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Abstract

Computer vision has become one of the most challenging subjectdaysvahe need to extract
information from images is enormous. Face detection and ertiaai computer-vision tasks
have many applications and have direct relevance to the daognition and facial expression
recognition problem. Potential application of face detection andaaiin are in human-
computer interfaces, surveillance systems, census systems anchorany

In this thesis the focus is on the realization of a fulijomatic emotion recognition system. The
exploited approach splits the system into four components. Faceiaietéatial characteristic
point extraction, tracking and classification. Face detectooenmployed by boosting simple
rectangle features that give a decent representationeofatie. These features also allow the
differentiation between a face and a non-face. The boosting hlgor# combined with an
Evolutionary Search to reduce the overall search time.aFabaracteristic points (FCP) are
extracted from the detected faces. The same technique appliéates is utilized for this
purpose. Additionally, FCP extraction using brightness distributionalss been considered.
Finally, after retrieving the required FCPs the emotion of thalfagpression can be determined.
The Relevance Vector Machine (RVM) is the classificatiothoe that is used where a classifier
is required.

Index terms -face detection, facial feature extraction, facial charétic point extraction, facial
expression recognition, Relevance Vector Machine, corner detectdaBofst, evolutionary
search, hybrid projection.
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Introduction and Problem Definition






Introduction

For the past decades, many projects have been started with theemfrjgasning the machine to
recognize human faces and facial expressions. Computer vision ¢t@sebene of the most
challenging subjects nowadays. The need to extract informationirfinages is enormous. Face
detection and extraction as computer-vision tasks have many ajupiec and have direct
relevance to the face-recognition and facial expression recogpitoblem. Potential application
of face detection and extraction are in human-computer interfageillance systems, census
systems and many more. It is not so hard to imagine the impertinace detection in the
means of face and emotion recognition. The importance of thiectutign be ratified by the
recent terrorism bombings in London. In London, monitoring of people espeaidhe public
places is done by closed-circuit cameras and televisions, ahéchnked via cables and other
direct means (see Figure 1). These can also be found in casinos and barstarfoe.

Transfer of Transfer of
recordings recordings
Cameras (faces etc.) (faces etc.) =
- .
— =
- —
v — servers
. Workstations in
S the control/
monitoring
- station
- —

Figure 1: Closed-circuit television (CCTV) network.
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Part | Introduction and Problem Definition 1 Indlaction

The CCTV systems [Dick03] transmit their digital image®r the network and the images are
analyzed with face- and behavioural-recognition software toifgamusual patterns. After the
incidents the authorities were able to identify the attackers withelpeof the recordings of these
cameras. As they have done in London, video shots of facesfalitlae prompt identification of
suspects soon after security events happen. The set-up is mpig.sBome cameras exist to
capture the faces of people as they pass through criicatidns. Other cameras like the
complementing overview cameras are able to detect a thisiat) clearly failed in doing its job
to prevent the terror.

The surveillance systems like the CCTV have the same praiciple. First, a face is detected.
Then, the detected face can be tracked and enables importarédaathe extracted for analysis.
The type of features that is extracted depends strongly on twaatystem wants to achieve.
Features can be obtained for either the recognition of &aii@eetification) or the recognition of

an emotion/expression. Face identification is relevant in r@igea person’s identity and

emotion recognition has its contribution in prevention of crime alainitees for instance. In the

latter it concerns aggression detection, unusual or nervous belahdetaction. That is also why
extraction and recognition of facial expression has been a hot tepdelzades. It is important to
note that face detection and facial expression recognition dnectlisubjects. In face detection
the different expressions are considered as noise, where asainefgaression recognition the

identity is considered as noise. The latter implies thi¢rdnt persons have different neutral
faces with different feature shapes (big/small eyes, bigisnmaith, etc.).

Facial expressions are crucial in human communication. Human conationids a very
complex phenomenon as it involves a huge number of factors: we spbhakuwivoice, but also
with our hands, eyes, face and body. The interpretation of whatirig baid does not only
depend on the meaning of the spoken words. Our body language i.e. gestufgsempdhasize,
and contradict what we say. Facial expressions provide sensites about emotional responses
and play an important role in human communication. Therefore, itlisibla if this aspect of
human communication can also be applied for more effective r@antlyy methods in man-
machine interaction. In verbal communication, the conversation teeceeny difficult if neither
participant understands the language the other is speaking.ahte applies for nonverbal
communication: both parties must have the same interpretatittme afionverbal signals. Like
language, nonverbal signals are not universal. Moreover, thepatext and culture dependant.
Research has shown that the ability to communicate nonverbadlymsthing that has to be
learnt. According to (Eckman & Friesen 1972) people are baitm the ability to generate and
interpret only six facial expressions: happiness, anger, djsigast surprise and sadness. All
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Part | Introduction and Problem Definition 1 Indlaction

other facial expressions have to be learned from the environmepérth@n grows up. Humans
are capable of producing thousands of expressions that vary in &dypletensity, and
meaning. Subtle changes in a facial feature such as tigbtehthe lips are sufficient to turn the
emotion from happy to angry. And to think that the eyes and eyebrowaiszatake on different
shapes, one may imagine how complex the problem gets.

With the ability to recognize facial expressions and thusingetinformation about the
psychological state of a person, a lot of applications can bedevedi Systems can be made
smarter and safer. Consider for example the Driver \figdaMonitoring System [Dikk04]. The
idea is that the system will alert the driver whereéssthat he/she is in a state of somnolence. As
the name already indicates, the system is installed imahdéor monitoring the driver’s facial
expression continuously. The input to this system is a sequenceagésnof the driver's face
captured by a camera. The system will then make an assgdsamsed on the movements of parts
of the face, especially the eyes and eye lids. Anothereisting application that emphasizes the
importance of nonverbal communication is the Facial ExpressionoBé&ti (FED). This is an
online dictionary that allows us to find the meaning of certaiiaff@xpressions. In fact, given a
facial expression, the system is able to extract and recotirézgiven facial expression. More
about this system will follow in the next chapters, as thisshesject is an extension to the FED
framework.

Input Image
________________________ .
)/ Face Tracking (video)
/ Pose Estimation
’

Compression

HCI Systems

I
l ,~--- | Other Applications:
]
]
|
1
Face Detection :
I
]

Other Applications:

! [
! |
1
v p ! Facial Feature Tracking (video)I
- /! 1+  Face Recognition X
Feature Extraction )/ ' Gaze Estimation !
| HCI Systems !
. :
1
|
e e e e e e e e e e e -
] ]
v v -- 1 Approaches: |
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Figure 2: Generic emotion recognition system.
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For a system to recognize a facial expression the systsmndeds to detect and locate the faces
in the image or video (see Fig. 1 for a generic face regogrsystem). Depending on the used
system, the face in the image needs to satisfy some coisstiké full frontal view, silhouette
view, rotations of the frontal face within some boundaries asrthio light conditions. The
constraints all depend on the face model that the system usasg ftaund a face, the next step
is to extract the facial features: eyes/eyebrows, noselapstouth/lips, cheeks/forehead, chin,
etc. Not all of these features are of equally importanctatial expression recognition. The final
step in this face analysis process is to pass the obtaitedodan expert system that determines
in what kind of psychological state the person was.

In the past, Morishima et al. [Mori93] implemented a fiveelaad manual-input neural network
which is used for recognition and synthesis of facial expressiongh&o96] they explained a
singular emotional classification of facial expressions usindhree-layered manual-input
backpropagation neural network. [Kearney and McKenzie] developeghaalkinput memory-
based learning expert system, which interprets facial expressitsrsns of emotion labels given
by college students without formal instruction in emotion sigriatghkrantz et al. [Roth00]
proposed a point-based face model composed of two 2D facial viewslyrthen frontal- and the
side view. Based on a point-based face model, expression-ciatssifirules can be converted
straight-forwardly into the rules of an automatic cléssiln [Chan04] we tried to detect a face
and extract facial features using the Relevance Vectahivia classifier. In order to recognize
facial expressions, the additional step to do is to find tHalfeature points which will be used
for analyzing the facial expression. This facial expresstaognition method will be examined
and explained in this report.

A critical step in detecting a face with its facialti@as is to distinguish the face and non-faces.
This is done by using a classifier. There are differemtikiof classifying methods. Some well
known examples are K-Nearest Neighbours (KNN), Tree-AugmenteekMziyes (TAN) and
Support Vector Machines (SVM). The latter, being a stativ@fart classification method, is
based on some rather simple ideas and provides a clear inbfitidrat learning from examples
is about. Practical applications have already shown outstanding pieidormances of this
classification method. Some examples of recent application&/BF &e in handwritten digit
recognition [Vapn96, Burg97], face detection in images [Osun97] tart categorization
[Duma98, Joac97]. However, despite its success, there are sonificasidy and practical
disadvantages in the SVM learning methodology. A recently intextletassification method
based on the idea of the Support Vector Machine is the Relevaser\Wachine (RVM)
[Tipp00]. RVM is a Bayesian framework for regression andsdigation with analogous sparsity
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properties to the SVM. It can be seen as a probabilistic verfiocBVM but without the
disadvantages and simultaneously providing a number of additional advantag&bdpéer 4 for
more details).

1.1 Related works

In [Chan04] an extensive overview is given of related workhénarea of face detection and
facial expression recognition. To provide a context for our probldmititen we review some of
them globally. Section 1.1.1 to 1.1.3 discuss about some existingléaeetion work. Section
1.1.4 to 1.1.6 describes some of the projects done on facial expression recognitio

1.1.1 Applying Support Vector Machine to face detection

A Support Vector Machine (SVM) is introduced for detecting humaedan grey-level images
[Osun97]. First, face-like patterns are scanned at manybpossales and then SVM is used to
classify them into the appropriate class (face/non-face)SWé is trained with a second degree
polynomial as kernel function and an upper bound C=200. This upper boumg éxpected
value of the ratio between the number of support vectors and thedather of data points on
the generalization error. Also a database is used consistifec®fand non-face 19x19 pixel
patterns, assigned to classes +1 and -1 respectively. Oncevieh& been trained it is
primarily used over images that do not contain faces. Misifieations are stored for use as
negative examples in subsequent training phases. Images withdiffargnt texture patterns are
good resources for false positives. This way of reusing mssfitas examples is called the
‘bootstrap’ method which was successfully used by Sung and Poggig98)]. This method will
also reduce the size of the non-face class which is much braadeicher than the face class.
After the SVM is fully trained it is incorporated as kssifier in the system for pattern
recognition of face/non-face.

Non-fz
L Non-faces
m ¥ "W
B om E M.
(SN |
=l
mO\E
R
Hoa
Faces F

Figure 3: Geometrical interpretation of how the SVMseparates the face and non-face classes. The
patterns are real support vectors after training the system.
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This SVM face detection system is compared to Sung and Poggio’s on twbiseges. On test
set A, which contains 313 high-quality images with the sam@ber of faces, SVM has a
detection rate of 97.1% with 4 misclassifications, while SurtjRoggio’s has a detection rate of
94.6% with 2 misclassifications. On test set B containing 28j@s of mixed quality with a total
of 155 faces, SVM has a slightly poorer performance. While havisgme detection rate, SVM

has 20 misclassifications against 11 of Sung and Poggio’s.

1.1.2 Neural-network-based face detection

Rowl et al. [Rowl98] present a neural network-based face dwtesystem for upright frontal
views of faces. In their work only gray-scale images areideresd. The algorithm works by
applying one or more neural networks directly to parts of mipatiimage, and judging their
results. Each network is trained to output the presencbsenae of a face. The algorithms and
training methods are designed to be general, with littleomigation for faces. The neural
networks are trained with images containing faces and inregiesontaining any faces. It is also
using the “bootstrap” method so as to reduce the size of thengaet that is needed for images

not containing faces.

Receptive fields

Input image pyranud  Extracted window Corrected lighting  Histogram equalized
Hidden units

(20 by 20 pixels)
fomd o FS . E Arzares
-_5;: B : 3 —| = L‘_I Network / ﬁg \Ou ut
= é’ Input ﬁﬁg oggg &
P i
——== 8 o @ —:-gggﬁ]

——= & ® @

-

hv4
Preprocessing

Neural network
Figure 4: Face detection algorithm in [Rowl98].

The system operates in two stages. The first component usesahnetwork-based filter which
receives as input a 20x20 pixel region of the image. The outpubsvitiositive or negative for
the presence, respectively absence of a face in the sub-wiBgoause a face can appear in
every part of an image, the filter is applied at evexglpposition in the image. In order to detect
faces larger than the window size, the input image is reglgateduced in size by sub sampling.
Before the 20x20 pixels are passed to the neural networks, gteprocessed with lighting
corrections and histogram equalization. Experiments show that wh@ugput from a single
network can contain a number of false detections. The secoral aftdge system consists of
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ways to deal with this problem. Two strategies for improvihg reliability of the neural
network’s outputs are presented: merging overlapping detediions a single network and
arbitrating among multiple networks.

The authors also compared the performance of their systathéo illustrious face detection
systems. Amongst them are Sung and Poggio’s system [Sung98] aB¥Nhdace detection
system of Osuna, Freund and Girosi [Osun97]. The support vector mdesng number of
interesting properties, including the fact that it makes the boyrimdaween face and non face
images more explicit. In the comparison using the same set of &anSung and Poggio’s
system results in a slightly poorer performance than Rosvkystem with a difference of 6 faces
out of 155.

Another neural network-based face detection system is that of Kah-KayaB8drigpmaso Poggio
[Sung98]. They developed a generic human face detection systefintlsavertically oriented
and un-occluded frontal views of human faces in gray-level imadesr $ystem starts with
passing a small 19x19 sub-window over all portions of the image.syb&em is using a
clustering method with six “face” and six “non-face” clusters. Eda$ter is a multi-dimensional
Gaussian with a centroid location and a covariance malxax tlescribes the local data
distribution. These clusters measure the “difference” betwdwe sub-window and some
prototype distribution. The last step is to use a neural netwarlassify the sub-window as face

; ; ;l.pz;%::.n @I

or non face using this ‘difference’.

compute image Pre-process 'fCanonit;:ja]l
i ace mode
measurements & resize
‘ ' ) ¥ 3
[Face/Non-face| |"Diﬂ'erence"‘ measurements |
-. input image classifier

Face pattern recognizer | Face/Non-face classifier |

Figure 5: Face detection system as in [Sung98].

The most critical part of their system is the learnilggp@thm for classifying window patterns as
faces or non-faces. The key components of this algorithmlathis system uses a distribution-
based face model. So, they used a normalized window of 19x19 pixetsltd the distribution

of canonical frontal face patterns. 2) In order to classity patterns the “difference” between
each sub-window (after preprocessing and resizing) and the &déwtion model is measured
and the result of these measurements are passed to a trauratl network which determines
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whether or not the new window pattern contains a face. Thisngaprocedure is done in the
‘bootstrap’ fashion as described before. The system is traifbd4150 positive and nearly
43000 negative examples.

They tested their system on two test databases. For shedéitabase, consisting of 301 high
guality digitized images with frontal and near-frontatdés of 71 different people, the system
correctly finds 96.3 percent of all the face patterns andikesi only three false detects. For the
second database, consisting of 23 images of mixed quality with 1d%é&terns in complex
backgrounds, the system achieves a 79.9 percent detection ratévevithide detections. They
have not compared their system to other face detection systems.

1.1.3 Real-time object detection

P. Viola and M. Jones [Viol01] presented a face detectioersybased on their real-time object
detection framework. This framework involves three key coutiobs to the very positive
experimental results. The first one is the introduction of a neagénrepresentation called
integral image An integral image makes it possible for the detectiatguture, which classifies
images based on the value of simple features, to process ge gy fast. Once an integral
image is computed, any of its features can be extracted acaleyor location in constant time.
The second is a learning algorithm, based on AdaBoost. Thisingaalgorithm’s goal is to
construct classifiers by selecting a small number of impoféatares. The third contribution is a
method for constructing complex classifiers by combining diffe@assifiers in a cascade
structure. This increases the speed of the image progessicess dramatically; it allows the
detector to discard background regions very quickly and consequesetiynore time for more
promising regions of the image. In the cascade structure,es s¥rclassifiers are applied to
every sub-window. They will first pass through the initial sifer which eliminates a large
number of negative examples with very little processing. Theiilibe passed to the subsequent
layers which will in turn eliminate additional negatives but negadditional computation. In the
end the number of sub-windows will be reduced. This process is baskd fact that within any
single image a great majority of negative sub-windows exists.

The training dataset that is used for this face detectideraysonsisted of 4916 hand labeled
faces scaled and aligned to a base resolution of 24 by 24 and 10000 24xXadeasofi-he final
detector is a 32 layer cascade of classifiers which incladethl of 4297 features. This system
was compared to Rowley’'s face detection system described gRowd98], which was by that
time widely considered as the fastest. The result way n@@mising. While having comparable
face detection performance, it was about 15 times faster.
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1.1.4 Expert system for automatic analysis of facial expressions

Rothkrantz et al. [Roth00Q] is working on the development of ellient automated system for
the analysis of non-verbal communication. The result was implethastintegrated System for
Facial Expression Recognition (ISFER). In contrast to existauipf feature detectors which
utilize single image processing technique, a hybrid approach tal feature detection is
presented. Instead of fine-tuning existing facial feature detedtuey combine multiple feature
detection techniques that are applied in parallel. The systal® w#h static face actions, which
mean that only the end-state of the facial movement is neghsund compared to the neutral
position. The face model is defined as a point-based model composed 8D facial views,
namely the frontal- and the side view. The features definedhbymodel are extracted
automatically from the inputs which are still full-face/prefimages. Different techniques are
used for extracting the facial features. The used algorittsnlbcates all facial features with
namely ANN for eye-, nose-, and mouth-detection. Once the windowsringtthe features are
found, different ANNs and other algorithms are applied forniledi the facial characteristic
points for each feature. The changes in position of these pointbservable and so the validity
of the model can be visually inspected.
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Figure 6: Kobayashi and Hara face model.

1.1.5 Automatic feature extraction

In [Koba97] the authors developed an animated 3D face robot dbtimee interaction with
human beings. The aim is to let the robot produce realistic hunmarekponses. In order to react
appropriately, the robot must first recognize the facial esesf the human. Then it has to
make a proper decision for an action, and finally it has to perform tlo@ attie face model used
for this system is described in [Hara97]. The authors prapaséace model with 19 facial
characteristic points (see Figure 6). Movement of groufiacid| characteristic points indicates a
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certain facial expression. These points are used in thegnsyfsr facial expression recognition
and facial expression production.

Also different image processing algorithms are presentedxfibacting features of facial organs
and face contour. The facial organs include eyes, eyebrows, mbsaauth. Given face image
data, the irises can be positioned with an uncertainty of 3 mm in their locatieririg lailocation
algorithm uses a correlation technique using brightness digpribdata. Referencing to the iris
positions, the image processing procedure will continue with findingareas containing the
facial organs described above with 100% certainty. For each folbrarea, there is an algorithm
to extract the contour lines of the facial organ. Followingatgerithm for finding the contour of
an eyebrow is described. 1) Reinforcement of the horizontal edg&)e@riginal image) 2)
template matching for eyebrow positioning, 3) and 4) lower and ugaiges of eyebrow are
approximated by quadratic curves, 5) inner and outer parts ofagedocontour of eyebrow are
binarized in terms of black and white, 6) find the maximum dark area by labetimgique.

1.1.6 Feature point tracking by optical flow in facial expression

Kanade et al. [Kana98] developed and implemented an optical-flow based appeasate (Hoint
tracking) to capture the full range of emotion expression. Thisoaph is sensitive to subtle
changes in facial expressions. Because face position in are isggience may be slightly
transformed a transformation is adequate to normalize tlee dasition. The positions of the
feature points are normalized by automatically mapping them $tandard face model. This
model is based on three facial feature points: the medicdlwsof both eyes and the uppermost
point of the philtrum. In the facial feature point tracking ph&sg,feature points are manually
marked in the first digitized frame with a mouse around fdaradmarks. The facial feature
points within 13x13 pixel windows are tracked by using a hierarcbjgiédal flow method. The
displacement of each feature point is calculated by sulstgaitsi current normalized position by
its normalized position in the first frame.

1.2 Thesis overview

The structure of this thesis report is chosen so that chapiecusses the problem definition and
the thesis assignment. In the following chapter (chapter 3) madelalgorithms, which gives an
important overview of our models, will be presented. In chapsrd5 the discussion continues
with the face detector. All techniques, methods and algorithmswilidoke considered in more

detail, for instance the Adaboost algorithm and RVM clasgific model. After these chapters
the second part of this project will be presented. It stattsthe examination of corner detectors
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and then using these corners detectors to extract the chiatacpmints or landmarks in chapter
6. Further classification of the detected corners is needbithweads to the extraction of
relevant corner feature combined with the RVM classificat chapter 7. Chapter 8 proceeds
with a technique called the projection method. This is used ¢k tier remaining corners that
cannot be found with the corner detector algorithm. The analysigndand implementation of
the prototype which demonstrates the result of our findings lisded as chapter 9. Chapter 10 is
engaged with the test results of the prototype. We will caleclthis thesis report with
conclusions, discussions and recommendations for future works.
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Problem Definition and Thesis Assighment

This chapter describes the outline of our thesis. This thegjseprcan be considered as the
extension of a previous work, named FED (an online FacialeSgmn Dictionary [Jong02])
concerning a nonverbal dictionary. As the name already points BDtjd=an online application
and it can be accessed via the World Wide Web. First, FEDb&villescribed in section 2.1. After
that, the objectives and the scope of our research will liredeh section 2.2 and 2.3. In the last
section, we will define our thesis assignment.

2.1 Facial Expression Dictionary — FED

f CLIENT \

SERVER
FED USER GUI
-
<+—»  (Queries)
( ACTIVE AU's ) Q) \
5
( GEO FEATURE ) 3 -
2 FED
o
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Figure 7: Global design of the FED system
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A verbal dictionary can be described as a tool that aimgdeide a partial solution for the
problem where two persons neither understand the language the seaikag but still want to

communicate. One can just look up the meaning of the words of atemigeiage. A nonverbal

dictionary has the same concept of a verbal dictionary, bifférdin the type of information

that is stored. Instead of words, a nonverbal dictionary containsniafian about all the ways
people communicate with each other nonverbally: facial expressimsdures, posture, eye
movement and contact, speech rate, loudness, pitch, tone of voice and the pladiactiohs.

The FED system is an online nonverbal dictionary. FiguibBu3trates how the FED system
works. Currently, there are several ways to find an entryEiD. Rt is possible to have a label,
active action units, geometric features, a FaceShop-gethdeati@al expression or an image as
input. A label is the specification of the expression by a kegwiexamples of label queries are
happinessstressedsurprised and so on. The keyword will be matched on three parts: tred faci
expression label, the label synonyms and the description. Analogous tbdhguaries, a user
can look for FED entries by specifying which action unitsatéve with the facial expressions
he is looking for. Also possible is to specify some specifigngetric features likenouth open
eyes close@dr mouth open AND eyes closéfla certain facial expression is unknown, the user
can use FaceShop to sketch the facial expression. The faciattehmistic points (FCP) are
determined automatically while sketching. Another option to qu&f Entries is to submit a
picture of a face. The user has to mark the FCPs manuhlyreBults for all queries are of the
same form and are illustrated in Figure 8.

Found 1 matchies)

m AU 6 Raised cheeck(s), Compressed eyelids

- -
AU 12 Lip corners pulled up
H AU 16 Lower lip depressed
“ AU 25 Lips parted

Figure 8: Result of FED. The result panel displaythe result in the same panel with the original
image and other detalils.
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FED handles query requests via client-server architedtigere 7 shows the global design of the
FED system. Below a short description of the individual components of FEgvan.

« The FED user GUI (Graphical User Interface) enablesutegs to issue queries into
FED. It consists of a number of HTML pages and Java apjgetsandling each of the
guery alternatives.

 The FED administrative GUI provides the GUI for the managemartt of the FED
system.

* The communication layer of the FED system resides on thersand handles all data
traffic between the client and the server.

» The Query Processing Module (QPM) takes care of all kirguefies that are issued by
the user.

e The Admin Processing Module (APM) implements the functionaldgded to manage
the FED system.

» The FED Database contains all the entries in the dictiondminauser information, and
log info. The PostGreSQL database management system is udetplément the
database.

With this description of the FED, we can continue with the proldefinition to see what our
research project will change in FED.

2.2 Research question and objectives

Before we define our research question and objectives, we aimenthe idea of a specific part
of FED. We only focus on that part of FED, which allows the tssend a picture. This image
input will be labelled by emotional word (happiness, sad, etc.). FEDresghie user to manually
locate the face and facial characteristic points (FCPs).FIGfes are predefined conform the
Kobayashi and Hara face model. After manually selecting andiingnthe points an emotional

word will be output. Thus, FED lacks the ability of automatitraetion of facial characteristic

points that are needed for the facial expression recognitioregwom the current situation user
interaction is needed to complete the whole procedure (see Figure 9).

This research is a first step towards a fully automatiotiem recognition system. We define a
fully automatic emotion recognition system as: given an inpugér@ontaining one or more
human faces the corresponding emotions are output without any fumtéraction from the user.
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Since this research can be seen as an elaboration of thevE®DIl concentrate only on the
specific parts of the framework to make fully automatic emotion redogrit much as possible.

Our goal is thereby to fully automate the face detection lam@xtraction of facial characteristic
points. These characteristic points depend on the face model thatli;mmube emotion analyzing
module in FED. In this case the Kobayashi and Hara face modekd& Further, we want to
mention that this fully automatic emotion recognition systerbuit on a relative new and
promising classifier RVM. The use of RVM for face detectis described in our previous work
[Chan04]. In the following we will define the research question &mel research and
implementation objectives of this thesis project.

Research question:

Our research question is defined as follows:
“How to realize a fully automatic facial expression recognitigstesm using a sparse
learning Relevance Vector Machirie?

Research objectives:

» Face detection as a first step to automatic emotion reamgitiis important that it is
fast and robust. How can this be achieved? What are the requisefor robust face
detection?

» What are the difficulties for detecting/extracting facial eletaristic points from images?

* RVM is applied in the different phases of the project. Wraat be said about the
performance of RVM?

* What other techniques should be combined with RVM to make autofaag and FCP
detection possible? How is the performance of the final system?

Implementation objectives:

» The final system can be built within the FED framework.uFégl0 illustrates the new
working/scheme of FED after the implementation. Users would no ldregesquired to
select feature characteristic points manually. The fiofhare consists of three modules
that can be integrated into the FED framework: face deteatiodule, facial point
extraction module and classification module. Since the FEDbwidtswith java, we will
also implement the system/module in java/java2. We attemjpuiild the module as
compatible as possible to the FED so that minimal adjustment toittimg@¥ED code is
needed. Note that the actual integration of these moduleis With FED framework will
not be done by us during this project.
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» Build a prototype to test the modules.

* The face detection module is able to detect 80 % of all fretgals of human faces in
the input image. This is constrained by the minimal resolutfdhe face which must be
at least 19x19 in the original input. For computational costiatemh a dimension of
24x24 pixels of the original input is considered.

» Characteristic point extraction module should be able to detettast 80% of all
characteristic points.

2.3 Scope of the research

This thesis project focuses on the realization of a fultpmatic recognition system based on the
FED framework. This includes all aspects that are relatedate detection and facial
characteristic point extraction. For face detection, in our ¢aseans the selection of a suitable
face database, the training and testing algorithms and optiniRfihs performance by tuning
its parameters. The same facets are also applicable for flaarakteristic point extraction.

After the facial characteristic points (FCPs) are exééhfrom the face image, a facial expression
can be determined. The latter is done by the existing FED emotassifidation module
according to the FED framework. This also means that tojegi is limited to automatic face
detection and facial characteristic points’ extraction.
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2.4 Thesis assignment

To conclude this chapter, we define our thesis assignment. Istoosidifferent parts and the
summary of these are listed below:
» Literature survey a research on related works on the topics of face dmtedacial
characteristic point detection, facial expression recognition arglfatation methods.

 Model design design a model as a solution to the problem of automati@l faci
characteristic point detection. This model is built of multiple methodsalgorithms.

* Prototype implement the designed model.

» Testswrite a test plan to test the prototype and depicts the results.

» Scientific papersummarize this thesis project.
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Models and Algorithms

In this chapter, we present the models that we designed td thtes and facial characteristic
points automatically. This chapter functions as an overvieneiiethods and algorithms that
are used in our model. Detailed explanation of these will bengiv the appropriate sections of
the next chapters. Section 3.1 illustrates the WUXTRAP matiedh is the training model for
face detection and FCP detection. It generates data tmegteded for the FLEX application,
which will be explained in section 3.2. In the last section, the feamdel used for WUXTRAP
and FLEX is described.

3.1 WUX-values Training Application (WUXTRAP)

For the purpose of face detection we studied the objecttidetesystem of Viola and Jones

[ViolO1]. It is presented as a very fast and robust real-thject detection system. According to
the test results it outperforms many other systems on agcanaicspeed. The main drawback of
this system is the training time, which is extremely lomg. avoid this problem, we have

implemented the genetic algorithm (Evolutionary Search) thatdeacribed in [Trep03]. For the

extraction of the FCPs we used a corner detection method fétdares are extracted from the
detected corners and passed to the classifier to determine whethetettieddcorner is one of the
desired FCP.

The model described in this chapter results in two applicatiéidXTRAP and FLEX.
WUXTRAP is the training application (WUX-values Trainimgpplication): it contains the
training model that includes AdaBoost, Evolutionary Searchtlad®VM classification model.
WUXTRAP selects the proper features that will be usedLEX (Facial Landmark Extraction)
to classify the given input images. WUX stands for three kofd$ata that are needed to build
FLEX's classifiers. These are generated during the training phase:

» W stands for the weights.
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» U stands for the used samples (relevance vectors).

e X stands for the input training data.
These WUX values are used by the relevance vector machimepehirming its classification
task. WUXTRAP consists of two independent modules. Both modulesoaithef same kind of
results which are Haar features and the corresponding WWesialAs a result, the training
algorithms used in both modules are the same. The modules arenedrtdgether and shown in
Figure 11. It depicts the general scheme of WUXTRAP.

In the face detection module, a labelled set of face imagksa #abelled set of non-face images
function as input. Both sets need to be converted to the integagkimepresentation, which
offers the advantage of very fast feature evaluation. Thgemare evaluated against a huge set
of generated Haar-like features (this evaluation procedilkdevexplained in detail in section
4.3). Note that the set of Haar features for faces and rsoate not the same. AdaBoost in
combination with the relevance vector machine trains and sedleetbest features that can
distinguish faces from non-faces. Because of the huge numbeaofikéafeatures that needs to
be trained and evaluated, a genetic search algorithm is incegdoaimprove the speed of this
procedure. The emphasis in Evolutionary Search (ES) lies on Insdleetion and survival of the
fittest (see section 4.5). The combination of these three precésseamed EABoost. The
features selected by EABoost will be evaluated agaiestet set. If the features perform well
and achieve the proper detection rate, they will be addduk tiinal set of features. The result of
this face detection training module will be a strong set dtifea that is able to distinguish faces
from non-faces. The WUX values belonging to these features will belstore

In the FCP training module (also shown in Figure 11) differetd s& images of facial
characteristic points serve as input. To be more preciseabdr FCP a set of images of that FCP
is needed. In Figure 11 these sets are named REIC (righhege dorner), MLC (mouth left
corner), NLC (nose left corner), etc, conform to their positionhie face. These sets of FCP
images are manually extracted from the BiolD and CarnegierMake database. For each FCP
there is also a set of non-FCP images. Note that only one FGie ¢ained at a time. So there is
actually one RVM for one FCP.
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3.2 Facial Landmarks Extraction (FLEX)

Figure 12 depicts the general scheme of FLEX. FLEX is wheing application that is able to
detect faces and detect FCP from face images. An input icaagee selected from the graphical
user interface. After selection, the image processing compamenks whether or not it is
necessary to resize the image or to convert the imaggriayescale. Then the image is scanned
on different resolutions for face detection. It does so by usindethteires and WUX values
obtained from WUXTRAP. It scans by applying the strong Hadufea on a small part of the
image and evaluating it with RVM. If faces are found, the propes will be passed to the FCP
detection component for FCP extraction and FCP detection. With dperpones, faces with a
resolution greater than 64x64 pixels are meant. There arerumming processes in this
component. A corner detection algorithm, either Harris (see section 6.2) on(Smgksection 6.3)
or both will be applied on a face. An image of a region contaitiagtrner point in the centre
will be cut out. The image around this corner will be clasgdifivith RVM to determine whether
or not the detected corner is a FCP. Besides the corneraistexthybrid projection method
(HPM, see chapter 8) will also be used to extract F&Rlidates from faces. This HPM method
must be applied on a facial feature (eye, eye brow, et@hwbiextracted from the face using a
RVM trained with proper facial features. FLEX ends with showing itsli®es the graphical user
interface.

3.3 Face model

FLEX’s objective is to extract FCPs from a face. F&&Raction can be defined as the process of
finding the facial features of a face model. The face modldihes the facial features of a generic
face. There exist several face models like 3D wire-ranodels and 2D face models. 3D wire-
frame models are known too be very complex and very time-congumthe construction of the
model. 2D face models on the other hand are rather simple buényoefficient given the fact
that 3D information of the face is lost. To overcome this prolileere exist several systems
which defines the face model as a point-based model composed of timgidDviews, namely
the frontal and the side view. Combining a dual view into a simgléel yields a more realistic
representation of 3D face. The FCPs that FLEX has to extratdfined by the face model of
Kobayashi and Hara [Hara97]. The reason for this face model is that #lveady used in FED.
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Figure 12: General scheme of FLEX.

Kobayashi and Hara model the face through 30 FCPs. These 30 F&Rpaad to 30 of the 44
Action Units (AUs) of the FACS [Ekma78] system. The intentidrFACS was to objectively
represent facial expression information. The 30 AUs chosen by Ksitiegrad Hara are related to
the contours of the eyes, eyebrows and mouth. It was not needsd for example the points
around the cheek and chin, because experiments have shown that pgopy @itention to the
position and size of the eyes, eyebrows and mouth when clasgdgiagexpressions. Figure 13
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shows the position of these 30 FCPs. The vertical lines indbesfiare the so-calldtaralines

The positions of the haralines are fixed and depend on the positibe &QPs al, a2, a3, a4
(corners of the eyes) and FCP al19 and a20 (inner corners gktr@ws). The x-coordinates of
all the other FCPs are fixed depending on the position of ttadires. This is a property of the
face model of Kobayashi and Hara.

a4

Figure 13: The Kobayashi and Hara face model used ithe FED.

Table 1: Description of the face model points.

Al Left eye inner corner stable Al9 Left eyebrow inner corngr ndresta
A2 Right eye inner corner| stable A20 Right eyebrow inner cofner non-stable
A3 Left eye outer corner stable A23  Left corner of the mouth non-sfable
A4 | Right eye outer corner| stable A24  Right corner of the mouth non-stable
A5 Bottom of the left eye non-stable  A26  Top of the upper lip non-stable
A6 Bottom of the right eye| non-stable A25  Bottom of the lower lip non-stable
A7 | Top of the left eye non-stablg

A8 | Top of the right eye non-stable

- Left nostril centre non-stable - Left eyebrow outer corner hailes

- Right nostril centre non-stable - Right eyebrow outer cofner  non-stable
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Face Detection — Methods and Tools

This chapter explains the components of our model introducec iprévious chapter for face
detection in detail. The relation between the different compomeagshown in Figure 11 of the
previous chapter. First the theory of RVM will be describedeéction 4.1. RVM is the main
classificator that is used throughout the whole paper. Section 41s8és our initial ideas and
attempts to detect faces using RVM. Unfortunately, it da#svork as we hoped. So, there is a
need to look further for other techniques and methods. These arenedniviour WUXTRAP
model, which are the Haar-like features set and integragénrepresentation, the AdaBoost
learning algorithm, the genetic algorithm (Evolutionary Seaactt) the cascade construction of
classifiers. They will be explained in the sections 4.3 to 4.6.

4.1 Relevance Vector Machine (RVM)

[Tipp01] RVM is a Bayesian approach to pattern recognition inctirgext of regression and
classification problems. It can be seen as a probabilisticoneo$ the Support Vector Machine
(SVM). SVM is known as a very good classifier. It has aofoaipplications like face detection
and handwriting recognition. On the other hand, RVM has the compedatgré that, while
capable of generalization performance comparable to an equiv8MM, the number of
relevance vectors used by RVM is in most cases dramwptsrabller than the number of support
vectors used by SVM to solve the same problem (see Figure 14). This means tdoaputation
costs are reduced. On the same time, RVM offers a numbeatddfoaal advantages, which
include the benefits of probabilistic predictions, automaticmedion of parameters and the
facility to use arbitrary basis functions, which are not resrgs'Mercer’ kernels. This chapter
starts with the RVM regression model upon which the RVM classibn model is based. Then
the modifications required in the case of classification will bertest:
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Figure 14: SVM (left) and RVM (right) classifiers an 100 examples from Ripley's Gaussian-mixture
data set. The decision boundary is shown dashed, &relevance/ support vector are shown circled to
emphasize the dramatic reduction in complexity oftte RVM model.

RVM Model Specification

[Bish04, Tipp01] Like in supervised learning, a set of example inpctiovs .} -1 is given
along with a corresponding set of targets{t,} .-1. These targets will be real values in the case
of regression and class labels in the case of claggifica his set of input vectors and targets is
called the ‘training set’ from which we wish to learmadel of dependency. The objective is to
make accurate predictions dffor previously unseen values »f Assuming that the targets are
some noisy realization of an underlying functional relationshig,; w) that we want to estimate,

the desired model of dependency can be describéd=ay(x ;w)+¢&,, with &, representing

noise from a mean-zero Gaussian process with variaricand W a vector of adjustable

parameters or ‘weights’. Thug(t, |X)= N(t, | y(x,;w),0% )where the notation specifies a

Gaussian distribution ovey, with meany(x,,;w) and variance” .

A popular class of candidate functions fgfx, ; w) is that of the form

M

yoGw) = W@ (x) =w'¢(x) (Eq. 4.1)

i=1

where the output is a linearly weighted sum\f generally non-linear and fixed basis functions
denoted by(x) = (g(X), & (X),....4, &))" . A basis function is defined ag(x) = K (x,x ) with

the kernel parameterised by the training vectors, soytfaf; w) becomes
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YiW) = WK (X, %) + W, (Eq. 4.2)

Due to the assumption of independence oftthéhe likelihood of the complete data set can be
written as

p(t|w,o?)= (22 )N exp{— 2;2 It —<1>w||2} (Eq. 4.3)

where theN x (N +1) matrix @ (see Eq. 4.4) is called thdesign matrix, t :(tl---tn)T and

W:(WO...Wn)T_

1 K(Xl'xl) K(Xl,XZ) K(Xl’xn)
(D:[ﬂxl),ﬂxz),...,¢(x,\l )]T: 1 K(XEZ,X]_) K(st,xz) K(XEZ,Xn)
1 K(Xn’xl) K(Xn1X2) K(Xn’xn)

(EqQ. 4.4)

The next step is to consider over-fitting. SVM avoided this grmbby the inclusion of the
‘margin term’. RVM approaches this problem by the introductiban explicit prior probability

distribution over the parameters. The authors choose for the smaotmean Gaussian prior
distribution overw :

N

P(wla) =[] N(w[0.a). (Eq. 4.5)

with @ a vector ofN +1 hyperparameters such that earhis associated independently with

every weight.

To continue with the inference process, hyperpriors evenust be defined, as well as over the

noise variancer®. Suitable priors for these parameters are given by Gamma distributions

p(a) = |i| Gammda, |a,b), (Eq. 4.6)
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p(B) = Gammgpg|c,d), (Eq. 4.7)
with B = o ?and where

Gammda |a,b) = (a) *b*a*'e™, (Eq. 4.8)

in which I"'(a) :j:ta'le'tdt is the gamma function. It is assumed thatb=c=d =0. This

makes the hyperpriors uniform. As a result, predictionsralependent of linear scaling of both
t and the basis function outputs.

w10 Gamma distribution with different parameter pairs.

The same gamma distribution on logarithmic scale.

E—

a=10,b=20
a=20,b=20
a=10b=30 || e
a=16E-5 h=0

a=10,b=20
a=20,b=20
2=10,b=30
a=1BE-5 bh=0
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Figure 15: Gamma distribution. (Left) Gamma distribution with different parameters. (Right) Same
distribution on logarithmic scale.

The choice of prior distributions is related to those used iorAatic Relevance Determination.
The idea behind it is that if a basis function provides no information, becausedlteagant to the
problem, there is no value of the weight that will lead tagaicant increase in the likelihood.

At this point, the prior term can show its usefulness. Bynggthe a; parameter to a large value,
the prior distributionp(w |a) becomes sharply peaked around zero. By then se#tirig zero,

the posterior probability of the model is maximized. In a word, when a basis fundtisn
sufficient higha , it can be marked as ‘low relevance’ and thus will be rechdnem the model.

! Given the prior distribution, data needs to bdeutéd to obtain the observed distribution. Thelowate
the likelihood of the observed distributions asuaction of parameter values, multiply this likeldtb
function by the prior distribution, and normalizedbtain a unit probability over all possible vaughis is
called the posterior distribution. From: http://wwmathworld.com
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Consequently, the RVM will learn simple models even when prasevite a large starting set of
basis functions.

To make a prediction for target given new input date., we have to find oup(t. |t) which

can be expressed as:
p(t|t)=[ p(t [w.@.0*)pW a o’ t )dw da do’. (Eq. 4.9)

Since these computations cannot be performed fully analyticallgffactive approximation is
needed. This is done by applying the Bayes rule. After some tsitibsis and decompositions
(discussed in [Tipp01]), this posterior distribution can be computetytically and the result
becomes:

p(a,0? [t)0 pt |a.0”)p@)pE?) (Eq. 4.10)

The idea of relevance vector learning is actually wsarch for the hyperparameter posterior
mode: the maximization of Eq. 4.10 with respectitandf . The prediction of a target tan

then be given by Eq. 4.11 in whial,, ando, are the most probable values foando?.

Pt [t.0yp T3 )= [ P(t W T30 PW It 0t 75 )W (Eq. 4.11)
Because both terms in the integrand are Gaussian, the result canplogecbhy:

Pt teye . 0ye)= Nt |y @) (Eq. 4.12)
with

Y. =p'@(x.) ando? =g, +@g(x.) 2@ ). (Eq. 4.13, 4.14)

whereX the is the posterior covariance guds the mean.

r=(o?@'®+A)", (Eq. 4.15)
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p=0’Xd't (Eq. 4.16)
with A =diag(a,,a,,...,a,).

RVM Classification
RVM is using an identical framework as detailed for regjoesin the case of classification. Only
some modifications need to be made. To account for the changes target quantities, the

authors use Bernoulli likelihood and a sigmoid link functirly) =1/(1+ € ) (see Figure 16).

As a conseqguence, there is an additional approximation step in the algorithm

-4 - 2 4 i
Figure 16: Sigmoid link function used in classificdon model, 1/(1+exp(-y)).

In the two-class case, applying the sigmoid link functioryfg) and adapting the Bernoulli

distribution forP(t | X), the likelihood can be written as:

t,

P(t |w) = |‘l Yo, [1-of ye, W™, (Eq. 4.17)

where, following from the probabilistic specification, the tardets {0, 1}. Note that there is no

‘noise’ variance here or we may assume that it is already includid limk function.

Unlike in the regression case, it is not possible to iategiout the weights analytically.
Therefore, the authors use an approximation procedure baseambiaation Laplace’s method
and Newton's 2 order method. The outcome of this approximation procedure is a magfping
the classification problem to a regression problem with data-dependent noise

In the multi-class classification case, where the number sbetaK is greater than two, the
likelihood (Eg. 4.3) is generalized to the standard multinomial form:
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N

P(t|w) = l_—l l(ﬁ_la{yk(xn;wk)}t"k (Eq. 4.18)

where a conventional ‘one-of-K’ target coding foris used and the classifier has multiple

outputsy, (X;w, ) , each with its own parameter vector, and associated hyperparameters.

4.2 Face detection — the initial idea

Most facial expression recognition systems assume the infnet &m image containing only the
face surrounded by a simple background. If the image does notrcanfat¢e will it still work
properly? Such systems are also lacking the ability to @xtnaltiple faces from an input image
that contains more than one face. Since we do not want ttristies, the system should be able
to detect multiple faces in the image. To achieve thiseed a face detector to determine all
faces from the input. This face detection module must prededextraction of features for
emotion recognition. In order to detect faces we need to traasaiftér. In this case we want to
differentiate faces from non-faces, which means that our rigaiset should contain faces and
non-faces. The classifier we are using is RVM. As a &ts#mpt, we trained the RVM with
intensity values. We used a subset from the MIT-CBCL datalmsssting of 1000 faces and
1500 non-faces of 19x19 (see Figure 17). So, each sample is arrangeairdagavector of 1 by
361 when given to the RVM for training. Some sample images fram@BCL are shown in
Figure 17. This subset is used for both training and testirgreTdre a few ways to do that. One
way is to use the whole set for training and also testing.

Faces Non-faces

Bl EEE
gl

5 ollliiis

Figure 17: Samples from the MIT-CBCL face database.

However, this method is not very reliable because we canadi®e the trained classifier will
behave for untrained samples. To improve this, testing should be doreebdifierent than the
classifier is trained with. Another training method which i alsore common is K-fold cross
validation. Before passing the samples to the RVM, the data set divided into K sets of even
size. Then RVM is trained on the K-1 sets of samples andgeistidone on the remaining set.

Page 37 ofL70



Part Il Face Detection 4 .Methods and Tools

This is done for all K sets. The choice for K depends on the size dathset. For large datasets,
K should not be chosen too small since it is really ineffectiFor cross validation the time to
train RVM grows linearly with the size of the datasetudlly K-fold cross validation is
performed for parameter optimization. Since we first warkntow if RVM can be trained with
intensity values, we simply choose for the first method. We énaihtest RVM on the exact same
set. The results are shown in Table 3.

Table 2: MIT CBCL subset specification.

Database MIT CBCL
Sample size 19x19 pixels
Number of classes 2

Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 1000/1500

Table 3: RVM test results: training and testing isdone on the same set.

Kernel Nr of test Detection | Nr of false | Nr of true | Nr of false | Nr of true
samples rate % negatives | negatives | positives positives

Gauss:

0.5, 1.0,
2.0, 3.0,
4.0,5.0 2500 67.96 801 1000 0 699

Laplace:
0.5, 1.0,
2.0, 3.0,
4.0,5.0

Training RVM with only the intensity values gives unsatitdag results. Not only does it take a
long time to train, but the detection rate is also poor, only 67.96%.i3hertainly not good
enough for a face detection system. In addition, as Table 3 sth@adgtection rate of 67.96% is
achieved only due to the high true negative rate. True negata@s that a non-face image is
indeed recognized as a non-face by RVM. False positive ipusite: a non-face is recognized
as a face. In the test, only 699 of the 1500 faces are recdog@szeface. So, the detection rate is
calculated as (1000 + 699)/2500 = 0.6796. If the test is done on aely, lhe detection rate
would be 699/1500 = 0.466. This means that RVM is not able to bedrains way. By
arranging each training vector of 19x19 in a 1x361 vector, all bekseen the pixels are totally
lost. As a result, there are no consistencies in the igpaples and thus, there is no difference
between the positive and negative samples. This explainsithia® column of false positives. It
also explains why the results are the same for allekrithe raw data associated with each pixel
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are insufficient to allow unambiguous identification of thatepi We can conclude that the
detection rate from this table does not have any meaning.

RVM is known for the relatively slower performance duringrirag which means that it will
take a long time to train on a large dataset with a dimmangpace of 361, which is relatively
high. On a windows machine with AMD Athlon™ XP 2200+ 1.80 GHz procesghr512 MB
RAM it was in the order of hours to train RVM on the chosen dataset.

Because of the unacceptable results, we need to considertalesxn@ihere are two things we
must take into account: improvement of the detection rate edhattion of the training time.

Apparently, using the intensity values as a feature veototrdining the RVM does not work.

This problem can be solved by training RVM with better ye=d extracted from the images
instead of only intensity values. Some well-known feature eidramethods are PCA [Jung01],
DCT [Huan04], and HAAR [Papa98]. To reduce the training timedtireension space of 361,

which is extremely large, needs to be reduced.

We considered the PCA and DCT feature extraction method. Dutheé sensitivity to
illumination variance in the images these methods failedgtucathe essential features of face
images. The results were far from satisfactory as fipirer than in the case of training RVM
with intensity values. Next, we examined the HAAR featureshatttind we came to the face
detection method of [Viol01], on which our solution is based. This metlasdthree key parts
that make it fast and robust which are the main reasonfidmsimng it. The first part is a fairly
simple feature extraction method that is based on a new imagesegftion called integral
image. The second is a learning algorithm, based on AdaBoost aladtttome is a method for
constructing complex classifiers into a cascade structurdeldotlowing sections each of the
three parts will be described in detail. Note that in the fitace tests are done on 19x19
windowed pixels samples. This size is altered to 24x24 pixedslater stage. The main reason
for this is that the number of scanning windows will be redlgedsing a larger sample size. As
a result, the computational load will also be reduced.

4.3 Haar-like features and integral image represent  ation

As concluded, in our findings using intensity values direalinaut for the RVM classifier does
not work adequate. Therefore, features need to be extractednieomages of the dataset. The
features that are extracted are Haar-like featureishwhave been used by [Papa98]. These
features have a rectangular shape and are fairly simplep&ech with other filters, these
features are somewhat primitive. For example, it is hard tahesea for boundary analysis or
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texture analysis. They are also sensitive to the presenedges, bars, and other simple image
structures. But on the other hand due to its simple construdtiey,hiave only horizontal and
vertical orientation. It is computationally very efficiefthis is the compensation they offer for
their limited flexibility. As a result these features can dmguted very fast. In our face detection
algorithm, five types of rectangular features are used Figpare 18). Type 1, 2 and 5 are
calculated as the sum of all pixels in the dark area mireusum of all pixels in the light area.
Type 3 and 4 are calculated as half the sum of all pixels mdark areas minus the sum of all
the pixels in the light area in the middle.

typeland2and5 : > pixels_in_dark_area ) pixels in light are
(Eq. 4.19)
type 3 and 4 : %Z pixels_ in_ dark_ arearz pixels in light area

%Z pixels_in_ dark_ are:

(Eq. 4.20)

Here is where the integral image, an intermediate imagegemiation, comes into play. It makes
it possible to compute these features really fast. Insbéazhlculating the features from the
original images, the features are calculated from the integral imagéstegral image is actually

a matrix containing the sum of pixel values from the originagen Location(X, y) of the

integral image contains the sum of the pixels above and toftiod (&, y) . It can be denoted as:

ii(x,y)= Z 1(X',y") whereii(X,y) is the integral image andXx, y) is the original image

X'SX Yy

(see Figure 19). Using the following pair of recurrences:

(X Y=gx ¥+ (xYy (Eq. 4.21)
ix,y)=iix-1,y)+s(x,y), (Eq. 4.22)

(where s(x y) is the cumulative row sung(x—1)= 0 andii(-1,y)= 0) the integral image

can be computed in one pass over the original image.
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Figure 18: Example of rectangle features. The sumd the pixels which lie within the white rectangles
are subtracted from the sum of pixels in the dark ectangles.

*xy)

Figure 19: The value of the integral image at poinfx, y) is the sum of all the pixels above and tt¢
left.

Each of the five basic features is scanned on every possidiée awd every possible position
within a training sample. Given that the sample’s dimension is 24x24, the tespiof features
that can be constructed is tremendously large, namely 162336. @ingrset consists of 3000
samples with 1500 faces and 1500 non faces (see Table 4). Eached#tthes is encoded as a
tuple with five values:X_left, y_top, x_right, y_bottom, tyda which:

e X left minimum x-value that defines the left boundary of the feature.
e y top minimum y-value that defines the upper boundary of the feature.
e X right maximum x-value that defines the right boundary of the feature.
ey bottom maximum y-value that defines the lower boundary of the feature.
e type type of the feature: 1, 2, 3 or 4.
x_left x_right
Y_top —--; R— ;._._
Y_bottom & . - . ...... . .....
: :
y

Figure 20: A Haar-like feature has five attributes: (x_left, x_right, y_top, y_bottom, type).
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Table 4: Dataset used to learn the Haar-like featugs.

4 .Methods and Tools

Database Viola Jones
Sample size 24x24 pixels
Number of classes 2

Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 1500/1500

Having defined the Haar-like features one might wonder howdahrybe applied for training the
RVM. Assume that one Haar-feature is selected out of the total set of 162&3&ature will be
applied to all images in our training set specified in Table 4. Each image psaalteature value
according to Eg. 5.1 and 5.2. As a result, a labelled set of featlues is produced. Thus the
size of this set is equal to the size of the trainingTes set will be the input for our classifier
which will be discussed more in details in the following sectidiee selection of a Haar-like
feature is done by AdaBoost algorithm explained in the next section.

4.4 The AdaBoost learning algorithm

In the previous section simple Haar-like features can bailatdd and extracted really fast.
Recall that there are more than 162336 features associatedeaadth 24x24 sub-window.
Combined together it will far exceed the number of pixels we lvéeature vector in the
beginning. The positive thing now is that a very small number sktfeatures can be combined
to form an effective classifier. But the challenge isital fthese features. We need to train a
classifier that consists of several discriminating fesgtwithin a sub-window. AdaBoost is used
both to select features and to train the classifier.

The AdaBoost algorithm [Freu95] is proven to boost the performahtiee classifier. It is also
proven that the training error of the strong classifier approamresexponentially in the number
of rounds and the generalization performance is also very highAddoost algorithm can be
interpreted as a greedy feature selection process. Congideeeal boosting case where a large
set of classification functions are combined using weights.chiallenge is to associate a large
weight with each good classification and a smaller weight wtor functions. AdaBoost is an
aggressive and effective algorithm used to select a low nuaflmod classification functions,
so called ‘weak classifiers’, to form a stronger dféss The classifier is called weak because we
do not expect even the best classification function to classifyraivéing data well. The final
strong classifier is actually a linear combination of the weassiflars.
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In analogy of the AdaBoost algorithm, the weak classifieessricted to the set of classification
functions of single features. Thus, the weak learning algomthinbe designed to select a single
rectangle feature which best separates the positive amadiveegamples. The algorithm to select
a predefined number of features given a set of positive arativegamples is shown in Figure
21. As we can see in the figure the input is a predefinedfgebsitive and negative training

examplesX;, y). In our case the positive examples are face images aneéghéve examples are

non-face images.

1. Input: Given training examplesi(y), i =1.N wherey; = 1 for positive andi= 0
for negative examples
2 Initialization: initialize WeighthLi :i,i for y; = 0,1 respectively, whem
2m 2l
and| are the number of positive and negative examples.
3 Fort=1,..,T:
a) Normalize all weights
b) For each feature |, train classifier h with

erore, = W, |hj(xi)_yi |-
c) Chooseh with lowest error€;
d) Update the weightsW,;; = W, iﬂt 4

_ |0 1 x correctly classified
€ =11 : otherwise

&
and 3, = t
1-¢
4 Final strong classifier:
1
T - T
1 t:lmtht(x)2 2 t=lat
h(x) =
0 otherwise
with
a, =log 1
= il
B,

Figure 21: The AdaBoost algorithm.

The AdaBoost algorithm iterates over a numbef abunds. In each iteration the space of all
possible features is searched exhaustively to train weakifidéas that consist of one single
feature. In [Viol01], to train a single weak classifiethaeshold has to be found for the feature
value to discriminate between positive and negative examples. lappuoach, the latter is
slightly different. Instead of using a threshold, the chosen weéssifier is the RVM for
discriminating between the positive and negative examples.nidass that for each feature, the
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weak RVM classifier determines the optimal classifarafiunction such that a minimum number
of examples is misclassified. The next step in the algorishtm choose the best weak classifier,

which means choosing a classifier with the lowest clasgiitarrore,. The error is evaluated

with respect tav;, which are the normalized weights of round

After choosing the best weak classifier concerning the hedl classification error on the
training set, all training examples are re-weighted taigdo the next round on those examples
that were not correctly classified. The weights are updated accaoding following:

Wy =W, 570 (EqQ. 4.23)

&
In the equation (Eq. 4.23F is equal tel—t, whereég, is the lowest error of round The

parameter is defined to be zero if the examplas classified correctly by the classifier, which is
the RVM in our case. Otherwise, parameaigs equal to one. Depending on how many features
we want to selecl can be set to that number which will force the algorithm totédréimes. In
each iteration one feature will be selected with the lowest error.

It is important to note that for each iteration we need to tr@ne than 162336 features and
select the best feature out of the whole set. In the next rahisdgrocedure is continued again
and again for all rounds for all 162336 features. In our case with 3000 samples the tr&iming
for one feature differs from one to 1.5 minutes. Note that the ingpltation is done in Matlab
6.5 on a Windows machine with AMD Athlon™ XP 2200+ 1.80 GHz procesgbr542 MB
RAM. The total training time would be more than 20 weeks. Thiniy the case if we assume
that the features only need to be trained once. This means inxtheonedt of the boosting
algorithm we do not need to train the features anymore, but meedhtoee-weight the training
samples. But still this will take weeks before the fiesitire can be produced. Considering the
time we have for finishing the thesis project, we eitheehavspeed up the boosting process or
find another solution for extracting and selecting features tmr fetection. Our solution lies in
the application of genetic algorithms. The latter are in geneitabde for searching on very large
data sets in reasonable time. The exhaustive search of AdaBdbsieweplaced by an
evolutionary search algorithm. Instead of looking in the completareapace, the evolutionary
algorithm finds the optimal solutions in a subspace of alufea. Further details will be given in
section 4.5.

In the final step of Figure 21 a strong classifier can be constructedtfeoselected features. This
is done using the following equation:
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1
1 I{=qoh 002 Eth: 1%
h(x) = (Eq. 4.24)

0 otherwise

Thus, the final classifier is a weighted linear combinatiothef features, where the weights are

T

inversely proportional to the training errors. The initial AdaBahseshold (/2 s ), is

designed to yield a low error rate on the training datlower threshold yields higher detection
rates and higher false positive rates. This is extremgbprtant for constructing a cascade of
classifiers.

4.5 Genetic Algorithm for faster boosted feature se  lection

Genetic Algorithms (GA) is a term used to describe problemirgpbystems in which evolution
is the key element. The emphasis in GA lies on natural smleand survival of the fittest. The
evolution of individuals is simulated by probabilistic genetic psses of selection, mutation and
reproduction. They are the driving forces that lead to ‘welptatt individuals. GA can be used
for different purposes on different areas. For example, itbeansed as simulation tools for the
evolution of biological populations (Roosenberg, 1967). It can alssée as a stochastic search
technique to combinatorial optimization problems. In our case]libeiapplied to speed up the
AdaBoost algorithm.

The exhaustive search of AdaBoost is in fact a brute feesch on the whole space of
rectangular Haar-like features. As described in section 4.& #rerin total 162336 features to be
trained and it will be in the order of weeks to train them allspeed up the terrible long training
time, it will be beneficial to use GA in combination with Atsost. Speeding up the boosting
algorithm is performed by replacing the exhaustive search of AmBiy an genetic search
algorithm called Evolutionary Search (ES). ES is an instaid8A and as the name already
suggests its focus is on the field of searching. Figure 22 showggseadtthe ES algorithm.

There are two probabilistic genetic operators that drive SigHhacess: crossover and mutation.
The crossover operator simulates the process of reproductitme ievolution theory. With
reproduction the sexual or asexual process is meant by which ongageserate new individuals
of the same kind. Sexual reproduction results in an offspringctivaiins a combination of
information from each parent. Asexual reproduction typicalsulte in an offspring that is
genetically identical to the parent. The mutation operatoigbrin diversity in the individuals.
This is essential because evolution, by definition, requires diwérorder to work.
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Step 3b) Evolutionary Search ()

Begin
t:=0;
initialize_feature_population (P(0));
repeat
P’ .= select (P(t));
Crossover (P");
Mutate (P");
Train_classifiers (P’);
Evaluate_classification_error (P");
P (t+1) := replace (P(t), P’);
t:=1t+1;
until terminated;
end,

Figure 22: Evolutionary Search

With EABoost, (ES combined with AdaBoost) the space of all ngetar Haar-like features is
searched for good features. Crossover differs slightly framatws described above in the
implementation of EABoost. It is implemented as follows:egiiwo parents A and B the
resulting offspring C is calculated as:

i=1.n (Eq. 4.25)

B:r<0.5
A : otherwise

wherer is a uniform random numbét[0,1], n describes the length of the individuals and the

parents are selected randomly. The reason that crossox®lésriented this way is the fact that
we have complete knowledge of the whole feature set. We kmaetly the number of possible
features: no new features will be generated in the featuce spal we also know the algorithm
should not select any features outside this set. In our casoweosneans randomly selecting
another feature from the feature space. Mutation of an individudbne by the following

scheme: 1) Choose a new typel[1,5]with probability p.. 2) Mutate positions of feature

corners by adding a random constay, V..,), withx ., ¥, LJ[-7,7]. 3) Use a repair operator

on individuals that are no longer feasible after the mutatioter Ahutation, corners of the
rectangle features could be in wrong order. Also could the féatargths be negative or bigger
than the maximum allowed length. Mutation in EABoost is in fdsb a process to randomly
select another feature from the feature set.

The third important operator in EABoost is the fitness operdtat implements the natural
selection process of evolution. It measures how good an individual mpeting in its
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environment. In our case, with a population of 250, each fedtwith i=1,...,25Q that is
generated will be evaluated against the test set whgilits in an erras;. The strongest feature
that will be selected will then be the one that satisfy iimeds functiormin(;). It is the same
criterion AdaBoost was using to select a weak feature.ignr€& 22 it is displayed as the
evaluation of the classification error. We get EABoost whenreptace step 3b, the exhaustive
search of AdaBoost, with ES.

In the implementation of EABoost a generation consists of 150 Haafel#itures. This size is the
result of a trial and error process in which a trade-offidgsle between speed and error rate. The
size of the feature set would affect the training time andjtiadity of the found solution. If the
population is too small, the training time will be shorter, thetre is a probability that no good
features will be generated and as a result a bad featurbensktlected. On the other hand if the
population is too large, it will take longer to train and theppae of using ES in the first place
was to reduce the training time. A generation should be muffig large to create sufficient
diversity covering the possible solution space. Other paranwt&&Boost are the probabilities
for crossover and mutation. In literature crossover usually hapgéma probability of 75-95%
and mutation 0.5-5%. In our situation, crossover and mutation are teegses for randomly
selecting another feature from the total set. The differentteat crossover really selects a feature
at random. Mutation also selects at random, but the featuret®oloedll be near to the original
feature which it is mutated from. Since we prefer theraitteEABooOst crossover takes place in
20% of the time and mutation takes place in 80% of the time. ES ends wheveitgesn

Note that ES as a simulation of a genetic process is a namadegtic search. It is not sure
whether a found solution is optimal or suboptimal. This could be &ene of the disadvantages
of ES. But on the other hand, ES can quickly scan a huge solution set. On top, bad soltiteons
population set do not affect the end solution negatively as tieesiraply discarded. ES is also
very useful for complex or loosely defined problems. Once the prolddranslated successful
into an ES problem it does not have to know any rules of the originalem. The evolution
mechanism will do the work.

4.6 The differential cascade

This section describes an algorithm for constructing a casafadissifiers which drastically
reduces the computation time. The number of sub-windows to be @ddsyfithe detector is
enormous and requires a lot of computation time. The main ideatisriadler and therefore
more efficient, boosted classifiers can be built which rajeaty of the negative sub-windows
while detecting almost all positive instances. Simplersdiass are used to reject the majority of
sub-windows before more complex classifiers are called upon to achieve leygdaltve rates.
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The phases in the cascade are constructed by training ielassging EABoost. In general the
cascade has the form of a degenerate decision tree (3ge ER). Input for the cascade is the
collection of all sub-windows also called scanning windows. Thefimtepassed through the
first layer in which all sub-windows will be classified fases or non faces. The negative results
will be discarded. The remained positive sub-windows will trigipe evaluation of the next
classifier. The same process is performed in every layer. The sub-witidaweach and pass the
last layer are true faces.

mo>»m

Sub-
windows

VvV

NON-FACE

Figure 23: A cascaded classifier with N layers.

The structure of the cascade reflects the fact that wéahin single image on overwhelming
majority of sub-windows are negative. As such, the cascadapii¢o reject as many negatives
as possible at the earliest stage possible. Every lapsists of only a small number of features.
In the early stages, with only a couple of the best featiliis possible to determine the existence
of a non-face (negative sub-window). Determining the preseneefate usually needs more
features. Therefore, the cascade has an increasing numieatwks in each consecutive layer.
While a positive instance will trigger the evaluation oémvclassifier in the cascade, this is an
exceedingly rare event.

During implementation the number of layers and the number afrésaper layer was driven

through a trial and error process. In this process the numbeabfrés was increased until a
significant reduction in the false positive rate could be achieved. Mdypeesl were added until the
false positive rate on the validation set was nearly zer¢evshil maintaining a high correct

detection rate. Following is the specification of the cascaded aadhit we get after training.
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Table 5: cascaded classifier specification.

1 2 0.95 0.422
2 4 0.95 0.69
3 15 0.932 0.244
4 17 0.93 0.24
5 19 0.93 0.188

To conclude, this chapter described different algorithms thahveombined together make face
detection possible. To be more precise, the algorithms inchizipter are implemented as the
WUXTRAP application for face detection. As stated in chaBt&VUXTRAP’s design goal was
to train our classifier and produce the proper WUX values tleateeded for our FLEX module
that reads images, find faces and extract FCPs. WUXTRARpEmented using Matlab 6.5.
Thus, all training of the RVMs is done using Matlab and FLEX rtimming detection system, is
implemented in Java. Remind that Java was chosen as statedmplaimentation objectives of
chapter 2. Since the training is independent of the functionalitiEED, it was not necessary to
do the training in Java. Working with images, training the R\M&&ting and evaluating the
selected features are all computationally intensive t&8kscan state that our choice for Matlab
is mainly based on its powerful computation engine and its higi-eteractive environment in
which a lot of very useful mathematical functions are already imgaiéed and made available.
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Face Detection — Experimental Results

The experimental results related to face detection will bsepted in this chapter. Section 5.1
discusses the result of RVM trained on intensity valuestid®e5.2 gives the results of RVM
trained on binary values. Section 5.3 presents the parametag tahiRVM for Haar-like
features. The optimal kernel will be discussed and the sestilthe training using Haar-like
features, combined in EABoost, are given in section 5.4.

5.1 Relevance Vector Machine on intensity values

The results from applying RVM on intensity values are alrgadgented in Table 3. The results
show the performance of the RVM trained and tested with the skmt@e set. The overall
detection rate is 67.96%. To see how RVM performs on images itdtdwen trained with, we
have tested the same RVM on a subset of the CMU face daigleas€able 6). The results are
shown in Table 7.

Table 6: Test set specification.

Database CMU
Sample size 19x19 pixels
Number of classes 2

Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 5036/472
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Table 7: RVM test results on intensity values.

Kernel CMU dataset CMU dataset
consisting of faces only consisting of non-faces only

Gauss:
0.5, 1.0, 2.0, 0 100
3.0,4.0,5.0 472 5036

Laplace:
0.5, 1.0, 2.0, 0 100
3.0,4.0,5.0

The results confirm what we concluded earlier. RVM can not dieetd on pixel intensities.
These are insufficient to allow unambiguous recognition of a pix¢hidrcase, the RVM trained
on intensity values does not generalize at all to recegaig sample that is not present in the
training set. This simply means that the RVM is not tialiman this way. For all kernel tested,
the detection rate was zero, i.e. no single face in the test setgsima as a face.

Before we come to this conclusion, RVM is also trained on bimdioymation. This means that
input images are first converted into binary images by ashwd function. This function
converts all intensity values higher than the mean intensity value to 1 dner@ise.

5.2 Relevance Vector Machine on binary values

The training results of RVM trained on binary information is showable 8 and Table 9.
Training is done on the same subset from MIT CBCL (see T3bl&he result of testing the
trained RVM on this same set is shown in Table 8. For the choseanftdaéa representation it is
clear that the detection rate is very good except ®iLtplace kernel with a scale smaller than
2.0 and the Gaussian kernel with a scale smaller than 3.0. Dwe=ewidth kernels are not able
to fit the data properly. As a result, they can not achiewvketaction rate higher than 68%.
Increasing the width gives a stable detection rate of around 94-95%.

In Table 9, testing is done on the CMU subset with 472 faces@8&iron faces (see Table 6).
The results are very disappointing. The results show a detection rate ofeéthan 52 %. In this
case overfitting occurred. The accuracy is very low and saaples are recognized as non-face.
To conclude, the chosen approach to work with binary information dfrge is apparently not
working.
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Table 8: RVM test results: training and testing areboth performed on the same MIT CBCL subset.

Kernel Nr of test Detection rate % | Nr of false Nr of false
samples negatives positives

Gauss 0.5-3.0 67.76 806-815 0
Gauss 5.0 93.92 103 49
Gauss 7.0 95.08 58 49
Laplace 0.5 — 1.0 67.80 805-815 0
Laplace 2.0 2500 83.88 339 64
Laplace 3.0 92.76 117 64
Laplace 4.0 94.72 67 65
Laplace 5.0 95.04 60 64
Laplace 6.0 96.00 57 43
Laplace 7.0 94.96 72 54

Table 9: RVM test results: training is done on a MTT CBCL subset, testing is performed on a CMU
subset.

Kernel CMU database CMU database
consisting of faces only consisting of non-faces only

Laplace 0.5 - 1. 0 100
Laplace 2.0 22.03 100
Laplace 3.0 47.25 97.22
Laplace 4.0 50.85 96.64
Laplace 5.0 51.91 97.34
Laplace 6.0 472 43.86 5036 97.93
Gauss 0.5-3.0 0 100
Gauss 4.0 9.53 93.59
Gauss 5.0 38.77 96.68
Gauss 6.0 50.42 96.82
Gauss 7.0 30.30 97.86

5.3 Parameter tuning for Relevance Vector Machine u  sing 2-fold cross validation

In EABoost and in the cascade building process, RVM needs tifgléar-like features. In
order to choose the best parameters for RVM, 2-fold cross vafidatused. During this tuning
process we used the MIT CBCL subset (see Table 2) to |IBo&st select three features. We
then compare the performance of RVM of these features udfiegedt kernels. Table 10 shows
the EABoost parameters that are used during this traininggs.o€he choice for the population
size, crossover rate and mutation rate was already discussed in sectiye Adve chosen to use
a Laplace 2.0 kernel as it is as much as a random choiceisAidimt we do not know which
kernel will perform better. It is only important to choose the same kiennell features.
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Table 10: EABoost specification: the selection ohtee features that will be used for 2-fold cross

validation.

Population size 250

Crossover rate 0.20

Mutation rate 0.80

Classifier/ kernel RVM/ Laplace 2.0
Number of features to choose 3

Datasets are created of feature number 38978, 28893 and 45297, whichfeatuties selected
by EABoost. The datasets are filled with the feature validbkeomentioned features. Feature
38978 has the best performance in the first pool of 250 fesatteature 28893 and 45297 are the
best features in the second respectively third pool of 250ré=a In Figure 24 all three features
are plotted in a 19x19 window. The parameters of feature 38978 ,a8e 13, 12, 3). Those of
feature 28893 and 45297 are (11, 5, 19, 11, 4) and (10, 10, 18, 16, 1).

7 13 11 19 10 18

. :
[ S E—
11 10
1z ;.
12

Figure 24. feature 38978 (left), feature 28893 (c&e) and feature 45297 (right).

The results after using 2-cross validation are shown in TEbl&ables with the complete cross
validation results can be found in appendix A. A good classtiieuald have a low error rate with

a small standard deviation. From these tables it is ngt ashoose and conclude the best
classifier. Therefore, Receiver Operating CharactesigiROC) graphs are generated from these
results, see Figure 25. ROC graph is a technique for visualianggnizing and selecting
classifiers based on their performance. In a ROC graph,ubetsitive rate is plotted on the y-
axis and the false negative rate is plotted on the x-@kis.true positive rate is defined as the
number of true positive samples divided by the total number d@fygosamples in the dataset. In
the same way, the false negative rate is defined as theemwhfalse negatives divided by the
total number of positive samples in the dataset.
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Table 11: RVM 2-fold cross validation results traired on Haar-like features.

Feature 38978 28893 45297

Error rate SD Error rate SD Error rate SD

) ) %
Gauss 0.5 27.75 2.33 41.95 10.68 46.50 4.10
Gauss 1.0 29.10 2.83 39.60 7.64 44.80 6.93
Gauss 2.0 26.30 0.85 35.45 7.71 38.60 1.84
Gauss 4.0 26.60 6.08 31.70 7.35 35.50 3.68
Gauss 5.0 25.35 5.30 32.40 2.83 36.55 3.61
Laplace 0.5 35.20 14.42 26.70 0.99 42.70 9.62
Laplace 1.0} 25.35 1.77 35.55 9.26 35.60 1.41
Laplace 2.0 29.25 9.83 32.00 7.50 41.60 7.78
Laplace 3.0 28.45 4.31 34.85 8.98 38.60 5.94
Laplace 4.0, 24.85 1.77 26.10 2.97 42.55 1.77
Laplace 5.00 26.20 2.12 25.90 1.84 37.45 7.57

Informally, one point in ROC space is better than another ift ithe northwest of the first. It
means that the true positive rate is higher and on the samae¢he false positive rate is lower, or
even. In the first ROC graph the four classifiers (Gauss@a0ss 5.0, Laplace 1.0 and Laplace
4.0) are on a straight line and they are all northwest tottter classifiers. There is no single one
that excels. The best classifier between these four shoulkelmne that meets the requirements
most. If it is desired that the true positive rate ishhigp matter the false positive rate, then the
classifier positioned most north in the ROC space should be chosam.the other hand it is
preferred to keep the false positive rate low, then the dlxspisitioned most south in the ROC
space should be chosen.

In the second graph it can be noticed that kernels Laplace 0.5céapld and Laplace 5.0

performs slightly better than the others. In the last graplkeatlels are in fact performing not

well. Keeping the true positive rate above 50% and the faksiiygorate low, Gauss 3.0, Gauss
4.0 and Laplace 1.0 would be the choice. From the three ROC grapes cémdidates can be
chosen: Gauss 4.0, Laplace 1.0 and Laplace 4.0. To decide whichcahtlidates is the best we
examine their performance in more details by adjusting tihegsholds that is described in
section 4.4. Lowering the threshold will give a better detectibe but on the other hand it also
increases the false positive rate. The threshold range is fronoQ3bt The result is plotted in a
new ROC curve in Figure 26. It can be concluded that Laplace 4.@éasdt performance and
therefore, Laplace 4.0 is used in EABoost and the cascade building process.
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Figure 25: ROC graphs of three Haar-like features h different kernels.
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ROC curve for Gauss 4.0, Laplace 1.0 and Laplace 4.0
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Figure 26: ROC curves of three kernels, obtained bgdjusting each classifier’s threshold.

5.4 Evolutionary-AdaBoost training results

Now that the RVM kernel is determined, the training procedurestart. To summarize, the
training set is described in Table 4, the test set in Thbland the cascade test set in Table 13.
Note that these subsets from the Viola Jones databasdl atistiact. Table 14 shows the
parameters of the EABoost training.

Table 12: EABoost feature test set.

Database Viola Jones
Sample size 24x24 pixels
Number of classes 2

Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 500/500
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Table 13: Cascade test set.

Database Viola Jones
Sample size 24x24 pixels
Number of classes 2

Class 0 Non-faces
Class 1 Faces
Number of samples (0/1) 1500/1500

Table 14: EABoost parameters.

Population size 150

Crossover rate 0.20

Mutation rate 0.80

Classifier/ kernel RVM/ Laplace 4.0

Feature false positive rate 0.3

Feature true positive rate 0.75

Target false positive rate <0.05

Target true positive rate > 0.95

Number of features to choose Depends on target false positive rate

The feature false positive rate and feature true pos#iteeare indications for EABoost whether
or not a Haar feature should be selected for the cascade. fraithiag procedure, a selected
feature will be trained on the training set and tested oteiteset. So, each trained feature will
produce a false positive rate and true positive rate. If tee fadsitive rate is lower than 0.3 and
true positive rate higher than 0.75, the feature will be seldotethe cascade. Every time a
gualified feature is added to a layer, the whole set of feainrde layers will be evaluated on
the cascade test set to see if the layer can achievearpet false positive rate and target true
positive rate. If this is the case, the training procedurebeilstopped and training for the next
layer can begin. If it does not meet to the requirements of thénral false positive rate and
minimal true positive rate, EABoost searches for one drtiture and the above procedure is
repeated. A qualified feature will only be added to the casdaaledi only if it improves the
cascades detection rate. The final result of the trainiogeplure is already shown in Table 5 of
the previous section.
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Facial Characteristic Points Detection —

Extraction

In the previous chapter a robust face detector has been ddcUdss detector provides the
necessary faces in the given image for further processingsélene that the faces detected are
full-frontal faces. Conform to the face model facial charigtie points needs to be extracted. A
closer examination of the face model reveals that sombeofacial characteristic points are
actually corner points of the facial features i.e. eye, mouth, nose,aye3w, the idea is to use a
corner detection algorithm to detect these corners. We condsidiythirst comparing the most
important corner detectors. By means of the performance aed,gbpe best corner detector is

chosen.

Table 15 shows two corner detectors which satisfies theioritef good performance, accuracy
and speed. In the final implementation both corner detection d&lgnsriare implemented which
allow us to combine the corner results of both detectors. Thesrakulnot only include the
corner points we are interested in but also lots of unirapborners. The next logical step is
thus finding the real FCP corners among the FCP corner candiiatds.this we will continue
to use our classifier, the RVM, to decide whether the cornesh& we need or else. As we
already know, before we can use the RVM to classify corners itlmusained first. More of this
will be discussed in detail in the next chapter after thaudi&on of the two corner detectors. In
section 6.1, the different corner detectors will be compared. trogee2 and 6.3 the two corner
detectors will be considered in detail.

6.1 Corner detection algorithms comparison

Algorithms for corner detection may be divided into directneordetectors and colour
distribution based corner detectors. The former is based on higstihat work directly with the
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brightness values of images. They often model an image afaaesaonsidering the directional
gradients or derivatives at each pixel point, if the valusatorner response function exceeds a
defined threshold this pixel will be considered as a corner pbirg. detectors described by
[Harr88], [Sojk03] both belong to the so called direct corner tlmt®cEach algorithm defines its
own corner response function and so the performances are usually decideatbsner response
function.

The second type detectors do not model an image as a surfacad,Iibsiy consider the
statistical colour distribution in a circular neighbourhood degtat each pixel rather than
compute the directional gradients or derivatives. SUSAN cornectdetfsSmi97], Compass
corner detector [Ruz01] and a proposed detector [Son03] belong ttyphis The SUSAN
detector classifies each pixel into edge, corner and #at &ompass detectors utilize a group of
colours, instead of a single colour, to represent the statistour distribution in a circular
neighbourhood. It can handle both uniform-coloured region and textured reglansletector
proposed in [Son03] emphasizes both spatial and statistical cisbtiputions; it is much faster
than compass detectors and more accurate than SUSAN detectors.

Table 15: Comparison of different corner detectors

1978 [Bea78] Corner Low Very fast Yes 3
1982 [Kit82] Corner Low Fast Yes 3
1988 [Harr88] | Corner High Middle Yes 4
1993 [Der93] Corner Very low Very low No 2
1997 [Smi97] Edge & Low Middle Yes 3
Corner
2001 [Ruz01] Corner, Very high | Very slow | No 3
Edge, &
Junction
2003 [Son03] Corner, Very high | Middle Yes 4.5
Edge &
Junction
2003 [Sojk03] | Corner Very high | Middle Yes 4.5

Table 15 [Sojk03b] shows the comparison of different corner detebmsed on namely the
accuracy and detection speed. Colour distribution based atetesmtion algorithms are known to
have very accurate detection rate, but a drawback isldteveeslower detection speed due to the
detection of corners, edges and junctions in one round. The procegeed of early direct
corner detectors is very fast, but they often do not have higty detection rate. We have also
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included another table (Table 16) which shows the comparison of direct ceteetods tested on
an image with 291 reference corners in total.

In the previous chapters it is stated that the face datesyistem detects faces from grey-level
images. That is because the face detector is trained ainadr set consisting of grey-level
images. This gives the reason to adopt a direct cornectidetealgorithm instead of using a
colour distribution based corner detection algorithm. From altdoerner detectors the Harris
detector [Harr88] and the Sojka detector [Sojk03] are therlmigs among them. In this part of
the project it is only the intention to select a cornerdetehat is good enough; that means a
detector that is able to detect all corners of the lfdemtures (e.g. left-eye corners, right-eye

corners etc.).

Figure 27: (Left) Test image with 291 reference caorers.
(Right) Test image with 470 reference corners. Theed dots are the corner points.

Table 16: Comparison of direct corner detectors o test image of 291 reference corners.

Beaudet 155 21 10 167 1.85 2.0
Deriche 142 25 10 184 2.05 1.5
Harris 291* 187 10 6 120 0.98 4.0
Kitchen 163 26 15 169 1.87 2.0
SUSAN 152 29 1 169 1.63 25
Sojka 229 9 8 79 0.81 4.5

* The total number of corners is the number of reference cornersiieahienage.
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Table 17: Comparison of direct corner detectors o test image of 470 reference corners.

Detector | Total Correct | False Multiple | Total Localization | Grade
Name Corners | Det. Det. Det. Error Error (out of 5)
Beaudet 363 54 24 185 1.62 2.0
Deriche 308 22 5 189 1.49 15
Harris 470 431 14 9 62 0.73 4.0
Kitchen 356 48 31 193 1.75 2.0
SUSAN 338 34 7 173 0.87 2.5
Sojka 466 1 1 6 0.57 4.5

* The total number of corners is the number of reference cornersiieahienage.

6.2 Harris and Stephens corner detection

6.2.1 Theoretical background

The corner detector that is known as the Harris corner detslbuld actually be called the
Harris-Stephens corner detector. Since it is adopted asates ldorner detection in general by
most researchers, we will do that also. The main concernang8si is to use a computer vision
system based upon motion analysis of a monocular image sequence. By extractiackangldf
image features 3D analogues can be constructed of the fed@aredusions are drawn that
explicit 3D representation of curving edge may be unobtaindig@dezdnnectivity it provides may
be sufficient for many purposes. Tracked edge connectivity, emgpited by 3D locations of
corners and junctions can provide both a wire-frame structural repitiseatad delimited image
regions which can act as putative 3D surfaces. Consisternimagé edge filtering is considered
of prime importance for 3D interpretation of image sequensieg) feature tracking algorithms.
The state-of-the-art edge filters are not designed to coge jwittions and corners, and are
reluctant to provide any edge connectivity. The use of edgessiribde some objects like the
bush is very doubtful since a small change in edge strength theipixilation causes a large
change in the edge topology. The solution to their problem is to detect bethaubcorners.

6.2.2 Corner model

[Harr88] proposes a detector which is actually a combined corneedge detector. Harris

corner detector draws its origin in the corner detector proposédobgvec. Moravec’s corner

detector works by considering a local window in the image, andntieiag the average changes
of image intensity that result from shifting the window bgnaall amount in various directions.
Three cases are actually considered by this detection algorithm:
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o If the windowed image patch is flat, which means it is approxiypatonstant in
intensity, then all shifts will result in only a small change

o If the window straddles an edge, then a shift along the edigeesult in a small change,
but a shift perpendicular to the edge will result in large change

o If the windowed patch is a corner or isolated point, then all shiftsresult in a large
change. A corner can thus be detected by finding when the minimumechiaotiyced by
any of the shifts is large.

Denoting the image intensities bythe chang& produced by a shift (x, y) is given by:

Ex,y = Z Wu,v
u,v

specified window and zero elsewhere. The shifts, (X, y), whiclt@rsidered comprise [(1, 0),
(1, 1), (0, 1), (-1, 1)]. The Moravec's corner detector is to girfguk for local maxima in min

2
, where w specifies the image window: it is unity within a

I XU Y+ Iu,v

{E} above some threshold value.

The Moravec’s corner detection algorithm suffers from a numbeproblems. Corrective
measures are taken by [Harr88] and this lead to a new coetection method: Harris corner
detector.

The response in Moravec'’s algorithm is anisotropic because only atdiset of shifts at
every 45 degrees is considered. In Harris corner detectpossible small shifts can be

covered. This is done by performing an analytic expansion about thecsigjfits
2

Ex,y = ZWU,V l XU YV Iu,v
= YW, [xX - yY+ 002, y?)|” (Eq. 6.1)

where the first gradients are approximated by:

X =10(-101) =al /dx (Eq. 6.2)

Y=10(-1202" =0l /oy (Eq. 6.3)

Hence, for small shifts, E can be written as:
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E(x,y) = AX® + 2Cxy+ By? (Eq. 6.4)
where
A=X?0Ow
B=V2[0w (Eq. 6.5)
C=(XY)Ow

The response in Moravec’s algorithm is also noisy becawsevitidow is binary and
rectangular. To cope with this problem Harris uses a smooth airevihdow, for
example a Gaussian:

w,, = exp-(u? +v?)/20? (Eq. 6.6)

The operator in Moravec's detector responds too readily to edgesiseeonly the
minimum of E is taken into account. [Harr88] reformulatescmer measure to make
use of the variation of E with direction of shift.

The change, E, for the small shift (x, y) can be concisely written as:

E(xy) = (% y)M(x,y)" (Eq. 6.7)

Where the 2x2 symmetric matrix M is
M = AC (Eq. 6.8)
c B g. 6.

E is closely related to the local autocorrelation functionh W describing its shape at
the origin (explicitly, the quadratic terms in the Taylor &xgion). Leta, S be the
eigenvalues of Ma and S will be proportional to the principal curvatures of the local

autocorrelation function, and form a rotationally invariant dpon of M. As before,
there are three cases to be considered:
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o If both curvatures are small, so the local autocorrelatimetion is flat, then the
windowed image region is of approximately constant intensitys frf@ans arbitrary
shifts of the image patch cause little change in E;

o If one curvature is high and the other low, so that the locatautdation is ridge
shaped, then only shifts along the ridge/the edge causeclitdage in E: this
indicates an edge;

o If both curvatures are high, so that the local autocomelaiunction is sharply
peaked, then shifts in any direction will increase E: this indicatesnaic

LlLo-2Nws

Amplitude of response function

Figure 28: Auto-correlation principal curvature: bold lines give corner/flat classification, fine lins
are equi-response contours.

6.2.3 Corner decision

Consider the graph ofa, 5) space. An ideal edge will hawe large andf zero (this will be a
surface of translation), but in reali/ will merely be small in comparison &o, due to noise,
pixilation and intensity quantization. A corner will be indicatecbbyha andS being large, and

a flat image region by bothandf being small. Since an increase of image contrast by a factor
of p will increase ang® proportionally byp?®, then if (@, ) is deemed to belong in an edge
region, then so shouldp?, Bp?), for positive values of p. Similar considerations apply to

corners. Thusd, ) space needs to be divided as shown by the heavy lines in Figure 28.
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In summary, [Harr88] consider the minimum and maximum eigensatuand/3, of the image

gradient covariance matrix in developing their corner dete€tor gradient covariance matrix is
given by:

{ | 2 |X|y}
M = (Eg. 6.9)

2
Il 17

where | and | denote the image gradients in the x and y directions. Thisnchtracterizes the
structure of the image gray level patterns. In fagt,gbometric interpretation of the gray levels is
encoded in the eigenvectors and eigenvalues of the matriborAeitis said to occur when the
two eigenvalues are large and similar in magnitude.

Corner/edge response function

Not only are corner and edge classification regions neededsbua ameasure of corner and edge
guality or response. The size of the response will be usedeitt s&blated corner pixels and to
thin the edge pixels.

First consider the measure of corner response, R, whichqisred to be a function of
a andf alone, on grounds of rotational invariance. Tr(M) and Det(M) Wwél used in the

formulation to avoid the explicit eigenvalue decomposition of M, thus:

Tr(M)=a+=A+B (Eq. 6.10)
Det(M)=aB =AB-C? (Eq. 6.11)

A corner region pixel (i.e. one with positive response) is ssdeas a nominated corner pixel if
its response is an 8-way local maximum. Similarly, edge rqgjiais are deemed to be edges if
their responses are both negative and local minima in either dney directions, according to
whether the magnitude of the first gradient in the x or y doecespectively is the larger. This
results in thin edges. By applying low and high thresholds, kyggferesis can be carried out, and
this can enhance the continuity of edges. These classificatemudts in a 5-level image
comprising: background, two corner classes and two edge clagsién®rprocessing (similar to
junction completion) will delete edge spurs and short isolatedsedmd bridge short breaks in
edges. This results in continuous thin edges that generallyntgarin the corner regions. The
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edge terminators are then linked to the corner pixels residihin the corner regions, to form a
connected edge-vertex graph.

To avoid an explicit eigenvalue-decomposition Harris and Stephenseda measure using the
determinant and trace of the gradient covariance matrix:

R =Det(M) - k(Tr(M))? (Eq. 6.12)

where Det(M) and Tr(M) are defined above, the parameter k is traditionally set to Tlid.
produces a measure that is large when loo#imdf are large. However there is a problem of

determining what is large. Noting that elements of the ingagdient covariance matrix have
units of intensity gradient squared we can see that the detatama hence the measure R will
have units of intensity gradient to the fourth. This explains wieyHarris operator is highly
sensitive to image contrast variations which, in turn, make setting of thresholds exceedingly
difficult. Some kind of sensitivity to image contrast is commto all corner operators that are
based on the local autocorrelation of image intensity values and/ce gradjent values.

6.2.4 Parameter tuning

The Harris corner detector is implemented to have parasnetbich can be used to control the
algorithm. In total there are three parameters: sigma, tHdeahd radius. These parameters are
defined as follows:

Sigma this parameter is used to define the standard deviatidgheoGaussian function. This
Gaussian function is called the kernel and is actually used for smoothing.

Threshold this parameter is used to decide which pixels are cor@ly those above the
threshold are considered as corners.

Radius the radius is used to define the neighbourhood that needs to lidecemsOnly in this
neighbourhood a local maxima will be found.

Table 18: Specification of the type of corners.

Inner eyebrow corner left + right 2
Outer eyebrow corner left + right 2
Inner eye corner left + right 2
Outer eye corner left + right 2
Mouth corner left + right 2
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To find the optimal values for each parameter, the detectgorilim is tested on a set of 20
images of frontal faces from the Carnegie Mellon face databaseeBkéotest could be done, we
have to define what kind of corners we want the algorithm tocteie total 12 corners are
identified (see Table 18).

Table 19: Harris test parameters.

1 Sigma 05-4.0
2 Thresh 800 — 1200
3 Radius 05-40

After identifying the correct corners a reference datalfaseach image is made by manually
selecting the concerning points. Testing is done by varying onengimaand setting the other
parameters to a constant. The results of this test are shovable 19, Table 20 and Table 21.
The last column actually shows the rate of how many of thevéwdEntified type of points are

detected.

Table 20: Test result by varying sigma.

0.5 151 31,7 119,8 82,50
1.0 279 66,9 212,1 90,00
15 347 82,0 264,7 85,83
2.0 425 101,8 323,4 84,17
2.5 460 86,2 374,1 78,33
3.0 519 97,6 421,1 74,17
3.5 537 84,3 4524 61,67
4.0 583 93,8 489,4 57,50
TDC: Total Number of Detected Corners

TCC: Total Number of Correct Corners

TNC: Total Number of Unimportant/False Corners

CDR: Corner Detection Rate in percentage

Table 21: Test result by varying threshold.

800 279 68,0 212,1 90,00
900 252 61,4 190,2 89,17
1000 230 55,2 175,1 85,83
1100 211 50,5 160,7 82,50
1200 192 44,6 147,3 77,50

TDC: Total Number of Detected Corners
TCC: Total Number of Correct Corners

TNC: Total Number of Unimportant/False Corners
CDR: Corner Detection Rate in percentage
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Table 22: Test result by varying radius.

0.5 279 68,0 212,1 90,00
1.0 51 11,0 40,1 80,00
15 46 10,6 35,5 80,00
2.0 41 9,3 31,8 75,00
2.5 36 8,5 27,1 70,00
3.0 33 8,1 24,5 67,50
3.5 30 7,6 22 63,33
4.0 26 6,6 19,6 55,00

TDC: Total Number of Detected Corners

TCC: Total Number of Correct Corners

TNC: Total Number of Unimportant/False Corners
CDR: Corner Detection Rate in percentage

The optimal values for the Harris detection algorithm applied @e fmages are chosen
corresponding to the best detection rate. In the final systemalnes chosen for the Harris
corner algorithm is 1.0 for the sigma, 1000 for the threshold and 0.5 for the radius.

6.3 Sojka corner detection

6.3.1 Theoretical background

[Sojk03] The main idea for a new algorithm arose from the ifapton of existing corner
detection algorithms. The majority of the existing direct codatectors determine the values of
a corner response function like the Harris corner detectorvdloe of a given point in an image
is computed by examining the function of brightness and/or its digggain a certain
neighbourhood of this point. Although the neighbourhood is not mentioned timeatletection
algorithms, it is somehow determined when the derivatives ar@utech using the mask of a
certain size or when the convolution is computed with the Gaufsiation of certains. The
value of the corner response function usually reflects thke argl the contrast of the corner.
Points at which the value of the corner response function adegréhan a chosen threshold, and
also the function exhibits its maxima, are detected as corneese Bre two drawbacks in this
approach:

o Consider the situation depicted in Figure 29. In the areas, A, Eatite magnitude of
the gradient of brightness is non-zero. To determine the ahghe @orner at poin@,
only a part of the information contained in the neighbourh@¢@) is relevant. Area A

is the most important part, where area B is less sulmtamtd area C is even almost
irrelevant. Existing corner detectors do not take into adcamwch situations and
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unselectively examine the whole neighbourhood@f This may lead to incorrect
decision of whether or nQ is a corner. This drawback cannot be avoided by using small
neighbourhoods. The neighbourhood has to be big enough to make proper decision
whether a candidate is a corner or not. In a small neighbourhood, aftésts the
precision and the reliability of the computations.

0 A considerable drawback is caused by thresholding the valuds aforner response
function. Suppose we can measure the angbee Figure 29). In digital images, we can

do this with a limited precision. It is clear that if the diéﬂece|7‘r— a| is less than the

precision that can be achieved under the conditions of the measuy¢ne point should
not be detected as a corner. Known corner algorithms do not cheakglbevalue and
use only the corner response function for thresholding. This &unctimbines the angle
and the contrast of the corner; it may happen that a small ehltlee difference is
compensated by a high value of contrast, which leads to éuatadetections of corners
on contrast edges. This problem cannot be avoided by increasinges$ieotdy which in
turn will lead to missing the corners with a lower contrast.

Neighbourhood of Q

Area A

Area B

Area C

Q)

N

Figure 29: Neighbourhood of pointQ on verifying the existence of corner at poinQ. In the colored

area A, B and C, the magnitude of the brightness gdient exhibits non-zero values. Only area A
however is relevant for determining the angle of amer (denoted bya) at Q.

Taking into account the drawbacks mentioned above, a new algoritheallsbe Sojka corner
detection algorithm is proposed for direct corner detection. dlgigrithm also determines the
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corner response function that combines the angle and the caftitastcorner similar to existing
algorithms. The function is designed in such a way that it exhibitecal maxima at corner
points. The main new features of the algorithm are the following:

o Information contained in the neighbourho@{Q) is exploited selectively. It determines
which areas are relevant for determining whether orQnd¢ a corner. It is done by
introducing the probabilityP;;(X) of the event that a poink Q(Q) belongs to the
approximation of the straight segment contair@hgf the isoline of brightness. In Figure

29, for example, the values & ;(X) are high at the points in area A; at all other points

the values ofP;;(X) are low. The values d?;;(X) can be computed from the values

of brightness and its gradient by making use of the Bayesian estimations.

o Explicit computations of the corner angle are included in thigaScorner detection
algorithm. The expected precision of the angle measuremeninmest. A pointQ can
only be accepted as a corner if the difference is sigmifig greater than the estimated
precision of the angle measurement.

o Computation of a quantity expressing the obviousness of the corner is done. Tty qua
value, in essence, characterizes the size of the arnes tiedevant for deciding whether
or notQ is a corner and the magnitude of the gradient of brighinetbés area. A point
can only be accepted as a corner if its ‘appearance’ is greater tredefined threshold.

6.3.2 Corner model
A function ¢/(¢) is defined to describe the values of brightness in the direatimss the edges
and its derivative is defined positive with a single maxiexatemum af = 0, which is regarded

as an edge point. The edge is usually oriented by the ralthéhhigher brightness lies to the left.
The corner is an intersection of two non-collinear straight edges. In the owdel of Sojka, the
gradient of brightness along the edge that comes into the cochéneaedge that comes out from

the corner are defined as angleandg, respectively, wherg,, @, D(O,an. Let the gradient
vectors of the edges’ gradient be represented, Ic;y(cos¢i ,Sing, ) i =12. The axis of a

corner is a line through a corner point, which halves the dagleeen both edges, therefore also

the angle betweeg, andg,. The corner axis is oriented in such a way that it runghén
direction of increasing brightness. This means that the angle lvetheeorner axis ang is not

greater tham /2. The directions of the gradient are different at the poymtg lto the left and to
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the right of the corner axis. Consider the image containing Eesiogner point C. The brightness
function is described by the following:

minfy/(n, (X -C))y(n, {x -C)) if n, xn,20
max{y(n, X -C)).y(n, X -C)} otherwise
(Eq. 6.13)

b(X) ={

The term (X-C) expresses the distanceXofrom the edge. The corner is either convex or

concave; concave ifi, xn, >0 and convex ifi, xn, <0.

6.3.3 Corner decision

Discussions are simply considered for two cases: continuous aneteliskr the case of a
continuous and error-free representation of the im&geelongs to a straight isoline segment
containingQ if the following conditions are satisfied:

0 The brightness & is equal to the brightness@ti.e. Ab(X) =0.
o Theline p, passes throug®, i.e. h(X)=0.
o For the angle differena®g(X), the inequalityd < A@(X) < 77/2 holds.

o0 The conditions above are satisfied not only at X, but alsdl atheer points of the line

segmenX .

In the case of a discrete representation of the imageafpsbbabilityPs;(X) , is introduced to

denote the event thatbelongs to the approximation of a straight line segment contaihilige
define:

Pse(X) = @Dg{P(BfQ | Ab(Y))P(DirQ | h(Y))P(AngQ| A¢(Y))}

(Eq. 6.14)

Explanation of the probabilities introduced in Eqg. 6.31 can be founceitatile (see Table 23)
below.
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Table 23: Explanations and relations among the exgssions in Eq. 6.14.

Probabilities

Description

Dependency

P(BrQ|Ab(Y))

P(DirQ | h(Y))

P(AngQ|A¢(Y))

Y OQX

Denotes the probability of th
event thatY is a point of the
approximation of the isolin
with brightnessb(Q) thus Y is

point on_X .

elndependent event. Sing
the neighbourhood are

O o @

Emay contain one or mot
the
segment with brightness

y

isoling

A%

corners,

b(Q) need not generall

aim atQ.

Denotes the probability of th
event thatY is a point of the
approximation of the isolin
segment (not necessarily wi

brightnessb(Q) ) that aims at

pointQ.

elndependent event. An
isoline segment aiming at
£Q may generally have an

trarbitrary brightness.

Denotes the probability of thelndependent event. Points
event thaty belongs to the areamay exist that do nat

of possible corner &.

belong to the corner area
despite the fact that the
that the
brightness difference and

conditions,

deviation are zero, are both

satisfied (see Figure 30).

Table 23 shows that the three probabilities introduced in Eq. Geldf andependent events. The
last probability is introduced due to the fact that points Hwtsfy both the conditions
Ab(Y) =0,h(Y) =0 do not always belong to the corner area (see Figure 30).fddtiss

detected by the conditidh< A@(Y) < 77/2, which is not satisfied for.
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corner axis

(©)

Figure 30: Although the conditions Ab(Y) = 0,h(Y) = Oare both satisfied atY, Y does not belong

to the area of the corner aQ. This is detected by the fact that the conditioD < A@(Y) < 77/2is not

satisfied forY. Small circles show the position of pixel points.

Suppose thaX is a point lying on a straight isoline segment contaiggvhich means that all
the points of the line segme@ also lie on the isoline segment. Figure 31 illustrates the fact the

conditions do not suffice to decide whether or not X belongs to Aneéssegment containinQ.
Thus, the probability of) and X connected by a segment isoline cannot be greater than the

probability than any arbitrary point of the isoline segm@_m connected tdQ. The operator

‘min’ in Eq. 6.14 corresponds to the idea that if the evengrfethat a point belongs to the
approximation of the straight line segment contain@g occurs at the point with lowest

probability, it will also occur at the remaining points of the line seg@?.

O o

O(Y1) 40(Y2)y 9(X)
corner a:(y *-Y] V2 X
o o o o

Figure 31: Isoline segment XY1 aiming aQ. Although all three conditions are satisfied by Xand Y2,
Y1 shows the contrary (the angle of difference mugie less tham/2).
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Substituting the estimations froRA(BrQ | Ab(Y)) andP(DirQ |h(Y)) (discussed in [Sojk03])
into Eq. 6.14, we find:

Pso(X) = %@Dg{ P (87 (8b(Y))) p, (h(Y))P(AngQ| AG(Y))} (Eq. 6.15)

Let us determine & the ‘angle of break’ of the isoline that passes thradQgive thereby need

to examine the values @f(X)inQ. Since the relevance of the valueg{fX) at X not only
depends on the probabili.(X) , but also on the distance between the points Q and X, a

positive weight functiow, (r (X)), wherer(X) stands for the distance, is introduced. The

relevance is expressed by the following:

W(X) = Pog (X)W, (F(X)) (Eq. 6.16)

To determine the angle of break@tfirst compute the quantities;, andaj, which determines

the direction of the corner axis and the weighted square \dltiee difference between the
direction of the gradient brightnegéX;) atX and 4, . We define:

W(X,)B(X;)
Uy =2 <) (Eq. 6.17)
2 me(xi)[¢(xi)—u¢]2

g, = <) (Eq. 6.18)

Now use /,1¢(Q),0;(Q) to express explicitly the values that were computed for acpkati

corner candidat®. We define the functions:

Corr(Q) = 9(Q)a;(Q) (Eq. 6.19)

Appar(Q) = Ps(Xi)a(X) (X)) — 44 | (Eq. 6.20)

X; 0Q
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6.3.6 The practical application of the algorithm

In practical computation the Sojka corner algorithm is redlias follows. First, the magnitude
and the direction of the gradient of brightngéX) and@(X), respectively are computed. The

derivativesob(X)/0x,0b(X)/dy are replaced by the differences, which are computed using the

following masks:

-01 0 01 01 03 01
-03 0 03| and 0 0 0
-01 0 01 -01 -03 -01

Only those pixel points at which the magnitude of the gradiettrightness is greater than a
predefined threshold are considered as candidates for cofierscandidate corners are then

examined by determining the valygg(Q),g,(Q), Corr(Q), Appar(Q) . The candidate at
which the valueCorr(Q) exhibits its local maximum and at which the values of
0,(Q), Appar(Q) are greater than chosen thresholds is determined as a cdreguobability
density p, and the weight functiow, are fixed estimated functions, where the probability

densityp, is a normal distributed function with zero-mean amds a Gaussian function.

Sojka corner detection algorithm:

1. Compute magnitude of the gradient of brightrg3§ and direction of the
gradient of brightnesg(X).

2. For all pixel pointxQ:
if g(X) > predefined thresholthenQ is a candidate corner.

3. For all candidate cornef3:
- Compute the direction of the corner ag@gQ).
- Compute the weighted square value of the difference bew@gn
atX andy, as:o’,.
- Usingu,(Q) andcrz(,,, computeCorr(Q) andAppar(Q)according to
equations Eq. 6.19 and Eq. 6.20.

4. Candidate cornd® is determined as a corner if:
Corr(Q) exhibits its local maximum and
Appar(Q)> predefined appearanceThreshold

Figure 32: Sojka corner detection algorithm.

Page 78 ofL70



Part Il FCP Detection 6.Extraction

The neighbourhoo®(Q) is declared square-shaped wihin the centre. The declared size of
the neighbourhood is not so crucial since the effective size is alwaysihet@radaptively by the
values ofP.(X). In practice/is an unknown function so the value Bf*(Ab(Y)) = d(Y)

cannot be determined exactly, but can be estimated insteadrégfict to the corner model, we
yield:

_28b(Y) _ (Eq. 6.21)

by
AT e)

For computing the probabilitiP(AngQ| A¢( X)) the angle differencA@(X)is needed. But the
directionz,; (Q) of the corner axis is not known, so it will be approximateg(§y) . Taking into

account that the probabilit}(AngQ| A¢(X)) is either one or zero and substitute Eq. (6.21) into
Eq. (6.15), we easily obtain:

o 2Ab(Y)
=m0 Py g PO 0S8 <72
Pss(X) =
0 otherwise
(Eq. 6.22)

The computation d?;;(X) may be carried out effectively by proceeding fr@nwhich is the
centre, to the border 6f(Q) . Once the values d?;;(X)is known for all points if2(Q), the
values of 14,(Q), 0,(Q), Corr(Q),andAppar(Q) can be easily computed using Eq. 6.17 —
6.20.

Finally, if we assume that the size 9f(Q) is MxM pixels, it can be noted that values of

Ps(X) for all points inQ(Q) can be computed i#(M ?)time. The same time is also needed
for the computation of other values, which means that a corner essmdsl processed in

6(M ?)time. To speed up the computations one can neglect the small vaRugbXj .
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6.3.7 Parameter tuning

Before this method can be applied to faces for extractingsF@Re parameters of the Sojka
algorithm must be optimized for the best result. Following wé stibw the definition of the
seven parameters of this algorithm described at [Sojk03b].

HalfPsgMaskSize: the half of the mask size.

The overall mask size, i.e., the size of the neighbourhood (2*halffdddite + 1) is used to
decide whether or not a candidate is a corner. Generallpjgger masks give better results but
the computation may be longer. The usual values of halfPsghzask&y from 4 to 7, which
give the overall size of the mask between 9x9 and 15x15 pixels.

CorrAngleThresh: the threshold for the "angle of break" of the boundary at the corner point.
Only a point at which the boundary is broken more than is required $yhtieishold may be
accepted as a corner. Usual value is approximately 0.5hvidian angle size in radians. The
value of this threshold is more or less stable for all @sad herefore, there is no need to
experiment too much unless the detected corners must have ficspegie. As an indication,
higher value of this threshold must be chosen if small magksised since in small masks, the
precision measuring the angles is generally lower than in greatks.mas

NoiseGradSizeThresh: the threshold for the size of the gradient of brightness.

All the values of the gradient size less than this tlolesare considered to be a noise and the
corresponding points are therefore excluded from processing. Highexs of this threshold
contribute to the reduction of influence of noise. At the séime, however, the less obvious
corners may be missed. Remember that even in the synthefjesrgau have a noise that is
caused by dividing the image into pixels. Typically, the valuéhisf parameter varies between
0.04 and 0.08 of the image range (the difference between the rharichaninimal value of
brightness in the image). If the less contrast corneralacewanted, this value should have a
lower value. If corners caused by noise are detected initdaseot desired, this value should be
increased. Note that higher values lead to faster computdtioa the algorithm examines a
lower number of candidates.

AppearanceThreshold: the threshold for the "appearance” (obviousness) of corner.

The appearance combines the contrast, size and the shape of thke posser area. Only the
points whose appearance is greater than this threshold caocégted as corners. The value of
this threshold must again be properly adjusted. The typica¢ \@lthis threshold varies usually
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between 0.0 and 5.0. If the algorithm detects too many corners, indteasalue of this
threshold and vice versa. Remark that the value of this threshold magdizee

SigmaD: sigma for the normal distribution of the probability density P

From the theoretical point of view, it follows that the vallmwdd be less than 1.0. Values
between 0.7 and 1.0 were confirmed as optimal also experimeiitiadiyvalue of 0.95 proved to
be suitable for most images. There is no need to experimenthistivdlue too much unless
absolutely best possible detection is wished.

SigmaR: Sigma for the Gaussian expressing the functipr.ev, the weights depending on the
distances from the candidate that is just being processed.

For the above mentioned sizes of the mask, use the values mehieand 3.5, typically 3.0.
Usually, the value is not critical.

HalfExtMaskSize: this parameter is the size of the area in which it is chéakhether the corner
response function Corr() has its maximum at the point just being tested.

Typical value of this parameter is 1, which means that the maxisiahecked in the area of 3x3
pixels with the point being tested in its center. Tests with thanpeter should start with value 1.
If problems with multiple detections of the same corner attige value should be increased to 2
or 3. The value of this parameter must always be less thanual to the value of the parameter
HalfPsgMaskSize

Table 24: Sojka test parameters.

HalfPsgMaskSize 4 (fixed)
CorrAngleThresh 0.5 (fixed)
NoiseGradSizeThresh 3 ~ 23 (variable)
AppearenceThreshold 0~5 (variable)
SigmaD 5 (fixed)
SigmaR 2 (fixed)
HalfExtMaskSize 5 (fixed)

Having defined the parameters, we can apply the algorithm os tasee which parameters give
the best results. From the definition, it can be seen that rdralineters have equal influence on
the outcome of the detection. Most of them can be set to a dedfudt The two parameters with
most influence are NoiseGradSizeThresh and AppearenceThreshthe test, we varied the
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values these two. Following table shows the test paramdtegestest set is the same as the one
used for tuning Harris’ parameters.

Table 25: Sojka test result.

3 0 60.07 17 42.7 79.17
3 5 16.47 5.5 9.3 33.33
4 2 33.03 10.6 21.9 60.00
6 5 8.27 2.3 5.2 15.83
13 5 1.00 0.4 0.8 2.50
14 2 9.50 2.8 5.1 19.17
18 5 65.40 18.7 52.3 77.50
19 3 73.10 20.8 59.2 81.67
19 4 58.77 18 46.7 77.50
20 0 98.37 24.2 83.8 88.33
20 2 72.93 20.2 58.3 83.33
20 4 47.33 14.8 36.5 69.17
21 0 89.50 22.9 73.1 89.17
21 1 76.33 21.2 61.3 85.83
21 2 60.87 18.2 47.8 79.17
21 3 46.93 15.2 35.3 74.17

TDC: Total Number of Detected Corners

TCC: Total Number of Correct Corners

TNC: Total Number of Unimportant/False Corners
CDR: Corner Detection Rate in percentage

The test results are shown in Table 25. It can be concludedhéhdetection rate decreases when
the noise threshold is kept fixed and the appearance threshottdasing. From the test results,
we can see that a higher noiseGradSizeThresh (without looking at the app&hrashold) leads
to a lower number of total detected corners. A lower value ofaagpeeThreshold (without
looking at noiseGradSizeThresh) leads to a higher number ofdetatted corners and total
correct detected corners. So, appearanceThreshold should gatubeé. The results show that
the highest correct detection rate is achieved where nod8Redhresh = 21 and
AppearanceThreshold = 0 (highlighted in blue). These values are used irath@piementation.
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Facial Characteristic Points Detection —
Classification

As mentioned in the previous chapter, after detecting the cpomas it is still needed to extract
the positive corners from the total number of candidate corfierachieve this we use the RVM
classifier discussed in the previous chapters. This cleatsifh model needs to be trained with
samples of the corners we want the classifier to extramtlofjous to the steps of training RVM
for face detection, we will discuss the training for cornerssdction 7.1 the preparatory steps
preceding the training will be discussed. In section 7.2 the ricpipiocess with the boosting
algorithm will be considered and section 7.3 copes with the training andgals.

7.1 Feature vector extraction

The training samples needed to train the RVM corner classifil be taken from images with
full frontal faces. The resolution of these face imagesaataally determined by the face
detector, which is the size of 64x64. It is discussed [Chan04]hisaize is a trade-off between
computational cost and minimum resolution in order to guarantéeénfbamation about eyes,
nose and mouth is not lost in too small image versions. That mea#nghig size it is still
possible to see enough details around the facial feature conteh, is strongly necessary for
extracting feature vectors to train RVM.

Before we can create the database of corners, we needuwovihich size of the region around
the corners needs to be obtained. The solution to this is basederimental results and testing.
Thus, we rely on the results of our application. If the regromirad the corner is too small, we
cannot extract proper features from it. This is becthm® is a lot of fuzziness around the facial
feature corner points. A small window size does not contasugin detail to differentiate well
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from other non-corner regions. We do not want the size to be too bdgidmethat would be
computationally unattractive. It is known that the size of 13x13 é@émpixels has been
successfully applied by other applications. Thus, we will usedilzis for the samples to be
extracted from the face database. We manually extracted foirthe sample database. For each
corner point, from which there are 12, we made a database foingraind another one for
testing. The databases we extracted the corner points fraimeaBéolD dataset and the Carnegie
Melon dataset. More details about the training and testing damibaed for RVM can be found
in Table 26.

Table 26: Dataset description of different corners.

Database description:

Database source: BiolD/Carnegie Melon

Database sample size: 64x64 pixels

Extracted sample size: 13x13 pixels

Training: 2-class (0/1)

Left eye inner corner 500/500 500/500
Right eye inner corner 500/500 500/500
Left eye outer corner 500/500 500/500
Right eye outer corner 500/500 500/500
Nose left corner 250/250 259/250
Nose right corner 250/250 326/350
Mouth left corner 500/500 500/495

Mouth right corner 500/500 500/495

Having the databases with corner samples, we cannot train thlecR¥gsifier with the intensity
values of these samples. As we have seen before it does not work. We need a metkinadtsat e
essential features to provide for the training of the RVM. Ekengh the DCT feature extraction
did not work for face detection, we apply it to the samplesi@fcbrners. DCT is short for the
Discrete Cosine Transform, which is a technique used for commgessiages. The DCT
coefficient can be seen as feature vectors represethtingvhole image, which was a perfect
property to consider in our application. It works better than incde of face detection.
However, the results were not good enough and thus unsatisfactorfouite that the DCT
feature extraction method is too sensitive to illumination effectsannages. Disappointingly, it
has to be concluded that DCT cannot be applied for this purpose.

At this point, we still need a method to extract the sigaificfeatures from the images. We
wonder if it is possible to employ the feature extraction metisodsad for face detection. This

Page 84 ofL70



Part Il FCP Detection 7.Classification

method extracts simple rectangle features and with the boodgioigttam weak classifiers are
combined to form a strong classifier. The problem of needingthod to extract the significant
features from the training/testing database will be sobxedhis approach. So, we decided to
utilize this method for our facial corner detection.

7.2 Training the Relevance Vector Machine with Evol  utionary-AdaBoost

The steps taken for utilizing the boosting method with Haarfiegures is analogous to that
explained in Chapter 5. A general scheme for training the R¥iVcdrner classification is
shown in Figure 33.

The boosting algorithm selects a Haar-feature and this featlitee calculated for all samples in
the training database. Note that the complete set of possithiees (14140 features) is different
and smaller than in the case of 24x24 sample dimension. A weakdRagsifier will be trained
for this single feature and verified according the boostingcjplie. If this feature may not satisfy
the given conditions another feature will be selected ancettaln case it does satisfy the given
specification like having a positive detection rate grethi@n the given value, the feature will be
added to the final list of weak classifiers of which the gpoading parameter values will be
saved. These parameter values are the WUX values of the RVMietass

Every time a candidate feature is found, the obtained set af wWieak classifiers will be
evaluated on a test set that is distinct to the training set. If thallovee positive rate and overall
false positive rate meet the requirements the training. éditherwise, the algorithm will verify
whether the added feature contributes to the existing set.isTdisne by assessing the overall
false positive rate. This should be lower than the previousofuthe selected final weak
classifiers. If this is not the case then the feature vélidiscarded. The training algorithm will
continue with searching for another weak feature to add to the final seabfclassifiers to form

a strong classifier. The training is said to converge ifitted trong classifier satisfies the given
overall true detection rate and overall false detection rate.
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Figure 33: Scheme representing the training of weaklassifiers with the WUXTRAP for FCP.
extraction.
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The chosen parameters for boosting the weak features are depitedule 27. The chosen RVM
model is exactly the same as the one used for face detection with thkesaaie

Table 27: EABoost training parameters for all typeof corners.

Population size 250
Crossover/Mutation rate 0.20/0.80
Classifier/ kernel RVM/ Laplace 4.0
Feature false positive rate 0.3

Feature true positive rate 0.75

Target false positive rate <0.05

Target true positive rate >0.90

Number of features needed variable

7.3 Training and test results

Now it is time to look at some results acquired after thiminhg algorithm has converged. In the
implementation of the boosting algorithm it is already known #ratEvolutionary Search
algorithm is applied to speed up the selection process of thengrautgorithm. The training
application is implemented such that it only stops when thairestjrate is gained. The single
weak features are selected from a training set, whiel have to satisfy the given rate for the
training set. Then the evaluation is done on a testing sedsireathat the same rate can be
achieved from unknown samples. The evaluation results on the testiregge depicted in the
following (Table 28).

Table 28: The evaluation results from the EABoostraining.

Left eye inner corner LEIC 0.922 0.02
Right eye inner corner REIC 0.89 0.106
Left eye outer corner LEOC 0.916 0.064
Right eye outer corner REOC 0.892 0.034
Left nostril corner NLC 0.935 0.06
Right nostril corner NRC 0.893 0.049
Mouth left corner MLC 0.955 0.049
Mouth right corner MRC 0.916 0.049

TPR = True Positive Rate
FPR = False Positive Rate

Table 28 lists the training results after boosting the R&ld4sifier using weak classifiers. This
should not be confused with the results of chapter 6. In chaptely @henperformance of the
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corner detectors is evaluated. The corner detectors areniemied to select candidate corners,
which also includes the corners listed in the table above RMids are trained to subtract the

true corners from the false corners (corners that arested lin the table above.). In other words
RVM has to classify the candidate corners.

At this point we have extracted a part of the total numbepints that needs to be extracted for
the face model (see Chapter 3). The rest of the points canreottlaeted using this approach
which detects candidate corners with the Harris and Sojiteecdetector and then classify them
with RVMs. The problem of the remaining landmarks (corner ppisthat they cannot really be
considered as a corner point. In most cases they cannot be ddtgdiesl corner detectors.
Applying the technique of corner detectors with RVM would certainly fail tdkwor

Another problem would also be training the RVM. Features takexbreme shapes at these
remaining non-stable points and are way fuzzier than the definet$ roithe table. This would
make the extraction of a good database for training the RVIM dificult. To extract the
remaining the points we have employed another technique call@utégeal projection method.
This technique projects the image into the vertical and horizax¢s, from which we are able to
obtain the boundaries (in this case the facial features’ boundafeh happens to contain the
points we are interested in). The boundaries of the features retatévely high contrast
compared to its near environment. This property can be perfexplipred for extracting the
remaining points. Further details can be found in the next chapter.
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This chapter describes a method for extracting other remal@Rg, namely the projection
method. First, section 8.1 gives a theoretical introduction to thikod. In section 8.2 to 8.4
different types of the projection method is discussed. In thé dolation the hybrid projection

method is chosen to extract the remaining characteristic poits method requires the
corresponding feature as input because a larger region mityigrice the final detection results
negatively. That is why section 8.5 discusses the algorithmbtandnethod for extracting the
facial features like eyes, etc. The results and findings are @tsaired in this section.

8.1 Theoretical foundation

Many applications exist which use the technique of projectionifurscto detect the boundary of
different image regions. In our case we applied this technige&tend to the other approach to
extract the FCPs. This is needed because as the test resiutprdvious chapter showed, not all
FCPs could be extracted with the corner detection algorithms. Thus, we willarg grpjection
with the purpose of finding the missing FCPs. It can also beasean extra verification for the
corner detection algorithm since it can also find FCPs that we dlezady extracted as described
in the last chapter. In a face, it is observed that somieedandmarks (including corner points)
have relatively high contrast and that is what makes th@audesuitable for FCP extraction.
Using projection functions the image is actually presented loy & orthogonal projection
functions. The dimension reduction from 2D to 1D reduces the congnahtoad, which is very
interesting property. Consider Figure 34, which sketches the model; cas@gor the eye.
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Figure 34: Model of an eye image. The bold lines ahe side of the eye represent the integral
projection of the image.

Suppose thaPF is a projection function and is a small constant. If the value BF rapidly
changes fromv, to(v, +¢), thenv, may lie at the boundary between two homogeneous

regions. This property d®F can be well exploited for FCP detection. There exist a few profecti
functions and in the following sections we will discuss them ritodetail. Among all the image

projection functions used, the integral projection function (iBffie most popular one. Another
one is the variance projection function (VPF) and we w#loatlefine a more generalized
projection function, which combines IPF and VPF. For the optintalnpeters of the generalized
projection function we call it the hybrid projection function (HPF).

M

Figure 35: Use projection function to locate the bandaries of the facial feature.

8.2 Integral projection function

This type of projection function is the most popular one. Hawnen some cases like the one in
Figure 36 it cannot well reflect the variation in the imagethis case it fails to capture the
vertical variation of the image.
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N
IPF,

Figure 36: Case where IPF cannot retrieve the vertal variation.

[Feng98] Supposd(x, y) is the intensity of an image pixel at locatigx y) We denote
IPF, (X) to be the vertical projection function projected on the vdrtges, andIPF, (X)to be
the horizontal projection function projected on the horizontal axis. Bwmittions of the image

pixel I(x, y)in intervals[y,, y,] and[X,,X,] can be defined respectively as:

IPF,(x) = yy 1(x, y)dy (Eq. 7.1)
IPF,(y) = x1 1(x, y)dx (Eq. 7.2)

More often, the mean vertical and horizontal projections are used, whicHiaes des:

1

2 1

MIPF, (X) =

)ZZ 1 (x, y)dy (Eq. 7.3)

MIPF, (y) = x1 I (x, y)dx (Eq. 7.4)

2

The vertical and horizontal boundaries in the image can be identified accardiegfollowing:

B, = max OPF, () >T, (Eq. 7.5)
0x

B, = max @ >T, (Eq. 7.6)
X
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PF can be any projection function for instari@&, MIPF, VIPF, HPE The parameterF in the

equations is the given threshold. A setB)f vertically divides the image into different regions

and a set oB, divides the image into different horizontal regions.

8.3 Variance projection function

To solve the problem mentioned in the previous section the varjaogection function is
introduced. The variance projection function (VPF) [Feng99] is reensitive to the variation in
the image than IPF does. VPF is also proved to be orientationcafel isvariant. Another
attractive property of VPF is that it is insensitive tod@am noise in the image. So, suppose that

the facial feature, for instance the eye, is boundedXpyx,] and[y,,Y,]. Let us denote
VPF, (x) andVPF, (x) to be the average of vertical projection and horizontal intggogection

of image pixel I(x, y) in interval§x,,X,] andy,, Y,]. The projection functions in the vertical

and horizontal direction are defined as:

1 Y2

VPF, (X) = 1 (x,y) = MIPE, (x| (Eq. 7.7)
; [ , ()]

2 1Y%

1 ®

2 X=X

VPR, (y) = [1 (x,y) - MIPF, (y)] (Eq. 7.8)

Although VPF is more sensitive to the variation in the imige IPF, it still does not mean that
VPF always works well. As a matter of fact, if we consiflegure 37; it is obvious that the
vertical projection fails to expose the vertical variatddnhe image. The variation is presented as
a flat line after the projection, which totally masks the trueatian in the image.

VPF,

1

Figure 37: Case where VPF fails to capture the vedal variation.
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Similarly to IPF the vertical and horizontal boundaries candmepated along with Eq. 7.5 and
7.6. An illustration of VPF using synthetic eye image is shown befdgo random noise is
added to the image to show the influence of random noise in the image to VPF.

VPR, |

Xs

|
—

X, I_'r T = \ X -
froed VPF,(y) Loy, |

VPFV (y) -

aal e . s siec o g

Figure 38: (Left) Synthetic eye image and its vertial and horizontal projection. (Right) Eye image is
added with random noise and its vertical and horizotal projection.

8.4 Hybrid projection function

In the previous sections it is shown that both IPF and VPFWweasknesses. But it is also easy to
find that they are complementary. The reason is that twBiders the mean of the intensity
values while VPF considers the variance of the intensity. i§lghown in Figure 39, where VPF
works better in one case and IPF on the other.

/1

I 1 I 1

I | I 1

i i | i

1 1 1 IPF 1 IPF

| S R —
I 1 | 1 I |
1 ) L 1 Ll !
I VPF, - i AN i
i i | P | i VPF, i
1 1 1 1 1 1 I |

Figure 39: IPF and VPF complement each other in reieving the vertical variation in some cases.

Now if we combine the results of IPF and VPF we yield a najeption function, which will be
the generalized projection function (GPF) [Zhou02]. Derldte y) to be the intensity pixel

value at locationx, y) Also denoteGFP,(x) and GFR,(X) to be the vertical and horizontal
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generalized projection function X, y)in the intervald y;,y,] and[x,, X,] respectively. We

define:

GPF,(x) = a [MIPF,(x) + BIVPE,(X) ,

0<a,p<1

GPF,(y) = a IMIPF, (y) + BIVPF,(y) ,

(Eq. 7.9)

wherea, [ is used to control the contribution of IPF and VPF. To understandethison we

have Figure 40 and Figure 41 to demonstrate this. The first grigigiuse( 40) actually show the
GPF in relation to IPF and VPF of an eye feature. This esddae for the mouth in Figure 41. In
both caser is set to the values [0, 0.25, 0.5, anddk S <1.
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HybPF

300

300

200

2500

2500

10 20 30 40
alpha=0.25

2500

20 30 40
alpha=0.5

2500

20 30 40
alpha=1

beta=1
o000 b beta=0.9
o
& beta=0.8
i
2 beta=07
+ 1500 -
w
o
=
'(EU
=y
=5
@ 1000 r
I
[T
[
=
2
E
500 -
D L

2000

1800

1000

500

beta=1

beta=09

2000

1400

1000

500

beta=1

beta=0.9

beta=0.8

beta=0.7

2000 -

1800 ¢

1000 ¢

500

beta=1

beta=0.9

10 20 30

alpha=0.25

10 20 30
alpha=0.5

Figure 40: Eye image: (Top) Vertical projection (Batom) Horizontal projection. For beta=0 the

variational information cannot be captured. Clear \ariational differences can be noticed for

alpha>0.3.
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It is clear that IPF alonéx =1, 8 = 0) is not enough for representing the variational information

contained in the image. VPF, on the other hand, works pretty geed evithout
IPF(a =0, =1) . But IPF does contribute to the overall GPF in that it still contains the ofea

the intensity values which can be complementary to VPF.
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Figure 41: Mouth image: (Top) Vertical projection (Bottom) Horizontal projection. For beta=0 the

variational information cannot be captured. Clear \ariational differences can be noticed for

alpha>0.3.

To actually see the relative contribution of IPF and VPFéngdneral function we define GFP as

follows:
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GPF,(X) = (L- @) [MIPF, (X) + & [VPF,(x) ,
O<a<1 (Eq. 7.10)
GPF,(y) = - a) IMIPF,(y) + a VPR (y)

By this definition IPF and VPF are actually special casesGBF, whereqa is 0 or 1,
respectively. The following figures (Figure 42, Figure 43Juré 44 and Figure 45) show this
relative relation of IPF and VPF. The results are obtained fmoraye and mouth image as the
variational information of both features differs. Same thiagidefore can be noticed, as in this
caseq isreplaced byl-a)andf =a.

35':":' T T T T T
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Figure 42: Vertical projection of an eye image usig - +

Page 96 ofL70



Part Ill FCP Detection 8.Hybrid Projection

2600

2000

1500

1000

HHybPF = alpha™MIPF + beta™/FPF

a00

Figure 43: Horizontal projection of an eye image usg - +
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Figure 44: Vertical projection of a mouth image usig - +

Page 97 oL 70



Part Il FCP Detection

8.Hybrid Projection

Figure 45: Horizontal projection of a mouth image sing

The optimal value ofr for mouth and eyes are derived from some test results on mouth and eye

HHybPF = alpha™IPF + beta™/FF
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images (see Table 29 and Table 30). The optimal values are higthliglie table. The values

are selected based on their accuracy and stability. The threshiadtbetimages at these values

are derived from the image histograms and is about the same fot @tiadges unlike for other

values ofr . In our final implementation we choage= 0.6 as the optimal value for the hybrid

projection.

Table 29: Test results at finding the optimal valudor the hybrid projection for mouth.

MOUTH
Alpha (@) LB RB UB BB ODR

0.2 100 % 100 % 75 % 50 % 50-75 %
0.3 100 % 100 % 75 % 50 % 50-75 %
0.4 100 % 100 % 75 % 75 % 50-75 %
0.5 100 % 100 % 90 % 90 % 75-100 %
0.6 100 % 100 % 95 % 95 % 75-100 %
0.7 100 % 100 % 95 % 95 % 75-100 %
0.8 100 % 100 % 90 % 90 % 75-100 %
0.9 100 % 100 % 90 % 75 % 50-100 %
1.0 100 % 100 % 90 % 75 % 50-100 %

LB = Left Boundary
RB = Right Boundary
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UB = Upper Boundary
BB = Bottom Boundary
ODR = Overall Detection Rate

Table 30: Test results at finding the optimal valudor the hybrid projection for eyes.

EYES
Alpha (@) LB RB UB BB ODR

0.3 100 % 90 % 75 % 50 % 50-75 %
0.4 100 % 90 % 75 % 75 % 50-75 %
0.5 100 % 90 % 90 % 90 % 75-100 %
0.6 100 % 90 % 100 % 100 % 90-100 %
0.7 100 % 90 % 100 % 100 % 90-100 %
0.8 90 % 90 % 100 % 100 % 90-100 %
0.9 90 % 90 % 100 % 100 % 90-100 %
1.0 90 % 90 % 100 % 100 % 90-100 %

LB = Left Boundary

RB = Right Boundary

UB = Upper Boundary

BB = Bottom Boundary

ODR = Overall Detection Rate

8.5 Facial feature extraction

Since our purpose of using hybrid projection function is to exi&gs which are located on the
facial features, our system need to know where these faaiakes are positioned. Therefore, to
apply hybrid projection successfully, proper images of the fée#lres need to be provided. In
order to extract the exact position of a facial featurenees to apply our WUXTRAP algorithm
with proper images of the eyes, eye brows, nose and mouthinootrr classifier to recognize
them. Once detected, they can be passed to the hybrid projecitenfor further processing.
Following are the specification and result for the trainiracedure of the left eye, right eye and
mouth.
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Figure 46: General scheme of WUXTRAP for feature traning.

Left eye and right eye

The two databases, containing respectively images of ftheyke and right eye are created from

the BiolD face database. In total, we used a set of 1000vaositmples of the left eye and 1000

negative samples of the left eye. This set is split iwmo set of equal sizes: one for training and
one for testing. The same vyields for the right eye dat&setmore details, see Table 31 and

Table 32. The training parameters for EABoost are the saffioe faxes (see Table 14). Note that

the set of Haar-like features to be searched and traimest the same as that of faces. Since an
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eye image is 15x25 pixels, we need to apply the Haar-like featurevery possible scale and in
every possible position in every eye sample. That results in a set of 6903 1kedeatiires to be

searched. The result that we get after training is shown in Bable

Table 31: Dataset specification for left eye.

Dataset parameters Values and description

Database source BiolD
Sample size (h x w) 15x25 pixels
Number of classes 2

Class 0 Non-left eye
Class 1 Left eye
Number of samples (0/1) 500/500

Table 32: Dataset specification for the right eye.

Dataset parameters Values and description

Database source BiolD
Sample size (h x w) 15x25 pixels
Number of classes 2

Class 0 Non-right eye
Class 1 Right eye
Number of samples (0/1) 500/500

Table 33: Evaluation test result for detecting thevhole eye.

Type TPR FPR
Left eye 0.906 0.05
Right eye 0.912 0.049

TPR = True Positive Rate
FPR = False Positive Rate
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Mouth

The mouth database we used to train RVM with is also extréctedthe BiolDface database.
We used a subset of 500 positive and 500 negative samples fanrgraid a distinct subset of
the same size for testing. The set is specified in thewolp table. The training parameters for
EABoost are also the same as for faces. The Haafdérires’ set in a 20x40 pixels image is
312260. The training results are shown in Table 34.

Table 34: Dataset specification for the mouth.

Database source BiolD
Sample size 20x40 pixels
Number of classes 2

Class 0 Non-mouth
Class 1 Mouth
Number of samples (0/1) 500/500

Table 35: Evaluation test result for detecting themouth.

Mouth 0.852 0.024
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Analysis and System Design

In this chapter, we will describe the implemented systeEX-that is able to perform the task of
face detection and FCPs extraction. All models and algorithmatbaised in FLEX are already
described and discussed in the previous chapters. FLEX makes theeWUX values retrieved
with WUXTRAP to carry out its tasks. The result of the reguient analysis definition and the
functional design will be given in section 9.1. Section 9.2 bélldevoted to the system models
and implementation details. The user interface and some scas@ups will be presented in
section 9.3.

9.1 Requirement analysis

FLEX consists of two modules: a face detection module and aektt&tion module. The tasks
of the two modules are as their name suggests.

9.1.1 Purpose of the system
The main purpose of FLEX is the extraction of FCPs from digitages. The input for FLEX is

a digital image selected by the user. First, FLEX aiitomatically scan the image for faces. If
present and their resolution are bigger than 64 x 64 pixels,|iextract for each face the FCPs.
Within the framework of FED, these FCPs can be directly pasthe QPM (see section 2.1)
which will query the FED database for a facial expressitee. fEsult of FLEX will be a vector
containing FCP information.

9.1.2 Scope of the system
FLEX can handle one input image at a time. The input imegesither be colour or gray-scale

images. From the input image, only faces with a resolution eguml greater than 64 x 64 will
be passed to the FCP extraction module. As mentioned befordintlismage size has been
chosen because of the trade-off between computational cost amaumimesolution in order to
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guarantee that information about eyes, nose and mouth is not tost #émall image versions.
The input images should be one of the following formats: BMPGJBEPEG2000, PNG, PNM,
Raw, TIFF and WBMP. FLEX can not yet handle other multimeatimnéts like video input and
is also not required within the FED framework at the moment.

9.1.3 Functional requirements

The main purpose of FLEX is extracting FCPs from the inpug@ndhe user is able to select a
digital image from the file system of the computer FLEXugBning on. FLEX determines the
FCPs of the faces that are present in the image. FLEX etenitd task with showing the FCPs
that it has found.

9.1.4 Non-functional requirements

Adaptability, We attempt to build the module as compatible as possible EEiDeso that
minimal adjustment to the existing FED code is needed fomtiegriation of FLEX into
FED.

DocumentationFLEX is well documented for future studies.

Error handling All errors are handled correctly by the program. In casesrors,
comprehensible messages will be displayed.

Extendibility. It is possible to make modifications to the FLEX systienthe future.
Additional functionalities such as processing video input carabiéyeadded since we are
using Object Oriented Design.

Performance characteristicd=LEX should be able to detect 80% of the characteristic
points in a face.

Real-time Speed is of critical importance. Especially when FLEX @ng to be
integrated into the FED website. At the moment, the speed oK Fldpends on factors
like: size of the input image, the processor on which FLEXuming (compared to a
Celeron 1.5 GHZz, 512 MB machine, FLEX is running about twice asofasth AMD
Athlon XP, 1.8 GHZ, 512 MB machine), and so on.

9.1.5 Pseudo requirements

FLEX is initially designed as a module to be integratéd the FED framework. FED is a web
application written in Java/Java2, therefore FLEX is algiiten in Java/Java2. FLEX is
developed in a Windows environment and does not make any use of a database.
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9.2 System models

9.2.1 Use cases

Figure 47 shows the use case diagram of FLEX. It desctibdsehaviour of FLEX as seen from
the user’s point of view. The only actor in this use caagrdm is the User of FLEX. A use case
describes a function provided by the system as a set pfsefit yields a visible result for the
actors. Following the figure is the use case description of the L= cas

Selectinputimage

StartFLEXDetection

User

VerifyFLEXResults

Figure 47: Use case diagram for FLEX.

Use case name Selectinputimage
Participating actor User

Entry condition 1. FLEX s started up

Flow of events 2. Theuseropens a getFileDialog to select the input image.

Exit condition 3. FLEX confirms theuserby a message and by showing the selected
image.

Figure 48: The Selectinputimage use case.
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Use case name StartFLEXDetection
Participating actor User

Entry condition 1. Theuserhas selected an input image.
Flow of events 2. The user initiates the detection process by clicking on the Detect
button.

3. The face detection module of FLEX reads in the input image and
scans for faces at different resolutions.
4. For each detected face with a resolution of at least &4, xthe FCP
extraction module scans for all the predefined FCPs.
Exit condition 5. FLEX shows its results by displaying the detected facits the
FCPs marked.

Figure 49: The StartFLEXDetection use case.

Use case name VerifyFLEXResults

Participating actor User

Entry condition 1. The results of the FCP extraction procedure is displayed on the
screen.

Flow of events 2. Theuserexamines each of the shown faces with the FCPs.

Exit condition 3. The user accepts the results by clicking on the OK button tindec

it by clicking on the Decline button.

Figure 50: The VerifyFLEXResults use case.

9.2.2 Class diagram

Figure 51 gives the class model diagram that describegtiotuse of the FLEX system in terms
of classes and objects. Classes are abstractions that sheafyributes and behaviour of a set of
objects. Objects are entities that encapsulate statdehaviour. Each object has an identity: It
can be referred individually and is distinguishable from otheeatdj Each class will be
described individually.
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GUI PaintArez
1 1
HybridProjection 1 1 ImageControl ImagePyramid
1 1
i
ImageScanner Integrallmage
1 1
Lr HarrisCornerDetector
1
FeaturelmageScanner FacelmageScanner CornerlimageScanner
SojkaCornerDetector
1
1 1

1 L T |
T

FeatureCascade FaceCascade CornerCascade RVMFaceClassificator RVMCornerClassificator RVMFeatureClassificator

Cascade RVMClassificator

Figure 51: Class diagram of FLEX.

GUI Class

The Graphical User Interface class provides the userathiityf to select an input image to be
scanned, to start the scanning procedure and to verify soétsceThe results with graphical
output will be handled by PaintArea.

ImageControl Class

The ImageControl class is the central unit in FLEX. All communication ardl@atbetween the
user, face detection module and the FCP extraction module occthisviglass. It controls the
instantiation of the FacelmageScanner object, Cornerimage&c object and ImagePyramid
object. The methods scanLayers4Faces and scanFace4Cornbssimitbked by the user via the
graphical user interface. If the input image is a 24-bit cotoage, ImageControl will
automatically convert it to an 8-bit gray scale representatioiuftirer processing.
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Class ImageControl

Bufferedimage B
ImagePyramid IP
FacelmageScanner [ FIS
CornerlmageScanner [] CIS
RenderedOp image
RenderedOp upSampler
RenderedOp downSampler
RenderedOp differencer
RenderedOp combiner
Vector corners

Vector [ faceDate

Attributes

ImageContro (String fileName)

Constructors

void paint(Graphics ¢,

void scanLayers4Face()

void scanFace4Corners(

RenderedOp convert2Gray(Bufferedimage colorimage;

Methods

Figure 52: Description of the ImageControl class.

ImagePyramid Class

This class is included in the Java Advanced Imaging (jAbkage that is provided by Sun
Microsystems. It represents a multi-resolution image pyrairgd:a collection of layers of
different resolution of the input image. More information abou$ ttiass can be found on:
http://java.sun.com/products/java-media/jai/forDevelopers/jai-

apidocs/javax/media/jai/lmagePyramid.html

ImageScanner Class
The ImageScanner class is an abstract class that providesetifigce for the FacelmageScanner
class and the CornerlimageScanner class.

Integrallmage Class
This class represents the integral image representafioanoimage. With the method
convert2intimage, a normal image can be converted into its integral mptese

FacelmageScanner Class

An instance of FacelmageScanner takes one layer of the ipyagenid into account for face

detection. It does so by first scanning the input image with xa 24 scanning window. Then it

will convert each subimage into the integral image repratent After that, the subimages will

be passed to the FaceCascade which decides whether or notia ffaesent. Note that in the

final implementation of FLEX, this class also controls the scanprocess. Instead of scanning
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every layer in the image pyramid this class simply scHiesclassifier by scaling the Haar
features.

Class FacelmageScanner

Renderedimage r
FaceCascade fc
Matrix integrallmage

Attributes

FacelmageScanner(Bufferedimage bi,
FacelmageScanner(Renderedimage r

Constructors

Vector scanimage()

Methods

Figure 53: Description of the FacelmageScanner clas

FaceCascade Class

The FaceCascade class is in fact the component that dedwdlser or not a given image
contains a face. The FaceCascade consist of different lagehs with a different number of
classifiers. Input for the cascade is a collection of al ghbimages from FacelmageScanner.
They are first passed through the first layer in whictsattlimages will be classified as faces or
non faces. The negative results will be discarded. The remain#iygpesibimages will trigger
the evaluation of the next classifier. The same process is perfanregdry layer. The subimages
that reach and pass the last layer are true faces.

Page 111 0170



Part IV System Implementation 9.Analysis and 8y§&lesign

Class FaceCascade

boolean classified_as_face
double betal

double errort

double feature_value
double [][ layer”
double [][ layer2
double [][ layer3
double [][ layer4
double [][ layer5
double [][ layer6
double [][ layer7
double [] alphat
double [] hx_{

double [] thresholc
Matrix hx

Attributes

FaceCascade (]

Constructors

double calculateFeature(double x double yt double xr double yk int type Matrix iimage;
void processLayer(int layer double [][ layerDate Matrix intimage_)
boolean verifyLayer(int layer,

Methods

Figure 54: Description of the FaceCascade class.

FeaturelmageScanner Class

This class process the image for facial features whiohbeaeyes, eye brows, nose or mouth.
Therefore, the input image should be a face image. In this tasdace image is an image

detected by the face detector and has a size of 64 by 64 pigatsrelmageScanner scans for its
feature in a specific region. It will convert each subimenge an integral image representation.
After that, the subimages will be passed to the Featura@asehich decides whether or not the
wanted feature is present.

Class FeatureImageScanner

Renderedimage r
FeatureCascade feature_cascade
Matrix integrallmage

Attributes

FeaturelmageScanner(Renderedimage r

Constructors

Vector scanimage()

Methods

Figure 55: Description of the FeaturelmageScannerass.
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FeatureCascade Class

Practically the FeatureCascade class performs the tsahas FaceCascade. Its structure is also
as that of FaceCascade. It decides whether or noea fice image contains the wanted feature.
The subimage that passes through all layers of the cascade @nsidered as a true positive
sample.

Class FeatureCascade

boolean classifiec_as_feature
double betal

double errort

double feature _value
double [][ LE

double [[[ LEB
double [[[ RE
double [[[ REE
double [J[ N

double [[[ M

double [] alphat
double [] hx_1

double [] thresholc
Matrix hx

Attributes

FeatureCascade(;

Constructors

double calculateFeature(double x double yt double xr double yb int type Matrix iimage;
void processFeature(int feature double [][ featureDate Matrix intimage_]
boolean verifyFeature(int feature

Methods

Figure 56: Description of the FeatureCascade class.

HybridProjection Class

The result from face detection and FeaturelmageScannee@& gontaining positions of facial

features. HybridProjection uses these exact locations to eMi@adeatures and corresponding
FCPs. This can only be done if the extracted feature doesmairc noise in the form of parts of
other features.
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Class HybridProjectior

Matrix image

Attributes

HybridProjection (Matrix image

Constructors

int verticalGradient (Matrix image int column int bound* int boundZ2;
int horizontalGradient (Matrix image int row int bound* int bound2;
Matrix verticalVarianceProjectionFunctior (Matrix image

Matrix horizontalVarianceProjectionFunctior (Matrix image;

Matrix verticalMeanIntegralProjectionFunction(Matrix image

Matrix horizontallMeanIntegralProjectionFunctior (Matrix image;
Vector checkFeature()

Vector find (Vector v double thresholc]

Methods

Figure 57: Description of the HybridProjection clas.

CornerlmageScanner Class

This class process the image, which in this case iseaitfiesage, for FCPs. It ensures that corner
detection is employed by instantiating the HarrisCornerDeteatmt SojkaCornerDetector
classes. As a result, the number of possible windows to swafGPs will be reduced.
Classification of the candidate windows is done by the Cornea@asehich in turn invoke the
RVMClassificator. Variance integral projection too will be @rout on eyes, mouth and nose to
increase the accuracy of the detected FCPs.

Class CornerlmageScanner

Renderedimage r
CornerCascade cc
Matrix integrallmage

Attributes

CornerlmageScanner(Renderedimage r;

Constructors

Vector scanimage()

Methods

Figure 58: Description of the CornerlmageScanner @lss.

HarrisCornerDetector Class
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The given input image, which must be a gray-scale imagearmed for corners. This class is
invoked by the CornerlmageScanner class to reduce the numbernoingcavindows. The
parameters upon which this class is called are also controlled by théhelasvokes it.

Class HarrisCornerDetector

double sigme

double thresholc
double radius

Matrix image

Matrix Ix ly

Matrix Ix2 ly2 Ixy
Matrix filter

Matrix cornerMeasure
Vector cornerList

Attributes

HarrisCornerlmageDetector(Matrix image double sigme double thresholc double radius;

Constructors

void detectCorners(
Vector getCornerList()

Methods

Figure 59: Description of the HarrisCornerDetectorclass.

SojkaCornerDetector Class

The given input image, which must be a gray-scale imagsaisned for corners. Detection of
corners can actually be done in colour and/or gray-scale snddes class is invoked by the
CornerlmageScanner class to reduce the number of scanning windomsvgafameters upon
which this class is called are also controlled by the class that initokes
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Class SojkaCornerDetector
float noiseGradSizeThres;
float meanGradSizeThresh;
float inertiaRadiusThresh;
float halfGradSizeThresh;
float tenthGradSizeThresh;
float angleThresh;
float halfAngleThresh;
float apparenceThresh;
float sigmaD, sigmaR;
float [] gSizes;
float [] gDirs;
float [] corrDirs;
float [] corrs;
float [] appars;
float [] SNRs;
float [] Psgs;
& | float [] Wrs;
E float [] PsgWrrs;
E float [] dirXs, diffDirXs;
< | float [] intCoefs;
float [] pdTable;
int ximageSize, ylmageSize;
int numimagePixs;
int halfPsgMaskSize;
int numimportantPixs;
int numPsgMaskPixs;
int halfExtMaskSize;
int options;
int [] neighbMap;
int [] xs;
int [] flagsProcess;
int [] influenceMap;
int [] influences;
int [] importantPixs;
int [] tobeProcessed;
Vector corners;
2
o
o
% SojkaCornerDetector();
c
8
int [] detectCorners(float [] image_p,
int ximageSize_p,
int yimageSize_p,
int halfPsgMaskSize_p,
float angleThresh_p,
float noiseGradSizeThresh_p,
§ float apparenceThresh_p,
£ float meanGradSizeThresh_p,
2 float inertiaRadiusThresh_p,
float sigmaD_p,
float sigmaR_p,
int halfExtMaskSize_p,
int options_p,
int [] cornerList,
int cornerListLen);

Figure 60: Description of the SojkaCornerDetector ass.

CornerCascade Class

The CornerCascade class is the component which decides whetl¢aagiven image contains
a FCP. It does so by invoking the RVMCornerClassificator Wighright parameters. One of the
parameters is the feature value, which is calculatednyylys look up the values in the integral
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representation matrix of the image. Another parameter iypieedf the FCP to be classified like
inner left eye corner.

Class CornerCascade

boolean classifiec_as_corner
double betal

double errort

double feature _value
double [[[ LERC
double [J[ LELC
double [[[ RELC
double [[[ RERC
double [J[ NLC
double [J[ NRC
double [J[ MLC
double [[[ MRC
double [] alphat
double [] hx_1

double [] thresholc
Matrix hx

Attributes

CornerCascade(

Constructors

double calculateFeature(double x double yt double xr double yb int type Matrix iimage]

void processCorner(int corner double [J[ cornerDate Matrix intimage_
boolean verifyCorner(int corner,

Methods

Figure 61: Description of the CornerCascade class.

RVMClassificator Class

This class is an abstract class that provides thefantefor the classification of the input. Actual
classification is done by the RVMFaceClassificator ckass$ the RVMCornerClassificator class
depending on the classification that needs to be made.

RVMFaceClassificator Class

This class represents the actual RVM classification mfmtelaces. The implementation of the
RVM classification model is to differentiate faces from 4fi@ces. In other words the
classification is fixed by a two-class classification. This classvioked by the FaceCascade class
which also has to pass the parameters depending on the layer in whichvlie R¥ated.
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Class RVMFaceClassificator

double ][] W
int[J[ L
double ][] X
Matrix Xused

Attributes

RVMFaceClassificator(double feature_value String kernel_, double w;

Constructors

Methods

int classify(int layer int feature_number,

Figure 62: Description of the RVMFaceClassificatorclass.

RVMCornerClassificator Class

This class represents the actual RVM classification miwdFCPs. The implementation of the
RVM classification model is to differentiate FCPs from m&®Ps. In other words the
classification is determined by a two-class classificatibhis class is invoked by the
CornerCascade class which also has to pass the parameter of whith ¢t&ssify.

Class RVMCornerClassificator

double [J] W
intI[ L
double [][] X
Matrix Xused

Attributes

RVMCornerClassificator(double feature_value String kernel_, double w)

Constructors

int classify(int corner int feature_number,

Methods

Figure 63: Description of the RVMCornerClassificato class.

RVMFeatureClassificator Class
This class represents the actual RVM classification modétéédures. The implementation of the
RVM classification model is to differentiate features fromon-features. In other words the
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classification is fixed by a two-class classificationisTtlass is invoked by the FeatureCascade
class which also has to pass the parameters depending on the layehithe/fiRy/M is located.

Class RVMFeatureClassificator

double [J] W
intI[ L
double [][] X
Matrix Xused

Attributes

RVMFeatureClassificator(double feature_value String kernel_, double w;

Constructors

int classify(int layer int feature_number,

Methods

Figure 64. Description of the RVMFeatureClassificabr class.

9.2.3 Sequence diagrams

Figure 65, Figure 66 and Figure 67 present the sequence diagr&insXaf They formalize the
behaviour of FLEX and visualize the communication among the abjEiure 65 shows the
interaction between the objects of the face detection moduleEX.FThe ImageControl object
invokes and initializes the other objects. When an input éniagsubmitted by the user, an
ImagePyramid of the input will be constructed. The user candiverthe signal to start the face
detection procedure by invoking the scanimg method of FacelmageScdn the end of this
sequence diagram, the ImageControl object obtains face irtformaesult. With this
information, ImageControl invokes the scanimg of Featureé@agnner to extract the facial
features. This is shown in the second diagram. The resulbevil vector with exact positions of
the features. ImageControl can then use this information to inbakeheckFeature method of
HybridProjection to extract the FCPs from the feature. Inhhid tiagram the process of corner
classification is shown. As shown, the process is analogous to tfaateotletection and feature
extraction. The exception is that it contains corner detedtatsé¢duce the number of subimages
to be classified.
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Figure 65: Sequence diagram of FLEX. Part 1: faceeatection.
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Figure 66: Sequence diagram of FLEX. Part 2: featuz detection.
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‘ GUI ‘ ImageControl Cornerl ‘ HarrisCornerDetector SojkaCornerDetector ‘ ‘ CornerCascade RVMComerClassificator
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detectCor ix image)| | | | |
] I i i I
I I I I
| | | |
oo i I I I
i I I i
l i i i
| | |
komnmmemmmnnnnas : : :
| | |
| | |
I I I
I | |
i i
e | |
| |
I I
‘ i
> calcu\a(eFe‘aiureS(feaiureNr. integrallmage)
i
i
ify(| iximage, int feature_value)
classifyCorner(Matrix intimage)
i
& L |
oo s : :
S | s s
! |
| | I i
|
I
I
|
i

Figure 67: Sequence diagram of FLEX. Part 3: FCP dsaction.

9.3 User interface

This section includes some screen shots of the FLEX user interface.

& FLEX 1.0 i - O] xi

File

FLEX

Developed by Williarn Chan and Wwai Shung wong, 2008

‘ Scanfaces ‘

‘ Find feature ‘

{ Find FCPs J

Figure 68: GUI of FLEX at start-up.
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o1l
Developed by William Chan and Wai Shung Waong, 2005
Scanfaces
Find feature
Find FCPs
Figure 69: File-Open menu.
iElx]
File
FLEX s x
Developed by williarn Cha
Look In: hj TEST SET INDIN |v‘ S
7 SCREENSHOTS [} ind14.jpy [ ind6.jpg
Scanfaces S 3 - L :
D face det individuals.xls D ind15.jpg D ind?.jpg
[y ind1.ipy [ ind2-1.jpy [ indg.jpg
Find feature [} ind10.jpy [ ind2.jpy [ inag.jpg
[} ind11.jpy [ ind3.py
Find FCPs D ind12.Jpg D ind4.jpg
[ ind13.jpy [ ind5.jpy
File Name: | |
Files of Type: |All Files v
| Open | | Cancel ‘

Figure 70: File-open dialog.
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£ FLEX 1.0 =101 x|

File

FLEX

Developed by William Chan and Wai Shung Waong, 2005

Scan faces

Find feature

Find FCPs

Figure 71: Image selected for detection.

4 FLEX 1.0 - O]

File

FLEX

Developed by William Chan and Wai Shung Waong, 2005

Scan faces

Find feature

Find FCPs

Finished scanning :)

Figure 72: Detection result after pressing the "Sca faces" button.
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i FLEX 1.0 =10l x|

File

FLEX

Developed by William Chan and Wai Shung Waong, 2005

Scan faces

Find feature

Find FCPs

Figure 73: Image selected for FCP detection.

i FLEX 1.0 =10l x|

File

FLEX

Developed by William Chan and Wai Shung Waong, 2005

Scan faces

Find feature

Find FCPs

Finished scanning :)

Figure 74: Detection result after pressing "Find FGPs" button.
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System Test

In this chapter we discuss the testing of the system. Tdatdgserformance we designed a test
plan. In this test plan, two modules (face detection and FCPtidejeare considered separately
and as one unit. This plan will be presented in section 10.1. S&étidrand 10.3 discuss the test
of the face detection module and the FCP detection module regpecliests of both modules
linked together are given in section 10.4.

10.1 Test Plan

We consider three test objects: face detection, FCPtieiend FLEX. In FLEX face detection
and FCP detection is combined in the final system. The images contained in tatstest given
in appendix B. The images used for testing the face detection madul@ndomly collected
from the internet and from our own image collection. The imagesof different sizes. The
images used for testing the FCP detection module are from o2 8nd Carnegie Mellon face
database.

Face detection

The test for the face detection module can be divided into two parts:

FTO1: test the performance with images of single full-frontade. The test set consists of 15
images and will be referenced as Face Test $8t31).

FTO2: test the performance with images containing two or more fabestebt set consists of 15
images and will be referenced as Face Test $di33).

FCP detection

The test for the FCP detection module is structured as follows:

FCPTO1.: test the module on input images containing solely a full-ftdate. The test set is
referenced as FCP Test SEECPTSY).
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Integrated system

ISTOL: test the integration of the two modules. FCP detection i® @onthe output faces
provided by the face detection module. The test set iserefed as Integrated System Test Set
(ISTS1).

10.2 Face detection module test
To test this module we choose to test on two sets. The firgdEE8tl) consists of individual
frontal faces and the second sBff§2) consists of images with multiple faces. Each table
contains the following columns with data:
» Test image number (Nr.) sequence number of the test image in test set
* Image name (Image)name of the test image
» Resolution the resolution of the image (h x w).
» Type: display the type of the image. The image can be either 8-bit or 24-bit.
» Total number of detected faces (TDFE)the number of faces detected.
» True positives (TP} number of faces that are detected as faces and are indeed faces.
» Multiple true positives (MTP): number of faces, other than the real face(s), that can be
counted as correct detection(s) of the face(s).
» False positives (FP)number of faces that are classified as a face, but agctimén-
faces. This number is equal to TDF — TP — MTP.
» Missed faces (MF) number of faces that has not been detected.

The outputs from the FLEX application are not judged by FLEX itself but by vissgéction. In
each test image, we consider only one true face. Othatidete which can be interpreted as true
faces will be counted as multiple true positive (MTP) daias. The results of the first test
(FTO1) on the test seF{'S1) are given in the following table:

From the results in Table 36 the true positive rate is 93.3%. From thddtgeted faces there are
15 false positives. The precision of the detector is givenRIgTP + FP) = 22/(22 + 15) = 0.595.
All faces are detected, except for the one contained innegte 2. This missed face can be
explained by the grouping function that is implemented in the final version of FLEX.

Recall that the training samples for the face detectorHigere 11) contain some space on either
the left or right side of the face. This means that thaitrgisamples have a certain amount of
noise that will be observable in classification results. Big way, the final detector can still

detect a face when the scanning window is not exactly arouacea $ince the face detector is
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scanning the input image on every pixel location in the inpaigan there will be multiple
positive detections around one face. The implemented grouping functigrauf these positive
detections into one rectangle. It does so by considering windowinthatange of two pixels
distance there are more than three positive detections.

Table 36: test result of FTO1 on FTS1.

1 ind1.jpg 98x70! 24 1 1 0 0 0
2 ind2.jpg 101x80 24 0 0 0 0 1
3 ind3.jpg 112x80 24 6 1 1 4 0
4 ind4.jpg 77x61 24 1 1 0 0 0
5 ind5.jpg 96x60! 24 1 1 0 0 0
6 ind6.jpg 97x80! 24 1 1 0 0 0
7 ind7.jpg 83x110 24 3 1 2 0 0
8 ind8.jpg 88x70 24 3 1 0 2 0
9 ind9.jpg 80x60! 8 3 1 1 1 0
10 ind10.jpg 141x100 24 4 1 0 3 0
11 ind11.jpg 69x100 24 2 1 1 0 0
12 ind12.jpg 89x100 24 2 1 1 0 0
13 ind13.jpg 101x100 24 4 1 1 2 0
14 ind14.jpg 70x100 24 2 1 1 0 0
15 ind15.jpg 198x10(0 24 4 1 0 3 0

total 37 14 8 15 1

For test image number 2, if the grouping function is switchednaffcan see that the face was
actually detected by FLEX. The implementation of the grouping fomath the final system
simply discards this positive detection, because it is assunadrultiple detections should
occur around the face. It is possible that the size ofabe i missed by the scaled classifiers.
This is the trade-off in scaling that cannot be resolved. Thivelsigh number of false positives
can be explained by the fact that in the final implementation of FLEXised only a five layered
classifier. For better results, either more layers o$sifi@rs need to be trained or different
parameters need to be set for the classifiers. With thentwwe#ings, we can get a relative high
true positive rate, but the false positive rate is algh.hif we want to decrease the number of
false positives by adjusting the parameters, the true positvvilablso decrease.
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£ FLEX 1.0

File File

FLEX FLEX

Ceveloped by Wiliam Chan and Wai Shung Wong, 2005 Developed by William Chan and Wai Shung 'Weng, 2005

m— ' P
- :
Find feature . Find feature

Find FCPs Find FCPs
4 FLEX 1.0 & FLEX 1.0
File File
Creveloped by Wiliam Chan and Wi Shung Wiong, 2005 Drevelaped by William Chan and Wi Shung Wong, 2005
Y 18 |
)
Find feature H Find feature
& .
Find FCPs Finid FCPs

Figure 75: lllustration of the grouping function. The images on the left are scanned without

grouping. The images on the right are scanned witgrouping.

The results of the second teBT(D2) on the test set containing image with multiple faé&sSQ)

are given in the following table:

Table 37: test result of FTO2 on FTS2.

1 | groupl.jpg 558 338 24 8 58 11 47 2
2 | group2.jpg 312 226 24 8 35 9 26 1
3 | group3.bmp 402 141 24 7 23 15 8 1
4 | group4.bmp 240 178 24 8 24 14 10 0
5 | group5.bmp 210 174 8 6 20 12 8 0
6 | group6.bmp 170 153 24 6 18 7 11 0
7 | group7.bmp 302 212 24 4 19 5 14 0
8 | group8.bmp 188 110 8 4 5 4 1 2
9 | groupll.jpg 126 200 24 4 12 7 5 0
10 | groupl2.jpg 253 280 24 3 3 3 0 1
11 | groupl4.jpg 179 354 24 5 12 5 7 1
12 | groupl6.jpg 250 175 24 5 8 7 1 1
13 | groupl19.jpg 381 384 24 5 31 6 25 0
14 | group20.jpg 255 190 24 5 26 7 19 0
15 | group23.jpg 305 240 24 3 14 4 10 0

total 81 308| 116| 192 9
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In Table 37 we can see that out of the total number 81 facesiinab®gs, 9 are missed. The true
positive rate is 88.9% and there are 191 false positives. The nunfakyegbositives is relatively
high compared to the number of positive detections. Again, this high nwhfzdse positives is
due to the number of classifiers we trained and implemented fimtlesersion of FLEX. Some
of the faces are missed because they are (slightly) raiateattly occluded by other objects. It is
also possible that a face is missed because of thensiciof the grouping function. In the
neighbour of two pixels around the face, it is assumed that #nerenore than three positive
detections.

£ FLEX 1.0 i = |0] =]

File

FLEX

Developed by William Chan and Wai Shung Waong, 2005

| Scanfaces |
| |

Find feature

Find FCPs

Finished scanning :)

Figure 76: test result on test group3.jpg of set FS1.

10.3 Facial Characteristic Points detection module test
For this part of the test, we used the testF&PTSL It contains 22 images of 64x64 pixels,
selected from the BiolD and Carnegie Mellon face database. ldnpesere selected, each with
two different facial expressions. Note that the test ses doé contain any faces with glasses,
beard or moustache. THECPTS1 set is used to test each FCP. The results of the FCPs are
arranged separately in a table. Each table contains the followingreoluith data:

» Testimage number (Nr.) sequence number of the test image in test set

* Image name (Image)name of the test image

» Type: display the type of the image. The image can be either 8-bit or 24-bit.
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Number of Candidate FCPs (NOC) display the number of corners that are detected
within the region of the FCP. These are candidates for the FCP.

Total number of detected FCPs (TD FCP)the number of candidates FCPs that are
classified as FCPs. This number should be smaller than NOC.

True positives (TP) number of corners that are detected as FCPs and are indeed FCPs.
Multiple true positives (MTP): number of corners, other than the real FCP, that can be
counted as a correct detection of the FCP.

False positives (FP)number of corners that are classified as FCP, but aretimdae
FCPs. This number is equal to TDFPC — TP — MTP.

True negatives (TN) number of corners that are classified as non-FCP, whichudye tr
non-FCPs. This number is equal to NOC — TDFCP.

False negatives (TN)number of corners that are classified as non-FCPs, butatieey
FCPs. This number has the value 1 in case no true positivedeteted (TP = 0),
otherwise it has the value O.

Table 38: Test result for left eye inner corner (LEC).

1 | A0OL.bmp 8| 52 1 1 0 0] 51 0
2 | A06.bmp 8| 57 2 1 1 0| 55 0
3 | D00.bmp 8 77| 13 1 5 7] 64 0
4 | D44.bmp 8 60 6 1 5 0| 54 0
5 | EO4.bmp 8 64 2 1 1 0| 62 0
6 | E52.omp 8 63 1 1 0 0] 62 0
7 | F28.bmp 8 36 0 0 0 0| 36 1
8 | F37.omp g 52 2 1 1 0| 50 0
9 |103.bmp 8| 46 0 0 0 0| 46 1
10 | 135.bmp 8| 53 1 1 0 0| 52 0
11 | Bioid_0256.bmp 24 59 8 1 7 0| 51 0
12 | Bioid_0257bmp 24 61 6 1 3 2| 55 0
13 | Bioid_0419.bmp 24 83| 14 1 5 8| 69 0
14 | Bioid_0420.bmp 24 72 8 1 5 2| 64 0
15 | Bioid_0657.bmp 24 77 6 1 4 1] 71 0
16 | Bioid_0658.bmp 24 59 2 1 1 0| 57 0
17 | Bioid_0717.bmp 24 58 4 1 1 2| 54 0
18 | Bioid_0721.bmp 24 79 8 1 5 2| 71 0
19 | Bioid_1079.bmp 24 43 0 0 0 0| 43 1
20 | Bioid_1083.bmp 24 81 3 0 0 3| 78 0
21 | Bioid_1517.bmp 24 74| 18 1 7 10| 56 0
22 | Bioid_1518.bmp 24 66 9 1 4 4| 57 0

total| 1372| 114| 18| 55| 41| 1258 3
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By definition the true positive rate is the number of truetpes divided by the total number of
positives. In Table 38 the true positive rate is (tpr = 18 /)221-82 %. The false positive rate,
which is the number of false positives divided by the total number ofinegias fpr = 41/ (1372
— 22— (22 * 8)) = 3.49%.

4 FLEX 1.0 4 FLEX 1.0
FLEX FLEX FLEX

Deweloped by Wiilliarn Chan and Wai Shung Wang, 2005 Deweloped by Wiilliarn Chan and Wai Shung Wang, 2005 Deweloped by Wiilliarn Chan and Wai Shung Wang, 2005

Scan faces = Scan faces ’ 1 Scan faces
Find feature Find feature Find feature

Figure 77: Screen shots of FCP detection on the lefye inner corner.

Table 39: Test result for right eye inner corner (FEIC).

1 | A0L.bmp 8| 72 7 1 2 4] 65 0
2 | A06.bmp 8| 54 0 0 0 0| 54 1
3 | D00.bmp g 80 2 1 1 0| 78 0
4 | D44.bmp 8 60 0 0 0 0| 60 1
5 | EO4.bmp g 80 6 1 3 2| 74 0
6 | E52.bmp g 67 3 1 2 0| 64 0
7 | F28.bmp g 79 1 1 0 0| 78 0
8 | F37.bmp g 79 2 0 0 2 77 1
9 | 103.bmp 8| 60| 10 1 3 6| 50 0
10 | 135.bmp 8| 62 7 1 3 3] 55 0
11 | Bioid_0256.bmp 24 75| 18 1 3| 14| 57 0
12 | Bioid_0257bmp 24 78 9 1 0 8] 69 0
13 | Bioid_0419.bmp 24 36 4 1 1 2] 32 0
14 | Bioid_0420.bmp 24 57 5 1 0 4| 52 0
15 | Bioid_0657.bmp 24 73 5 1 2 2| 68 0
16 | Bioid_0658.bmp 24 81 7 1 2 4| 74 0
17 | Bioid 0717.bmp 24 33 4 1 0 3] 29 0
18 | Bioid_0721.bmp 24 60 6 1 1 4| 54 0
19 | Bioid_1079.bmp 24 57 0 0 0 0| 57 1
20 | Bioid_1083.bmp 24 68 3 1 0 2| 65 0
21 | Bioid_1517.bmp 24 63| 17 1 2| 14| 46 0
22 | Bioid_1518.bmp 24 54| 11 1 1 9| 43 0

total| 1428| 127| 18| 26| 83| 1301 4
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& FLEX 1.0 4 FLEX 1.0 4 FLEX 1.0
File File File

FLEX FLEX FLEX

Developed by illiam Chan and Wai Shung wiong, 2005 Developed by illiam Chan and Wai Shung wiong, 2005 Developed by illiam Chan and Wai Shung wiong, 2005

-

4 Scan faces
g |

- ‘ —
Y Fim— :

Find feature Find feature Find feature

‘ Scan faces

Figure 78: Screen shots of FCP detection on rightye inner corner.

For the right eye inner corner, the tpr = 18 / 22 = 81.82 % and fpr @833 — (9*22)) = 6.75%.
From the tables and the screen shot pictures, it can be concluded thaetherners of the eyes
can be detected quite good. For the test images in which theoeyers are missed, the eye
corners are either blurry by shadow, make-up or baggy eye lids.ifAlse intensity difference
between the eye and the skin is too minimal, the FCP can nigttbeted. Following tables show
the FCP detection result of LEOC and REOC.

For the left eye outer corner, tpr is 63.64% and fpr is 5.94% hEatight eye outer corner, tpr is
81.82% with an fpr of 16.67% (see Table 40 and Table 41). It caoriduded that the outer
corners in our test images are hard to detect. In both, s@se&sn see that the missed FCPs occur
mostly in pictures from the BiolD dataset. The faces in Ba®aligned in another way than the
faces from the Carnegie Mellon set. From the dataset fgendix B) we can see that the eye
corners of the BiolD faces are very close to the border. &swdty FLEX cannot extract a good
corner sample to let RVM classify. To test if the eye awman be detected if they are aligned
correctly, we manually shifted the BiolD faces some pixels toettiédr REOC testing and some
pixels to the right for LEOC testing. The result are as xpeeted, the FCPs can be detected by
FLEX. The third picture of Figure 79 and the first and third pectofr Figure 80 are from BiolD
after shifting.

In the case of the left eye outer corner (LEOC) detectiom tried to achieve a low fpr by
adjusting some parameters in the classifier. The restiaighe tpr also decreasing. For REOC,
we tried to do the opposite. The outcome is a high tpr with a high fpr.
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Table 40: Test result for FPC detection of left eyeuter corner (LEOC).

1 A01.bmp 8 52 2 1 1 0 50 0
2 A06.bmp 8 31 4 1 2 1 27 0
3 D00.bmp 8 33 8 1 2 5 25 0
4 D44.bmp 8 27 7 1 4 2 20 0
5 EO04.bmp 8 26 0 0 0 0 26 1
6 E52.bmp 8 25 2 1 1 0 23 0
7 F28.bmp 8 27 3 1 1 1 24 0
8 F37.bmp 8 51 3 1 2 0 48 0
9 103.bmp 8 43 5 1 3 1 38 0
10 | 135.bmp 8 36 11 1 2 8 25 0
11 | Bioid_0256.bmp 24 33 0 0 0 0 33 1
12 | Bioid_0257bmp 24 34 0 0 0 0 34 1
13 | Bioid_0419.bmp 24 27 0 0 0 0 27 1
14 | Bioid_0420.bmp 24| 36 1 0 0 1 35 0
15 | Bioid_0657.bmp 24 18 0 0 0 0 18 1
16 | Bioid_0658.bmp 24 18 0 0 0 0 18 1
17 | Bioid_0717.bmp 24| 36 3 1 0 2 33 0
18 | Bioid 0721.bmp 24 18 2 1 0 1 16 0
19 | Bioid_1079.bmp 24 33 1 1 0 0 32 0
20 | Bioid_1083.bmp 24 43 5 1 1 3 38 0
21 Bioid_1517.bmp 24 33 4 1 1 2 29 0
22 | Bioid_1518.bmp 24 40 4 0 0 4 36 0
total| 720| 65 14| 20 31| 655 6
4 FLEX 1.0 4 FLEX 1.0
File File File:
FLEX FLEX FLEX
Scan faces Scan faces B Scan faces H
Find feature ‘ I Find feature Find feature

Figure 79: Screen shots of FCP detection of left eyouter corner.
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Table 41: Test result for FCP detection of right eg outer corner (REOC).

1 A01.bmp 8 22 11 1 7 3 11 0
2 A06.bmp 8 43 7 1 1 5 36 0
3 D00.bmp 8 36 7 1 3 3 29 0
4 D44.bmp 8 24 9 1 5 3 15 0
5 EO04.bmp 8 18 8 1 2 5 10 0
6 E52.bmp 8 27 8 1 2 5 19 0
7 F28.bmp 8 31 15 1 4 10 16 0
8 F37.bmp 8 22 3 1 0 2 19 0
9 103.bmp 8 9 3 1 1 1 6 0
10 135.bmp 8 27 7 1 5 1 20 0
11 Bioid_0256.bmp 24 42 7 1 5 1 35 0
12 | Bioid_0257bmp 24 40 9 1 5 3 31 0
13 | Bioid_0419.bmp 24 18 2 0 0 2 16 1
14 | Bioid_0420.bmp 24 46 3 0 0 3| 43 1
15 Bioid_0657.bmp 24 33 6 1 3 2 27 0
16 Bioid_0658.bmp 24 27 0 0 0 0 27 1
17 | Bioid_0717.bmp 24 22| 10 1 3 6 12 0
18 | Bioid_0721.bmp 24 16 8 1 4 3 8 0
19 Bioid_1079.bmp 24 18 2 0 0 2 16 1
20 Bioid_1083.bmp 24 27 5 1 3 1 22 0
21 Bioid_1517.bmp 24 43 8 1 2 5 35 0
22 | Bioid_1518.bmp 24 33 7 1 1 5 26 0
total 624 145 18 56 71 479 4
£ FLEX 1.0 £ FLEX 1.0 £ FLEX 1.0
File File File
FLEX FLEX FLEX
Scan faces tg Scan faces E Scan faces H
Find feature Find feature Find feature

Figure 80: Screen shots of FCP detection of rightye outer corner.
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Table 42: Test result for FCP detection of mouth I corner (MLC).

1 A01.bmp 8| 302 36 1 7 28 266 0
2 A06.bmp 8| 232 9 1 4 4 223 0
3 D00.bmp 8 188 14 1 3 10 174 0
4 D44.bmp 8 165 12 1 3 8 153 0
5 EO04.bmp 8 206 32 1 5 26 174 0
6 E52.bmp 8 156 8 1 2 5 148 0
7 F28.bmp 8 200 3 1 0 2 197 0
8 F37.bmp 8 211 3 1 0 2 208 0
9 103.bmp 8 194 16 1 5 10 178 0
10 135.bmp 8| 248 16 1 5 10 232 0
11 Bioid_0256.bmp 24 236 6 1 1 4 230 0
12 Bioid_0257bmp 24 284 15 1 3 11 269 0
13 | Bioid_0419.bmp 24 216 3 1 2 0| 213 0
14 Bioid 0420.bmp 24 210 15 1 4 10 195 0
15 Bioid_0657.bmp 24 265 6 1 1 4 259 0
16 Bioid_0658.bmp 24 171 5 1 3 1 166 0
17 Bioid 0717.bmp 24 217 0 0 0 0 217 1
18 Bioid 0721.bmp 24 175 1 1 0 0 174 0
19 Bioid_1079.bmp 24 236 0 0 0 0 236 1
20 Bioid_1083.bmp 24 211 0 0 0 0 211 1
21 Bioid_1517.bmp 24 240 12 1 2 9 228 0
22 | Bioid_1518.bmp 24 237 9 1 3 5| 228 0
total | 4800 221 19 53 149 | 4579 3
£ FLEX 1.0 £ FLEX 1.0 £ FLEX 1.0
File File File
FLEX FLEX FLEX

Deweloped by Wiilliarn Chan and Wai Shung Wang, 2005 Deweloped by Wiilliarn Chan and Wai Shung Wang, 2005 Deweloped by Wiilliarn Chan and Wai Shung Wang, 2005

I: I: I: '
Scan faces Scan faces Scan faces , £
Find feature Find feature Find feature

Figure 81: Screen shots of FCP detection on moutkft corner (MLC).
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Table 43: Test result for FCP detection of mouth ght corner (MRC).

1 A01.bmp 8| 207 27 1 8 18 180 0
2 A06.bmp 8 261 15 1 3 11 246 0
3 D00.bmp 8| 186 23 1 8 14 163 0
4 D44.bmp 8| 243 11 1 0 10 232 0
5 EO04.bmp 8 213 26 1 8 17 187 0
6 E52.bmp 8 198 28 1 4 23 170 0
7 F28.bomp 8 237 2 0 0 2 235 1
8 F37.bmp 8 258 7 0 0 7 251 1
9 103.bmp 8| 207 13 1 4 8 194 0
10 | I135.bmp 8| 253 23 1 5 17 230 0
11 | Bioid_0256.bmp 24 197 16 1 7 8 181 0
12 | Bioid_0257bmp 24 210 15 1 5 9 195 0
13 | Bioid_0419.bmp 24 198 13 1 5 7 185 0
14 | Bioid_0420.bmp 24 185 22 1 4 17 163 0
15 | Bioid_0657.bmp 24 205 14 1 5 8 191 0
16 | Bioid_0658.bmp 24 214 15 1 7 7 199 0
17 | Bioid_0717.bmp 24 211 11 1 7 3 200 0
18 | Bioid_0721.bmp 24 229 12 1 6 5 217 0
19 | Bioid_1079.bmp 24 230 21 1 7 13 209 0
20 | Bioid_1083.bmp 24 223 9 1 3 5 214 0
21 | Bioid_1517.bmp 24 222 9 1 3 5 213 0
22 | Bioid_1518.bmp 24 155 2 1 1 0 153 0

total | 4742| 334 20 100| 214 4408 2

As stated earlier, mouth corners are unstable points, whichsntkea position and the shape of
the mouth corners are variable. Still, the tpr and fpr for NBL86.36 % and 3.24%, respectively.
For MRC these are 90.91% and 4.71% respectively (see Table 42ahtel 43). It can be
concluded that FLEX is able to detect mouth corners very well.

£ FLEX 1.0 £ FLEX 1.0 4 FLEX 1.0
File File File
Developad by william Chan and Wai Shung Wong, 2005 Dreveloped by Wiilliarm Chan and s Shung Yong, 2008 Dreveloped by Wiilliarm Chan and s Shung Yong, 2008
‘ Scan faces | ‘ Scanfaces ‘ Scanfaces
& | fam
Eihdaatics Find feature Find feature

Figure 82: Screen shots of FCP detection on moutlght corner (MRC).
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10.System Test

From chapter 8 another approach has been applied to extract thewk@Psare unable to be
detected with the corner detector combined with RVM. Thesegare for example the FCPs on

top of the eyes, bottom of the eyes, top of the upper lip and bofttime lower lip. The integral

projection method is then introduced to solve this problem. Followiagtte results of the

integral projection on eyes and mouth. As we know for this mettedegion must be specified.
For this purpose actually an eye and mouth detector is trainedrtuhdtely, the results were not
acceptable to test the combination of this region detector togeithethey projection method. For
this problem we manually submit the region information of each test sampl&2.

Table 44: Integral projection results on left eye.

1 AO01.bmp 8 4 0
2 A06.bmp 8 4 0
3 D00.bmp 8 1 3
4 D44.bmp 8 2 2
5 EO4.bmp 8 2 2
6 E52.bmp 8 2 2
7 F28.bmp 8 4 0
8 F37.bmp 8 4 0
9 103.bmp 8 4 0
10 135.bmp 8 4 0
11 Bioid_0256.bmp 24 3 1
12 Bioid_0257bmp 24 4 0
13 Bioid_0419.bmp 24 4 0
14 Bioid_0420.bmp 24 3 1
15 Bioid_0657.bmp 24 3 1
16 Bioid_0658.bmp 24 3 1
17 Bioid_0717.bmp 24 4 0
18 Bioid_0721.bmp 24 2 2
19 Bioid_1079.bmp 24 4 0
20 Bioid_1083.bmp 24 4 0
21 Bioid_1517.bmp 24 4 0
22 Bioid_1518.bmp 24 4 0

total 73 15
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Figure 83: Screen shots of integral projection oreft eye.

Table 45: Integral projection results on right eye.

1 AO01.bmp 8 4 0
2 A06.bmp 8 4 0
3 D00.bmp 8 2 2
4 D44.bmp 8 2 2
5 EO04.bmp 8 2 2
6 E52.bmp 3 3 1
7 F28.bmp 8 4 0
8 F37.bmp 8 4 0
9 103.bmp 8 4 0
10 135.bmp 8 4 0
11 Bioid_0256.bmp 24 4 0
12 Bioid_0257bmp 24 4 0
13 Bioid_0419.bmp 24 4 0
14 Bioid 0420.bmp 24 4 0
15 Bioid_0657.bmp 24 3 1
16 Bioid_0658.bmp 24 3 1
17 Bioid_0717.bmp 24 4 0
18 Bioid 0721.bmp 24 3 1
19 Bioid 1079.bmp 24 4 0
20 Bioid_1083.bmp 24 4 0
21 Bioid_1517.bmp 24 4 0
22 Bioid 1518.bmp 24 4 0

total 78 10
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Figure 84: Screen shots of integral projection onight eye.

From the results it can be observed that noise like shadow, make-up, drabdyeaes influence
on the results of this method. The results for the left eye are tpr: 82.88 #bral7.05%. For the

right eye, these are tpr: 88.64 % and fpr: 11.36%.

Table 46: Integral projection results on mouth.

1| AOl.bmp 8 2 2
2 | A06.bmp 8 4 0
3 | D00.bmp 8 3 1
4 | D44.bmp 8 3 1
5| EO4.bmp 8 2 2
6 | E52.bmp 8 4 0
7 | F28.bmp 8 4 0
8 | F37.bmp 8 4 0
9 | 103.bmp 8 4 0
10| 135.bmp 8 4 0
11| Bioid 0256.bmp 24 4 0
12 | Bioid_0257bmp 24 4 0
13 | Bioid_0419.bmp 24 4 0
14 | Bioid_0420.bmp 24 4 0
15 | Bioid_0657.bmp 24 3 1
16 | Bioid_0658.bmp 24 3 1
17 | Bioid_0717.bmp 24 4 0
18 | Bioid_0721.bmp 24 4 0
19 | Bioid_1079.bmp 24 4 0
20 | Bioid_1083.bmp 24 4 0
21| Bioid_1517.bmp 24 4 0
22 | Bioid 1518.bmp 24 4 0
total 80 8
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Figure 85: Screen shots of integral projection on wuth.

In the case of applying the projection method on the mouth it can be statedsthadttiod is
really sensitive to the region that contains the feature. For egampigure 85 the mouth on the
left is not fully contained in the region. As a result the FCP on therbait the lower lip is
detected on the top of the lower lip. This again strengthens the poiritititegral projection is
applied in FLEX, the region of the feature must be extracted very aglguB¢sides the exact
location of the points, it can also be observed that the boundaries of thedeain be located
very precisely. The tpr for mouth is 90.91 % and the fpr is 9.08%.

10.4 Integrated system test

In order to detect the FCPs from the face, the face musiysagigain conditions. One of these
conditions is that the face must be upright full-frontal. Theaedor this is that if the face is
rotated, the feature might be occluded by other part of the fsicéhe training of the face
detector, a database is used which contains images with \sligtdked faces. This results in
faces which cannot be processed further by invoking the FCP detection.

At the design of the FCP detection module it is assumedulhditdntal faces are available at a
size of 64x64 image pixels. The face detector is designed @otdates with a minimal size of
24x24 pixels. Detecting a face in an image of a bigger siderie by scaling the classifier as
discussed earlier. In theory, the face detection nodule as we designed it is suited for
application in combination with the FCP detection module. If the ttection module and the
FCP detection module are linked together, the performance of e &@ction is dependant on
the performance of the face detector. In the current statiatbedetector is not as good as we
want it to be and needs to be improved. Therefore, it is not meahingéxecute the testing of
this test objectlSTO1).
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Conclusions, Discussion and Future works

We are now concluding this thesis and propose some ideas tovanire current system. We
really hope that you enjoyed reading this thesis as much asjoyee writing it. It all comes
down to one thing. We started with a problem and soon made a thegisvasdi of it. From then
on, we are off to the battlefield: the battle of proving yourself worthyedfg a scientist.

11.1 Conclusions and discussion

We have presented an approach using a sparse learning maklelfast step towards a fully
automatic facial expression recognition system. This systesadl exists as an online Facial
Expression Dictionary. In the current state of the system, ¢iraya face image as input requires
the user to manually select all the FCPs for further prawgssihis interaction is not desired
since there are 30 FCPs and is certainly not making thensyster-friendly. In our thesis project
we tackle this problem by automating the FCP detection motesrefore, the thesis assignment
is defined as follows:

» Literature survey research the related works on the topics of face datedmial
characteristic point detection, facial expression recognition andficiasisn methods.

 Model design design a model as a solution to the problem of automati@l faci
characteristic point detection. This model is built of multiple methodsafgorithms.

* Prototype implement the designed model.

» Testswrite a test plan to test the prototype and depicts the results.
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We did a research on the topics of face detection, facaacteristic point detection, facial
expression recognition and classification methods by examiningtificigrapers and reports
especially on the subject of using the sparse learning Rekeveector Machine. After

concluding the literature survey, we continued with the secoricbpaur thesis assignment: the
design of a model as a solution to the problem of fully autonfatial characteristic point

detection.

The model we designed consists of a face detection module a@& aldtection module. The
former allows the user to input an arbitrary image containingasnmultiple faces. The face
detection module extracts the faces and invokes the FCP detectitble on these faces. On its
turn, the FCP detection module automatically extracts the pnedefCPs. From the FCPs a
corresponding facial expression can be matched.

Face detection

We designed a learning model: WUX-values Training ApplicattUXTRAP) to boost the
performance of RVM. This model consists of different technigueksalgorithms. To detect faces
from images, we first need to learn the RVM to differestia¢tween faces and non-faces. The
first requirement to learn the RVM model is to have a dateSé&ces and non-faces. These
databases can be of influence on the training results sincBMNE has to learn from these
samples. There exist numerous face databases from which we can chooses tounsiataset.

The learning procedure is based on the AdaBoost learning algofithsnalgorithm is perfectly
suited for the selection of the best features that boost upetfiermance of the classifier. As
known for AdaBoost training, it is slow since it contains a bruteefgearch. In addition, training
of the RVM itself is relatively slow. And since they a@mbined, there is a continuous feedback
from RVM to AdaBoost and the other way around. A genetic sealgbrithm is added to
improve the learning speed. Instead of a training time in tberasf weeks/months, this is
reduced to hours/days (on an AMD Athlon™ XP 2200+ 1.80 GHz procedto 512 MB
RAM). Note that the size of the chosen training dataset issiggificant for the speed of the
training.

After the learning procedure, faces can be distinguished from ges-tsing the trained RVMs.
Remind that we want to find faces in an input image by scarthagvhole image. The number
of scanning windows is huge. Most of these are non-faces. @scaded structure of classifiers
is introduced to quickly discard most of these non-faces. A cascardésts of several layers of
classifiers. Each classifier is a combination of a numbendfi® A practical problem that we
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encounter incorporating the cascade technique is that a lot MsRMed to be trained. In our
case, since we are limited to the time we have for pihigect, our solution is to use more
computers and all simultaneously for training. Training morekater RVMs makes the final
system more robust.

We have managed to apply the RVM for face detection. Howeveltteshaesults show that
improvement needs to be made. In the current state, the faceodetaddists of only five layers
of classifiers. Recall that in [Viol01l] a cascade of 32 layeith over 4000 features is used. To
get better results, more classifiers need to be added to FLEX.

Facial characteristic point detection

The same learning model for training the face detection moduleed for the FCP detection
module. Unlike in the case of face detection, no databases ofdx@&Ps/hich we can use as our
dataset. These databases are extracted manually by us fr&mlbeind Carnegie Mellon face
database. Note that it is really hard to be very precisicking the right FCP since there are
noise and fuzziness around these points. As we know, the quality of the datasetfuisrafé on
the training results.

For the detection of the FCPs, a corner detection algoritluseid to filter out the non-FCPs. We
have chosen for a combination of the Harris corner detection thigoend the Sojka corner
detection algorithm. Unfortunately, not all of the non-FCPs canlteeefi out by these corner
detectors. For this, we rely on the corresponding RVMs. Emmnance of the RVM in the
final system is actually determined by that of the corner detectors.

For the FCPs that cannot be detected by the corner detectorsgewkeublybrid Projection
technique. This technique is applied on the corresponding facialrée(eye, eye brow and
mouth) on which the FCP is localized. Therefore, RVMs aradchito extract these facial
features before applying the projection method.

The results in the final system show that some of thesF&2R be detected better than others.
This is concluded by looking at its positive detection eatd its false positive rate. The reason
for the relative poor performance of some FCPs is probably etaeis-CP itself is non-stable.
For instance, the mouth corners can take different shapedesienifexpressions. To detect the
FCPs we need to account that noise is very probable at cegiens. Taking this into account it
means that at the training of the RVM noise is included irtriiring samples. This affects the
final performance of the RVM. It is a trade-off that needbea made. In the case of invoking the
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projection method, finding the boundaries is proven to be very robustpteifcthe feature
boundary is distorted.

11.2 Future works

For future research the following items are be recommended:

* In the current situation, a detected face cannot be fystioeessed by the FCP detection
module if the face is slightly rotated. Some of the FCP9eawccluded by other parts of
the face. The face detection module is trained on a datalidisanaligned faces. Some
of them are slightly rotated to the left, some to the right,estmoking up, etc. For the
two modules to work together perfectly, the face detection modhdeld be trained
strictly on full frontal aligned faces. This is because H{&P detection module is
designed to work with these faces.

*  The WUXTRAP model may be improved by considering a faster imgiéation of the
training application. This means that the training of AdaBansi RVM can be
improved. The current implementations of these algorithms are idoiatlab 6.5,
which is known for its computational power but not for its speeso Ather variants of
the AdaBoost learning algorithm can be considered. They dfiffdre updating schemes
for the weights.

* In the face detection module, the scanning process can be speedtierbechniques.
Using edge detectors plain backgrounds might be filtered out amdgrfrom being
scanned. This reduces the overall scanning time on different resslution

* The performance of the system can also be improved by using emdedtset of the
Haar-like features. In our training model, we used only 5 simple features.

» The detection rate during training may be increased by pocating the bootstrapping
method. This method uses misclassified samples as trainingiimtg next iteration.
This way we can force the learning algorithm to adapt the buésults from previous
training rounds. We have not implemented this procedure in the ttmaenng model
because this would certainly affect the training time negatively.
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Appendix A: Cross-validation for RVM Kernel

Selection

Table 11: RVM 2-fold cross validation result trained on feature 38978.

Kernel # False + | # False - # True + # True - Error rate SD
)

Gauss 0.5 112 182 322 384 27.75 2.33
122 139 357 382

Gauss 1.0 166 105 394 335 29.10 2.83
191 120 381 308

Gauss 2.0 138 131 375 356 26.30 0.85
150 107 387 356

Gauss 4.0 90 219 272 419 26.60 6.08
131 92 417 360

Gauss 5.0 143 73 444 340 25.35 5.30
113 178 305 404

Laplace 0.5 162 90 408 340 35.20 14.42
51 405 97 447

Laplace 1.0] 112 129 379 380 25.35 1.77
142 124 368 366

Laplace 2.0 145 78 431 346 29.25 9.83
127 235 256 382

Laplace 3.0 99 216 292 393 28.45 4.31
161 93 399 347

Laplace 4.0f 152 84 413 351 24.85 1.77
129 132 371 368

Laplace 5.0, 85 192 333 390 26.20 2.12
178 69 406 347
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Appendices Appendix A: Cross-validation RVM Kernel Selection

Table 11: RVM 2-fold cross validation result trained on feature 28893.

Kernel # False + | # False - # True + # True - Error rate SD
%

Gauss 0.5 20 475 39 466 41.95 10.68
96 248 238 418

Gauss 1.0 110 232 265 393 39.60 7.64
398 52 451 99

Gauss 2.0 159 141 342 358 35.45 7.71
75 334 183 408

Gauss 3.0 145 151 345 359 33.50 5.52
317 57 447 179

Gauss 4.0 136 129 374 361 31.70 7.35
92 277 220 411

Gauss 5.0 151 153 356 340 32.40 2.83
247 97 394 262

Laplace 0.5 107 167 330 396 26.70 0.99
174 86 417 323

Laplace 1.0] 127 163 331 379 35.55 9.26
382 39 467 112

Laplace 2.0 311 62 444 183 32.00 7.50
150 117 377 356

Laplace 3.0 160 125 358 357 34.85 8.98
66 346 171 417

Laplace 4.0, 124 116 391 369 26.10 2.97
138 144 349 369

Laplace 5.0, 173 99 404 324 25.90 1.84
140 106 391 363
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Appendices Appendix A: Cross-validation RVM Kernel Selection

Table 11: RVM 2-fold cross validation result trained on feature 45297.

Kernel # False + | # False - # True + # True - Error rate SD
)

Gauss 0.5 20 474 39 467 46.50 4.10
90 346 141 423

Gauss 1.0 151 248 260 341 44.80 6.93
465 32 460 43

Gauss 2.0 205 194 292 309 38.60 1.84
183 190 324 303

Gauss 3.0 178 177 328 317 34.35 1.63
150 182 313 355

Gauss 4.0 155 174 314 357 35.50 3.68
196 185 327 292

Gauss 5.0 81 310 187 422 36.55 3.61
175 165 338 322

Laplace 0.5 25 470 41 464 42.70 9.62
186 173 316 325

Laplace 1.0f 188 178 309 325 35.60 1.41
174 172 341 313

Laplace 2.0 418 53 454 75 41.60 7.78
177 184 309 330

Laplace 3.0 67 361 142 430 38.60 5.94
217 127 370 286

Laplace 4.0 64 374 116 446 42.55 1.77
108 305 205 382

Laplace 5.0f 177 144 350 329 37.45 7.57
111 317 189 383
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Face Test Set 1 (FTS1)
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Face Test Set 2 (FTS2)
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FCP Test Set 2 (FCPTS1):
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