the research and 

implementation objectives of this thesis project. 

 

Research question: 

Our research question is defined as follows: 

“How to realize a fully automatic facial expression recognition system using a sparse 

learning Relevance Vector Machine?” 

 

Research objectives: 

• Face detection as a first step to automatic emotion recognition; it is important that it is 

fast and robust. How can this be achieved? What are the requirements for robust face 

detection? 

• What are the difficulties for detecting/extracting facial characteristic points from images? 

• RVM is applied in the different phases of the project. What can be said about the 

performance of RVM?  

• What other techniques should be combined with RVM to make automatic face and FCP 

detection possible? How is the performance of the final system? 

 

Implementation objectives: 

• The final system can be built within the FED framework. Figure 10 illustrates the new 

working/scheme of FED after the implementation. Users would no longer be required to 

select feature characteristic points manually. The final software consists of three modules 

that can be integrated into the FED framework: face detection module, facial point 

extraction module and classification module. Since the FED was built with java, we will 

also implement the system/module in java/java2. We attempt to build the module as 

compatible as possible to the FED so that minimal adjustment to the existing FED code is 

needed. Note that the actual integration of these modules within the FED framework will 

not be done by us during this project. 
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• Build a prototype to test the modules. 

 

• The face detection module is able to detect 80 % of all frontal views of human faces in 

the input image. This is constrained by the minimal resolution of the face which must be 

at least 19x19 in the original input. For computational cost reduction a dimension of 

24x24 pixels of the original input is considered. 

 

• Characteristic point extraction module should be able to detect at least 80% of all 

characteristic points.  

 

2.3 Scope of the research 

This thesis project focuses on the realization of a fully automatic recognition system based on the 

FED framework. This includes all aspects that are related to face detection and facial 

characteristic point extraction. For face detection, in our case it means the selection of a suitable 

face database, the training and testing algorithms and optimizing RVM’s performance by tuning 

its parameters. The same facets are also applicable for facial characteristic point extraction.  

 

After the facial characteristic points (FCPs) are extracted from the face image, a facial expression 

can be determined. The latter is done by the existing FED emotion classification module 

according to the FED framework. This also means that this project is limited to automatic face 

detection and facial characteristic points’ extraction. 
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Figure 9: FED system. 

 

 
Figure 10: New scheme for the FED system. Manual face detection and FCP location is no longer 

required.  
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2.4 Thesis assignment 

To conclude this chapter, we define our thesis assignment. It consists of different parts and the 

summary of these are listed below: 

• Literature survey: a research on related works on the topics of face detection, facial 

characteristic point detection, facial expression recognition and classification methods.  

 

• Model design: design a model as a solution to the problem of automatic facial 

characteristic point detection. This model is built of multiple methods and algorithms. 

 

• Prototype: implement the designed model. 

 

• Tests: write a test plan to test the prototype and depicts the results. 

 

• Scientific paper: summarize this thesis project. 
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��
Models and Algorithms 
 

In this chapter, we present the models that we designed to detect faces and facial characteristic 

points automatically. This chapter functions as an overview of the methods and algorithms that 

are used in our model. Detailed explanation of these will be given in the appropriate sections of 

the next chapters. Section 3.1 illustrates the WUXTRAP model which is the training model for 

face detection and FCP detection. It generates data that is needed for the FLEX application, 

which will be explained in section 3.2. In the last section, the face model used for WUXTRAP 

and FLEX is described. 

 

3.1 WUX-values Training Application (WUXTRAP) 

For the purpose of face detection we studied the object detection system of Viola and Jones 

[Viol01]. It is presented as a very fast and robust real-time object detection system. According to 

the test results it outperforms many other systems on accuracy and speed. The main drawback of 

this system is the training time, which is extremely long. To avoid this problem, we have 

implemented the genetic algorithm (Evolutionary Search) that was described in [Trep03]. For the 

extraction of the FCPs we used a corner detection method. Haar features are extracted from the 

detected corners and passed to the classifier to determine whether the detected corner is one of the 

desired FCP.  

 

The model described in this chapter results in two applications: WUXTRAP and FLEX. 

WUXTRAP is the training application (WUX-values Training Application): it contains the 

training model that includes AdaBoost, Evolutionary Search and the RVM classification model. 

WUXTRAP selects the proper features that will be used in FLEX (Facial Landmark Extraction) 

to classify the given input images. WUX stands for three kinds of data that are needed to build 

FLEX’s classifiers. These are generated during the training phase:  

• W stands for the weights. 
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• U stands for the used samples (relevance vectors).  

• X stands for the input training data. 

These WUX values are used by the relevance vector machine when performing its classification 

task. WUXTRAP consists of two independent modules. Both modules aim for the same kind of 

results which are Haar features and the corresponding WUX values. As a result, the training 

algorithms used in both modules are the same. The modules are combined together and shown in 

Figure 11. It depicts the general scheme of WUXTRAP.  

 

In the face detection module, a labelled set of face images and a labelled set of non-face images 

function as input. Both sets need to be converted to the integral image representation, which 

offers the advantage of very fast feature evaluation. The images are evaluated against a huge set 

of generated Haar-like features (this evaluation procedure will be explained in detail in section 

4.3). Note that the set of Haar features for faces and corners are not the same. AdaBoost in 

combination with the relevance vector machine trains and selects the best features that can 

distinguish faces from non-faces. Because of the huge number of Haar-like features that needs to 

be trained and evaluated, a genetic search algorithm is incorporated to improve the speed of this 

procedure. The emphasis in Evolutionary Search (ES) lies on natural selection and survival of the 

fittest (see section 4.5). The combination of these three processes is named EABoost. The 

features selected by EABoost will be evaluated against the test set. If the features perform well 

and achieve the proper detection rate, they will be added to the final set of features. The result of 

this face detection training module will be a strong set of features that is able to distinguish faces 

from non-faces. The WUX values belonging to these features will be stored.  

 

In the FCP training module (also shown in Figure 11) different sets of images of facial 

characteristic points serve as input. To be more precise, for each FCP a set of images of that FCP 

is needed. In Figure 11 these sets are named REIC (right eye inner corner), MLC (mouth left 

corner), NLC (nose left corner), etc, conform to their position in the face. These sets of FCP 

images are manually extracted from the BioID and Carnegie Melon face database. For each FCP 

there is also a set of non-FCP images. Note that only one FCP can be trained at a time. So there is 

actually one RVM for one FCP. 
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Figure 11: General scheme of WUXTRAP. 
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3.2 Facial Landmarks Extraction (FLEX) 

Figure 12 depicts the general scheme of FLEX. FLEX is the running application that is able to 

detect faces and detect FCP from face images. An input image can be selected from the graphical 

user interface. After selection, the image processing component checks whether or not it is 

necessary to resize the image or to convert the image into gray-scale. Then the image is scanned 

on different resolutions for face detection. It does so by using the features and WUX values 

obtained from WUXTRAP. It scans by applying the strong Haar-features on a small part of the 

image and evaluating it with RVM. If faces are found, the proper ones will be passed to the FCP 

detection component for FCP extraction and FCP detection. With the proper ones, faces with a 

resolution greater than 64x64 pixels are meant. There are two running processes in this 

component. A corner detection algorithm, either Harris (see section 6.2) or Sojka (see section 6.3) 

or both will be applied on a face. An image of a region containing the corner point in the centre 

will be cut out. The image around this corner will be classified with RVM to determine whether 

or not the detected corner is a FCP. Besides the corner detectors, a hybrid projection method 

(HPM, see chapter 8) will also be used to extract FCP candidates from faces. This HPM method 

must be applied on a facial feature (eye, eye brow, etc) which is extracted from the face using a 

RVM trained with proper facial features. FLEX ends with showing its results in the graphical user 

interface. 

 

3.3 Face model 

FLEX’s objective is to extract FCPs from a face. FCP extraction can be defined as the process of 

finding the facial features of a face model. The face model outlines the facial features of a generic 

face. There exist several face models like 3D wire-frame models and 2D face models. 3D wire-

frame models are known too be very complex and very time-consuming in the construction of the 

model. 2D face models on the other hand are rather simple but not very efficient given the fact 

that 3D information of the face is lost. To overcome this problem there exist several systems 

which defines the face model as a point-based model composed of two 2D facial views, namely 

the frontal and the side view. Combining a dual view into a single model yields a more realistic 

representation of 3D face. The FCPs that FLEX has to extract is defined by the face model of 

Kobayashi and Hara [Hara97]. The reason for this face model is that it was already used in FED. 
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Figure 12: General scheme of FLEX. 
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Action Units (AUs) of the FACS [Ekma78] system. The intention of FACS was to objectively 

represent facial expression information. The 30 AUs chosen by Kobayashi and Hara are related to 

the contours of the eyes, eyebrows and mouth. It was not needed to use for example the points 

around the cheek and chin, because experiments have shown that people only pay attention to the 

position and size of the eyes, eyebrows and mouth when classifying facial expressions. Figure 13 
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shows the position of these 30 FCPs. The vertical lines in the figure are the so-called haralines. 

The positions of the haralines are fixed and depend on the position of the FCPs a1, a2, a3, a4 

(corners of the eyes) and FCP a19 and a20 (inner corners of the eyebrows). The x-coordinates of 

all the other FCPs are fixed depending on the position of the haralines. This is a property of the 

face model of Kobayashi and Hara. 

 

 
Figure 13: The Kobayashi and Hara face model used in the FED. 

 

 

Table 1: Description of the face model points. 

 Point description State  Point description State 

A1 Left eye inner corner stable A19 Left eyebrow inner corner non-stable 
A2 Right eye inner corner stable A20 Right eyebrow inner corner non-stable 
A3 Left eye outer corner stable A23 Left corner of the mouth non-stable 
A4 Right eye outer corner stable A24 Right corner of the mouth non-stable 
A5 Bottom of the left eye non-stable A26 Top of the upper lip non-stable 
A6 Bottom of the right eye non-stable A25 Bottom of the lower lip non-stable 
A7 Top of the left eye non-stable    
A8 Top of the right eye non-stable    
      
- Left nostril centre non-stable - Left eyebrow outer corner non-stable 
- Right nostril centre non-stable - Right eyebrow outer corner non-stable 
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Face Detection – Methods and Tools 
 

This chapter explains the components of our model introduced in the previous chapter for face 

detection in detail. The relation between the different components was shown in Figure 11 of the 

previous chapter. First the theory of RVM will be described in section 4.1. RVM is the main 

classificator that is used throughout the whole paper. Section 4.2 discusses our initial ideas and 

attempts to detect faces using RVM. Unfortunately, it does not work as we hoped. So, there is a 

need to look further for other techniques and methods. These are combined in our WUXTRAP 

model, which are the Haar-like features set and integral image representation, the AdaBoost 

learning algorithm, the genetic algorithm (Evolutionary Search) and the cascade construction of 

classifiers. They will be explained in the sections 4.3 to 4.6. 

 

4.1 Relevance Vector Machine (RVM) 

[Tipp01] RVM is a Bayesian approach to pattern recognition in the context of regression and 

classification problems. It can be seen as a probabilistic version of the Support Vector Machine 

(SVM). SVM is known as a very good classifier. It has a lot of applications like face detection 

and handwriting recognition. On the other hand, RVM has the compelling feature that, while 

capable of generalization performance comparable to an equivalent SVM, the number of 

relevance vectors used by RVM is in most cases dramatically smaller than the number of support 

vectors used by SVM to solve the same problem (see Figure 14). This means that the computation 

costs are reduced. On the same time, RVM offers a number of additional advantages, which 

include the benefits of probabilistic predictions, automatic estimation of parameters and the 

facility to use arbitrary basis functions, which are not necessary ‘Mercer’ kernels. This chapter 

starts with the RVM regression model upon which the RVM classification model is based. Then 

the modifications required in the case of classification will be described.  
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Figure 14: SVM (left) and RVM (right) classifiers on 100 examples from Ripley's Gaussian-mixture 
data set. The decision boundary is shown dashed, and relevance/ support vector are shown circled to 
emphasize the dramatic reduction in complexity of the RVM model. 
 

RVM Model Specification 

 [Bish04, Tipp01] Like in supervised learning, a set of example input vectors {xn}
N

n=1 is given 

along with a corresponding set of targets t = { tn}
N

n=1. These targets will be real values in the case 

of regression and class labels in the case of classification. This set of input vectors and targets is 

called the ‘training set’ from which we wish to learn a model of dependency. The objective is to 

make accurate predictions of t  for previously unseen values of x. Assuming that the targets are 

some noisy realization of an underlying functional relationship  y(xn; w) that we want to estimate, 

the desired model of dependency can be described as ( ; )n n nt y ε= +x w , with nε  representing 

noise from a mean-zero Gaussian process with variance 2σ  and w  a vector of adjustable 

parameters or ‘weights’. Thus, 2( | ) ( | ( ; ), )n n np t N t y σ=x x w where the notation specifies a 

Gaussian distribution over nt  with mean ( ; )ny x w  and variance 2σ .  

 

A popular class of candidate functions for ( ; )ny x w  is that of the form 

 

  
=

==
M

i

T
iiwy

1

)()()( xwxwx; φφ      (Eq. 4.1) 

 

where the output is a linearly weighted sum of M  generally non-linear and fixed basis functions 

denoted by T
1 2( ) ( ( ), ( ),..., ( ))Mφ φ φ φ=x x x x . A basis function is defined as ( ) ( , )i iKφ ≡x x x with 

the kernel parameterised by the training vectors, so that ( ; )ny x w  becomes 
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xxKy      (Eq. 4.2) 

 

Due to the assumption of independence of the tn, the likelihood of the complete data set can be 

written as 
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where the N x ( 1)N +  matrix � (see Eq. 4.4) is called the design matrix, ( )T

1 nt t=t � and 
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(Eq. 4.4) 

 

The next step is to consider over-fitting. SVM avoided this problem by the inclusion of the 

‘margin term’. RVM approaches this problem by the introduction of an explicit prior probability 

distribution over the parameters. The authors choose for the smooth zero-mean Gaussian prior 

distribution over w :  

 

),0()|( 1

0

−

=
∏= ii

N

i

wNp α�w ,      (Eq. 4.5) 

 

with �  a vector of 1N +  hyperparameters such that each iα  is associated independently with 

every weight.  

 

To continue with the inference process, hyperpriors over �  must be defined, as well as over the 

noise variance 2σ . Suitable priors for these parameters are given by Gamma distributions: 

 

 ),|(Gamma)(
0
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N

i

α∏
=

=� ,       (Eq. 4.6) 
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 ),|(Gamma)( dcp ββ = ,      (Eq. 4.7) 

 

with 2−≡ σβ and where 

 

 ααα baa ebaba −−−Γ= 11)(),|(Gamma ,     (Eq. 4.8) 

 

in which 

∞ −−=Γ
0

1)( dteta ta  is the gamma function. It is assumed that 0==== dcba . This 

makes the hyperpriors uniform. As a result, predictions are independent of linear scaling of both 

t  and the basis function outputs.  

 

 
Figure 15:  Gamma distribution. (Left) Gamma distribution with different parameters. (Right) Same 
distribution on logarithmic scale. 
 

The choice of prior distributions is related to those used in Automatic Relevance Determination. 

The idea behind it is that if a basis function provides no information, because it is irrelevant to the 

problem, there is no value of the weight that will lead to a significant increase in the likelihood. 

At this point, the prior term can show its usefulness. By setting the iα  parameter to a large value, 

the prior distribution ( | )ip w �  becomes sharply peaked around zero. By then setting iw  to zero, 

the posterior1 probability of the model is maximized. In a word, when a basis function has 

sufficient highα , it can be marked as ‘low relevance’ and thus will be removed from the model. 

                                                      
1 Given the prior distribution, data needs to be collected to obtain the observed distribution. Then calculate 
the likelihood of the observed distributions as a function of parameter values, multiply this likelihood 
function by the prior distribution, and normalize to obtain a unit probability over all possible values. This is 
called the posterior distribution. From: http://www.mathworld.com 
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Consequently, the RVM will learn simple models even when presented with a large starting set of 

basis functions.  

 

To make a prediction for target*t , given new input data*x , we have to find out *( | )p t t  which 

can be expressed as: 

 

 2 2
* *( | ) ( | , , ) ( , , | )p t p t pσ σ= 
t w � w � t wd d� 2σd .  (Eq. 4.9) 

 

Since these computations cannot be performed fully analytically, an effective approximation is 

needed. This is done by applying the Bayes rule. After some substitutions and decompositions 

(discussed in [Tipp01]), this posterior distribution can be computed analytically and the result 

becomes: 

 

 2 2 2( , | ) ( | , ) ( ) ( )p p p pσ σ σ∝� t t � �      (Eq. 4.10)  

 

The idea of relevance vector learning is actually the search for the hyperparameter posterior 

mode:  the maximization of Eq. 4.10 with respect to �  andβ . The prediction of a target t* can 

then be given by Eq. 4.11 in which MP�  and 2
MPσ are the most probable values for � and 2σ . 

 

 2 2 2
* *( | , , ) ( | , ) ( | , , )MP MP MP MP MPp t p t p dσ σ σ= 
t � w w t � w   (Eq. 4.11) 

 

Because both terms in the integrand are Gaussian, the result can be computed by: 

 

 2 2
* * * *( | , , ) ( | , )MP MPp t N t yσ σ=t � ;     (Eq. 4.12) 

 

with 

 

 T
* *( )y φ= � x  and 2 2 T

* * *( ) ( )MPσ σ φ φ= + x � x .    (Eq. 4.13, 4.14) 

 

where �  the is the posterior covariance and �  is the mean.  

 

 ( ) 1T2 −− += ���� σ ,       (Eq. 4.15) 
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2 Tσ −=� � �
t         (Eq. 4.16) 

 

with ( )Ndiag ααα ,,, 21 �=� . 

 

RVM Classification 

RVM is using an identical framework as detailed for regression in the case of classification. Only 

some modifications need to be made. To account for the changes in the target quantities, the 

authors use Bernoulli likelihood and a sigmoid link function( ) 1/(1 )yy eσ −= +  (see Figure 16). 

As a consequence, there is an additional approximation step in the algorithm. 

  

 
Figure 16: Sigmoid link function used in classification model, 1/(1+exp(-y)). 
 

In the two-class case, applying the sigmoid link function to ( )y x  and adapting the Bernoulli 

distribution for )|( xtP , the likelihood can be written as: 

 

{ } { } 1

1

( | ) ( ; ) 1 ( ; )
n

n

tN
t

n n
n

P y yσ σ
−

=

� �= −� �∏t w x w x w ,   (Eq. 4.17) 

 

where, following from the probabilistic specification, the targets ∈nt  {0, 1}. Note that there is no 

‘noise’ variance here or we may assume that it is already included in the link function.  

 

Unlike in the regression case, it is not possible to integrate out the weights analytically. 

Therefore, the authors use an approximation procedure based on a combination Laplace’s method 

and Newton’s 2nd order method. The outcome of this approximation procedure is a mapping of 

the classification problem to a regression problem with data-dependent noise.  

 

In the multi-class classification case, where the number of classes K is greater than two, the 

likelihood (Eq. 4.3) is generalized to the standard multinomial form: 

 

)1/(1 xe−+  
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where a conventional ‘one-of-K’ target coding for t  is used and the classifier has multiple 

outputs );( kky wx , each with its own parameter vector kw  and associated hyperparameters. 

 

4.2 Face detection – the initial idea 

Most facial expression recognition systems assume the input to be an image containing only the 

face surrounded by a simple background. If the image does not contain a face will it still work 

properly? Such systems are also lacking the ability to extract multiple faces from an input image 

that contains more than one face. Since we do not want this restriction, the system should be able 

to detect multiple faces in the image. To achieve this we need a face detector to determine all 

faces from the input. This face detection module must precede the extraction of features for 

emotion recognition. In order to detect faces we need to train a classifier. In this case we want to 

differentiate faces from non-faces, which means that our training set should contain faces and 

non-faces. The classifier we are using is RVM. As a first attempt, we trained the RVM with 

intensity values. We used a subset from the MIT-CBCL database consisting of 1000 faces and 

1500 non-faces of 19x19 (see Figure 17). So, each sample is arranged as a training vector of 1 by 

361 when given to the RVM for training. Some sample images from MIT-CBCL are shown in 

Figure 17. This subset is used for both training and testing. There are a few ways to do that. One 

way is to use the whole set for training and also testing.  

 

 
Figure 17: Samples from the MIT-CBCL face database. 

 

However, this method is not very reliable because we cannot see how the trained classifier will 

behave for untrained samples. To improve this, testing should be done on a set different than the 

classifier is trained with. Another training method which is also more common is K-fold cross 

validation. Before passing the samples to the RVM, the data set is first divided into K sets of even 

size. Then RVM is trained on the K-1 sets of samples and testing is done on the remaining set. 

Non-faces 
 

Faces 
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This is done for all K sets. The choice for K depends on the size of the dataset. For large datasets, 

K should not be chosen too small since it is really ineffective. For cross validation the time to 

train RVM grows linearly with the size of the dataset. Usually K-fold cross validation is 

performed for parameter optimization. Since we first want to know if RVM can be trained with 

intensity values, we simply choose for the first method. We train and test RVM on the exact same 

set. The results are shown in Table 3. 

 

Table 2: MIT CBCL subset specification. 
Dataset parameters Values and description 

Database MIT CBCL 
Sample size 19x19 pixels 
Number of classes 2 
Class 0 Non-faces 
Class 1 Faces 
Number of samples (0/1) 1000/1500 
 

Table 3: RVM test results: training and testing is done on the same set. 
Kernel Nr of test 

samples 
Detection 
rate % 

Nr of false 
negatives 

Nr of true 
negatives 

Nr of false 
positives 

Nr of true 
positives 
 

Gauss:  
0.5, 1.0, 
2.0, 3.0, 
4.0, 5.0 
Laplace: 
0.5, 1.0, 
2.0, 3.0,  
4.0, 5.0 

 
 
 
2500 

 
 
 
67.96 

 
 
 
801 

 
 
 
1000 

 
 
 
0 

 
 
 
699 

 

Training RVM with only the intensity values gives unsatisfactory results. Not only does it take a 

long time to train, but the detection rate is also poor, only 67.96%. This is certainly not good 

enough for a face detection system. In addition, as Table 3 shows, the detection rate of 67.96% is 

achieved only due to the high true negative rate. True negative means that a non-face image is 

indeed recognized as a non-face by RVM. False positive is the opposite: a non-face is recognized 

as a face. In the test, only 699 of the 1500 faces are recognized as a face. So, the detection rate is 

calculated as (1000 + 699)/2500 = 0.6796. If the test is done on only faces, the detection rate 

would be 699/1500 = 0.466. This means that RVM is not able to be trained this way. By 

arranging each training vector of 19x19 in a 1x361 vector, all links between the pixels are totally 

lost. As a result, there are no consistencies in the input samples and thus, there is no difference 

between the positive and negative samples. This explains the 0 in the column of false positives. It 

also explains why the results are the same for all kernels. The raw data associated with each pixel 
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are insufficient to allow unambiguous identification of that pixel. We can conclude that the 

detection rate from this table does not have any meaning. 

 

RVM is known for the relatively slower performance during training which means that it will 

take a long time to train on a large dataset with a dimension space of 361, which is relatively 

high. On a windows machine with AMD Athlon™ XP 2200+ 1.80 GHz processor with 512 MB 

RAM it was in the order of hours to train RVM on the chosen dataset. 

 

Because of the unacceptable results, we need to consider alternatives. There are two things we 

must take into account: improvement of the detection rate and reduction of the training time. 

Apparently, using the intensity values as a feature vector for training the RVM does not work. 

This problem can be solved by training RVM with better features extracted from the images 

instead of only intensity values. Some well-known feature extraction methods are PCA [Jung01], 

DCT [Huan04], and HAAR [Papa98]. To reduce the training time, the dimension space of 361, 

which is extremely large, needs to be reduced.  

 

We considered the PCA and DCT feature extraction method. Due to the sensitivity to 

illumination variance in the images these methods failed to capture the essential features of face 

images. The results were far from satisfactory as it is poorer than in the case of training RVM 

with intensity values. Next, we examined the HAAR features method and we came to the face 

detection method of [Viol01], on which our solution is based. This method has three key parts 

that make it fast and robust which are the main reasons for choosing it. The first part is a fairly 

simple feature extraction method that is based on a new image representation called integral 

image. The second is a learning algorithm, based on AdaBoost and the last one is a method for 

constructing complex classifiers into a cascade structure. In the following sections each of the 

three parts will be described in detail. Note that in the first place tests are done on 19x19 

windowed pixels samples. This size is altered to 24x24 pixels in a later stage. The main reason 

for this is that the number of scanning windows will be reduced by using a larger sample size. As 

a result, the computational load will also be reduced.   

 

4.3 Haar-like features and integral image represent ation 

As concluded, in our findings using intensity values directly as input for the RVM classifier does 

not work adequate. Therefore, features need to be extracted from the images of the dataset. The 

features that are extracted are Haar-like features which have been used by [Papa98]. These 

features have a rectangular shape and are fairly simple. Compared with other filters, these 

features are somewhat primitive. For example, it is hard to use them for boundary analysis or 
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texture analysis. They are also sensitive to the presence of edges, bars, and other simple image 

structures. But on the other hand due to its simple construction, they have only horizontal and 

vertical orientation. It is computationally very efficient. This is the compensation they offer for 

their limited flexibility. As a result these features can be computed very fast. In our face detection 

algorithm, five types of rectangular features are used (see Figure 18). Type 1, 2 and 5 are 

calculated as the sum of all pixels in the dark area minus the sum of all pixels in the light area. 

Type 3 and 4 are calculated as half the sum of all pixels in both dark areas minus the sum of all 

the pixels in the light area in the middle. 

 

type 1 and 2 and 5 : _ _ _ _ _ _pixels in dark area pixels in light area−� �  

(Eq. 4.19) 

 

type 3 and 4  :
1

_ _ _ _ _ _
2

pixels in dark area pixels in light area− −� �  

        
1

_ _ _
2

pixels in dark area�  

          (Eq. 4.20) 

 

Here is where the integral image, an intermediate image representation, comes into play. It makes 

it possible to compute these features really fast. Instead of calculating the features from the 

original images, the features are calculated from the integral images. An integral image is actually 

a matrix containing the sum of pixel values from the original image. Location ( , )x y  of the 

integral image contains the sum of the pixels above and to the left of ( , )x y . It can be denoted as: 

' , '

( , ) ( ', ')
x x y y

ii x y i x y
≤ ≤

= �  where ( , )ii x y  is the integral image and ( , )i x y  is the original image 

(see Figure 19). Using the following pair of recurrences: 

 

( , ) ( , 1) ( , )s x y s x y i x y= − +       (Eq. 4.21) 

( , ) ( 1, ) ( , )ii x y ii x y s x y= − + ,       (Eq. 4.22)  

 

(where ( , )s x y  is the cumulative row sum, ( , 1) 0s x − =  and ( 1, ) 0ii y− = ) the integral image 

can be computed in one pass over the original image. 
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Figure 18: Example of rectangle features. The sums of the pixels which lie within the white rectangles 
are subtracted from the sum of pixels in the dark rectangles. 
 

 
Figure 19: The value of the integral image at point (x, y) is the sum of all the pixels above and to the 
left. 
 
 
Each of the five basic features is scanned on every possible scale and every possible position 

within a training sample. Given that the sample’s dimension is 24x24, the complete set of features 

that can be constructed is tremendously large, namely 162336. Our training set consists of 3000 

samples with 1500 faces and 1500 non faces (see Table 4). Each of the features is encoded as a 

tuple with five values: (x_left, y_top, x_right, y_bottom, type) in which:  

 

• x_left:  minimum x-value that defines the left boundary of the feature. 

• y_top:  minimum y-value that defines the upper boundary of the feature. 

• x_right:  maximum x-value that defines the right boundary of the feature. 

• y_bottom: maximum y-value that defines the lower boundary of the feature. 

• type:  type of the feature: 1, 2, 3 or 4. 

 

 
Figure 20: A Haar-like feature has five attributes: (x_left, x_right, y_top, y_bottom, type). 

 

y 

Y_top 
 

Y_bottom 

x_right 
x 

x_left 

type = 3 
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Table 4: Dataset used to learn the Haar-like features. 

Dataset parameters Values and description 

Database Viola Jones 
Sample size 24x24 pixels 
Number of classes 2 
Class 0 Non-faces 
Class 1 Faces 
Number of samples (0/1) 1500/1500 
 
 
Having defined the Haar-like features one might wonder how they can be applied for training the 

RVM. Assume that one Haar-feature is selected out of the total set of 162336. This feature will be 

applied to all images in our training set specified in Table 4.  Each image produces a feature value 

according to Eq. 5.1 and 5.2. As a result, a labelled set of feature values is produced. Thus the 

size of this set is equal to the size of the training set. This set will be the input for our classifier 

which will be discussed more in details in the following sections. The selection of a Haar-like 

feature is done by AdaBoost algorithm explained in the next section. 

 

4.4 The AdaBoost learning algorithm 

In the previous section simple Haar-like features can be calculated and extracted really fast. 

Recall that there are more than 162336 features associated with each 24x24 sub-window. 

Combined together it will far exceed the number of pixels we have as feature vector in the 

beginning. The positive thing now is that a very small number of these features can be combined 

to form an effective classifier. But the challenge is to find these features. We need to train a 

classifier that consists of several discriminating features within a sub-window. AdaBoost is used 

both to select features and to train the classifier. 

 

The AdaBoost algorithm [Freu95] is proven to boost the performance of the classifier. It is also 

proven that the training error of the strong classifier approaches zero exponentially in the number 

of rounds and the generalization performance is also very high. The AdaBoost algorithm can be 

interpreted as a greedy feature selection process. Consider a general boosting case where a large 

set of classification functions are combined using weights. The challenge is to associate a large 

weight with each good classification and a smaller weight with poor functions. AdaBoost is an 

aggressive and effective algorithm used to select a low number of good classification functions, 

so called ‘weak classifiers’, to form a stronger classifier. The classifier is called weak because we 

do not expect even the best classification function to classify the training data well. The final 

strong classifier is actually a linear combination of the weak classifiers. 
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In analogy of the AdaBoost algorithm, the weak classifier is restricted to the set of classification 

functions of single features. Thus, the weak learning algorithm will be designed to select a single 

rectangle feature which best separates the positive and negative samples. The algorithm to select 

a predefined number of features given a set of positive and negative samples is shown in Figure 

21. As we can see in the figure the input is a predefined set of positive and negative training 

examples (xi, yi). In our case the positive examples are face images and the negative examples are 

non-face images.  

 

 
Figure 21: The AdaBoost algorithm. 

 

The AdaBoost algorithm iterates over a number of T rounds. In each iteration the space of all 

possible features is searched exhaustively to train weak classifiers that consist of one single 

feature. In [Viol01], to train a single weak classifier a threshold has to be found for the feature 

value to discriminate between positive and negative examples. In our approach, the latter is 

slightly different. Instead of using a threshold, the chosen weak classifier is the RVM for 

discriminating between the positive and negative examples. This means that for each feature, the 
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weak RVM classifier determines the optimal classification function such that a minimum number 

of examples is misclassified. The next step in the algorithm is to choose the best weak classifier, 

which means choosing a classifier with the lowest classification error tε . The error is evaluated 

with respect to wt, which are the normalized weights of round t. 

 

After choosing the best weak classifier concerning the weighted classification error on the 

training set, all training examples are re-weighted to focus in the next round on those examples 

that were not correctly classified. The weights are updated according to the following:  

ie
titit ww −

+ = 1
,,1 β       (Eq. 4.23) 

In the equation (Eq. 4.23) β  is equal to
t

t

ε
ε
−1

, where tε  is the lowest error of round t. The 

parameter ei is defined to be zero if the example xi is classified correctly by the classifier, which is 

the RVM in our case. Otherwise, parameter ei is equal to one. Depending on how many features 

we want to select, T can be set to that number which will force the algorithm to iterate T times. In 

each iteration one feature will be selected with the lowest error. 

 

It is important to note that for each iteration we need to train more than 162336 features and 

select the best feature out of the whole set. In the next rounds this procedure is continued again 

and again for all T rounds for all 162336 features. In our case with 3000 samples the training time 

for one feature differs from one to 1.5 minutes. Note that the implementation is done in Matlab 

6.5 on a Windows machine with AMD Athlon™ XP 2200+ 1.80 GHz processor with 512 MB 

RAM. The total training time would be more than 20 weeks. This is only the case if we assume 

that the features only need to be trained once. This means in the next round t of the boosting 

algorithm we do not need to train the features anymore, but merely need to re-weight the training 

samples. But still this will take weeks before the first feature can be produced. Considering the 

time we have for finishing the thesis project, we either have to speed up the boosting process or 

find another solution for extracting and selecting features for face detection. Our solution lies in 

the application of genetic algorithms. The latter are in general suitable for searching on very large 

data sets in reasonable time. The exhaustive search of AdaBoost will be replaced by an 

evolutionary search algorithm. Instead of looking in the complete feature space, the evolutionary 

algorithm finds the optimal solutions in a subspace of all features. Further details will be given in 

section 4.5. 

 

In the final step of Figure 21 a strong classifier can be constructed from the selected features. This 

is done using the following equation: 

 



Part II Face Detection  4.Methods and Tools 

Page 45 of 170 

�
�
�

��
�

�

=
� = � =≥T

t
T
t t

�(x)
t

h
t

�

xh
1 12

1

otherwise

1

0

)(      (Eq. 4.24) 

 

Thus, the final classifier is a weighted linear combination of the T features, where the weights are 

inversely proportional to the training errors. The initial AdaBoost threshold (  =

T

t t1
21 α ), is 

designed to yield a low error rate on the training data. A lower threshold yields higher detection 

rates and higher false positive rates. This is extremely important for constructing a cascade of 

classifiers. 

 

4.5 Genetic Algorithm for faster boosted feature se lection 

Genetic Algorithms (GA) is a term used to describe problem solving systems in which evolution 

is the key element. The emphasis in GA lies on natural selection and survival of the fittest. The 

evolution of individuals is simulated by probabilistic genetic processes of selection, mutation and 

reproduction. They are the driving forces that lead to ‘well-adapted’ individuals. GA can be used 

for different purposes on different areas. For example, it can be used as simulation tools for the 

evolution of biological populations (Roosenberg, 1967). It can also be used as a stochastic search 

technique to combinatorial optimization problems. In our case, it will be applied to speed up the 

AdaBoost algorithm.  

 

The exhaustive search of AdaBoost is in fact a brute force search on the whole space of 

rectangular Haar-like features. As described in section 4.1 there are in total 162336 features to be 

trained and it will be in the order of weeks to train them all. To speed up the terrible long training 

time, it will be beneficial to use GA in combination with AdaBoost. Speeding up the boosting 

algorithm is performed by replacing the exhaustive search of AdaBoost by an genetic search 

algorithm called Evolutionary Search (ES). ES is an instance of GA and as the name already 

suggests its focus is on the field of searching. Figure 22 shows the steps of the ES algorithm.  

 

There are two probabilistic genetic operators that drive the ES process: crossover and mutation. 

The crossover operator simulates the process of reproduction in the evolution theory. With 

reproduction the sexual or asexual process is meant by which organisms generate new individuals 

of the same kind. Sexual reproduction results in an offspring that contains a combination of 

information from each parent. Asexual reproduction typically results in an offspring that is 

genetically identical to the parent. The mutation operator brings in diversity in the individuals. 

This is essential because evolution, by definition, requires diversity in order to work. 
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Step 3b) Evolutionary Search ()  

Begin 

 t := 0; 

 initialize_feature_population (P(0)); 

 repeat 

  P’ := select (P(t));  

  Crossover (P’); 

  Mutate (P’); 

  Train_classifiers (P’); 

  Evaluate_classification_error (P’); 

  P (t+1) := replace (P(t), P’); 

  t := t+1; 

 until  terminated; 

end; 

Figure 22: Evolutionary Search 
 

With EABoost, (ES combined with AdaBoost) the space of all rectangular Haar-like features is 

searched for good features. Crossover differs slightly from what is described above in the 

implementation of EABoost. It is implemented as follows: given two parents A and B the 

resulting offspring C is calculated as: 
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where r is a uniform random number [0,1]∈ , n describes the length of the individuals and the 

parents are selected randomly. The reason that crossover is implemented this way is the fact that 

we have complete knowledge of the whole feature set. We know exactly the number of possible 

features: no new features will be generated in the feature space and we also know the algorithm 

should not select any features outside this set. In our case crossover means randomly selecting 

another feature from the feature space. Mutation of an individual is done by the following 

scheme: 1) Choose a new type [1,5]t ∈ with probability pmt. 2) Mutate positions of feature 

corners by adding a random constant( , )rm rmx y , with , [ 7,7]rm rmx y ∈ − . 3) Use a repair operator 

on individuals that are no longer feasible after the mutation. After mutation, corners of the 

rectangle features could be in wrong order. Also could the feature’s lengths be negative or bigger 

than the maximum allowed length. Mutation in EABoost is in fact also a process to randomly 

select another feature from the feature set. 

 

The third important operator in EABoost is the fitness operator that implements the natural 

selection process of evolution. It measures how good an individual is at competing in its 
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environment. In our case, with a population of 250, each feature fi with i=1,…,250, that is 

generated will be evaluated against the test set which results in an error � i. The strongest feature 

that will be selected will then be the one that satisfy the fitness function min(� i). It is the same 

criterion AdaBoost was using to select a weak feature. In Figure 22 it is displayed as the 

evaluation of the classification error. We get EABoost when we replace step 3b, the exhaustive 

search of AdaBoost, with ES.  

 

In the implementation of EABoost a generation consists of 150 Haar-like features. This size is the 

result of a trial and error process in which a trade-off is made between speed and error rate. The 

size of the feature set would affect the training time and the quality of the found solution. If the 

population is too small, the training time will be shorter, but there is a probability that no good 

features will be generated and as a result a bad feature will be selected. On the other hand if the 

population is too large, it will take longer to train and the purpose of using ES in the first place 

was to reduce the training time. A generation should be sufficiently large to create sufficient 

diversity covering the possible solution space. Other parameters of EABoost are the probabilities 

for crossover and mutation. In literature crossover usually happens with a probability of 75-95% 

and mutation 0.5-5%. In our situation, crossover and mutation are two processes for randomly 

selecting another feature from the total set. The difference is that crossover really selects a feature 

at random. Mutation also selects at random, but the feature’s location will be near to the original 

feature which it is mutated from. Since we prefer the latter, in EABoost crossover takes place in 

20% of the time and mutation takes place in 80% of the time. ES ends when it converges.  

 

Note that ES as a simulation of a genetic process is a non-deterministic search. It is not sure 

whether a found solution is optimal or suboptimal. This could be seen as one of the disadvantages 

of ES. But on the other hand, ES can quickly scan a huge solution set. On top, bad solutions in the 

population set do not affect the end solution negatively as they are simply discarded. ES is also 

very useful for complex or loosely defined problems. Once the problem is translated successful 

into an ES problem it does not have to know any rules of the original problem. The evolution 

mechanism will do the work.  

 

4.6 The differential cascade 

This section describes an algorithm for constructing a cascade of classifiers which drastically 

reduces the computation time. The number of sub-windows to be classified by the detector is 

enormous and requires a lot of computation time. The main idea is that smaller and therefore 

more efficient, boosted classifiers can be built which reject many of the negative sub-windows 

while detecting almost all positive instances. Simpler classifiers are used to reject the majority of 

sub-windows before more complex classifiers are called upon to achieve low false positive rates. 
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The phases in the cascade are constructed by training classifiers using EABoost. In general the 

cascade has the form of a degenerate decision tree (See Figure 23). Input for the cascade is the 

collection of all sub-windows also called scanning windows. They are first passed through the 

first layer in which all sub-windows will be classified as faces or non faces. The negative results 

will be discarded. The remained positive sub-windows will trigger the evaluation of the next 

classifier. The same process is performed in every layer. The sub-windows that reach and pass the 

last layer are true faces.  

 

 
Figure 23: A cascaded classifier with N layers. 

 

The structure of the cascade reflects the fact that within any single image on overwhelming 

majority of sub-windows are negative. As such, the cascade attempts to reject as many negatives 

as possible at the earliest stage possible. Every layer consists of only a small number of features. 

In the early stages, with only a couple of the best features it is possible to determine the existence 

of a non-face (negative sub-window). Determining the presence of a face usually needs more 

features. Therefore, the cascade has an increasing number of features in each consecutive layer.  

While a positive instance will trigger the evaluation of every classifier in the cascade, this is an 

exceedingly rare event.  

 

During implementation the number of layers and the number of features per layer was driven 

through a trial and error process. In this process the number of features was increased until a 

significant reduction in the false positive rate could be achieved. More layers were added until the 

false positive rate on the validation set was nearly zero while still maintaining a high correct 

detection rate. Following is the specification of the cascaded classifier that we get after training. 
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Table 5: cascaded classifier specification. 

Cascade layer nr. Number of features True positive rate False positive rate 

1 2 0.95 0.422 
2 4 0.95 0.69 
3 15 0.932 0.244 
4 17 0.93 0.24 
5 19 0.93 0.188 
 

To conclude, this chapter described different algorithms that when combined together make face 

detection possible. To be more precise, the algorithms in this chapter are implemented as the 

WUXTRAP application for face detection. As stated in chapter 3, WUXTRAP’s design goal was 

to train our classifier and produce the proper WUX values that are needed for our FLEX module 

that reads images, find faces and extract FCPs. WUXTRAP is implemented using Matlab 6.5. 

Thus, all training of the RVMs is done using Matlab and FLEX, the running detection system, is 

implemented in Java. Remind that Java was chosen as stated in our implementation objectives of 

chapter 2. Since the training is independent of the functionalities in FED, it was not necessary to 

do the training in Java. Working with images, training the RVM, testing and evaluating the 

selected features are all computationally intensive tasks. We can state that our choice for Matlab 

is mainly based on its powerful computation engine and its high-level interactive environment in 

which a lot of very useful mathematical functions are already implemented and made available.  
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Face Detection – Experimental Results 
 

The experimental results related to face detection will be presented in this chapter. Section 5.1 

discusses the result of RVM trained on intensity values. Section 5.2 gives the results of RVM 

trained on binary values. Section 5.3 presents the parameter tuning of RVM for Haar-like 

features. The optimal kernel will be discussed and the results of the training using Haar-like 

features, combined in EABoost, are given in section 5.4.  

 

5.1 Relevance Vector Machine on intensity values 

The results from applying RVM on intensity values are already presented in Table 3. The results 

show the performance of the RVM trained and tested with the same data set. The overall 

detection rate is 67.96%. To see how RVM performs on images it has not been trained with, we 

have tested the same RVM on a subset of the CMU face database (see Table 6). The results are 

shown in Table 7. 

 
Table 6: Test set specification. 

Dataset parameters Values and description 

Database CMU 
Sample size 19x19 pixels 
Number of classes 2 
Class 0 Non-faces 
Class 1 Faces 
Number of samples (0/1) 5036/472 
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Table 7: RVM test results on intensity values.  
Kernel CMU dataset  

consisting of faces only 

CMU dataset  

consisting of non-faces only 

 Number of 
test samples 

Detection rate % Number of test 
samples 

Detection rate % 

Gauss: 
0.5, 1.0, 2.0,  
3.0, 4.0, 5.0 

 
0 

 
100 

Laplace: 
0.5, 1.0, 2.0, 
3.0, 4.0, 5.0 

 
 
472 

 
0 

 
 
5036 

 
100 

 

The results confirm what we concluded earlier. RVM can not be trained on pixel intensities. 

These are insufficient to allow unambiguous recognition of a pixel. In this case, the RVM trained 

on intensity values does not generalize at all to recognize any sample that is not present in the 

training set. This simply means that the RVM is not trainable in this way. For all kernel tested, 

the detection rate was zero, i.e. no single face in the test set is recognized as a face.  

 

Before we come to this conclusion, RVM is also trained on binary information. This means that 

input images are first converted into binary images by a threshold function. This function 

converts all intensity values higher than the mean intensity value to 1 and 0 otherwise. 

 

5.2 Relevance Vector Machine on binary values 

The training results of RVM trained on binary information is shown in Table 8 and Table 9. 

Training is done on the same subset from MIT CBCL (see Table 2). The result of testing the 

trained RVM on this same set is shown in Table 8. For the chosen type of data representation it is 

clear that the detection rate is very good except for the Laplace kernel with a scale smaller than 

2.0 and the Gaussian kernel with a scale smaller than 3.0. These lower width kernels are not able 

to fit the data properly. As a result, they can not achieve a detection rate higher than 68%. 

Increasing the width gives a stable detection rate of around 94-95%.  

 

In Table 9, testing is done on the CMU subset with 472 faces and 5036 non faces (see Table 6). 

The results are very disappointing. The results show a detection rate of no more than 52 %. In this 

case overfitting occurred. The accuracy is very low and most samples are recognized as non-face. 

To conclude, the chosen approach to work with binary information of the image is apparently not 

working. 
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Table 8: RVM test results: training and testing are both performed on the same MIT CBCL subset. 
Kernel Nr of test 

samples 

Detection rate % Nr of false 

negatives 

Nr of false 

positives 

Gauss 0.5 – 3.0 67.76 806-815 0 
Gauss 5.0 93.92 103 49 
Gauss 7.0 95.08 58 49 
Laplace 0.5 – 1.0 67.80 805-815 0 
Laplace 2.0 83.88 339 64 
Laplace 3.0 92.76 117 64 
Laplace 4.0 94.72 67 65 
Laplace 5.0 95.04 60 64 
Laplace 6.0 96.00 57 43 
Laplace 7.0 

 
 
 
 
2500 

94.96 72 54 
 

 
Table 9: RVM test results: training is done on a MIT CBCL subset, testing is performed on a CMU 
subset. 
Kernel CMU database  

consisting of faces only 

CMU database  

consisting of non-faces only 

 Number of 
test samples 

Detection rate % Number of test 
samples 

Detection rate % 

Laplace 0.5 – 1.0 0 100 
Laplace 2.0 22.03 100 
Laplace 3.0 47.25 97.22 
Laplace 4.0 50.85 96.64 
Laplace 5.0 51.91 97.34 
Laplace 6.0 43.86 97.93 
Gauss 0.5 – 3.0 0 100 
Gauss 4.0 9.53 93.59 
Gauss 5.0 38.77 96.68 
Gauss 6.0 50.42 96.82 
Gauss 7.0 

 
 
 
 
 
472 

30.30 

 
 
 
 
 
5036 

97.86 
 

 

5.3 Parameter tuning for Relevance Vector Machine u sing 2-fold cross validation 

In EABoost and in the cascade building process, RVM needs to classify Haar-like features. In 

order to choose the best parameters for RVM, 2-fold cross validation is used. During this tuning 

process we used the MIT CBCL subset (see Table 2) to let EABoost select three features. We 

then compare the performance of RVM of these features using different kernels. Table 10 shows 

the EABoost parameters that are used during this training process. The choice for the population 

size, crossover rate and mutation rate was already discussed in section 4.5. We have chosen to use 

a Laplace 2.0 kernel as it is as much as a random choice. At this point we do not know which 

kernel will perform better. It is only important to choose the same kernel for all features. 
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Table 10: EABoost specification: the selection of three features that will be used for 2-fold cross 

validation. 

EABoost parameters Values and description 

Population size 250 
Crossover rate 0.20 
Mutation rate 0.80 
Classifier/ kernel RVM/ Laplace 2.0 
Number of features to choose 3 
 

Datasets are created of feature number 38978, 28893 and 45297, which are the features selected 

by EABoost. The datasets are filled with the feature values of the mentioned features. Feature 

38978 has the best performance in the first pool of 250 features. Feature 28893 and 45297 are the 

best features in the second respectively third pool of 250 features. In Figure 24 all three features 

are plotted in a 19x19 window. The parameters of feature 38978 are (7, 8, 13, 12, 3). Those of 

feature 28893 and 45297 are (11, 5, 19, 11, 4) and (10, 10, 18, 16, 1). 

 

 
Figure 24: feature 38978 (left), feature 28893 (centre) and feature 45297 (right). 
 

The results after using 2-cross validation are shown in Table 11. Tables with the complete cross 

validation results can be found in appendix A. A good classifier should have a low error rate with 

a small standard deviation. From these tables it is not easy to choose and conclude the best 

classifier. Therefore, Receiver Operating Characteristics (ROC) graphs are generated from these 

results, see Figure 25. ROC graph is a technique for visualizing, organizing and selecting 

classifiers based on their performance. In a ROC graph, the true positive rate is plotted on the y-

axis and the false negative rate is plotted on the x-axis. The true positive rate is defined as the 

number of true positive samples divided by the total number of positive samples in the dataset. In 

the same way, the false negative rate is defined as the number of false negatives divided by the 

total number of positive samples in the dataset. 
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Table 11: RVM 2-fold cross validation results trained on Haar-like features.  

Feature 38978 28893 45297 

Kernel Error rate 
% 

SD Error rate 
% 

SD Error rate 
% 

SD 

Gauss 0.5  27.75 2.33 41.95 10.68 46.50 4.10 
Gauss 1.0  29.10 2.83 39.60 7.64 44.80 6.93 
Gauss 2.0 26.30 0.85 35.45 7.71 38.60 1.84 
Gauss 4.0 26.60 6.08 31.70 7.35 35.50 3.68 
Gauss 5.0 25.35 5.30 32.40 2.83 36.55 3.61 
Laplace 0.5 35.20 14.42 26.70 0.99 42.70 9.62 
Laplace 1.0 25.35 1.77 35.55 9.26 35.60 1.41 
Laplace 2.0 29.25 9.83 32.00 7.50 41.60 7.78 
Laplace 3.0 28.45 4.31 34.85 8.98 38.60 5.94 
Laplace 4.0 24.85 1.77 26.10 2.97 42.55 1.77 
Laplace 5.0 26.20 2.12 25.90 1.84 37.45 7.57 
 

Informally, one point in ROC space is better than another if it is to the northwest of the first. It 

means that the true positive rate is higher and on the same time the false positive rate is lower, or 

even. In the first ROC graph the four classifiers (Gauss 4.0, Gauss 5.0, Laplace 1.0 and Laplace 

4.0) are on a straight line and they are all northwest to the other classifiers. There is no single one 

that excels. The best classifier between these four should be the one that meets the requirements 

most. If it is desired that the true positive rate is high, no matter the false positive rate, then the 

classifier positioned most north in the ROC space should be chosen. If on the other hand it is 

preferred to keep the false positive rate low, then the classifier positioned most south in the ROC 

space should be chosen.  

 

In the second graph it can be noticed that kernels Laplace 0.5, Laplace 4.0 and Laplace 5.0 

performs slightly better than the others. In the last graph, all kernels are in fact performing not 

well. Keeping the true positive rate above 50% and the false positive rate low, Gauss 3.0, Gauss 

4.0 and Laplace 1.0 would be the choice. From the three ROC graphs, three candidates can be 

chosen: Gauss 4.0, Laplace 1.0 and Laplace 4.0. To decide which of the candidates is the best we 

examine their performance in more details by adjusting their thresholds that is described in 

section 4.4. Lowering the threshold will give a better detection rate, but on the other hand it also 

increases the false positive rate. The threshold range is from 0.35 to 0.65. The result is plotted in a 

new ROC curve in Figure 26. It can be concluded that Laplace 4.0 has the best performance and 

therefore, Laplace 4.0 is used in EABoost and the cascade building process. 
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Figure 25: ROC graphs of three Haar-like features with different kernels. 
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Figure 26: ROC curves of three kernels, obtained by adjusting each classifier’s threshold. 
 

 

5.4 Evolutionary-AdaBoost training results 

Now that the RVM kernel is determined, the training procedure can start. To summarize, the 

training set is described in Table 4, the test set in Table 12 and the cascade test set in Table 13. 

Note that these subsets from the Viola Jones database are all distinct. Table 14 shows the 

parameters of the EABoost training.  

 

Table 12: EABoost feature test set. 

Dataset parameters Values and description 

Database Viola Jones 
Sample size 24x24 pixels 
Number of classes 2 
Class 0 Non-faces 
Class 1 Faces 
Number of samples (0/1) 500/500 
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Table 13: Cascade test set. 

Dataset parameters Values and description 

Database Viola Jones 
Sample size 24x24 pixels 
Number of classes 2 
Class 0 Non-faces 
Class 1 Faces 
Number of samples (0/1) 1500/1500 
 

Table 14: EABoost parameters. 

EABoost parameters Values and description 

Population size 150 
Crossover rate 0.20 
Mutation rate 0.80 
Classifier/ kernel RVM/ Laplace 4.0 
Feature false positive rate 0.3 
Feature true positive rate 0.75 
Target false positive rate < 0.05 
Target true positive rate > 0.95 
Number of features to choose Depends on target false positive rate 
 

 

The feature false positive rate and feature true positive rate are indications for EABoost whether 

or not a Haar feature should be selected for the cascade. In the training procedure, a selected 

feature will be trained on the training set and tested on the test set. So, each trained feature will 

produce a false positive rate and true positive rate. If the false positive rate is lower than 0.3 and 

true positive rate higher than 0.75, the feature will be selected for the cascade. Every time a 

qualified feature is added to a layer, the whole set of features in the layers will be evaluated on 

the cascade test set to see if the layer can achieve the target false positive rate and target true 

positive rate. If this is the case, the training procedure will be stopped and training for the next 

layer can begin. If it does not meet to the requirements of the maximal false positive rate and 

minimal true positive rate, EABoost searches for one extra feature and the above procedure is 

repeated. A qualified feature will only be added to the cascade if and only if it improves the 

cascades detection rate. The final result of the training procedure is already shown in Table 5 of 

the previous section. 
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Facial Characteristic Points Detection – 

Extraction 
 
In the previous chapter a robust face detector has been discussed. This detector provides the 

necessary faces in the given image for further processing. We assume that the faces detected are 

full-frontal faces. Conform to the face model facial characteristic points needs to be extracted. A 

closer examination of the face model reveals that some of the facial characteristic points are 

actually corner points of the facial features i.e. eye, mouth, nose, eye brow. So, the idea is to use a 

corner detection algorithm to detect these corners. We conduct this by first comparing the most 

important corner detectors. By means of the performance and speed, the best corner detector is 

chosen. 

 
Table 15 shows two corner detectors which satisfies the criterion of good performance, accuracy 

and speed. In the final implementation both corner detection algorithms are implemented which 

allow us to combine the corner results of both detectors. The results do not only include the 

corner points we are interested in but also lots of unimportant corners. The next logical step is 

thus finding the real FCP corners among the FCP corner candidates. To do this we will continue 

to use our classifier, the RVM, to decide whether the corner is what we need or else. As we 

already know, before we can use the RVM to classify corners it must be trained first. More of this 

will be discussed in detail in the next chapter after the discussion of the two corner detectors. In 

section 6.1, the different corner detectors will be compared. In section 6.2 and 6.3 the two corner 

detectors will be considered in detail. 

 

6.1 Corner detection algorithms comparison  

Algorithms for corner detection may be divided into direct corner detectors and colour 

distribution based corner detectors. The former is based on algorithms that work directly with the 
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brightness values of images. They often model an image as a surface considering the directional 

gradients or derivatives at each pixel point, if the value of its corner response function exceeds a 

defined threshold this pixel will be considered as a corner point. The detectors described by 

[Harr88], [Sojk03] both belong to the so called direct corner detectors. Each algorithm defines its 

own corner response function and so the performances are usually decided by the corner response 

function. 

 

The second type detectors do not model an image as a surface. Instead, they consider the 

statistical colour distribution in a circular neighbourhood centring at each pixel rather than 

compute the directional gradients or derivatives. SUSAN corner detector [Smi97], Compass 

corner detector [Ruz01] and a proposed detector [Son03] belong to this type. The SUSAN 

detector classifies each pixel into edge, corner and flat area. Compass detectors utilize a group of 

colours, instead of a single colour, to represent the statistic colour distribution in a circular 

neighbourhood. It can handle both uniform-coloured region and textured regions. The detector 

proposed in [Son03] emphasizes both spatial and statistical colour distributions; it is much faster 

than compass detectors and more accurate than SUSAN detectors. 

 

Table 15: Comparison of different corner detectors 

Publication 

year 

Index  Feature 

Detected  

Accuracy  Speed  Real-time 

Processing  

Grade  

1978 [Bea78]  Corner  Low  Very fast  Yes  3  

1982 [Kit82]  Corner  Low  Fast  Yes  3  

1988 [Harr88]  Corner  High  Middle  Yes  4 

1993 [Der93] Corner Very low Very low No 2 

1997 [Smi97]  Edge & 
Corner  

Low  Middle  Yes  3  

2001 [Ruz01]  Corner, 
Edge, & 
Junction  

Very high  Very slow No  3  

2003 [Son03]  Corner, 
Edge & 
Junction  

Very high  Middle  Yes  4.5  

2003 [Sojk03]  Corner  Very high  Middle  Yes  4.5  

 

Table 15 [Sojk03b] shows the comparison of different corner detectors based on namely the 

accuracy and detection speed. Colour distribution based corner detection algorithms are known to 

have very accurate detection rate, but a drawback is the relative slower detection speed due to the 

detection of corners, edges and junctions in one round. The processing speed of early direct 

corner detectors is very fast, but they often do not have very high detection rate. We have also 
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included another table (Table 16) which shows the comparison of direct corner detectors tested on 

an image with 291 reference corners in total. 

 

In the previous chapters it is stated that the face detection system detects faces from grey-level 

images. That is because the face detector is trained on a training set consisting of grey-level 

images. This gives the reason to adopt a direct corner detection algorithm instead of using a 

colour distribution based corner detection algorithm. From all direct corner detectors the Harris 

detector [Harr88] and the Sojka detector [Sojk03] are the better ones among them. In this part of 

the project it is only the intention to select a corner detector that is good enough; that means a 

detector that is able to detect all corners of the facial features (e.g. left-eye corners, right-eye 

corners etc.).  

 
Figure 27: (Left) Test image with 291 reference corners. 

(Right) Test image with 470 reference corners. The red dots are the corner points. 

 

Table 16: Comparison of direct corner detectors on a test image of 291 reference corners. 

Detector  

Name  

Total  

Corners 

Correct  

Det. 

False  

Det. 

Multiple  

Det. 

Total 

Error 

Localization  

Error  

Grade  

(out of 5) 

Beaudet 155  21  10  167  1.85  2.0  

Deriche 142  25  10  184  2.05  1.5  
Harris 187  10  6  120  0.98  4.0  
Kitchen  163  26  15  169  1.87  2.0  
SUSAN  152  29  1  169  1.63  2.5  
Sojka 

291*  

229  9  8  79  0.81  4.5  
* The total number of corners is the number of reference corners in the real image.  
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Table 17: Comparison of direct corner detectors on a test image of 470 reference corners. 

Detector  

Name  

Total  

Corners 

Correct  

Det.  

False  

Det. 

Multiple  

Det. 

Total 

Error 

Localization  

Error  

Grade  

(out of 5) 

Beaudet 363  54  24  185 1.62  2.0  

Deriche 308  22  5  189 1.49  1.5  

Harris 431  14  9 62 0.73  4.0  
Kitchen  356  48 31 193 1.75  2.0  

SUSAN  338  34 7 173 0.87  2.5  

Sojka 

470*  

466  1  1  6 0.57  4.5  
* The total number of corners is the number of reference corners in the real image.  

 

6.2 Harris and Stephens corner detection 

6.2.1 Theoretical background 

The corner detector that is known as the Harris corner detector should actually be called the 

Harris-Stephens corner detector. Since it is adopted as the Harris corner detection in general by 

most researchers, we will do that also. The main concern in [Harr88] is to use a computer vision 

system based upon motion analysis of a monocular image sequence. By extraction and tracking of 

image features 3D analogues can be constructed of the features. Conclusions are drawn that 

explicit 3D representation of curving edge may be unobtainable, the connectivity it provides may 

be sufficient for many purposes. Tracked edge connectivity, supplemented by 3D locations of 

corners and junctions can provide both a wire-frame structural representation and delimited image 

regions which can act as putative 3D surfaces. Consistency of image edge filtering is considered 

of prime importance for 3D interpretation of image sequences using feature tracking algorithms. 

The state-of-the-art edge filters are not designed to cope with junctions and corners, and are 

reluctant to provide any edge connectivity. The use of edges to describe some objects like the 

bush is very doubtful since a small change in edge strength or in the pixilation causes a large 

change in the edge topology. The solution to their problem is to detect both edges and corners. 

 

6.2.2 Corner model 

[Harr88] proposes a detector which is actually a combined corner and edge detector. Harris 

corner detector draws its origin in the corner detector proposed by Moravec. Moravec’s corner 

detector works by considering a local window in the image, and determining the average changes 

of image intensity that result from shifting the window by a small amount in various directions. 

Three cases are actually considered by this detection algorithm: 
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o If the windowed image patch is flat, which means it is approximately constant in 

intensity, then all shifts will result in only a small change 

o If the window straddles an edge, then a shift along the edge will result in a small change, 

but a shift perpendicular to the edge will result in large change 

o If the windowed patch is a corner or isolated point, then all shifts will result in a large 

change. A corner can thus be detected by finding when the minimum change produced by 

any of the shifts is large. 

Denoting the image intensities by I, the change E produced by a shift (x, y) is given by: 
2

,,
,

,, vuvyux
vu

vuyx IIwE −= ++� , where w specifies the image window: it is unity within a 

specified window and zero elsewhere. The shifts, (x, y), which are considered comprise [(1, 0), 

(1, 1), (0, 1), (-1, 1)]. The Moravec’s corner detector is to simply look for local maxima in min 

{E} above some threshold value. 

 

The Moravec’s corner detection algorithm suffers from a number of problems. Corrective 

measures are taken by [Harr88] and this lead to a new corner detection method: Harris corner 

detector. 

 

Ø  The response in Moravec’s algorithm is anisotropic because only a discrete set of shifts at 

every 45 degrees is considered. In Harris corner detector all possible small shifts can be 

covered. This is done by performing an analytic expansion about the shifts origin: 
2
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vuyx IIwE −= ++�  

 

222

,
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vu +−=�     (Eq. 6.1) 

 

where the first gradients are approximated by: 

 

xII ∂∂=−⊗= /)1 ,0 ,1(X      (Eq. 6.2) 

 

yII T ∂∂=−⊗= /)1 ,0 ,1(Y      (Eq. 6.3) 

 

Hence, for small shifts, E can be written as: 
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22 2),( ByCxyAxyxE ++=      (Eq. 6.4) 

 

where 

 

 

wXYC

wYB

wXA

⊗=
⊗=

⊗=

)(

2

2

       (Eq. 6.5) 

Ø  The response in Moravec’s algorithm is also noisy because the window is binary and 

rectangular. To cope with this problem Harris uses a smooth circular window, for 

example a Gaussian: 

 
222

, 2/)(exp σvuw vu +−=      (Eq. 6.6) 

 

Ø  The operator in Moravec’s detector responds too readily to edges because only the 

minimum of E is taken into account. [Harr88] reformulates the corner measure to make 

use of the variation of E with direction of shift. 

 

The change, E, for the small shift (x, y) can be concisely written as: 

 

 TyxMyxyxE ),(),(),( =      (Eq. 6.7) 

 

Where the 2x2 symmetric matrix M is 
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�
=

BC

CA
M         (Eq. 6.8) 

 

E is closely related to the local autocorrelation function, with M describing its shape at 

the origin (explicitly, the quadratic terms in the Taylor expansion). Let βα , be the 

eigenvalues of M. α and β  will be proportional to the principal curvatures of the local 

autocorrelation function, and form a rotationally invariant description of M. As before, 

there are three cases to be considered: 
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o If both curvatures are small, so the local autocorrelation function is flat, then the 

windowed image region is of approximately constant intensity. This means arbitrary 

shifts of the image patch cause little change in E; 

o If one curvature is high and the other low, so that the local autocorrelation is ridge 

shaped, then only shifts along the ridge/the edge cause little change in E: this 

indicates an edge; 

o If both curvatures are high, so that the local autocorrelation function is sharply 

peaked, then shifts in any direction will increase E: this indicates a corner 
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Figure 28: Auto-correlation principal curvature: bo ld lines give corner/flat classification, fine lines 

are equi-response contours. 
 

 

6.2.3 Corner decision 

Consider the graph of ( βα , ) space. An ideal edge will have α  large and β  zero (this will be a 

surface of translation), but in realityβ  will merely be small in comparison toα , due to noise, 

pixilation and intensity quantization. A corner will be indicated by bothα andβ  being large, and 

a flat image region by bothα andβ  being small. Since an increase of image contrast by a factor 

of p will increase andβ  proportionally by 2p , then if ( βα , ) is deemed to belong in an edge 

region, then so should ),( 22 pp βα , for positive values of p. Similar considerations apply to 

corners. Thus ( βα , ) space needs to be divided as shown by the heavy lines in Figure 28. 
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In summary, [Harr88] consider the minimum and maximum eigenvalues, α andβ , of the image 

gradient covariance matrix in developing their corner detector. The gradient covariance matrix is 

given by:  
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M        (Eq. 6.9) 

 

where Ix and Iy denote the image gradients in the x and y directions. This matrix characterizes the 

structure of the image gray level patterns. In fact, the geometric interpretation of the gray levels is 

encoded in the eigenvectors and eigenvalues of the matrix. A `corner' is said to occur when the 

two eigenvalues are large and similar in magnitude. 

 

Corner/edge response function 

Not only are corner and edge classification regions needed but also a measure of corner and edge 

quality or response. The size of the response will be used to select isolated corner pixels and to 

thin the edge pixels. 

 

First consider the measure of corner response, R, which is required to be a function of 

α andβ alone, on grounds of rotational invariance. Tr(M) and Det(M) will be used in the 

formulation to avoid the explicit eigenvalue decomposition of M, thus: 

 

 BAMTr +=+= βα)(        (Eq. 6.10) 

 

 2)( CABMDet −== αβ       (Eq. 6.11) 

 

A corner region pixel (i.e. one with positive response) is selected as a nominated corner pixel if 

its response is an 8-way local maximum. Similarly, edge region pixels are deemed to be edges if 

their responses are both negative and local minima in either the x or y directions, according to 

whether the magnitude of the first gradient in the x or y direction respectively is the larger. This 

results in thin edges. By applying low and high thresholds, edge hysteresis can be carried out, and 

this can enhance the continuity of edges. These classifications results in a 5-level image 

comprising: background, two corner classes and two edge classes. Further processing (similar to 

junction completion) will delete edge spurs and short isolated edges, and bridge short breaks in 

edges. This results in continuous thin edges that generally terminate in the corner regions. The 
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edge terminators are then linked to the corner pixels residing within the corner regions, to form a 

connected edge-vertex graph. 

 

To avoid an explicit eigenvalue-decomposition Harris and Stephens devise a measure using the 

determinant and trace of the gradient covariance matrix: 

 
2k(Tr(M)) - Det(M)  R =       (Eq. 6.12) 

 

where Det(M)and Tr(M) are defined above, the parameter k is traditionally set to 0.04. This 

produces a measure that is large when both α andβ  are large. However there is a problem of 

determining what is large. Noting that elements of the image gradient covariance matrix have 

units of intensity gradient squared we can see that the determinant, and hence the measure R will 

have units of intensity gradient to the fourth. This explains why the Harris operator is highly 

sensitive to image contrast variations which, in turn, makes the setting of thresholds exceedingly 

difficult. Some kind of sensitivity to image contrast is common to all corner operators that are 

based on the local autocorrelation of image intensity values and/or image gradient values. 

 

6.2.4 Parameter tuning 

The Harris corner detector is implemented to have parameters, which can be used to control the 

algorithm. In total there are three parameters: sigma, threshold and radius. These parameters are 

defined as follows: 

 

Sigma: this parameter is used to define the standard deviation of the Gaussian function. This 

Gaussian function is called the kernel and is actually used for smoothing. 

Threshold: this parameter is used to decide which pixels are corners. Only those above the 

threshold are considered as corners. 

Radius: the radius is used to define the neighbourhood that needs to be considered. Only in this 

neighbourhood a local maxima will be found. 

 
Table 18: Specification of the type of corners. 
Type Position Total number 

Inner eyebrow corner left + right 2 
Outer eyebrow corner left + right 2 
Inner eye corner left + right 2 
Outer eye corner left + right 2 
Mouth corner left + right 2 
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To find the optimal values for each parameter, the detection algorithm is tested on a set of 20 

images of frontal faces from the Carnegie Mellon face database. Before the test could be done, we 

have to define what kind of corners we want the algorithm to detect. In total 12 corners are 

identified (see Table 18). 

 

Table 19: Harris test parameters. 

No. Parameter name Values 

1 Sigma 05 – 4.0 
2 Thresh 800 – 1200 
3 Radius 0.5 – 4.0 
 
After identifying the correct corners a reference database for each image is made by manually 

selecting the concerning points. Testing is done by varying one parameter and setting the other 

parameters to a constant. The results of this test are shown in Table 19, Table 20 and Table 21. 

The last column actually shows the rate of how many of the twelve identified type of points are 

detected. 

 
Table 20: Test result by varying sigma. 

Sigma TDC TCC TNC CDR 

0.5 151 31,7 119,8 82,50 
1.0 279 66,9 212,1 90,00 
1.5 347 82,0 264,7 85,83 
2.0 425 101,8 323,4 84,17 
2.5 460 86,2 374,1 78,33 
3.0 519 97,6 421,1 74,17 
3.5 537 84,3 452,4 61,67 
4.0 583 93,8 489,4 57,50 
TDC: Total Number of Detected Corners 
TCC: Total Number of Correct Corners 
TNC: Total Number of Unimportant/False Corners 
CDR: Corner Detection Rate in percentage 
 
Table 21: Test result by varying threshold. 

Threshold TDC TCC TNC CDR 

800 279 68,0 212,1 90,00 
900 252 61,4 190,2 89,17 
1000 230 55,2 175,1 85,83 
1100 211 50,5 160,7 82,50 
1200 192 44,6 147,3 77,50 
TDC: Total Number of Detected Corners 
TCC: Total Number of Correct Corners 
TNC: Total Number of Unimportant/False Corners 
CDR: Corner Detection Rate in percentage 
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Table 22: Test result by varying radius. 

Radius TDC TCC TNC CDR 

0.5 279 68,0 212,1 90,00 
1.0 51 11,0 40,1 80,00 
1.5 46 10,6 35,5 80,00 
2.0 41 9,3 31,8 75,00 
2.5 36 8,5 27,1 70,00 
3.0 33 8,1 24,5 67,50 
3.5 30 7,6 22 63,33 
4.0 26 6,6 19,6 55,00 
TDC: Total Number of Detected Corners 
TCC: Total Number of Correct Corners 
TNC: Total Number of Unimportant/False Corners 
CDR: Corner Detection Rate in percentage 
 

The optimal values for the Harris detection algorithm applied on face images are chosen 

corresponding to the best detection rate. In the final system the values chosen for the Harris 

corner algorithm is 1.0 for the sigma, 1000 for the threshold and 0.5 for the radius. 

 

6.3 Sojka corner detection 

6.3.1 Theoretical background 

[Sojk03] The main idea for a new algorithm arose from the imperfection of existing corner 

detection algorithms. The majority of the existing direct corner detectors determine the values of 

a corner response function like the Harris corner detector. The value of a given point in an image 

is computed by examining the function of brightness and/or its derivatives in a certain 

neighbourhood of this point. Although the neighbourhood is not mentioned in all the detection 

algorithms, it is somehow determined when the derivatives are computed using the mask of a 

certain size or when the convolution is computed with the Gaussian function of certain � . The 

value of the corner response function usually reflects the angle and the contrast of the corner. 

Points at which the value of the corner response function is greater than a chosen threshold, and 

also the function exhibits its maxima, are detected as corners. There are two drawbacks in this 

approach: 

 

o Consider the situation depicted in Figure 29. In the areas, A, B and C, the magnitude of 

the gradient of brightness is non-zero. To determine the angle of the corner at point Q, 

only a part of the information contained in the neighbourhood )(Ω Q  is relevant. Area A 

is the most important part, where area B is less substantial and area C is even almost 

irrelevant. Existing corner detectors do not take into account such situations and 
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unselectively examine the whole neighbourhood of Q. This may lead to incorrect 

decision of whether or not Q is a corner. This drawback cannot be avoided by using small 

neighbourhoods. The neighbourhood has to be big enough to make proper decision 

whether a candidate is a corner or not. In a small neighbourhood, noise affects the 

precision and the reliability of the computations. 

o A considerable drawback is caused by thresholding the values of the corner response 

function. Suppose we can measure the angle �  (see Figure 29). In digital images, we can 

do this with a limited precision. It is clear that if the difference απ −  is less than the 

precision that can be achieved under the conditions of the measurement, the point should 

not be detected as a corner. Known corner algorithms do not check the angle value and 

use only the corner response function for thresholding. This function combines the angle 

and the contrast of the corner; it may happen that a small value of the difference is 

compensated by a high value of contrast, which leads to incorrect detections of corners 

on contrast edges. This problem cannot be avoided by increasing the threshold, which in 

turn will lead to missing the corners with a lower contrast. 

 

 
Figure 29: Neighbourhood of point Q on verifying the existence of corner at point Q. In the colored 

area A, B and C, the magnitude of the brightness gradient exhibits non-zero values. Only area A 

however is relevant for determining the angle of corner (denoted by � ) at Q. 

 

Taking into account the drawbacks mentioned above, a new algorithm we call the Sojka corner 

detection algorithm is proposed for direct corner detection. This algorithm also determines the 
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corner response function that combines the angle and the contrast of the corner similar to existing 

algorithms. The function is designed in such a way that it exhibits its local maxima at corner 

points. The main new features of the algorithm are the following: 

 

o Information contained in the neighbourhood )(Ω Q  is exploited selectively. It determines 

which areas are relevant for determining whether or not Q is a corner. It is done by 

introducing the probability )(XSGΡ of the event that a point )(QX Ω∈ belongs to the 

approximation of the straight segment containing Q of the isoline of brightness. In Figure 

29, for example, the values of )(XSGΡ  are high at the points in area A; at all other points 

the values of )(XSGΡ  are low. The values of )(XSGΡ can be computed from the values 

of brightness and its gradient by making use of the Bayesian estimations. 

o Explicit computations of the corner angle are included in this Sojka corner detection 

algorithm. The expected precision of the angle measurement is estimated. A point Q can 

only be accepted as a corner if the difference is significantly greater than the estimated 

precision of the angle measurement. 

o Computation of a quantity expressing the obviousness of the corner is done. This quantity 

value, in essence, characterizes the size of the area that is relevant for deciding whether 

or not Q is a corner and the magnitude of the gradient of brightness in this area. A point 

can only be accepted as a corner if its ‘appearance’ is greater than a predefined threshold. 

 

6.3.2 Corner model 

A function )(ξψ is defined to describe the values of brightness in the direction across the edges 

and its derivative is defined positive with a single maximal extremum at 0=ξ , which is regarded 

as an edge point. The edge is usually oriented by the rule that the higher brightness lies to the left. 

The corner is an intersection of two non-collinear straight edges. In the corner model of Sojka, the 

gradient of brightness along the edge that comes into the corner and the edge that comes out from 

the corner are defined as angle 1ϕ  and 2ϕ respectively, where )2,0, 21 πϕϕ ∈ . Let the gradient 

vectors of the edges’ gradient be represented by( ) 2,1  ,sin,cos == iiii ϕϕn . The axis of a 

corner is a line through a corner point, which halves the angle between both edges, therefore also 

the angle between 1ϕ  and 2ϕ . The corner axis is oriented in such a way that it runs in the 

direction of increasing brightness. This means that the angle between the corner axis and iϕ is not 

greater than 2/π . The directions of the gradient are different at the points lying to the left and to 
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the right of the corner axis. Consider the image containing a single corner point C. The brightness 

function is described by the following: 
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          (Eq. 6.13) 

 

The term (X-C) expresses the distance of X from the edge. The corner is either convex or 

concave; concave if 0  x 21 >nn  and convex if 0  x 21 <nn . 

 

6.3.3 Corner decision 

Discussions are simply considered for two cases: continuous and discrete. In the case of a 

continuous and error-free representation of the image, X belongs to a straight isoline segment 

containing Q if the following conditions are satisfied: 

 

o The brightness at X is equal to the brightness at Q, i.e. 0)( =∆ Xb . 

o The line Xp  passes through Q, i.e. 0)( =Xh . 

o For the angle difference )(Xϕ∆ , the inequality 2)(0 πϕ ≤∆≤ X holds. 

o The conditions above are satisfied not only at X, but also at all other points of the line 

segmentQX . 

 

In the case of a discrete representation of the image, first a probability, )(XSGΡ , is introduced to 

denote the event that X belongs to the approximation of a straight line segment containing Q. We 

define: 

 

 { }))(|())(|())(|(min)( YAngQYhDirQYbBrQX
QXY

SG ϕ∆ΡΡ∆Ρ=Ρ
∈

  

(Eq. 6.14) 

 

Explanation of the probabilities introduced in Eq. 6.31 can be found in the table (see Table 23) 

below. 
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Table 23: Explanations and relations among the expressions in Eq. 6.14. 

Probabilities Description Dependency 

))(|( YbBrQ ∆Ρ   

Denotes the probability of the 

event that Y is a point of the 

approximation of the isoline 

with brightness )(Qb thus Y is 

point ofQX . 

 

Independent event. Since 

the neighbourhood area 

may contain one or more 

corners, the isoline 

segment with brightness 

)(Qb need not generally 

aim at Q. 

))(|( YhDirQΡ   

Denotes the probability of the 

event that Y is a point of the 

approximation of the isoline 

segment (not necessarily with 

brightness )(Qb ) that aims at 

point Q. 

 

Independent event. An 

isoline segment aiming at 

Q may generally have an 

arbitrary brightness. 

))(|( YAngQ ϕ∆Ρ
 

 

 

 

 

 

 

 

 

 

 

 

QXY ∈  

 

Denotes the probability of the 

event that Y belongs to the area 

of possible corner at Q. 

 

Independent event. Points 

may exist that do not 

belong to the corner area 

despite the fact that the 

conditions, that the 

brightness difference and 

deviation are zero, are both 

satisfied (see Figure 30). 

 

Table 23 shows that the three probabilities introduced in Eq. 6.14 are of independent events. The 

last probability is introduced due to the fact that points that satisfy both the conditions 

0)(,0)( ==∆ YhYb  do not always belong to the corner area (see Figure 30). This fact is 

detected by the condition 2)(0 πϕ ≤∆≤ Y , which is not satisfied for Y. 
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Figure 30: Although the conditions 0)(,0)( ==∆ YhYb are both satisfied at Y, Y does not belong 

to the area of the corner at Q. This is detected by the fact that the condition 2)(0 πϕ ≤∆≤ Y is not 

satisfied for Y. Small circles show the position of pixel points. 

 

 

Suppose that X is a point lying on a straight isoline segment containing Q, which means that all 

the points of the line segment QX also lie on the isoline segment. Figure 31 illustrates the fact the 

conditions do not suffice to decide whether or not X belongs to an isoline segment containing Q. 

Thus, the probability of Q and X connected by a segment isoline cannot be greater than the 

probability than any arbitrary point of the isoline segment QX  connected to Q. The operator 

‘min’ in Eq. 6.14 corresponds to the idea that if the event (event that a point belongs to the 

approximation of the straight line segment containing Q) occurs at the point with lowest 

probability, it will also occur at the remaining points of the line segmentQX . 

 

 
Figure 31: Isoline segment XY1 aiming at Q. Although all three conditions are satisfied by X and Y2, 

Y1 shows the contrary (the angle of difference must be less than � /2). 
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Substituting the estimations from ))(|( YbBrQ ∆Ρ  and ))(|( YhDirQΡ (discussed in [Sojk03]) 

into Eq. 6.14, we find: 

 

 { }))(|())(()))(((min)( 1
0 YAngQYhpYbpAX dd

QXY
SG ϕβ ∆Ρ∆=Ρ −

∈
 (Eq. 6.15) 

 

Let us determine at Q the ‘angle of break’ of the isoline that passes through Q. We thereby need 

to examine the values of )(Xϕ in Ω . Since the relevance of the value of )(Xϕ at X not only 

depends on the probability )(XSGΡ , but also on the distance between the points Q and X, a 

positive weight function ))(( Xrwr , where )(Xr  stands for the distance, is introduced. The 

relevance is expressed by the following: 

 

 ))(()()( XrwXXw rSGΡ=       (Eq. 6.16) 

 

To determine the angle of break at Q, first compute the quantities ϕµ  and 2
ϕσ , which determines 

the direction of the corner axis and the weighted square value of the difference between the 

direction of the gradient brightness )( iXϕ  at Xi and ϕµ . We define: 
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Now use )(),( 2 QQ ϕϕ σµ to express explicitly the values that were computed for a particular 

corner candidate Q. We define the functions: 

 

 )()()( 2 QQgQCorr ϕσ=       (Eq. 6.19) 

 

  
Ω∈

−Ρ=
iX

iiiSG XXgXQAppar |)(|)()()( ϕµϕ     (Eq. 6.20) 
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6.3.6 The practical application of the algorithm 

 

In practical computation the Sojka corner algorithm is realized as follows. First, the magnitude 

and the direction of the gradient of brightness )(Xg and )(Xϕ , respectively are computed. The 

derivatives yXbxXb ∂∂∂∂ )(,)(  are replaced by the differences, which are computed using the 

following masks: 
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Only those pixel points at which the magnitude of the gradient of brightness is greater than a 

predefined threshold are considered as candidates for corners. The candidate corners are then 

examined by determining the values )( ),(  ),( ),( QApparQCorrQQ ϕϕ σµ . The candidate at 

which the value )(QCorr exhibits its local maximum and at which the values of 

)(  ),( QApparQϕσ are greater than chosen thresholds is determined as a corner. The probability 

density dp and the weight function rw are fixed estimated functions, where the probability 

density dp is a normal distributed function with zero-mean and rw is a Gaussian function. 

 

 
Figure 32: Sojka corner detection algorithm. 

1. Compute magnitude of the gradient of brightness g(X) and direction of the 
gradient of brightness � (X). 

 
2. For all pixel points Q:  

 if g(X) > predefined threshold then Q is a candidate corner. 
 
3. For all candidate corners Q: 

 - Compute the direction of the corner axis: � � (Q). 
 - Compute the weighted square value of the difference between � (Xi)  

at Xi and � �  as: � 2� . 
 - Using � � (Q) and � 2� , compute Corr(Q) and Appar(Q) according to  

equations Eq. 6.19 and Eq. 6.20. 
 
4. Candidate corner Q is determined as a corner if: 

 Corr(Q) exhibits its local maximum and  
Appar(Q) > predefined appearanceThreshold 

Sojka corner detection algorithm: 
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The neighbourhood )(QΩ is declared square-shaped with Q in the centre. The declared size of 

the neighbourhood is not so crucial since the effective size is always determined adaptively by the 

values of )(XSGΡ . In practice, ψ is an unknown function so the value of )())((1 YdYb =∆−β  

cannot be determined exactly, but can be estimated instead. With respect to the corner model, we 

yield: 
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For computing the probability ))(|( XAngQ ϕ∆Ρ the angle difference )(Xϕ∆ is needed. But the 

direction )(Qϕµ of the corner axis is not known, so it will be approximated by)(Qϕ . Taking into 

account that the probability ))(|( XAngQ ϕ∆Ρ is either one or zero and substitute Eq. (6.21) into 

Eq. (6.15), we easily obtain: 
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          (Eq. 6.22) 

 

The computation of )(XSGΡ may be carried out effectively by proceeding from Q, which is the 

centre, to the border of )(QΩ . Once the values of )(XSGΡ is known for all points in )(QΩ , the 

values of )( and ),(  ),( ),( QApparQCorrQQ ϕϕ σµ  can be easily computed using Eq. 6.17 – 

6.20. 

 

Finally, if we assume that the size of )(QΩ is MxM pixels, it can be noted that values of 

)(XSGΡ for all points in )(QΩ can be computed in )( 2Mθ time. The same time is also needed 

for the computation of other values, which means that a corner candidate is processed in 

)( 2Mθ time. To speed up the computations one can neglect the small values of)(XSGΡ . 
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6.3.7 Parameter tuning 

Before this method can be applied to faces for extracting FCPs, the parameters of the Sojka 

algorithm must be optimized for the best result. Following we will show the definition of the 

seven parameters of this algorithm described at [Sojk03b].  

 

HalfPsgMaskSize: the half of the mask size. 

The overall mask size, i.e., the size of the neighbourhood (2*halfPsgMaskSize + 1) is used to 

decide whether or not a candidate is a corner. Generally, the bigger masks give better results but 

the computation may be longer. The usual values of halfPsgMaskSize vary from 4 to 7, which 

give the overall size of the mask between 9x9 and 15x15 pixels. 

 

CorrAngleThresh: the threshold for the "angle of break" of the boundary at the corner point. 

Only a point at which the boundary is broken more than is required by this threshold may be 

accepted as a corner. Usual value is approximately 0.5, which is an angle size in radians. The 

value of this threshold is more or less stable for all images. Therefore, there is no need to 

experiment too much unless the detected corners must have a specific angle. As an indication, 

higher value of this threshold must be chosen if small masks are used since in small masks, the 

precision measuring the angles is generally lower than in greater masks.  

 

NoiseGradSizeThresh: the threshold for the size of the gradient of brightness.  

All the values of the gradient size less than this threshold are considered to be a noise and the 

corresponding points are therefore excluded from processing. Higher values of this threshold 

contribute to the reduction of influence of noise. At the same time, however, the less obvious 

corners may be missed. Remember that even in the synthetic images you have a noise that is 

caused by dividing the image into pixels. Typically, the value of this parameter varies between 

0.04 and 0.08 of the image range (the difference between the maximal and minimal value of 

brightness in the image). If the less contrast corners are also wanted, this value should have a 

lower value. If corners caused by noise are detected in case it is not desired, this value should be 

increased. Note that higher values lead to faster computation since the algorithm examines a 

lower number of candidates. 

 

AppearanceThreshold: the threshold for the "appearance" (obviousness) of corner. 

The appearance combines the contrast, size and the shape of the possible corner area. Only the 

points whose appearance is greater than this threshold can be accepted as corners. The value of 

this threshold must again be properly adjusted. The typical value of this threshold varies usually 



Part III FCP Detection  6.Extraction 

Page 81 of 170 

between 0.0 and 5.0. If the algorithm detects too many corners, increase the value of this 

threshold and vice versa. Remark that the value of this threshold may be negative.  

 

SigmaD: sigma for the normal distribution of the probability density Pd. 

From the theoretical point of view, it follows that the value should be less than 1.0. Values 

between 0.7 and 1.0 were confirmed as optimal also experimentally. The value of 0.95 proved to 

be suitable for most images. There is no need to experiment with this value too much unless 

absolutely best possible detection is wished. 

 

SigmaR: Sigma for the Gaussian expressing the function wr, i.e., the weights depending on the 

distances from the candidate that is just being processed.  

For the above mentioned sizes of the mask, use the values between 2.5 and 3.5, typically 3.0. 

Usually, the value is not critical.  

 

HalfExtMaskSize: this parameter is the size of the area in which it is checked whether the corner 

response function Corr() has its maximum at the point just being tested. 

Typical value of this parameter is 1, which means that the maximum is checked in the area of 3x3 

pixels with the point being tested in its center. Tests with this parameter should start with value 1. 

If problems with multiple detections of the same corner arise, this value should be increased to 2 

or 3. The value of this parameter must always be less than or equal to the value of the parameter 

HalfPsgMaskSize. 

 

Table 24: Sojka test parameters. 

Parameter name Range 

HalfPsgMaskSize 4 (fixed) 
CorrAngleThresh 0.5 (fixed) 
NoiseGradSizeThresh 3 ~ 23 (variable) 
AppearenceThreshold 0 ~ 5  (variable) 
SigmaD 5 (fixed) 
SigmaR 2 (fixed) 
HalfExtMaskSize 5 (fixed) 
 

 

Having defined the parameters, we can apply the algorithm on faces to see which parameters give 

the best results. From the definition, it can be seen that not all parameters have equal influence on 

the outcome of the detection. Most of them can be set to a default value. The two parameters with 

most influence are NoiseGradSizeThresh and AppearenceThreshold. In the test, we varied the 
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values these two. Following table shows the test parameters. The test set is the same as the one 

used for tuning Harris’ parameters. 

 
Table 25: Sojka test result. 

noiseGradSizeThr. appearanceThr. TDC TCC TNC CDR 

3 0 60.07 17 42.7 79.17 
3 5 16.47 5.5 9.3 33.33 
4 2 33.03 10.6 21.9 60.00 
6 5 8.27 2.3 5.2 15.83 
13 5 1.00 0.4 0.8 2.50 
14 2 9.50 2.8 5.1 19.17 
18 5 65.40 18.7 52.3 77.50 
19 3 73.10 20.8 59.2 81.67 
19 4 58.77 18 46.7 77.50 
20 0 98.37 24.2 83.8 88.33 
20 2 72.93 20.2 58.3 83.33 
20 4 47.33 14.8 36.5 69.17 
21 0 89.50 22.9 73.1 89.17 
21 1 76.33 21.2 61.3 85.83 
21 2 60.87 18.2 47.8 79.17 
21 3 46.93 15.2 35.3 74.17 

TDC: Total Number of Detected Corners 
TCC: Total Number of Correct Corners 
TNC: Total Number of Unimportant/False Corners 
CDR: Corner Detection Rate in percentage 

 

The test results are shown in Table 25. It can be concluded that the detection rate decreases when 

the noise threshold is kept fixed and the appearance threshold is increasing. From the test results, 

we can see that a higher noiseGradSizeThresh (without looking at the appearanceThreshold) leads 

to a lower number of total detected corners. A lower value of appearanceThreshold (without 

looking at noiseGradSizeThresh) leads to a higher number of total detected corners and total 

correct detected corners. So, appearanceThreshold should get the value 0. The results show that 

the highest correct detection rate is achieved where noiseGradSizeThresh = 21 and 

AppearanceThreshold = 0 (highlighted in blue). These values are used in the final implementation. 
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Facial Characteristic Points Detection –  

Classification 
 

As mentioned in the previous chapter, after detecting the corner points it is still needed to extract 

the positive corners from the total number of candidate corners. To achieve this we use the RVM 

classifier discussed in the previous chapters. This classification model needs to be trained with 

samples of the corners we want the classifier to extract. Analogous to the steps of training RVM 

for face detection, we will discuss the training for corners. In section 7.1 the preparatory steps 

preceding the training will be discussed. In section 7.2 the training process with the boosting 

algorithm will be considered and section 7.3 copes with the training and test results. 

 

7.1 Feature vector extraction 

The training samples needed to train the RVM corner classifier will be taken from images with 

full frontal faces. The resolution of these face images are actually determined by the face 

detector, which is the size of 64x64. It is discussed [Chan04] that this size is a trade-off between 

computational cost and minimum resolution in order to guarantee that information about eyes, 

nose and mouth is not lost in too small image versions. That means with this size it is still 

possible to see enough details around the facial feature corners, which is strongly necessary for 

extracting feature vectors to train RVM. 

 

Before we can create the database of corners, we need to know which size of the region around 

the corners needs to be obtained. The solution to this is based on experimental results and testing. 

Thus, we rely on the results of our application. If the region around the corner is too small, we 

cannot extract proper features from it. This is because there is a lot of fuzziness around the facial 

feature corner points. A small window size does not contain enough detail to differentiate well 
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from other non-corner regions. We do not want the size to be too big because that would be 

computationally unattractive. It is known that the size of 13x13 image pixels has been 

successfully applied by other applications. Thus, we will use this size for the samples to be 

extracted from the face database. We manually extracted points for the sample database. For each 

corner point, from which there are 12, we made a database for training and another one for 

testing. The databases we extracted the corner points from are the BioID dataset and the Carnegie 

Melon dataset. More details about the training and testing databases used for RVM can be found 

in Table 26. 

 

Table 26: Dataset description of different corners. 

Database description:  

Database source:                                        BioID/Carnegie Melon 
Database sample size:                                64x64 pixels 
Extracted sample size:                               13x13 pixels 
Training:                                                    2-class (0/1) 

Nr. of samples (0/1) Type 
Training set 
 

Testing set 

Left eye inner corner 500/500 500/500 
Right eye inner corner 500/500 500/500 
Left eye outer corner 500/500 500/500 
Right eye outer corner 500/500 500/500 
Nose left corner 250/250 259/250 
Nose right corner 250/250 326/350 
Mouth left corner 500/500 500/495 
Mouth right corner 500/500 500/495 
 

Having the databases with corner samples, we cannot train the RVM classifier with the intensity 

values of these samples. As we have seen before it does not work. We need a method that extracts 

essential features to provide for the training of the RVM. Even though the DCT feature extraction 

did not work for face detection, we apply it to the samples of the corners. DCT is short for the 

Discrete Cosine Transform, which is a technique used for compressing images. The DCT 

coefficient can be seen as feature vectors representing the whole image, which was a perfect 

property to consider in our application. It works better than in the case of face detection. 

However, the results were not good enough and thus unsatisfactory. We found that the DCT 

feature extraction method is too sensitive to illumination effects in the images. Disappointingly, it 

has to be concluded that DCT cannot be applied for this purpose. 

 

At this point, we still need a method to extract the significant features from the images. We 

wonder if it is possible to employ the feature extraction method as used for face detection. This 
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method extracts simple rectangle features and with the boosting algorithm weak classifiers are 

combined to form a strong classifier. The problem of needing a method to extract the significant 

features from the training/testing database will be solved by this approach. So, we decided to 

utilize this method for our facial corner detection. 

7.2 Training the Relevance Vector Machine with Evol utionary-AdaBoost 

The steps taken for utilizing the boosting method with Haar-like features is analogous to that 

explained in Chapter 5.  A general scheme for training the RVM for corner classification is 

shown in Figure 33. 

 

The boosting algorithm selects a Haar-feature and this feature will be calculated for all samples in 

the training database. Note that the complete set of possible features (14140 features) is different 

and smaller than in the case of 24x24 sample dimension. A weak RVM classifier will be trained 

for this single feature and verified according the boosting principle. If this feature may not satisfy 

the given conditions another feature will be selected and trained. In case it does satisfy the given 

specification like having a positive detection rate greater than the given value, the feature will be 

added to the final list of weak classifiers of which the corresponding parameter values will be 

saved. These parameter values are the WUX values of the RVM classifier 

 

Every time a candidate feature is found, the obtained set of final weak classifiers will be 

evaluated on a test set that is distinct to the training set. If the overall true positive rate and overall 

false positive rate meet the requirements the training ends. Otherwise, the algorithm will verify 

whether the added feature contributes to the existing set. This is done by assessing the overall 

false positive rate. This should be lower than the previous run of the selected final weak 

classifiers. If this is not the case then the feature will be discarded. The training algorithm will 

continue with searching for another weak feature to add to the final set of weak classifiers to form 

a strong classifier. The training is said to converge if the final strong classifier satisfies the given 

overall true detection rate and overall false detection rate. 
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Figure 33: Scheme representing the training of weak classifiers with the WUXTRAP for FCP. 

extraction. 
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The chosen parameters for boosting the weak features are depicted in Table 27. The chosen RVM 

model is exactly the same as the one used for face detection with the same kernel. 

 

Table 27: EABoost training parameters for all type of corners. 

EABoost parameters Values and description 

Population size 250 
Crossover/Mutation rate 0.20/0.80 
Classifier/ kernel RVM/ Laplace 4.0 
Feature false positive rate 0.3 
Feature true positive rate 0.75 
Target false positive rate < 0.05 
Target true positive rate > 0.90 
Number of features needed variable 
 

7.3 Training and test results 

Now it is time to look at some results acquired after the training algorithm has converged. In the 

implementation of the boosting algorithm it is already known that an Evolutionary Search 

algorithm is applied to speed up the selection process of the training algorithm. The training 

application is implemented such that it only stops when the required rate is gained. The single 

weak features are selected from a training set, which they have to satisfy the given rate for the 

training set. Then the evaluation is done on a testing set to assure that the same rate can be 

achieved from unknown samples. The evaluation results on the testing set are depicted in the 

following (Table 28). 

 

Table 28: The evaluation results from the EABoost training. 

Type Acronym TPR FPR 

Left eye inner corner LEIC 0.922 0.02 
Right eye inner corner REIC 0.89 0.106 
Left eye outer corner LEOC 0.916 0.064 
Right eye outer corner REOC 0.892 0.034 
Left nostril corner NLC 0.935 0.06 
Right nostril corner NRC 0.893 0.049 
Mouth left corner MLC 0.955 0.049 
Mouth right corner MRC 0.916 0.049 
TPR = True Positive Rate 

FPR = False Positive Rate 

 

Table 28 lists the training results after boosting the RVM classifier using weak classifiers. This 

should not be confused with the results of chapter 6. In chapter 6 only the performance of the 
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corner detectors is evaluated. The corner detectors are implemented to select candidate corners, 

which also includes the corners listed in the table above. The RVMs are trained to subtract the 

true corners from the false corners (corners that are not listed in the table above.). In other words 

RVM has to classify the candidate corners.  

 

At this point we have extracted a part of the total number of points that needs to be extracted for 

the face model (see Chapter 3). The rest of the points cannot be extracted using this approach 

which detects candidate corners with the Harris and Sojka corner detector and then classify them 

with RVMs. The problem of the remaining landmarks (corner points) is that they cannot really be 

considered as a corner point. In most cases they cannot be detected by the corner detectors. 

Applying the technique of corner detectors with RVM would certainly fail to work.  

 

Another problem would also be training the RVM. Features take on extreme shapes at these 

remaining non-stable points and are way fuzzier than the defined points in the table. This would 

make the extraction of a good database for training the RVM very difficult. To extract the 

remaining the points we have employed another technique called the integral projection method. 

This technique projects the image into the vertical and horizontal axes, from which we are able to 

obtain the boundaries (in this case the facial features’ boundaries, which happens to contain the 

points we are interested in). The boundaries of the features have relatively high contrast 

compared to its near environment. This property can be perfectly explored for extracting the 

remaining points. Further details can be found in the next chapter. 
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Hybrid Projection for FCP Detection 
 

This chapter describes a method for extracting other remaining FCPs, namely the projection 

method. First, section 8.1 gives a theoretical introduction to this method. In section 8.2 to 8.4 

different types of the projection method is discussed. In the final solution the hybrid projection 

method is chosen to extract the remaining characteristic points. The method requires the 

corresponding feature as input because a larger region might influence the final detection results 

negatively. That is why section 8.5 discusses the algorithm and the method for extracting the 

facial features like eyes, etc. The results and findings are also contained in this section. 

 

8.1 Theoretical foundation 

Many applications exist which use the technique of projection functions to detect the boundary of 

different image regions. In our case we applied this technique in extend to the other approach to 

extract the FCPs. This is needed because as the test results of the previous chapter showed, not all 

FCPs could be extracted with the corner detection algorithms. Thus, we will use hybrid projection 

with the purpose of finding the missing FCPs. It can also be seen as an extra verification for the 

corner detection algorithm since it can also find FCPs that we have already extracted as described 

in the last chapter. In a face, it is observed that some of the landmarks (including corner points) 

have relatively high contrast and that is what makes the method suitable for FCP extraction. 

Using projection functions the image is actually presented by two 1D orthogonal projection 

functions. The dimension reduction from 2D to 1D reduces the computational load, which is very 

interesting property. Consider Figure 34, which sketches the model; in this case for the eye. 
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Figure 34: Model of an eye image. The bold lines on the side of the eye represent the integral 

projection of the image. 

 

Suppose that PF is a projection function and �  is a small constant. If the value of PF rapidly 

changes from 0v  to )( 0 ξ+v , then 0v  may lie at the boundary between two homogeneous 

regions. This property of PF can be well exploited for FCP detection. There exist a few projection 

functions and in the following sections we will discuss them more in detail. Among all the image 

projection functions used, the integral projection function (IPF) is the most popular one. Another 

one is the variance projection function (VPF) and we will also define a more generalized 

projection function, which combines IPF and VPF. For the optimal parameters of the generalized 

projection function we call it the hybrid projection function (HPF). 

 

 
Figure 35: Use projection function to locate the boundaries of the facial feature. 

 

8.2 Integral projection function 

This type of projection function is the most popular one. However, in some cases like the one in 

Figure 36 it cannot well reflect the variation in the image. In this case it fails to capture the 

vertical variation of the image. 
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Figure 36: Case where IPF cannot retrieve the vertical variation. 

 

[Feng98] Suppose I(x, y) is the intensity of an image pixel at location (x, y). We denote 

)(xIPFv to be the vertical projection function projected on the vertical axis, and )(xIPFh to be 

the horizontal projection function projected on the horizontal axis. Both functions of the image 

pixel I(x, y) in intervals ],[ 21 yy  and ],[ 21 xx  can be defined respectively as: 

 

  = 2

1

),()(
y

yv dyyxIxIPF       (Eq. 7.1) 

 

  = 2

1

),()(
x

xh dxyxIyIPF       (Eq. 7.2) 

 

More often, the mean vertical and horizontal projections are used, which are defined as: 
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The vertical and horizontal boundaries in the image can be identified according to the following: 
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PF can be any projection function for instance IPF, MIPF, VIPF, HPF. The parameter T in the 

equations is the given threshold. A set of vB  vertically divides the image into different regions 

and a set of hB divides the image into different horizontal regions. 

 

8.3 Variance projection function 

To solve the problem mentioned in the previous section the variance projection function is 

introduced. The variance projection function (VPF) [Feng99] is more sensitive to the variation in 

the image than IPF does. VPF is also proved to be orientation and scale invariant. Another 

attractive property of VPF is that it is insensitive to random noise in the image. So, suppose that 

the facial feature, for instance the eye, is bounded by ],[ 21 xx and ],[ 21 yy . Let us denote 

)(xVPFv and )(xVPFh to be the average of vertical projection and horizontal integral projection 

of image pixel I(x, y) in intervals ],[ 21 xx and ],[ 21 yy . The projection functions in the vertical 

and horizontal direction are defined as: 
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Although VPF is more sensitive to the variation in the image than IPF, it still does not mean that 

VPF always works well. As a matter of fact, if we consider Figure 37; it is obvious that the 

vertical projection fails to expose the vertical variation of the image. The variation is presented as 

a flat line after the projection, which totally masks the true variation in the image. 

 

 
Figure 37: Case where VPF fails to capture the vertical variation. 
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Similarly to IPF the vertical and horizontal boundaries can be computed along with Eq. 7.5 and 

7.6. An illustration of VPF using synthetic eye image is shown below. Also random noise is 

added to the image to show the influence of random noise in the image to VPF. 

 

(y)VPFh

(y)VPFv

(y)VPFh

(y)VPFv

 
Figure 38: (Left) Synthetic eye image and its vertical and horizontal projection. (Right) Eye image is 

added with random noise and its vertical and horizontal projection. 

 

8.4 Hybrid projection function 

In the previous sections it is shown that both IPF and VPF have weaknesses. But it is also easy to 

find that they are complementary. The reason is that IPF considers the mean of the intensity 

values while VPF considers the variance of the intensity. This is shown in Figure 39, where VPF 

works better in one case and IPF on the other.  

 

 
Figure 39: IPF and VPF complement each other in retrieving the vertical variation in some cases. 

 

Now if we combine the results of IPF and VPF we yield a new projection function, which will be 

the generalized projection function (GPF) [Zhou02]. Denote ),( yxI  to be the intensity pixel 

value at location (x, y). Also denote )(xGFPv and )(xGFPh  to be the vertical and horizontal 
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generalized projection function of ),( yxI in the intervals ],[ 21 yy  and ],[ 21 xx  respectively. We 

define: 
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  (Eq. 7.9) 

 

where βα ,  is used to control the contribution of IPF and VPF. To understand this relation we 

have Figure 40 and Figure 41 to demonstrate this. The first graphs (Figure 40) actually show the 

GPF in relation to IPF and VPF of an eye feature. This is also done for the mouth in Figure 41. In 

both cases α is set to the values [0, 0.25, 0.5, and 1]; 10 ≤≤ β . 

 
Figure 40: Eye image: (Top) Vertical projection (Bottom) Horizontal projection. For beta=0 the 

variational information cannot be captured. Clear variational differences can be noticed for 

alpha>0.3. 
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It is clear that IPF alone )0,1( == βα is not enough for representing the variational information 

contained in the image. VPF, on the other hand, works pretty good even without 

IPF )1,0( == βα . But IPF does contribute to the overall GPF in that it still contains the mean of 

the intensity values which can be complementary to VPF.  

 

 
Figure 41: Mouth image: (Top) Vertical projection (Bottom) Horizontal projection. For beta=0 the 

variational information cannot be captured. Clear variational differences can be noticed for 

alpha>0.3. 

 

To actually see the relative contribution of IPF and VPF in the general function we define GFP as 

follows: 
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By this definition IPF and VPF are actually special cases of GPF, where α  is 0 or 1, 

respectively. The following figures (Figure 42, Figure 43, Figure 44 and Figure 45) show this 

relative relation of IPF and VPF. The results are obtained from an eye and mouth image as the 

variational information of both features differs. Same things as before can be noticed, as in this 

case α  is replaced by )1( α− and αβ = . 

 

 

Figure 42: Vertical projection of an eye image using +−  
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Figure 43: Horizontal projection of an eye image using +−  

 

 

Figure 44: Vertical projection of a mouth image using +−  
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Figure 45: Horizontal projection of a mouth image using +−  

 

The optimal value of α for mouth and eyes are derived from some test results on mouth and eye 

images (see Table 29 and Table 30).  The optimal values are highlighted in the table. The values 

are selected based on their accuracy and stability. The threshold set for the images at these values 

are derived from the image histograms and is about the same for all test images unlike for other 

values ofα . In our final implementation we choose 6.0=α  as the optimal value for the hybrid 

projection. 

 

Table 29: Test results at finding the optimal value for the hybrid projection for mouth. 
MOUTH 

Alpha (α ) LB RB UB BB ODR 
0.2 100 % 100 % 75 % 50 % 50-75 % 
0.3 100 % 100 % 75 % 50 % 50-75 % 
0.4 100 % 100 % 75 % 75 % 50-75 % 
0.5 100 % 100 % 90 % 90 % 75-100 % 
0.6 100 % 100 % 95 % 95 % 75-100 % 
0.7 100 % 100 % 95 % 95 % 75-100 % 
0.8 100 % 100 % 90 % 90 % 75-100 % 
0.9 100 % 100 % 90 % 75 % 50-100 % 
1.0 100 % 100 % 90 % 75 % 50-100 % 
      
LB  = Left Boundary 
RB = Right Boundary 
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UB = Upper Boundary 
BB = Bottom Boundary 
ODR = Overall Detection Rate 
 
Table 30: Test results at finding the optimal value for the hybrid projection for eyes. 

EYES 
Alpha (α ) LB RB UB BB ODR 
0.3 100 % 90 % 75 % 50 % 50-75 % 
0.4 100 % 90 % 75 % 75 % 50-75 % 
0.5 100 % 90 % 90 % 90 % 75-100 % 
0.6 100 % 90 % 100 % 100 % 90-100 % 
0.7 100 % 90 % 100 % 100 % 90-100 % 
0.8 90 % 90 % 100 % 100 % 90-100 % 
0.9 90 % 90 % 100 % 100 % 90-100 % 
1.0 90 % 90 % 100 % 100 % 90-100 % 
      
LB  = Left Boundary 
RB = Right Boundary 
UB = Upper Boundary 
BB = Bottom Boundary 
ODR = Overall Detection Rate 
 

8.5 Facial feature extraction 

Since our purpose of using hybrid projection function is to extract FCPs which are located on the 

facial features, our system need to know where these facial features are positioned. Therefore, to 

apply hybrid projection successfully, proper images of the facial features need to be provided. In 

order to extract the exact position of a facial feature, we need to apply our WUXTRAP algorithm 

with proper images of the eyes, eye brows, nose and mouth to train our classifier to recognize 

them. Once detected, they can be passed to the hybrid projection module for further processing. 

Following are the specification and result for the training procedure of the left eye, right eye and 

mouth. 
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Figure 46: General scheme of WUXTRAP for feature training. 

 

Left eye and right eye 

The two databases, containing respectively images of the left eye and right eye are created from 

the BioID face database. In total, we used a set of 1000 positive samples of the left eye and 1000 

negative samples of the left eye. This set is split into two set of equal sizes: one for training and 

one for testing. The same yields for the right eye dataset. For more details, see Table 31 and 

Table 32. The training parameters for EABoost are the same as for faces (see Table 14). Note that 

the set of Haar-like features to be searched and trained is not the same as that of faces. Since an 

Left eye 

Mouth 

Right eye 
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eye image is 15x25 pixels, we need to apply the Haar-like features on every possible scale and in 

every possible position in every eye sample. That results in a set of 69031 Haar-like features to be 

searched. The result that we get after training is shown in Table 33. 

 
 
Table 31: Dataset specification for left eye. 

Dataset parameters Values and description 

Database source BioID 
Sample size (h x w) 15x25 pixels 
Number of classes 2 
Class 0 Non-left eye 
Class 1 Left eye  
Number of samples (0/1) 500/500 
 

Table 32: Dataset specification for the right eye. 

Dataset parameters Values and description 

Database source BioID 
Sample size (h x w) 15x25 pixels 
Number of classes 2 
Class 0 Non-right eye 
Class 1 Right eye 
Number of samples (0/1) 500/500 
 

Table 33: Evaluation test result for detecting the whole eye. 

Type TPR FPR 

Left eye 0.906 0.05 
Right eye 0.912 0.049 
TPR = True Positive Rate 
FPR = False Positive Rate 
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Mouth 

The mouth database we used to train RVM with is also extracted from the BioID face database. 

We used a subset of 500 positive and 500 negative samples for training and a distinct subset of 

the same size for testing. The set is specified in the following table. The training parameters for 

EABoost are also the same as for faces. The Haar-like features’ set in a 20x40 pixels image is 

312260. The training results are shown in Table 34. 

 
Table 34: Dataset specification for the mouth. 

Dataset parameters Values and description 

Database source BioID 
Sample size 20x40 pixels 
Number of classes 2 
Class 0 Non-mouth 
Class 1 Mouth 
Number of samples (0/1) 500/500 
 

Table 35: Evaluation test result for detecting the mouth. 
Type TPR FPR 

Mouth 0.852 0.024 
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Analysis and System Design 
 

In this chapter, we will describe the implemented system FLEX that is able to perform the task of 

face detection and FCPs extraction. All models and algorithms that are used in FLEX are already 

described and discussed in the previous chapters. FLEX makes use of the WUX values retrieved 

with WUXTRAP to carry out its tasks. The result of the requirement analysis definition and the 

functional design will be given in section 9.1. Section 9.2 will be devoted to the system models 

and implementation details. The user interface and some screen mock-ups will be presented in 

section 9.3. 

 

9.1 Requirement analysis  

FLEX consists of two modules: a face detection module and a FCP extraction module. The tasks 

of the two modules are as their name suggests. 

9.1.1 Purpose of the system 
The main purpose of FLEX is the extraction of FCPs from digital images. The input for FLEX is 

a digital image selected by the user. First, FLEX will automatically scan the image for faces. If 

present and their resolution are bigger than 64 x 64 pixels, it will extract for each face the FCPs. 

Within the framework of FED, these FCPs can be directly passed to the QPM (see section 2.1) 

which will query the FED database for a facial expression. The result of FLEX will be a vector 

containing FCP information.  

9.1.2 Scope of the system 
FLEX can handle one input image at a time. The input images can either be colour or gray-scale 

images. From the input image, only faces with a resolution equal to or greater than 64 x 64 will 

be passed to the FCP extraction module. As mentioned before, this final image size has been 

chosen because of the trade-off between computational cost and minimum resolution in order to 
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guarantee that information about eyes, nose and mouth is not lost in too small image versions. 

The input images should be one of the following formats: BMP, JPEG, JPEG2000, PNG, PNM, 

Raw, TIFF and WBMP. FLEX can not yet handle other multimedia formats like video input and 

is also not required within the FED framework at the moment.  

9.1.3 Functional requirements 

The main purpose of FLEX is extracting FCPs from the input image. The user is able to select a 

digital image from the file system of the computer FLEX is running on. FLEX determines the 

FCPs of the faces that are present in the image. FLEX complete its task with showing the FCPs 

that it has found. 

9.1.4 Non-functional requirements 

�  Adaptability: We attempt to build the module as compatible as possible to the FED so that 

minimal adjustment to the existing FED code is needed for the integration of FLEX into 

FED. 

�  Documentation: FLEX is well documented for future studies.  

�  Error handling: All errors are handled correctly by the program. In case of errors, 

comprehensible messages will be displayed. 

�  Extendibility: It is possible to make modifications to the FLEX system in the future. 

Additional functionalities such as processing video input can be easily added since we are 

using Object Oriented Design. 

�  Performance characteristics: FLEX should be able to detect 80% of the characteristic 

points in a face. 

�  Real-time: Speed is of critical importance. Especially when FLEX is going to be 

integrated into the FED website. At the moment, the speed of FLEX depends on factors 

like: size of the input image, the processor on which FLEX is running (compared to a 

Celeron 1.5 GHZ, 512 MB machine, FLEX is running about twice as fast on an AMD 

Athlon XP, 1.8 GHZ, 512 MB machine), and so on. 

9.1.5 Pseudo requirements 

FLEX is initially designed as a module to be integrated into the FED framework. FED is a web 

application written in Java/Java2, therefore FLEX is also written in Java/Java2. FLEX is 

developed in a Windows environment and does not make any use of a database. 
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9.2 System models  

9.2.1 Use cases 

Figure 47 shows the use case diagram of FLEX. It describes the behaviour of FLEX as seen from 

the user’s point of view. The only actor in this use case diagram is the User of FLEX. A use case 

describes a function provided by the system as a set of events that yields a visible result for the 

actors. Following the figure is the use case description of the use cases. 
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Figure 47: Use case diagram for FLEX. 

 
 

Use case name SelectInputImage 

Participating actor User 

Entry condition 1. FLEX is started up 

Flow of events 2. The user opens a getFileDialog to select the input image.  

Exit condition 3. FLEX confirms the user by a message and by showing the selected 

image. 

Figure 48: The SelectInputImage use case. 
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Use case name StartFLEXDetection 

Participating actor User 

Entry condition 1. The user has selected an input image. 

Flow of events 2. The user initiates the detection process by clicking on the Detect 

button. 

3. The face detection module of FLEX reads in the input image and 

scans for faces at different resolutions. 

4. For each detected face with a resolution of at least 64 x 64, the FCP 

extraction module scans for all the predefined FCPs. 

Exit condition 5. FLEX shows its results by displaying the detected faces with the 

FCPs marked. 

Figure 49: The StartFLEXDetection use case. 
 

 

Use case name VerifyFLEXResults 

Participating actor User 

Entry condition 1. The results of the FCP extraction procedure is displayed on the 

screen. 

Flow of events 2. The user examines each of the shown faces with the FCPs. 

Exit condition 3. The user accepts the results by clicking on the OK button or declines 

it by clicking on the Decline button. 

Figure 50: The VerifyFLEXResults use case. 
 

9.2.2 Class diagram 

Figure 51 gives the class model diagram that describes the structure of the FLEX system in terms 

of classes and objects. Classes are abstractions that specify the attributes and behaviour of a set of 

objects. Objects are entities that encapsulate state and behaviour. Each object has an identity: It 

can be referred individually and is distinguishable from other objects. Each class will be 

described individually. 
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Figure 51: Class diagram of FLEX. 
 

 

GUI Class 

The Graphical User Interface class provides the user the facility to select an input image to be 

scanned, to start the scanning procedure and to verify the results. The results with graphical 

output will be handled by PaintArea.  

 

ImageControl Class 

The ImageControl class is the central unit in FLEX. All communication and dataflow between the 

user, face detection module and the FCP extraction module occur via this class. It controls the 

instantiation of the FaceImageScanner object, CornerImageScanner object and ImagePyramid 

object. The methods scanLayers4Faces and scanFace4Corners will be invoked by the user via the 

graphical user interface. If the input image is a 24-bit color image, ImageControl will 

automatically convert it to an 8-bit gray scale representation for further processing.  
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Figure 52: Description of the ImageControl class. 
 

ImagePyramid Class 

This class is included in the Java Advanced Imaging (JAI) package that is provided by Sun 

Microsystems. It represents a multi-resolution image pyramid: i.e. a collection of layers of 

different resolution of the input image. More information about this class can be found on: 

http://java.sun.com/products/java-media/jai/forDevelopers/jai-

apidocs/javax/media/jai/ImagePyramid.html 

 

ImageScanner Class 

The ImageScanner class is an abstract class that provides the interface for the FaceImageScanner 

class and the CornerImageScanner class. 

 

IntegralImage Class 

This class represents the integral image representation of an image. With the method 

convert2IntImage, a normal image can be converted into its integral representation. 

 

FaceImageScanner Class 

An instance of FaceImageScanner takes one layer of the image pyramid into account for face 

detection. It does so by first scanning the input image with a 24 x 24 scanning window. Then it 

will convert each subimage into the integral image representation. After that, the subimages will 

be passed to the FaceCascade which decides whether or not a face is present. Note that in the 

final implementation of FLEX, this class also controls the scanning process. Instead of scanning 
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every layer in the image pyramid this class simply scales the classifier by scaling the Haar 

features. 
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Figure 53: Description of the FaceImageScanner class. 
 

FaceCascade Class 

The FaceCascade class is in fact the component that decides whether or not a given image 

contains a face. The FaceCascade consist of different layers each with a different number of 

classifiers. Input for the cascade is a collection of all the subimages from FaceImageScanner. 

They are first passed through the first layer in which all subimages will be classified as faces or 

non faces. The negative results will be discarded. The remained positive subimages will trigger 

the evaluation of the next classifier. The same process is performed in every layer. The subimages 

that reach and pass the last layer are true faces. 
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Figure 54: Description of the FaceCascade class. 
 

FeatureImageScanner Class 

This class process the image for facial features which can be eyes, eye brows, nose or mouth. 

Therefore, the input image should be a face image. In this case, the face image is an image 

detected by the face detector and has a size of 64 by 64 pixels. FeatureImageScanner scans for its 

feature in a specific region. It will convert each subimage into an integral image representation. 

After that, the subimages will be passed to the FeatureCascade which decides whether or not the 

wanted feature is present. 
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Figure 55: Description of the FeatureImageScanner class. 
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FeatureCascade Class 

Practically the FeatureCascade class performs the same task as FaceCascade. Its structure is also 

as that of FaceCascade. It decides whether or not a given face image contains the wanted feature. 

The subimage that passes through all layers of the cascade can be considered as a true positive 

sample. 
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Figure 56: Description of the FeatureCascade class. 
 

 

HybridProjection Class 

The result from face detection and FeatureImageScanner is a vector containing positions of facial 

features. HybridProjection uses these exact locations to extract the features and corresponding 

FCPs. This can only be done if the extracted feature does not contain noise in the form of parts of 

other features.  

 



Part IV System Implementation  9.Analysis and System Design 

Page 114 of 170 

'
��
��
(
!
��
�

%
�
�&
�
�
�



�
	
�
��
!
�
��
��

 
Figure 57: Description of the HybridProjection class. 
 

CornerImageScanner Class 

This class process the image, which in this case is a face image, for FCPs. It ensures that corner 

detection is employed by instantiating the HarrisCornerDetector and SojkaCornerDetector 

classes. As a result, the number of possible windows to scan for FCPs will be reduced. 

Classification of the candidate windows is done by the CornerCascade which in turn invoke the 

RVMClassificator. Variance integral projection too will be carried out on eyes, mouth and nose to 

increase the accuracy of the detected FCPs. 
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Figure 58: Description of the CornerImageScanner class. 
 

 

HarrisCornerDetector Class 
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The given input image, which must be a gray-scale image, is scanned for corners. This class is 

invoked by the CornerImageScanner class to reduce the number of scanning windows. The 

parameters upon which this class is called are also controlled by the class that invokes it. 
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Figure 59: Description of the HarrisCornerDetector class. 
 

 

SojkaCornerDetector Class 

The given input image, which must be a gray-scale image, is scanned for corners. Detection of 

corners can actually be done in colour and/or gray-scale images. This class is invoked by the 

CornerImageScanner class to reduce the number of scanning windows. The parameters upon 

which this class is called are also controlled by the class that invokes it. 
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Figure 60: Description of the SojkaCornerDetector class. 
 

 

CornerCascade Class 

The CornerCascade class is the component which decides whether or not a given image contains 

a FCP. It does so by invoking the RVMCornerClassificator with the right parameters. One of the 

parameters is the feature value, which is calculated by simply look up the values in the integral 
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representation matrix of the image. Another parameter is the type of the FCP to be classified like 

inner left eye corner. 
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Figure 61: Description of the CornerCascade class. 
 

RVMClassificator Class 

This class is an abstract class that provides the interface for the classification of the input. Actual 

classification is done by the RVMFaceClassificator class and the RVMCornerClassificator class 

depending on the classification that needs to be made. 

 

RVMFaceClassificator Class 

This class represents the actual RVM classification model for faces. The implementation of the 

RVM classification model is to differentiate faces from non-faces. In other words the 

classification is fixed by a two-class classification. This class is invoked by the FaceCascade class 

which also has to pass the parameters depending on the layer in which the RVM is located. 
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Figure 62: Description of the RVMFaceClassificator class. 
 

RVMCornerClassificator Class 

This class represents the actual RVM classification model for FCPs. The implementation of the 

RVM classification model is to differentiate FCPs from non-FCPs. In other words the 

classification is determined by a two-class classification. This class is invoked by the 

CornerCascade class which also has to pass the parameter of which FCP to classify. 
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Figure 63: Description of the RVMCornerClassificator class. 
 

RVMFeatureClassificator Class 

This class represents the actual RVM classification model for features. The implementation of the 

RVM classification model is to differentiate features from non-features. In other words the 
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classification is fixed by a two-class classification. This class is invoked by the FeatureCascade 

class which also has to pass the parameters depending on the layer in which the RVM is located. 
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Figure 64: Description of the RVMFeatureClassificator class. 

 

9.2.3 Sequence diagrams 

Figure 65, Figure 66 and Figure 67 present the sequence diagrams of FLEX. They formalize the 

behaviour of FLEX and visualize the communication among the objects. Figure 65 shows the 

interaction between the objects of the face detection module of FLEX. The ImageControl object 

invokes and initializes the other objects. When an input image is submitted by the user, an 

ImagePyramid of the input will be constructed. The user can then give the signal to start the face 

detection procedure by invoking the scanImg method of FaceImageScanner. In the end of this 

sequence diagram, the ImageControl object obtains face information result. With this 

information, ImageControl invokes the scanImg of FeatureImageScanner to extract the facial 

features. This is shown in the second diagram. The result will be a vector with exact positions of 

the features. ImageControl can then use this information to invoke the checkFeature method of 

HybridProjection to extract the FCPs from the feature. In the third diagram the process of corner 

classification is shown. As shown, the process is analogous to that of face detection and feature 

extraction. The exception is that it contains corner detectors that reduce the number of subimages 

to be classified. 
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Figure 65: Sequence diagram of FLEX. Part 1: face detection. 
 

 
Figure 66: Sequence diagram of FLEX. Part 2: feature detection. 
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Figure 67: Sequence diagram of FLEX. Part 3: FCP extraction. 
 
 

9.3 User interface  

This section includes some screen shots of the FLEX user interface. 
 

 
Figure 68: GUI of FLEX at start-up. 
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Figure 69: File-Open menu. 

 
 

 
Figure 70: File-open dialog. 
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Figure 71: Image selected for detection. 

 
 

 
Figure 72: Detection result after pressing the "Scan faces" button. 
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Figure 73: Image selected for FCP detection. 

 
 

 
Figure 74: Detection result after pressing "Find FCPs" button. 
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System Test 
In this chapter we discuss the testing of the system. To test its performance we designed a test 

plan. In this test plan, two modules (face detection and FCP detection) are considered separately 

and as one unit. This plan will be presented in section 10.1. Section 10.2 and 10.3 discuss the test 

of the face detection module and the FCP detection module respectively. Tests of both modules 

linked together are given in section 10.4. 

 

10.1 Test Plan 

We consider three test objects: face detection, FCP detection and FLEX. In FLEX face detection 

and FCP detection is combined in the final system. The images contained in the test sets are given 

in appendix B. The images used for testing the face detection module are randomly collected 

from the internet and from our own image collection. The images are of different sizes. The 

images used for testing the FCP detection module are from the BioID and Carnegie Mellon face 

database. 

 

Face detection 

The test for the face detection module can be divided into two parts: 

FTO1: test the performance with images of single full-frontal faces. The test set consists of 15 

images and will be referenced as Face Test Set1 (FTS1).  

 

FTO2: test the performance with images containing two or more faces. The test set consists of 15 

images and will be referenced as Face Test Set2 (FTS2).  

 

FCP detection 

The test for the FCP detection module is structured as follows: 

FCPTO1: test the module on input images containing solely a full-frontal face. The test set is 

referenced as FCP Test Set1 (FCPTS1). 
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Integrated system 

ISTO1: test the integration of the two modules. FCP detection is done on the output faces 

provided by the face detection module. The test set is referenced as Integrated System Test Set 

(ISTS1). 

 

10.2 Face detection module test 

To test this module we choose to test on two sets. The first set (FTS1) consists of individual 

frontal faces and the second set (FTS2) consists of images with multiple faces. Each table 

contains the following columns with data: 

• Test image number (Nr.): sequence number of the test image in test set 

• Image name (Image): name of the test image 

• Resolution: the resolution of the image (h x w). 

• Type: display the type of the image. The image can be either 8-bit or 24-bit. 

• Total number of detected faces (TDF): the number of faces detected. 

• True positives (TP): number of faces that are detected as faces and are indeed faces. 

• Multiple true positives (MTP): number of faces, other than the real face(s), that can be 

counted as correct detection(s) of the face(s). 

• False positives (FP): number of faces that are classified as a face, but are in fact non-

faces. This number is equal to TDF – TP – MTP. 

• Missed faces (MF): number of faces that has not been detected. 

 

The outputs from the FLEX application are not judged by FLEX itself but by visual inspection. In 

each test image, we consider only one true face. Other detections which can be interpreted as true 

faces will be counted as multiple true positive (MTP) detections. The results of the first test 

(FTO1) on the test set (FTS1) are given in the following table: 

 

From the results in Table 36 the true positive rate is 93.3%. From the total detected faces there are 

15 false positives. The precision of the detector is given by TP/(TP + FP) = 22/(22 + 15) = 0.595. 

All faces are detected, except for the one contained in test image 2. This missed face can be 

explained by the grouping function that is implemented in the final version of FLEX. 

 

Recall that the training samples for the face detector (see Figure 11) contain some space on either 

the left or right side of the face. This means that the training samples have a certain amount of 

noise that will be observable in classification results. But this way, the final detector can still 

detect a face when the scanning window is not exactly around a face. Since the face detector is 
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scanning the input image on every pixel location in the input image, there will be multiple 

positive detections around one face. The implemented grouping function will group these positive 

detections into one rectangle. It does so by considering windows that in a range of two pixels 

distance there are more than three positive detections. 

 

Table 36: test result of FTO1 on FTS1. 
Nr. Image Resolution Type TDF TP MTP FP MF 

1 ind1.jpg 98x70 24 1 1 0 0 0 
2 ind2.jpg 101x80 24 0 0 0 0 1 
3 ind3.jpg 112x80 24 6 1 1 4 0 
4 ind4.jpg 77x61 24 1 1 0 0 0 
5 ind5.jpg 96x60 24 1 1 0 0 0 
6 ind6.jpg 97x80 24 1 1 0 0 0 
7 ind7.jpg 83x110 24 3 1 2 0 0 
8 ind8.jpg 88x70 24 3 1 0 2 0 
9 ind9.jpg 80x60 8 3 1 1 1 0 
10 ind10.jpg 141x100 24 4 1 0 3 0 
11 ind11.jpg 69x100 24 2 1 1 0 0 
12 ind12.jpg 89x100 24 2 1 1 0 0 
13 ind13.jpg 101x100 24 4 1 1 2 0 
14 ind14.jpg 70x100 24 2 1 1 0 0 
15 ind15.jpg 198x100 24 4 1 0 3 0 
         

total 37 14 8 15 1 
 

For test image number 2, if the grouping function is switched off, we can see that the face was 

actually detected by FLEX. The implementation of the grouping function in the final system 

simply discards this positive detection, because it is assumed that multiple detections should 

occur around the face. It is possible that the size of the face is missed by the scaled classifiers. 

This is the trade-off in scaling that cannot be resolved. The relative high number of false positives 

can be explained by the fact that in the final implementation of FLEX we used only a five layered 

classifier. For better results, either more layers of classifiers need to be trained or different 

parameters need to be set for the classifiers. With the current settings, we can get a relative high 

true positive rate, but the false positive rate is also high. If we want to decrease the number of 

false positives by adjusting the parameters, the true positive rate will also decrease. 
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Figure 75: Illustration of the grouping function. The images on the left are scanned without 

grouping. The images on the right are scanned with grouping. 
 

The results of the second test (FTO2) on the test set containing image with multiple faces (FTS2) 

are given in the following table: 

 

Table 37: test result of FTO2 on FTS2. 
Nr. Image Width Height Type Faces TDF TP FP MF 

1 group1.jpg 558 338 24 8 58 11 47 2 
2 group2.jpg 312 226 24 8 35 9 26 1 
3 group3.bmp 402 141 24 7 23 15 8 1 
4 group4.bmp 240 178 24 8 24 14 10 0 
5 group5.bmp 210 174 8 6 20 12 8 0 
6 group6.bmp 170 153 24 6 18 7 11 0 
7 group7.bmp 302 212 24 4 19 5 14 0 
8 group8.bmp 188 110 8 4 5 4 1 2 
9 group11.jpg 126 200 24 4 12 7 5 0 
10 group12.jpg 253 280 24 3 3 3 0 1 
11 group14.jpg 179 354 24 5 12 5 7 1 
12 group16.jpg 250 175 24 5 8 7 1 1 
13 group19.jpg 381 384 24 5 31 6 25 0 
14 group20.jpg 255 190 24 5 26 7 19 0 
15 group23.jpg 305 240 24 3 14 4 10 0 

total 81 308 116 192 9 
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In Table 37 we can see that out of the total number 81 faces in 15 images, 9 are missed. The true 

positive rate is 88.9% and there are 191 false positives. The number of false positives is relatively 

high compared to the number of positive detections. Again, this high number of false positives is 

due to the number of classifiers we trained and implemented in the final version of FLEX. Some 

of the faces are missed because they are (slightly) rotated or partly occluded by other objects. It is 

also possible that a face is missed because of the strictness of the grouping function. In the 

neighbour of two pixels around the face, it is assumed that there are more than three positive 

detections.  

 

 
Figure 76: test result on test group3.jpg of set FTS1. 

 

10.3 Facial Characteristic Points detection module test 

For this part of the test, we used the test set FCPTS1. It contains 22 images of 64x64 pixels, 

selected from the BioID and Carnegie Mellon face database. 11 persons were selected, each with 

two different facial expressions. Note that the test set does not contain any faces with glasses, 

beard or moustache. The FCPTS1 set is used to test each FCP. The results of the FCPs are 

arranged separately in a table. Each table contains the following columns with data: 

• Test image number (Nr.): sequence number of the test image in test set 

• Image name (Image): name of the test image 

• Type: display the type of the image. The image can be either 8-bit or 24-bit. 
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• Number of Candidate FCPs (NOC): display the number of corners that are detected 

within the region of the FCP. These are candidates for the FCP. 

• Total number of detected FCPs (TD FCP): the number of candidates FCPs that are 

classified as FCPs. This number should be smaller than NOC. 

• True positives (TP): number of corners that are detected as FCPs and are indeed FCPs. 

• Multiple true positives (MTP): number of corners, other than the real FCP, that can be 

counted as a correct detection of the FCP. 

• False positives (FP): number of corners that are classified as FCP, but are in fact non-

FCPs. This number is equal to TDFPC – TP – MTP. 

• True negatives (TN): number of corners that are classified as non-FCP, which are truly 

non-FCPs. This number is equal to NOC – TDFCP. 

• False negatives (TN): number of corners that are classified as non-FCPs, but they are 

FCPs. This number has the value 1 in case no true positives are detected (TP = 0), 

otherwise it has the value 0. 

 

Table 38: Test result for left eye inner corner (LEIC). 

Nr. Image Type  NOC TD 
FCP 

TP MTP FP  TN  FN 

1 A01.bmp 8 52 1 1 0 0 51 0 
2 A06.bmp 8 57 2 1 1 0 55 0 
3 D00.bmp 8 77 13 1 5 7 64 0 
4 D44.bmp 8 60 6 1 5 0 54 0 
5 E04.bmp 8 64 2 1 1 0 62 0 
6 E52.bmp 8 63 1 1 0 0 62 0 
7 F28.bmp 8 36 0 0 0 0 36 1 
8 F37.bmp 8 52 2 1 1 0 50 0 
9 I03.bmp 8 46 0 0 0 0 46 1 
10 I35.bmp 8 53 1 1 0 0 52 0 
11 Bioid_0256.bmp 24 59 8 1 7 0 51 0 
12 Bioid_0257bmp 24 61 6 1 3 2 55 0 
13 Bioid_0419.bmp 24 83 14 1 5 8 69 0 
14 Bioid_0420.bmp 24 72 8 1 5 2 64 0 
15 Bioid_0657.bmp 24 77 6 1 4 1 71 0 
16 Bioid_0658.bmp 24 59 2 1 1 0 57 0 
17 Bioid_0717.bmp 24 58 4 1 1 2 54 0 
18 Bioid_0721.bmp 24 79 8 1 5 2 71 0 
19 Bioid_1079.bmp 24 43 0 0 0 0 43 1 
20 Bioid_1083.bmp 24 81 3 0 0 3 78 0 
21 Bioid_1517.bmp 24 74 18 1 7 10 56 0 
22 Bioid_1518.bmp 24 66 9 1 4 4 57 0 

          
total 1372 114 18 55 41 1258 3 
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By definition the true positive rate is the number of true positives divided by the total number of 

positives. In Table 38 the true positive rate is (tpr = 18 / 22 =) 81.82 %. The false positive rate, 

which is the number of false positives divided by the total number of negatives, is fpr = 41/ (1372 

– 22 – (22 * 8)) = 3.49%. 

 

 

 

Table 39: Test result for right eye inner corner (REIC). 

Nr. Image Type  NOC TD 
FCP 

TP MTP FP  TN  FN 

1 A01.bmp 8 72 7 1 2 4 65 0 
2 A06.bmp 8 54 0 0 0 0 54 1 
3 D00.bmp 8 80 2 1 1 0 78 0 
4 D44.bmp 8 60 0 0 0 0 60 1 
5 E04.bmp 8 80 6 1 3 2 74 0 
6 E52.bmp 8 67 3 1 2 0 64 0 
7 F28.bmp 8 79 1 1 0 0 78 0 
8 F37.bmp 8 79 2 0 0 2 77 1 
9 I03.bmp 8 60 10 1 3 6 50 0 
10 I35.bmp 8 62 7 1 3 3 55 0 
11 Bioid_0256.bmp 24 75 18 1 3 14 57 0 
12 Bioid_0257bmp 24 78 9 1 0 8 69 0 
13 Bioid_0419.bmp 24 36 4 1 1 2 32 0 
14 Bioid_0420.bmp 24 57 5 1 0 4 52 0 
15 Bioid_0657.bmp 24 73 5 1 2 2 68 0 
16 Bioid_0658.bmp 24 81 7 1 2 4 74 0 
17 Bioid_0717.bmp 24 33 4 1 0 3 29 0 
18 Bioid_0721.bmp 24 60 6 1 1 4 54 0 
19 Bioid_1079.bmp 24 57 0 0 0 0 57 1 
20 Bioid_1083.bmp 24 68 3 1 0 2 65 0 
21 Bioid_1517.bmp 24 63 17 1 2 14 46 0 
22 Bioid_1518.bmp 24 54 11 1 1 9 43 0 

          
total 1428 127 18 26 83 1301 4 

 

Figure 77: Screen shots of FCP detection on the left eye inner corner. 
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Figure 78: Screen shots of FCP detection on right eye inner corner. 

 

 

For the right eye inner corner, the tpr = 18 / 22 = 81.82 % and fpr = 83/ (1428 – (9*22)) = 6.75%. 

From the tables and the screen shot pictures, it can be concluded that the inner corners of the eyes 

can be detected quite good. For the test images in which the eye corners are missed, the eye 

corners are either blurry by shadow, make-up or baggy eye lids. Also if the intensity difference 

between the eye and the skin is too minimal, the FCP can not be detected. Following tables show 

the FCP detection result of LEOC and REOC. 

 

For the left eye outer corner, tpr is 63.64% and fpr is 5.94%. For the right eye outer corner, tpr is 

81.82% with an fpr of 16.67% (see Table 40 and Table 41). It can be concluded that the outer 

corners in our test images are hard to detect. In both cases, we can see that the missed FCPs occur 

mostly in pictures from the BioID dataset. The faces in BioID are aligned in another way than the 

faces from the Carnegie Mellon set. From the dataset (see appendix B) we can see that the eye 

corners of the BioID faces are very close to the border. As a result, FLEX cannot extract a good 

corner sample to let RVM classify. To test if the eye corners can be detected if they are aligned 

correctly, we manually shifted the BioID faces some pixels to the left for REOC testing and some 

pixels to the right for LEOC testing. The result are as we expected, the FCPs can be detected by 

FLEX. The third picture of Figure 79 and the first and third picture of Figure 80 are from BioID 

after shifting. 

 

In the case of the left eye outer corner (LEOC) detection, we tried to achieve a low fpr by 

adjusting some parameters in the classifier. The result is that the tpr also decreasing. For REOC, 

we tried to do the opposite. The outcome is a high tpr with a high fpr. 
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Table 40: Test result for FPC detection of left eye outer corner (LEOC). 

Nr. Image Type  NOC TD 
FCP 

TP MTP FP  TN  FN 

1 A01.bmp 8 52 2 1 1 0 50 0 
2 A06.bmp 8 31 4 1 2 1 27 0 
3 D00.bmp 8 33 8 1 2 5 25 0 
4 D44.bmp 8 27 7 1 4 2 20 0 
5 E04.bmp 8 26 0 0 0 0 26 1 
6 E52.bmp 8 25 2 1 1 0 23 0 
7 F28.bmp 8 27 3 1 1 1 24 0 
8 F37.bmp 8 51 3 1 2 0 48 0 
9 I03.bmp 8 43 5 1 3 1 38 0 
10 I35.bmp 8 36 11 1 2 8 25 0 
11 Bioid_0256.bmp 24 33 0 0 0 0 33 1 
12 Bioid_0257bmp 24 34 0 0 0 0 34 1 
13 Bioid_0419.bmp 24 27 0 0 0 0 27 1 
14 Bioid_0420.bmp 24 36 1 0 0 1 35 0 
15 Bioid_0657.bmp 24 18 0 0 0 0 18 1 
16 Bioid_0658.bmp 24 18 0 0 0 0 18 1 
17 Bioid_0717.bmp 24 36 3 1 0 2 33 0 
18 Bioid_0721.bmp 24 18 2 1 0 1 16 0 
19 Bioid_1079.bmp 24 33 1 1 0 0 32 0 
20 Bioid_1083.bmp 24 43 5 1 1 3 38 0 
21 Bioid_1517.bmp 24 33 4 1 1 2 29 0 
22 Bioid_1518.bmp 24 40 4 0 0 4 36 0 

          
total 720 65 14 20 31 655 6 

 
 
 

 
Figure 79: Screen shots of FCP detection of left eye outer corner. 
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Table 41: Test result for FCP detection of right eye outer corner (REOC). 

Nr. Image Type  NOC TD 
FCP 

TP MTP FP  TN  FN 

1 A01.bmp 8 22 11 1 7 3 11 0 
2 A06.bmp 8 43 7 1 1 5 36 0 
3 D00.bmp 8 36 7 1 3 3 29 0 
4 D44.bmp 8 24 9 1 5 3 15 0 
5 E04.bmp 8 18 8 1 2 5 10 0 
6 E52.bmp 8 27 8 1 2 5 19 0 
7 F28.bmp 8 31 15 1 4 10 16 0 
8 F37.bmp 8 22 3 1 0 2 19 0 
9 I03.bmp 8 9 3 1 1 1 6 0 
10 I35.bmp 8 27 7 1 5 1 20 0 
11 Bioid_0256.bmp 24 42 7 1 5 1 35 0 
12 Bioid_0257bmp 24 40 9 1 5 3 31 0 
13 Bioid_0419.bmp 24 18 2 0 0 2 16 1 
14 Bioid_0420.bmp 24 46 3 0 0 3 43 1 
15 Bioid_0657.bmp 24 33 6 1 3 2 27 0 
16 Bioid_0658.bmp 24 27 0 0 0 0 27 1 
17 Bioid_0717.bmp 24 22 10 1 3 6 12 0 
18 Bioid_0721.bmp 24 16 8 1 4 3 8 0 
19 Bioid_1079.bmp 24 18 2 0 0 2 16 1 
20 Bioid_1083.bmp 24 27 5 1 3 1 22 0 
21 Bioid_1517.bmp 24 43 8 1 2 5 35 0 
22 Bioid_1518.bmp 24 33 7 1 1 5 26 0 

          
total 624 145 18 56 71 479 4 

 

 

 
Figure 80: Screen shots of FCP detection of right eye outer corner. 
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Table 42: Test result for FCP detection of mouth left corner (MLC). 

Nr. Image Type  NOC TD 
FCP 

TP MTP FP  TN  FN 

1 A01.bmp 8 302 36 1 7 28 266 0 
2 A06.bmp 8 232 9 1 4 4 223 0 
3 D00.bmp 8 188 14 1 3 10 174 0 
4 D44.bmp 8 165 12 1 3 8 153 0 
5 E04.bmp 8 206 32 1 5 26 174 0 
6 E52.bmp 8 156 8 1 2 5 148 0 
7 F28.bmp 8 200 3 1 0 2 197 0 
8 F37.bmp 8 211 3 1 0 2 208 0 
9 I03.bmp 8 194 16 1 5 10 178 0 
10 I35.bmp 8 248 16 1 5 10 232 0 
11 Bioid_0256.bmp 24 236 6 1 1 4 230 0 
12 Bioid_0257bmp 24 284 15 1 3 11 269 0 
13 Bioid_0419.bmp 24 216 3 1 2 0 213 0 
14 Bioid_0420.bmp 24 210 15 1 4 10 195 0 
15 Bioid_0657.bmp 24 265 6 1 1 4 259 0 
16 Bioid_0658.bmp 24 171 5 1 3 1 166 0 
17 Bioid_0717.bmp 24 217 0 0 0 0 217 1 
18 Bioid_0721.bmp 24 175 1 1 0 0 174 0 
19 Bioid_1079.bmp 24 236 0 0 0 0 236 1 
20 Bioid_1083.bmp 24 211 0 0 0 0 211 1 
21 Bioid_1517.bmp 24 240 12 1 2 9 228 0 
22 Bioid_1518.bmp 24 237 9 1 3 5 228 0 

          
total 4800 221 19 53 149 4579 3 

 

 

 
Figure 81: Screen shots of FCP detection on mouth left corner (MLC). 
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Table 43: Test result for FCP detection of mouth right corner (MRC). 

Nr. Image Type  NOC TD 
FCP 

TP MTP FP  TN  FN 

1 A01.bmp 8 207 27 1 8 18 180 0 
2 A06.bmp 8 261 15 1 3 11 246 0 
3 D00.bmp 8 186 23 1 8 14 163 0 
4 D44.bmp 8 243 11 1 0 10 232 0 
5 E04.bmp 8 213 26 1 8 17 187 0 
6 E52.bmp 8 198 28 1 4 23 170 0 
7 F28.bmp 8 237 2 0 0 2 235 1 
8 F37.bmp 8 258 7 0 0 7 251 1 
9 I03.bmp 8 207 13 1 4 8 194 0 
10 I35.bmp 8 253 23 1 5 17 230 0 
11 Bioid_0256.bmp 24 197 16 1 7 8 181 0 
12 Bioid_0257bmp 24 210 15 1 5 9 195 0 
13 Bioid_0419.bmp 24 198 13 1 5 7 185 0 
14 Bioid_0420.bmp 24 185 22 1 4 17 163 0 
15 Bioid_0657.bmp 24 205 14 1 5 8 191 0 
16 Bioid_0658.bmp 24 214 15 1 7 7 199 0 
17 Bioid_0717.bmp 24 211 11 1 7 3 200 0 
18 Bioid_0721.bmp 24 229 12 1 6 5 217 0 
19 Bioid_1079.bmp 24 230 21 1 7 13 209 0 
20 Bioid_1083.bmp 24 223 9 1 3 5 214 0 
21 Bioid_1517.bmp 24 222 9 1 3 5 213 0 
22 Bioid_1518.bmp 24 155 2 1 1 0 153 0 

          
total 4742 334 20 100 214 4408 2 

 

As stated earlier, mouth corners are unstable points, which means the position and the shape of 

the mouth corners are variable. Still, the tpr and fpr for MLC is 86.36 % and 3.24%, respectively. 

For MRC these are 90.91% and 4.71% respectively (see Table 42 and Table 43). It can be 

concluded that FLEX is able to detect mouth corners very well. 

 
Figure 82: Screen shots of FCP detection on mouth right corner (MRC). 
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From chapter 8 another approach has been applied to extract the FCPs, which are unable to be 

detected with the corner detector combined with RVM. These points are for example the FCPs on 

top of the eyes, bottom of the eyes, top of the upper lip and bottom of the lower lip. The integral 

projection method is then introduced to solve this problem. Following are the results of the 

integral projection on eyes and mouth. As we know for this method the region must be specified. 

For this purpose actually an eye and mouth detector is trained. Unfortunately, the results were not 

acceptable to test the combination of this region detector together with the projection method. For 

this problem we manually submit the region information of each test sample in FTS2. 

 

Table 44: Integral projection results on left eye. 

Nr. Image Type  TP FP 

1 A01.bmp 8 4 0 
2 A06.bmp 8 4 0 
3 D00.bmp 8 1 3 
4 D44.bmp 8 2 2 
5 E04.bmp 8 2 2 
6 E52.bmp 8 2 2 
7 F28.bmp 8 4 0 
8 F37.bmp 8 4 0 
9 I03.bmp 8 4 0 
10 I35.bmp 8 4 0 
11 Bioid_0256.bmp 24 3 1 
12 Bioid_0257bmp 24 4 0 
13 Bioid_0419.bmp 24 4 0 
14 Bioid_0420.bmp 24 3 1 
15 Bioid_0657.bmp 24 3 1 
16 Bioid_0658.bmp 24 3 1 
17 Bioid_0717.bmp 24 4 0 
18 Bioid_0721.bmp 24 2 2 
19 Bioid_1079.bmp 24 4 0 
20 Bioid_1083.bmp 24 4 0 
21 Bioid_1517.bmp 24 4 0 
22 Bioid_1518.bmp 24 4 0 

     
total 73 15 
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Figure 83: Screen shots of integral projection on left eye. 

 

 

Table 45: Integral projection results on right eye. 

Nr. Image Type  TP FP 

1 A01.bmp 8 4 0 
2 A06.bmp 8 4 0 
3 D00.bmp 8 2 2 
4 D44.bmp 8 2 2 
5 E04.bmp 8 2 2 
6 E52.bmp 8 3 1 
7 F28.bmp 8 4 0 
8 F37.bmp 8 4 0 
9 I03.bmp 8 4 0 
10 I35.bmp 8 4 0 
11 Bioid_0256.bmp 24 4 0 
12 Bioid_0257bmp 24 4 0 
13 Bioid_0419.bmp 24 4 0 
14 Bioid_0420.bmp 24 4 0 
15 Bioid_0657.bmp 24 3 1 
16 Bioid_0658.bmp 24 3 1 
17 Bioid_0717.bmp 24 4 0 
18 Bioid_0721.bmp 24 3 1 
19 Bioid_1079.bmp 24 4 0 
20 Bioid_1083.bmp 24 4 0 
21 Bioid_1517.bmp 24 4 0 
22 Bioid_1518.bmp 24 4 0 

     
total 78 10 
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Figure 84: Screen shots of integral projection on right eye. 

 

 

From the results it can be observed that noise like shadow, make-up, and eye-bag has influence 

on the results of this method. The results for the left eye are tpr: 82.95 % and fpr: 17.05%. For the 

right eye, these are tpr: 88.64 % and fpr: 11.36%. 

 

Table 46: Integral projection results on mouth. 

Nr. Image Type  TP FP 

1 A01.bmp 8 2 2 
2 A06.bmp 8 4 0 
3 D00.bmp 8 3 1 
4 D44.bmp 8 3 1 
5 E04.bmp 8 2 2 
6 E52.bmp 8 4 0 
7 F28.bmp 8 4 0 
8 F37.bmp 8 4 0 
9 I03.bmp 8 4 0 

10 I35.bmp 8 4 0 
11 Bioid_0256.bmp 24 4 0 
12 Bioid_0257bmp 24 4 0 
13 Bioid_0419.bmp 24 4 0 
14 Bioid_0420.bmp 24 4 0 
15 Bioid_0657.bmp 24 3 1 
16 Bioid_0658.bmp 24 3 1 
17 Bioid_0717.bmp 24 4 0 
18 Bioid_0721.bmp 24 4 0 
19 Bioid_1079.bmp 24 4 0 
20 Bioid_1083.bmp 24 4 0 
21 Bioid_1517.bmp 24 4 0 
22 Bioid_1518.bmp 24 4 0 

     
total 80 8 
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Figure 85: Screen shots of integral projection on mouth. 

 

In the case of applying the projection method on the mouth it can be stated that this method is 

really sensitive to the region that contains the feature. For example, in Figure 85 the mouth on the 

left is not fully contained in the region. As a result the FCP on the bottom of the lower lip is 

detected on the top of the lower lip. This again strengthens the point that if integral projection is 

applied in FLEX, the region of the feature must be extracted very accurately. Besides the exact 

location of the points, it can also be observed that the boundaries of the features can be located 

very precisely. The tpr for mouth is 90.91 % and the fpr is 9.08%. 

 

10.4 Integrated system test 

In order to detect the FCPs from the face, the face must satisfy certain conditions. One of these 

conditions is that the face must be upright full-frontal. The reason for this is that if the face is 

rotated, the feature might be occluded by other part of the face. At the training of the face 

detector, a database is used which contains images with slightly rotated faces. This results in 

faces which cannot be processed further by invoking the FCP detection. 

 

At the design of the FCP detection module it is assumed that full-frontal faces are available at a 

size of 64x64 image pixels. The face detector is designed to detect faces with a minimal size of 

24x24 pixels. Detecting a face in an image of a bigger size is done by scaling the classifier as 

discussed earlier. In theory, the face detection nodule as we have designed it is suited for 

application in combination with the FCP detection module. If the face detection module and the 

FCP detection module are linked together, the performance of the FCP detection is dependant on 

the performance of the face detector. In the current state the face detector is not as good as we 

want it to be and needs to be improved. Therefore, it is not meaningful to execute the testing of 

this test object (ISTO1). 
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Conclusions, Discussion and Future works 
 
We are now concluding this thesis and propose some ideas to improve the current system. We 

really hope that you enjoyed reading this thesis as much as we enjoyed writing it. It all comes 

down to one thing. We started with a problem and soon made a thesis assignment of it. From then 

on, we are off to the battlefield: the battle of proving yourself worthy of being a scientist.  

 

11.1 Conclusions and discussion 

We have presented an approach using a sparse learning model as the first step towards a fully 

automatic facial expression recognition system. This system already exists as an online Facial 

Expression Dictionary. In the current state of the system, providing a face image as input requires 

the user to manually select all the FCPs for further processing. This interaction is not desired 

since there are 30 FCPs and is certainly not making the system user-friendly. In our thesis project 

we tackle this problem by automating the FCP detection process. Therefore, the thesis assignment 

is defined as follows: 

 

• Literature survey: research the related works on the topics of face detection, facial 

characteristic point detection, facial expression recognition and classification methods.  

 

• Model design: design a model as a solution to the problem of automatic facial 

characteristic point detection. This model is built of multiple methods and algorithms. 

 

• Prototype: implement the designed model. 

 

• Tests: write a test plan to test the prototype and depicts the results. 
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We did a research on the topics of face detection, facial characteristic point detection, facial 

expression recognition and classification methods by examining scientific papers and reports 

especially on the subject of using the sparse learning Relevance Vector Machine. After 

concluding the literature survey, we continued with the second part of our thesis assignment: the 

design of a model as a solution to the problem of fully automatic facial characteristic point 

detection.  

 

The model we designed consists of a face detection module and a FCP detection module. The 

former allows the user to input an arbitrary image containing one or multiple faces. The face 

detection module extracts the faces and invokes the FCP detection module on these faces. On its 

turn, the FCP detection module automatically extracts the predefined FCPs. From the FCPs a 

corresponding facial expression can be matched. 

 

Face detection 

We designed a learning model: WUX-values Training Application (WUXTRAP) to boost the 

performance of RVM. This model consists of different techniques and algorithms. To detect faces 

from images, we first need to learn the RVM to differentiate between faces and non-faces. The 

first requirement to learn the RVM model is to have a dataset of faces and non-faces. These 

databases can be of influence on the training results since the RVM has to learn from these 

samples. There exist numerous face databases from which we can choose to use as our dataset.  

 

The learning procedure is based on the AdaBoost learning algorithm. This algorithm is perfectly 

suited for the selection of the best features that boost up the performance of the classifier. As 

known for AdaBoost training, it is slow since it contains a brute force search. In addition, training 

of the RVM itself is relatively slow. And since they are combined, there is a continuous feedback 

from RVM to AdaBoost and the other way around. A genetic search algorithm is added to 

improve the learning speed. Instead of a training time in the order of weeks/months, this is 

reduced to hours/days (on an AMD Athlon™ XP 2200+ 1.80 GHz processor with 512 MB 

RAM). Note that the size of the chosen training dataset is also significant for the speed of the 

training.  

 

After the learning procedure, faces can be distinguished from non-faces using the trained RVMs. 

Remind that we want to find faces in an input image by scanning the whole image. The number 

of scanning windows is huge. Most of these are non-faces. So, a cascaded structure of classifiers 

is introduced to quickly discard most of these non-faces. A cascade consists of several layers of 

classifiers. Each classifier is a combination of a number of RVMs. A practical problem that we 
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encounter incorporating the cascade technique is that a lot of RVMs need to be trained. In our 

case, since we are limited to the time we have for this project, our solution is to use more 

computers and all simultaneously for training. Training more and better RVMs makes the final 

system more robust. 

 

We have managed to apply the RVM for face detection. However, the test results show that 

improvement needs to be made. In the current state, the face detector consists of only five layers 

of classifiers. Recall that in [Viol01] a cascade of 32 layers with over 4000 features is used. To 

get better results, more classifiers need to be added to FLEX. 

 

Facial characteristic point detection 

The same learning model for training the face detection module is used for the FCP detection 

module. Unlike in the case of face detection, no databases of FCPs exist which we can use as our 

dataset. These databases are extracted manually by us from the BioID and Carnegie Mellon face 

database. Note that it is really hard to be very precise at clicking the right FCP since there are 

noise and fuzziness around these points. As we know, the quality of the datasets is of influence on 

the training results. 

 

For the detection of the FCPs, a corner detection algorithm is used to filter out the non-FCPs. We 

have chosen for a combination of the Harris corner detection algorithm and the Sojka corner 

detection algorithm. Unfortunately, not all of the non-FCPs can be filtered out by these corner 

detectors. For this, we rely on the corresponding RVMs. The performance of the RVM in the 

final system is actually determined by that of the corner detectors. 

 

For the FCPs that cannot be detected by the corner detectors, we use the Hybrid Projection 

technique. This technique is applied on the corresponding facial feature (eye, eye brow and 

mouth) on which the FCP is localized. Therefore, RVMs are trained to extract these facial 

features before applying the projection method. 

 

The results in the final system show that some of the FCPs can be detected better than others. 

This is concluded by looking at its positive detection rate and its false positive rate. The reason 

for the relative poor performance of some FCPs is probably because the FCP itself is non-stable. 

For instance, the mouth corners can take different shapes at different expressions. To detect the 

FCPs we need to account that noise is very probable at corner regions. Taking this into account it 

means that at the training of the RVM noise is included in the training samples. This affects the 

final performance of the RVM. It is a trade-off that needs to be made. In the case of invoking the 
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projection method, finding the boundaries is proven to be very robust, except if the feature 

boundary is distorted. 

 

11.2 Future works 

For future research the following items are be recommended: 

 

• In the current situation, a detected face cannot be further processed by the FCP detection 

module if the face is slightly rotated. Some of the FCPs can be occluded by other parts of 

the face. The face detection module is trained on a database with unaligned faces. Some 

of them are slightly rotated to the left, some to the right, some looking up, etc. For the 

two modules to work together perfectly, the face detection module should be trained 

strictly on full frontal aligned faces. This is because the FCP detection module is 

designed to work with these faces. 

 

• The WUXTRAP model may be improved by considering a faster implementation of the 

training application. This means that the training of AdaBoost and RVM can be 

improved. The current implementations of these algorithms are done in Matlab 6.5, 

which is known for its computational power but not for its speed. Also other variants of 

the AdaBoost learning algorithm can be considered. They differ in the updating schemes 

for the weights. 

 

• In the face detection module, the scanning process can be speed up by other techniques. 

Using edge detectors plain backgrounds might be filtered out and pruned from being 

scanned. This reduces the overall scanning time on different resolutions. 

 

• The performance of the system can also be improved by using an extended set of the 

Haar-like features. In our training model, we used only 5 simple features.  

 

• The detection rate during training may be increased by incorporating the bootstrapping 

method. This method uses misclassified samples as training input in the next iteration. 

This way we can force the learning algorithm to adapt the output results from previous 

training rounds. We have not implemented this procedure in the current training model 

because this would certainly affect the training time negatively. 
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Appendix A: Cross-validation for RVM Kernel 

Selection  
 
Table 11: RVM 2-fold cross validation result trained on feature 38978. 

Kernel # False + # False - # True + # True - Error rate 
% 

SD 

Gauss 0.5  112 
122 

182 
139 

322 
357 

384 
382 

27.75 2.33 

Gauss 1.0  166 
191 

105 
120 

394 
381 

335 
308 

29.10 2.83 

Gauss 2.0 138 
150 

131 
107 

375 
387 

356 
356 

26.30 0.85 

Gauss 4.0 90 
131 

219 
92 

272 
417 

419 
360 

26.60 6.08 

Gauss 5.0 143 
113 

73 
178 

444 
305 

340 
404 

25.35 5.30 

Laplace 0.5 162 
51 

90 
405 

408 
97 

340 
447 

35.20 14.42 

Laplace 1.0 112 
142 

129 
124 

379 
368 

380 
366 

25.35 1.77 

Laplace 2.0 145 
127 

78 
235 

431 
256 

346 
382 

29.25 9.83 

Laplace 3.0 99 
161 

216 
93 

292 
399 

393 
347 

28.45 4.31 

Laplace 4.0 152 
129 

84 
132 

413 
371 

351 
368 

24.85 1.77 

Laplace 5.0 85 
178 

192 
69 

333 
406 

390 
347 

26.20 2.12 
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Table 11: RVM 2-fold cross validation result trained on feature 28893. 

 

Kernel # False + # False - # True + # True - Error rate 
% 

SD 

Gauss 0.5  20 
96 

475 
248 

39 
238 

466 
418 

41.95 10.68 

Gauss 1.0  110 
398 

232 
52 

265 
451 

393 
99 

39.60 7.64 

Gauss 2.0 159 
75 

141 
334 

342 
183 

358 
408 

35.45 7.71 

Gauss 3.0 145 
317 

151 
57 

345 
447 

359 
179 

33.50 5.52 

Gauss 4.0 136 
92 

129 
277 

374 
220 

361 
411 

31.70 7.35 

Gauss 5.0 151 
247 

153 
97 

356 
394 

340 
262 

32.40 2.83 

Laplace 0.5 107 
174 

167 
86 

330 
417 

396 
323 

26.70 0.99 

Laplace 1.0 127 
382 

163 
39 

331 
467 

379 
112 

35.55 9.26 

Laplace 2.0 311 
150 

62 
117 

444 
377 

183 
356 

32.00 7.50 

Laplace 3.0 160 
66 

125 
346 

358 
171 

357 
417 

34.85 8.98 

Laplace 4.0 124 
138 

116 
144 

391 
349 

369 
369 

26.10 2.97 

Laplace 5.0 173 
140 

99 
106 

404 
391 

324 
363 

25.90 1.84 

 



Appendices                                                                Appendix A: Cross-validation for RVM Kernel Selection 

 

 xix 

Table 11: RVM 2-fold cross validation result trained on feature 45297. 
 
Kernel # False + # False - # True + # True - Error rate 

% 
SD 

Gauss 0.5  20 
90 

474 
346 

39 
141 

467 
423 

46.50 4.10 

Gauss 1.0  151 
465 

248 
32 

260 
460 

341 
43 

44.80 6.93 

Gauss 2.0 205 
183 

194 
190 

292 
324 

309 
303 

38.60 1.84 

Gauss 3.0 178 
150 

177 
182 

328 
313 

317 
355 

34.35 1.63 

Gauss 4.0 155 
196 

174 
185 

314 
327 

357 
292 

35.50 3.68 

Gauss 5.0 81 
175 

310 
165 

187 
338 

422 
322 

36.55 3.61 

Laplace 0.5 25 
186 

470 
173 

41 
316 

464 
325 

42.70 9.62 

Laplace 1.0 188 
174 

178 
172 

309 
341 

325 
313 

35.60 1.41 

Laplace 2.0 418 
177 

53 
184 

454 
309 

75 
330 

41.60 7.78 

Laplace 3.0 67 
217 

361 
127 

142 
370 

430 
286 

38.60 5.94 

Laplace 4.0 64 
108 

374 
305 

116 
205 

446 
382 

42.55 1.77 

Laplace 5.0 177 
111 

144 
317 

350 
189 

329 
383 

37.45 7.57 
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Appendix B: Test Sets 
 
Face Test Set 1 (FTS1): 
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Face Test Set 2 (FTS2): 
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 FCP Test Set 2 (FCPTS1): 
 

 
 

 


