PHILIPS

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification

Qing Xia, Wei Huang July 30, 2004

Overview

- Part I: Problem Definition
- Part II: Models and Algorithms
- Part III: System Implementation Design
- Part IV: System Tests and Conclusions

Part I: Problem Definition

Introduction and Problem DefinitionModels and Algorithms Overview

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Introduction and Problem Definition

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Pointing devices

- Microsoft X-Wand
- Infrared pointing device
- HeadMouse
- CyberlinkMindMouse

UI-Wand project

- Camera-Based Approach
- Related Works

Introduction and Problem Definition

UI-Wand hardware components

Project goals

- Screen positioning by screen corner detection
- Gesture recognition
- Robustness and stability
- Develop utilities to evaluate the system
- Real-time speed (10 frames/sec)
- Development based on Vispirin

Models and Algorithms Overview

Models and Algorithms Overview

Pointing Projection

• How to calculate Ps?

Models and Algorithms Overview

Pointing Projection

Pointing Projection

• Problem is to estimate a new pointing device position

$$\pi_{P,O} : (x, y, z) \rightarrow (I_x, I_y)$$

$$(P', O') = \operatorname{argmin} (P, O) \sum_{i=1}^{4} (\pi_{P,O} (C_i) - D_i)^2$$

Models and Algorithms Overview

Screen corner detection

- Direct corner detection (gradient of brightness)
- Classification

Screen corner detection

- All corners are candidates
- Four screen corners are final winners

RVM: Relevance Vector Machine

Models and Algorithms Overview

Main Modules

- Screen corner detection
- Pointing positioning
- Tracking
- Gesture recognition

ROI Tracking

• Detect screen corners only in ROIs

Models and Algorithms Overview

Gesture Recognition

- Trace analysis
- Gesture recognition by RVM

CW: Candidates-Winners approach

Part II: Models and Algorithms

- Sojka Corner Detection Algorithm
- RVM Corner Classification Model
- Rectangle Filter
- ROI Tracking Filter
- RVM for Gesture Recognition

Corner Detection Algorithms

- Direct corner detectors
- Color distribution based corner detectors

Direct Corner Detection Algorithms

- Beaudet's detector [Bea78]
- Kitchen and Rosenfeld's detector [Kit82]
- Harris and Stephens' detector [Har88]
- Deriche and Giraudon's detector [Der93]
- Sojka corner detector [Soj03]

Other Corner Detection Algorithms

- SUSAN corner detector [Smi97]
- Compass operator [Ruz01]
- A color-distribution-based detector [Son03]

SUSAN Corner Detector

Comments: Simple, Fast, Low accuracy

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Algorithms Comparison I

Accuracy Comparison:

Algorithms Comparison II

Location Error Comparison:

Algorithms Comparison III

Detection Speed Comparison (in Millisecond):

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Comparisons Conclusion

- The older direct corner detectors always have low detection accuracy rate
- Most of existing corner detector can be used in real time detection tasks
- The Color distribution based algorithms are only fit for still image analysis
- Sojka corner detector has obvious excellent performance compared to the other detectors

Make a Decision

Sojka corner detector!

- High accuracy
- Low location error
- Fast enough

Main ideas:

- Exploiting the probability information
- Explicitly computing the corner angle
- Computing apparency of the corner

Main ideas of Sojka Corner Detection Algorithm

Neighborhood of Q

Corner Model Definition I

Let the derivative of brightness be positive everywhere with a single maximum at 0.

Corner Model Definition II

The edge is oriented by the rule that the higher brightness lies to the left.

Corner Model Definition III

Gradient direction vector: $\mathbf{n}_i = (\cos \varphi_i, \sin \varphi_i)$

Convex corner:

$$\mathbf{n}_1 \times \mathbf{n}_2 > 0$$

Concave corner:

$$\mathbf{n}_1 \times \mathbf{n}_2 < 0$$

Brightness definition:

$$b(X) = \begin{cases} \min\{\psi(\mathbf{n}_1 \cdot (X - C)), \psi(\mathbf{n}_2 \cdot (X - C))\} & \text{if } \mathbf{n}_1 \times \mathbf{n}_2 \ge 0\\ \max\{\psi(\mathbf{n}_1 \cdot (X - C)), \psi(\mathbf{n}_2 \cdot (X - C))\} & \text{otherwise} \end{cases}$$

PHILIPS / TUDelft

Sojka Corner Detection Algorithm

Corner Model Examples

Convex corner

Concave corner

Three Conditional Probabilities

• Conditional probability

• Conditional probability

 $P(BrQ|\Delta b(X))$

P(DirQ|h(X))

Conditional probability

 $P(AngQ|\Delta\varphi(X))$

Combined Probability

$$P_{SG}(X) = \min_{Y \in QX} \left\{ P(BrQ|\Delta b(Y)) P(DirQ|h(Y)) P(AngQ|\Delta \varphi(Y)) \right\}$$

$$w(X) = P_{SG}(X)w_r(r(X)) = A_0 \min_{y \in QX} \left\{ p_d \left(\beta^{-1}(\Delta b(Y)) \right) p_d(h(Y)) P(AngQ \mid \Delta \varphi(Y)) \right\} w_r(r(X)).$$
Sojka Corner Detection Algorithm

Why? Because...

Corner Point Decision I

$$\mu_{\varphi} = \frac{\sum_{X_i \in \Omega} w(X_i) \varphi(X_i)}{\sum_{X_i \in \Omega} w(X_i) \varphi} \qquad \sigma_{\varphi}^2 = \frac{\sum_{X_i \in \Omega} w(X_i) [\varphi(X_i) - \mu_{\varphi}]^2}{\sum_{X_i \in \Omega} w(X_i)}$$

Mean values that are computed for a corner candidate point

• ---
$$Corr(Q) = g(Q)\sigma_{\varphi}^2(Q)$$

$$Appar(Q) = \sum_{X_i \in \Omega} P_{SG}(X_i) g(X_i) |\varphi(X_i) - \mu_{\varphi}|$$

Two functions for final decisions

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Corner Point Decision II

• Theorem 1.

--- The function $\sigma_{\varphi}^2(Q)$ has its maximum just at then points lying on the axis of the corner.

Theorem 2.
 --- The function Corr(Q) has its maximum just at the corner point.

Algorithm Realization

- Step 1: Computing the magnitude and the direction of the gradient of brightness.
- Step 2: Selecting the candidates corner points.
- Step 3: Getting the value of $\mu_{\varphi}(Q) \sigma_{\varphi}^2(Q) Corr(Q) Appar(Q)$ by value estimation.
- Step 4: The candidates with local maximum Corr(Q) and at which the value of $\sigma_{\varphi}^2(Q)$ Appar(Q) extending some thresholds are specified as corners.

Algorithm Tests

- Accuracy tests (white screen and black screen)
- Stability tests (rotated frames)
- Sequence test (continuous frames)

A PHIILIPS brilliance 109MP white computer screen

A PHILIPS brilliance 180P2 black LCD computer screen

Sojka Corner Detection Algorithm

Algorithm Test Results

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Algorithm Test Results Analysis I

Corner detection number analysis

■ White screen ■ Black screen

Algorithm Test Results Analysis II

■ White screen ■ Black screen

Algorithm Test Results Analysis III

Screen corner detection average variance analysis

White screen Black screen

Algorithm Test Results Analysis IV

Screen corner detection speed analysis

Algorithm Test Results Analysis V

Screen corner detection stability analysis

Test Results Conclusions

Attentions:

- Image quality affect the detection results
- Parameters affect the detection results

Good test result:

- Accurate
- Stable
- Fast

RVM Corner Classification Model

Support Vector Machine

- Finds the hyperplane leaving the largest possible fraction of points of the same class on the same side, while maximizing the distance of either class from the hyperplane.
- Disadvantages: No probability output; Support vectors grows with training set; Mercer's condition;

• General model in supervised learning

Samples: input vectors $\{\mathbf{x}_n\}_{n=1}^N$ and targets $\{t_n\}_{n=1}^N$

$$y(\mathbf{x};\mathbf{w}) = \sum_{i=1}^{M} w_i \phi_i(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\varphi}(\mathbf{x})$$

where,
$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), ..., \phi_M(\mathbf{x}))^T$$

 $\mathbf{w} = (w_1, w_2, ..., w_M)^T$

• Probabilistic formulation for regression case

$$t_n = y(\mathbf{x}_n; \mathbf{w}) + \varepsilon_n$$
, with noise: $p(t_n | \mathbf{x}) = N(t_n | y(\mathbf{x}_n), \sigma^2)$

likelihood:

$$p(\mathbf{t} \mid \mathbf{w}, \sigma^{2}) = (2\pi\sigma^{2})^{-N/2} \exp\left\{-\frac{1}{2\sigma^{2}} \left\|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\right\|^{2}\right\}$$
where, $\mathbf{\Phi} = [\phi(\mathbf{x}_{1}), \phi(\mathbf{x}_{2}), \dots, \phi(\mathbf{x}_{N})]^{T}$

$$\phi(\mathbf{x}_{n}) = [1, K(\mathbf{x}_{n}, \mathbf{x}_{1}), K(\mathbf{x}_{n}, \mathbf{x}_{2}), \dots, K(\mathbf{x}_{n}, \mathbf{x}_{N})]^{T}$$

• Hyperparameters to avoid over-fitting (no weight penalty term)

$$p(\mathbf{w} \mid \boldsymbol{\alpha}) = \prod_{i=0}^{N} N(w_i \mid 0, \boldsymbol{\alpha}^{-1}),$$

$$p(\boldsymbol{\alpha}) = \prod_{i=0}^{N} \operatorname{Gamma}(\boldsymbol{\alpha}_{i} \mid a, b), \quad p(\boldsymbol{\sigma}^{-2}) = \operatorname{Gamma}(\boldsymbol{\beta} \mid c, d)$$

with, $\boldsymbol{\beta} \equiv \boldsymbol{\sigma}^{2}$

• Prediction in regression case

$$p(t_* | \mathbf{t}) = \int p(t_* | \mathbf{w}, \boldsymbol{\alpha}, \sigma^2) p(\mathbf{w}, \boldsymbol{\alpha}, \sigma^2 | \mathbf{t}) d\mathbf{w} d\mathbf{\alpha} d\sigma^2$$

$$p(t_* \mid \mathbf{t}, \boldsymbol{\alpha}_{MP}, \boldsymbol{\sigma}_{MP}^2) = \int p(t_* \mid \mathbf{w}, \boldsymbol{\sigma}_{MP}^2) p(\mathbf{w} \mid \mathbf{t}, \boldsymbol{\alpha}_{MP}, \boldsymbol{\sigma}_{MP}^2) d\mathbf{w}$$

$$p(t_* \mid \mathbf{t}, \boldsymbol{\alpha}_{MP}, \boldsymbol{\sigma}_{MP}^2) = N(t_* \mid y_*, \boldsymbol{\sigma}_*^2)$$

with,

Relevance Vector Machine Theory

• Prediction in regression case

$$p(t_* | \mathbf{t}, \boldsymbol{\alpha}_{MP}, \boldsymbol{\sigma}_{MP}^2) = N(t_* | y_*, \boldsymbol{\sigma}_*^2)$$
$$y_* = \boldsymbol{\mu}^T \boldsymbol{\phi}(\mathbf{x}_*)$$
$$\boldsymbol{\sigma}_*^2 = \boldsymbol{\sigma}_{MP}^2 + \boldsymbol{\phi}(\mathbf{x}_*)^T \boldsymbol{\Sigma} \boldsymbol{\phi}(\mathbf{x}_*)$$
$$\boxed{\boldsymbol{\Sigma} = (\boldsymbol{\sigma}^{-2} \boldsymbol{\Phi}^T \boldsymbol{\Phi} + \mathbf{A})^{-1}}$$
$$\boldsymbol{\mu} = \boldsymbol{\sigma}^{-2} \boldsymbol{\Sigma} \boldsymbol{\Phi}^{\mathrm{t}} \mathbf{t}$$
$$\mathbf{A} = \operatorname{diag}(\boldsymbol{\alpha}_0, \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_N)$$

• Prediction in classification case

Likelihood changes to:

0.4

0.2

0 **□** -10

-8

with,

$$P(\mathbf{t} | \mathbf{w}) = \prod_{n=1}^{N} \sigma\{y(\mathbf{x}_{n}; \mathbf{w})\}^{t_{n}} [1 - \sigma\{y(\mathbf{x}_{n}; \mathbf{w})\}]^{1-t_{n}}$$

$$\sigma(y) = \frac{1}{(1 + e^{-y})}$$

-2

2

4

6

8

10

Ο

-4

-6

• Prediction in classification case

$$y_* = \mathbf{w}_{\mathrm{MP}}^{T} \boldsymbol{\phi}(\mathbf{x}_*)$$

$$\Sigma = (\mathbf{\Phi}^{\mathrm{T}} \mathbf{B} \mathbf{\Phi} + \mathbf{A})^{-1}$$

$$\mathbf{w}_{\mathrm{MP}} = \Sigma \mathbf{\Phi}^{\mathrm{T}} \mathbf{B} \mathbf{t}$$

$$\mathbf{B} = diag(\beta_{1}, \beta_{2}, \dots, \beta_{N})$$

$$\beta_{n} = \sigma\{y(\mathbf{x}_{n})\}[1 - \sigma\{y(\mathbf{x}_{n})\}]$$

RVM Corner Classification Model

Relevance Vector Machine Theory

• Comparison between SVM and RVM

RVM Corner Classification Model

Multi-class Classification (K classes)

- Pair-wise, K*(K-1)/2 RVMs
- One-versus-others, K RVMs

Pair-wise is not more accurate than One-versus-others

Multi-class Classification (K classes)

• Five RVM models used in corner classification

Feature Extraction

• Intensity values as features

Dimension is too big and might be changed

RVM Corner Classification Model

DCT Coefficients as Feature Vectors

- Independence with sample size
- Dimension become much smaller

RVM Corner Classification Model

Feature Extraction on Rotated Images

• Rotate target window

$$d_{P}(\alpha,\beta) = d_{1}(1-\alpha)(1-\beta) + d_{2}\alpha(1-\beta) + d_{3}(1-\alpha)\beta + d_{4}\alpha\beta$$

Sample Dataset Selection

- Manually selected sample dataset
- Synthetic sample datasets
- Adaptive sample datasets

Sample Dataset Selection

• Sample dataset specification

Sample Size	20 x 20 pixels
Number of Sample Class	5
Number of Samples	80
Samples Distribution	10/10/10/40

• Corner samples:

RVM Corner Classification Model

Sample Dataset Selection

• Classification results

RVM		Error Analysis Utility Outputs						
KF	RVN	HCV	MV	GV	CGV	MUR	CD	WV
L-2.0	18.4	7.26	11.99	5.62	3.85	93%	98%	5.71

Sample Dataset Selection

- Classification results
 - 1. Probability output is effective
 - 2. Misunderstanding Rate is high

Detected Screen Corner Deviation

Synthetic Sample Dataset

• Generation

Synthetic Sample Dataset

• Sample dataset specification

Sample Size	10 x 10 pixels
Number of Sample Class	5
Number of Samples	100
Samples Distribution	10/10/10/60

• Corner samples:

RVM Corner Classification Model

Synthetic Sample Dataset

• Classification results

RVM Corner Classification Model

Synthetic Sample Dataset

• Classification results

RVM		Error Analysis Utility Outputs						
KF	RVN	HCV	MV	GV	CGV	MUR	CD	WV
G-0.5	4.4	36.94	5.38	3.47	2.57	84.%	100%	6.65

Detected Screen Corner Deviation

RVM Corner Classification Model

Adaptive Sample Dataset

• Sample dataset specification

Sample Size	40 x 40 pixels
Number of Sample Class	5
Number of Samples	108
Samples Distribution	10/10/10/68

Adaptive Sample Dataset

• Non-corner samples selection (three categories)

Base: The samples that can be miss-classifiedBackground: The samples far from cornersAdaptive: The samples miss-classified before

RVM Corner Classification Model

Adaptive Sample Dataset

• Samples:

• Classification results

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Adaptive Sample Dataset

• Classification results

RVM		Error Analysis Utility Outputs						
KF	RVN	HCV	MV	GV	CGV	MUR	CD	WV
L-2.0	15.6	13.01	7.56	4.33	2.84	29%	100%	4.93

Detected Screen Corner Deviation

RVM Corner Classification Model

Sample datasets comparison

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Sample datasets comparison

- 1. Manually selected dataset is not convenient for users
- 2. Adaptive dataset makes classification slow
- 3. Synthetic dataset is suitable for current use

Feature extraction speed

Target Size	10x10	20x20	40x40
Speed (s/sec)	718	199	49

So we used synthetic dataset in final system.

Rectangle Filter

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Candidates-Winners Result By far

Rectangle Filter with Corner Type Information

• Select out the final screen corners

Rectangle Filter Before RVM

• Reduce candidates number

15 candidates decreases to 9

Results

Less than 1 millionsecond per sample

ROI Tracking

Purposes

- 1. Accelerate detection speed
- 2. Store the trace information

ROI Tracking Filter

Cannot work well if move fast

ROI Prediction

• Simple motion predication

$$\|\mathbf{m}\mathbf{v}_{predicted}\| = \|\mathbf{m}\mathbf{v}_{1}\| * \|\mathbf{m}\mathbf{v}_{1}\| / \|\mathbf{m}\mathbf{v}_{2}\|$$
$$\alpha_{predicted} = \alpha_{1} + w * (\alpha_{1} - \alpha_{2})$$
$$w = \begin{cases} \|\mathbf{m}\mathbf{v}_{2}\| / \|\mathbf{m}\mathbf{v}_{1}\|, & if \|\mathbf{m}\mathbf{v}_{2}\| \le \|\mathbf{m}\mathbf{v}_{1}\| \\ \|\mathbf{m}\mathbf{v}_{1}\| / \|\mathbf{m}\mathbf{v}_{2}\|, & if \|\mathbf{m}\mathbf{v}_{1}\| \le \|\mathbf{m}\mathbf{v}_{2}\| \end{cases}$$

ROI Tracking

ROI Prediction Results

Missing Corners Prediction and Alignment

- Type I missing Without screen information
- Type II missing With screen detected in previous frames

Type I missing seldom happens; Need to do more work on Type II missing

ROI Tracking

Type II Missing

• Miss less than 4 corners

• Miss 4 corners

ROI Tracking

Improvement Results

Prediction without alignment

Prediction with alignment

Gesture Recognition

Gesture Recognition Procedure

- Observations capturing
- Feature extraction
- Classification

Gesture Recognition Technologies

HMM model for classification
--- States transformation, probability

RVM model for classification
--- Disjoint regions divided ,feature vectors

Gesture Recognition

HMM for Gesture Recognition I

- Training phase
- Classification phase

HMM for Gesture Recognition II

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

HMM for Gesture Recognition III

- One HMM for each gesture (initial work)
- Need well-trained HMM (cost time)
- Speed up technology
- More fitful for continuous gesture recognition

New Idea for Gesture Recognition

- We just apply simple gestures
- Gesture is a pattern
- We already have an existing classifier

----RVM

RVM for Gesture Recognition

- Training phase
- Classification phase

RVM for Gesture Recognition

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

RVM Training Phase

- Getting observations
- Selecting candidate gesture traces
- Interpolating candidates traces (relocation observations)
- Extracting feature vectors
- Training RVM (training samples generation)

RVM Training Phase I

--- Getting observations

- ROI for tracking screen corners
- Four screen corners positioning
- Geometric center of the screen corners
- A sequence of positions as observations

RVM Training Phase II

---Selecting candidate gesture traces

- Observation list analysis
 - ---- List length (>=50 elements)
 - --- Element states (move, hold, move_start, move_end, initial)

-- Thresholds (movement_sensitivity, holding_num_unittime, missing_tolerance)

Gesture Recognition

RVM Training Phase III

--- Interpolating candidate traces

- Balanced observations distribution
- Well-shaped gesture pattern
- Keep the original trace shapes

RVM Training Phase IV

--- Extracting feature vectors

- Motion vectors (direction and distance)
- Without normalizing (keep velocity information)
- 2*N-dimensional vectors (each for one gesture)

RVM Training Phase V

----Training RVM model

• Gesture traces generation (follows I,II,III,IV)

- Non-gesture traces generation (see examples)
- Training RVM (changes kernel function)

$$K(\mathbf{x}_{\mathbf{m}},\mathbf{x}_{\mathbf{n}}) = (\mathbf{x}_{\mathbf{m}}\mathbf{x}_{\mathbf{n}} + 1)^{r}$$

Gesture Recognition

Examples

Random straight lines

Random lines

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

RVM Classification Phase

- Getting observations
- Selecting candidate gesture traces
- Interpolating candidate gesture traces
- Feature extraction
- Putting into RVM for classification

--- Gesture type can be specified.

RVM Gesture Recognition Tests I

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang
Gesture Recognition

RVM Gesture Recognition Tests II

----Sequence 1

RVM Gesture Recognition Tests II

RVM Gesture Recognition Conclusions

Problems:

Testing results are not so satisfied as our imagination
 --- Training sample qualities and quantities

Future works:

- Thresholding every gesture for recognition
- Continuous real-time processing

Part III: System Implementation Design

UI-Wand System DesignUI-Wand Utilities Design

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

UI-Wand System Design

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

Visipirin Framework

• Application class and Algorithm Interface

Visipirin Framework

• Application execution

The command line format:
(a) applicationname parameters ./theframesyouwanttorun/*
(b) applicationname parameters.par ./theframesyouwanttorun/*

The parameters have the following format:
(a) Scopename=AlgorithmName
(b) Scopename::ParameterName=ParameterValue

PHILIPS / TUDelft

UI-Wand System Use Cases

UI-Wand System Design

UI-Wand Application Class Diagram

PHILIPS / TUDelft

UI-Wand System Design

UI-Wand Application Sequence Diagram

UI-Wand Utilities Design

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

PHILIPS / TUDelft

UI-Wand Utilities Design

UI-Wand Utilities Use Cases

UI-Wand Utilities Design

Visualization Utility Class Diagram

Error Analysis GUI Utility

Reload Previous Sequence for	Testing			
lout				
mages/testbed_27_05/frame0.ppm	ImageBrowser	ang/public_group/images/tes	t.txd	ОК
		Position: Left Top Button		
Draw refer	ence			-
screen corner	point	100 33	Screen corner	ownen
	State of the local division of the local div	Position: Right_Top_Button	point position	
and the second se		203 112		ontirm
		Position: Left_Bottom_Buttor	1	
		96 190		onfirm
		130 130		
		Position: Right_Bottom_Butto	xn	
	11 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	195 203	0	onfirm
<< Previous	Next >>	Sa	ve to File	
Testing				
	7			
Corner Detection	RVN	M Classification	Whole Applic	ation

PHILIPS / TUDelft

Error Analysis Results Table

• Corner detection analysis results

~	Co	rner Detection Analysis										
			DCN	lt_D	lt_V	rt_D	rt_V	lb_D	lb_V	rb_D	rb_V	wh_RR
1		nages/testbed_27_05/frame0.ppm	30	у	1.41	n		у	2.24	У	3.16	3
2		nages/testbed_27_05/frame1.ppm	46	у	1.00	У	2.00	у	3.16	У	1.41	4
3		nages/testbed_27_05/frame2.ppm	32	у	2.00	У	2.24	У	2.24	у	1.41	4
4	ł	nages/testbed_27_05/frame3.ppm	21	у	1.41	n		У	0.00	у	2.00	3
5		nages/testbed_27_05/frame4.ppm	28	у	1.00	у	2.24	у	3.61	у	3.00	4
6	;	nages/testbed_27_05/frame5.ppm	26	у	0.00	У	2.24	У	1.00	у	2.24	4
7	,	nages/testbed_27_05/frame6.ppm	25	у	1.00	У	2.24	У	1.00	у	2.24	4
8	3	nages/testbed_27_05/frame7.ppm	16	n		n		n		n		0
9		nages/testbed_27_05/frame8.ppm	30	у	2.00	у	1.00	у	0.00	у	1.00	4
1	0	nages/testbed_27_05/frame9.ppm	24	у	1.00	У	0.00	у	2.24	у	2.83	4
Т	тот		28	90%	1.20	70%	1.71	90%	1.72	90%	2.14	85.00%

PHILIPS / TUDelft

Error Analysis Results Table

• RVM classification analysis results

		ILC.	It_HCV	IL_MV	It_GV	IL_CGV	ILC.	rt_HCV	IT_MV	IL.GV	rt_CGV
1	frame0.ppm	Y	101.04	3.61	2.22	1.72	Y	64.66	18.38	6.93	5.75
2	frame1.ppm	¥.	1.00	3.61	1.99	1.68	Y.	98.08	5.00	2.98	2.55
3	frame2.ppm	Y	3.16	4.47	2.71	2.24	Y	105.69	5.00	2.85	2.52
4	frame3.ppm	Y	41.62	3.61	2.07	1.52	Y	3.61	7.81	3.77	3.40
5	\$/frame4.ppm	Y.	40.00	4.47	2.69	2.07	¥.	115.75	6.40	3.33	2.93
6	\$/frame5.ppm	y .	40.61	4.12	2.33	1.66	ÿ.	115.62	7.07	3,44	3.20
7	5/frame6.ppm	Y	91.02	3.61	2.04	1.55	y.	38.01	43.93	15.27	11.60
8	5/frame7.ppm	Y	118.98	3.61	2.22	1.66	v	119.02	5.00	2.94	2.59
9	i/frame8.ppm	Y.	42.01	3.16	1.89	1.63	¥.	117.61	5.00	2.44	2.17
10	5/frame9.ppm	Y	89.01	4.24	2.56	2.08	y	3.16	36.40	13.68	10.58
TOT	T I	100%	56.85	3.85	2.27	1.78	100%	78.12	14.00	5.76	4.73

lb_C	Ib_HCV	Ib_MV	lb_GV	Ib_CGV	rb_C	ID_HCV	rb_MV	rb_GV	rb_CGV	MUR	wh_RR	wh_V
٧	49.04	5,39	2.84	2.57	y.	2.24	5.00	3.03	2.45	90%	100%	8.98
٧	41.88	5.39	3.01	2.64	Y	1.41	4.47	2.64	2.44	85%	100%	6.01
٧	41.18	5.39	3.03	2.70	Y	2.24	4.47	2.80	2.62	87%	100%	6.44
y	47.63	4.47	2.43	2.15	Y	2.00	5.10	2.91	2.63	87%	100%	4.98
٧	42.80	6.40	3.46	3.22	γ	3.00	4.12	2.61	2.30	86%	100%	7.84
y	46.23	3.61	2.26	2.01	Y	2.24	4.47	2.74	2.47	86%	100%	7.61
¥.	46.10	4.47	2.45	2.19	Y	2.24	4.47	2.74	1.97	87%	100%	9.83
٧	46.40	4.47	2.26	2.04	Y	48.02	5.00	3.06	2.88	84%	100%	10.73
Y	47,20	3.61	2.28	1.97	Y.	1.00	4,47	2.64	2.39	86%	100%	7.34
٧	45.34	5.00	2.79	2.57	γ	2.83	5.39	3.30	2.83	86%	100%	8.82
100%	45.38	4.82	2.68	2.41	100%	6.72	4.70	2.85	2.50	87%	100%	7.86

Error Analysis Results Table

• Complete application detection analysis results

∽ w	hole Test Analysi:	5												
		lt_E	lt_V	rt_E	rt_V	lb_E	lb_V	rb_E	rb_V	whole_V	HCF	LCF	WCF	WF
1	7_05/frame0.ppm	У	2.83	у	6.32	у	5.83	у	5.83	5.20	у	n	n	n
2	7_05/frame1.ppm	У	4.24	У	4.47	У	4.12	У	2.00	3.71	у	n	n	n
3	7_05/frame2.ppm	У	5.83	У	4.47	У	3.16	У	5.00	4.62	у	n	n	n
4	7_05/frame3.ppm	У	3.16	У	5.00	у	4.12	у	4.47	4.19	У	n	n	n
5	7_05/frame4.ppm	У	4.24	У	5.66	У	9.43	У	6.08	6.35	у	n	n	n
6	7_05/frame5.ppm	у	4.24	У	5.00	У	4.24	У	5.10	4.65	у	n	n	n
7	7_05/frame6.ppm	У	3.61	У	3.16	у	5.00	у	5.39	4.29	У	n	n	n
8	7_05/frame7.ppm	У	3.61	У	4.47	у	5.00	у	5.83	4.73	у	n	n	n
9	7_05/frame8.ppm	У	3.16	У	2.83	у	5.00	у	3.61	3.65	у	n	n	n
10	7_05/frame9.ppm	у	5.83	у	4.24	У	5.39	У	5.00	5.11	у	n	n	n
TOT	1	100%	4.08	100%	4.56	100%	5.13	100%	4.83	4.65	100%	0%	0%	0%

Part IV: System Tests and Future Works

System TestsConclusions and Future works

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

System Tests

System Tests

System Test Conditions

• Hardware conditions:

--- Test machine (PIV-2.4G, 256M)
--- Test monitor (PHILIPS brilliance 180P2
black LCD computer screen)
--- Devices (UI-Wand components)

- Software conditions:
 - --- Operation systems (Red Hat Linux, Windows XP)
 - --- Error analysis tool (UI-Wand Error Analysis Utility)

System Tests I

• Off-line tests I

Seq.	Corner detection	Corner detection +RVM classification	Corner detection + RVM classification + Filter				
	Corner number	Corner number	Variance	Rates			
SS1	82	16	2.09	87%			
SS2	78	22	1.60	100%			
SS3	78	23	1.52	100%			
SS4	79	17	1.81	100%			
SS5	50	10	1.83	75%			
SS6	69	13	2.12	93%			
SS7	61	11	4.90	70%			
SS8	60	10	9.57	90%			
SS9	78	20	1.72	100%			
SS10	66	18	1.46	100%			

System Tests II

• Off-line tests II

Seq.	Corner detection	Corner do + RV classific	Corner detection + RVM classification + Filters				
	DT	FE	RVM	DT	FE	RVM	WHOLE
LS1	138.80	127.27	60.93	27.93	51.77	9.07	88.77
LS2	127.00	132.82	61.65	29.60	54.98	7.92	92.5
LS3	113.05	123.70	63.03	42.87	52.95	9.83	105.65
AVR	126.28	127.93	61.87	33.47	53.23	8.94	95.64

System Tests III

• On-line tests

No.	Number of frames	Processing speed (fps)
1	813	10.11
2	875	10.92
3	1381	9.3
4	1490	11.35
5	1524	10.98
6	2186	10.93
7	2328	11.27
8	2420	11.79
9	2758	12.63
10	3309	10.32
AVR	1908	10.96

System Tests

System Tests Conclusions

- High accuracy
- Fast speed

Conclusions and Future Works

Conclusions

- Detect screen corners by Candidates-Winners approach
- Invent a model for gestures recognition.
- The System is robust with some lighting changes.
- It can run different applications.
- It can work in a range of working space.
- Its speed is faster than 10 frames/sec.
- Developed evaluation utilities
- The development is based on Vispirin, the existing framework

Future Works

- Current system improvement
 - 1. Parameters optimization
 - 2. Try Kalman filter to do the motion predication
 - 3. Do some research on color images
 - 4. Improve gesture recognition model
- Invent a new structure

Accelerate RVM Classification speed by using adaptive dataset, which should be a very promising way to go

Questions?

Thank you!

Soon....

Screen Estimation for A Novel Pointing Device Based on Corner Detection and Classification. Qing Xia, Wei Huang

