

Thesis Committee

Drs. Dr. L. J. M. Rothkrantz Delft University of Technology

Dr. Ir. C.A.P.G. van der Mast Delft University of Technology

Dr. K. van der Meer Delft University of Technology

MSc. D. Datcu Delft University of Technology

Contact: Wai Shung Wong w.s.wong@ewi.tudelft.nl

 William Chan w.chan@ewi.tudelft.nl

Delft University of Technology
Faculty of Information Technology and Systems
Man Machine Interaction group
September 2005

Revised: 28 September 2005.

 i

Acknowledgements

It is common to be asking questions during any research, but finding the right answers is much

more of a challenge. We have learnt that the key to successful scientific research is an aggressive

and persistent attitude and patience to conduct research. There were times of stress and also times

of relieve. We have found ourselves lost in the enormous amount of information, and also stuck at

the little information we can lay our hands on, especially in the beginning which is very crucial in

every research. But a good beginning is just as important as a successful ending. We would like

to acknowledge the help and advice we get during the engagement of this thesis.

We especially would like to thank Professor Leon Rothkrantz for supervising, guiding and

advising us throughout the whole project. The continuous feedback and discussions about the

ideas were really pleasant and motivating. We would also like to thank Dragos Datcu for his

cooperation and valuable help. He is also the one we have been turning to for countless

brainstorm sessions. To everyone, especially our family and friends who have been supporting us

we would like to express our sincere gratitude. Last but not least we like to thank each other for

the mutual support, the hard work and the laughter during the long hours.

Delft, 16 September 2005

William Chan

Wai Shung Wong

 iii

Abstract

Computer vision has become one of the most challenging subjects nowadays. The need to extract

information from images is enormous. Face detection and extraction as computer-vision tasks

have many applications and have direct relevance to the face recognition and facial expression

recognition problem. Potential application of face detection and extraction are in human-

computer interfaces, surveillance systems, census systems and many more.

In this thesis the focus is on the realization of a fully automatic emotion recognition system. The

exploited approach splits the system into four components. Face detection, facial characteristic

point extraction, tracking and classification. Face detection is employed by boosting simple

rectangle features that give a decent representation of the face. These features also allow the

differentiation between a face and a non-face. The boosting algorithm is combined with an

Evolutionary Search to reduce the overall search time. Facial characteristic points (FCP) are

extracted from the detected faces. The same technique applied on faces is utilized for this

purpose. Additionally, FCP extraction using brightness distribution has also been considered.

Finally, after retrieving the required FCPs the emotion of the facial expression can be determined.

The Relevance Vector Machine (RVM) is the classification method that is used where a classifier

is required.

Index terms - face detection, facial feature extraction, facial characteristic point extraction, facial

expression recognition, Relevance Vector Machine, corner detection, AdaBoost, evolutionary

search, hybrid projection.

 v

CHIM group

The Computer Human Interaction Machine (CHIM) group aims at finding solutions to specific

problems in the area of machine vision and machine learning. The ultimate goal is to use the

models so as to enhance the capabilities of the intelligent systems. The group is focused on the

research in the fields of sensor data extraction and processing, data fusion, reasoning and

information presentation. The efforts are concentrated on the development of functional

components for applications that perceive the environmental world, extract the meaning and

construct proper feedback in specific contexts.

Current ongoing projects include: Face detection, Facial feature detection, Facial expression

recognition, Pattern recognition and AIBO. More information about the CHIM group can be

found at: http://mmi.tudelft.nl/.

 vii

Table of Contents

List of Figures and Tables.. xi

��Introduction.. 3

1.1 Related works .. 7
1.1.1 Applying Support Vector Machine to face detection... 7
1.1.2 Neural-network-based face detection... 8
1.1.3 Real-time object detection.. 10
1.1.4 Expert system for automatic analysis of facial expressions... 11
1.1.5 Automatic feature extraction.. 11
1.1.6 Feature point tracking by optical flow in facial expression ... 12

1.2 Thesis overview... 12

��Problem Definition and Thesis Assignment... 15

2.1 Facial Expression Dictionary – FED... 15
2.2 Research question and objectives.. 17
2.3 Scope of the research... 19
2.4 Thesis assignment.. 21

��Models and Algorithms ... 23

3.1 WUX-values Training Application (WUXTRAP).. 23
3.2 Facial Landmarks Extraction (FLEX) ... 26
3.3 Face model .. 26

� Face Detection – Methods and Tools .. 31

4.1 Relevance Vector Machine (RVM)... 31
4.2 Face detection – the initial idea ... 37
4.3 Haar-like features and integral image representation .. 39
4.4 The AdaBoost learning algorithm ... 42
4.5 Genetic Algorithm for faster boosted feature selection... 45
4.6 The differential cascade... 47

� Face Detection – Experimental Results.. 51

5.1 Relevance Vector Machine on intensity values... 51
5.2 Relevance Vector Machine on binary values .. 52
5.3 Parameter tuning for Relevance Vector Machine using 2-fold cross validation 53
5.4 Evolutionary-AdaBoost training results .. 57

 viii

� Facial Characteristic Points Detection – .. 61

Extraction ... 61

6.1 Corner detection algorithms comparison... 61
6.2 Harris and Stephens corner detection .. 64

6.2.1 Theoretical background.. 64
6.2.2 Corner model.. 64
6.2.3 Corner decision .. 67
6.2.4 Parameter tuning .. 69

6.3 Sojka corner detection ... 71
6.3.1 Theoretical background.. 71
6.3.2 Corner model.. 73
6.3.3 Corner decision .. 74
6.3.6 The practical application of the algorithm ... 78
6.3.7 Parameter tuning .. 80

� Facial Characteristic Points Detection – .. 83

Classification .. 83

7.1 Feature vector extraction ... 83
7.2 Training the Relevance Vector Machine with Evolutionary-AdaBoost.............................. 85
7.3 Training and test results... 87

	 Hybrid Projection for FCP Detection... 89

8.1 Theoretical foundation... 89
8.2 Integral projection function ... 90
8.3 Variance projection function ... 92
8.4 Hybrid projection function .. 93
8.5 Facial feature extraction .. 99

 Analysis and System Design .. 105

9.1 Requirement analysis... 105
9.1.1 Purpose of the system... 105
9.1.2 Scope of the system.. 105
9.1.3 Functional requirements... 106
9.1.4 Non-functional requirements ... 106
9.1.5 Pseudo requirements .. 106

9.2 System models... 107
9.2.1 Use cases.. 107
9.2.2 Class diagram... 108
9.2.3 Sequence diagrams... 119

9.3 User interface .. 121

 ix

�� System Test... 125

10.1 Test Plan.. 125
10.2 Face detection module test .. 126
10.3 Facial Characteristic Points detection module test.. 129
10.4 Integrated system test.. 140

�� Conclusions, Discussion and Future works ... 143

11.1 Conclusions and discussion... 143
11.2 Future works.. 146

References... 147

Appendix A: Cross-validation for RVM Kernel Selection...xvii

Appendix B: Test Sets.. xx

 xi

List of Figures and Tables
Figure 1: CCTV network. .. 3
Figure 2: Generic emotion recognition system.. 5
Figure 3: Geometrical interpretation of how the SVM separates the face and non-face classes. 7
Figure 4: Face detection algorithm in [Rowl98].. 8
Figure 5: Face detection system as in [Sung98]. ... 9
Figure 6: Kobayashi and Hara face model... 11
Figure 7: Global design of the FED system... 15
Figure 8: Result of FED... 16
Figure 9: FED system. ... 20
Figure 10: New scheme for the FED system. .. 20
Figure 11: General scheme of WUXTRAP. .. 25
Figure 12: General scheme of FLEX... 27
Figure 13: The Kobayashi and Hara face model used in the FED... 28
Figure 14: SVM (left) and RVM (right) classification result .. 32
Figure 15: Gamma distribution... 34
Figure 16: Sigmoid link function used in classification model. .. 36
Figure 17: Samples from the MIT-CBCL face database. .. 37
Figure 18: Example of rectangle features. ... 41
Figure 19: The value of the integral image at point (x, y). .. 41
Figure 20: A Haar-like feature has five attributes.. ... 41
Figure 21: The AdaBoost algorithm. ... 43
Figure 22: Evolutionary Search ... 46
Figure 23: A cascaded classifier with N layers.. 48
Figure 24: Haar-features.. .. 54
Figure 26: ROC curves of three kernels. ... 57
Figure 27: Test image with 291 reference corners... 63
Figure 28: Auto-correlation principal curvature. ... 67
Figure 29: Neighbourhood of point Q ... 72
Figure 30: Condition 2)(0 πϕ ≤∆≤ Y is not satisfied for Y. ... 76
Figure 31: Isoline segment XY1 aiming at Q.. .. 76
Figure 32: Sojka corner detection algorithm. .. 78
Figure 33: Scheme representing the training of weak classifiers... 86
Figure 34: Model of an eye image. .. 90
Figure 35: Use projection function to locate the boundaries of the facial feature. 90
Figure 36: Case where IPF cannot retrieve the vertical variation.. 91
Figure 37: Case where VPF fails to capture the vertical variation. ... 92
Figure 38: Synthetic eye image. .. 93
Figure 39: IPF and VPF complement each other... 93
Figure 40: Eye image: (Top) Vertical projection (Bottom) Horizontal projection........................ 94
Figure 41: Mouth image: (Top) Vertical projection (Bottom) Horizontal projection. 95
Figure 42: Vertical projection of an eye image ... 96
Figure 43: Horizontal projection of an eye image ... 97
Figure 44: Vertical projection of a mouth image... 97
Figure 45: Horizontal projection of a mouth image... 98
Figure 46: General scheme of WUXTRAP for feature training. ... 100
Figure 47: Use case diagram for FLEX. .. 107
Figure 48: The SelectInputImage use case. ... 107

 xii

Figure 49: The StartFLEXDetection use case. .. 108
Figure 50: The VerifyFLEXResults use case. ... 108
Figure 51: Class diagram of FLEX.. 109
Figure 52: Description of the ImageControl class. .. 110
Figure 53: Description of the FaceImageScanner class... 111
Figure 54: Description of the FaceCascade class. ... 112
Figure 55: Description of the FeatureImageScanner class. ... 112
Figure 56: Description of the FeatureCascade class. ... 113
Figure 57: Description of the HybridProjection class.. 114
Figure 58: Description of the CornerImageScanner class. .. 114
Figure 59: Description of the HarrisCornerDetector class. ... 115
Figure 60: Description of the SojkaCornerDetector class. .. 116
Figure 61: Description of the CornerCascade class... 117
Figure 62: Description of the RVMFaceClassificator class... 118
Figure 63: Description of the RVMCornerClassificator class... 118
Figure 64: Description of the RVMFeatureClassificator class. ... 119
Figure 65: Sequence diagram of FLEX. Part 1: face detection. .. 120
Figure 66: Sequence diagram of FLEX. Part 2: feature detection... 120
Figure 67: Sequence diagram of FLEX. Part 3: FCP extraction.. 121
Figure 68: GUI of FLEX at start-up. ... 121
Figure 69: File-Open menu.. 122
Figure 70: File-open dialog.. 122
Figure 71: Image selected for detection... 123
Figure 72: Detection result after pressing the "Scan faces" button.. 123
Figure 73: Image selected for FCP detection... 124
Figure 74: Detection result after pressing "Find FCPs" button. .. 124
Figure 75: Illustration of the grouping function. ... 128
Figure 76: test result on test group3.jpg of set FTS1... 129
Figure 78: Screen shots of FCP detection on right eye inner corner. .. 132
Figure 79: Screen shots of FCP detection of left eye outer corner. ... 133
Figure 80: Screen shots of FCP detection of right eye outer corner. ... 134
Figure 81: Screen shots of FCP detection on mouth left corner (MLC)...................................... 135
Figure 82: Screen shots of FCP detection on mouth right corner (MRC). 136
Figure 83: Screen shots of integral projection on left eye. .. 138
Figure 84: Screen shots of integral projection on right eye. .. 139
Figure 85: Screen shots of integral projection on mouth... 140

Table 1: Description of the face model points. .. 28
Table 2: MIT CBCL subset specification. ... 38
Table 3: RVM test results: training and testing is done on the same set. 38
Table 4: Dataset used to learn the Haar-like features. ... 42
Table 5: cascaded classifier specification. ... 49
Table 6: Test set specification. .. 51
Table 7: RVM test results on intensity values. .. 52
Table 8: RVM test results .. 53
Table 9: RVM test results .. 53
Table 10: EABoost specification ... 54
Table 11: RVM 2-fold cross validation results trained on Haar-like features. 55
Table 12: EABoost feature test set. ... 57

 xiii

Table 13: Cascade test set.. 58
Table 14: EABoost parameters. ... 58
Table 15: Comparison of different corner detectors .. 62
Table 16: Comparison of direct corner detectors on a test image of 291 reference corners.......... 63
Table 17: Comparison of direct corner detectors on a test image of 470 reference corners.......... 64
Table 18: Specification of the type of corners. .. 69
Table 19: Harris test parameters. ... 70
Table 20: Test result by varying sigma.. 70
Table 21: Test result by varying threshold. ... 70
Table 22: Test result by varying radius. .. 71
Table 23: Explanations and relations among the expressions in Eq. 6.14. 75
Table 24: Sojka test parameters. .. 81
Table 25: Sojka test result.. 82
Table 26: Dataset description of different corners... 84
Table 27: EABoost training parameters for all type of corners. .. 87
Table 28: The evaluation results from the EABoost training. ... 87
Table 29: Test results at finding the optimal value for the hybrid projection for mouth............... 98
Table 30: Test results at finding the optimal value for the hybrid projection for eyes. 99
Table 31: Dataset specification for left eye. .. 101
Table 32: Dataset specification for the right eye. .. 101
Table 33: Evaluation test result for detecting the whole eye. .. 101
Table 34: Dataset specification for the mouth. .. 102
Table 35: Evaluation test result for detecting the mouth. .. 102
Table 36: test result of FTO1 on FTS1. ... 127
Table 37: test result of FTO2 on FTS2. ... 128
Table 38: Test result for left eye inner corner (LEIC). .. 130
Table 39: Test result for right eye inner corner (REIC)... 131
Table 40: Test result for FPC detection of left eye outer corner (LEOC)................................... 133
Table 41: Test result for FCP detection of right eye outer corner (REOC). 134
Table 42: Test result for FCP detection of mouth left corner (MLC).. 135
Table 43: Test result for FCP detection of mouth right corner (MRC). 136
Table 44: Integral projection results on left eye. ... 137
Table 45: Integral projection results on right eye. ... 138
Table 46: Integral projection results on mouth. ... 139

Part I

Introduction and Problem Definition

Page 3 of 170

��
Introduction

For the past decades, many projects have been started with the purpose of learning the machine to

recognize human faces and facial expressions. Computer vision has become one of the most

challenging subjects nowadays. The need to extract information from images is enormous. Face

detection and extraction as computer-vision tasks have many applications and have direct

relevance to the face-recognition and facial expression recognition problem. Potential application

of face detection and extraction are in human-computer interfaces, surveillance systems, census

systems and many more. It is not so hard to imagine the importance of face detection in the

means of face and emotion recognition. The importance of this subject can be ratified by the

recent terrorism bombings in London. In London, monitoring of people especially in the public

places is done by closed-circuit cameras and televisions, which are linked via cables and other

direct means (see Figure 1). These can also be found in casinos and banks for instance.

����������	�
�	

���
�	�����

��	�����	�

������	

���	����
��

������	��
�����
�����������

�������

���	����
��

������	��
�����
����

Figure 1: Closed-circuit television (CCTV) network.

Part I Introduction and Problem Definition 1 Introduction

Page 4 of 170

The CCTV systems [Dick03] transmit their digital images over the network and the images are

analyzed with face- and behavioural-recognition software to identify unusual patterns. After the

incidents the authorities were able to identify the attackers with the help of the recordings of these

cameras. As they have done in London, video shots of faces allow for the prompt identification of

suspects soon after security events happen. The set-up is very simple. Some cameras exist to

capture the faces of people as they pass through critical locations. Other cameras like the

complementing overview cameras are able to detect a threat, which clearly failed in doing its job

to prevent the terror.

The surveillance systems like the CCTV have the same main principle. First, a face is detected.

Then, the detected face can be tracked and enables important features to be extracted for analysis.

The type of features that is extracted depends strongly on what the system wants to achieve.

Features can be obtained for either the recognition of a face (identification) or the recognition of

an emotion/expression. Face identification is relevant in retrieving a person’s identity and

emotion recognition has its contribution in prevention of crime and calamities for instance. In the

latter it concerns aggression detection, unusual or nervous behavioural detection. That is also why

extraction and recognition of facial expression has been a hot topic last decades. It is important to

note that face detection and facial expression recognition are distinct subjects. In face detection

the different expressions are considered as noise, where as in facial expression recognition the

identity is considered as noise. The latter implies that different persons have different neutral

faces with different feature shapes (big/small eyes, big/small mouth, etc.).

Facial expressions are crucial in human communication. Human communication is a very

complex phenomenon as it involves a huge number of factors: we speak with our voice, but also

with our hands, eyes, face and body. The interpretation of what is being said does not only

depend on the meaning of the spoken words. Our body language i.e. gestures modify, emphasize,

and contradict what we say. Facial expressions provide sensitive cues about emotional responses

and play an important role in human communication. Therefore, it is valuable if this aspect of

human communication can also be applied for more effective and friendly methods in man-

machine interaction. In verbal communication, the conversation becomes very difficult if neither

participant understands the language the other is speaking. The same applies for nonverbal

communication: both parties must have the same interpretation of the nonverbal signals. Like

language, nonverbal signals are not universal. Moreover, they are context and culture dependant.

Research has shown that the ability to communicate nonverbally is something that has to be

learnt. According to (Eckman & Friesen 1972) people are born with the ability to generate and

interpret only six facial expressions: happiness, anger, disgust, fear, surprise and sadness. All

Part I Introduction and Problem Definition 1 Introduction

Page 5 of 170

other facial expressions have to be learned from the environment the person grows up. Humans

are capable of producing thousands of expressions that vary in complexity, intensity, and

meaning. Subtle changes in a facial feature such as tightening of the lips are sufficient to turn the

emotion from happy to angry. And to think that the eyes and eyebrows can also take on different

shapes, one may imagine how complex the problem gets.

With the ability to recognize facial expressions and thus getting information about the

psychological state of a person, a lot of applications can be considered. Systems can be made

smarter and safer. Consider for example the Driver Vigilance Monitoring System [Dikk04]. The

idea is that the system will alert the driver when it sees that he/she is in a state of somnolence. As

the name already indicates, the system is installed in the car for monitoring the driver’s facial

expression continuously. The input to this system is a sequence of images of the driver’s face

captured by a camera. The system will then make an assessment based on the movements of parts

of the face, especially the eyes and eye lids. Another interesting application that emphasizes the

importance of nonverbal communication is the Facial Expression Dictionary (FED). This is an

online dictionary that allows us to find the meaning of certain facial expressions. In fact, given a

facial expression, the system is able to extract and recognize the given facial expression. More

about this system will follow in the next chapters, as this thesis project is an extension to the FED

framework.

Figure 2: Generic emotion recognition system.

Face Detection

Feature Extraction

Facial Expression/
Emotion Recognition

Input Image

Classification/Identification/Verification

Other Applications:
• Face Tracking (video)
• Pose Estimation
• Compression
• HCI Systems

Other Applications:
• Facial Feature Tracking (video)
• Face Recognition
• Gaze Estimation
• HCI Systems

Approaches:
• Holistic Templates
• Feature Geometry

Face Recognition /
Identification

Part I Introduction and Problem Definition 1 Introduction

Page 6 of 170

For a system to recognize a facial expression the system first needs to detect and locate the faces

in the image or video (see Fig. 1 for a generic face recognition system). Depending on the used

system, the face in the image needs to satisfy some constraints like full frontal view, silhouette

view, rotations of the frontal face within some boundaries and certain light conditions. The

constraints all depend on the face model that the system uses. Having found a face, the next step

is to extract the facial features: eyes/eyebrows, nose/nostrils, mouth/lips, cheeks/forehead, chin,

etc. Not all of these features are of equally importance for facial expression recognition. The final

step in this face analysis process is to pass the obtained data to an expert system that determines

in what kind of psychological state the person was.

In the past, Morishima et al. [Mori93] implemented a five-layered manual-input neural network

which is used for recognition and synthesis of facial expressions. In [Zhao96] they explained a

singular emotional classification of facial expressions using a three-layered manual-input

backpropagation neural network. [Kearney and McKenzie] developed a manual-input memory-

based learning expert system, which interprets facial expressions in terms of emotion labels given

by college students without formal instruction in emotion signals. Rothkrantz et al. [Roth00]

proposed a point-based face model composed of two 2D facial views, namely the frontal- and the

side view. Based on a point-based face model, expression-classification rules can be converted

straight-forwardly into the rules of an automatic classifier. In [Chan04] we tried to detect a face

and extract facial features using the Relevance Vector Machine classifier. In order to recognize

facial expressions, the additional step to do is to find the facial feature points which will be used

for analyzing the facial expression. This facial expression recognition method will be examined

and explained in this report.

A critical step in detecting a face with its facial features is to distinguish the face and non-faces.

This is done by using a classifier. There are different kinds of classifying methods. Some well

known examples are K-Nearest Neighbours (KNN), Tree-Augmented Naive-Bayes (TAN) and

Support Vector Machines (SVM). The latter, being a state-of-the-art classification method, is

based on some rather simple ideas and provides a clear intuition of what learning from examples

is about. Practical applications have already shown outstanding high performances of this

classification method. Some examples of recent applications of SVM are in handwritten digit

recognition [Vapn96, Burg97], face detection in images [Osun97] and text categorization

[Duma98, Joac97]. However, despite its success, there are some significant and practical

disadvantages in the SVM learning methodology. A recently introduced classification method

based on the idea of the Support Vector Machine is the Relevance Vector Machine (RVM)

[Tipp00]. RVM is a Bayesian framework for regression and classification with analogous sparsity

Part I Introduction and Problem Definition 1 Introduction

Page 7 of 170

properties to the SVM. It can be seen as a probabilistic version of SVM but without the

disadvantages and simultaneously providing a number of additional advantages (see Chapter 4 for

more details).

1.1 Related works

In [Chan04] an extensive overview is given of related works in the area of face detection and

facial expression recognition. To provide a context for our problem definition we review some of

them globally. Section 1.1.1 to 1.1.3 discuss about some existing face detection work. Section

1.1.4 to 1.1.6 describes some of the projects done on facial expression recognition.

1.1.1 Applying Support Vector Machine to face detection

A Support Vector Machine (SVM) is introduced for detecting human faces in grey-level images

[Osun97]. First, face-like patterns are scanned at many possible scales and then SVM is used to

classify them into the appropriate class (face/non-face). The SVM is trained with a second degree

polynomial as kernel function and an upper bound C=200. This upper bound is the expected

value of the ratio between the number of support vectors and the total number of data points on

the generalization error. Also a database is used consisting of face and non-face 19x19 pixel

patterns, assigned to classes +1 and -1 respectively. Once the SVM has been trained it is

primarily used over images that do not contain faces. Misclassifications are stored for use as

negative examples in subsequent training phases. Images with many different texture patterns are

good resources for false positives. This way of reusing misclassified examples is called the

‘bootstrap’ method which was successfully used by Sung and Poggio [Sung98]. This method will

also reduce the size of the non-face class which is much broader and richer than the face class.

After the SVM is fully trained it is incorporated as a classifier in the system for pattern

recognition of face/non-face.

Figure 3: Geometrical interpretation of how the SVM separates the face and non-face classes. The
patterns are real support vectors after training the system.

Non-faces

Faces

Part I Introduction and Problem Definition 1 Introduction

Page 8 of 170

This SVM face detection system is compared to Sung and Poggio’s on two sets of images. On test

set A, which contains 313 high-quality images with the same number of faces, SVM has a

detection rate of 97.1% with 4 misclassifications, while Sung and Poggio’s has a detection rate of

94.6% with 2 misclassifications. On test set B containing 23 images of mixed quality with a total

of 155 faces, SVM has a slightly poorer performance. While having a same detection rate, SVM

has 20 misclassifications against 11 of Sung and Poggio’s.

1.1.2 Neural-network-based face detection

Rowl et al. [Rowl98] present a neural network-based face detection system for upright frontal

views of faces. In their work only gray-scale images are considered. The algorithm works by

applying one or more neural networks directly to parts of the input image, and judging their

results. Each network is trained to output the presence or absence of a face. The algorithms and

training methods are designed to be general, with little customization for faces. The neural

networks are trained with images containing faces and images not containing any faces. It is also

using the “bootstrap” method so as to reduce the size of the training set that is needed for images

not containing faces.

Figure 4: Face detection algorithm in [Rowl98].

The system operates in two stages. The first component uses a neural network-based filter which

receives as input a 20x20 pixel region of the image. The output will be positive or negative for

the presence, respectively absence of a face in the sub-window. Because a face can appear in

every part of an image, the filter is applied at every pixel position in the image. In order to detect

faces larger than the window size, the input image is repeatedly reduced in size by sub sampling.

Before the 20x20 pixels are passed to the neural networks, it is preprocessed with lighting

corrections and histogram equalization. Experiments show that the raw output from a single

network can contain a number of false detections. The second stage of the system consists of

Part I Introduction and Problem Definition 1 Introduction

Page 9 of 170

ways to deal with this problem. Two strategies for improving the reliability of the neural

network’s outputs are presented: merging overlapping detections from a single network and

arbitrating among multiple networks.

The authors also compared the performance of their system to other illustrious face detection

systems. Amongst them are Sung and Poggio’s system [Sung98] and the SVM face detection

system of Osuna, Freund and Girosi [Osun97]. The support vector machine has a number of

interesting properties, including the fact that it makes the boundary between face and non face

images more explicit. In the comparison using the same set of 23 images, Sung and Poggio’s

system results in a slightly poorer performance than Rowley’s system with a difference of 6 faces

out of 155.

Another neural network-based face detection system is that of Kah-Kay Sung and Tomaso Poggio

[Sung98]. They developed a generic human face detection system that finds vertically oriented

and un-occluded frontal views of human faces in gray-level images. Their system starts with

passing a small 19x19 sub-window over all portions of the image. The system is using a

clustering method with six “face” and six “non-face” clusters. Each cluster is a multi-dimensional

Gaussian with a centroid location and a covariance matrix that describes the local data

distribution. These clusters measure the “difference” between the sub-window and some

prototype distribution. The last step is to use a neural network to classify the sub-window as face

or non face using this ‘difference’.

Figure 5: Face detection system as in [Sung98].

The most critical part of their system is the learning algorithm for classifying window patterns as

faces or non-faces. The key components of this algorithm are: 1) this system uses a distribution-

based face model. So, they used a normalized window of 19x19 pixels to model the distribution

of canonical frontal face patterns. 2) In order to classify new patterns the “difference” between

each sub-window (after preprocessing and resizing) and the face distribution model is measured

and the result of these measurements are passed to a trained neural network which determines

Part I Introduction and Problem Definition 1 Introduction

Page 10 of 170

whether or not the new window pattern contains a face. This training procedure is done in the

‘bootstrap’ fashion as described before. The system is trained with 4150 positive and nearly

43000 negative examples.

They tested their system on two test databases. For the first database, consisting of 301 high

quality digitized images with frontal and near-frontal faces of 71 different people, the system

correctly finds 96.3 percent of all the face patterns and it makes only three false detects. For the

second database, consisting of 23 images of mixed quality with 149 face patterns in complex

backgrounds, the system achieves a 79.9 percent detection rate with five false detections. They

have not compared their system to other face detection systems.

1.1.3 Real-time object detection

P. Viola and M. Jones [Viol01] presented a face detection system based on their real-time object

detection framework. This framework involves three key contributions to the very positive

experimental results. The first one is the introduction of a new image representation called

integral image. An integral image makes it possible for the detection procedure, which classifies

images based on the value of simple features, to process an image very fast. Once an integral

image is computed, any of its features can be extracted at any scale or location in constant time.

The second is a learning algorithm, based on AdaBoost. This learning algorithm’s goal is to

construct classifiers by selecting a small number of important features. The third contribution is a

method for constructing complex classifiers by combining different classifiers in a cascade

structure. This increases the speed of the image processing process dramatically; it allows the

detector to discard background regions very quickly and consequently use more time for more

promising regions of the image. In the cascade structure, a series of classifiers are applied to

every sub-window. They will first pass through the initial classifier which eliminates a large

number of negative examples with very little processing. Then it will be passed to the subsequent

layers which will in turn eliminate additional negatives but require additional computation. In the

end the number of sub-windows will be reduced. This process is based on the fact that within any

single image a great majority of negative sub-windows exists.

The training dataset that is used for this face detection system consisted of 4916 hand labeled

faces scaled and aligned to a base resolution of 24 by 24 and 10000 24x24 non-faces. The final

detector is a 32 layer cascade of classifiers which included a total of 4297 features. This system

was compared to Rowley’s face detection system described above [Rowl98], which was by that

time widely considered as the fastest. The result was really promising. While having comparable

face detection performance, it was about 15 times faster.

Part I Introduction and Problem Definition 1 Introduction

Page 11 of 170

1.1.4 Expert system for automatic analysis of facial expressions

Rothkrantz et al. [Roth00] is working on the development of an intelligent automated system for

the analysis of non-verbal communication. The result was implemented as Integrated System for

Facial Expression Recognition (ISFER). In contrast to existing facial feature detectors which

utilize single image processing technique, a hybrid approach to facial feature detection is

presented. Instead of fine-tuning existing facial feature detectors, they combine multiple feature

detection techniques that are applied in parallel. The system deals with static face actions, which

mean that only the end-state of the facial movement is measured and compared to the neutral

position. The face model is defined as a point-based model composed of two 2D facial views,

namely the frontal- and the side view. The features defined by the model are extracted

automatically from the inputs which are still full-face/profile images. Different techniques are

used for extracting the facial features. The used algorithm first locates all facial features with

namely ANN for eye-, nose-, and mouth-detection. Once the windows containing the features are

found, different ANNs and other algorithms are applied for defining the facial characteristic

points for each feature. The changes in position of these points are observable and so the validity

of the model can be visually inspected.

Figure 6: Kobayashi and Hara face model.

1.1.5 Automatic feature extraction

In [Koba97] the authors developed an animated 3D face robot for real-time interaction with

human beings. The aim is to let the robot produce realistic human-like responses. In order to react

appropriately, the robot must first recognize the facial expression of the human. Then it has to

make a proper decision for an action, and finally it has to perform the action. The face model used

for this system is described in [Hara97]. The authors proposed a face model with 19 facial

characteristic points (see Figure 6). Movement of groups of facial characteristic points indicates a

Part I Introduction and Problem Definition 1 Introduction

Page 12 of 170

certain facial expression. These points are used in their system for facial expression recognition

and facial expression production.

Also different image processing algorithms are presented for extracting features of facial organs

and face contour. The facial organs include eyes, eyebrows, nose and mouth. Given face image

data, the irises can be positioned with an uncertainty of 3 mm in their location. This iris allocation

algorithm uses a correlation technique using brightness distribution data. Referencing to the iris

positions, the image processing procedure will continue with finding sub-areas containing the

facial organs described above with 100% certainty. For each found sub-area, there is an algorithm

to extract the contour lines of the facial organ. Following, the algorithm for finding the contour of

an eyebrow is described. 1) Reinforcement of the horizontal edge, (of the original image) 2)

template matching for eyebrow positioning, 3) and 4) lower and upper edges of eyebrow are

approximated by quadratic curves, 5) inner and outer parts of the closed contour of eyebrow are

binarized in terms of black and white, 6) find the maximum dark area by labeling technique.

1.1.6 Feature point tracking by optical flow in facial expression

Kanade et al. [Kana98] developed and implemented an optical-flow based approach (feature point

tracking) to capture the full range of emotion expression. This approach is sensitive to subtle

changes in facial expressions. Because face position in an image sequence may be slightly

transformed a transformation is adequate to normalize the face position. The positions of the

feature points are normalized by automatically mapping them to a standard face model. This

model is based on three facial feature points: the medical canthus of both eyes and the uppermost

point of the philtrum. In the facial feature point tracking phase, key feature points are manually

marked in the first digitized frame with a mouse around facial landmarks. The facial feature

points within 13x13 pixel windows are tracked by using a hierarchical optical flow method. The

displacement of each feature point is calculated by subtracting its current normalized position by

its normalized position in the first frame.

1.2 Thesis overview

The structure of this thesis report is chosen so that chapter 2 discusses the problem definition and

the thesis assignment. In the following chapter (chapter 3) models and algorithms, which gives an

important overview of our models, will be presented. In chapter 4 and 5 the discussion continues

with the face detector. All techniques, methods and algorithms used will be considered in more

detail, for instance the Adaboost algorithm and RVM classification model. After these chapters

the second part of this project will be presented. It starts with the examination of corner detectors

Part I Introduction and Problem Definition 1 Introduction

Page 13 of 170

and then using these corners detectors to extract the characteristic points or landmarks in chapter

6. Further classification of the detected corners is needed, which leads to the extraction of

relevant corner feature combined with the RVM classificator in chapter 7. Chapter 8 proceeds

with a technique called the projection method. This is used to track other remaining corners that

cannot be found with the corner detector algorithm. The analysis, design and implementation of

the prototype which demonstrates the result of our findings is included as chapter 9. Chapter 10 is

engaged with the test results of the prototype. We will conclude this thesis report with

conclusions, discussions and recommendations for future works.

Page 15 of 170

��
Problem Definition and Thesis Assignment

This chapter describes the outline of our thesis. This thesis-project can be considered as the

extension of a previous work, named FED (an online Facial Expression Dictionary [Jong02])

concerning a nonverbal dictionary. As the name already points out, FED is an online application

and it can be accessed via the World Wide Web. First, FED will be described in section 2.1. After

that, the objectives and the scope of our research will be defined in section 2.2 and 2.3. In the last

section, we will define our thesis assignment.

2.1 Facial Expression Dictionary – FED

Figure 7: Global design of the FED system

SERVER

CLIENT

FED USER GUI

FED ADMIN GUI

QPM
(Queries)

FED
Database

APM
(Admin)

C
om

m
unication Layer

LABEL

ACTIVE AU’s

GEO FEATURE

FACESHOP

PICTURE

Part I Introduction and Problem Definition 2 Problem Definition

Page 16 of 170

A verbal dictionary can be described as a tool that aims to provide a partial solution for the

problem where two persons neither understand the language the other is speaking but still want to

communicate. One can just look up the meaning of the words of another language. A nonverbal

dictionary has the same concept of a verbal dictionary, but it differs in the type of information

that is stored. Instead of words, a nonverbal dictionary contains information about all the ways

people communicate with each other nonverbally: facial expressions, gestures, posture, eye

movement and contact, speech rate, loudness, pitch, tone of voice and the placing of inflections.

The FED system is an online nonverbal dictionary. Figure 7 illustrates how the FED system

works. Currently, there are several ways to find an entry in FED. It is possible to have a label,

active action units, geometric features, a FaceShop-generated facial expression or an image as

input. A label is the specification of the expression by a keyword. Examples of label queries are

happiness, stressed, surprised, and so on. The keyword will be matched on three parts: the facial

expression label, the label synonyms and the description. Analogous to the label queries, a user

can look for FED entries by specifying which action units are active with the facial expressions

he is looking for. Also possible is to specify some specific geometric features like mouth open,

eyes closed or mouth open AND eyes closed. If a certain facial expression is unknown, the user

can use FaceShop to sketch the facial expression. The facial characteristic points (FCP) are

determined automatically while sketching. Another option to query FED entries is to submit a

picture of a face. The user has to mark the FCPs manually. The results for all queries are of the

same form and are illustrated in Figure 8.

Figure 8: Result of FED. The result panel displays the result in the same panel with the original

image and other details.

Part I Introduction and Problem Definition 2 Problem Definition

Page 17 of 170

FED handles query requests via client-server architecture. Figure 7 shows the global design of the

FED system. Below a short description of the individual components of FED are given.

• The FED user GUI (Graphical User Interface) enables the users to issue queries into

FED. It consists of a number of HTML pages and Java applets for handling each of the

query alternatives.

• The FED administrative GUI provides the GUI for the management part of the FED

system.

• The communication layer of the FED system resides on the server and handles all data

traffic between the client and the server.

• The Query Processing Module (QPM) takes care of all kind of queries that are issued by

the user.

• The Admin Processing Module (APM) implements the functionality needed to manage

the FED system.

• The FED Database contains all the entries in the dictionary, admin user information, and

log info. The PostGreSQL database management system is used to implement the

database.

With this description of the FED, we can continue with the problem definition to see what our

research project will change in FED.

2.2 Research question and objectives

Before we define our research question and objectives, we summarize the idea of a specific part

of FED. We only focus on that part of FED, which allows the user to send a picture. This image

input will be labelled by emotional word (happiness, sad, etc.). FED requires the user to manually

locate the face and facial characteristic points (FCPs). The FCPs are predefined conform the

Kobayashi and Hara face model. After manually selecting and submitting the points an emotional

word will be output. Thus, FED lacks the ability of automatic extraction of facial characteristic

points that are needed for the facial expression recognition process. In the current situation user

interaction is needed to complete the whole procedure (see Figure 9).

This research is a first step towards a fully automatic emotion recognition system. We define a

fully automatic emotion recognition system as: given an input image containing one or more

human faces the corresponding emotions are output without any further interaction from the user.

Part I Introduction and Problem Definition 2 Problem Definition

Page 18 of 170

Since this research can be seen as an elaboration of the FED we will concentrate only on the

specific parts of the framework to make fully automatic emotion recognition as much as possible.

Our goal is thereby to fully automate the face detection and the extraction of facial characteristic

points. These characteristic points depend on the face model that is used in the emotion analyzing

module in FED. In this case the Kobayashi and Hara face model is used. Further, we want to

mention that this fully automatic emotion recognition system is built on a relative new and

promising classifier RVM. The use of RVM for face detection is described in our previous work

[Chan04]. In the following we will define the research question and the research and

implementation objectives of this thesis project.

Research question:

Our research question is defined as follows:

“How to realize a fully automatic facial expression recognition system using a sparse

learning Relevance Vector Machine?”

Research objectives:

• Face detection as a first step to automatic emotion recognition; it is important that it is

fast and robust. How can this be achieved? What are the requirements for robust face

detection?

• What are the difficulties for detecting/extracting facial characteristic points from images?

• RVM is applied in the different phases of the project. What can be said about the

performance of RVM?

• What other techniques should be combined with RVM to make automatic face and FCP

detection possible? How is the performance of the final system?

Implementation objectives:

• The final system can be built within the FED framework. Figure 10 illustrates the new

working/scheme of FED after the implementation. Users would no longer be required to

select feature characteristic points manually. The final software consists of three modules

that can be integrated into the FED framework: face detection module, facial point

extraction module and classification module. Since the FED was built with java, we will

also implement the system/module in java/java2. We attempt to build the module as

compatible as possible to the FED so that minimal adjustment to the existing FED code is

needed. Note that the actual integration of these modules within the FED framework will

not be done by us during this project.

Part I Introduction and Problem Definition 2 Problem Definition

Page 19 of 170

• Build a prototype to test the modules.

• The face detection module is able to detect 80 % of all frontal views of human faces in

the input image. This is constrained by the minimal resolution of the face which must be

at least 19x19 in the original input. For computational cost reduction a dimension of

24x24 pixels of the original input is considered.

• Characteristic point extraction module should be able to detect at least 80% of all

characteristic points.

2.3 Scope of the research

This thesis project focuses on the realization of a fully automatic recognition system based on the

FED framework. This includes all aspects that are related to face detection and facial

characteristic point extraction. For face detection, in our case it means the selection of a suitable

face database, the training and testing algorithms and optimizing RVM’s performance by tuning

its parameters. The same facets are also applicable for facial characteristic point extraction.

After the facial characteristic points (FCPs) are extracted from the face image, a facial expression

can be determined. The latter is done by the existing FED emotion classification module

according to the FED framework. This also means that this project is limited to automatic face

detection and facial characteristic points’ extraction.

Part I Introduction and Problem Definition 2 Problem Definition

Page 20 of 170

Figure 9: FED system.

Figure 10: New scheme for the FED system. Manual face detection and FCP location is no longer

required.

CLIENT SERVER

FED USER GUI

QPM

FED
Database

C
om

m
unication Layer

PICTURE

Manual Face
Location

Determination of
FCP manually

Display
classification result

CLIENT SERVER

FED USER GUI

QPM

FED
Database

C
om

m
unication Layer

PICTURE

Automatic Face
Detector

Automatic FCP detector
with user feedback

Display classification
results

Part I Introduction and Problem Definition 2 Problem Definition

Page 21 of 170

2.4 Thesis assignment

To conclude this chapter, we define our thesis assignment. It consists of different parts and the

summary of these are listed below:

• Literature survey: a research on related works on the topics of face detection, facial

characteristic point detection, facial expression recognition and classification methods.

• Model design: design a model as a solution to the problem of automatic facial

characteristic point detection. This model is built of multiple methods and algorithms.

• Prototype: implement the designed model.

• Tests: write a test plan to test the prototype and depicts the results.

• Scientific paper: summarize this thesis project.

Page 23 of 170

��
Models and Algorithms

In this chapter, we present the models that we designed to detect faces and facial characteristic

points automatically. This chapter functions as an overview of the methods and algorithms that

are used in our model. Detailed explanation of these will be given in the appropriate sections of

the next chapters. Section 3.1 illustrates the WUXTRAP model which is the training model for

face detection and FCP detection. It generates data that is needed for the FLEX application,

which will be explained in section 3.2. In the last section, the face model used for WUXTRAP

and FLEX is described.

3.1 WUX-values Training Application (WUXTRAP)

For the purpose of face detection we studied the object detection system of Viola and Jones

[Viol01]. It is presented as a very fast and robust real-time object detection system. According to

the test results it outperforms many other systems on accuracy and speed. The main drawback of

this system is the training time, which is extremely long. To avoid this problem, we have

implemented the genetic algorithm (Evolutionary Search) that was described in [Trep03]. For the

extraction of the FCPs we used a corner detection method. Haar features are extracted from the

detected corners and passed to the classifier to determine whether the detected corner is one of the

desired FCP.

The model described in this chapter results in two applications: WUXTRAP and FLEX.

WUXTRAP is the training application (WUX-values Training Application): it contains the

training model that includes AdaBoost, Evolutionary Search and the RVM classification model.

WUXTRAP selects the proper features that will be used in FLEX (Facial Landmark Extraction)

to classify the given input images. WUX stands for three kinds of data that are needed to build

FLEX’s classifiers. These are generated during the training phase:

• W stands for the weights.

Part I Introduction and Problem Definition 3.Models and Algorithms

Page 24 of 170

• U stands for the used samples (relevance vectors).

• X stands for the input training data.

These WUX values are used by the relevance vector machine when performing its classification

task. WUXTRAP consists of two independent modules. Both modules aim for the same kind of

results which are Haar features and the corresponding WUX values. As a result, the training

algorithms used in both modules are the same. The modules are combined together and shown in

Figure 11. It depicts the general scheme of WUXTRAP.

In the face detection module, a labelled set of face images and a labelled set of non-face images

function as input. Both sets need to be converted to the integral image representation, which

offers the advantage of very fast feature evaluation. The images are evaluated against a huge set

of generated Haar-like features (this evaluation procedure will be explained in detail in section

4.3). Note that the set of Haar features for faces and corners are not the same. AdaBoost in

combination with the relevance vector machine trains and selects the best features that can

distinguish faces from non-faces. Because of the huge number of Haar-like features that needs to

be trained and evaluated, a genetic search algorithm is incorporated to improve the speed of this

procedure. The emphasis in Evolutionary Search (ES) lies on natural selection and survival of the

fittest (see section 4.5). The combination of these three processes is named EABoost. The

features selected by EABoost will be evaluated against the test set. If the features perform well

and achieve the proper detection rate, they will be added to the final set of features. The result of

this face detection training module will be a strong set of features that is able to distinguish faces

from non-faces. The WUX values belonging to these features will be stored.

In the FCP training module (also shown in Figure 11) different sets of images of facial

characteristic points serve as input. To be more precise, for each FCP a set of images of that FCP

is needed. In Figure 11 these sets are named REIC (right eye inner corner), MLC (mouth left

corner), NLC (nose left corner), etc, conform to their position in the face. These sets of FCP

images are manually extracted from the BioID and Carnegie Melon face database. For each FCP

there is also a set of non-FCP images. Note that only one FCP can be trained at a time. So there is

actually one RVM for one FCP.

Part I Introduction and Problem Definition 3.Models and Algorithms

Page 25 of 170

Figure 11: General scheme of WUXTRAP.

��������������������	
����������������������������������	
����������������������������������	
����������������������������������	
����������������������������������

AdaBoost

Evolutionary Search

RVM

EABoost

Face db

fa
ce

s
no

n-
fa

ce
s

Part I Introduction and Problem Definition 3.Models and Algorithms

Page 26 of 170

3.2 Facial Landmarks Extraction (FLEX)

Figure 12 depicts the general scheme of FLEX. FLEX is the running application that is able to

detect faces and detect FCP from face images. An input image can be selected from the graphical

user interface. After selection, the image processing component checks whether or not it is

necessary to resize the image or to convert the image into gray-scale. Then the image is scanned

on different resolutions for face detection. It does so by using the features and WUX values

obtained from WUXTRAP. It scans by applying the strong Haar-features on a small part of the

image and evaluating it with RVM. If faces are found, the proper ones will be passed to the FCP

detection component for FCP extraction and FCP detection. With the proper ones, faces with a

resolution greater than 64x64 pixels are meant. There are two running processes in this

component. A corner detection algorithm, either Harris (see section 6.2) or Sojka (see section 6.3)

or both will be applied on a face. An image of a region containing the corner point in the centre

will be cut out. The image around this corner will be classified with RVM to determine whether

or not the detected corner is a FCP. Besides the corner detectors, a hybrid projection method

(HPM, see chapter 8) will also be used to extract FCP candidates from faces. This HPM method

must be applied on a facial feature (eye, eye brow, etc) which is extracted from the face using a

RVM trained with proper facial features. FLEX ends with showing its results in the graphical user

interface.

3.3 Face model

FLEX’s objective is to extract FCPs from a face. FCP extraction can be defined as the process of

finding the facial features of a face model. The face model outlines the facial features of a generic

face. There exist several face models like 3D wire-frame models and 2D face models. 3D wire-

frame models are known too be very complex and very time-consuming in the construction of the

model. 2D face models on the other hand are rather simple but not very efficient given the fact

that 3D information of the face is lost. To overcome this problem there exist several systems

which defines the face model as a point-based model composed of two 2D facial views, namely

the frontal and the side view. Combining a dual view into a single model yields a more realistic

representation of 3D face. The FCPs that FLEX has to extract is defined by the face model of

Kobayashi and Hara [Hara97]. The reason for this face model is that it was already used in FED.

Part I Introduction and Problem Definition 3.Models and Algorithms

Page 27 of 170

Figure 12: General scheme of FLEX.

Kobayashi and Hara model the face through 30 FCPs. These 30 FCPs correspond to 30 of the 44

Action Units (AUs) of the FACS [Ekma78] system. The intention of FACS was to objectively

represent facial expression information. The 30 AUs chosen by Kobayashi and Hara are related to

the contours of the eyes, eyebrows and mouth. It was not needed to use for example the points

around the cheek and chin, because experiments have shown that people only pay attention to the

position and size of the eyes, eyebrows and mouth when classifying facial expressions. Figure 13

���������������� ������������������������� ������������������������� ������������������������� ���������������������������������

Multi-layer Image
scanning

RVM

Face Detection

Face Haar set
and WUX values

from
WUXTRAP

HPM

RVM

FCP Detection

RVM

Harris, Sojka
CD

FCP Haar set
and WUX

values from
WUXTRAP

Feature Haar
set and WUX
values from
WUXTRAP

…

Part I Introduction and Problem Definition 3.Models and Algorithms

Page 28 of 170

shows the position of these 30 FCPs. The vertical lines in the figure are the so-called haralines.

The positions of the haralines are fixed and depend on the position of the FCPs a1, a2, a3, a4

(corners of the eyes) and FCP a19 and a20 (inner corners of the eyebrows). The x-coordinates of

all the other FCPs are fixed depending on the position of the haralines. This is a property of the

face model of Kobayashi and Hara.

Figure 13: The Kobayashi and Hara face model used in the FED.

Table 1: Description of the face model points.

 Point description State Point description State

A1 Left eye inner corner stable A19 Left eyebrow inner corner non-stable
A2 Right eye inner corner stable A20 Right eyebrow inner corner non-stable
A3 Left eye outer corner stable A23 Left corner of the mouth non-stable
A4 Right eye outer corner stable A24 Right corner of the mouth non-stable
A5 Bottom of the left eye non-stable A26 Top of the upper lip non-stable
A6 Bottom of the right eye non-stable A25 Bottom of the lower lip non-stable
A7 Top of the left eye non-stable
A8 Top of the right eye non-stable

- Left nostril centre non-stable - Left eyebrow outer corner non-stable
- Right nostril centre non-stable - Right eyebrow outer corner non-stable

Part II

Face Detection

Page 31 of 170

�

Face Detection – Methods and Tools

This chapter explains the components of our model introduced in the previous chapter for face

detection in detail. The relation between the different components was shown in Figure 11 of the

previous chapter. First the theory of RVM will be described in section 4.1. RVM is the main

classificator that is used throughout the whole paper. Section 4.2 discusses our initial ideas and

attempts to detect faces using RVM. Unfortunately, it does not work as we hoped. So, there is a

need to look further for other techniques and methods. These are combined in our WUXTRAP

model, which are the Haar-like features set and integral image representation, the AdaBoost

learning algorithm, the genetic algorithm (Evolutionary Search) and the cascade construction of

classifiers. They will be explained in the sections 4.3 to 4.6.

4.1 Relevance Vector Machine (RVM)

[Tipp01] RVM is a Bayesian approach to pattern recognition in the context of regression and

classification problems. It can be seen as a probabilistic version of the Support Vector Machine

(SVM). SVM is known as a very good classifier. It has a lot of applications like face detection

and handwriting recognition. On the other hand, RVM has the compelling feature that, while

capable of generalization performance comparable to an equivalent SVM, the number of

relevance vectors used by RVM is in most cases dramatically smaller than the number of support

vectors used by SVM to solve the same problem (see Figure 14). This means that the computation

costs are reduced. On the same time, RVM offers a number of additional advantages, which

include the benefits of probabilistic predictions, automatic estimation of parameters and the

facility to use arbitrary basis functions, which are not necessary ‘Mercer’ kernels. This chapter

starts with the RVM regression model upon which the RVM classification model is based. Then

the modifications required in the case of classification will be described.

Part II Face Detection 4.Methods and Tools

Page 32 of 170

Figure 14: SVM (left) and RVM (right) classifiers on 100 examples from Ripley's Gaussian-mixture
data set. The decision boundary is shown dashed, and relevance/ support vector are shown circled to
emphasize the dramatic reduction in complexity of the RVM model.

RVM Model Specification

 [Bish04, Tipp01] Like in supervised learning, a set of example input vectors {xn}
N

n=1 is given

along with a corresponding set of targets t = { tn}
N

n=1. These targets will be real values in the case

of regression and class labels in the case of classification. This set of input vectors and targets is

called the ‘training set’ from which we wish to learn a model of dependency. The objective is to

make accurate predictions of t for previously unseen values of x. Assuming that the targets are

some noisy realization of an underlying functional relationship y(xn; w) that we want to estimate,

the desired model of dependency can be described as (;)n n nt y ε= +x w , with nε representing

noise from a mean-zero Gaussian process with variance 2σ and w a vector of adjustable

parameters or ‘weights’. Thus, 2(|) (| (;),)n n np t N t y σ=x x w where the notation specifies a

Gaussian distribution over nt with mean (;)ny x w and variance 2σ .

A popular class of candidate functions for (;)ny x w is that of the form

=

==
M

i

T
iiwy

1

)()()(xwxwx; φφ (Eq. 4.1)

where the output is a linearly weighted sum of M generally non-linear and fixed basis functions

denoted by T
1 2() ((), (),..., ())Mφ φ φ φ=x x x x . A basis function is defined as () (,)i iKφ ≡x x x with

the kernel parameterised by the training vectors, so that (;)ny x w becomes

Part II Face Detection 4.Methods and Tools

Page 33 of 170

0i www;xn += =
),()(

1 i

N

n
xxKy (Eq. 4.2)

Due to the assumption of independence of the tn, the likelihood of the complete data set can be

written as

22 2 / 2
2

1
(| ,) (2) exp

2
Np σ πσ

σ
− � �= − −� �

� �
t w t

�
w (Eq. 4.3)

where the N x (1)N + matrix � (see Eq. 4.4) is called the design matrix, ()T

1 nt t=t � and

()T

0 nw w=w � .

[]
1 1 1 2 1

T 2 1 2 2 2
1 2

1 2

1 (,) (,) (,)

1 (,) (,) (,)
(), (),..., ()

1 (,) (,) (,)

n

n
N

n n n n

K K K

K K K

K K K

φ φ φ

� �
	

	
= =
	

	

� �

x x x x x x

x x x x x x�
x x x

x x x x x x

�

�

� � � � �

�

(Eq. 4.4)

The next step is to consider over-fitting. SVM avoided this problem by the inclusion of the

‘margin term’. RVM approaches this problem by the introduction of an explicit prior probability

distribution over the parameters. The authors choose for the smooth zero-mean Gaussian prior

distribution over w :

),0()|(1

0

−

=
∏= ii

N

i

wNp α�w , (Eq. 4.5)

with � a vector of 1N + hyperparameters such that each iα is associated independently with

every weight.

To continue with the inference process, hyperpriors over � must be defined, as well as over the

noise variance 2σ . Suitable priors for these parameters are given by Gamma distributions:

),|(Gamma)(
0

bap i

N

i

α∏
=

=� , (Eq. 4.6)

Part II Face Detection 4.Methods and Tools

Page 34 of 170

),|(Gamma)(dcp ββ = , (Eq. 4.7)

with 2−≡ σβ and where

 ααα baa ebaba −−−Γ= 11)(),|(Gamma , (Eq. 4.8)

in which
∞ −−=Γ
0

1)(dteta ta is the gamma function. It is assumed that 0==== dcba . This

makes the hyperpriors uniform. As a result, predictions are independent of linear scaling of both

t and the basis function outputs.

Figure 15: Gamma distribution. (Left) Gamma distribution with different parameters. (Right) Same
distribution on logarithmic scale.

The choice of prior distributions is related to those used in Automatic Relevance Determination.

The idea behind it is that if a basis function provides no information, because it is irrelevant to the

problem, there is no value of the weight that will lead to a significant increase in the likelihood.

At this point, the prior term can show its usefulness. By setting the iα parameter to a large value,

the prior distribution (|)ip w � becomes sharply peaked around zero. By then setting iw to zero,

the posterior1 probability of the model is maximized. In a word, when a basis function has

sufficient highα , it can be marked as ‘low relevance’ and thus will be removed from the model.

1 Given the prior distribution, data needs to be collected to obtain the observed distribution. Then calculate
the likelihood of the observed distributions as a function of parameter values, multiply this likelihood
function by the prior distribution, and normalize to obtain a unit probability over all possible values. This is
called the posterior distribution. From: http://www.mathworld.com

Part II Face Detection 4.Methods and Tools

Page 35 of 170

Consequently, the RVM will learn simple models even when presented with a large starting set of

basis functions.

To make a prediction for target*t , given new input data*x , we have to find out *(|)p t t which

can be expressed as:

 2 2
* *(|) (| , ,) (, , |)p t p t pσ σ= t w � w � t wd d� 2σd . (Eq. 4.9)

Since these computations cannot be performed fully analytically, an effective approximation is

needed. This is done by applying the Bayes rule. After some substitutions and decompositions

(discussed in [Tipp01]), this posterior distribution can be computed analytically and the result

becomes:

 2 2 2(, |) (| ,) () ()p p p pσ σ σ∝� t t � � (Eq. 4.10)

The idea of relevance vector learning is actually the search for the hyperparameter posterior

mode: the maximization of Eq. 4.10 with respect to � andβ . The prediction of a target t* can

then be given by Eq. 4.11 in which MP� and 2
MPσ are the most probable values for � and 2σ .

 2 2 2
* *(| , ,) (| ,) (| , ,)MP MP MP MP MPp t p t p dσ σ σ= t � w w t � w (Eq. 4.11)

Because both terms in the integrand are Gaussian, the result can be computed by:

 2 2
* * * *(| , ,) (| ,)MP MPp t N t yσ σ=t � ; (Eq. 4.12)

with

 T
* *()y φ= � x and 2 2 T

* * *() ()MPσ σ φ φ= + x � x . (Eq. 4.13, 4.14)

where � the is the posterior covariance and � is the mean.

 () 1T2 −− += ���� σ , (Eq. 4.15)

Part II Face Detection 4.Methods and Tools

Page 36 of 170

2 Tσ −=� � �
t (Eq. 4.16)

with ()Ndiag ααα ,,, 21 �=� .

RVM Classification

RVM is using an identical framework as detailed for regression in the case of classification. Only

some modifications need to be made. To account for the changes in the target quantities, the

authors use Bernoulli likelihood and a sigmoid link function() 1/(1)yy eσ −= + (see Figure 16).

As a consequence, there is an additional approximation step in the algorithm.

Figure 16: Sigmoid link function used in classification model, 1/(1+exp(-y)).

In the two-class case, applying the sigmoid link function to ()y x and adapting the Bernoulli

distribution for)|(xtP , the likelihood can be written as:

{ } { } 1

1

(|) (;) 1 (;)
n

n

tN
t

n n
n

P y yσ σ
−

=

� �= −� �∏t w x w x w , (Eq. 4.17)

where, following from the probabilistic specification, the targets ∈nt {0, 1}. Note that there is no

‘noise’ variance here or we may assume that it is already included in the link function.

Unlike in the regression case, it is not possible to integrate out the weights analytically.

Therefore, the authors use an approximation procedure based on a combination Laplace’s method

and Newton’s 2nd order method. The outcome of this approximation procedure is a mapping of

the classification problem to a regression problem with data-dependent noise.

In the multi-class classification case, where the number of classes K is greater than two, the

likelihood (Eq. 4.3) is generalized to the standard multinomial form:

)1/(1 xe−+

Part II Face Detection 4.Methods and Tools

Page 37 of 170

(){ }∏∏
= =

=
N

n

K

k

t
knk

nkyP
1 1

;)|(wxwt σ (Eq. 4.18)

where a conventional ‘one-of-K’ target coding for t is used and the classifier has multiple

outputs);(kky wx , each with its own parameter vector kw and associated hyperparameters.

4.2 Face detection – the initial idea

Most facial expression recognition systems assume the input to be an image containing only the

face surrounded by a simple background. If the image does not contain a face will it still work

properly? Such systems are also lacking the ability to extract multiple faces from an input image

that contains more than one face. Since we do not want this restriction, the system should be able

to detect multiple faces in the image. To achieve this we need a face detector to determine all

faces from the input. This face detection module must precede the extraction of features for

emotion recognition. In order to detect faces we need to train a classifier. In this case we want to

differentiate faces from non-faces, which means that our training set should contain faces and

non-faces. The classifier we are using is RVM. As a first attempt, we trained the RVM with

intensity values. We used a subset from the MIT-CBCL database consisting of 1000 faces and

1500 non-faces of 19x19 (see Figure 17). So, each sample is arranged as a training vector of 1 by

361 when given to the RVM for training. Some sample images from MIT-CBCL are shown in

Figure 17. This subset is used for both training and testing. There are a few ways to do that. One

way is to use the whole set for training and also testing.

Figure 17: Samples from the MIT-CBCL face database.

However, this method is not very reliable because we cannot see how the trained classifier will

behave for untrained samples. To improve this, testing should be done on a set different than the

classifier is trained with. Another training method which is also more common is K-fold cross

validation. Before passing the samples to the RVM, the data set is first divided into K sets of even

size. Then RVM is trained on the K-1 sets of samples and testing is done on the remaining set.

Non-faces

Faces

Part II Face Detection 4.Methods and Tools

Page 38 of 170

This is done for all K sets. The choice for K depends on the size of the dataset. For large datasets,

K should not be chosen too small since it is really ineffective. For cross validation the time to

train RVM grows linearly with the size of the dataset. Usually K-fold cross validation is

performed for parameter optimization. Since we first want to know if RVM can be trained with

intensity values, we simply choose for the first method. We train and test RVM on the exact same

set. The results are shown in Table 3.

Table 2: MIT CBCL subset specification.
Dataset parameters Values and description

Database MIT CBCL
Sample size 19x19 pixels
Number of classes 2
Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 1000/1500

Table 3: RVM test results: training and testing is done on the same set.
Kernel Nr of test

samples
Detection
rate %

Nr of false
negatives

Nr of true
negatives

Nr of false
positives

Nr of true
positives

Gauss:
0.5, 1.0,
2.0, 3.0,
4.0, 5.0
Laplace:
0.5, 1.0,
2.0, 3.0,
4.0, 5.0

2500

67.96

801

1000

0

699

Training RVM with only the intensity values gives unsatisfactory results. Not only does it take a

long time to train, but the detection rate is also poor, only 67.96%. This is certainly not good

enough for a face detection system. In addition, as Table 3 shows, the detection rate of 67.96% is

achieved only due to the high true negative rate. True negative means that a non-face image is

indeed recognized as a non-face by RVM. False positive is the opposite: a non-face is recognized

as a face. In the test, only 699 of the 1500 faces are recognized as a face. So, the detection rate is

calculated as (1000 + 699)/2500 = 0.6796. If the test is done on only faces, the detection rate

would be 699/1500 = 0.466. This means that RVM is not able to be trained this way. By

arranging each training vector of 19x19 in a 1x361 vector, all links between the pixels are totally

lost. As a result, there are no consistencies in the input samples and thus, there is no difference

between the positive and negative samples. This explains the 0 in the column of false positives. It

also explains why the results are the same for all kernels. The raw data associated with each pixel

Part II Face Detection 4.Methods and Tools

Page 39 of 170

are insufficient to allow unambiguous identification of that pixel. We can conclude that the

detection rate from this table does not have any meaning.

RVM is known for the relatively slower performance during training which means that it will

take a long time to train on a large dataset with a dimension space of 361, which is relatively

high. On a windows machine with AMD Athlon™ XP 2200+ 1.80 GHz processor with 512 MB

RAM it was in the order of hours to train RVM on the chosen dataset.

Because of the unacceptable results, we need to consider alternatives. There are two things we

must take into account: improvement of the detection rate and reduction of the training time.

Apparently, using the intensity values as a feature vector for training the RVM does not work.

This problem can be solved by training RVM with better features extracted from the images

instead of only intensity values. Some well-known feature extraction methods are PCA [Jung01],

DCT [Huan04], and HAAR [Papa98]. To reduce the training time, the dimension space of 361,

which is extremely large, needs to be reduced.

We considered the PCA and DCT feature extraction method. Due to the sensitivity to

illumination variance in the images these methods failed to capture the essential features of face

images. The results were far from satisfactory as it is poorer than in the case of training RVM

with intensity values. Next, we examined the HAAR features method and we came to the face

detection method of [Viol01], on which our solution is based. This method has three key parts

that make it fast and robust which are the main reasons for choosing it. The first part is a fairly

simple feature extraction method that is based on a new image representation called integral

image. The second is a learning algorithm, based on AdaBoost and the last one is a method for

constructing complex classifiers into a cascade structure. In the following sections each of the

three parts will be described in detail. Note that in the first place tests are done on 19x19

windowed pixels samples. This size is altered to 24x24 pixels in a later stage. The main reason

for this is that the number of scanning windows will be reduced by using a larger sample size. As

a result, the computational load will also be reduced.

4.3 Haar-like features and integral image represent ation

As concluded, in our findings using intensity values directly as input for the RVM classifier does

not work adequate. Therefore, features need to be extracted from the images of the dataset. The

features that are extracted are Haar-like features which have been used by [Papa98]. These

features have a rectangular shape and are fairly simple. Compared with other filters, these

features are somewhat primitive. For example, it is hard to use them for boundary analysis or

Part II Face Detection 4.Methods and Tools

Page 40 of 170

texture analysis. They are also sensitive to the presence of edges, bars, and other simple image

structures. But on the other hand due to its simple construction, they have only horizontal and

vertical orientation. It is computationally very efficient. This is the compensation they offer for

their limited flexibility. As a result these features can be computed very fast. In our face detection

algorithm, five types of rectangular features are used (see Figure 18). Type 1, 2 and 5 are

calculated as the sum of all pixels in the dark area minus the sum of all pixels in the light area.

Type 3 and 4 are calculated as half the sum of all pixels in both dark areas minus the sum of all

the pixels in the light area in the middle.

type 1 and 2 and 5 : _ _ _ _ _ _pixels in dark area pixels in light area−� �

(Eq. 4.19)

type 3 and 4 :
1

_ _ _ _ _ _
2

pixels in dark area pixels in light area− −� �

1

_ _ _
2

pixels in dark area�

 (Eq. 4.20)

Here is where the integral image, an intermediate image representation, comes into play. It makes

it possible to compute these features really fast. Instead of calculating the features from the

original images, the features are calculated from the integral images. An integral image is actually

a matrix containing the sum of pixel values from the original image. Location (,)x y of the

integral image contains the sum of the pixels above and to the left of (,)x y . It can be denoted as:

' , '

(,) (', ')
x x y y

ii x y i x y
≤ ≤

= � where (,)ii x y is the integral image and (,)i x y is the original image

(see Figure 19). Using the following pair of recurrences:

(,) (, 1) (,)s x y s x y i x y= − + (Eq. 4.21)

(,) (1,) (,)ii x y ii x y s x y= − + , (Eq. 4.22)

(where (,)s x y is the cumulative row sum, (, 1) 0s x − = and (1,) 0ii y− =) the integral image

can be computed in one pass over the original image.

Part II Face Detection 4.Methods and Tools

Page 41 of 170

Figure 18: Example of rectangle features. The sums of the pixels which lie within the white rectangles
are subtracted from the sum of pixels in the dark rectangles.

Figure 19: The value of the integral image at point (x, y) is the sum of all the pixels above and to the
left.

Each of the five basic features is scanned on every possible scale and every possible position

within a training sample. Given that the sample’s dimension is 24x24, the complete set of features

that can be constructed is tremendously large, namely 162336. Our training set consists of 3000

samples with 1500 faces and 1500 non faces (see Table 4). Each of the features is encoded as a

tuple with five values: (x_left, y_top, x_right, y_bottom, type) in which:

• x_left: minimum x-value that defines the left boundary of the feature.

• y_top: minimum y-value that defines the upper boundary of the feature.

• x_right: maximum x-value that defines the right boundary of the feature.

• y_bottom: maximum y-value that defines the lower boundary of the feature.

• type: type of the feature: 1, 2, 3 or 4.

Figure 20: A Haar-like feature has five attributes: (x_left, x_right, y_top, y_bottom, type).

y

Y_top

Y_bottom

x_right
x

x_left

type = 3

(x, y)

Part II Face Detection 4.Methods and Tools

Page 42 of 170

Table 4: Dataset used to learn the Haar-like features.

Dataset parameters Values and description

Database Viola Jones
Sample size 24x24 pixels
Number of classes 2
Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 1500/1500

Having defined the Haar-like features one might wonder how they can be applied for training the

RVM. Assume that one Haar-feature is selected out of the total set of 162336. This feature will be

applied to all images in our training set specified in Table 4. Each image produces a feature value

according to Eq. 5.1 and 5.2. As a result, a labelled set of feature values is produced. Thus the

size of this set is equal to the size of the training set. This set will be the input for our classifier

which will be discussed more in details in the following sections. The selection of a Haar-like

feature is done by AdaBoost algorithm explained in the next section.

4.4 The AdaBoost learning algorithm

In the previous section simple Haar-like features can be calculated and extracted really fast.

Recall that there are more than 162336 features associated with each 24x24 sub-window.

Combined together it will far exceed the number of pixels we have as feature vector in the

beginning. The positive thing now is that a very small number of these features can be combined

to form an effective classifier. But the challenge is to find these features. We need to train a

classifier that consists of several discriminating features within a sub-window. AdaBoost is used

both to select features and to train the classifier.

The AdaBoost algorithm [Freu95] is proven to boost the performance of the classifier. It is also

proven that the training error of the strong classifier approaches zero exponentially in the number

of rounds and the generalization performance is also very high. The AdaBoost algorithm can be

interpreted as a greedy feature selection process. Consider a general boosting case where a large

set of classification functions are combined using weights. The challenge is to associate a large

weight with each good classification and a smaller weight with poor functions. AdaBoost is an

aggressive and effective algorithm used to select a low number of good classification functions,

so called ‘weak classifiers’, to form a stronger classifier. The classifier is called weak because we

do not expect even the best classification function to classify the training data well. The final

strong classifier is actually a linear combination of the weak classifiers.

Part II Face Detection 4.Methods and Tools

Page 43 of 170

In analogy of the AdaBoost algorithm, the weak classifier is restricted to the set of classification

functions of single features. Thus, the weak learning algorithm will be designed to select a single

rectangle feature which best separates the positive and negative samples. The algorithm to select

a predefined number of features given a set of positive and negative samples is shown in Figure

21. As we can see in the figure the input is a predefined set of positive and negative training

examples (xi, yi). In our case the positive examples are face images and the negative examples are

non-face images.

Figure 21: The AdaBoost algorithm.

The AdaBoost algorithm iterates over a number of T rounds. In each iteration the space of all

possible features is searched exhaustively to train weak classifiers that consist of one single

feature. In [Viol01], to train a single weak classifier a threshold has to be found for the feature

value to discriminate between positive and negative examples. In our approach, the latter is

slightly different. Instead of using a threshold, the chosen weak classifier is the RVM for

discriminating between the positive and negative examples. This means that for each feature, the

1. Input: Given training examples (xi, yi), i =1..N where yi = 1 for positive and yi = 0

for negative examples

2 Initialization: initialize weights
lm

w i 2

1
,

2

1
,1 = for yi = 0,1 respectively, where m

and l are the number of positive and negative examples.

3 For t = 1, …, T:

a) Normalize all weights

b) For each feature j, train classifier hj with

error −=
i iijit yxhw |)(|ε .

c) Choose ht with lowest error tε

d) Update the weights: ie
titit ww −

+ = 1
,,1 β

�
�
�=

classified correctly :0

otherwise :1
ix

ie

and

t

t
t ε

εβ
−

=
1

4 Final strong classifier:

=
 = =≥T

t
T
t t

�(x)
t

h
t

�

xh
1 12

1

otherwise

1

0

)(

with

t
t β

α 1
log=

Part II Face Detection 4.Methods and Tools

Page 44 of 170

weak RVM classifier determines the optimal classification function such that a minimum number

of examples is misclassified. The next step in the algorithm is to choose the best weak classifier,

which means choosing a classifier with the lowest classification error tε . The error is evaluated

with respect to wt, which are the normalized weights of round t.

After choosing the best weak classifier concerning the weighted classification error on the

training set, all training examples are re-weighted to focus in the next round on those examples

that were not correctly classified. The weights are updated according to the following:

ie
titit ww −

+ = 1
,,1 β (Eq. 4.23)

In the equation (Eq. 4.23) β is equal to
t

t

ε
ε
−1

, where tε is the lowest error of round t. The

parameter ei is defined to be zero if the example xi is classified correctly by the classifier, which is

the RVM in our case. Otherwise, parameter ei is equal to one. Depending on how many features

we want to select, T can be set to that number which will force the algorithm to iterate T times. In

each iteration one feature will be selected with the lowest error.

It is important to note that for each iteration we need to train more than 162336 features and

select the best feature out of the whole set. In the next rounds this procedure is continued again

and again for all T rounds for all 162336 features. In our case with 3000 samples the training time

for one feature differs from one to 1.5 minutes. Note that the implementation is done in Matlab

6.5 on a Windows machine with AMD Athlon™ XP 2200+ 1.80 GHz processor with 512 MB

RAM. The total training time would be more than 20 weeks. This is only the case if we assume

that the features only need to be trained once. This means in the next round t of the boosting

algorithm we do not need to train the features anymore, but merely need to re-weight the training

samples. But still this will take weeks before the first feature can be produced. Considering the

time we have for finishing the thesis project, we either have to speed up the boosting process or

find another solution for extracting and selecting features for face detection. Our solution lies in

the application of genetic algorithms. The latter are in general suitable for searching on very large

data sets in reasonable time. The exhaustive search of AdaBoost will be replaced by an

evolutionary search algorithm. Instead of looking in the complete feature space, the evolutionary

algorithm finds the optimal solutions in a subspace of all features. Further details will be given in

section 4.5.

In the final step of Figure 21 a strong classifier can be constructed from the selected features. This

is done using the following equation:

Part II Face Detection 4.Methods and Tools

Page 45 of 170

�
�
�

��
�

�

=
� = � =≥T

t
T
t t

�(x)
t

h
t

�

xh
1 12

1

otherwise

1

0

)((Eq. 4.24)

Thus, the final classifier is a weighted linear combination of the T features, where the weights are

inversely proportional to the training errors. The initial AdaBoost threshold (=

T

t t1
21 α), is

designed to yield a low error rate on the training data. A lower threshold yields higher detection

rates and higher false positive rates. This is extremely important for constructing a cascade of

classifiers.

4.5 Genetic Algorithm for faster boosted feature se lection

Genetic Algorithms (GA) is a term used to describe problem solving systems in which evolution

is the key element. The emphasis in GA lies on natural selection and survival of the fittest. The

evolution of individuals is simulated by probabilistic genetic processes of selection, mutation and

reproduction. They are the driving forces that lead to ‘well-adapted’ individuals. GA can be used

for different purposes on different areas. For example, it can be used as simulation tools for the

evolution of biological populations (Roosenberg, 1967). It can also be used as a stochastic search

technique to combinatorial optimization problems. In our case, it will be applied to speed up the

AdaBoost algorithm.

The exhaustive search of AdaBoost is in fact a brute force search on the whole space of

rectangular Haar-like features. As described in section 4.1 there are in total 162336 features to be

trained and it will be in the order of weeks to train them all. To speed up the terrible long training

time, it will be beneficial to use GA in combination with AdaBoost. Speeding up the boosting

algorithm is performed by replacing the exhaustive search of AdaBoost by an genetic search

algorithm called Evolutionary Search (ES). ES is an instance of GA and as the name already

suggests its focus is on the field of searching. Figure 22 shows the steps of the ES algorithm.

There are two probabilistic genetic operators that drive the ES process: crossover and mutation.

The crossover operator simulates the process of reproduction in the evolution theory. With

reproduction the sexual or asexual process is meant by which organisms generate new individuals

of the same kind. Sexual reproduction results in an offspring that contains a combination of

information from each parent. Asexual reproduction typically results in an offspring that is

genetically identical to the parent. The mutation operator brings in diversity in the individuals.

This is essential because evolution, by definition, requires diversity in order to work.

Part II Face Detection 4.Methods and Tools

Page 46 of 170

Step 3b) Evolutionary Search ()

Begin

 t := 0;

 initialize_feature_population (P(0));

 repeat

 P’ := select (P(t));

 Crossover (P’);

 Mutate (P’);

 Train_classifiers (P’);

 Evaluate_classification_error (P’);

 P (t+1) := replace (P(t), P’);

 t := t+1;

 until terminated;

end;

Figure 22: Evolutionary Search

With EABoost, (ES combined with AdaBoost) the space of all rectangular Haar-like features is

searched for good features. Crossover differs slightly from what is described above in the

implementation of EABoost. It is implemented as follows: given two parents A and B the

resulting offspring C is calculated as:

: 0.5

:
i

i
i

B r
C

A otherwise

<�
= �
�

 , 1...i n= (Eq. 4.25)

where r is a uniform random number [0,1]∈ , n describes the length of the individuals and the

parents are selected randomly. The reason that crossover is implemented this way is the fact that

we have complete knowledge of the whole feature set. We know exactly the number of possible

features: no new features will be generated in the feature space and we also know the algorithm

should not select any features outside this set. In our case crossover means randomly selecting

another feature from the feature space. Mutation of an individual is done by the following

scheme: 1) Choose a new type [1,5]t ∈ with probability pmt. 2) Mutate positions of feature

corners by adding a random constant(,)rm rmx y , with , [7,7]rm rmx y ∈ − . 3) Use a repair operator

on individuals that are no longer feasible after the mutation. After mutation, corners of the

rectangle features could be in wrong order. Also could the feature’s lengths be negative or bigger

than the maximum allowed length. Mutation in EABoost is in fact also a process to randomly

select another feature from the feature set.

The third important operator in EABoost is the fitness operator that implements the natural

selection process of evolution. It measures how good an individual is at competing in its

Part II Face Detection 4.Methods and Tools

Page 47 of 170

environment. In our case, with a population of 250, each feature fi with i=1,…,250, that is

generated will be evaluated against the test set which results in an error � i. The strongest feature

that will be selected will then be the one that satisfy the fitness function min(� i). It is the same

criterion AdaBoost was using to select a weak feature. In Figure 22 it is displayed as the

evaluation of the classification error. We get EABoost when we replace step 3b, the exhaustive

search of AdaBoost, with ES.

In the implementation of EABoost a generation consists of 150 Haar-like features. This size is the

result of a trial and error process in which a trade-off is made between speed and error rate. The

size of the feature set would affect the training time and the quality of the found solution. If the

population is too small, the training time will be shorter, but there is a probability that no good

features will be generated and as a result a bad feature will be selected. On the other hand if the

population is too large, it will take longer to train and the purpose of using ES in the first place

was to reduce the training time. A generation should be sufficiently large to create sufficient

diversity covering the possible solution space. Other parameters of EABoost are the probabilities

for crossover and mutation. In literature crossover usually happens with a probability of 75-95%

and mutation 0.5-5%. In our situation, crossover and mutation are two processes for randomly

selecting another feature from the total set. The difference is that crossover really selects a feature

at random. Mutation also selects at random, but the feature’s location will be near to the original

feature which it is mutated from. Since we prefer the latter, in EABoost crossover takes place in

20% of the time and mutation takes place in 80% of the time. ES ends when it converges.

Note that ES as a simulation of a genetic process is a non-deterministic search. It is not sure

whether a found solution is optimal or suboptimal. This could be seen as one of the disadvantages

of ES. But on the other hand, ES can quickly scan a huge solution set. On top, bad solutions in the

population set do not affect the end solution negatively as they are simply discarded. ES is also

very useful for complex or loosely defined problems. Once the problem is translated successful

into an ES problem it does not have to know any rules of the original problem. The evolution

mechanism will do the work.

4.6 The differential cascade

This section describes an algorithm for constructing a cascade of classifiers which drastically

reduces the computation time. The number of sub-windows to be classified by the detector is

enormous and requires a lot of computation time. The main idea is that smaller and therefore

more efficient, boosted classifiers can be built which reject many of the negative sub-windows

while detecting almost all positive instances. Simpler classifiers are used to reject the majority of

sub-windows before more complex classifiers are called upon to achieve low false positive rates.

Part II Face Detection 4.Methods and Tools

Page 48 of 170

The phases in the cascade are constructed by training classifiers using EABoost. In general the

cascade has the form of a degenerate decision tree (See Figure 23). Input for the cascade is the

collection of all sub-windows also called scanning windows. They are first passed through the

first layer in which all sub-windows will be classified as faces or non faces. The negative results

will be discarded. The remained positive sub-windows will trigger the evaluation of the next

classifier. The same process is performed in every layer. The sub-windows that reach and pass the

last layer are true faces.

Figure 23: A cascaded classifier with N layers.

The structure of the cascade reflects the fact that within any single image on overwhelming

majority of sub-windows are negative. As such, the cascade attempts to reject as many negatives

as possible at the earliest stage possible. Every layer consists of only a small number of features.

In the early stages, with only a couple of the best features it is possible to determine the existence

of a non-face (negative sub-window). Determining the presence of a face usually needs more

features. Therefore, the cascade has an increasing number of features in each consecutive layer.

While a positive instance will trigger the evaluation of every classifier in the cascade, this is an

exceedingly rare event.

During implementation the number of layers and the number of features per layer was driven

through a trial and error process. In this process the number of features was increased until a

significant reduction in the false positive rate could be achieved. More layers were added until the

false positive rate on the validation set was nearly zero while still maintaining a high correct

detection rate. Following is the specification of the cascaded classifier that we get after training.

NON-FACE

L
1

L
2

L
N-1

L
N …

F
A
C
E Sub-

windows

Part II Face Detection 4.Methods and Tools

Page 49 of 170

Table 5: cascaded classifier specification.

Cascade layer nr. Number of features True positive rate False positive rate

1 2 0.95 0.422
2 4 0.95 0.69
3 15 0.932 0.244
4 17 0.93 0.24
5 19 0.93 0.188

To conclude, this chapter described different algorithms that when combined together make face

detection possible. To be more precise, the algorithms in this chapter are implemented as the

WUXTRAP application for face detection. As stated in chapter 3, WUXTRAP’s design goal was

to train our classifier and produce the proper WUX values that are needed for our FLEX module

that reads images, find faces and extract FCPs. WUXTRAP is implemented using Matlab 6.5.

Thus, all training of the RVMs is done using Matlab and FLEX, the running detection system, is

implemented in Java. Remind that Java was chosen as stated in our implementation objectives of

chapter 2. Since the training is independent of the functionalities in FED, it was not necessary to

do the training in Java. Working with images, training the RVM, testing and evaluating the

selected features are all computationally intensive tasks. We can state that our choice for Matlab

is mainly based on its powerful computation engine and its high-level interactive environment in

which a lot of very useful mathematical functions are already implemented and made available.

Page 51 of 170

�

Face Detection – Experimental Results

The experimental results related to face detection will be presented in this chapter. Section 5.1

discusses the result of RVM trained on intensity values. Section 5.2 gives the results of RVM

trained on binary values. Section 5.3 presents the parameter tuning of RVM for Haar-like

features. The optimal kernel will be discussed and the results of the training using Haar-like

features, combined in EABoost, are given in section 5.4.

5.1 Relevance Vector Machine on intensity values

The results from applying RVM on intensity values are already presented in Table 3. The results

show the performance of the RVM trained and tested with the same data set. The overall

detection rate is 67.96%. To see how RVM performs on images it has not been trained with, we

have tested the same RVM on a subset of the CMU face database (see Table 6). The results are

shown in Table 7.

Table 6: Test set specification.

Dataset parameters Values and description

Database CMU
Sample size 19x19 pixels
Number of classes 2
Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 5036/472

Part II Face Detection 5.Experimental Results

Page 52 of 170

Table 7: RVM test results on intensity values.
Kernel CMU dataset

consisting of faces only

CMU dataset

consisting of non-faces only

 Number of
test samples

Detection rate % Number of test
samples

Detection rate %

Gauss:
0.5, 1.0, 2.0,
3.0, 4.0, 5.0

0

100

Laplace:
0.5, 1.0, 2.0,
3.0, 4.0, 5.0

472

0

5036

100

The results confirm what we concluded earlier. RVM can not be trained on pixel intensities.

These are insufficient to allow unambiguous recognition of a pixel. In this case, the RVM trained

on intensity values does not generalize at all to recognize any sample that is not present in the

training set. This simply means that the RVM is not trainable in this way. For all kernel tested,

the detection rate was zero, i.e. no single face in the test set is recognized as a face.

Before we come to this conclusion, RVM is also trained on binary information. This means that

input images are first converted into binary images by a threshold function. This function

converts all intensity values higher than the mean intensity value to 1 and 0 otherwise.

5.2 Relevance Vector Machine on binary values

The training results of RVM trained on binary information is shown in Table 8 and Table 9.

Training is done on the same subset from MIT CBCL (see Table 2). The result of testing the

trained RVM on this same set is shown in Table 8. For the chosen type of data representation it is

clear that the detection rate is very good except for the Laplace kernel with a scale smaller than

2.0 and the Gaussian kernel with a scale smaller than 3.0. These lower width kernels are not able

to fit the data properly. As a result, they can not achieve a detection rate higher than 68%.

Increasing the width gives a stable detection rate of around 94-95%.

In Table 9, testing is done on the CMU subset with 472 faces and 5036 non faces (see Table 6).

The results are very disappointing. The results show a detection rate of no more than 52 %. In this

case overfitting occurred. The accuracy is very low and most samples are recognized as non-face.

To conclude, the chosen approach to work with binary information of the image is apparently not

working.

Part II Face Detection 5.Experimental Results

Page 53 of 170

Table 8: RVM test results: training and testing are both performed on the same MIT CBCL subset.
Kernel Nr of test

samples

Detection rate % Nr of false

negatives

Nr of false

positives

Gauss 0.5 – 3.0 67.76 806-815 0
Gauss 5.0 93.92 103 49
Gauss 7.0 95.08 58 49
Laplace 0.5 – 1.0 67.80 805-815 0
Laplace 2.0 83.88 339 64
Laplace 3.0 92.76 117 64
Laplace 4.0 94.72 67 65
Laplace 5.0 95.04 60 64
Laplace 6.0 96.00 57 43
Laplace 7.0

2500

94.96 72 54

Table 9: RVM test results: training is done on a MIT CBCL subset, testing is performed on a CMU
subset.
Kernel CMU database

consisting of faces only

CMU database

consisting of non-faces only

 Number of
test samples

Detection rate % Number of test
samples

Detection rate %

Laplace 0.5 – 1.0 0 100
Laplace 2.0 22.03 100
Laplace 3.0 47.25 97.22
Laplace 4.0 50.85 96.64
Laplace 5.0 51.91 97.34
Laplace 6.0 43.86 97.93
Gauss 0.5 – 3.0 0 100
Gauss 4.0 9.53 93.59
Gauss 5.0 38.77 96.68
Gauss 6.0 50.42 96.82
Gauss 7.0

472

30.30

5036

97.86

5.3 Parameter tuning for Relevance Vector Machine u sing 2-fold cross validation

In EABoost and in the cascade building process, RVM needs to classify Haar-like features. In

order to choose the best parameters for RVM, 2-fold cross validation is used. During this tuning

process we used the MIT CBCL subset (see Table 2) to let EABoost select three features. We

then compare the performance of RVM of these features using different kernels. Table 10 shows

the EABoost parameters that are used during this training process. The choice for the population

size, crossover rate and mutation rate was already discussed in section 4.5. We have chosen to use

a Laplace 2.0 kernel as it is as much as a random choice. At this point we do not know which

kernel will perform better. It is only important to choose the same kernel for all features.

Part II Face Detection 5.Experimental Results

Page 54 of 170

Table 10: EABoost specification: the selection of three features that will be used for 2-fold cross

validation.

EABoost parameters Values and description

Population size 250
Crossover rate 0.20
Mutation rate 0.80
Classifier/ kernel RVM/ Laplace 2.0
Number of features to choose 3

Datasets are created of feature number 38978, 28893 and 45297, which are the features selected

by EABoost. The datasets are filled with the feature values of the mentioned features. Feature

38978 has the best performance in the first pool of 250 features. Feature 28893 and 45297 are the

best features in the second respectively third pool of 250 features. In Figure 24 all three features

are plotted in a 19x19 window. The parameters of feature 38978 are (7, 8, 13, 12, 3). Those of

feature 28893 and 45297 are (11, 5, 19, 11, 4) and (10, 10, 18, 16, 1).

Figure 24: feature 38978 (left), feature 28893 (centre) and feature 45297 (right).

The results after using 2-cross validation are shown in Table 11. Tables with the complete cross

validation results can be found in appendix A. A good classifier should have a low error rate with

a small standard deviation. From these tables it is not easy to choose and conclude the best

classifier. Therefore, Receiver Operating Characteristics (ROC) graphs are generated from these

results, see Figure 25. ROC graph is a technique for visualizing, organizing and selecting

classifiers based on their performance. In a ROC graph, the true positive rate is plotted on the y-

axis and the false negative rate is plotted on the x-axis. The true positive rate is defined as the

number of true positive samples divided by the total number of positive samples in the dataset. In

the same way, the false negative rate is defined as the number of false negatives divided by the

total number of positive samples in the dataset.

x
11 19

5

11

y y

10

 12

18
x

10

y

7

8

 12

13
x

Part II Face Detection 5.Experimental Results

Page 55 of 170

Table 11: RVM 2-fold cross validation results trained on Haar-like features.

Feature 38978 28893 45297

Kernel Error rate
%

SD Error rate
%

SD Error rate
%

SD

Gauss 0.5 27.75 2.33 41.95 10.68 46.50 4.10
Gauss 1.0 29.10 2.83 39.60 7.64 44.80 6.93
Gauss 2.0 26.30 0.85 35.45 7.71 38.60 1.84
Gauss 4.0 26.60 6.08 31.70 7.35 35.50 3.68
Gauss 5.0 25.35 5.30 32.40 2.83 36.55 3.61
Laplace 0.5 35.20 14.42 26.70 0.99 42.70 9.62
Laplace 1.0 25.35 1.77 35.55 9.26 35.60 1.41
Laplace 2.0 29.25 9.83 32.00 7.50 41.60 7.78
Laplace 3.0 28.45 4.31 34.85 8.98 38.60 5.94
Laplace 4.0 24.85 1.77 26.10 2.97 42.55 1.77
Laplace 5.0 26.20 2.12 25.90 1.84 37.45 7.57

Informally, one point in ROC space is better than another if it is to the northwest of the first. It

means that the true positive rate is higher and on the same time the false positive rate is lower, or

even. In the first ROC graph the four classifiers (Gauss 4.0, Gauss 5.0, Laplace 1.0 and Laplace

4.0) are on a straight line and they are all northwest to the other classifiers. There is no single one

that excels. The best classifier between these four should be the one that meets the requirements

most. If it is desired that the true positive rate is high, no matter the false positive rate, then the

classifier positioned most north in the ROC space should be chosen. If on the other hand it is

preferred to keep the false positive rate low, then the classifier positioned most south in the ROC

space should be chosen.

In the second graph it can be noticed that kernels Laplace 0.5, Laplace 4.0 and Laplace 5.0

performs slightly better than the others. In the last graph, all kernels are in fact performing not

well. Keeping the true positive rate above 50% and the false positive rate low, Gauss 3.0, Gauss

4.0 and Laplace 1.0 would be the choice. From the three ROC graphs, three candidates can be

chosen: Gauss 4.0, Laplace 1.0 and Laplace 4.0. To decide which of the candidates is the best we

examine their performance in more details by adjusting their thresholds that is described in

section 4.4. Lowering the threshold will give a better detection rate, but on the other hand it also

increases the false positive rate. The threshold range is from 0.35 to 0.65. The result is plotted in a

new ROC curve in Figure 26. It can be concluded that Laplace 4.0 has the best performance and

therefore, Laplace 4.0 is used in EABoost and the cascade building process.

Part II Face Detection 5.Experimental Results

Page 56 of 170

Figure 25: ROC graphs of three Haar-like features with different kernels.

Part II Face Detection 5.Experimental Results

Page 57 of 170

Figure 26: ROC curves of three kernels, obtained by adjusting each classifier’s threshold.

5.4 Evolutionary-AdaBoost training results

Now that the RVM kernel is determined, the training procedure can start. To summarize, the

training set is described in Table 4, the test set in Table 12 and the cascade test set in Table 13.

Note that these subsets from the Viola Jones database are all distinct. Table 14 shows the

parameters of the EABoost training.

Table 12: EABoost feature test set.

Dataset parameters Values and description

Database Viola Jones
Sample size 24x24 pixels
Number of classes 2
Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 500/500

Part II Face Detection 5.Experimental Results

Page 58 of 170

Table 13: Cascade test set.

Dataset parameters Values and description

Database Viola Jones
Sample size 24x24 pixels
Number of classes 2
Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 1500/1500

Table 14: EABoost parameters.

EABoost parameters Values and description

Population size 150
Crossover rate 0.20
Mutation rate 0.80
Classifier/ kernel RVM/ Laplace 4.0
Feature false positive rate 0.3
Feature true positive rate 0.75
Target false positive rate < 0.05
Target true positive rate > 0.95
Number of features to choose Depends on target false positive rate

The feature false positive rate and feature true positive rate are indications for EABoost whether

or not a Haar feature should be selected for the cascade. In the training procedure, a selected

feature will be trained on the training set and tested on the test set. So, each trained feature will

produce a false positive rate and true positive rate. If the false positive rate is lower than 0.3 and

true positive rate higher than 0.75, the feature will be selected for the cascade. Every time a

qualified feature is added to a layer, the whole set of features in the layers will be evaluated on

the cascade test set to see if the layer can achieve the target false positive rate and target true

positive rate. If this is the case, the training procedure will be stopped and training for the next

layer can begin. If it does not meet to the requirements of the maximal false positive rate and

minimal true positive rate, EABoost searches for one extra feature and the above procedure is

repeated. A qualified feature will only be added to the cascade if and only if it improves the

cascades detection rate. The final result of the training procedure is already shown in Table 5 of

the previous section.

Part III

Facial Characteristic Point Detection

Page 61 of 170

�

Facial Characteristic Points Detection –

Extraction

In the previous chapter a robust face detector has been discussed. This detector provides the

necessary faces in the given image for further processing. We assume that the faces detected are

full-frontal faces. Conform to the face model facial characteristic points needs to be extracted. A

closer examination of the face model reveals that some of the facial characteristic points are

actually corner points of the facial features i.e. eye, mouth, nose, eye brow. So, the idea is to use a

corner detection algorithm to detect these corners. We conduct this by first comparing the most

important corner detectors. By means of the performance and speed, the best corner detector is

chosen.

Table 15 shows two corner detectors which satisfies the criterion of good performance, accuracy

and speed. In the final implementation both corner detection algorithms are implemented which

allow us to combine the corner results of both detectors. The results do not only include the

corner points we are interested in but also lots of unimportant corners. The next logical step is

thus finding the real FCP corners among the FCP corner candidates. To do this we will continue

to use our classifier, the RVM, to decide whether the corner is what we need or else. As we

already know, before we can use the RVM to classify corners it must be trained first. More of this

will be discussed in detail in the next chapter after the discussion of the two corner detectors. In

section 6.1, the different corner detectors will be compared. In section 6.2 and 6.3 the two corner

detectors will be considered in detail.

6.1 Corner detection algorithms comparison

Algorithms for corner detection may be divided into direct corner detectors and colour

distribution based corner detectors. The former is based on algorithms that work directly with the

Part III FCP Detection 6.Extraction

Page 62 of 170

brightness values of images. They often model an image as a surface considering the directional

gradients or derivatives at each pixel point, if the value of its corner response function exceeds a

defined threshold this pixel will be considered as a corner point. The detectors described by

[Harr88], [Sojk03] both belong to the so called direct corner detectors. Each algorithm defines its

own corner response function and so the performances are usually decided by the corner response

function.

The second type detectors do not model an image as a surface. Instead, they consider the

statistical colour distribution in a circular neighbourhood centring at each pixel rather than

compute the directional gradients or derivatives. SUSAN corner detector [Smi97], Compass

corner detector [Ruz01] and a proposed detector [Son03] belong to this type. The SUSAN

detector classifies each pixel into edge, corner and flat area. Compass detectors utilize a group of

colours, instead of a single colour, to represent the statistic colour distribution in a circular

neighbourhood. It can handle both uniform-coloured region and textured regions. The detector

proposed in [Son03] emphasizes both spatial and statistical colour distributions; it is much faster

than compass detectors and more accurate than SUSAN detectors.

Table 15: Comparison of different corner detectors

Publication

year

Index Feature

Detected

Accuracy Speed Real-time

Processing

Grade

1978 [Bea78] Corner Low Very fast Yes 3

1982 [Kit82] Corner Low Fast Yes 3

1988 [Harr88] Corner High Middle Yes 4

1993 [Der93] Corner Very low Very low No 2

1997 [Smi97] Edge &
Corner

Low Middle Yes 3

2001 [Ruz01] Corner,
Edge, &
Junction

Very high Very slow No 3

2003 [Son03] Corner,
Edge &
Junction

Very high Middle Yes 4.5

2003 [Sojk03] Corner Very high Middle Yes 4.5

Table 15 [Sojk03b] shows the comparison of different corner detectors based on namely the

accuracy and detection speed. Colour distribution based corner detection algorithms are known to

have very accurate detection rate, but a drawback is the relative slower detection speed due to the

detection of corners, edges and junctions in one round. The processing speed of early direct

corner detectors is very fast, but they often do not have very high detection rate. We have also

Part III FCP Detection 6.Extraction

Page 63 of 170

included another table (Table 16) which shows the comparison of direct corner detectors tested on

an image with 291 reference corners in total.

In the previous chapters it is stated that the face detection system detects faces from grey-level

images. That is because the face detector is trained on a training set consisting of grey-level

images. This gives the reason to adopt a direct corner detection algorithm instead of using a

colour distribution based corner detection algorithm. From all direct corner detectors the Harris

detector [Harr88] and the Sojka detector [Sojk03] are the better ones among them. In this part of

the project it is only the intention to select a corner detector that is good enough; that means a

detector that is able to detect all corners of the facial features (e.g. left-eye corners, right-eye

corners etc.).

Figure 27: (Left) Test image with 291 reference corners.

(Right) Test image with 470 reference corners. The red dots are the corner points.

Table 16: Comparison of direct corner detectors on a test image of 291 reference corners.

Detector

Name

Total

Corners

Correct

Det.

False

Det.

Multiple

Det.

Total

Error

Localization

Error

Grade

(out of 5)

Beaudet 155 21 10 167 1.85 2.0

Deriche 142 25 10 184 2.05 1.5
Harris 187 10 6 120 0.98 4.0
Kitchen 163 26 15 169 1.87 2.0
SUSAN 152 29 1 169 1.63 2.5
Sojka

291*

229 9 8 79 0.81 4.5
* The total number of corners is the number of reference corners in the real image.

Part III FCP Detection 6.Extraction

Page 64 of 170

Table 17: Comparison of direct corner detectors on a test image of 470 reference corners.

Detector

Name

Total

Corners

Correct

Det.

False

Det.

Multiple

Det.

Total

Error

Localization

Error

Grade

(out of 5)

Beaudet 363 54 24 185 1.62 2.0

Deriche 308 22 5 189 1.49 1.5

Harris 431 14 9 62 0.73 4.0
Kitchen 356 48 31 193 1.75 2.0

SUSAN 338 34 7 173 0.87 2.5

Sojka

470*

466 1 1 6 0.57 4.5
* The total number of corners is the number of reference corners in the real image.

6.2 Harris and Stephens corner detection

6.2.1 Theoretical background

The corner detector that is known as the Harris corner detector should actually be called the

Harris-Stephens corner detector. Since it is adopted as the Harris corner detection in general by

most researchers, we will do that also. The main concern in [Harr88] is to use a computer vision

system based upon motion analysis of a monocular image sequence. By extraction and tracking of

image features 3D analogues can be constructed of the features. Conclusions are drawn that

explicit 3D representation of curving edge may be unobtainable, the connectivity it provides may

be sufficient for many purposes. Tracked edge connectivity, supplemented by 3D locations of

corners and junctions can provide both a wire-frame structural representation and delimited image

regions which can act as putative 3D surfaces. Consistency of image edge filtering is considered

of prime importance for 3D interpretation of image sequences using feature tracking algorithms.

The state-of-the-art edge filters are not designed to cope with junctions and corners, and are

reluctant to provide any edge connectivity. The use of edges to describe some objects like the

bush is very doubtful since a small change in edge strength or in the pixilation causes a large

change in the edge topology. The solution to their problem is to detect both edges and corners.

6.2.2 Corner model

[Harr88] proposes a detector which is actually a combined corner and edge detector. Harris

corner detector draws its origin in the corner detector proposed by Moravec. Moravec’s corner

detector works by considering a local window in the image, and determining the average changes

of image intensity that result from shifting the window by a small amount in various directions.

Three cases are actually considered by this detection algorithm:

Part III FCP Detection 6.Extraction

Page 65 of 170

o If the windowed image patch is flat, which means it is approximately constant in

intensity, then all shifts will result in only a small change

o If the window straddles an edge, then a shift along the edge will result in a small change,

but a shift perpendicular to the edge will result in large change

o If the windowed patch is a corner or isolated point, then all shifts will result in a large

change. A corner can thus be detected by finding when the minimum change produced by

any of the shifts is large.

Denoting the image intensities by I, the change E produced by a shift (x, y) is given by:
2

,,
,

,, vuvyux
vu

vuyx IIwE −= ++� , where w specifies the image window: it is unity within a

specified window and zero elsewhere. The shifts, (x, y), which are considered comprise [(1, 0),

(1, 1), (0, 1), (-1, 1)]. The Moravec’s corner detector is to simply look for local maxima in min

{E} above some threshold value.

The Moravec’s corner detection algorithm suffers from a number of problems. Corrective

measures are taken by [Harr88] and this lead to a new corner detection method: Harris corner

detector.

Ø The response in Moravec’s algorithm is anisotropic because only a discrete set of shifts at

every 45 degrees is considered. In Harris corner detector all possible small shifts can be

covered. This is done by performing an analytic expansion about the shifts origin:
2

,,
,

,, vuvyux
vu

vuyx IIwE −= ++�

222

,
,),(yxOyYxXw

vu
vu +−=� (Eq. 6.1)

where the first gradients are approximated by:

xII ∂∂=−⊗= /)1 ,0 ,1(X (Eq. 6.2)

yII T ∂∂=−⊗= /)1 ,0 ,1(Y (Eq. 6.3)

Hence, for small shifts, E can be written as:

Part III FCP Detection 6.Extraction

Page 66 of 170

22 2),(ByCxyAxyxE ++= (Eq. 6.4)

where

wXYC

wYB

wXA

⊗=
⊗=

⊗=

)(

2

2

 (Eq. 6.5)

Ø The response in Moravec’s algorithm is also noisy because the window is binary and

rectangular. To cope with this problem Harris uses a smooth circular window, for

example a Gaussian:

222

, 2/)(exp σvuw vu +−= (Eq. 6.6)

Ø The operator in Moravec’s detector responds too readily to edges because only the

minimum of E is taken into account. [Harr88] reformulates the corner measure to make

use of the variation of E with direction of shift.

The change, E, for the small shift (x, y) can be concisely written as:

 TyxMyxyxE),(),(),(= (Eq. 6.7)

Where the 2x2 symmetric matrix M is

�

�
	
�

�
=

BC

CA
M (Eq. 6.8)

E is closely related to the local autocorrelation function, with M describing its shape at

the origin (explicitly, the quadratic terms in the Taylor expansion). Let βα , be the

eigenvalues of M. α and β will be proportional to the principal curvatures of the local

autocorrelation function, and form a rotationally invariant description of M. As before,

there are three cases to be considered:

Part III FCP Detection 6.Extraction

Page 67 of 170

o If both curvatures are small, so the local autocorrelation function is flat, then the

windowed image region is of approximately constant intensity. This means arbitrary

shifts of the image patch cause little change in E;

o If one curvature is high and the other low, so that the local autocorrelation is ridge

shaped, then only shifts along the ridge/the edge cause little change in E: this

indicates an edge;

o If both curvatures are high, so that the local autocorrelation function is sharply

peaked, then shifts in any direction will increase E: this indicates a corner

�����

�����	

�����

�����	

��	���

�����	

���

�

�

�

�

�

�

�

��

��

��

Figure 28: Auto-correlation principal curvature: bo ld lines give corner/flat classification, fine lines

are equi-response contours.

6.2.3 Corner decision

Consider the graph of (βα ,) space. An ideal edge will have α large and β zero (this will be a

surface of translation), but in realityβ will merely be small in comparison toα , due to noise,

pixilation and intensity quantization. A corner will be indicated by bothα andβ being large, and

a flat image region by bothα andβ being small. Since an increase of image contrast by a factor

of p will increase andβ proportionally by 2p , then if (βα ,) is deemed to belong in an edge

region, then so should),(22 pp βα , for positive values of p. Similar considerations apply to

corners. Thus (βα ,) space needs to be divided as shown by the heavy lines in Figure 28.

Part III FCP Detection 6.Extraction

Page 68 of 170

In summary, [Harr88] consider the minimum and maximum eigenvalues, α andβ , of the image

gradient covariance matrix in developing their corner detector. The gradient covariance matrix is

given by:

�

�

	
	
�

�
= 2

2

yyx

yxx

III

III
M (Eq. 6.9)

where Ix and Iy denote the image gradients in the x and y directions. This matrix characterizes the

structure of the image gray level patterns. In fact, the geometric interpretation of the gray levels is

encoded in the eigenvectors and eigenvalues of the matrix. A `corner' is said to occur when the

two eigenvalues are large and similar in magnitude.

Corner/edge response function

Not only are corner and edge classification regions needed but also a measure of corner and edge

quality or response. The size of the response will be used to select isolated corner pixels and to

thin the edge pixels.

First consider the measure of corner response, R, which is required to be a function of

α andβ alone, on grounds of rotational invariance. Tr(M) and Det(M) will be used in the

formulation to avoid the explicit eigenvalue decomposition of M, thus:

 BAMTr +=+= βα)((Eq. 6.10)

 2)(CABMDet −== αβ (Eq. 6.11)

A corner region pixel (i.e. one with positive response) is selected as a nominated corner pixel if

its response is an 8-way local maximum. Similarly, edge region pixels are deemed to be edges if

their responses are both negative and local minima in either the x or y directions, according to

whether the magnitude of the first gradient in the x or y direction respectively is the larger. This

results in thin edges. By applying low and high thresholds, edge hysteresis can be carried out, and

this can enhance the continuity of edges. These classifications results in a 5-level image

comprising: background, two corner classes and two edge classes. Further processing (similar to

junction completion) will delete edge spurs and short isolated edges, and bridge short breaks in

edges. This results in continuous thin edges that generally terminate in the corner regions. The

Part III FCP Detection 6.Extraction

Page 69 of 170

edge terminators are then linked to the corner pixels residing within the corner regions, to form a

connected edge-vertex graph.

To avoid an explicit eigenvalue-decomposition Harris and Stephens devise a measure using the

determinant and trace of the gradient covariance matrix:

2k(Tr(M)) - Det(M) R = (Eq. 6.12)

where Det(M)and Tr(M) are defined above, the parameter k is traditionally set to 0.04. This

produces a measure that is large when both α andβ are large. However there is a problem of

determining what is large. Noting that elements of the image gradient covariance matrix have

units of intensity gradient squared we can see that the determinant, and hence the measure R will

have units of intensity gradient to the fourth. This explains why the Harris operator is highly

sensitive to image contrast variations which, in turn, makes the setting of thresholds exceedingly

difficult. Some kind of sensitivity to image contrast is common to all corner operators that are

based on the local autocorrelation of image intensity values and/or image gradient values.

6.2.4 Parameter tuning

The Harris corner detector is implemented to have parameters, which can be used to control the

algorithm. In total there are three parameters: sigma, threshold and radius. These parameters are

defined as follows:

Sigma: this parameter is used to define the standard deviation of the Gaussian function. This

Gaussian function is called the kernel and is actually used for smoothing.

Threshold: this parameter is used to decide which pixels are corners. Only those above the

threshold are considered as corners.

Radius: the radius is used to define the neighbourhood that needs to be considered. Only in this

neighbourhood a local maxima will be found.

Table 18: Specification of the type of corners.
Type Position Total number

Inner eyebrow corner left + right 2
Outer eyebrow corner left + right 2
Inner eye corner left + right 2
Outer eye corner left + right 2
Mouth corner left + right 2

Part III FCP Detection 6.Extraction

Page 70 of 170

To find the optimal values for each parameter, the detection algorithm is tested on a set of 20

images of frontal faces from the Carnegie Mellon face database. Before the test could be done, we

have to define what kind of corners we want the algorithm to detect. In total 12 corners are

identified (see Table 18).

Table 19: Harris test parameters.

No. Parameter name Values

1 Sigma 05 – 4.0
2 Thresh 800 – 1200
3 Radius 0.5 – 4.0

After identifying the correct corners a reference database for each image is made by manually

selecting the concerning points. Testing is done by varying one parameter and setting the other

parameters to a constant. The results of this test are shown in Table 19, Table 20 and Table 21.

The last column actually shows the rate of how many of the twelve identified type of points are

detected.

Table 20: Test result by varying sigma.

Sigma TDC TCC TNC CDR

0.5 151 31,7 119,8 82,50
1.0 279 66,9 212,1 90,00
1.5 347 82,0 264,7 85,83
2.0 425 101,8 323,4 84,17
2.5 460 86,2 374,1 78,33
3.0 519 97,6 421,1 74,17
3.5 537 84,3 452,4 61,67
4.0 583 93,8 489,4 57,50
TDC: Total Number of Detected Corners
TCC: Total Number of Correct Corners
TNC: Total Number of Unimportant/False Corners
CDR: Corner Detection Rate in percentage

Table 21: Test result by varying threshold.

Threshold TDC TCC TNC CDR

800 279 68,0 212,1 90,00
900 252 61,4 190,2 89,17
1000 230 55,2 175,1 85,83
1100 211 50,5 160,7 82,50
1200 192 44,6 147,3 77,50
TDC: Total Number of Detected Corners
TCC: Total Number of Correct Corners
TNC: Total Number of Unimportant/False Corners
CDR: Corner Detection Rate in percentage

Part III FCP Detection 6.Extraction

Page 71 of 170

Table 22: Test result by varying radius.

Radius TDC TCC TNC CDR

0.5 279 68,0 212,1 90,00
1.0 51 11,0 40,1 80,00
1.5 46 10,6 35,5 80,00
2.0 41 9,3 31,8 75,00
2.5 36 8,5 27,1 70,00
3.0 33 8,1 24,5 67,50
3.5 30 7,6 22 63,33
4.0 26 6,6 19,6 55,00
TDC: Total Number of Detected Corners
TCC: Total Number of Correct Corners
TNC: Total Number of Unimportant/False Corners
CDR: Corner Detection Rate in percentage

The optimal values for the Harris detection algorithm applied on face images are chosen

corresponding to the best detection rate. In the final system the values chosen for the Harris

corner algorithm is 1.0 for the sigma, 1000 for the threshold and 0.5 for the radius.

6.3 Sojka corner detection

6.3.1 Theoretical background

[Sojk03] The main idea for a new algorithm arose from the imperfection of existing corner

detection algorithms. The majority of the existing direct corner detectors determine the values of

a corner response function like the Harris corner detector. The value of a given point in an image

is computed by examining the function of brightness and/or its derivatives in a certain

neighbourhood of this point. Although the neighbourhood is not mentioned in all the detection

algorithms, it is somehow determined when the derivatives are computed using the mask of a

certain size or when the convolution is computed with the Gaussian function of certain � . The

value of the corner response function usually reflects the angle and the contrast of the corner.

Points at which the value of the corner response function is greater than a chosen threshold, and

also the function exhibits its maxima, are detected as corners. There are two drawbacks in this

approach:

o Consider the situation depicted in Figure 29. In the areas, A, B and C, the magnitude of

the gradient of brightness is non-zero. To determine the angle of the corner at point Q,

only a part of the information contained in the neighbourhood)(Ω Q is relevant. Area A

is the most important part, where area B is less substantial and area C is even almost

irrelevant. Existing corner detectors do not take into account such situations and

Part III FCP Detection 6.Extraction

Page 72 of 170

unselectively examine the whole neighbourhood of Q. This may lead to incorrect

decision of whether or not Q is a corner. This drawback cannot be avoided by using small

neighbourhoods. The neighbourhood has to be big enough to make proper decision

whether a candidate is a corner or not. In a small neighbourhood, noise affects the

precision and the reliability of the computations.

o A considerable drawback is caused by thresholding the values of the corner response

function. Suppose we can measure the angle � (see Figure 29). In digital images, we can

do this with a limited precision. It is clear that if the difference απ − is less than the

precision that can be achieved under the conditions of the measurement, the point should

not be detected as a corner. Known corner algorithms do not check the angle value and

use only the corner response function for thresholding. This function combines the angle

and the contrast of the corner; it may happen that a small value of the difference is

compensated by a high value of contrast, which leads to incorrect detections of corners

on contrast edges. This problem cannot be avoided by increasing the threshold, which in

turn will lead to missing the corners with a lower contrast.

Figure 29: Neighbourhood of point Q on verifying the existence of corner at point Q. In the colored

area A, B and C, the magnitude of the brightness gradient exhibits non-zero values. Only area A

however is relevant for determining the angle of corner (denoted by �) at Q.

Taking into account the drawbacks mentioned above, a new algorithm we call the Sojka corner

detection algorithm is proposed for direct corner detection. This algorithm also determines the

Part III FCP Detection 6.Extraction

Page 73 of 170

corner response function that combines the angle and the contrast of the corner similar to existing

algorithms. The function is designed in such a way that it exhibits its local maxima at corner

points. The main new features of the algorithm are the following:

o Information contained in the neighbourhood)(Ω Q is exploited selectively. It determines

which areas are relevant for determining whether or not Q is a corner. It is done by

introducing the probability)(XSGΡ of the event that a point)(QX Ω∈ belongs to the

approximation of the straight segment containing Q of the isoline of brightness. In Figure

29, for example, the values of)(XSGΡ are high at the points in area A; at all other points

the values of)(XSGΡ are low. The values of)(XSGΡ can be computed from the values

of brightness and its gradient by making use of the Bayesian estimations.

o Explicit computations of the corner angle are included in this Sojka corner detection

algorithm. The expected precision of the angle measurement is estimated. A point Q can

only be accepted as a corner if the difference is significantly greater than the estimated

precision of the angle measurement.

o Computation of a quantity expressing the obviousness of the corner is done. This quantity

value, in essence, characterizes the size of the area that is relevant for deciding whether

or not Q is a corner and the magnitude of the gradient of brightness in this area. A point

can only be accepted as a corner if its ‘appearance’ is greater than a predefined threshold.

6.3.2 Corner model

A function)(ξψ is defined to describe the values of brightness in the direction across the edges

and its derivative is defined positive with a single maximal extremum at 0=ξ , which is regarded

as an edge point. The edge is usually oriented by the rule that the higher brightness lies to the left.

The corner is an intersection of two non-collinear straight edges. In the corner model of Sojka, the

gradient of brightness along the edge that comes into the corner and the edge that comes out from

the corner are defined as angle 1ϕ and 2ϕ respectively, where)2,0, 21 πϕϕ ∈ . Let the gradient

vectors of the edges’ gradient be represented by() 2,1 ,sin,cos == iiii ϕϕn . The axis of a

corner is a line through a corner point, which halves the angle between both edges, therefore also

the angle between 1ϕ and 2ϕ . The corner axis is oriented in such a way that it runs in the

direction of increasing brightness. This means that the angle between the corner axis and iϕ is not

greater than 2/π . The directions of the gradient are different at the points lying to the left and to

Part III FCP Detection 6.Extraction

Page 74 of 170

the right of the corner axis. Consider the image containing a single corner point C. The brightness

function is described by the following:

()() ()(){ }
()() ()(){ } otherwise

if

CXCX

CXCX
Xb

0 x

,max

,min
)(21

21

21 ≥

�
�
�

−⋅−⋅
−⋅−⋅

=
nn

nn

nn

ψψ
ψψ

 (Eq. 6.13)

The term (X-C) expresses the distance of X from the edge. The corner is either convex or

concave; concave if 0 x 21 >nn and convex if 0 x 21 <nn .

6.3.3 Corner decision

Discussions are simply considered for two cases: continuous and discrete. In the case of a

continuous and error-free representation of the image, X belongs to a straight isoline segment

containing Q if the following conditions are satisfied:

o The brightness at X is equal to the brightness at Q, i.e. 0)(=∆ Xb .

o The line Xp passes through Q, i.e. 0)(=Xh .

o For the angle difference)(Xϕ∆ , the inequality 2)(0 πϕ ≤∆≤ X holds.

o The conditions above are satisfied not only at X, but also at all other points of the line

segmentQX .

In the case of a discrete representation of the image, first a probability,)(XSGΡ , is introduced to

denote the event that X belongs to the approximation of a straight line segment containing Q. We

define:

 { }))(|())(|())(|(min)(YAngQYhDirQYbBrQX
QXY

SG ϕ∆ΡΡ∆Ρ=Ρ
∈

(Eq. 6.14)

Explanation of the probabilities introduced in Eq. 6.31 can be found in the table (see Table 23)

below.

Part III FCP Detection 6.Extraction

Page 75 of 170

Table 23: Explanations and relations among the expressions in Eq. 6.14.

Probabilities Description Dependency

))(|(YbBrQ ∆Ρ

Denotes the probability of the

event that Y is a point of the

approximation of the isoline

with brightness)(Qb thus Y is

point ofQX .

Independent event. Since

the neighbourhood area

may contain one or more

corners, the isoline

segment with brightness

)(Qb need not generally

aim at Q.

))(|(YhDirQΡ

Denotes the probability of the

event that Y is a point of the

approximation of the isoline

segment (not necessarily with

brightness)(Qb) that aims at

point Q.

Independent event. An

isoline segment aiming at

Q may generally have an

arbitrary brightness.

))(|(YAngQ ϕ∆Ρ

QXY ∈

Denotes the probability of the

event that Y belongs to the area

of possible corner at Q.

Independent event. Points

may exist that do not

belong to the corner area

despite the fact that the

conditions, that the

brightness difference and

deviation are zero, are both

satisfied (see Figure 30).

Table 23 shows that the three probabilities introduced in Eq. 6.14 are of independent events. The

last probability is introduced due to the fact that points that satisfy both the conditions

0)(,0)(==∆ YhYb do not always belong to the corner area (see Figure 30). This fact is

detected by the condition 2)(0 πϕ ≤∆≤ Y , which is not satisfied for Y.

Part III FCP Detection 6.Extraction

Page 76 of 170

Figure 30: Although the conditions 0)(,0)(==∆ YhYb are both satisfied at Y, Y does not belong

to the area of the corner at Q. This is detected by the fact that the condition 2)(0 πϕ ≤∆≤ Y is not

satisfied for Y. Small circles show the position of pixel points.

Suppose that X is a point lying on a straight isoline segment containing Q, which means that all

the points of the line segment QX also lie on the isoline segment. Figure 31 illustrates the fact the

conditions do not suffice to decide whether or not X belongs to an isoline segment containing Q.

Thus, the probability of Q and X connected by a segment isoline cannot be greater than the

probability than any arbitrary point of the isoline segment QX connected to Q. The operator

‘min’ in Eq. 6.14 corresponds to the idea that if the event (event that a point belongs to the

approximation of the straight line segment containing Q) occurs at the point with lowest

probability, it will also occur at the remaining points of the line segmentQX .

Figure 31: Isoline segment XY1 aiming at Q. Although all three conditions are satisfied by X and Y2,

Y1 shows the contrary (the angle of difference must be less than � /2).

Part III FCP Detection 6.Extraction

Page 77 of 170

Substituting the estimations from))(|(YbBrQ ∆Ρ and))(|(YhDirQΡ (discussed in [Sojk03])

into Eq. 6.14, we find:

 { }))(|())(()))(((min)(1
0 YAngQYhpYbpAX dd

QXY
SG ϕβ ∆Ρ∆=Ρ −

∈
 (Eq. 6.15)

Let us determine at Q the ‘angle of break’ of the isoline that passes through Q. We thereby need

to examine the values of)(Xϕ in Ω . Since the relevance of the value of)(Xϕ at X not only

depends on the probability)(XSGΡ , but also on the distance between the points Q and X, a

positive weight function))((Xrwr , where)(Xr stands for the distance, is introduced. The

relevance is expressed by the following:

))(()()(XrwXXw rSGΡ= (Eq. 6.16)

To determine the angle of break at Q, first compute the quantities ϕµ and 2
ϕσ , which determines

the direction of the corner axis and the weighted square value of the difference between the

direction of the gradient brightness)(iXϕ at Xi and ϕµ . We define:

Ω∈

Ω∈=

i

i

X
i

X
ii

Xw

XXw

)(

)()(ϕ
µϕ (Eq. 6.17)

[]

Ω∈

Ω∈

−
=

i

i

X
i

X
ii

Xw

XXw

)(

)()(2

2
ϕ

ϕ

µϕ
σ (Eq. 6.18)

Now use)(),(2 QQ ϕϕ σµ to express explicitly the values that were computed for a particular

corner candidate Q. We define the functions:

)()()(2 QQgQCorr ϕσ= (Eq. 6.19)

Ω∈

−Ρ=
iX

iiiSG XXgXQAppar |)(|)()()(ϕµϕ (Eq. 6.20)

Part III FCP Detection 6.Extraction

Page 78 of 170

6.3.6 The practical application of the algorithm

In practical computation the Sojka corner algorithm is realized as follows. First, the magnitude

and the direction of the gradient of brightness)(Xg and)(Xϕ , respectively are computed. The

derivatives yXbxXb ∂∂∂∂)(,)(are replaced by the differences, which are computed using the

following masks:

�

�

	
	
	

�

�

−−−

�

�

	
	
	

�

�

−
−
−

1.03.01.0

000

1.03.01.0

 and

1.001.0

3.003.0

1.001.0

Only those pixel points at which the magnitude of the gradient of brightness is greater than a

predefined threshold are considered as candidates for corners. The candidate corners are then

examined by determining the values)(),(),(),(QApparQCorrQQ ϕϕ σµ . The candidate at

which the value)(QCorr exhibits its local maximum and at which the values of

)(),(QApparQϕσ are greater than chosen thresholds is determined as a corner. The probability

density dp and the weight function rw are fixed estimated functions, where the probability

density dp is a normal distributed function with zero-mean and rw is a Gaussian function.

Figure 32: Sojka corner detection algorithm.

1. Compute magnitude of the gradient of brightness g(X) and direction of the
gradient of brightness � (X).

2. For all pixel points Q:

 if g(X) > predefined threshold then Q is a candidate corner.

3. For all candidate corners Q:

 - Compute the direction of the corner axis: � � (Q).
 - Compute the weighted square value of the difference between � (Xi)

at Xi and � � as: � 2� .
 - Using � � (Q) and � 2� , compute Corr(Q) and Appar(Q) according to

equations Eq. 6.19 and Eq. 6.20.

4. Candidate corner Q is determined as a corner if:

 Corr(Q) exhibits its local maximum and
Appar(Q) > predefined appearanceThreshold

Sojka corner detection algorithm:

Part III FCP Detection 6.Extraction

Page 79 of 170

The neighbourhood)(QΩ is declared square-shaped with Q in the centre. The declared size of

the neighbourhood is not so crucial since the effective size is always determined adaptively by the

values of)(XSGΡ . In practice, ψ is an unknown function so the value of)())((1 YdYb =∆−β

cannot be determined exactly, but can be estimated instead. With respect to the corner model, we

yield:

)()(

)(2
))((1

QgYg

Yb
Yb

+
∆≈∆−β (Eq. 6.21)

For computing the probability))(|(XAngQ ϕ∆Ρ the angle difference)(Xϕ∆ is needed. But the

direction)(Qϕµ of the corner axis is not known, so it will be approximated by)(Qϕ . Taking into

account that the probability))(|(XAngQ ϕ∆Ρ is either one or zero and substitute Eq. (6.21) into

Eq. (6.15), we easily obtain:

≤∆≤

+
∆≈

=Ρ
∈

otherwise

XYhp
QgYg

Yb
p

X

dd
QXY

SG

0

2)(0))((
)()(

)(2
min

)(

πϕ

 (Eq. 6.22)

The computation of)(XSGΡ may be carried out effectively by proceeding from Q, which is the

centre, to the border of)(QΩ . Once the values of)(XSGΡ is known for all points in)(QΩ , the

values of)(and),(),(),(QApparQCorrQQ ϕϕ σµ can be easily computed using Eq. 6.17 –

6.20.

Finally, if we assume that the size of)(QΩ is MxM pixels, it can be noted that values of

)(XSGΡ for all points in)(QΩ can be computed in)(2Mθ time. The same time is also needed

for the computation of other values, which means that a corner candidate is processed in

)(2Mθ time. To speed up the computations one can neglect the small values of)(XSGΡ .

Part III FCP Detection 6.Extraction

Page 80 of 170

6.3.7 Parameter tuning

Before this method can be applied to faces for extracting FCPs, the parameters of the Sojka

algorithm must be optimized for the best result. Following we will show the definition of the

seven parameters of this algorithm described at [Sojk03b].

HalfPsgMaskSize: the half of the mask size.

The overall mask size, i.e., the size of the neighbourhood (2*halfPsgMaskSize + 1) is used to

decide whether or not a candidate is a corner. Generally, the bigger masks give better results but

the computation may be longer. The usual values of halfPsgMaskSize vary from 4 to 7, which

give the overall size of the mask between 9x9 and 15x15 pixels.

CorrAngleThresh: the threshold for the "angle of break" of the boundary at the corner point.

Only a point at which the boundary is broken more than is required by this threshold may be

accepted as a corner. Usual value is approximately 0.5, which is an angle size in radians. The

value of this threshold is more or less stable for all images. Therefore, there is no need to

experiment too much unless the detected corners must have a specific angle. As an indication,

higher value of this threshold must be chosen if small masks are used since in small masks, the

precision measuring the angles is generally lower than in greater masks.

NoiseGradSizeThresh: the threshold for the size of the gradient of brightness.

All the values of the gradient size less than this threshold are considered to be a noise and the

corresponding points are therefore excluded from processing. Higher values of this threshold

contribute to the reduction of influence of noise. At the same time, however, the less obvious

corners may be missed. Remember that even in the synthetic images you have a noise that is

caused by dividing the image into pixels. Typically, the value of this parameter varies between

0.04 and 0.08 of the image range (the difference between the maximal and minimal value of

brightness in the image). If the less contrast corners are also wanted, this value should have a

lower value. If corners caused by noise are detected in case it is not desired, this value should be

increased. Note that higher values lead to faster computation since the algorithm examines a

lower number of candidates.

AppearanceThreshold: the threshold for the "appearance" (obviousness) of corner.

The appearance combines the contrast, size and the shape of the possible corner area. Only the

points whose appearance is greater than this threshold can be accepted as corners. The value of

this threshold must again be properly adjusted. The typical value of this threshold varies usually

Part III FCP Detection 6.Extraction

Page 81 of 170

between 0.0 and 5.0. If the algorithm detects too many corners, increase the value of this

threshold and vice versa. Remark that the value of this threshold may be negative.

SigmaD: sigma for the normal distribution of the probability density Pd.

From the theoretical point of view, it follows that the value should be less than 1.0. Values

between 0.7 and 1.0 were confirmed as optimal also experimentally. The value of 0.95 proved to

be suitable for most images. There is no need to experiment with this value too much unless

absolutely best possible detection is wished.

SigmaR: Sigma for the Gaussian expressing the function wr, i.e., the weights depending on the

distances from the candidate that is just being processed.

For the above mentioned sizes of the mask, use the values between 2.5 and 3.5, typically 3.0.

Usually, the value is not critical.

HalfExtMaskSize: this parameter is the size of the area in which it is checked whether the corner

response function Corr() has its maximum at the point just being tested.

Typical value of this parameter is 1, which means that the maximum is checked in the area of 3x3

pixels with the point being tested in its center. Tests with this parameter should start with value 1.

If problems with multiple detections of the same corner arise, this value should be increased to 2

or 3. The value of this parameter must always be less than or equal to the value of the parameter

HalfPsgMaskSize.

Table 24: Sojka test parameters.

Parameter name Range

HalfPsgMaskSize 4 (fixed)
CorrAngleThresh 0.5 (fixed)
NoiseGradSizeThresh 3 ~ 23 (variable)
AppearenceThreshold 0 ~ 5 (variable)
SigmaD 5 (fixed)
SigmaR 2 (fixed)
HalfExtMaskSize 5 (fixed)

Having defined the parameters, we can apply the algorithm on faces to see which parameters give

the best results. From the definition, it can be seen that not all parameters have equal influence on

the outcome of the detection. Most of them can be set to a default value. The two parameters with

most influence are NoiseGradSizeThresh and AppearenceThreshold. In the test, we varied the

Part III FCP Detection 6.Extraction

Page 82 of 170

values these two. Following table shows the test parameters. The test set is the same as the one

used for tuning Harris’ parameters.

Table 25: Sojka test result.

noiseGradSizeThr. appearanceThr. TDC TCC TNC CDR

3 0 60.07 17 42.7 79.17
3 5 16.47 5.5 9.3 33.33
4 2 33.03 10.6 21.9 60.00
6 5 8.27 2.3 5.2 15.83
13 5 1.00 0.4 0.8 2.50
14 2 9.50 2.8 5.1 19.17
18 5 65.40 18.7 52.3 77.50
19 3 73.10 20.8 59.2 81.67
19 4 58.77 18 46.7 77.50
20 0 98.37 24.2 83.8 88.33
20 2 72.93 20.2 58.3 83.33
20 4 47.33 14.8 36.5 69.17
21 0 89.50 22.9 73.1 89.17
21 1 76.33 21.2 61.3 85.83
21 2 60.87 18.2 47.8 79.17
21 3 46.93 15.2 35.3 74.17

TDC: Total Number of Detected Corners
TCC: Total Number of Correct Corners
TNC: Total Number of Unimportant/False Corners
CDR: Corner Detection Rate in percentage

The test results are shown in Table 25. It can be concluded that the detection rate decreases when

the noise threshold is kept fixed and the appearance threshold is increasing. From the test results,

we can see that a higher noiseGradSizeThresh (without looking at the appearanceThreshold) leads

to a lower number of total detected corners. A lower value of appearanceThreshold (without

looking at noiseGradSizeThresh) leads to a higher number of total detected corners and total

correct detected corners. So, appearanceThreshold should get the value 0. The results show that

the highest correct detection rate is achieved where noiseGradSizeThresh = 21 and

AppearanceThreshold = 0 (highlighted in blue). These values are used in the final implementation.

Page 83 of 170

�

Facial Characteristic Points Detection –

Classification

As mentioned in the previous chapter, after detecting the corner points it is still needed to extract

the positive corners from the total number of candidate corners. To achieve this we use the RVM

classifier discussed in the previous chapters. This classification model needs to be trained with

samples of the corners we want the classifier to extract. Analogous to the steps of training RVM

for face detection, we will discuss the training for corners. In section 7.1 the preparatory steps

preceding the training will be discussed. In section 7.2 the training process with the boosting

algorithm will be considered and section 7.3 copes with the training and test results.

7.1 Feature vector extraction

The training samples needed to train the RVM corner classifier will be taken from images with

full frontal faces. The resolution of these face images are actually determined by the face

detector, which is the size of 64x64. It is discussed [Chan04] that this size is a trade-off between

computational cost and minimum resolution in order to guarantee that information about eyes,

nose and mouth is not lost in too small image versions. That means with this size it is still

possible to see enough details around the facial feature corners, which is strongly necessary for

extracting feature vectors to train RVM.

Before we can create the database of corners, we need to know which size of the region around

the corners needs to be obtained. The solution to this is based on experimental results and testing.

Thus, we rely on the results of our application. If the region around the corner is too small, we

cannot extract proper features from it. This is because there is a lot of fuzziness around the facial

feature corner points. A small window size does not contain enough detail to differentiate well

Part III FCP Detection 7.Classification

Page 84 of 170

from other non-corner regions. We do not want the size to be too big because that would be

computationally unattractive. It is known that the size of 13x13 image pixels has been

successfully applied by other applications. Thus, we will use this size for the samples to be

extracted from the face database. We manually extracted points for the sample database. For each

corner point, from which there are 12, we made a database for training and another one for

testing. The databases we extracted the corner points from are the BioID dataset and the Carnegie

Melon dataset. More details about the training and testing databases used for RVM can be found

in Table 26.

Table 26: Dataset description of different corners.

Database description:

Database source: BioID/Carnegie Melon
Database sample size: 64x64 pixels
Extracted sample size: 13x13 pixels
Training: 2-class (0/1)

Nr. of samples (0/1) Type
Training set

Testing set

Left eye inner corner 500/500 500/500
Right eye inner corner 500/500 500/500
Left eye outer corner 500/500 500/500
Right eye outer corner 500/500 500/500
Nose left corner 250/250 259/250
Nose right corner 250/250 326/350
Mouth left corner 500/500 500/495
Mouth right corner 500/500 500/495

Having the databases with corner samples, we cannot train the RVM classifier with the intensity

values of these samples. As we have seen before it does not work. We need a method that extracts

essential features to provide for the training of the RVM. Even though the DCT feature extraction

did not work for face detection, we apply it to the samples of the corners. DCT is short for the

Discrete Cosine Transform, which is a technique used for compressing images. The DCT

coefficient can be seen as feature vectors representing the whole image, which was a perfect

property to consider in our application. It works better than in the case of face detection.

However, the results were not good enough and thus unsatisfactory. We found that the DCT

feature extraction method is too sensitive to illumination effects in the images. Disappointingly, it

has to be concluded that DCT cannot be applied for this purpose.

At this point, we still need a method to extract the significant features from the images. We

wonder if it is possible to employ the feature extraction method as used for face detection. This

Part III FCP Detection 7.Classification

Page 85 of 170

method extracts simple rectangle features and with the boosting algorithm weak classifiers are

combined to form a strong classifier. The problem of needing a method to extract the significant

features from the training/testing database will be solved by this approach. So, we decided to

utilize this method for our facial corner detection.

7.2 Training the Relevance Vector Machine with Evol utionary-AdaBoost

The steps taken for utilizing the boosting method with Haar-like features is analogous to that

explained in Chapter 5. A general scheme for training the RVM for corner classification is

shown in Figure 33.

The boosting algorithm selects a Haar-feature and this feature will be calculated for all samples in

the training database. Note that the complete set of possible features (14140 features) is different

and smaller than in the case of 24x24 sample dimension. A weak RVM classifier will be trained

for this single feature and verified according the boosting principle. If this feature may not satisfy

the given conditions another feature will be selected and trained. In case it does satisfy the given

specification like having a positive detection rate greater than the given value, the feature will be

added to the final list of weak classifiers of which the corresponding parameter values will be

saved. These parameter values are the WUX values of the RVM classifier

Every time a candidate feature is found, the obtained set of final weak classifiers will be

evaluated on a test set that is distinct to the training set. If the overall true positive rate and overall

false positive rate meet the requirements the training ends. Otherwise, the algorithm will verify

whether the added feature contributes to the existing set. This is done by assessing the overall

false positive rate. This should be lower than the previous run of the selected final weak

classifiers. If this is not the case then the feature will be discarded. The training algorithm will

continue with searching for another weak feature to add to the final set of weak classifiers to form

a strong classifier. The training is said to converge if the final strong classifier satisfies the given

overall true detection rate and overall false detection rate.

Part III FCP Detection 7.Classification

Page 86 of 170

Figure 33: Scheme representing the training of weak classifiers with the WUXTRAP for FCP.

extraction.

Part III FCP Detection 7.Classification

Page 87 of 170

The chosen parameters for boosting the weak features are depicted in Table 27. The chosen RVM

model is exactly the same as the one used for face detection with the same kernel.

Table 27: EABoost training parameters for all type of corners.

EABoost parameters Values and description

Population size 250
Crossover/Mutation rate 0.20/0.80
Classifier/ kernel RVM/ Laplace 4.0
Feature false positive rate 0.3
Feature true positive rate 0.75
Target false positive rate < 0.05
Target true positive rate > 0.90
Number of features needed variable

7.3 Training and test results

Now it is time to look at some results acquired after the training algorithm has converged. In the

implementation of the boosting algorithm it is already known that an Evolutionary Search

algorithm is applied to speed up the selection process of the training algorithm. The training

application is implemented such that it only stops when the required rate is gained. The single

weak features are selected from a training set, which they have to satisfy the given rate for the

training set. Then the evaluation is done on a testing set to assure that the same rate can be

achieved from unknown samples. The evaluation results on the testing set are depicted in the

following (Table 28).

Table 28: The evaluation results from the EABoost training.

Type Acronym TPR FPR

Left eye inner corner LEIC 0.922 0.02
Right eye inner corner REIC 0.89 0.106
Left eye outer corner LEOC 0.916 0.064
Right eye outer corner REOC 0.892 0.034
Left nostril corner NLC 0.935 0.06
Right nostril corner NRC 0.893 0.049
Mouth left corner MLC 0.955 0.049
Mouth right corner MRC 0.916 0.049
TPR = True Positive Rate

FPR = False Positive Rate

Table 28 lists the training results after boosting the RVM classifier using weak classifiers. This

should not be confused with the results of chapter 6. In chapter 6 only the performance of the

Part III FCP Detection 7.Classification

Page 88 of 170

corner detectors is evaluated. The corner detectors are implemented to select candidate corners,

which also includes the corners listed in the table above. The RVMs are trained to subtract the

true corners from the false corners (corners that are not listed in the table above.). In other words

RVM has to classify the candidate corners.

At this point we have extracted a part of the total number of points that needs to be extracted for

the face model (see Chapter 3). The rest of the points cannot be extracted using this approach

which detects candidate corners with the Harris and Sojka corner detector and then classify them

with RVMs. The problem of the remaining landmarks (corner points) is that they cannot really be

considered as a corner point. In most cases they cannot be detected by the corner detectors.

Applying the technique of corner detectors with RVM would certainly fail to work.

Another problem would also be training the RVM. Features take on extreme shapes at these

remaining non-stable points and are way fuzzier than the defined points in the table. This would

make the extraction of a good database for training the RVM very difficult. To extract the

remaining the points we have employed another technique called the integral projection method.

This technique projects the image into the vertical and horizontal axes, from which we are able to

obtain the boundaries (in this case the facial features’ boundaries, which happens to contain the

points we are interested in). The boundaries of the features have relatively high contrast

compared to its near environment. This property can be perfectly explored for extracting the

remaining points. Further details can be found in the next chapter.

Page 89 of 170

	

Hybrid Projection for FCP Detection

This chapter describes a method for extracting other remaining FCPs, namely the projection

method. First, section 8.1 gives a theoretical introduction to this method. In section 8.2 to 8.4

different types of the projection method is discussed. In the final solution the hybrid projection

method is chosen to extract the remaining characteristic points. The method requires the

corresponding feature as input because a larger region might influence the final detection results

negatively. That is why section 8.5 discusses the algorithm and the method for extracting the

facial features like eyes, etc. The results and findings are also contained in this section.

8.1 Theoretical foundation

Many applications exist which use the technique of projection functions to detect the boundary of

different image regions. In our case we applied this technique in extend to the other approach to

extract the FCPs. This is needed because as the test results of the previous chapter showed, not all

FCPs could be extracted with the corner detection algorithms. Thus, we will use hybrid projection

with the purpose of finding the missing FCPs. It can also be seen as an extra verification for the

corner detection algorithm since it can also find FCPs that we have already extracted as described

in the last chapter. In a face, it is observed that some of the landmarks (including corner points)

have relatively high contrast and that is what makes the method suitable for FCP extraction.

Using projection functions the image is actually presented by two 1D orthogonal projection

functions. The dimension reduction from 2D to 1D reduces the computational load, which is very

interesting property. Consider Figure 34, which sketches the model; in this case for the eye.

Part III FCP Detection 8.Hybrid Projection

Page 90 of 170

Figure 34: Model of an eye image. The bold lines on the side of the eye represent the integral

projection of the image.

Suppose that PF is a projection function and � is a small constant. If the value of PF rapidly

changes from 0v to)(0 ξ+v , then 0v may lie at the boundary between two homogeneous

regions. This property of PF can be well exploited for FCP detection. There exist a few projection

functions and in the following sections we will discuss them more in detail. Among all the image

projection functions used, the integral projection function (IPF) is the most popular one. Another

one is the variance projection function (VPF) and we will also define a more generalized

projection function, which combines IPF and VPF. For the optimal parameters of the generalized

projection function we call it the hybrid projection function (HPF).

Figure 35: Use projection function to locate the boundaries of the facial feature.

8.2 Integral projection function

This type of projection function is the most popular one. However, in some cases like the one in

Figure 36 it cannot well reflect the variation in the image. In this case it fails to capture the

vertical variation of the image.

Part III FCP Detection 8.Hybrid Projection

Page 91 of 170

Figure 36: Case where IPF cannot retrieve the vertical variation.

[Feng98] Suppose I(x, y) is the intensity of an image pixel at location (x, y). We denote

)(xIPFv to be the vertical projection function projected on the vertical axis, and)(xIPFh to be

the horizontal projection function projected on the horizontal axis. Both functions of the image

pixel I(x, y) in intervals],[21 yy and],[21 xx can be defined respectively as:

 = 2

1

),()(
y

yv dyyxIxIPF (Eq. 7.1)

 = 2

1

),()(
x

xh dxyxIyIPF (Eq. 7.2)

More often, the mean vertical and horizontal projections are used, which are defined as:

 −
= 2

1

),(
1

)(
12

y

yv dyyxI
yy

xMIPF (Eq. 7.3)

 −
= 2

1

),(
1

)(
12

x

xh dxyxI
xx

yMIPF (Eq. 7.4)

The vertical and horizontal boundaries in the image can be identified according to the following:

>
∂

∂
= v

v
v T

x

xPF
B

)(
max (Eq. 7.5)

>
∂

∂
= h

h
h T

x

xPF
B

)(
max (Eq. 7.6)

Part III FCP Detection 8.Hybrid Projection

Page 92 of 170

PF can be any projection function for instance IPF, MIPF, VIPF, HPF. The parameter T in the

equations is the given threshold. A set of vB vertically divides the image into different regions

and a set of hB divides the image into different horizontal regions.

8.3 Variance projection function

To solve the problem mentioned in the previous section the variance projection function is

introduced. The variance projection function (VPF) [Feng99] is more sensitive to the variation in

the image than IPF does. VPF is also proved to be orientation and scale invariant. Another

attractive property of VPF is that it is insensitive to random noise in the image. So, suppose that

the facial feature, for instance the eye, is bounded by],[21 xx and],[21 yy . Let us denote

)(xVPFv and)(xVPFh to be the average of vertical projection and horizontal integral projection

of image pixel I(x, y) in intervals],[21 xx and],[21 yy . The projection functions in the vertical

and horizontal direction are defined as:

[]
=

−
−

=
2

1

2

12

)(),(
1

)(
y

yy
vv

i

xMIPFyxI
yy

xVPF (Eq. 7.7)

 []
=

−
−

=
2

1

2

12

)(),(
1

)(
x

xx
hh

i

yMIPFyxI
xx

yVPF (Eq. 7.8)

Although VPF is more sensitive to the variation in the image than IPF, it still does not mean that

VPF always works well. As a matter of fact, if we consider Figure 37; it is obvious that the

vertical projection fails to expose the vertical variation of the image. The variation is presented as

a flat line after the projection, which totally masks the true variation in the image.

Figure 37: Case where VPF fails to capture the vertical variation.

Part III FCP Detection 8.Hybrid Projection

Page 93 of 170

Similarly to IPF the vertical and horizontal boundaries can be computed along with Eq. 7.5 and

7.6. An illustration of VPF using synthetic eye image is shown below. Also random noise is

added to the image to show the influence of random noise in the image to VPF.

(y)VPFh

(y)VPFv

(y)VPFh

(y)VPFv

Figure 38: (Left) Synthetic eye image and its vertical and horizontal projection. (Right) Eye image is

added with random noise and its vertical and horizontal projection.

8.4 Hybrid projection function

In the previous sections it is shown that both IPF and VPF have weaknesses. But it is also easy to

find that they are complementary. The reason is that IPF considers the mean of the intensity

values while VPF considers the variance of the intensity. This is shown in Figure 39, where VPF

works better in one case and IPF on the other.

Figure 39: IPF and VPF complement each other in retrieving the vertical variation in some cases.

Now if we combine the results of IPF and VPF we yield a new projection function, which will be

the generalized projection function (GPF) [Zhou02]. Denote),(yxI to be the intensity pixel

value at location (x, y). Also denote)(xGFPv and)(xGFPh to be the vertical and horizontal

Part III FCP Detection 8.Hybrid Projection

Page 94 of 170

generalized projection function of),(yxI in the intervals],[21 yy and],[21 xx respectively. We

define:

 1,0

,

,

)()()(

)()()(

≤≤
⋅+⋅=

⋅+⋅=
βα

βα

βα

yVPFyMIPFyGPF

xVPFxMIPFxGPF

hhh

vvv

 (Eq. 7.9)

where βα , is used to control the contribution of IPF and VPF. To understand this relation we

have Figure 40 and Figure 41 to demonstrate this. The first graphs (Figure 40) actually show the

GPF in relation to IPF and VPF of an eye feature. This is also done for the mouth in Figure 41. In

both cases α is set to the values [0, 0.25, 0.5, and 1]; 10 ≤≤ β .

Figure 40: Eye image: (Top) Vertical projection (Bottom) Horizontal projection. For beta=0 the

variational information cannot be captured. Clear variational differences can be noticed for

alpha>0.3.

Part III FCP Detection 8.Hybrid Projection

Page 95 of 170

It is clear that IPF alone)0,1(== βα is not enough for representing the variational information

contained in the image. VPF, on the other hand, works pretty good even without

IPF)1,0(== βα . But IPF does contribute to the overall GPF in that it still contains the mean of

the intensity values which can be complementary to VPF.

Figure 41: Mouth image: (Top) Vertical projection (Bottom) Horizontal projection. For beta=0 the

variational information cannot be captured. Clear variational differences can be noticed for

alpha>0.3.

To actually see the relative contribution of IPF and VPF in the general function we define GFP as

follows:

Part III FCP Detection 8.Hybrid Projection

Page 96 of 170

 10

,

,

)()()1()(

)()()1()(

≤≤
⋅+⋅−=

⋅+⋅−=
α

αα

αα

yVPFyMIPFyGPF

xVPFxMIPFxGPF

hhh

vvv

 (Eq. 7.10)

By this definition IPF and VPF are actually special cases of GPF, where α is 0 or 1,

respectively. The following figures (Figure 42, Figure 43, Figure 44 and Figure 45) show this

relative relation of IPF and VPF. The results are obtained from an eye and mouth image as the

variational information of both features differs. Same things as before can be noticed, as in this

case α is replaced by)1(α− and αβ = .

Figure 42: Vertical projection of an eye image using +−

Part III FCP Detection 8.Hybrid Projection

Page 97 of 170

Figure 43: Horizontal projection of an eye image using +−

Figure 44: Vertical projection of a mouth image using +−

Part III FCP Detection 8.Hybrid Projection

Page 98 of 170

Figure 45: Horizontal projection of a mouth image using +−

The optimal value of α for mouth and eyes are derived from some test results on mouth and eye

images (see Table 29 and Table 30). The optimal values are highlighted in the table. The values

are selected based on their accuracy and stability. The threshold set for the images at these values

are derived from the image histograms and is about the same for all test images unlike for other

values ofα . In our final implementation we choose 6.0=α as the optimal value for the hybrid

projection.

Table 29: Test results at finding the optimal value for the hybrid projection for mouth.
MOUTH

Alpha (α) LB RB UB BB ODR
0.2 100 % 100 % 75 % 50 % 50-75 %
0.3 100 % 100 % 75 % 50 % 50-75 %
0.4 100 % 100 % 75 % 75 % 50-75 %
0.5 100 % 100 % 90 % 90 % 75-100 %
0.6 100 % 100 % 95 % 95 % 75-100 %
0.7 100 % 100 % 95 % 95 % 75-100 %
0.8 100 % 100 % 90 % 90 % 75-100 %
0.9 100 % 100 % 90 % 75 % 50-100 %
1.0 100 % 100 % 90 % 75 % 50-100 %

LB = Left Boundary
RB = Right Boundary

Part III FCP Detection 8.Hybrid Projection

Page 99 of 170

UB = Upper Boundary
BB = Bottom Boundary
ODR = Overall Detection Rate

Table 30: Test results at finding the optimal value for the hybrid projection for eyes.

EYES
Alpha (α) LB RB UB BB ODR
0.3 100 % 90 % 75 % 50 % 50-75 %
0.4 100 % 90 % 75 % 75 % 50-75 %
0.5 100 % 90 % 90 % 90 % 75-100 %
0.6 100 % 90 % 100 % 100 % 90-100 %
0.7 100 % 90 % 100 % 100 % 90-100 %
0.8 90 % 90 % 100 % 100 % 90-100 %
0.9 90 % 90 % 100 % 100 % 90-100 %
1.0 90 % 90 % 100 % 100 % 90-100 %

LB = Left Boundary
RB = Right Boundary
UB = Upper Boundary
BB = Bottom Boundary
ODR = Overall Detection Rate

8.5 Facial feature extraction

Since our purpose of using hybrid projection function is to extract FCPs which are located on the

facial features, our system need to know where these facial features are positioned. Therefore, to

apply hybrid projection successfully, proper images of the facial features need to be provided. In

order to extract the exact position of a facial feature, we need to apply our WUXTRAP algorithm

with proper images of the eyes, eye brows, nose and mouth to train our classifier to recognize

them. Once detected, they can be passed to the hybrid projection module for further processing.

Following are the specification and result for the training procedure of the left eye, right eye and

mouth.

Part III FCP Detection 8.Hybrid Projection

Page 100 of 170

Figure 46: General scheme of WUXTRAP for feature training.

Left eye and right eye

The two databases, containing respectively images of the left eye and right eye are created from

the BioID face database. In total, we used a set of 1000 positive samples of the left eye and 1000

negative samples of the left eye. This set is split into two set of equal sizes: one for training and

one for testing. The same yields for the right eye dataset. For more details, see Table 31 and

Table 32. The training parameters for EABoost are the same as for faces (see Table 14). Note that

the set of Haar-like features to be searched and trained is not the same as that of faces. Since an

Left eye

Mouth

Right eye

Part III FCP Detection 8.Hybrid Projection

Page 101 of 170

eye image is 15x25 pixels, we need to apply the Haar-like features on every possible scale and in

every possible position in every eye sample. That results in a set of 69031 Haar-like features to be

searched. The result that we get after training is shown in Table 33.

Table 31: Dataset specification for left eye.

Dataset parameters Values and description

Database source BioID
Sample size (h x w) 15x25 pixels
Number of classes 2
Class 0 Non-left eye
Class 1 Left eye
Number of samples (0/1) 500/500

Table 32: Dataset specification for the right eye.

Dataset parameters Values and description

Database source BioID
Sample size (h x w) 15x25 pixels
Number of classes 2
Class 0 Non-right eye
Class 1 Right eye
Number of samples (0/1) 500/500

Table 33: Evaluation test result for detecting the whole eye.

Type TPR FPR

Left eye 0.906 0.05
Right eye 0.912 0.049
TPR = True Positive Rate
FPR = False Positive Rate

Part III FCP Detection 8.Hybrid Projection

Page 102 of 170

Mouth

The mouth database we used to train RVM with is also extracted from the BioID face database.

We used a subset of 500 positive and 500 negative samples for training and a distinct subset of

the same size for testing. The set is specified in the following table. The training parameters for

EABoost are also the same as for faces. The Haar-like features’ set in a 20x40 pixels image is

312260. The training results are shown in Table 34.

Table 34: Dataset specification for the mouth.

Dataset parameters Values and description

Database source BioID
Sample size 20x40 pixels
Number of classes 2
Class 0 Non-mouth
Class 1 Mouth
Number of samples (0/1) 500/500

Table 35: Evaluation test result for detecting the mouth.
Type TPR FPR

Mouth 0.852 0.024

Part IV

System Implementation

Page 105 of 170

Analysis and System Design

In this chapter, we will describe the implemented system FLEX that is able to perform the task of

face detection and FCPs extraction. All models and algorithms that are used in FLEX are already

described and discussed in the previous chapters. FLEX makes use of the WUX values retrieved

with WUXTRAP to carry out its tasks. The result of the requirement analysis definition and the

functional design will be given in section 9.1. Section 9.2 will be devoted to the system models

and implementation details. The user interface and some screen mock-ups will be presented in

section 9.3.

9.1 Requirement analysis

FLEX consists of two modules: a face detection module and a FCP extraction module. The tasks

of the two modules are as their name suggests.

9.1.1 Purpose of the system
The main purpose of FLEX is the extraction of FCPs from digital images. The input for FLEX is

a digital image selected by the user. First, FLEX will automatically scan the image for faces. If

present and their resolution are bigger than 64 x 64 pixels, it will extract for each face the FCPs.

Within the framework of FED, these FCPs can be directly passed to the QPM (see section 2.1)

which will query the FED database for a facial expression. The result of FLEX will be a vector

containing FCP information.

9.1.2 Scope of the system
FLEX can handle one input image at a time. The input images can either be colour or gray-scale

images. From the input image, only faces with a resolution equal to or greater than 64 x 64 will

be passed to the FCP extraction module. As mentioned before, this final image size has been

chosen because of the trade-off between computational cost and minimum resolution in order to

Part IV System Implementation 9.Analysis and System Design

Page 106 of 170

guarantee that information about eyes, nose and mouth is not lost in too small image versions.

The input images should be one of the following formats: BMP, JPEG, JPEG2000, PNG, PNM,

Raw, TIFF and WBMP. FLEX can not yet handle other multimedia formats like video input and

is also not required within the FED framework at the moment.

9.1.3 Functional requirements

The main purpose of FLEX is extracting FCPs from the input image. The user is able to select a

digital image from the file system of the computer FLEX is running on. FLEX determines the

FCPs of the faces that are present in the image. FLEX complete its task with showing the FCPs

that it has found.

9.1.4 Non-functional requirements

� Adaptability: We attempt to build the module as compatible as possible to the FED so that

minimal adjustment to the existing FED code is needed for the integration of FLEX into

FED.

� Documentation: FLEX is well documented for future studies.

� Error handling: All errors are handled correctly by the program. In case of errors,

comprehensible messages will be displayed.

� Extendibility: It is possible to make modifications to the FLEX system in the future.

Additional functionalities such as processing video input can be easily added since we are

using Object Oriented Design.

� Performance characteristics: FLEX should be able to detect 80% of the characteristic

points in a face.

� Real-time: Speed is of critical importance. Especially when FLEX is going to be

integrated into the FED website. At the moment, the speed of FLEX depends on factors

like: size of the input image, the processor on which FLEX is running (compared to a

Celeron 1.5 GHZ, 512 MB machine, FLEX is running about twice as fast on an AMD

Athlon XP, 1.8 GHZ, 512 MB machine), and so on.

9.1.5 Pseudo requirements

FLEX is initially designed as a module to be integrated into the FED framework. FED is a web

application written in Java/Java2, therefore FLEX is also written in Java/Java2. FLEX is

developed in a Windows environment and does not make any use of a database.

Part IV System Implementation 9.Analysis and System Design

Page 107 of 170

9.2 System models

9.2.1 Use cases

Figure 47 shows the use case diagram of FLEX. It describes the behaviour of FLEX as seen from

the user’s point of view. The only actor in this use case diagram is the User of FLEX. A use case

describes a function provided by the system as a set of events that yields a visible result for the

actors. Following the figure is the use case description of the use cases.

����

����������������	

���������� ��!���

������"	#!�"$��

Figure 47: Use case diagram for FLEX.

Use case name SelectInputImage

Participating actor User

Entry condition 1. FLEX is started up

Flow of events 2. The user opens a getFileDialog to select the input image.

Exit condition 3. FLEX confirms the user by a message and by showing the selected

image.

Figure 48: The SelectInputImage use case.

Part IV System Implementation 9.Analysis and System Design

Page 108 of 170

Use case name StartFLEXDetection

Participating actor User

Entry condition 1. The user has selected an input image.

Flow of events 2. The user initiates the detection process by clicking on the Detect

button.

3. The face detection module of FLEX reads in the input image and

scans for faces at different resolutions.

4. For each detected face with a resolution of at least 64 x 64, the FCP

extraction module scans for all the predefined FCPs.

Exit condition 5. FLEX shows its results by displaying the detected faces with the

FCPs marked.

Figure 49: The StartFLEXDetection use case.

Use case name VerifyFLEXResults

Participating actor User

Entry condition 1. The results of the FCP extraction procedure is displayed on the

screen.

Flow of events 2. The user examines each of the shown faces with the FCPs.

Exit condition 3. The user accepts the results by clicking on the OK button or declines

it by clicking on the Decline button.

Figure 50: The VerifyFLEXResults use case.

9.2.2 Class diagram

Figure 51 gives the class model diagram that describes the structure of the FLEX system in terms

of classes and objects. Classes are abstractions that specify the attributes and behaviour of a set of

objects. Objects are entities that encapsulate state and behaviour. Each object has an identity: It

can be referred individually and is distinguishable from other objects. Each class will be

described individually.

Part IV System Implementation 9.Analysis and System Design

Page 109 of 170

�

� �

��

�

�

� �

� �

�
�

� �

��

� �

�
� ����

Figure 51: Class diagram of FLEX.

GUI Class

The Graphical User Interface class provides the user the facility to select an input image to be

scanned, to start the scanning procedure and to verify the results. The results with graphical

output will be handled by PaintArea.

ImageControl Class

The ImageControl class is the central unit in FLEX. All communication and dataflow between the

user, face detection module and the FCP extraction module occur via this class. It controls the

instantiation of the FaceImageScanner object, CornerImageScanner object and ImagePyramid

object. The methods scanLayers4Faces and scanFace4Corners will be invoked by the user via the

graphical user interface. If the input image is a 24-bit color image, ImageControl will

automatically convert it to an 8-bit gray scale representation for further processing.

Part IV System Implementation 9.Analysis and System Design

Page 110 of 170

�
�
	
�
��
�

��
��

�
�
��
�
�
�

�
��
��

�
��
�

Figure 52: Description of the ImageControl class.

ImagePyramid Class

This class is included in the Java Advanced Imaging (JAI) package that is provided by Sun

Microsystems. It represents a multi-resolution image pyramid: i.e. a collection of layers of

different resolution of the input image. More information about this class can be found on:

http://java.sun.com/products/java-media/jai/forDevelopers/jai-

apidocs/javax/media/jai/ImagePyramid.html

ImageScanner Class

The ImageScanner class is an abstract class that provides the interface for the FaceImageScanner

class and the CornerImageScanner class.

IntegralImage Class

This class represents the integral image representation of an image. With the method

convert2IntImage, a normal image can be converted into its integral representation.

FaceImageScanner Class

An instance of FaceImageScanner takes one layer of the image pyramid into account for face

detection. It does so by first scanning the input image with a 24 x 24 scanning window. Then it

will convert each subimage into the integral image representation. After that, the subimages will

be passed to the FaceCascade which decides whether or not a face is present. Note that in the

final implementation of FLEX, this class also controls the scanning process. Instead of scanning

Part IV System Implementation 9.Analysis and System Design

Page 111 of 170

every layer in the image pyramid this class simply scales the classifier by scaling the Haar

features.

�
	
�
��
!
�
��
��

%
�
�&
�
�
�

'
��
��
(
!
��
�

Figure 53: Description of the FaceImageScanner class.

FaceCascade Class

The FaceCascade class is in fact the component that decides whether or not a given image

contains a face. The FaceCascade consist of different layers each with a different number of

classifiers. Input for the cascade is a collection of all the subimages from FaceImageScanner.

They are first passed through the first layer in which all subimages will be classified as faces or

non faces. The negative results will be discarded. The remained positive subimages will trigger

the evaluation of the next classifier. The same process is performed in every layer. The subimages

that reach and pass the last layer are true faces.

Part IV System Implementation 9.Analysis and System Design

Page 112 of 170

'
��
��
(
!
��
�

%
�
�&
�
�
�

�
	
�
��
!
�
��
��

Figure 54: Description of the FaceCascade class.

FeatureImageScanner Class

This class process the image for facial features which can be eyes, eye brows, nose or mouth.

Therefore, the input image should be a face image. In this case, the face image is an image

detected by the face detector and has a size of 64 by 64 pixels. FeatureImageScanner scans for its

feature in a specific region. It will convert each subimage into an integral image representation.

After that, the subimages will be passed to the FeatureCascade which decides whether or not the

wanted feature is present.

�
	
�
��
!
�
��
��

%
�
�&
�
�
�

'
��
��
(
!
��
�

Figure 55: Description of the FeatureImageScanner class.

Part IV System Implementation 9.Analysis and System Design

Page 113 of 170

FeatureCascade Class

Practically the FeatureCascade class performs the same task as FaceCascade. Its structure is also

as that of FaceCascade. It decides whether or not a given face image contains the wanted feature.

The subimage that passes through all layers of the cascade can be considered as a true positive

sample.

�
��
��

�
��
�

�
�
��
�
�
�

�
�
	
�
��
�

��
��

Figure 56: Description of the FeatureCascade class.

HybridProjection Class

The result from face detection and FeatureImageScanner is a vector containing positions of facial

features. HybridProjection uses these exact locations to extract the features and corresponding

FCPs. This can only be done if the extracted feature does not contain noise in the form of parts of

other features.

Part IV System Implementation 9.Analysis and System Design

Page 114 of 170

'
��
��
(
!
��
�

%
�
�&
�
�
�

�
	
�
��
!
�
��
��

Figure 57: Description of the HybridProjection class.

CornerImageScanner Class

This class process the image, which in this case is a face image, for FCPs. It ensures that corner

detection is employed by instantiating the HarrisCornerDetector and SojkaCornerDetector

classes. As a result, the number of possible windows to scan for FCPs will be reduced.

Classification of the candidate windows is done by the CornerCascade which in turn invoke the

RVMClassificator. Variance integral projection too will be carried out on eyes, mouth and nose to

increase the accuracy of the detected FCPs.

�
	
�
��
!
�
��
��

%
�
�&
�
�
�

'
��
��
(
!
��
�

Figure 58: Description of the CornerImageScanner class.

HarrisCornerDetector Class

Part IV System Implementation 9.Analysis and System Design

Page 115 of 170

The given input image, which must be a gray-scale image, is scanned for corners. This class is

invoked by the CornerImageScanner class to reduce the number of scanning windows. The

parameters upon which this class is called are also controlled by the class that invokes it.

�
	
�
��
!
�
��
��

%
�
�&
�
�
�

'
��
��
(
!
��
�

Figure 59: Description of the HarrisCornerDetector class.

SojkaCornerDetector Class

The given input image, which must be a gray-scale image, is scanned for corners. Detection of

corners can actually be done in colour and/or gray-scale images. This class is invoked by the

CornerImageScanner class to reduce the number of scanning windows. The parameters upon

which this class is called are also controlled by the class that invokes it.

Part IV System Implementation 9.Analysis and System Design

Page 116 of 170

�
������)*
��	����������

�
	
�
��
!
�
��
��

%
�
�&
�
�
�

'
��
��
(
!
��
�

���)*
��	����������+,-�

��	��./�������
��	���+�����./��$��0#1�

�	��2"$����3�0#1�

�	���"$����3�0#1�

�	��&��4��%�*��3�0#1�

�����	���5&���&0#1�

�����	����6����3�5&���&0#1�

�����##��	��5&���&0#1�

�����$�	6����3�5&���&0#1�

������	���� ��!�5&���&0#1�

��������$�0#1�

���������$ 0#1�

�	��&���2�%�*��3�0#1�

�	���#���	�0#1�

�	��./����	������1

�	�����	��������	,-

������	����6����3�5&���-

������$�	6����3�5&���&-

�������	���� ��!�5&���&-

������&��6����3�5&���&-

��������	�&6����3�5&���&-

������	���5&���&-

������&��'	���5&���&-

������##��	��5&���&-

���������$�1����$ -

������./����3��-

������./������-

������./���������-

������./������-

������./�##��-

������./��7 �-

������./�4���-

������./�8��-

������./�4��8��-

������./������1����������-

������./��	�
����-

������./�#�5(��-

��	��2"$����3�1��"$����3�-

��	��	!$"$��4�2�-

��	��&��4��%�*��3�-

��	��	!$"$#���	�4�2�-

��	��	!$4��%�*4�2�-�

��	��&���2�%�*��3�-

��	���#���	�-

��	��./�	���&(%#-

��	��./�2�-

��	��./�����4������-

��	��./��	��!�	��%#-

��	��./��	��!�	���-

��	��./��$#���	�4�2�-

��	��./���(�4��������-

�����������	���-

Figure 60: Description of the SojkaCornerDetector class.

CornerCascade Class

The CornerCascade class is the component which decides whether or not a given image contains

a FCP. It does so by invoking the RVMCornerClassificator with the right parameters. One of the

parameters is the feature value, which is calculated by simply look up the values in the integral

Part IV System Implementation 9.Analysis and System Design

Page 117 of 170

representation matrix of the image. Another parameter is the type of the FCP to be classified like

inner left eye corner.
�
��
��

�
��
�

�
�
��
�
�
�

�
�
	
�
��
�

��
��

Figure 61: Description of the CornerCascade class.

RVMClassificator Class

This class is an abstract class that provides the interface for the classification of the input. Actual

classification is done by the RVMFaceClassificator class and the RVMCornerClassificator class

depending on the classification that needs to be made.

RVMFaceClassificator Class

This class represents the actual RVM classification model for faces. The implementation of the

RVM classification model is to differentiate faces from non-faces. In other words the

classification is fixed by a two-class classification. This class is invoked by the FaceCascade class

which also has to pass the parameters depending on the layer in which the RVM is located.

Part IV System Implementation 9.Analysis and System Design

Page 118 of 170

�
�
	
�
��
�

��
��

�
�
��
�
�
�

�
��
��

�
��
�

Figure 62: Description of the RVMFaceClassificator class.

RVMCornerClassificator Class

This class represents the actual RVM classification model for FCPs. The implementation of the

RVM classification model is to differentiate FCPs from non-FCPs. In other words the

classification is determined by a two-class classification. This class is invoked by the

CornerCascade class which also has to pass the parameter of which FCP to classify.

�
�
	
�
��
�

��
��

�
�
��
�
�
�

�
��
��

�
��
�

Figure 63: Description of the RVMCornerClassificator class.

RVMFeatureClassificator Class

This class represents the actual RVM classification model for features. The implementation of the

RVM classification model is to differentiate features from non-features. In other words the

Part IV System Implementation 9.Analysis and System Design

Page 119 of 170

classification is fixed by a two-class classification. This class is invoked by the FeatureCascade

class which also has to pass the parameters depending on the layer in which the RVM is located.

�
�
	
�
��
�

��
��

�
�
��
�
�
�

�
��
��

�
��
�

Figure 64: Description of the RVMFeatureClassificator class.

9.2.3 Sequence diagrams

Figure 65, Figure 66 and Figure 67 present the sequence diagrams of FLEX. They formalize the

behaviour of FLEX and visualize the communication among the objects. Figure 65 shows the

interaction between the objects of the face detection module of FLEX. The ImageControl object

invokes and initializes the other objects. When an input image is submitted by the user, an

ImagePyramid of the input will be constructed. The user can then give the signal to start the face

detection procedure by invoking the scanImg method of FaceImageScanner. In the end of this

sequence diagram, the ImageControl object obtains face information result. With this

information, ImageControl invokes the scanImg of FeatureImageScanner to extract the facial

features. This is shown in the second diagram. The result will be a vector with exact positions of

the features. ImageControl can then use this information to invoke the checkFeature method of

HybridProjection to extract the FCPs from the feature. In the third diagram the process of corner

classification is shown. As shown, the process is analogous to that of face detection and feature

extraction. The exception is that it contains corner detectors that reduce the number of subimages

to be classified.

Part IV System Implementation 9.Analysis and System Design

Page 120 of 170

Figure 65: Sequence diagram of FLEX. Part 1: face detection.

Figure 66: Sequence diagram of FLEX. Part 2: feature detection.

Part IV System Implementation 9.Analysis and System Design

Page 121 of 170

"$��
�	����
��	��"$����		��

��	"$�+ �	�����"$������,

��	��
����

��	9����"	�"$��+%���2��$��,

"	�����"$��

����������+%���2����"	�����"$��,

���!������!���+���!��7�1��	�����"$��,

 �%
��	��
����������

�������+%���2��$��1��	�����!��09�!�,

�������
��	��+%���2��	�"$��,

6�"

��	����
��	���+,

��)*
��	����������:����
��	����������

������
��	���+%���2��$��,

������
��	���+�����./��$��,

Figure 67: Sequence diagram of FLEX. Part 3: FCP extraction.

9.3 User interface

This section includes some screen shots of the FLEX user interface.

Figure 68: GUI of FLEX at start-up.

Part IV System Implementation 9.Analysis and System Design

Page 122 of 170

Figure 69: File-Open menu.

Figure 70: File-open dialog.

Part IV System Implementation 9.Analysis and System Design

Page 123 of 170

Figure 71: Image selected for detection.

Figure 72: Detection result after pressing the "Scan faces" button.

Part IV System Implementation 9.Analysis and System Design

Page 124 of 170

Figure 73: Image selected for FCP detection.

Figure 74: Detection result after pressing "Find FCPs" button.

Page 125 of 170

��

System Test
In this chapter we discuss the testing of the system. To test its performance we designed a test

plan. In this test plan, two modules (face detection and FCP detection) are considered separately

and as one unit. This plan will be presented in section 10.1. Section 10.2 and 10.3 discuss the test

of the face detection module and the FCP detection module respectively. Tests of both modules

linked together are given in section 10.4.

10.1 Test Plan

We consider three test objects: face detection, FCP detection and FLEX. In FLEX face detection

and FCP detection is combined in the final system. The images contained in the test sets are given

in appendix B. The images used for testing the face detection module are randomly collected

from the internet and from our own image collection. The images are of different sizes. The

images used for testing the FCP detection module are from the BioID and Carnegie Mellon face

database.

Face detection

The test for the face detection module can be divided into two parts:

FTO1: test the performance with images of single full-frontal faces. The test set consists of 15

images and will be referenced as Face Test Set1 (FTS1).

FTO2: test the performance with images containing two or more faces. The test set consists of 15

images and will be referenced as Face Test Set2 (FTS2).

FCP detection

The test for the FCP detection module is structured as follows:

FCPTO1: test the module on input images containing solely a full-frontal face. The test set is

referenced as FCP Test Set1 (FCPTS1).

Part IV System Implementation 10.System Test

Page 126 of 170

Integrated system

ISTO1: test the integration of the two modules. FCP detection is done on the output faces

provided by the face detection module. The test set is referenced as Integrated System Test Set

(ISTS1).

10.2 Face detection module test

To test this module we choose to test on two sets. The first set (FTS1) consists of individual

frontal faces and the second set (FTS2) consists of images with multiple faces. Each table

contains the following columns with data:

• Test image number (Nr.): sequence number of the test image in test set

• Image name (Image): name of the test image

• Resolution: the resolution of the image (h x w).

• Type: display the type of the image. The image can be either 8-bit or 24-bit.

• Total number of detected faces (TDF): the number of faces detected.

• True positives (TP): number of faces that are detected as faces and are indeed faces.

• Multiple true positives (MTP): number of faces, other than the real face(s), that can be

counted as correct detection(s) of the face(s).

• False positives (FP): number of faces that are classified as a face, but are in fact non-

faces. This number is equal to TDF – TP – MTP.

• Missed faces (MF): number of faces that has not been detected.

The outputs from the FLEX application are not judged by FLEX itself but by visual inspection. In

each test image, we consider only one true face. Other detections which can be interpreted as true

faces will be counted as multiple true positive (MTP) detections. The results of the first test

(FTO1) on the test set (FTS1) are given in the following table:

From the results in Table 36 the true positive rate is 93.3%. From the total detected faces there are

15 false positives. The precision of the detector is given by TP/(TP + FP) = 22/(22 + 15) = 0.595.

All faces are detected, except for the one contained in test image 2. This missed face can be

explained by the grouping function that is implemented in the final version of FLEX.

Recall that the training samples for the face detector (see Figure 11) contain some space on either

the left or right side of the face. This means that the training samples have a certain amount of

noise that will be observable in classification results. But this way, the final detector can still

detect a face when the scanning window is not exactly around a face. Since the face detector is

Part IV System Implementation 10.System Test

Page 127 of 170

scanning the input image on every pixel location in the input image, there will be multiple

positive detections around one face. The implemented grouping function will group these positive

detections into one rectangle. It does so by considering windows that in a range of two pixels

distance there are more than three positive detections.

Table 36: test result of FTO1 on FTS1.
Nr. Image Resolution Type TDF TP MTP FP MF

1 ind1.jpg 98x70 24 1 1 0 0 0
2 ind2.jpg 101x80 24 0 0 0 0 1
3 ind3.jpg 112x80 24 6 1 1 4 0
4 ind4.jpg 77x61 24 1 1 0 0 0
5 ind5.jpg 96x60 24 1 1 0 0 0
6 ind6.jpg 97x80 24 1 1 0 0 0
7 ind7.jpg 83x110 24 3 1 2 0 0
8 ind8.jpg 88x70 24 3 1 0 2 0
9 ind9.jpg 80x60 8 3 1 1 1 0
10 ind10.jpg 141x100 24 4 1 0 3 0
11 ind11.jpg 69x100 24 2 1 1 0 0
12 ind12.jpg 89x100 24 2 1 1 0 0
13 ind13.jpg 101x100 24 4 1 1 2 0
14 ind14.jpg 70x100 24 2 1 1 0 0
15 ind15.jpg 198x100 24 4 1 0 3 0

total 37 14 8 15 1

For test image number 2, if the grouping function is switched off, we can see that the face was

actually detected by FLEX. The implementation of the grouping function in the final system

simply discards this positive detection, because it is assumed that multiple detections should

occur around the face. It is possible that the size of the face is missed by the scaled classifiers.

This is the trade-off in scaling that cannot be resolved. The relative high number of false positives

can be explained by the fact that in the final implementation of FLEX we used only a five layered

classifier. For better results, either more layers of classifiers need to be trained or different

parameters need to be set for the classifiers. With the current settings, we can get a relative high

true positive rate, but the false positive rate is also high. If we want to decrease the number of

false positives by adjusting the parameters, the true positive rate will also decrease.

Part IV System Implementation 10.System Test

Page 128 of 170

Figure 75: Illustration of the grouping function. The images on the left are scanned without

grouping. The images on the right are scanned with grouping.

The results of the second test (FTO2) on the test set containing image with multiple faces (FTS2)

are given in the following table:

Table 37: test result of FTO2 on FTS2.
Nr. Image Width Height Type Faces TDF TP FP MF

1 group1.jpg 558 338 24 8 58 11 47 2
2 group2.jpg 312 226 24 8 35 9 26 1
3 group3.bmp 402 141 24 7 23 15 8 1
4 group4.bmp 240 178 24 8 24 14 10 0
5 group5.bmp 210 174 8 6 20 12 8 0
6 group6.bmp 170 153 24 6 18 7 11 0
7 group7.bmp 302 212 24 4 19 5 14 0
8 group8.bmp 188 110 8 4 5 4 1 2
9 group11.jpg 126 200 24 4 12 7 5 0
10 group12.jpg 253 280 24 3 3 3 0 1
11 group14.jpg 179 354 24 5 12 5 7 1
12 group16.jpg 250 175 24 5 8 7 1 1
13 group19.jpg 381 384 24 5 31 6 25 0
14 group20.jpg 255 190 24 5 26 7 19 0
15 group23.jpg 305 240 24 3 14 4 10 0

total 81 308 116 192 9

Part IV System Implementation 10.System Test

Page 129 of 170

In Table 37 we can see that out of the total number 81 faces in 15 images, 9 are missed. The true

positive rate is 88.9% and there are 191 false positives. The number of false positives is relatively

high compared to the number of positive detections. Again, this high number of false positives is

due to the number of classifiers we trained and implemented in the final version of FLEX. Some

of the faces are missed because they are (slightly) rotated or partly occluded by other objects. It is

also possible that a face is missed because of the strictness of the grouping function. In the

neighbour of two pixels around the face, it is assumed that there are more than three positive

detections.

Figure 76: test result on test group3.jpg of set FTS1.

10.3 Facial Characteristic Points detection module test

For this part of the test, we used the test set FCPTS1. It contains 22 images of 64x64 pixels,

selected from the BioID and Carnegie Mellon face database. 11 persons were selected, each with

two different facial expressions. Note that the test set does not contain any faces with glasses,

beard or moustache. The FCPTS1 set is used to test each FCP. The results of the FCPs are

arranged separately in a table. Each table contains the following columns with data:

• Test image number (Nr.): sequence number of the test image in test set

• Image name (Image): name of the test image

• Type: display the type of the image. The image can be either 8-bit or 24-bit.

Part IV System Implementation 10.System Test

Page 130 of 170

• Number of Candidate FCPs (NOC): display the number of corners that are detected

within the region of the FCP. These are candidates for the FCP.

• Total number of detected FCPs (TD FCP): the number of candidates FCPs that are

classified as FCPs. This number should be smaller than NOC.

• True positives (TP): number of corners that are detected as FCPs and are indeed FCPs.

• Multiple true positives (MTP): number of corners, other than the real FCP, that can be

counted as a correct detection of the FCP.

• False positives (FP): number of corners that are classified as FCP, but are in fact non-

FCPs. This number is equal to TDFPC – TP – MTP.

• True negatives (TN): number of corners that are classified as non-FCP, which are truly

non-FCPs. This number is equal to NOC – TDFCP.

• False negatives (TN): number of corners that are classified as non-FCPs, but they are

FCPs. This number has the value 1 in case no true positives are detected (TP = 0),

otherwise it has the value 0.

Table 38: Test result for left eye inner corner (LEIC).

Nr. Image Type NOC TD
FCP

TP MTP FP TN FN

1 A01.bmp 8 52 1 1 0 0 51 0
2 A06.bmp 8 57 2 1 1 0 55 0
3 D00.bmp 8 77 13 1 5 7 64 0
4 D44.bmp 8 60 6 1 5 0 54 0
5 E04.bmp 8 64 2 1 1 0 62 0
6 E52.bmp 8 63 1 1 0 0 62 0
7 F28.bmp 8 36 0 0 0 0 36 1
8 F37.bmp 8 52 2 1 1 0 50 0
9 I03.bmp 8 46 0 0 0 0 46 1
10 I35.bmp 8 53 1 1 0 0 52 0
11 Bioid_0256.bmp 24 59 8 1 7 0 51 0
12 Bioid_0257bmp 24 61 6 1 3 2 55 0
13 Bioid_0419.bmp 24 83 14 1 5 8 69 0
14 Bioid_0420.bmp 24 72 8 1 5 2 64 0
15 Bioid_0657.bmp 24 77 6 1 4 1 71 0
16 Bioid_0658.bmp 24 59 2 1 1 0 57 0
17 Bioid_0717.bmp 24 58 4 1 1 2 54 0
18 Bioid_0721.bmp 24 79 8 1 5 2 71 0
19 Bioid_1079.bmp 24 43 0 0 0 0 43 1
20 Bioid_1083.bmp 24 81 3 0 0 3 78 0
21 Bioid_1517.bmp 24 74 18 1 7 10 56 0
22 Bioid_1518.bmp 24 66 9 1 4 4 57 0

total 1372 114 18 55 41 1258 3

Part IV System Implementation 10.System Test

Page 131 of 170

By definition the true positive rate is the number of true positives divided by the total number of

positives. In Table 38 the true positive rate is (tpr = 18 / 22 =) 81.82 %. The false positive rate,

which is the number of false positives divided by the total number of negatives, is fpr = 41/ (1372

– 22 – (22 * 8)) = 3.49%.

Table 39: Test result for right eye inner corner (REIC).

Nr. Image Type NOC TD
FCP

TP MTP FP TN FN

1 A01.bmp 8 72 7 1 2 4 65 0
2 A06.bmp 8 54 0 0 0 0 54 1
3 D00.bmp 8 80 2 1 1 0 78 0
4 D44.bmp 8 60 0 0 0 0 60 1
5 E04.bmp 8 80 6 1 3 2 74 0
6 E52.bmp 8 67 3 1 2 0 64 0
7 F28.bmp 8 79 1 1 0 0 78 0
8 F37.bmp 8 79 2 0 0 2 77 1
9 I03.bmp 8 60 10 1 3 6 50 0
10 I35.bmp 8 62 7 1 3 3 55 0
11 Bioid_0256.bmp 24 75 18 1 3 14 57 0
12 Bioid_0257bmp 24 78 9 1 0 8 69 0
13 Bioid_0419.bmp 24 36 4 1 1 2 32 0
14 Bioid_0420.bmp 24 57 5 1 0 4 52 0
15 Bioid_0657.bmp 24 73 5 1 2 2 68 0
16 Bioid_0658.bmp 24 81 7 1 2 4 74 0
17 Bioid_0717.bmp 24 33 4 1 0 3 29 0
18 Bioid_0721.bmp 24 60 6 1 1 4 54 0
19 Bioid_1079.bmp 24 57 0 0 0 0 57 1
20 Bioid_1083.bmp 24 68 3 1 0 2 65 0
21 Bioid_1517.bmp 24 63 17 1 2 14 46 0
22 Bioid_1518.bmp 24 54 11 1 1 9 43 0

total 1428 127 18 26 83 1301 4

Figure 77: Screen shots of FCP detection on the left eye inner corner.

Part IV System Implementation 10.System Test

Page 132 of 170

Figure 78: Screen shots of FCP detection on right eye inner corner.

For the right eye inner corner, the tpr = 18 / 22 = 81.82 % and fpr = 83/ (1428 – (9*22)) = 6.75%.

From the tables and the screen shot pictures, it can be concluded that the inner corners of the eyes

can be detected quite good. For the test images in which the eye corners are missed, the eye

corners are either blurry by shadow, make-up or baggy eye lids. Also if the intensity difference

between the eye and the skin is too minimal, the FCP can not be detected. Following tables show

the FCP detection result of LEOC and REOC.

For the left eye outer corner, tpr is 63.64% and fpr is 5.94%. For the right eye outer corner, tpr is

81.82% with an fpr of 16.67% (see Table 40 and Table 41). It can be concluded that the outer

corners in our test images are hard to detect. In both cases, we can see that the missed FCPs occur

mostly in pictures from the BioID dataset. The faces in BioID are aligned in another way than the

faces from the Carnegie Mellon set. From the dataset (see appendix B) we can see that the eye

corners of the BioID faces are very close to the border. As a result, FLEX cannot extract a good

corner sample to let RVM classify. To test if the eye corners can be detected if they are aligned

correctly, we manually shifted the BioID faces some pixels to the left for REOC testing and some

pixels to the right for LEOC testing. The result are as we expected, the FCPs can be detected by

FLEX. The third picture of Figure 79 and the first and third picture of Figure 80 are from BioID

after shifting.

In the case of the left eye outer corner (LEOC) detection, we tried to achieve a low fpr by

adjusting some parameters in the classifier. The result is that the tpr also decreasing. For REOC,

we tried to do the opposite. The outcome is a high tpr with a high fpr.

Part IV System Implementation 10.System Test

Page 133 of 170

Table 40: Test result for FPC detection of left eye outer corner (LEOC).

Nr. Image Type NOC TD
FCP

TP MTP FP TN FN

1 A01.bmp 8 52 2 1 1 0 50 0
2 A06.bmp 8 31 4 1 2 1 27 0
3 D00.bmp 8 33 8 1 2 5 25 0
4 D44.bmp 8 27 7 1 4 2 20 0
5 E04.bmp 8 26 0 0 0 0 26 1
6 E52.bmp 8 25 2 1 1 0 23 0
7 F28.bmp 8 27 3 1 1 1 24 0
8 F37.bmp 8 51 3 1 2 0 48 0
9 I03.bmp 8 43 5 1 3 1 38 0
10 I35.bmp 8 36 11 1 2 8 25 0
11 Bioid_0256.bmp 24 33 0 0 0 0 33 1
12 Bioid_0257bmp 24 34 0 0 0 0 34 1
13 Bioid_0419.bmp 24 27 0 0 0 0 27 1
14 Bioid_0420.bmp 24 36 1 0 0 1 35 0
15 Bioid_0657.bmp 24 18 0 0 0 0 18 1
16 Bioid_0658.bmp 24 18 0 0 0 0 18 1
17 Bioid_0717.bmp 24 36 3 1 0 2 33 0
18 Bioid_0721.bmp 24 18 2 1 0 1 16 0
19 Bioid_1079.bmp 24 33 1 1 0 0 32 0
20 Bioid_1083.bmp 24 43 5 1 1 3 38 0
21 Bioid_1517.bmp 24 33 4 1 1 2 29 0
22 Bioid_1518.bmp 24 40 4 0 0 4 36 0

total 720 65 14 20 31 655 6

Figure 79: Screen shots of FCP detection of left eye outer corner.

Part IV System Implementation 10.System Test

Page 134 of 170

Table 41: Test result for FCP detection of right eye outer corner (REOC).

Nr. Image Type NOC TD
FCP

TP MTP FP TN FN

1 A01.bmp 8 22 11 1 7 3 11 0
2 A06.bmp 8 43 7 1 1 5 36 0
3 D00.bmp 8 36 7 1 3 3 29 0
4 D44.bmp 8 24 9 1 5 3 15 0
5 E04.bmp 8 18 8 1 2 5 10 0
6 E52.bmp 8 27 8 1 2 5 19 0
7 F28.bmp 8 31 15 1 4 10 16 0
8 F37.bmp 8 22 3 1 0 2 19 0
9 I03.bmp 8 9 3 1 1 1 6 0
10 I35.bmp 8 27 7 1 5 1 20 0
11 Bioid_0256.bmp 24 42 7 1 5 1 35 0
12 Bioid_0257bmp 24 40 9 1 5 3 31 0
13 Bioid_0419.bmp 24 18 2 0 0 2 16 1
14 Bioid_0420.bmp 24 46 3 0 0 3 43 1
15 Bioid_0657.bmp 24 33 6 1 3 2 27 0
16 Bioid_0658.bmp 24 27 0 0 0 0 27 1
17 Bioid_0717.bmp 24 22 10 1 3 6 12 0
18 Bioid_0721.bmp 24 16 8 1 4 3 8 0
19 Bioid_1079.bmp 24 18 2 0 0 2 16 1
20 Bioid_1083.bmp 24 27 5 1 3 1 22 0
21 Bioid_1517.bmp 24 43 8 1 2 5 35 0
22 Bioid_1518.bmp 24 33 7 1 1 5 26 0

total 624 145 18 56 71 479 4

Figure 80: Screen shots of FCP detection of right eye outer corner.

Part IV System Implementation 10.System Test

Page 135 of 170

Table 42: Test result for FCP detection of mouth left corner (MLC).

Nr. Image Type NOC TD
FCP

TP MTP FP TN FN

1 A01.bmp 8 302 36 1 7 28 266 0
2 A06.bmp 8 232 9 1 4 4 223 0
3 D00.bmp 8 188 14 1 3 10 174 0
4 D44.bmp 8 165 12 1 3 8 153 0
5 E04.bmp 8 206 32 1 5 26 174 0
6 E52.bmp 8 156 8 1 2 5 148 0
7 F28.bmp 8 200 3 1 0 2 197 0
8 F37.bmp 8 211 3 1 0 2 208 0
9 I03.bmp 8 194 16 1 5 10 178 0
10 I35.bmp 8 248 16 1 5 10 232 0
11 Bioid_0256.bmp 24 236 6 1 1 4 230 0
12 Bioid_0257bmp 24 284 15 1 3 11 269 0
13 Bioid_0419.bmp 24 216 3 1 2 0 213 0
14 Bioid_0420.bmp 24 210 15 1 4 10 195 0
15 Bioid_0657.bmp 24 265 6 1 1 4 259 0
16 Bioid_0658.bmp 24 171 5 1 3 1 166 0
17 Bioid_0717.bmp 24 217 0 0 0 0 217 1
18 Bioid_0721.bmp 24 175 1 1 0 0 174 0
19 Bioid_1079.bmp 24 236 0 0 0 0 236 1
20 Bioid_1083.bmp 24 211 0 0 0 0 211 1
21 Bioid_1517.bmp 24 240 12 1 2 9 228 0
22 Bioid_1518.bmp 24 237 9 1 3 5 228 0

total 4800 221 19 53 149 4579 3

Figure 81: Screen shots of FCP detection on mouth left corner (MLC).

Part IV System Implementation 10.System Test

Page 136 of 170

Table 43: Test result for FCP detection of mouth right corner (MRC).

Nr. Image Type NOC TD
FCP

TP MTP FP TN FN

1 A01.bmp 8 207 27 1 8 18 180 0
2 A06.bmp 8 261 15 1 3 11 246 0
3 D00.bmp 8 186 23 1 8 14 163 0
4 D44.bmp 8 243 11 1 0 10 232 0
5 E04.bmp 8 213 26 1 8 17 187 0
6 E52.bmp 8 198 28 1 4 23 170 0
7 F28.bmp 8 237 2 0 0 2 235 1
8 F37.bmp 8 258 7 0 0 7 251 1
9 I03.bmp 8 207 13 1 4 8 194 0
10 I35.bmp 8 253 23 1 5 17 230 0
11 Bioid_0256.bmp 24 197 16 1 7 8 181 0
12 Bioid_0257bmp 24 210 15 1 5 9 195 0
13 Bioid_0419.bmp 24 198 13 1 5 7 185 0
14 Bioid_0420.bmp 24 185 22 1 4 17 163 0
15 Bioid_0657.bmp 24 205 14 1 5 8 191 0
16 Bioid_0658.bmp 24 214 15 1 7 7 199 0
17 Bioid_0717.bmp 24 211 11 1 7 3 200 0
18 Bioid_0721.bmp 24 229 12 1 6 5 217 0
19 Bioid_1079.bmp 24 230 21 1 7 13 209 0
20 Bioid_1083.bmp 24 223 9 1 3 5 214 0
21 Bioid_1517.bmp 24 222 9 1 3 5 213 0
22 Bioid_1518.bmp 24 155 2 1 1 0 153 0

total 4742 334 20 100 214 4408 2

As stated earlier, mouth corners are unstable points, which means the position and the shape of

the mouth corners are variable. Still, the tpr and fpr for MLC is 86.36 % and 3.24%, respectively.

For MRC these are 90.91% and 4.71% respectively (see Table 42 and Table 43). It can be

concluded that FLEX is able to detect mouth corners very well.

Figure 82: Screen shots of FCP detection on mouth right corner (MRC).

Part IV System Implementation 10.System Test

Page 137 of 170

From chapter 8 another approach has been applied to extract the FCPs, which are unable to be

detected with the corner detector combined with RVM. These points are for example the FCPs on

top of the eyes, bottom of the eyes, top of the upper lip and bottom of the lower lip. The integral

projection method is then introduced to solve this problem. Following are the results of the

integral projection on eyes and mouth. As we know for this method the region must be specified.

For this purpose actually an eye and mouth detector is trained. Unfortunately, the results were not

acceptable to test the combination of this region detector together with the projection method. For

this problem we manually submit the region information of each test sample in FTS2.

Table 44: Integral projection results on left eye.

Nr. Image Type TP FP

1 A01.bmp 8 4 0
2 A06.bmp 8 4 0
3 D00.bmp 8 1 3
4 D44.bmp 8 2 2
5 E04.bmp 8 2 2
6 E52.bmp 8 2 2
7 F28.bmp 8 4 0
8 F37.bmp 8 4 0
9 I03.bmp 8 4 0
10 I35.bmp 8 4 0
11 Bioid_0256.bmp 24 3 1
12 Bioid_0257bmp 24 4 0
13 Bioid_0419.bmp 24 4 0
14 Bioid_0420.bmp 24 3 1
15 Bioid_0657.bmp 24 3 1
16 Bioid_0658.bmp 24 3 1
17 Bioid_0717.bmp 24 4 0
18 Bioid_0721.bmp 24 2 2
19 Bioid_1079.bmp 24 4 0
20 Bioid_1083.bmp 24 4 0
21 Bioid_1517.bmp 24 4 0
22 Bioid_1518.bmp 24 4 0

total 73 15

Part IV System Implementation 10.System Test

Page 138 of 170

Figure 83: Screen shots of integral projection on left eye.

Table 45: Integral projection results on right eye.

Nr. Image Type TP FP

1 A01.bmp 8 4 0
2 A06.bmp 8 4 0
3 D00.bmp 8 2 2
4 D44.bmp 8 2 2
5 E04.bmp 8 2 2
6 E52.bmp 8 3 1
7 F28.bmp 8 4 0
8 F37.bmp 8 4 0
9 I03.bmp 8 4 0
10 I35.bmp 8 4 0
11 Bioid_0256.bmp 24 4 0
12 Bioid_0257bmp 24 4 0
13 Bioid_0419.bmp 24 4 0
14 Bioid_0420.bmp 24 4 0
15 Bioid_0657.bmp 24 3 1
16 Bioid_0658.bmp 24 3 1
17 Bioid_0717.bmp 24 4 0
18 Bioid_0721.bmp 24 3 1
19 Bioid_1079.bmp 24 4 0
20 Bioid_1083.bmp 24 4 0
21 Bioid_1517.bmp 24 4 0
22 Bioid_1518.bmp 24 4 0

total 78 10

Part IV System Implementation 10.System Test

Page 139 of 170

Figure 84: Screen shots of integral projection on right eye.

From the results it can be observed that noise like shadow, make-up, and eye-bag has influence

on the results of this method. The results for the left eye are tpr: 82.95 % and fpr: 17.05%. For the

right eye, these are tpr: 88.64 % and fpr: 11.36%.

Table 46: Integral projection results on mouth.

Nr. Image Type TP FP

1 A01.bmp 8 2 2
2 A06.bmp 8 4 0
3 D00.bmp 8 3 1
4 D44.bmp 8 3 1
5 E04.bmp 8 2 2
6 E52.bmp 8 4 0
7 F28.bmp 8 4 0
8 F37.bmp 8 4 0
9 I03.bmp 8 4 0

10 I35.bmp 8 4 0
11 Bioid_0256.bmp 24 4 0
12 Bioid_0257bmp 24 4 0
13 Bioid_0419.bmp 24 4 0
14 Bioid_0420.bmp 24 4 0
15 Bioid_0657.bmp 24 3 1
16 Bioid_0658.bmp 24 3 1
17 Bioid_0717.bmp 24 4 0
18 Bioid_0721.bmp 24 4 0
19 Bioid_1079.bmp 24 4 0
20 Bioid_1083.bmp 24 4 0
21 Bioid_1517.bmp 24 4 0
22 Bioid_1518.bmp 24 4 0

total 80 8

Part IV System Implementation 10.System Test

Page 140 of 170

Figure 85: Screen shots of integral projection on mouth.

In the case of applying the projection method on the mouth it can be stated that this method is

really sensitive to the region that contains the feature. For example, in Figure 85 the mouth on the

left is not fully contained in the region. As a result the FCP on the bottom of the lower lip is

detected on the top of the lower lip. This again strengthens the point that if integral projection is

applied in FLEX, the region of the feature must be extracted very accurately. Besides the exact

location of the points, it can also be observed that the boundaries of the features can be located

very precisely. The tpr for mouth is 90.91 % and the fpr is 9.08%.

10.4 Integrated system test

In order to detect the FCPs from the face, the face must satisfy certain conditions. One of these

conditions is that the face must be upright full-frontal. The reason for this is that if the face is

rotated, the feature might be occluded by other part of the face. At the training of the face

detector, a database is used which contains images with slightly rotated faces. This results in

faces which cannot be processed further by invoking the FCP detection.

At the design of the FCP detection module it is assumed that full-frontal faces are available at a

size of 64x64 image pixels. The face detector is designed to detect faces with a minimal size of

24x24 pixels. Detecting a face in an image of a bigger size is done by scaling the classifier as

discussed earlier. In theory, the face detection nodule as we have designed it is suited for

application in combination with the FCP detection module. If the face detection module and the

FCP detection module are linked together, the performance of the FCP detection is dependant on

the performance of the face detector. In the current state the face detector is not as good as we

want it to be and needs to be improved. Therefore, it is not meaningful to execute the testing of

this test object (ISTO1).

Part V

Conclusion and Future Works

Page 143 of 170

��

Conclusions, Discussion and Future works

We are now concluding this thesis and propose some ideas to improve the current system. We

really hope that you enjoyed reading this thesis as much as we enjoyed writing it. It all comes

down to one thing. We started with a problem and soon made a thesis assignment of it. From then

on, we are off to the battlefield: the battle of proving yourself worthy of being a scientist.

11.1 Conclusions and discussion

We have presented an approach using a sparse learning model as the first step towards a fully

automatic facial expression recognition system. This system already exists as an online Facial

Expression Dictionary. In the current state of the system, providing a face image as input requires

the user to manually select all the FCPs for further processing. This interaction is not desired

since there are 30 FCPs and is certainly not making the system user-friendly. In our thesis project

we tackle this problem by automating the FCP detection process. Therefore, the thesis assignment

is defined as follows:

• Literature survey: research the related works on the topics of face detection, facial

characteristic point detection, facial expression recognition and classification methods.

• Model design: design a model as a solution to the problem of automatic facial

characteristic point detection. This model is built of multiple methods and algorithms.

• Prototype: implement the designed model.

• Tests: write a test plan to test the prototype and depicts the results.

Part V Conclusion and Future Works 11.Conclusions, Discussion and Future Works

Page 144 of 170

We did a research on the topics of face detection, facial characteristic point detection, facial

expression recognition and classification methods by examining scientific papers and reports

especially on the subject of using the sparse learning Relevance Vector Machine. After

concluding the literature survey, we continued with the second part of our thesis assignment: the

design of a model as a solution to the problem of fully automatic facial characteristic point

detection.

The model we designed consists of a face detection module and a FCP detection module. The

former allows the user to input an arbitrary image containing one or multiple faces. The face

detection module extracts the faces and invokes the FCP detection module on these faces. On its

turn, the FCP detection module automatically extracts the predefined FCPs. From the FCPs a

corresponding facial expression can be matched.

Face detection

We designed a learning model: WUX-values Training Application (WUXTRAP) to boost the

performance of RVM. This model consists of different techniques and algorithms. To detect faces

from images, we first need to learn the RVM to differentiate between faces and non-faces. The

first requirement to learn the RVM model is to have a dataset of faces and non-faces. These

databases can be of influence on the training results since the RVM has to learn from these

samples. There exist numerous face databases from which we can choose to use as our dataset.

The learning procedure is based on the AdaBoost learning algorithm. This algorithm is perfectly

suited for the selection of the best features that boost up the performance of the classifier. As

known for AdaBoost training, it is slow since it contains a brute force search. In addition, training

of the RVM itself is relatively slow. And since they are combined, there is a continuous feedback

from RVM to AdaBoost and the other way around. A genetic search algorithm is added to

improve the learning speed. Instead of a training time in the order of weeks/months, this is

reduced to hours/days (on an AMD Athlon™ XP 2200+ 1.80 GHz processor with 512 MB

RAM). Note that the size of the chosen training dataset is also significant for the speed of the

training.

After the learning procedure, faces can be distinguished from non-faces using the trained RVMs.

Remind that we want to find faces in an input image by scanning the whole image. The number

of scanning windows is huge. Most of these are non-faces. So, a cascaded structure of classifiers

is introduced to quickly discard most of these non-faces. A cascade consists of several layers of

classifiers. Each classifier is a combination of a number of RVMs. A practical problem that we

Part V Conclusion and Future Works 11.Conclusions, Discussion and Future Works

Page 145 of 170

encounter incorporating the cascade technique is that a lot of RVMs need to be trained. In our

case, since we are limited to the time we have for this project, our solution is to use more

computers and all simultaneously for training. Training more and better RVMs makes the final

system more robust.

We have managed to apply the RVM for face detection. However, the test results show that

improvement needs to be made. In the current state, the face detector consists of only five layers

of classifiers. Recall that in [Viol01] a cascade of 32 layers with over 4000 features is used. To

get better results, more classifiers need to be added to FLEX.

Facial characteristic point detection

The same learning model for training the face detection module is used for the FCP detection

module. Unlike in the case of face detection, no databases of FCPs exist which we can use as our

dataset. These databases are extracted manually by us from the BioID and Carnegie Mellon face

database. Note that it is really hard to be very precise at clicking the right FCP since there are

noise and fuzziness around these points. As we know, the quality of the datasets is of influence on

the training results.

For the detection of the FCPs, a corner detection algorithm is used to filter out the non-FCPs. We

have chosen for a combination of the Harris corner detection algorithm and the Sojka corner

detection algorithm. Unfortunately, not all of the non-FCPs can be filtered out by these corner

detectors. For this, we rely on the corresponding RVMs. The performance of the RVM in the

final system is actually determined by that of the corner detectors.

For the FCPs that cannot be detected by the corner detectors, we use the Hybrid Projection

technique. This technique is applied on the corresponding facial feature (eye, eye brow and

mouth) on which the FCP is localized. Therefore, RVMs are trained to extract these facial

features before applying the projection method.

The results in the final system show that some of the FCPs can be detected better than others.

This is concluded by looking at its positive detection rate and its false positive rate. The reason

for the relative poor performance of some FCPs is probably because the FCP itself is non-stable.

For instance, the mouth corners can take different shapes at different expressions. To detect the

FCPs we need to account that noise is very probable at corner regions. Taking this into account it

means that at the training of the RVM noise is included in the training samples. This affects the

final performance of the RVM. It is a trade-off that needs to be made. In the case of invoking the

Part V Conclusion and Future Works 11.Conclusions, Discussion and Future Works

Page 146 of 170

projection method, finding the boundaries is proven to be very robust, except if the feature

boundary is distorted.

11.2 Future works

For future research the following items are be recommended:

• In the current situation, a detected face cannot be further processed by the FCP detection

module if the face is slightly rotated. Some of the FCPs can be occluded by other parts of

the face. The face detection module is trained on a database with unaligned faces. Some

of them are slightly rotated to the left, some to the right, some looking up, etc. For the

two modules to work together perfectly, the face detection module should be trained

strictly on full frontal aligned faces. This is because the FCP detection module is

designed to work with these faces.

• The WUXTRAP model may be improved by considering a faster implementation of the

training application. This means that the training of AdaBoost and RVM can be

improved. The current implementations of these algorithms are done in Matlab 6.5,

which is known for its computational power but not for its speed. Also other variants of

the AdaBoost learning algorithm can be considered. They differ in the updating schemes

for the weights.

• In the face detection module, the scanning process can be speed up by other techniques.

Using edge detectors plain backgrounds might be filtered out and pruned from being

scanned. This reduces the overall scanning time on different resolutions.

• The performance of the system can also be improved by using an extended set of the

Haar-like features. In our training model, we used only 5 simple features.

• The detection rate during training may be increased by incorporating the bootstrapping

method. This method uses misclassified samples as training input in the next iteration.

This way we can force the learning algorithm to adapt the output results from previous

training rounds. We have not implemented this procedure in the current training model

because this would certainly affect the training time negatively.

Page 147 of 170

References

[Beau78] P.R. Beaudet. Rotationally invariant image operators. Proceedings of Fourth

International Joint Conference on Pattern Recognition, Tokyo, 1978, p 579-583.

[Bish04] C.M. Bishop, M.E. Tipping. Bayesian Regression and Classification. Advances

in Learning Theory: Methods, Models and Applications, NATO Science Series

III: Computer and Systems Sciences, Vol. 190, 2004.

[Burg97] C.J.C. Burges, B. Schölkopf. Improving the Accuracy and Speed of Support

Vector Learning Machines. Advances in Neural Network Information Processing

Systems 9, Cambridge, MIT Press, 1997, p 375-381.

[Chan04] W. Chan, W.S. Wong. Literature Survey: Relevance Vector Machine for Face

Detection and Face Model Feature Extraction. TU Delft, 2004.

[Deri93] R. Deriche, G. Giraudon. A computational approach for corner and vertex

detection. International Journal of Computer Vision, Vol. 10-2, 1993, p 101-124.

[Dick03] A.R. Dick, M.J. Brooks. Issue on Automated Visual Surveillance. University of

Adelaide, CRC for Sensor, Signal and Information Processing, Technology Park,

Australia, 2003.

[Dikk04] H.J. Dikkers, M.A. Spaans, Facial Recognition System for Driver Viligence

Monitoring. IEEE Computer Society Press, 2004.

[Duma98] S. Dumai, J. Platt, D. Heckermann, M. Sahami. Inductive Learning Algorithms

and Representations for Text Categorization. Proceedings of Conference on

Information and Knowledge Management, 1998.

[Ekma78] P. Ekman, W. Friesen. Facial Action Coding System. Consulting Psychologists

Press, Inc., Palo Alto California, USA, 1978.

[Feng98] G.C. Feng, P.C. Yuen. Variance projection function and its application to eye

detection for human face recognition. Elsevier Science B.V., 1998.

References

Page 148 of 170

[Feng99] G.C. Feng, P.C. Yuen. Multi Cues Eye Detection on Gray Intensity Image. HK

Baptist University, Department of Computer Science, HK, 1999.

[Hara97] F. Hara, H. Kobayashi, K. Tanaka and A. Tange. Automatic Feature Extraction

of Facial Organs and Contour. IEEE International Workshop on Robot and

Human Communication, 1997, p 386-391.

[Harr88] C.G. Harris, M. Stephens. A combined corner and edge detector. Proceedings 4th

Alvey Vision Conference, Manchester, 1988, p 189-192.

[Huan04] W. Huang, Q. Xia. Screen Estimation for a Novel Pointing Device Based on

Corner Detection and Classification. TU Delft, 2004.

[Joac97] T. Joachims. Text Categorization with Support Vector Machines. Techinical

Reports, LS VIII Number 23, University of Dortmund, 1997.

[Jong02] E.J. de Jongh. FED: An online facial expression dictionary as a first step in the

creation of a complete nonverbal dictionary. TU Delft, 2002.

[Jung02] D.-J. Jung, C.-W. Lee, Y.-C. Lee, S.-Y. Bak, J.-B. Kim, H. Kang, H.-J. Kim.

PCA-Base Real-Time Face Detection and Tracking. International Technical

Conference on Circuits/Systems, Computers and Communication, Vol. 1, 2002, p

615-618.

[Kear93] G.D. Kearney, S. McKenzie. Machine interpretation of emotion: design of a

memory-based expert system for interpreting facial expressions in terms of

signalled emotions (JANUS). Cognitive Science 17, Vol. 4, 1993, p 589–622.

[Kitc82] L. Kitchen, A. Rosenfeld. Gray-level Corner Detection. Pattern Recognition

Letters, Vol. 1, 1982, p 95-102

[Koba97] H. Kobayashi, F. Hara. Facial Interaction Between Animated 3D Face Robot and

Human Beings. IEEE Computer Society Press, 1997, p 3732-3737.

References

Page 149 of 170

[Mori93] S. Morishima, H. Harashima. Emotion Space for Analysis and Synthesis of Facial

Expression. IEEE International Workshop on Robot and Human Communication,

1993, p 674-680.

[Osun97] E. Osuna, R. Freund, F. Girosi. Training Support Vector Machine: an

Application to Face Detection. Proceedings of CVPR’97, 1997.

[Roth00] L.J.M. Rothkrantz, M. Pantic. Expert Systems for Automatic Analysis of Facial

Expressions. Elsevier, Image and Computing, Vol. 18, 2000, p 881-905.

[Rowl98] H.A. Rowley, S. Baluja, T. Kanade. Neural Network-Based Face Detection.

IEEE Computer Society Press, 1998.

[Smit97] S.M. Smith, J.M. Brady. SUSAN – A New Approach to Low Level Image

Processing. International Journal of Computer Vision, Vol. 23, 1997, p 45-78.

[Sojk03] E. Sojka. A New Approach to Detecting Corners in Digital Images. Accepted for

Publication in IEEE ICIP, 2003.

[Sojk03b] E. Sojka. http://www.cs.vsb.cz/sojka/. 2003.

[Sung98] K.-K. Sung, T. Poggio. Example-Based Learning for View-Based Human Face

Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

20-1, 1998.

[Tipp00a] M.E. Tipping. The Relevance Vector Machine. Advances in Neural Information

Processing Systems. Vol. 12, 2000, p 652-658.

[Tipp00b] M.E. Tipping, C.M. Bishop. Variational Relevance Vector Machines.

Uncertainty in Artificial Intelligence, 2000, p 46-53.

[Tipp01] M.E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine.

Journal of Machine Learning Research, Vol. 1, 2001, p 211-244.

References

Page 150 of 170

[Trep03] A. Treptow, A. Zell. Combining Adaboost Learning and Evolutionary Search to

Select Features for Real-time Object Detection. University of Tuebingen,

Department of Computer Science, Germany, 2003.

[Vapn96] V. Vapnik, B. Schölkopf, C.J.C. Burges. Incorporating Invariances in Support

Vector Learning Machines. Artificial Neural Networks – ICANN’96, Berlin,

1996, p 47-52.

[Viol01] P. Viola, M. Jones. Robust Real-time Object Detection. Second International

Workshop on Statistical and Computational Theories of Vision-Modeling,

Learning, Computing, and Sampling, 2001.

[Zhao96] J. Zhao, G. Kearney. Classifying facial emotions by backpropagation neural

networks with fuzzy inputs. in: International Conference on Neural Information

Processing, Vol. 1, 1996, p 454–457.

[Zhou02] Z.-H. Zhou, X. Geng. Projection Functions for Eye Detection. State Key
Labaratory for Novel Software Technology, NU, China, 2002.

Appendices

 xvii

Appendix A: Cross-validation for RVM Kernel

Selection

Table 11: RVM 2-fold cross validation result trained on feature 38978.

Kernel # False + # False - # True + # True - Error rate
%

SD

Gauss 0.5 112
122

182
139

322
357

384
382

27.75 2.33

Gauss 1.0 166
191

105
120

394
381

335
308

29.10 2.83

Gauss 2.0 138
150

131
107

375
387

356
356

26.30 0.85

Gauss 4.0 90
131

219
92

272
417

419
360

26.60 6.08

Gauss 5.0 143
113

73
178

444
305

340
404

25.35 5.30

Laplace 0.5 162
51

90
405

408
97

340
447

35.20 14.42

Laplace 1.0 112
142

129
124

379
368

380
366

25.35 1.77

Laplace 2.0 145
127

78
235

431
256

346
382

29.25 9.83

Laplace 3.0 99
161

216
93

292
399

393
347

28.45 4.31

Laplace 4.0 152
129

84
132

413
371

351
368

24.85 1.77

Laplace 5.0 85
178

192
69

333
406

390
347

26.20 2.12

Appendices Appendix A: Cross-validation for RVM Kernel Selection

 xviii

Table 11: RVM 2-fold cross validation result trained on feature 28893.

Kernel # False + # False - # True + # True - Error rate
%

SD

Gauss 0.5 20
96

475
248

39
238

466
418

41.95 10.68

Gauss 1.0 110
398

232
52

265
451

393
99

39.60 7.64

Gauss 2.0 159
75

141
334

342
183

358
408

35.45 7.71

Gauss 3.0 145
317

151
57

345
447

359
179

33.50 5.52

Gauss 4.0 136
92

129
277

374
220

361
411

31.70 7.35

Gauss 5.0 151
247

153
97

356
394

340
262

32.40 2.83

Laplace 0.5 107
174

167
86

330
417

396
323

26.70 0.99

Laplace 1.0 127
382

163
39

331
467

379
112

35.55 9.26

Laplace 2.0 311
150

62
117

444
377

183
356

32.00 7.50

Laplace 3.0 160
66

125
346

358
171

357
417

34.85 8.98

Laplace 4.0 124
138

116
144

391
349

369
369

26.10 2.97

Laplace 5.0 173
140

99
106

404
391

324
363

25.90 1.84

Appendices Appendix A: Cross-validation for RVM Kernel Selection

 xix

Table 11: RVM 2-fold cross validation result trained on feature 45297.

Kernel # False + # False - # True + # True - Error rate

%
SD

Gauss 0.5 20
90

474
346

39
141

467
423

46.50 4.10

Gauss 1.0 151
465

248
32

260
460

341
43

44.80 6.93

Gauss 2.0 205
183

194
190

292
324

309
303

38.60 1.84

Gauss 3.0 178
150

177
182

328
313

317
355

34.35 1.63

Gauss 4.0 155
196

174
185

314
327

357
292

35.50 3.68

Gauss 5.0 81
175

310
165

187
338

422
322

36.55 3.61

Laplace 0.5 25
186

470
173

41
316

464
325

42.70 9.62

Laplace 1.0 188
174

178
172

309
341

325
313

35.60 1.41

Laplace 2.0 418
177

53
184

454
309

75
330

41.60 7.78

Laplace 3.0 67
217

361
127

142
370

430
286

38.60 5.94

Laplace 4.0 64
108

374
305

116
205

446
382

42.55 1.77

Laplace 5.0 177
111

144
317

350
189

329
383

37.45 7.57

 xx

Appendix B: Test Sets

Face Test Set 1 (FTS1):

Appendices Appendix B: Test Sets

 xxi

Face Test Set 2 (FTS2):

Appendices Appendix B: Test Sets

 xxii

 FCP Test Set 2 (FCPTS1):

