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 Abstract 
 
“UI-Wand” is the name of a new project in the Machine Interface Group of PHILIPS 
research laboratories in Aachen, Germany. It’s a futuristic concept that uses a pen-
shaped pointing device with a camera in its tip to recognize the objects in your home 
and control them by doing some gestures with it. The first logical step towards its goal 
is to control applications running on devices with a screen, like Computer, Laptop, or 
TV. So the basic requirement for current UI-Wand control is the pointing positioning 
and gesture recognition. 

This master thesis proposes solutions to several software modules in such a UI-
Wand system. Typically, such system includes screen corner detection, screen corners 
tracking and gesture recognition. Finally we implemented all of the models and 
algorithms that we chose or designed in the system and implemented a prototype of a 
UI-Wand driver that demonstrates what can be achieved using such a pointing device.  
 
 
Index Terms – Pointing device, Corner Detection, Relevance Vector Machine, 
Tracking, Gesture Recognition. 
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 Man-Machine Interface Group at PHILIPS 
Research Laboratories in Aachen 

 
The Man-Machine Interfaces Group at the PHILIPS Research Laboratories in Aachen 
(Germany) investigates innovative paradigms for human-computer interaction and 
represents the speech recognition competence center within PHILIPS Research. The 
vision of the group is to "make Man-Machine Interaction intuitive, efficient and 
enjoyable". The ambition is "to take innovative interaction technologies to the 'main 
street'". 

Since the start in 1973 with studies on speaker verification and isolated speech 
recognition for small vocabularies, the main research topics have meanwhile moved 
towards:  

 
z Voice control technology and applications (e.g. hands-free and eyes-free 

interaction in the car environment)  
 
z Telephone-based dialogue systems (for a demo of an automatic inquiry system in 

German, call: +49 241 604020)  
 
z Professional dictation applications (e.g. medical report generation)  
 
z Conversational user interfaces 
 
z Management of spoken audio content 
 
z Computer vision applications 
 
z Innovative interaction paradigms 
 

Since the first speech recognition products have been introduced to the market 
(continuous speech dictation system for professionals in the medical sector in 1993, 
telephone-based inquiry system in 1994, voice dialing for mobile phones in 1996), the 
group has expanded its scope and is now working on user interface technology in 
more general terms, which includes additional aspects of man machine 
communication. These are covered by research areas like e.g. speech understanding, 
dialogue management, user and interaction modeling, information retrieval and 
computer vision. 

The aim of Computer Vision is to process, analyze and interpret visual input 
from cameras using signal processing, pattern recognition and machine learning 
techniques. Application fields range from production automation, quality control, 
biometrics, automotive sector (e.g. pedestrian recognition, visibility enhancement, 
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collision free driving) to home entertainment and ambient intelligence (e.g. for 
personalization, user interaction).  

Major topics in Computer Vision are compensation of illumination and motion 
effects, temporal and spatial segmentation, image interpretation/annotation and 
tracking/detection/recognition of persons/objects. 
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1  
Introduction 

 
In the past few decades, the computer mouse acts as a revolutionary device by which 
everybody can control the cursor easily on a computer graphical interface. But 
undeniably, there are still lots of limitation of using traditional 2D mouse, for example, 
if there is no desk available for using a mouse or touchpad on the keyboard and laptop, 
people will have problems interacting with their computers. This presents a strong 
case for people to think about developing new devices like computer mice but without 
such limitations. A lot of pointing devices have appeared recently that enable us to 
control the cursor on the display and interact with a graphical user interface. These 
devices are designed to replace conventional 2D pointer devices such as mice, 
touchpads, trackballs. They have already become a revolution in the compute world. 
Fig.1.1 shows some examples of pointing devices. 
 

         
(a)                                                            (b) 
 

        
                             (c)                                                          (d) 

Figure 1.1: Some existing pointing devices. a) Microsoft X-Wand. b) IBM Hand held Infrared 
pointing device. c) HeadMouse. d) CyberlinkMindMouse. 
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Existing prototypes or even commercial products of such pointing devices have 
already been invented. We divide them into two categories: some are sensor-based 
approaches and the others are camera-based approaches. Sensor-based approaches 
often depend on some special electronic sensors, which can be worn on people’s 
forehead, eyes, face or other body part. Firstly the system analyzes the data captured 
by the sensors. Then it projects these data into the 2D screen model and finally drives 
the cursor to the right position that the user wants it to go. CyberlinkMindMouse, 
HeadMouse and X-Wand [Wil03b][Wil03c] (see Fig.1.1) all belong to the sensor-
based category. Unlike the sensor-based approaches, the camera-based approaches do 
not need user to worn any extra device on the body, which is also the most favorable 
aspect of them. These approaches directly analyze images caught by a camera. Firstly 
they get frame sequences from the camera, then they use some algorithms to extract 
features or content from the frames, by tracking feature or analyzing the context in the 
frame sequences, they can decide where the user is pointing. In the end, the pointing 
position is transferred from the image coordinates onto the screen coordinates and the 
system drives the cursor to the right position on the screen. There are some existing 
prototypes in this category, such as [Cha00] and [Can03], the only difference between 
them is that [Cha00] uses a web camera directly facing the user and by detecting 
user’s face, the system can know the position on the screen, where the user is facing 
to. But in [Can03], they use a camera directly pointed to the screen, by analyzing the 
content of the screen in the captured frames, the system can detect the position, where 
the user is pointing. With the same coordinates transformation as in [Cha00] the 
cursor can be driven to the pointing positions. Both of the two categories can be 
realized to control the computer cursor, but they use totally different technology to 
implement and meet requirements.  
 

1.1 UI-Wand project  
As a pre-development project in the Machine Interface Group of PHILIPS, UI-Wand 
(User Interface Wand) is a prototype for a pointing device, which can be used to 
control the cursor either on a computer display or some other types of displays. for 
example, a digital TV. It is an accessibility device and is particularly useful for man-
machine interactive environments. PHILIPS investigates the camera-based approach 
to realize the UI-Wand system. In parallel to our work, which uses a screen corner 
detection method to find the screen, a geometric matching method is also investigated 
by PHILIPS, but results are not yet available. In section 1.2.1, we will introduce some 
related project, which also used a camera-based approach to realize a similar 
application. 
 

1.2 Related work 
Camera-based approach for pointing devices does not need complex hardware 
components. Usually it just needs a simple camera with some signal-transition device 



Chapter 1, Introduction  5 
 
can realize the whole work. But this kind of systems often needs more effort to 
develop software with efficient algorithms to analyze the camera images.  
 
1.2.1A novel form of a pointing device 
In [Can03], a novel pointing device was investigated enabling to control via a cursor 
that interaction with a graphical user interface. This device requires only low-cost 
simple hardware, just a single handheld camera that points towards the display to 
control the cursor on the screen. It does so by finding display content in the camera 
view. It calculates where the centre of the camera view is on the screen and moves the 
cursor accordingly. Thus their control strategy only needs the visibility of a screen 
display device. 

They use colored regions in the display content and the camera image, which are 
often strongly structured in the screenshots of office programs or presentation slides 
to extract region of the display. They select the biggest region from a segmentation of 
the screen content. From the camera image, some biggest regions can also be 
extracted. Then calculating some score value that can identify the regions in the 
camera image that correspond with the selected regions. This score includes how 
different the color of a region in the image compared to the corresponding region in 
the screen, how much the region is in the centre of the view and its size. After getting 
the display region in the camera image, they smooth the region borders with a 
morphological filter in both display image and the camera image. The outline of the 
border is then tracked and strong corner points with high curvature are extracted. 
Among these strong corner points, four points that are furthest away from each other 
are selected as the set of corresponding points. They model the problem of estimating 
the cursor as an estimation of the homography of the screen in the world. Now they 
have a set of four corresponding points pairs in the display image and the camera 
image, they can use them to compute the homography and project the centre of the 
camera image back on to the plane of the display screen, giving the correct position 
for the cursor. 

This technique is computational efficient, and could therefore allow the user to 
interact with a normal application whilst achieving a suitable update frequency for the 
cursor position. The user can control the cursor with more freedom comparing with 
other approaches, just by pointing the camera towards the display screen. But there 
are still some restrictions for this prototype, now it can only identify corresponding 
screen corners within a very structured content (large regions) in the screen, if the 
content of the screen is very complex and with no obvious regions, it will have 
problems to find the right screen corners and the application will be aborted.  
 
1.2.2Remarks to the related work 
We can find some problems of the existing pointing device described in section 1.2.1: 
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z When the screen background is more complicated, the existing approach cannot 

perform very well, for example, there is some moving content or some varying 
content such as video program shown on the screen. 

 
z Their approach underlies the basic assumption that screen content must contain 

simple geometric areas with high contrast borders (like e.g. rectangular 
windows).   

 
z The expandability of the existing pointing device system is not so good, if the 

display changes, the result may become worse.   
 
z The existing pointing device has architectural difficulty, that is because they need 

to send the data flow of the screen content to the device and receive the result 
data flow after that.  

 
z In the previous work, researchers mentioned some methods to speed up their 

system, but they do not actually realize them. 
  
z The existing pointing device just acts as a simple mouse and gesture recognition 

has not been realized, which is also a very important usage of pointing devices. 
 

1.3 Thesis overview 
In this chapter, we presented an overview of the existing pointing devices and gave a 
new concept of a UI-Wand at PHILIPS. In the next chapter, in order to make a 
prototype of UI-Wand, the problem definition is given, which includes the system 
requirements, the existing hardware and software introduction, and our project goals. 

In Chapter 3, we describe briefly the models and algorithms that we used in the 
different modules in the final implementation of UI-Wand system. We also raised our 
Candidates-Winners approaches for screen corner detection.  

In Chapter 4, Chapter 5 and Chapter 6, we start presenting our models and 
algorithms in detail. Firstly, in Chapter 4 we describe the Sojka corner detector that is 
used as a candidate screen corner selection algorithm for our final system. Then, in 
Chapter 5, RVM, a new classification model is introduced which deals with objects 
classification problems and in our case it can successfully classify whether a corner is 
a screen corner or not. But it proves that we still cannot figure out the final screen 
corners only by corner detection algorithm and classification algorithm. Finally, in 
Chapter 6, we introduce a rectangle filter algorithm by which we can accurately detect 
the final screen corners. 

In Chapter 7 and Chapter 8, we discuss the issues about gesture recognition. In 
Chapter 7, we use a ROI tracking filter algorithm to solve the tracking problem and in 
Chapter 8, we present HMM and RVM models for gesture recognition problem and 
finally we realize the RVM model and do some test.  
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In Chapter 9 and Chapter 10, we describe our system design and implementation 
in details by using UML, where all the applications that we developed for UI-Wand 
system and some utilities for system evaluation are presented. So readers can easily 
find out what we have done and it is also helpful for the persons who will continue 
our works in the future.  

In Chapter 11 and Chapter 12, we test our system off-line, on-line and record 
results, after analysis, finally in Chapter 12 we summarize our projects and give some 
remarks on the future work. 
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2  
Problem Definition 

2.1 System requirements  
According to the original design, the UI-Wand system must satisfy the following 
requirements: 
 
Simple hardware components. The whole system should have a simple structure and 

the hardware components should be involved as less as possible. 
 
Easy manipulating capability. For more popular applications, we need to make the 

operation of this UI-Wand very easy. Because in the future it may be used in 
everybody’s normal life such as home, meeting room, office, hospital and other 
daily situation, the easy operating capability should always be kept in mind.   

 
Real-time processing speed. This is a critical criterion for judging the performance 

of the UI-Wand, we have to realize real-time processing speed otherwise 
prototype would be almost useless for actual applications.  

 
High system stability and robustness. The system of UI-Wand should be stable 

when it is running, which means if we change the running environments, the 
result should not be changed too much. The more accurate the UI-Wand 
prototype is, the more promising it may be used in the future.  

 
Good adaptability, adjustability and flexibility for future extension. UI-wand is 

just the first stage prototype. It may be changed into other applications. We must 
make it more flexible so that it can be adapted in all possible conditions. 
Although it is just a prototype and we may not consider everything in the 
primary stage, the extension ability should be the basic consideration for any 
prototype design.  

 

2.2 Hardware components 
Machine for implementation: Pentium IV-2.4G, 256M memory/Linux 
Machine for demonstration: Pentium IV-2.4G, 256M memory/Windows XP 
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UI-Wand device components: The research prototype is built of standard off-the-shelf 
components (see Fig. 2.1) (no optimization in size/power consumption), which 
include:  
 

1. CMOS sensor (PAL, 628x582, 22x22x26mm, 5V/DC, 10mA) with fixed 
focus optics (f=6mm, FOV=51°x43°)   

 
2. Analog audio-video transmitter (2.4GHz, 12V, 70mA) & receiver 

 
3. Accumulator (Lithium-Ion), and charging station (500mA) 

 
4. Microcontroller for charging, button control and activation by motion sensor 

 

 
(a) 

 

     
(b)                       (c)                        (d)                        (e)                        (f) 

Figure 2.1: Hardware components of UI-Wand. (a) All components. (b) CMOS sensor with 
fixed focus optics. (c) Analog audio-video transmitter. (d) Analog audio-video receiver. (e) 

Accumulator and charging station. (f) Microcontroller for charging, button control and 
activation by motion sensor.  

2.3 Software components 
Operating system for implementation and test: Red Hat Linux 
Demonstration system: Windows XP  
Implementation language: C++ (GNU Compiler) 
Implementation tools: KDevelop 2.1.3/Linux, QT Designer 2.0/Linux 
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2.4 Project goals 
UI-Wand is a pointing device, with which we can freely control the computer cursor 
on the screen. Our project target is to design and realize such a device. The 
appearance and the using mode of UI-Wand are shown in Fig. 2.2.  

  

   
(a)                                                                (b)

Figure 2.2: (a) Appearance of UI-Wand. (b) The using mode of UI-Wand (right image). 

 
We designed a UI-Wand system based on a camera-based approach. The 

developing work is based on an existing framework designed by PHILIPS using C++. 
From analyzing the frames captured by the camera, we want to find the exact position 
of the screen. Then the cursor can be driven to the right position on the real screen. 
There are some possible methods to find screen position in a frame, such as edge 
detection, corner detection, content matching and so on. Content matching approach 
has already been proved to have worse performance for a more complicated graphical 
interface. So in the design stage we chose a four-screen corner detection approach, the 
four screen corners are always the most crucial feature marks for deciding an accurate 
screen position no matter how complex contents are on the screen. If the four corner 
positions are obtained, the shape, the size and even other properties of the screen can 
be obtained. Other feature detection methods such as edge detection can also be used, 
but the computation complexity will raise (see [Par98] and [Son03]) and since finally 
these features are all served for marking the four screen corners to accurately find the 
screen, we decide to realize four-screen corner detection directly from the frames.  

In the UI-Wand system, gesture recognition is a functionality requirement. 
Because it is a new way to send human commands to operate the computer. If the UI-
Wand system can recognize some simple gestures, it will be a big functionality 
improvement for using it.  

The whole application should run in real-time, which means when we move the 
UI-Wand pointing position to a new position within the computer screen, the cursor 
can move to that new position at the same time.  
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The UI-Wand is just a prototype of a pointing device and we do not specify the 
working conditions of it. Thus, the UI-Wand need to be robust for the environment 
changes such as lighting changes and can run the different applications. In addition, 
for possible usage in the future, within an enough big working range, the UI-Wand 
still has to work properly (see Fig.2.3). Finally, in order to test the performance of UI-
Wand, we also need some utilities to evaluate the system.           

     
 

 
Figure 2.3: Valid pointing position and valid pointing direction.  

 
To conclude this chapter, we define the following project goals: 
  
z Design a UI-Wand system using camera-based approach. 
 
z Realize screen positioning using screen corner detection method. 
 
z Realize a gesture recognition model for our UI-Wand. 
 
z Adapt the system to work in different environments. 

 
z Make sure that the system can run different applications. 

 
z Make sure that the system runs stably within a big valid working space range.  
 
z Develop utilities to evaluate the system. 
 
z Keep the speed of the system approximately to10 frames/sec. 

 
z  Develop the whole system based on the existing software framework. 
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3  
Models and Algorithms Overview 

 
Models and Algorithms design is the most important part of a research project. If you 
designed wrong models or algorithms for your system then no matter how hard you 
work on it you will never get the satisfying results. So we spent lots of time on 
choosing and designing suitable models and algorithms for our special problems, 

which 
require
functio
positio
the ma
camera

Figu
 

re 3.1: Modules in UI-Wand systems. The modules in cyan block are our problems. 
will ensure us that we can construct the final system satisfying the all 
ments and goals mentioned in Chapter 2. According to the UI-Wand system 
nal requirements and project goals, the main problems for us are pointing 
ning and gesture recognition (see Fig.3.1). Between them, it is clear for us that 
in research task is about positioning. How to localize the position where the 
 is pointing at is the main problem to solve. If we can figure out this issue, the 
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work left in gesture recognition is to collect the history of the pointing point as the 
trace and then doing corresponding analysis for recognition.  

In order to give an overview to the models and algorithms that we finally utilized 
in different modules in the UI-Wand system, we will give some short description 
about them in this chapter.  
 

3.1 Screen corner detection and pointing positioning 
With respect to the pointing positioning problem, although there are not so much 
previous works on camera pointing devices, we still can work out the common and 
necessary procedure to realize point positioning. The first step to realize pointing 
position is to figure out the coordinates of some defined markers on the real screen in 
an image coordinates system. Then the second step is to find the right place of the 
screen in a three dimensional space by using these markers coordinates so that they 
know where is the center of the image captured by the camera in the screen 
coordinates system by doing some space transformation, and where is the accurate 
pointing position is (see Fig. 3.2). 

 

        

           (a)                                                                     (b) 

Figure 3.2: The relationship between image coordinates system and screen coordinates 
system. (a) UI-Wand is shooting in front of a screen, and the screen coordinates of the 

pointing point can be easily calculated. (b) The UI-Wand is shooting in right front of a screen,
which makes calculation of screen coordinates of pointing point much harder. 
 
The tests [Can03] prove that this procedure is effective for pointing positioning, 

so we keep the same procedure in our case. For calculating the pointing point in three-
dimensional space, we directly use PHILIPS’s existing algorithm. This algorithm 
makes several screen position hypothesis in advance and then doing pruning 
searching to get the result. We will give a brief description in section 3.1.2. So the 
main research work for us is marker detection.  

It is an easy method to detect the screen by mounting some sensor on it, which 
avoids the problem of display variety and can be detected accurately. But that needs 
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to add extra hardware to the system. Cantzler [Can03] uses screen corners as his 
markers of the screen. They developed a method to extract the screen corners, which 
makes use of the content of screen display to match the camera image. Then after 
analyzing the features of the regions in the camera image, they extract finally an 
approximate border of the screen in camera image and use the four corners as screen 
corners.  

This approach can directly be used without extra devices but from the model 
description, it depends on the content of a display and has problems when the display 
is not structured, furthermore, in a long run, it cannot be used to control other objects. 

After summarizing previous works and investigating plenty of other approaches, 
we decided finally to use corner detection and classification models to realize 
detection of screen corners as markers for pointing positioning and to name this 
approach “Candidates-Winners”. 
 
3.1.1 Candidates-Winners approach to detect screen corners 
Screen corners are a kind of corners that can be detected directly by their geometric 
properties. In our literature survey, we investigated many such algorithms to do this 
kind of things, which are called basic features detection such as Harris-
Stephens[Har88], Deriche-Giraudon [Der93], SUSAN [Smi97], Compass [Ruz01], 
Sojka [Soj02a] etc. All of these algorithms can detect corners in an image and the 
speed is on a real-time level. However, these detection algorithm still cannot figure 
out which corners are screen corners, even if they have some parameters to control the 
corner size other features of the corners. So it is obvious we cannot depend only on 
these algorithms.  
 

Another way to detec
classification models such
Machine [Vap95][Cor95] 
trained by lots of samples
object belongs to by doing
need to collect plenty of s
and collect other object im
scan an image (see Fig. 3

Figure 3.3: Classification m
and right column is non-cor
 

odel to detect corners in an image. Left column is corners samples,
ners samples. The blue sub-window is classified as a corner listed 

in the left column. 
t corners, or speaking generally, to detect objects, is to use 
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.3) and tell where the screen corners are. It seems to be a 
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good way to go, but the problem is that the speed to scan an image is very slow, and 
also the classification success rate is not so high, which will result in wrong detections.  

Given the limitation of these different algorithms and models, we are able to 
invent a new approach to combine them and avoid their defects. We called it 
Candidates-Winners approach. In this approach, we use a corner detection algorithm 
to detect as much as possible corners as screen corners candidates and then use a 
classification model to classify them and tell which possible four screen corners are. 
And if there still left some candidates then finally we use a filter algorithm to select 
out by their geometrical properties. By using this approach, the speed to detect screen 
corners is raised extremely. That is because after the corner detection algorithms, 
there are only few positions left as candidate screen corners and the classification 
model only needs to classify these candidate corners instead of the whole image, 
which accelerates the detection very much.  

In Fig. 3.4 we show the Candidates-Winners approach and the models and 
algorithm finally used in all modules, Sojka algorithm for corner detection, RVM as 
classification model, and Rectangle filter algorithm. The reasons to choose them are 
explained in our literature survey. We will give a more practical explanation in Part II.  
 

 

Figure 3.4: Candidates-Winners approach. The algorithms or models with green background 
color are used in the UI-Wand system. 

 

3.1.2 Pointing projection model 
When we detect screen corners and get the four screen corners image coordinates, 
then we need to use Pointing Projection model to find out the screen coordinates of 

the center of the camera image,  of pointing point shown in Fig. 3.2. This pointing 

positioning algorithm is an existing algorithm in PHILIPS lab. Its principle is 
described as follows: 

sP

Firstly, the algorithm defines the spatial configuration by using two coordinates 
systems (given by orthonormal vectors):  
 

1. World coordinates system: . )( zyx w,w,w

2. Camera coordinates system: ( . )zyx c,c,c

 



Chapter 3, Models and Algorithms Overview  17 
 

For simplicity the world coordinates system’s origin is assumed to be centered at 
the mid-point of the visible screen area (see Fig. 3.5a), and that coordinates direction 
vectors wx and wy correspond to the screens x and the screens negative y direction (i.e. 
if the screen is mounted in the “regular” way, wx is going to the right and wy is 
pointing upwards). As a consequence, the world z-coordinate is pointing towards the 
user when standing directly in front of the screen. The camera’s coordinates system is 
arranged in a way such that cx and cy correspond to the usual counting of pixel 
coordinate on the camera sensor. The third coordinate vector cz then corresponds to 
the pointing direction (see Fig. 3.5b). 

Now a spatial configuration of the pointing device can be described (in the world 
coordinates system) by the following data: 
 

1. The world coordinates of the pinhole point (i.e. the centre of the camera’s lens) 
(see Fig. 3.5c). 

 
2. An orthonormal matrix O = (cx cy cz) representing the camera coordinate 

vectors. 
 

Projective geometry now allows computing the image of a world point on the 
image plane. The world-to-camera projection πP,O depends on the pinhole position P 
and the camera orientation O is given by  
 

πP,O : (x, y, z)  Æ  (Ix, Iy),  

z

x
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cδ
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⋅
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The procedure to estimate a new pointing device position (P’, O’) can now be 
described as a minimization problem: 
 

(P’,O’)  = argmin (P,O)                                              (3.2) (∑
=

−
4

1

2
, )(

i
iiOP DCπ )

 
Here we assume that the screen is represented by four corners points labeled 

C1 … C4 (given in real world coordinates) that correspond to four corner detections in 
the image D1 … D4 (given in image coordinates). This optimization is generally hard 
and time consuming, so in the case that the screen position had been found already in 
the previous frame, and the optimization has already been done for that frame, then 
we use the previous position (P, O) as a starting point for gradient descent search, 
which speeds up the optimization significantly. 

After figuring out the pointing device position (P’, O’) in world coordinate, the 
camera pointing position in the visible screen area (see Fig. 3.5a) can be easily 
calculated and then the computer cursor can be drive to the right place on the screen. 
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                         (a)                                                                            (b) 
 

 
                                                               (c) 

Figure 3.5: Positioning spatial transformation figures. (a) World coordinates. (b) Camera 
coordinates. (c) The projection of a world point on the image plane. 
 

3.2 Tracking and gesture recognition 
If we can accurately detect screen corners and figure out where the pointing point is in 
a screen coordinate system, the next step is to recognize what gesture the user is 
making with UI-Wand. There are a lot of works on gesture recognition, like hands 
gesture recognition [Bla98][Lee99][Hon02], behavior recognition [Psa02], and so on. 
From these papers, we concluded that the general existing procedure of gesture 
recognition is critical point tracking and states transformation model to recognize. 

In our UI-Wand case, we use a ROI (Region of Interest) track filter to track the 
screen corners detected in last frames and then, instead of HMM used by others, we 
use RVM to realize gesture recognition.  
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3.2.1 ROI Tracking algorithm  
The basic method to detect screen corners in a sequence of frames is to use 
Candidates-Winners approach in every frame, so that we can detect screen corners 
and find the accurate pointing point consecutively. But since we already know the 
positions in the last frames, and given a sequence of frames, it is not effective to let 
Candidates-Winners approach detect screen corners on a whole image. A more 
efficient way to do that is just to detect a certain area around a screen corner detected 
in the last frame, which we call ROI (see Fig.3.6). Considering the motion of the 
screen is not too fast, the size of ROI is small, so that the speed of detection on several 
ROI get much faster than using Candidates-Winners approach on a whole image. In 
addition, if we can consider more frames before, then we can use some motion 
estimation algorithms to predict screen corners in the next frame, such as Kalman 
filter [Kal60][Web01] or simple motion estimation filter. Then use the predicted point 
as ROI center and detect, which will reduce ROI size and make the detection faster 
and more accurate. 

 

Figure 3.6: One ROI in 
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only need to deal with those traces that consist of fast movement points instead of a 
trace with points at the same position in some consecutive frames. And also before 
extracting the features of a trace and giving it to RVM model, we need to know where 
is the start point of the trace and where is its end point. All of these analyses and final 
feature extraction work are done in an interpolation trace analysis model that will be 
described in detail in Chapter 7. 

By using motion vectors as features, RVM gives a promising recognition rate for 
a certain set of gestures we defined. In Chapter 7, we will give more descriptions and 
test results to show its theory and performance. Fig.3.7 shows a gesture recognition 
procedure. 

 

F  

 

 

igure 3.7: Gesture recognition procedure. The algorithms or models with green background
color are used in the UI-Wand system. CW means Candidates-Winners approach. 
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4  
Corner Detection  

In Chapter 3, we have already described our Candidates-Winners approach, which is 
used to find four screen corner positions in one image. In this chapter, we will 
describe the corner detection algorithm that we used in our Candidates-Winner 
approach. The comparison of different corner detection algorithms will be introduced 
in section 4.1, the main idea of Sojka corner detector and the theoretical foundations 
of the algorithm will be explained in details in section 4.2, the realization procedures 
will be depicted in section 4.3, the parameters optimization will be discussed in 
section 4.4 and finally the test results and some analysis of the algorithm are shown in 
section 4.5.  
 
4.1 Corner detection algorithms comparison  
With respect to its practical applications, corner detection in digital images is studied 
intensively for approximately three decades. Many algorithms for detecting corners 
have been developed up to now. They may be divided into two groups. We named 
these two groups as direct corner detectors and color distribution based corner 
detectors [Ale98].  

The first group contains the algorithms that work directly with the values of 
brightness of images. They often model an image as a surface; considering the 
directional gradients or derivatives at each pixel point, if the value of its corner 
response function exceeds a defined threshold, this pixel will be considered as a 
corner point. The detectors described in [Bea78], [Kit82], [Har88], [Nob88], [Der93], 
[Tra98], [Wan95], [Zhe99], [Soj03], all belong to the first group (Fig.4.1 shows the 
part of image surface containing a corner that is described in [Har88]). Normally each 
algorithm has its own particular corner response function. So their performances are 
usually decided by the corner response function that they choose.  

The second group does not model an image as a surface. Instead, they consider 
the statistical color distribution in a circular neighborhood centering at each pixel 
rather than compute the directional gradients or derivatives. SUSAN corner detector 
[Smi97], Compass corner detector [Ruz01], [Ruz99a], [Ruz99b] and a proposed 
detector [Son03] belong to the second group. SUSAN detector classifies each pixel 
into edge, corner and flat area by checking the USAN principle, this principle is 
shown in Fig.4.2. Compass detector utilizes a group of colors, instead of a single color, 
to represent the statistic color distribution in a circular neighborhood. It can handle 
both uniform-colored region and textured regions. The detector proposed in [Son03] 
emphases both spatial and statistical color distributions, it is much faster than 
Compass detector and more accurate than SUSAN detector. 
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Figure 4.1: A part of image surface containing a corner in the centrum of it (this surface is 

defined in [Har88]). 

 
 
 

 
                                  (a)                                                                  (b) 

Figure 4.2: USAN principle in SUSAN detector. (a) Five circular masks locate at different 
places. (b) Five USAN areas (yellow areas). 

 
 

Table 4.1 shows the evaluation data from different corner detection algorithms. 
Comparing these corner detection algorithms, we found that the color distribution 
based algorithms have very good accurate corner detection rate (especially in [Ruz01], 
[Ruz99a], [Ruz99b] and [Son03]), but the detection speed is not so fast because they 
often detect the edge, corner, and junction in one round. These algorithms can detect 
junctions (for example T-junctions and X-junctions) much better than other detectors, 
so they are more appropriable for off-line textured image analysis. But in our project, 
we must reach the real-time processing speed, so we need a very high detection 
accuracy rate for normal screen corners (not considering junctions or edges). The 
algorithms described in [Ruz01] and [Son03] are not appropriable for us. SUSAN 
detector is the fastest one among color distribution based algorithms, but the detection 
accuracy rate is not so ideal.  
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Table 4.1: Comparison of different corner detectors.  

Index Feature Detected Accuracy Speed Real-time 
Processing 

Grade 

[Bea78] Corner Low Very fast Yes 3 
[Kit82] Corner Low Fast Yes 3 
[Har88] Corner High Middle Yes 4 
[Der93] Corner Very low   2 
[Smi97] Edge & Corner Low Middle Yes 3 

[Ruz01] Corner, Edge, & 
Junction 

Very high Very slow No 3 

[Son03] Corner, Edge & 
Junction 

Very high Middle Yes 4.5 

[Soj03] Corner Very high Middle Yes 5 
 

After concluding the drawback of color distribution based algorithms, we 
decided to investigate the direct corner detectors. The processing speed of early direct 
corner detectors is very fast, but they often have not very high detection accuracy rate, 
which is the biggest problem of them. But in [Soj03], we can find that this problem 
has already been resolved very well, it makes great improvement in the detection 
accuracy rate and its processing speed is just a little slower than the others. We can 
see this improvement from Table 4.2 (the testing image with reference corners is 
shown in Fig. 4.3). We now name the corner detection algorithm described in [Soj03] 
as Sojka corner detector. For the reason that Sojka corner detector satisfies almost all 
the requirements of corner detector in our project (high accuracy rate, fast speed for 
real-time processing), we decided to choose it as our corner detector in UI-Wand 
project. In the next section, we will analyze the main problems caused by the other 
direct corner detectors and outline the main ideas of the Sojka corner detector.    

 
 

 
Figure 4.3: Reference corners in a testing image (291 reference corners in total). 
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Table 4.2: Comparing of direct corner detectors (we also add SUSAN here). 

Detector 
Name 

Total 
Corners

Correct 
Detections 

False 
Detections

Multiple 
Detections

Total
Error

Localization 
Error 

Grade 
(out of 5)

[Bea78] 155 21 10 167 1.85 2.0 
[Der93] 142 25 10 184 2.05 1.5 
[Har88] 187 10 6 120 0.98 3.5 
[Kit82] 163 26 15 169 1.87 2.0 
[Smi97] 152 29 1 169 1.63 2.5 
[Soj03] 

291* 

229 9 8 79 0.81 4.5 
* The total corners number is the reference corner number in the real image. 
 
4.2 Sojka corner detection algorithm 
4.2.1 Main ideas of Sojka corner detector 

The majority of the existing direct corner detectors determine the values of a corner 
response function. In a given point of the image, its value is computed by examining 
the function of brightness and/or its derivatives in a certain neighborhood of this point. 
The value of the corner response function usually reflects the angle and the contrast of 
the corner. The corners are detected at those points at which the value of the corner 
response function is greater than a chosen threshold and at which, at the same time, 
the function exhibits its extremum. We see two major problems in these approaches: 
 

1. The known detectors work well if the situations in the neighborhoods are not 
complicated. In more complicated situations, problems can arise. Considering 
the situation that is depicted in Fig. 4.4. In the areas a, b and c, the magnitude 
of the gradient of brightness is non-zero. In Fig. 4.4, for determining the angle 
of the corner at Q, obviously only area a is relevant, the area b is obviously less 
substantial, and the area c is even almost irrelevant. The existing corner 
detectors do not take into account this fact and unselectively examine the 
whole neighborhood of Q, which may lead to an error decision on whether or 
not Q is a corner. This drawback cannot be avoided by using small 
neighborhoods. In a small neighborhood, all the measurements would not be 
precise and reliable enough mainly due to noise. 

  
2. A substantial drawback of the known corner detectors is caused by 

thresholding the values of the corner response function. Let α  stands for the 
angle of the corner (see Fig. 4.4). Supposing that we can measure this angle. In 
digital images, however, we can do this only with a certain limited precision. It 
is obvious that if the difference || απ −  is less than the precision that can be 
achieved under the conditions of the measurement, the point should not be 
detected as a corner. The known corner detectors do not check the angle value 
and use usually only the corner response function for thresholding. Since this 
function combines the angle and the contrast of the corner, it may happen that a 
small value of the difference | |απ −  is compensated by a high value of contrast, 
which leads to erroneous detections of corners on contrast edges. The problem 
cannot be avoided by increasing the threshold, which, in turn, would lead to 
miss the corners with a lower contrast.  
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Figure 4.4: A neighborhood of pixel Q. In Area a, b and c, the magnitude of gradient of 

brightness is non-zero values. Area a is relevant for determining the angle of corner (denoted 
by α ) at pixel Q. Area b and c are all irrelevant for determining the angle of corner at pixel Q. 

    

Coming from the knowledge stated above, the Sojka corner detection algorithm 
[Soj02a][Soj02b][Soj03] also determines the corner response function that combines 
the angle and the contrast of the corner. The function is designed in such a way that it 
exhibits its local maxima at corner points. The main new features of the algorithm are 
the following: 
 

1. The new algorithm exploits the information contained in the neighborhood 
 selectively. It determines which areas of neighborhood are relevant for 

determining whether or not Q is a corner. It is done by introducing the 
probability PSG(X) of the event that a point X (an arbitrary point in the 
neighborhood) belongs to the approximation of the straight segment containing 
Q of the isoline of brightness. In Fig. 4.4, for example, the values of PSG(X) are 
high at the points that form the area a, but at all the other points, the values of 
PSG(X) are low. The value of PSG(X) can be computed from the values of the 
function of brightness and its gradient by making use of the Bayesian 
estimations. 

( )QΩ

 
2. The algorithm includes the explicit computation of the corner angle. The 

expected precision of the angle measurement is estimated. A point Q can only 
be accepted as a corner if the difference is significantly greater than the 
estimated precision of the angle measurement. 

 
3. A quantity expressing the obviousness of the corner is computed. This value, in 

essence, characterizes the size of the area that is relevant for deciding whether 
or not Q is a corner (i.e., the area a in Fig. 4.4) and the magnitude of the 
gradient of brightness in this area. A point can only be accepted as a corner if 
its obviousness is greater than a predefined threshold. 
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4.2.2 Sojka corner detection theoretical foundations 

4.2.2.1 Corner model 

Sojka corner detector defines a function )(ξψ to represent the value of brightness in 
the direction across the edges and its derivative with a single extremum at 0=ξ , 
which is regarded as an edge point. The edge is often oriented by the rule that the 
higher brightness lies to the left and the lower brightness lies to the right. Because the 
corner is an intersection of two non-collinear straight edges, so the shape of a corner 
can be defined as a model. In this model, the gradient direction of brightness along 
one edge that comes into the corner and along the other edge that comes out from the 
corner are defined as two angles 1ϕ  and 2ϕ , where )2,0, 21 πϕϕ ∈ . Let ( )iii ϕϕ sin,cos=n  
with i , which are the direction vectors of the edges’ gradient. The axis of the 
corner is a line passing through the corner along the direction of increasing brightness 
and halving both the corner angle and the angle between 

2,1=

1ϕ  and 2ϕ . It follows that the 
angle between the corner axis and iϕ  is always no bigger than π/2 .  

The corner is always convex or concave; if 021 >×nn , it is convex and if n , 
it is concave. Now “Sojka Corner Detector” defines the function of brightness at a 
point X as follows: 

021 <×n

 

( ) ( )( ) ( )( ){ }
( )( ) ( )( ){ }




−⋅−⋅
≥×−⋅−⋅

=
otherwiseCXCX
ifCXCX

Xb
21

2121

,max
0,min

nn
nnnn

ψψ
ψψ

              (4.1) 

 
Let , ( )Xb ( )Xg  and (X )ϕ  denote the value of brightness, the magnitude of the 

brightness gradient and the direction of the brightness gradient at the image pixel X . 
The algorithm works with the samples (pixels) in an image. Here it is assumed that 
the value of sample at point X is equal to the value of the corresponding continuous 
theoretical function at X. This holds for all the mentioned functions ( ,  and ( )Xb ( )Xg

( )Xϕ ). 
 
4.2.2.2 Principles of the Sojka corner detector 

From the definition of the corner model we can introduce how Sojka corner detector 
works now. Let  be an image pixel point and Q Ω  be its disc shape neighborhood (see 
Fig. 4.5), which contains a finite number of isolated points, for example X . As the 
definition of the theoretical isoline curves, there must exist a certain curve that passes 
the area of the pixel point X , but not really passing through X . So X  is the 
approximation and lies in a certain distance from of the theoretical curve. This 
distance can be defined as the deviation ( )Xd  and its sign indicates on which side of 
the curve that X  lies. The deviations of the pixel points approximating a curve may 
be regarded as a random variable and its probability density can be presented by 

. Considering the isoline curve whose brightness is equal to the brightness of 
(see Fig. 4.5, the black continuous line passing through Q ).  
( )zpd

Q
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Figure 4.5: The neighborhood of a pixel point Q (blue circle). The isoline of brightness is 

passing through Q (black continuous line). A pixel point X is the approximation of the isoline 
(the deviation d(X) of X from the segment). 

 
The difference of the brightness at X (respect to Q) is defined by 

( ) ( ) ( )QbXbXb −=∆ . From the former definition of the pixel point brightness (Eq. 
(4.1)), the distance between X  and  in the direction across the isoline is the 
deviation of 

Q
X  from the isoline passing through Q , so it can be calculated by the 

inverse function 1−ψ  as: 
 

( ) ( ) ( ) ( )( ) ( )( )QbXbQXXd 11 −− −=−= ψψξξ                                            (4.2) 
 

The difference of brightness at X  is: 
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )XdQbXdQQbXbXb βξψ ≡−+=−=∆                         (4.3) 
 

The function ( ).β  is for brevity introduced as the brightness difference function. 
Conversely the deviation of X  from the isoline ( )Qb  can be determined by the 
difference of the brightness  as: (Xb )∆
 

( ) ( )( ) ( ) ( )( ) ( )QXbQbXbXd ξψβ −∆+=∆= −− 11                                    (4.4) 
 

The difference of brightness b∆  at the points of approximation may also be 
regarded as a random variable. Let BrQ  denote the event that a point belongs to the 
approximation of the isoline whose brightness is ( )Qb . Then the conditional 
probability density ( BrQzp b∆ ) can be introduced. Taking into account the fact that 
for a derivation l  from the isoline, the difference of brightness is ( )lβ , it is very easy 
to obtain the equation:  
 

( ) ( )( ) ( )( )ldBrQlpdllp bd ββ∆=                                                                   (4.5)  
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It follows that: 
 

( ) ( )( )
( )( )z
zp

BrQzp d
b 1

1

−

−

∆ ′
=

ββ
β

                                                                                           (4.6) 

 
where  and impractical computation dld /' ββ = ( )Xbz ∆=  and ( )Xdl = . Applying 
Eq. (4.3) and taking into account the model of the corner, it is easy to get: 
 
 

( )( )
( )( ) ( )( ) ( ) ( )( ) ( )[ ] ( )( ) ( )( ) (XgX

Xd
dQbXdQ

Xdd
d

Xdd
Xdd

==−+= ξψ
ξ

ξψ )β
                 (4.7) 

 
where  is the magnitude of the brightness gradient. By substituting Eq. (4.7) into 
Eq.(4.6) and combining the result with Eq.(4.4), the following can be obtained: 

( )Xg

 

( )( ) ( )( )( )
( )

( )( )
( )Xg

Xdp
Xg

Xbp
BrQXbp dd

b =
∆

=∆
−

∆

1β
                                              (4.8) 

 
The result obtained until now is conform the way that how the isoline of 

brightness is viewed in a continuous image. It is sufficient to set ( ) ( )zzpd δ= , where 
( )zδ  stands for the Dirac delta function. Finally ( ) ( )zBrQzb δ=∆p  can be obtained, 

which is the expected result.  
 

 

 
Figure 4.6: The isoline of brightness passing through Q (black continuous line). An isoline 

segment is aiming at Q (blue bold line); the deviation d(X) of pixel point X from the segment. 
The deviation h(X)of Q from Px (deep red continuous line). 

 
Now assume that Ω  contains one or more corners conforming to the former 

corner model. The isolines of brightness are then formed by sequences of line 
segments. Considering an isoline segment lying on a straight line passing through Q 
(see Fig. 4.6) but the segments on the same isoline may not necessary pass through Q. 
X  is a pixel point of the approximation of the segment and let  denote the straight 
line perpendicular to the direction 

xp
( )Xϕ  passing through X and orienting the same 
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way as edges. Let  be the deviation of  from (its sign is negative if Q  lying 
to the left of . The same as , the deviation h  for the approximation points of the 
segment of an isoline may be regarded as a random variable. Let DirQ  to denote the 
event that a segment of an isoline aims at the pixel point Q , and the conditional 
probability density 

(Xh ) Q xp

xp d

( DirQ)zhp  of the deviation h  can be introduced. Then from the 
discrete sampling of the image, it is very clearly that h  and ( )X (X )d=

( )DirQzph = ( )zpd  (see Fig. 4.6).   

(( XbP ∆
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From the above relations and definitions, the two conditional probabilities can be 
introduced. One conditional probability is ))BrQ , which is of the event that a 
point belongs to the approximation of the isoline whose brightness is b  providing 
that the difference of brightness is ( )Xb∆ . The other one is P , which is 
of the event that a point belongs to the approximation of an isoline segment aiming at 

 providing that the deviation from Q  to Q  in the direction of brightness gradient is 
. Using Bayes’ formula yields the result: (X )h

 

( )( ) (
(BrQXpBrQP b=∆ ∆                                                   (4.9) )

( )( ) (
(Xp

PBrQhpDirQP
h

h=                                                           (4.10) )
 

Because it is already be confirmed that ) )p=p , Eq. (4.10) can be 
transferred into: 

( )( ) (
(( )Xhp

DirQPhpDirQP
h

d=                                                              (4.11) 

 
4.2.2.3 Probability estimations 

In order to apply these equations from above into the practical calculation, it is 
necessary to carry out the estimations of the probabilities )P ,  and the 
probability densities , . Suppose the size of the neighborhood area Ω  is 

 and the size of a pixel point area is . The linear size (mentioned as ) of 

 and one pixel may be considered by the values 

( )zb )p
A

Ω
0A

 and 0 . For estimating the 
probability , suppose that l  is the length of the isoline in Ω  whose 

brightness is b , and then the isoline must pass through 

(BrQP

(Q
Q

l  pixels in Q Ω  
approximately. For estimating the probability )DirQP , still suppose that l  is the 
total length of the straight isoline segments in Ω  aiming at Q . Because of the discrete 
pixel sampling of the image, ( ) ( )PBrQP =  is held (see Fig.4.7). Thus having: 

 

( ) )                                                            (4.12) 
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The probability density ( )zp b∆  is defined by the expression: 
 

( ) ( ){ }
A

zXbzXA
zp b ε

ε
ε

+≤<
=

→∆ 0
lim                                                                (4.13) 

 
where ( ){ ε+≤< zXbzXA }  denotes the size of that part of Ω  that the inequality 

( ) ε+≤ zX
)

< bz
(zp b∆

 holds for the brightness. In the practical computation, the value of 
 will only need for ( )Xb∆z = .  

 

 
Figure 4.7: A part of the neighborhood of pixel Q (yellow area). The isoline pixel point areas 

are: X1, X2, X3, X4, X5, X6 (blue area). One isoline curve with the same brightness 
magnitude is passing through pixel Q (black bold continuous line). Some isoline segments lie 

on the isoline and is aiming at Q (red bold line lie on the black continuous isoline). 

 

Assume that the length of the isoline passing through X  is l  and that no other 
points with the same brightness, 

X

( )Xb  in Ω . With respect to the model of corner that 
is defined before, the magnitude of the brightness gradient remains constant value 

, along the whole isoline. So the following can be obtained: ( )Xg
 

( )( ) ( )
( )AXg
l

A
Xg

l
Xbp X

X

b =≈∆
→∆

ε

εε

1lim
0

                                                         (4.14) 

 
Then for determining the probability density ( )zph , supposed that the deviations 

 vary between the value ( )zh AhA 2/12/1 ≤≤−  and that the probability of the 
particular values is evenly distributed. It follows that: 
 

( )
A

zph
1

≈                                                                                                                  (4.15) 

 
From Eq. (4.12), Eq. (4.14) and Eq. (4.15), the estimations can be got, and then 

substituting these estimations into the expressions from Eq. (4.8) into Eq. (4.9) and Eq. 
(4.11). Letting XQ ll ≈  and AQ ≈l , we can get: 
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( )( ) ( )( )( ) ( )(( XbpAXbp
l
l

AXbBrQP dd
X

Q ∆≈∆=∆ −− 1
0

1
0 ββ ))               (4.16) 

( )( ) ( )( ) ( )( XhpAXhp
A
A

lXhDirQP ddQ 0
0 ≈= )                                  (4.17) 

 
Let’s say that the direction of the corner axis at Q  is known, considering the 

angle difference at X  as ( )Xϕ∆  for the angle between the corner axis and the 
direction ( )Xϕ . This difference is always non-negative, it is less than or equal toπ . 
According to the explanation in the earlier part of this section, the angle difference for 
all X  that form the area of a corner should satisfy ( ) 2/πϕ ≤∆ X , if this condition 
does not be satisfied, it means that the point X  does not belong to the area of the 
corner candidate Q . Let  denote the event that a point belongs to the possible 
corner area of Q , and then the conditional probability 

AngQ
( )( )XAngQ ϕ∆P  of the event 

that a point belongs to the corner area providing that the angle difference is ( )Xϕ∆  
can be introduced. Under the assumption that in the theoretical model of sampling that 
the exact value of (X )ϕ  is available for the direction of the corner axis, it may easily 
write: 
 

( )( ) ( )


 ≤∆≤

=∆
otherwise

Xif
XAngQP

0
2/01 πϕ

ϕ                                             (4.18) 

 
4.2.2.4 Corner decision 

Finally, in the case of a continuous and error free representation of an image, a pixel 
point X  belongs to a straight isoline segment containing Q  if the following 
conditions are satisfied: 

 
1. The brightness at X  is equal to the brightness at , Q ( ) 0=∆ Xb . 

 
2. The line p  passes through , X Q ( ) 0=Xh . 

 
3. For the angle difference ( )Xϕ∆ , the inequality ( ) 2/0 πϕ ≤∆≤ X  holds. 

 
4. The above three conditions  are all satisfied not only at X , but also at all other 

points of the line segment QX . 
 

So a probability P  may be introduced for the discrete representation of the 
real image that used up to now. This probability indicates the event that a pixel point 

( )XSG

X  belongs to the approximation of a straight isoline segment containing point Q , and 
it can be set as: 
 

( ) ( )( ) ( )( ) ( )( ){ }YAngQPYhDirQPYbBrQPXP
QXYSG ϕ∆∆=

∈
min                    (4.19) 
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Figure 4.8: Explanations and relations among the expression in Eq. (4.19). 

 

Now let us use Fig. 4.8 to analysis these probabilities presented in Eq. (4.19). 
From the Fig 4.8, it can be shown that the three probabilities are all independent from 
the other two. Especially, in some area there may have more than one corner, there 
may exist points that do not belong to the corner area in spite of the fact that the 
conditions  and  are both satisfied. This fact can be detected by the 
condition 

( ) 0=∆ Xb
( )0

( ) 0=Xh
2/πϕ ≤∆≤ X (see Fig.4.9), Y  is a point, which satisfies the conditions 

 and ( ) 0=∆ Xb ( ) 0=Xh , but not satisfies the condition ( ) 2/0 πϕ ≤∆≤ X ). 
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Figure 4.9: The two isoline (black bold lines) have the same brightness and h(Y)=0 is also 
satisfied at Y, but Y still does not belong to the area of corner at Q. Small circles are the 

positions of the image pixels. 

 
Now let us confirm that Eq. (4.19) is available for all the points that belongs to 

the line segment QX . Supposed that X  is a pixel point lying on a straight isoline 
segment containing Q . It is clear that all the points of the line segment QX  must lie 
on the isoline segment too. Fig. 4.10 shows the fact that the conditions ∆ , 

 and 0
( ) 0=Xb

( ) 0=Xh ( ) 2/πϕ ≤∆≤ X  do not suffice to decide whether or not X  belongs 
to an isoline segment containing Q . The operator “ min ” in Eq.(4.19) corresponds to 
the idea that for any arbitrary points of QX , a point belongs to the approximation of 
the straight isoline segment containing Q  are dependent among all the points, which 
means if the event occurs at the point that its probability is the lowest one, it will also 
occur at the remaining points of the line segment QX . 

 
 

 
Figure 4.10: An example of neighborhood of Q (although through the isoline segment XY2 on 
QX, point X and Y1 satisfy all the three condition, but it is still shown that Y2 does not satisfy 

the condition of angle difference that must be less than 2/π ). 

 

After analysis of the Eq. (4.19), then substituting the estimations from Eq. (4.16) 
and Eq. (4.17) into Eq. (4.19), we will get: 

 
( ) ( )( )( ) ( )( ) ( )( ){ }.min 1

0 YAngQPYhpYbpAXP ddQXYSG ϕβ ∆∆= −

∈
                             (4.20) 
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Let us determine at Q  the “angle of break” of the isoline that passes through Q . 
We examine the values of ( )Xϕ  in Ω , because the relevance of the value between Q  
and X  depends not only on the probability ( )XPSG , but also on the distance between 
the points Q  and X , let us use ( )Xr  to stand for the distance and introduce a weight 

, which is sensitive to the distance. So the relevance can be expressed by the 
following equation: 

(( Xr )wr )

 
( ) ( ) ( )( )

( )( )( ) ( )( ) ( )( ){ } ( )( XrwYAngQPYhpYbpA

XrwXPXw

rddQXy

rSG

ϕβ ∆∆=

=
−

∈

1
0 min )                   (4.21) 

 
In order to determine the angle of break at Q , we compute the quantities ϕµ  and 

, which stand for the average weighted edge direction and the average weighted 
square value of the difference between the edge direction and the average edge 
direction.  

2
ϕσ

 
( ) (

( )

)

∑
∑

Ω∈

Ω∈=

i

i

X
i

X
ii

Xw

XXw

ϕ

ϕ
µϕ                                                                                               (4.22) 

 
( ) ( )[ ]

( )∑
∑

Ω∈

Ω∈

−
=

i

i

X
i

i
X

i

Xw

XXw 2

2
ϕ

ϕ

µϕ
σ                                                                    (4.23) 

 
Now let us compute for a particular corner candidate Q  using ϕµ  and . There 

are two functions defined for Q : 

2
ϕσ

 
( ) ( ) ( )QQgQCorr 2

ϕσ=                                                                                              (4.24) 
 

( ) ( ) ( ) ( ) ϕµϕ −= ∑
Ω∈

i
X

iiSG XXgXPQAppar
i

                                                        (4.25) 

 
These two functions satisfied the following two theorems in the case: there is a 

corner existing in an image, which is conforming the corner model introduced before. 
Assume that both the image and the neighborhood Ω  are infinite, that  is an 
arbitrary non-negative and symmetric function with a single maximum at z , and 
that  is an arbitrary positive and decreasing function defined for non-negative 
arguments. The following two theorems hold: 

( )zpd

0=
( ).rw

 
Theorem 1: The function ( )Q2

ϕσ  has its maximum just at the points lying on the 
axis of the corner. At these points, the value ( )Qϕµ  determines the direction of the 
corner axis, and the value ( )Qϕσπ 2−  is equal to the angle of the corner. 
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Figure 4.11: The notation used in the proof of Theorem 1.  

 
Proof: In the case being considered, the function ( )Xϕ  takes only two values, 

denoted by 1ϕ  and 2ϕ  (see Fig. 4.11), we use 1Ω  and 2Ω  to denote each part of the 
image (a half-plane) where ( ) 1ϕϕ =X  and ( ) 2ϕϕ =X . Taking into account, in this 
case, the value of ( )(AngQ ∆ )XϕP  is equal to 1 everywhere, and substituting the first 
equation form Eq. 4.2 to Eq. 4.21, and then we have: 
 

( ) ( )( ) ( )( ){ } ( )( )XrwYhpYdpAXw rddQXY∈
= min0                                             (4.26) 

 
For any fixed , we can compute the values:  Q
 

( ) ( )∑∑
Ω∈Ω∈

=
21

21
ii X

i
X

i XwWandXwW                                       (4.27) 

 
From Eq. (4.22) and Eq. (4.23), we obtain: 
 

( )
( )

( 2
212

21

212
2211

21

1 ϕϕσϕϕµ ϕϕ −
+

=+
+

=
WW

WWandWW
WW

)

)

           (4.28) 

 
Under the condition that W  it is very easy to see that the term 

 takes its maximum value 1/4 when W
0,0 21 >> W

( 2
2121 / WWWW + 21 W= . Substituting W  

into Eqs. (4.28), we can get the result 
21 W=

( ) 2/211 ϕϕϕ −=+ ,2/2 σϕ ϕµϕ = , which 
confirm the Theorem 1. 
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Theorem 2. Under the assumptions of Theorem 1, the function Corr(Q) has its 

maximum just at the corner point. 
 
Proof: From the proof of Theorem 1, it follows that if Q  moves along the line 

parallel to the corner axis, the values of W1, W2 , therefore, also the value of  

remain constant. It also follows that the value of 

( )Q2
ϕσ

( )Q2
ϕσ  decreases with the increasing 

distance of Q  from the corner axis. Because the magnitude of the gradient of 
brightness  is maximal at the edge points, as Q  departs from the edge,  
decreases. If Q  moves along the line that is parallel to the edge, then g  remains 
constant. Introduce a coordinate system whose origin lies at the theoretical corner 
point. Let its x-axis and y-axis coincide with the corner axis and with the edge (see Fig. 
4.11). View temporarily 

(Q)g ( )Qg
( )Q

( )QCorr  as a continuous function and compute its 
derivatives. It follows that: 

 
( ) ( ) ( ) ( ) ( ) ( )

y
Q

Qg
y

QCorrandQ
x
Qg

x
QCorr

∂

∂
=

∂
∂

∂
∂

=
∂

∂ 2
2 , ϕ
ϕ

σ
σ                 (4.29) 

 
We have ( ) 0/2 =∂yQϕσ

( )/ =∂∂= yQCorr
( )Q

0≠x 2
ϕσ

∂  at the points of the corner axis, and ∂  at 
the edge points. Therefore, with respect to Eq. (4.29), we have 

 at the corner point. It can be easily seen that the 
value of Corr  at the corner is a maximum. At a non-corner point, we 
have  and/or ∂ . Consequently, taking into account that 

( ) 0/ =∂xQg

( ) 0/ ∂∂ xQCorr

( )/ ∂∂ Qg Q( ) 0/ ≠∂y

( ) ( ) 0,0 2 >> QQg ϕσ . We can see that ( ) 0/ ≠∂∂ xQCorr  and/or ( ) 0/ ≠∂∂ yQCorr , 
which implies that there exist no other points except the corners giving the maximum 
of .  ( )QCorr
 
4.3 Algorithm realization 
4.3.1 Computation procedures 

The algorithm of Sojka corner detection is realized in the following way. First the 
value of the magnitude and the direction of the gradient of brightness (  and ( )Xg

( )Xϕ  are calculated for all the image pixel points. The derivatives 
( )Xb ( ) yXbx ∂∂∂ /,/∂  are replaced by the differences, which are computed using two 

masks: 
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and  

 
A pixel point is selected as a candidate for corner when the magnitude of the 

gradient of brightness is greater than a predefined threshold. Then the selected 
candidates are checked by determining the values of ( )Qϕµ , ( )Qϕσ ,  and ( )QCorr
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( )QAppar . Finally, the candidates at which the value of ( )QCorr  exhibits its local 
maximum and at which the value of ( )Qϕσ  and ( )QAppar  are greater than chosen 
thresholds is decided as a corner. 

( )Qϕµ
Appar ( )Q

( )XPSG

( )Xwr

dp

ψ
( )Yd=

β

( )( )Yb∆

(AngQP ∆

( )Xϕ∆
( )Qϕ

( ) |Xϕ =∆
( )XPSG

( )
( ) ( )( )





Y ∆≤

other

X0 ϕ



p

Qg
Y

( )QΩ∈

 
4.3.2 Explanations of value estimations  

There are some explanations about computing the value of , ( )Qϕσ , Corr  
and . The neighborhood 

( )Q
( )Q Ω  is square-shape and centered at pixel Q . 

The size of Ω  is always defined within a limited value, but it is not so crucial 
since the effective size of Ω  is always determined adaptively by the values of 

. During calculating, the probability density  and the weight function 
, the two functions are all fixed estimation functions. We chose  to be the 

normal distribution and w  to be a Gaussian distribution. Both distributions are 
with zero means and the values of 

( )Q
( )Q

( )X
dp

r

σ  are left as the parameters of the algorithm. In 
practical, ( )ξ  is an unknown function and we can not use the Eq. (4.2) and Eq. (4.4) 
to determine the value of ( )( )Yb∆−1β . With the respect of our corner model, 
we use the estimation value to get it: 
 

( )( ) ( )
( ) ( )QgYg

YbYb
+

∆
≈∆− 21                                                                        (4.30) 

 
Using Eq. (4.30), we can easily get BrQP  through Eq. (4.16). But for 

getting the result from Eq. (4.19), we still need to obtain the probability 
( )Xϕ . From Eq. (4.18), we can see that it is necessary for us to get 

 beforehand. Until now we do not know the exact value of corner axis 
direction of Q , we can use the approximation  for it. Then we get 

( ) ( )X |Q ϕϕ −  and put this value together with the estimation value of Eq. 
(4.29) into Eq. (4.20), we can finally obtain the value of  from Eq. (4.31): 

)
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spoXP
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bpXP

SG

ddQXYSG

int0

2/2min π     (4.31) 

 
Once the value of  are available for all (XPSG X , the value of ( )Qϕµ , ( )Qϕσ , 

 and  can be easily computed using Eq. (4.22), Eq. (4.23), Eq. 
(4.24) and Eq. (4.25). 

( )QCorr ( )QAppar
)

 
4.4 Parameter optimization  
In the Sojka corner detection algorithm, we must define some parameters beforehand. 
Now we will give the definitions of these parameters in details and show how we 
specify these parameters.  
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halfPsgMaskSize The half of the mask size. The size of the neighborhood Ω  is 
(halfPsgMaskSize*2+1). Generally, the bigger mask size gives better detection 
results but the computation time may be longer. The usual values of 
halfExtMaskSize vary from 4 to 7. So the size of neighborhood Ω  should 
between 9  or 15  pixels. From the test experience, we concluded that this 
parameter has not so much effects on the detection results. So we will not change 
this parameter and fix it on value 4 for faster computing speed.  

9× 15×

 
corrAngleThresh The threshold for the angle of break of the boundary at the corner 

point. When a pixel point at which the boundary is broken more than this 
threshold may be accepted as a corner. Usually the value is approximately 0.5 
(an angle size in radians) considering the noises in the image. This value is more 
or less stable for all images. We should choose a higher value of this threshold if 
we use small masks, because the precision of measuring the angles is generally 
lower than in bigger masks. Because we just want to detect screen corners, which 
are big corners in the images, even considering the distortion cases, the corner 
angel will not be too small. For this reason, we fix this parameter on the value of 
0.5 (about 30 degree).       

 
noiseGradSizeThresh The threshold for the size of the gradient of brightness. All the 

pixel points with gradient magnitude smaller than this threshold value will be 
considered as noise. So if we increase the threshold, it means some less obvious 
corners will be missed and if we decrease this threshold, more unobvious corners 
will be detected but the computation time will be longer than higher threshold. 
Normally this threshold should be set between 0.04 and 0.08 of image range (the 
difference between the maximum and the minimum value of brightness in the 
image). So consider the image noise level and the type of corner we want to 
detect, we choose higher value for the white screen corner detection and lower 
value for black screen corner detection, for the reason that the quality of the 
white screen images is better than the black screen images. This parameter makes 
a very big effect on the final detection results and also the detection speed, so 
this parameter need to be specified very carefully according to the quality of the 
images. We will show the different detection results of the Sojka corner detection 
algorithm with changing this parameter in the test part of this chapter.           

 
corrApparenceThresh The threshold for the apparent level of corners. The apparent 

level combines the contrast, size and the shape of the possible corner area. 
Usually this threshold is set between 0.0 and 5.0 according to the image quality, 
higher value can be chosen to detect more corners than the lower value. This 
parameter does not affect so much on the detection speed, but obviously affect 
the detection results. We will change this parameter in our test part and show this 
effect.     

    
sigmaD The σ  value for the normal distribution of the probability density . 

Obviously, this value should be less than 1.0. Values between 0.7 and 1.0 are 
optimal. This parameter is not so crucial for the algorithm and usually we set this 
value to 0.75 according to the test experiences that we have done during 
implementation of this algorithm.  

dp
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sigmaR The σ  value for the Gaussian expression of the weight function w . The 
weights depend on the distances from the candidates in the neighborhood . So 
considering the value of halfPsgMaskSize that we have chosen, we choose 2.5 as 
its value.  

r

Ω

 
halfExtMaskSize This is the size of the area in which it is checked whether the 

response function Corr  has its maximum at a pixel point. If there are not so 
many multiple detection problems appear, it can be set to 1, else we can set to a 
higher value, 2 or 3, but finally it should not extend the value of 
halfPsgMaskSize. Here, we set this parameter to 2, because the possible multiple 
detections could make our Candidates-Winners more difficulties to make the 
decision on choosing between these multiple detection results. 

()

 
4.5 Algorithm tests  
From the comparing result in section 4.1, we have already seen the outstanding 
accuracy rate performed by Sojka corner detection algorithm comparing with other 
algorithms. In order to know the real capability of this algorithm for our UI-Wand 
system, we use some real images captured by the UI-Wand to do the test. Because in 
the algorithm, there are a lot of parameters that affect the detection results and they 
must be specified beforehand. From the last section, we already see the main usage of 
these parameters and the normal values that can be set to them. But actually only two 
of them (noiseGradSizeThresh and corrApparenceThresh) show very big influence on 
the results. So in the test, we will just change these two parameters and show their 
effects. The parameters and their value ranges are described in Table 4.3, Through the 
tests we want to know three main capabilities of the algorithm: the accuracy rate, the 
stability and the speed. All the tests are running under Linux system and on an Intel 
Pentium IV 2.2GHz computer. We got all the test results from our UI-Wand 
application Error Analysis utility, which will be introduced in Chapter 11.   

Table 4.3: Test parameters.  

No.  Parameter name Changing range 
1 halfPsgMaskSize 4 (fixed) 
2 corrAngleThresh 0.5 (fixed) 
3 noiseGradSizeThresh 3~16 (variable) 
4 corrApparenceThresh 0-5 (variable) 
5 sigmaD 0.75 (fixed) 
6 sigmaR 2.5 (fixed) 
7 halfExtMaskSize 2 (fixed) 

 
4.5.1 Accuracy test 

In order to know the real detection accuracy by the Sojka corner detection algorithm, 
we designed this accuracy rate test for the algorithm. In the test, we chose two 
different type of screens: a PHILIPS brilliance 109MP white computer screen and a 
PHILIPS brilliance 180P2 black LCD computer screen (see Fig. 4.12). Each sequence 
has 30 continuous captured images. For each sequence, we changed the value of the 
two most crucial parameters, and see the differences of the detection number, the four 
screen corners detection rates, the average variance of the detection screen corners to 
the real corners and the speed of running the algorithm.     
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(a)                                                                    (b) 

Figure 4.12 Two different screens we use to do the test. A PHIILIPS brilliance 109MP white 
computer screen. A PHILIPS brilliance 180P2 black LCD computer screen. 
 
4.5.1.1 White screen sequence test 

Test goal 
In this test, we chose a white frame sequence, which contains 30 images (see 
Appendix A) and we changed two of the parameters in Sojka corner detection 
algorithm to see the effects of these parameters on the algorithm. We must mention 
that our program just annotates less than 250 corners in the test images, if the 
algorithm detects more than 250 corners in one image, no corner will be annotated 
and output (the sign “-“ in Table 4.4 stand for this case). The value of parameter 
values used in this sequence and test result are shown in Table 4.4, where 
“noiseGradSizeThresh” is set from 8 to 16 for the reason that in this range at least 3 
screen corners can be detected and the number of corners detected is acceptable. The 
result image example is shown in Fig.4.13. 
  
Test result 

 

            
(a)                                                                       (b) 

Figure 4.13: A test result example of Sojka corner detection algorithm with 
noiseGradSizeThresh =14 and corrApparenceThresh =5.  (a) Original image. (b) Detection 

results. 
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Table 4.4: Accuracy rate test results (Test sequence see Appendix A). 

 noiseGradSizeThresh corrApparenceThresh CDN SCDR ADV Speed 
1 8 1 - - - 196.33
2 8 3 243 94.67% 1.82 176.00
3 8 5 197 86.67% 1.78 190.33
4 10 1 233 93.50% 1.80 144.33
5 10 3 209 90.00% 1.84 152.67
6 10 5 140 77.50% 1.82 162.33
7 12 1 223 87.50% 1.77 123.33
8 12 3 156 83.33% 1.85 130.33
9 12 5 102 71.67% 1.78 121.67
10 14 1 179 90.83% 1.73 108.67
11 14 3 119 80.00% 1.86 104.67
12 14 5 73 63.33% 1.76 101.00
13 16 1 144 84.17% 1.82 87.33 
14 16 3 92 73.33% 1.97 86.67 
15 16 5 52 53.33% 1.74 87.33 
*CDN: Corner Detection Number 
 SCDR: four Screen Corners Detection Rate 
 ADV: Average Detection Variance 
 Speed: algorithm processing speed in millisecond 
 

Test analysis 

From the white screen test results, we can see the parameter “noiseGradSizeThresh” 
affect the detection accuracy and the detection speed in such a way: when the value is 
increasing, the corner detection number, the screen corner detection rate and detection 
speed will decrease; but the average detection variance will be around a constant 
value.  

The parameter “corrApparenceThresh” does not affect the detection speed so 
much compared with “noiseGradSizeThresh”, but it has obvious influence on the 
corner detection number and screen corner detection rate, the higher values make 
worse result than the lower values. The average detection variance is still stable. 

Considering the above situations, we choose a best parameters resolution for this 
sequence (light gray line shown in Table 4.4), which has best combination of the 
detection accuracy rate and the detection speed.      
 
4.5.1.2 Black screen sequence test 

Test goal 

The same as the white screen test, in this test, firstly we chose a black LCD screen 
sequence for test (see Appendix B). Then we changed two of the parameters in Sojka 
corner detection algorithm to see the effects of the parameter to the detection accuracy 
of the algorithm. The value of parameters used in this sequence and test result are 
shown in Table 4.5, where “noiseGradSizeThresh” is set from 3 to 11 for the reason 
that in this range at least 3 screen corners can be detected and the number of corners 
detected is acceptable. The result image example is shown in Fig.4.14. 
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Test result 

 

             
(a)                                                                       (b) 

Figure 4.14: Test result example of Sojka corner detection algorithm with 
noiseGradSizeThresh =5 and corrApparenceThresh =5. (a) Original image. (b) Detection 

results. 

 
Table 4.5: Accuracy rate test result (test sequence see Appendix B).  

No. noiseGradSizeThresh corrApparenceThresh CDN SCDR ADV Speed
1 3 1 151 96.67% 2.05 144.67
2 3 3 120 96.67% 2.05 141.33
3 3 5 100 96.67% 2.08 158.00
4 5 1 103 96.67% 2.06 116.67
5 5 3 109 96.67% 2.06 115.33
6 5 5 75 100% 2.04 113.67
7 7 1 85 96.67% 2.05 97.67
8 7 3 74 100% 2.04 94.33
9 7 5 53 98.33% 2.05 95.67
10 9 1 74 95.83% 2.02 83.09
11 9 3 60 99.17% 2.02 83.00
12 9 5 38 95.00% 2.01 81.56
13 11 1 72 97.50% 1.97 91.67
14 11 3 47 95.83% 1.96 72.33
15 11 5 29 90.00% 1.93 73.67
*CDN: Corner Detection Number 
 SCDR: four Screen Corners Detection Rate 
 ADV: Average Detection Variance 
 Speed: algorithm processing speed in millisecond 
 
Test analysis 

The same with the former test, from Table 4.5, we can see the parameter 
“noiseGradSizeThresh” and the parameter “corrApparenceThresh” affect the 
detection results in the same manner.  
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We also choose a best parameters resolution for this sequence (light gray line 
shown in Table 4.5), which has best combination of the detection accuracy rate and 
the detection speed. 

 
4.5.2 Stability test 

Test goal 

Through this test, we want to know the stability of the Sojka corner detection 
algorithm. Because from some tests among different corner detectors (in [Soj03]), we 
notice that a lot of algorithms are not stable. When the same images are rotated, the 
detection results can be very different. In our UI-Wand system, rotation often happens, 
so the stability of the corner detector is a very important criterion for evaluating the 
performance of the algorithm. Here, we test this by rotating each image in the black 
screen sequence with different angles. We use 7 different rotation angles: 0 , 30/π , 

20/π , 12/π , 8/π , 4/π  and 2/π  for testing (see Fig.4.15). The test parameter is 
selected according to the best parameter combination getting from black screen 
accuracy rate test. The test result is shown in Table 4.6.  
 
Test result 

 
Figure 4.15: Result example for stability test (the rotated angles are along the order: 0, 30/π , 

20/π , 12/π , 8/π , 4/π , 2/π ). 
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Table 4.6: Stability test (test sequence see Appendix B). 

noiseGradSizeThresh corrApparenceThresh Rotated angle CDN 
0  83 
30/π  78 
20/π  78 
12/π  78 
8/π  81 
4/π  83 

5 5 

2/π  83 
*CDN: Corner Detection Number 
 
Test analysis 

From the corner detection number, we can see the good stability of Sojka corner 
detection algorithm. No matter what angle the image will be rotated the detection 
result will not be affected. This capability also guarantees the stability of our UI-
Wand application. 
 
4.5.3 Sequence test 

Test goal 

This test is done on the same two screen sequences. From the test results, we want to 
see the different parameters set for different sequences, the screen corner detection 
accuracy rate, detection variance and processing speed of the Sojka corner detection 
algorithm. We chose the best combination of the parameters from the former tests. 
The test result is shown in Table 4.7.  
 
Test result 

 
Table 4.7: Sequence tests (test sequences see Appendix A and Appendix B). 

Parameter name Black-screen 
sequence 

White-screen 
sequence 

noiseGradSizeThresh 5 14 
corrApparenceThresh 5 1 
Detection result   
Left_Top corner detected rate 100% 100% 
Right_Top corner detected rate 100% 100% 
Left_Bottom corner detected rate 100% 100% 
Right_Bottom corner detected rate 100% 63.30% 
Screen corner detected rate 100% 90.83% 
Left_Top corner detected variance 1.96 1.76 
Right_Top corner detected variance 2.54 2.3 
Left_Bottom corner detected variance 1.59 1.43 
Right_Bottom corner detected variance 2.07 1.41 
Screen corner detected average variance 2.04 1.73 
Speed (in millisecond) 127.33 108.67 
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Test analysis 

From Table 4.7, we can see that in different frame sequences the parameter could be 
set very differently according to the quality of the processed images. The black screen 
sequence are more blur than the white screen sequence, so the “noiseGradSizeThresh” 
must be set smaller. So the value of  “corrApparenceThresh” are set higher in the 
black screen sequence test because we only want to detect large corners and make the 
corner detection number as few as possible for real-time processing. But for the white 
sequence test, we do not consider the real-time problems, so we only choose the 
parameters with a high accuracy rate. Both parameter selections for these two 
sequences are based on the test results from section 4.6.1. 
 
 
4.6 Conclusions 

The test result shows that for the whole black screen sequence, the four screen 
corners can be accurately detected by the algorithm with a fast detection speed. As to 
the white screen sequence, the algorithm can detect three corners correctly, but always 
makes mistake in detecting the fourth corner (Right Bottom corner). This problem is 
caused by gray level images. In order to accelerate the speed of the algorithm, in 
reality we run Sojka corner detection algorithm on gray level image. By discarding 
color information, we can get a three times faster processing speed of the algorithm, 
which let our final system reach the real-time requirement. But the problem it brings 
is that it will make some inaccurate detection when the pixels with different color 
have the same values in gray. The missing Right-Bottom corner is just this case. From 
Fig. 4.17 we can see that there is a light blue tools bar on the bottom of the display on 
the screen. Though we can easily observe that it is different with the gray color of the 
screen border, if transfer this light blue tools bar to gray level then it is the same with 
the screen border. We tried to avoid this problem by using Sojka corner detection 
algorithm on color images, but the test results proved that the speed got much 
decrease as we expected, which heavily affect its real-time processing feature, thus in 
the final system, we still use it for gray level images. 
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5  
Corner Classification 

With a lot of screen corner candidates detected, what we need to do in next step is to 
find out the real screen corners among them. As we already introduced in Chapter 3, 
we will use a classification model to do this job. Considering screen corners as an 
object and use lots of samples to train a model then let it decide whether a corner is a 
screen corner or not. Among classification models, k-Nearest Neighbors and Support 
Vector Machine are two popular methods suitable for object classification problems, 
but both of them have some disadvantages, therefore, we choose another new model, 
Relevance Vector Machine, to finish the classification task in this step. In section 5.1, 
we compare some existing classification models, and then in section 5.2 we start 
introducing the theory of RVM models. In section 5.3 we describe the important step 
before classification and feature extraction. In section 5.4 we discuss the sample 
dataset selection, which affects the performance of RVM very much. Finally our 
conclusion is drawn in section 5.5 
 
5.1 k-NN and SVM models for classification 
Before understanding RVM, let us recall k-NN and SVM, especially SVM, upon 
which RVM is based. 

 

Figure 5.1: Linearly separa
separable case by consider
vectors. The misclassified s

k-Nearest Neighbors
pattern recognition. For d
just to calculate the radiu
 
ble case for SVM with ignoring the red-cross point. Linearly non-
ing the red-cross point. The points with circle around are support 
ample, red cross point is a support vector in non-separable case.
 (k-NN) algorithm, is a simple nonparametric technique of 
ensity estimation, its principle is very easy. The key issue is 
s of the hyper sphere, which include a certain number of 
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nearest neighbors inside it [Web02]. Then it can define the density of the point (the 
center of the hyper sphere) and realize classification by classifying the current point to 
the class that has most points in this sphere. In spite that k-NN can finish a general 
classification task [Rit75], but the exhaustive k-NN search requires intensive 
dissimilarity computations, particularly for a large training set. So people often seek 
help for another classification model, SVM. 

To describe SVM [Var95][Col95] up one sentence, given a set of feature vectors 
which belong to either of two classes, a SVM finds the hyperplane leaving the largest 
possible fraction of points of the same class on the same side, while maximizing the 
distance of either class from the hyperplane. This hyperplane is called Optimal 
Separating Hyperplane (OSH) (see Fig. 5.1), which minimizes the risk of 
misclassifying not only the examples in the training set but also the examples of the 
test set. There are several cases in SVM, namely the linearly separable case, the 
linearly non-separable case, and the non-linearly case.  
 
z In the linearly separable case (see Fig. 5.1), we assume that there is a set of 

training samples , , and the target values are , 
, which indicate the class membership of x . Then if hyperplane 

can separate these sample points, then we can express it as: 

lxxx ,,, 21 K d
i ℜ∈x lyyy ,,, 21 K

{ 1,1 −∈iy
b+wx

}

}

i

 
1)( ≥+ by ii wx ,                                                                     (5.1) { li ,,1K∈∀

 
According to statistical theory, OSH should not only be a separable hyperplane, 
but also maximize the margin. So the problem is to minimize w  in 

w
w 2),( =bd  with in subjected to the constrain of Eq. (5.1). Based on Lagrange 

multipliers method, the problem can be transformed to minimize: 

∑∑ −
jii

i
,2

1 αα ⋅ jijiji yy xxα , with in subjected to the constrain, 0≥iα and 

, . Every Lagrange multiplier is associated with one 

sample in the training set. And those samples whose 

∑ =
i

ii y 0α { }li ,,1K∈∀

0>iα , are called support 
vectors. The final classification function we obtained is: 

 

)( *xf = ) = sgn(sgn( * by
N

i
iii +⋅∑ xxα )* b+wx ,                                         (5.2) 

 
where N is the number of support vectors.  

 
z For the linearly non-separable case, we cannot use the optimization method and 

SVM introduced an error term and the problem turns to 
minimize: )(2 ∑+

i
iC ξw . In this case, support vectors are the points on the 

hyperplane, and the samples were classified incorrectly (see Fig. 5.1).  
 
z Another case in SVM is that the problem is non-linearly case. And to deal with 

this, SVM utilizes the kernel function to solve the transform from non-linear to 
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linear. By introducing a kernel function, the new classification function 
changes to: 

 

)( *xf = =sgn(             (5.3) ) ),(
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N
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In the SVM, the kernel function cannot be used arbitrarily. The kernel function 
must be a function satisfying Mercer’s condition, such functions as, polynomial 
function , Gaussian function , and etc. pK )1(),( += xyyx

22 2/||)( σyxyx, −−= eK
 

[Pon98] shows that SVM is a very good model for 3D object recognition. After 
test, SVM get an extremely high recognition rate and another important result is that 
SVM can even recognize the object with some noise or distortion. In addition, a lot of 
papers prove that SVM is suitable for other classification cases such as face 
recognition [Hei03] and tracking problem [Avi01] [Wil03]. So if there were no better 
models, we would choose SVM as our corner classification model.  
 
5.2 Relevance vector machine and sparse Bayesian learning 
A big disadvantage of SVM is that it is a hard classification method, which cannot 
supply a probability output for the classification results. For some cases, maybe it is 
not important, but for some projects the probability value for a classified target will be 
very helpful information. So there are some papers that add some calculation steps 
into SVM to get a score for the classification, but they are not based on Bayesian 
theory. To solve this problem, Tipping give us an alternative model to SVM, which is 
called RVM, Relevance Vector Machine [Tip01]. 

RVM is a new classification model based on Bayesian framework. The model 
utilities a form that is identical to SVM. The differences are that by exploiting a 
probabilistic Bayesian learning framework, the author derives accurate prediction 
models which typically utilize dramatically fewer basis functions than a comparable 
SVM while offering a number of additional advantages, which include the benefits of 
probabilistic predictions, automatic estimation of parameters, and the facility to utilize 
arbitrary basis functions, which are not necessary to be ‘Mercer’ kernels. 
 
5.2.1 RVM regression model 

So let’s introduce RVM from the regression model, upon which the classification 
model is based.  

Similar to SVM, we are given a set of examples of input vectors {  along 
with corresponding targets , the latter of which might be real values (in 
regression) or class labels (classification). From this ‘training’ set we wish to learn a 
model of the dependency of the targets on the inputs with the objective of making 
accurate predictions of t for previously unseen values of x.  

N
1nn } =x

N
nnt 1}{ =

Typically, we base our predictions upon some function y(x) defined over the 
input space, and ‘learning’ is the process of inferring this function. The popular y(x) is 
that of the form: 

∑
=

=φ=
M

i
iiwy

1

T)();( φ(x)wxwx ,                                                              (5.4) 
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where the output is a linearly weighted sum of M, generally non-linear and fixed, 
basis functions ( ) ( )T

21 )(),...,(),( xxxx Mφφφ=
T

21 ),...,,( Mwww=w
φ . The objective is to estimate good 

values for parameters .  
In regression case, the author follows the standard probabilistic formulation and 

assumes that the targets are samples from the model with additive noise: 
 

nnn yt ε+= );( wx ,                                                                                 (5.5) 
 
where nε  are independent samples from some noise process, mean-zero Gaussian 
with variance . Thus  and the function y is Eq. (5.4). 
Tipping also defined his basis function as: 

2σ )),(|()|( 2σnnn ytNtp xx =
()(i Kx )ixx,≡φ , then he got the likelihood 

of the complete data set as: 
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The next step is to do the maximum-likelihood estimation for w, which is to 
maximize Eq. (5.6). This process is identical to the least-squares solution. We can get 
this by noting that minimizing squared-error is equivalent to minimizing the negative 
logarithm of the likelihood: 
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The second term in Eq. (5.7) explain everything. But if we only do this, we 

would expect over-fitting by maximum-likelihood estimation of w and . In least-
square solution, people always use a weight penalty term to avoid this, but in RVM 
they use another method to finish this thing, which is RVM key feature. Tipping 
adopts a Bayesian perspective, and constrains the parameters by defining an explicit 
prior probability distribution over them: 

2σ
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with α  a vector of N+1 hyperparameters associated independently with every weight. 
To complete the specification of this hierarchical prior, he also defined the prior 
distribution for and , which are two Gamma distributions:  2σ α
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with  and where 2σβ ≡
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ααα baa ebaba −−−Γ= 11)(),|Gamma(                                                     (5.10) 
 

with Γ , “gamma function”. ∫
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Figure 5.2: Gamma distribution. (a) Gamma distributions with 3 different parameter pairs. (b) 
The same distribution over logarithmic scale. 
Parameters a, b and c, d control the Gamma distribution, in order to let it generate 
n uniform hyperpriors, a, b, c, d are set to a very small value, so that they got flat 
on-informative priors (see Fig. 5.2), which means that the “scales” α and are 
qually likely thus predictions are independent of linear scaling of both t and basis 
unction outputs, i.e. results do not depend on the unit of measurement of the targets. 

2σ

 This formulation of prior distributions is a type of automatic relevance 
etermination (ARD) prior [Mac94]. Using such priors in a neural network, individual 
yperparameters would typically control groups of weights. The final tests results 
rove that using a broad prior over the hyperparameters allows the posterior 
robability mass to concentrate at very large values of some of these α variables, with 
he consequence that the posterior probability of the associated weights are 
oncentrated at zero. Although introducing more parameters to the model look like 
ake more complex to it, from a Bayesian perspective, the author correctly integrate 

ut all of those parameters or approximate accurately, so that this theory is not a 
roblem from a methodological perspective. So now we should want to know, how 
oes RVM integrate out those noisy parameters and what is the approximation 
rocedure.  

Let’s consider, having learned from the training values t, how we make a 
rediction for data t  given a new input datum x . By using classical framework, 
east-square method, after getting learned quantity W  we can predict it by 

. By MAP (Maximum a postprior) Bayesian framework, we can figure 
ut quantity and then make prediction by p . But 
ipping believe that they are not “true Bayesian”. The true one is to predict by 

with learned quantity . 
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In general, for any model, if we wish to predict t  given some training data t, 

hat we really want is: , and the distribution is the following expression: 
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In Eq. (5.11),  cannot be computed analytically, so we must look 

for an effective approximation. From Bayes’ rule, the posterior over all unknowns 
given the data is: 
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But it cannot be computed since we cannot perform the normalizing integral: 
 

∫= 222 ),,(),|()( σσσ dddp,tpp αwαwαwt                                         (5.13) 
 
Therefore the author deposes the posterior as: 
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Since  is a convolution of Gaussians, the first 
term in Eq. (5.14) is directly computable by Bayes rule: 
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where the posterior covariance and mean are respectively: 
 

12 )( −− += AΦΦΣ Tσ ,   
tΣΦµ t2−= σ ,  

with ),,,(diag 10 Nααα K=A                                                                 (5.16) 
 

For the second term of Eq. (5.14), the hyperparameter posterior , of 
which the value have to be approximated. By a delta-function at its mode, we can get 
its most-probable values α . But actually, we don’t need the entire mass of the 
posterior be accurately approximated by the delta-function. For predicative purposes, 
rather than requiring , we only need 

)|,( 2 tα σp
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So the relevance vector learning becomes the search for the hyperparameter 
posterior mode, with respect to α  and )()(),|()|,( 222 σσσ pppp ααttα ∝ β . For 
the case of uniform hyperpriors, the author just maximized the term  
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with respect to and . 2σ α

Because we cannot maximize Eq. (5.18) in closed form, so we have to do some 
iterative re-estimation. For α , differentiation of (5.18), equating to zero and 
rearranging, we got  
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where Σ  is the i-th diagonal element of the posterior weight covariance from (5.16). ii

And for the noise variance , differentiation leads to the re-iteration: 2σ
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where N is the number of data examples. 

Then for the algorithm, it will update them repeatedly together with Σ  and µ  
from (5.16), until a convergence criterion has been satisfied. During this process, lots 
of elements in α  tend to infinity, which implies that  becomes highly 
peaked at zero, so that the corresponding basis functions are pruned and sparsity is 
realized. Those vectors x  for which  is not zero are called relevance vectors. 
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Finally, the predications become simple. Having found the maximizing values 

, we can now compute predications by: 2, MPMP σα
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Because both terms in the integrand are Gaussian, thus the result can be readily 

computed to be: 
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5.2.2 RVM classification model 

For the classification case, RVM uses an essentially identical framework as detailed 
for regression in the previous section. They use a link function to account for the 
change in the target quantities. But by this they cannot integrate out the weights 
analytically, so have to introduce another approximation step in the algorithm. 
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For two class classification case, it is desired to predict the posterior probability 
of membership of one of the classes given the input x. They follow statistical 
convention and generalize the linear model by applying the logistic sigmoid link 
function )1(1)( yey −+=σ  (see Fig. 5.3) 
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Figure 5.3: Sigmoid link function used in classification model. 
x) and adopting the Bernoulli distribution for , so the likelihood is: )|( xtp
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in this model, we don’t need noise, or we may assume that the noise is already 
ded in the link function, which can be seen as a probability alternative.  
But with such a model, we cannot, like regression case, integrate out the weights 

ytically, so are denied closed-form expressions for either the weight posterior 
 or the marginal likelihood . Therefore, we used an approximation 

edure below used by [Mac92], which is based on Laplace’s method. 
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tion of the mode of the posterior distribution. Since 
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 )};({ wx nyσ . This procedure is standard and we may use 2nd-order Newton 
od to do that. But in [Tip01] they adapted another algorithm, “iteratively-
ighted least-squares” [Nab99]. The quantity Eq. (5.25) is differentiated twice to 
 the hessian matrix: 

)(|),|(log T ABΦΦαtw Www +−=∇∇
MP

p ,                                           (5.26) 

re ),,,( 21 Ndiag βββ K=B  is a diagonal matrix with )}]({1)}[({ nnn yy xx σσβ −= . 
After negating and inversing this Hessian matrix, we get the covariance Σ  for a 

ssian approximation to the posterior over weights centered at .  MPw
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and using the fact that 0|),|(log =∇ , we can get: 
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Then using these two statistics Σ  and w , the hyperparameters α  are updated 
using the same expression Eq. (5.19) with regression case. Repeat this procedure until 

 values converge then w  is what we expected and many elements are zero, so 
that the sparsity is accomplished (see Fig. 5.4).  
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gure 5.4: Comparison of tests result of SVM (a) and RVM (b). From the figures we can see
ery clearly that with the same effective decision boundary, RVM has much less vectors to 

describe it. It is much sparser than SVM. 
3 Multi-class classification 

 the current theory, RVM can classify the case with two classes, here we discuss 
issue how it can classify more than two classes, which is important for our screen 
ner detection since we have more classes (different types of screen corners) need to 
lassified (left-top, right-top, left-bottom and right-bottom screen corner).  
Generally, there are two strategies to handle multi-class task with two classes 

sification model. The first one is “pair-wise”. You need to construct a list of RVM 
dels, each of RVM models classify between a pair of classes, so for K classes, we 
d  RVM models. The other strategy is “one-versus-others”. That 
ns you need K RVM models, and each of them is being able to discriminate a 

ticular class with other classes.   

2/)1( −KK

The first one looks more accurate than the second one, but it needs more RVM 
dels. The second one needs less RVM models but seems to be less accurate. But 
s in [Ard00] did not show the advantage by using “pair-wise”. It still cause a lot of 
classification cases in their experiments. So in our final system, we choose “one-
sus-others” for our case. Due to we have four screen corners types need to be 
sified and one non-corner class, by using “one-versus-others”, we construct 5 
M models in a list, they are “left-top to others”, “right-top to others”, “left-bottom 
thers”, “right-bottom to others” and “non-corner to others”, in every classification, 
calculate the probability outputs in these five RVMs and choose the class with the 
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biggest probability value as the final classification result. After testing, this strategy is 
proved to be a good method and give a real-time speed.  
 
5.2.4 Optimization of parameters in a kernel function 

After description in sections 5.2.2 and 5.2.3, we already learned the regression model 
and classification model in RVM. But now we still left one question unanswered. That 
is how to choose a kernel function for the current dataset, and how to optimize the 
parameters within the function. There are many kinds of kernels we can utilize, below 
are the two common kernels: 
 
Gauss Kernel function: 
 

)exp(),( 22
nmnm rK xxxx −−= −                                                          (5.29) 

 
Laplace Kernel function: 
 

)exp(),( 22
nmnm rK xxxx −−= −                                                       (5.30) 

 
In the paper [Tip01], they mentioned that very useful way to choose kernel and 

parameters is to use k-fold cross-validation method, and they also use it to choose 
their kernels in testing. But by RVM theory, there is another way to choose the value 
of parameters and even can extend and optimize more parameters associated with 
individual input variables. The problem comes from a two-dimensional function: 

, which is based on 100 examples with additive 
Gaussian noise of standard deviation 0.1. There are two problems using both SVM 
and RVM to this data: 

21121 1.0/)sin(),( xxxxxy +=

 
z The function is linear in x , but this will be modeled rather unsatisfactorily 

by a superposition of nonlinear functions. 
2

 
z The nonlinear element, sin( , is a function of x  alone, and so  will 

simply add irrelevant ‘noise’ to the input and output of the basis functions 
and this will be reflected in the overall approximator. 

11 /) xx 1 2x

 
With these two features, both SVM and RVM are difficult to learn accurately. So 

to overcome this problem, they introduce input variables as two extra ‘functions’ This 
is achieved by simply appending two extra columns to the design matrix Φ  
containing the x  and  values, and adding corresponding weights and 
hyperparameters that are updated same to others. Another place need to modify is the 
kernel function to use new parameters

1 2x

1η and 2η . The kernel function now changes to 
be: 
 

})()(exp{),( 2
222

2
111 nmnmnm xxxxK −−−−= ηηxx                        (5.31) 

 
Keep the learning procedure identical to before, with the new kernel functions, 

finally RVM will learned exact values of 1η , 2η  and predict much more accurate.  
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So by using this method, we can get a set of optimized parameters within a kind 
of kernel function, which let users avoid using cross-validation methods to do the 
same thing. But to choose the kernel function, it seems they did not give any 
suggestions beside k-fold cross-validation method, which may be a potential research 
topic for others. In reality, considering the limited time, we did not implement RVM 
method to optimize parameters. For our corner classification case, we use 2-fold 
cross-validation to choose the kernel function, but it seems the 2-fold cross-validation 
for a small scale dataset is not accurate enough, so beside it we use an error analysis 
utility designed by us to evaluate the performance of RVM, which we will explain in 
the later sections in this chapter. 
 
5.3 Features extraction of corners for RVM 
With the theory RVM being exploited, we want to start using it to deal with a real 
problem, screen corners classification. But before the classification, there is still one 
thing we need to do. That is we need to confirm our input data x, which is the 
information we want to give the RVM for training and classification.   
 

The basic information of a sample, a corner in our case, is the pixel values of a 
sample picture (see Fig. 5.5). But if we directly use pixels values of a sample as input 
data x, then a problem will come with varying dimension. Because in reality we do 
not know how big a corner is, so we have to let RVM classify the targets with 
different size. Then that means we have to construct as many models as the number of 
different size corners we need to know, which increase the complexity of the 
algorithm. Another problem is that the larger size corner will result in a larger 
dimension x we will apply RVM. For example, if we want to use a 20 by 20 image as 
a sample window, then the dimension of x is 400, which is too big and results in 
intensive computation. 

 
Figure 5.5: A real screen corners sample. The sample window size is 20 by 20 pixels. The 

RGB color values and gray level value of a pixel is indicated right side of the figure. 

 

Therefore, we need a feature extractor that can extract a vector from a sample, 
the dimension of which need to be small and the values of which should contain 
enough features to express the sample and let RVM do the classification accurately. In 
[Ard00], the authors use KLT (Karhunen-Loeve Transform) as feature extraction 
method and got a very good result. But the problem of KLT is data dependent, since 
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its kernel is not separable. Therefore the derivation of the respective basis for each 
image sub-block requires unreasonable computational resources so the overall 
complexity of KLT is significantly high. Thus in our system, we use another 
transformation model, which has the advantages of KLT with higher computation 
efficiency: Discrete Cosine Transform. 
 
5.3.1 DCT coefficients as samples features 

The discrete cosine transform (DCT) is a technique used in the transformation block 
of an image compression procedure. It is similar to the discrete Fourier transform, 
which transforms a signal or image from the spatial domain to the frequency domain. 

Actually, what it does is to separate the image into parts of differing importance 
so that the image data is decorrelated and inter-pixels redundancy is reduced. After 
decorrelation, each transform coefficient can be encoded independently without losing 
compression efficiency. That means those coefficients can be looked as the features of 
an image, which is what we need in screen corner classification. 

Now let us see how we can get those DCT coefficients. There are two kind of 
DCT, one is for 1-dimension and the other is for 2-dimension. In image feature 
extraction, we need to use 2D DCT, but to understand its principles we start from 1D 
DCT. 

The most common DCT definition of a 1-D sequence of length N is: 
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for u=0,1,2, …, N-1. Similarly, the inverse transformation is defined as: 
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for x=0,1,2, …, N-1. In both these two equations )(uα  is defined as: 
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Figure 5.6: One dimensional cosine basis function (N=8). 
Considering only coefficient function Eq. (5.32) is useful for our problem, so for 
ater discussion we will only focus on this function. Ignoring the  and )(xf )(uα  
ponents in Eq. (5.32), given N=8, the plots of  

1...,,1,0,
2
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uxfbasis
π                                    (5.35) 

 u varying from 0 to 7, namely 8 different frequency models are shown in Fig. 5.6 
first waveform (u=0) renders a constant value, whereas, all other waveforms (u=1, 
 , 7) give waveforms at progressively increasing frequencies. These waveforms 
alled the cosine basis function.  So the coefficient can be seen as a dot product 
een a basis function and a vector of input data. If the length of input data is larger 
 N, then we can divide it into pieces of a fixed size, N. 
Another important thing need to mention here is that in each such computation 
alues of the basis function points will not change. Only the values of input data 

will change in each sub-sequence. This property is useful for us, because then we 
pre-compute the basis functions offline and then multiply with the following input 
, which reduce the computation intensity of the algorithm.  
1D DCT is suitable for processing one dimensional signal, like speech waveform. 
analysis of 2D signal, like images, we need to seek help for 2D DCT. The 
ition of 2D DCT is an extension of 1D DCT, which gives the coefficients 

tion as: 
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for u = 0, 1, 2, … , N-1 and v = 0, 1, 2, … , M-1. )(uα  and )(vα  are the same with Eq. 
(5.34) only need to note is the N now is changed to M in )(vα . 

 

With this definition, similarly we can figure out the basis functions shown in (Fig. 
5.7). It can be noted that the basis functions exhibit a progressive increase in 
frequency both in the vertical and horizontal direction. In UI-Wand system, we use 10 
by 10, 20 by 20 or 40 by 40 as sample sizes so in our case the N=M={10, 20, 40}. 

 
Figure 5.7: 2D DCT basis functions (N=8). White respresents positive amplitudes, black 

represents negative amplitude and gray represents values in between. 

 

Now the coefficients can be obtained by directly use sum of the multiplication of 
the same entries value of two matrices, one is input image data f(x,y). The other is the 
basis function value in one frequency model. Actually these coefficients are the 
weights of a particular DCT basis function. 

One thing we need to note here is that the f(x,y) can be a color function or a gray 
level function. For the former one, the function value will be a triple with R, G, and B 
values given respectively. For gray level function, the value will be the gray values of 
the corresponding pixel. In our system, although color information give more hints to 
the target. It also brings another problem that is unstable under different lighting 
condition, so we take gray level function, which means we train the RVM with gray 
sample images and also let it classify the target in gray.  

With these coefficients calculated, the image in new space is uncorrelated, and 
after quantization and entropy encoder, the image can be compressed effectively. But 
what interests us is another property it supplies. That is the effective bigger 
coefficients values are concentrated on low frequency basis functions, which means in 
reality we don’t need remember all of these coefficients, instead we only need some 
of them and they are enough to express the images without visible information lost. 
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f 2D DCT coefficients. With the coefficients calculated, the feature vector 
is obtained by selecting out the first 10 coefficients. 
important and useful for our task, feature extraction. Discarding 
e vectors, we can use DCT onto the images to get a number of 
eature vectors, and then train RVM by feeding them to it and 
 coefficients feature vector of a new image to RVM and let it 

of thumb, the first 10 coefficients in the lower frequencies are 
to represent images (see Fig. 5.8), so we extract these 10 values 
r system. 
m, we defined an interface for feature extraction algorithm and 
thm named “ROIWindowedDC”, which can give a sample 
r by utilizing DCT. In that algorithm we can choose how many 

hat basis functions we need by setting the parameters, which we 
ore detailed in Chapter 9. 

ers feature extraction 

m, we want to classify not only if it is screen corner or not, but 
ut what’s kind of corner it is. We want to know the position of 

 left-top, right-top, left-bottom, or the right-bottom. Having this 
ier for us to finally find out the screen corners by using a 
ase when we have too many corners classified as screen corners. 
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However, this kind of classification will cause a problem that is how to justify a 
screen corner when the image is rotated (see Fig. 5.9a).  
 

o
r
f
m
r
u
d
p
s

o
a

                     (a)                                          (b)                                         (c) 
Figure 5.9: Rotated corner target window position. P is the corner point detected by Sojka 

Detector, the red rectangle is target window need to be classified. (a) Do nothing with rotation. 
(b) Rotate the image then extract features of target window. (c) Rotate target window and then 

extract its features.  

 

   
(a)                                               (b)                                                  (c) 

Figure 5.10: Rotated corner target window transformation procedure. Red point is just a mark. P 
is the right-bottom pixel of target window in its coordinate, and p1, p2, p3, p4 are the pixels 

around P in image coordinate. (a) Rotated screen and with normal target window. (b) Rotated 
screen and rotated target window. (c) Zoom in rotated target window and pixel values 

transformation. 
It is easy to find a common way to deal with the rotation problem. When a frame 
f image comes in, and assume we already know if it is a rotated image and the 
otation angle in α , then we still can scan line by line in the target window to extract 
eatures by just doing a rotation transformation of α−  to the whole image. But this 
ethod brings two problems, the first one is that after doing that, there will be some 

egions without information (see the blue area of Fig 5.9b), which will result in 
seless extra works when we need to use target window scan the whole image to 
etect screen corners. Another problem is the transformation will cost time thus the 
rocessing speed will be getting slower, which is more important for us, because the 
peed is a significant performance evaluation factor in UI-Wand system. 

 

In Candidate-Winners approach we might avoid the first problem, but the second 
ne is still there. So we have to find another method to solve it. Finally we work out 
nother way to deal with the rotation problem.   
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We did not rotate the image, and instead we rotated the target window (see Fig. 
5.9c) and then scan the target window line by line in its new coordinate (see Fig. 5.10). 

The implementation of this algorithm is much simple. Given a rotation angle of 
α  degree, we can construct a rotation transformation matrix: 
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rotationT                                                    (5.37) 

 
Then we scan target window in target window coordinates line by line and for 

each pixel we calculate its new position in image coordinates by multiply its current 
coordinate with the transformation matrix. After that we use four points around it to 
interpolate its real value after rotation. This procedure is shown in Fig. 5.10c 

The four points interpolation formula we use is: 
 

αββαβαβαβα 4321 )1()1()1)(1(),( ddddd P +−+−+−−=                   (5.38) 
 
where the parameters are shown in Fig. 5.11. 

So by using this approach to
faster than the method to rotate the
to classify to whether it is a screen
corner it is as well. This helps a lot

Figure 5.

But how do we know how m
there are two ways to get this in
hardware. There is a hardware co
rotation signal frame by frame. K
rotation information in our algorith
UI-Wand then tracking it afterwar
position from where users must sta
can detect four screen corners an
algorithm we can figure out the rot
by frame we can classify the cor
problems in rotation sensor, we tak

Hereby, we did not consider
which is caused by the position of
will not cause too much problems
camera image that can be handled 
discuss in next section. 
 

 
11: Four points interpolation.  
 deal with the rotation image, the speed is much 
 image itself. Therefore not only we can use RVM 
 corner or not, now RVM can tell us which type of 
 for our final system. 
any degrees in the image rotated? In our system, 
formation frame by frame. One is getting from 
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eep receiving that signal we can easily update 
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d then by using the pointing position estimation 
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ners always correctly. In the final system, due to 
e the 2nd method.  
 other distortion of screen corners in the image, 
 UI-Wand in world coordinates. Since these angles 
, in reality, they just cause some distortion in the 
by RVM with more variant samples, which we will 
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5.4 Training sample datasets selection and tests for RVM 
Having figured out RVM model and feature extraction algorithm, now it is time to 
study how to let RVM do the real work. The key issue for the time being is to train 
RVM to a real screen corner classifier.  

In the training process, there are two problems need to solve. The first one is how 
to choose the training data set (samples). The second one is what’s kind of kernel 
should be utilized for this dataset. Both of them are the very important factors that 
will greatly affect the RVM classification rate.  

In UI-Wand system, we used 3 different ways to get different sample datasets for 
two different type screens that mentioned in Chapter 4, a PHILIPS brilliance 109MP 
white computer screen and a PHILIPS brilliance 180P2 black LCD computer screen 
(see Fig. 4.14). Then feeding these dataset to train the RVM with different kernel 
functions. After comparison, we found out the advantages of these datasets and the 
suitable kernel functions for them. The following sections will give a description on 
detailed issues. 
 
5.4.1 Manually selected sample dataset 

The first sample dataset we took is very direct. We use a web camera2 to capture a 
sequence of frames from a white screen, and then randomly select out some of them 
and then manually cut the corners of the screen by image processing tools (see Table 
5.1 for dataset specification and Table 5.2 for the samples pictures). 
 

Table 5.1: Manually selected Dataset specification. 

Dataset Specification Items Values and Description 
Type Manually Selected Dataset 
Sample Size 20 x 20 pixels 
Number of Sample Class 5 
Number of Samples 80 
Samples Distribution 10/10/10/10/40 
Class 0 Left-Top screen corner 
Class 1 Right-Top screen corner 
Class 2 Left-Bottom screen corner 
Class 3 Right-Bottom screen corner 
Class 4 Non-Corner 
 
 

Table 5.2: White screen corners samples selected manually. 

Type Screen Corner Samples 

Left-Top           
Right-Top           
Left-Bottom           
Right-
Bottom           

                                                 
2  PHILIPS Web Camera, 10 frames per second 
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Non-Corner 

          
 

One thing has to be mentioned here is, as we said in above sections, the images 
that will be operated in RVM are gray level images. Though the input frames contain 
color, before feature extraction step, we already transfer them to gray.  
 
5.4.1.1 2-fold cross-validation for evaluation 

Now we discuss the second problem. By using this dataset, which kernel function 
should we choose so that the RVM can get a high classification rate after training? In 
section 5.2.3, we mentioned that k-fold cross-validation is a common and good 
method for parameters selection. So here, we take this method to choose the function 
and parameters. In this dataset, there are 80 samples and distribution is 
10/10/10/10/40, and considering the dataset is not too big, we only use 2-fold cross-
validation, which means we separate the current dataset into two parts with equal size, 
and the distributions are the same 5/5/5/5/20. Then we use one subset as training 
dataset to train RVM, and use another one to test it, after which we change the roles of 
these two subsets then train and test again. After testing, we got the results below (see 
Table 5.3). 

In that table, the “kernels” column presents which kernel we are using, G means 
“Gaussian”, L means “Laplace”, the number after the “G” or “L” is the value of the 
parameter “r” in the kernel functions Eq. (5.35) and Eq. (5.36). LT, RT, LB, RB and 
NON items in that table, are the abbreviations presenting the five classes in the dataset, 
left-top, right-top, left-bottom, right-bottom, and non-corner respectively.  The last 
column A.E.R means the average error rates of classification, which is calculated by 
Eq. (5.37). 
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where F is the number of sub-dataset (fold number), C is the number of class in this 
dataset,  is the number of error unit in the jth class when using the ith sub-dataset 
as training set. In this case, F=2, C=5 and N=80. The value formatted at “x/y” in each 
cell of class label columns means / . 
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Table 5.3: 2-fold cross-validation table by using manually cut dataset. 

KF LT RT LB RB NON A.E.R 
G-0.5 1/0 0/0 0/0 0/0 3/7 13.75%
G-1.0 0/0 0/0 0/0 0/0 3/4 8.75%
G-1.5 0/0 0/0 0/0 2/0 3/4 11.25%
G-2.0 0/0 0/0 0/0 5/1 2/4 15.00%
L-0.5 5/0 0/0 0/0 1/0 1/2 11.25%
L-1.0 0/0 0/0 0/0 0/0 1/2 3.75%
L-2.0 0/0 0/0 0/0 0/0 1/3 5.00%
L-3.0 0/0 0/0 0/0 1/0 1/4 7.50%
 

From this table, we note that Laplace kernel function will make the RVM to get a 
more accurate classification result comparing to Gauss kernel. And the length 
parameter “r”, 1.0 gives a better performance result. But considering the dataset is not 
too big and also 2-fold might also cause the inaccurate testing result, so we use a 
visualization utility, “Scanimg” and an “Error Analysis” utility to check those RVM 
models performances in the end.  
 
5.4.1.2 Scanimg and Error Analysis utility for evaluation 

In UI-Wand system, the RVM’s responsibility is to classify screen corner candidates, 
which means given a list of corners, RVM need to tell us which ones are screen 
corners. In order to check whether RVM makes a correct decision or not and how 
accurate it is, firstly, we need to manually mark the screen corners in some images 
and see them as correct reference points. Then we let the first two steps of 
Candidates-Winners procedure run on these images, choosing candidates by Sojka 
corner detection and classifying by RVM, after which we can get RVM classification 
accuracy by comparing the results with the reference points we marked.  

But the method above is dependent on Sojka corner detections, we prefer to do 
the test only on RVM, thus we follow another way. Instead of classifying the corners 
selected, we let RVM scan the whole image completely. Fig. 3.3 shows that screen 
corner detection can be realized by sliding a target window on an image and let RVM 
classify every sample extracted by the target window. Now we do the same thing here. 
By specifying the size of the target window and step size in x direction and y direction, 
we can let target window’s movement cover the whole image, which means we will 
classify every point in the image. If we give some colors on the classification result, 
let say, red for left-top corner, green for right-top corner, blue for left-bottom corner, 
black for right-bottom corner, and gray for non-corner, then the best result after this 
scanning should be only screen corners in the image has color, the places in the rest of 
the image should be gray. But actually this was too good to be true. The scanning 
results by using different kernel functions are shown below (see Fig. 5.12).  
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(a)                                                                (b) 

 

 
(c)                                                                 (d) 

 
(e)                                                                 (f) 

 
Figure 5.12: Classification results by using RVM model with different kernel functions. (a) 

Original image. (b) RVM with Gauss-0.5 (c) RVM with Gauss-1.0 (d) RVM with Laplace-1.0 (e) 
RVM with Laplace-2.0 (f) RVM with Laplace-3.0. The color Red/Green/Blue/Black/Gray 

presents respectively, Class0/1/2/3/4. 
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From these image results generated by Scanimg utility, it is easy for us to note 
that the result by Gauss kernel is worse than the results by Laplace kernels. And 
another information we can get is the best model suggested by 2-fold cross-validation, 
Laplace-1.0 lost one screen corner (left-top). Besides this information, we cannot get 
anymore interesting stuffs by our eyes. So we have to use our Error Analysis utility to 
make analysis. Then we got the information below, the items of which are output of 
Error Analysis utility. The detailed explanations about them can be referred in 
Chapter 10. 
 

Table 5.4: Error Analysis utility for analysis of RVM models with different kernel functions. 

 LT RT LB RB NON   
KF MV CGV MV CGV MV CGV MV CGV MUR CD  WV 
G-0.5 7.07 1.68 20.22 5.32 7.62 4.23 14.42 7.44 93% 4 21.27

G-1 7.07 2.21 26.31 6.53 7.62 3.94 14.21 6.92 93% 4 21.43

L-1.0 ----- ----- 7.28 2.75 10.63 5.38 19.00 4.39 92% 3 ----- 

L-2.0 4.47 2.12 8.54 3.51 10.00 3.80 13.04 4.85 92% 4 18.39

L-3.0 4.47 2.14 8.54 4.12 10.00 3.85 13.04 4.88 91% 4 18.43

*KF: Kernel function. 
CD: The number of detected screen corners. 

  WV: The same item with “wh_V” in section 10.2.3.2 
 

From this table we can clearly compare the results generated by the RVM models 
with different kernel functions. It is obvious that we get the following information: 

 
1. Most of kernels are effective. With them RVM can detect four screen corners. 
 
2. Laplace-1.0 is not as good as in the 2-fold cross-validation evaluation. 
 
3. The clusters covering the screen corners are smaller by Laplace kernel RVM. 

 
4. The weighted geometric centers of clusters in Laplace kernel RVM are closer 

than Gauss kernel RVM. 
 

5. All the kernels got a very high misunderstanding rates, which means there are 
too many non-corners classified as screen corners 

 
6. Laplace kernels got lower whole variance (WV) finally, which is the same as 

2-fold cross-validation. 
 

In order to get more accurate results, we test these kernels on 30 images in a 
sequence (Appendix A) and got the following Table 5.5.  
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Table 5.5: Average values of Error Analysis results of scanning 30 images in a sequence (see 
Appendix A). 

RVM Error Analysis Utility Outputs 
KF RVN HCV MV GV CGV MUR CD WV 
G-0.5 18.5 70.00 14.13 7.07 4.62 93% 98% 13.08 
G-1 27.8 79.88 18.01 9.3 4.72 93% 99% 15.40 
L-1.0 21 7.06 14.97 6.73 3.93 94% 74% 6.47 
L-2.0 18.4 7.26 11.99 5.62 3.85 93% 98% 5.71 
L-3.0 27.6 6.81 12.09 5.68 3.9 93% 98% 5.72 
*KF: Kernel function. 
  RVN: The number of relevance vectors. 

CD: The number of detected screen corners. 
  WV: The same item with “wh_V” in section 10.2.3.2 
 

In Table 5.5, we ignore the corner type information and average all attributes 
values under the four corner types. In addition, we show another item, RVN (the 
number of relevance vectors) in the final model after training. The value is the 
average of the relevance vectors in five “one-versus-others” RVM models.  

The three extra information from Table 5.4 we can get are: 
 

1. All of these kernels perform very badly on HCV attribute, which means we 
cannot ensure that the points with highest probability are screen corners.  

 
2. An interesting thing comes from the relationship between GV and CGV. By 

using any kernels, the geometric center weighted by probability is closer to the 
reference point than the geometric center. That means probability calculated 
by RVM indeed is helpful and useful.  

 
3. The amount of relevance vectors in L-2.0 is the smallest, which means L-2.0 is 

more suitable for this dataset and can make RVM to get an easy convergence. 
 

By using this dataset and Laplace kernel functions, the tests results prove that the 
RVM can work in the Candidates-Winners approach. But the problem of this dataset 
is obvious that it need human to select samples, which is very inconvenient for users. 
Thus we start trying to find out other methods to get training samples automatically. 
 
5.4.2 Synthetic sample dataset 

5.4.2.1 Synthetic dataset considering contents 

If we look at Table 5.2, we can find that actually the geometric feature is very simple 
for corners. It is just a combination of a right angle and the content of screen, so we 
start thinking if it is possible to generate synthetic screen corners automatically? If we 
can automatically generate such a dataset by which the RVM can make accurate 
classification, then that will be very convenient for users since they don’t need to take 
corners samples by themselves. 

The experimental results show that this is a possible way to go. To the white 
screen, we generate our synthetic samples according to the following procedure: 
 

1. Choose a similar color to the real screen border for the color of border in 
synthetic samples. 
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2. Save the content that the screen will display. 
 

3. Extract four corners of that display then combine them with a border (with 
different size) generated automatically to form synthetic samples.  

 
Then we generate the synthetic sample dataset shown in Table 5.6 and Table 5.7 

below: 
Table 5.6: Synthetic dataset for white screen specification. 

Dataset Specification Items Values and Description 
Type Synthetic Dataset I 
Sample Size 20 x 20 pixels 
Number of Sample Class 5 
Number of Samples 120 
Samples Distribution 20/20/20/20/40 
Class 0 Left-Top screen corner 
Class 1 Right-Top screen corner 
Class 2 Left-Bottom screen corner 
Class 3 Right-Bottom screen corner 
Class 4 Non-Corner 
 

Table 5.7: Synthetic white screen samples generated automatically. 

Type Screen Corner Samples 

          Left-Top 
          

          Right-Top 
          

          Left-Bottom 
          

          Right-Bottom 
          

Non-Corner The same as Table. 4.2.4.2 
 

Table 5.8: Error Analysis utility results by using synthetic dataset for white screen in the 
sequence (see Appendix A). 

RVM Error Analysis Utility Outputs 
KF RVN HCV MV GV CGV MUR CD WV 
G-0.5 15.6 47.63 28.16 12.57 10.47 94% 99% 17.07 
L-2.0 56.2 69.88 24.41 12.00 9.09 93% 99% 18.14 
*KF: Kernel function. 
  RVN: The number of relevance vectors. 

CD: The number of detected screen corners. 
  WV: The same item with “wh_V” in section 10.2.3.2 
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By using this dataset in RVM for training, we got the results from Table 5.8 

above. This time we just write down the results of two kernel functions one from 
Gaussian, and one from Laplace, since other kernel functions will give worse results. 
From this table we can see that, although the synthetic samples get a little worse but 
the detection rate still keeps very high with G-0.5 kernel function, which means we 
can use this dataset in RVM for classification. 
 
5.4.2.2 Synthetic dataset without considering content  

There are some problems with the last synthetic dataset. The first one is that we just 
consider one display content, a windows desktop. So if the content changes, the RVM 
might give inaccurate classification. The second one is that we did not consider the 
changes of angles α  and β  (see Fig. 5.14), caused by rotated images and distortion 
by UI-wand orientation, which will also result in inaccurate classification.  
 

In the synthetic dataset for
cover all kinds of possible va
classification.  

Figure 5.14: P

       
(a)                                                                     (b) 

Figure 5.13: Classification results by using white screen synthetic dataset. (a) The result of RVM 
with G-0.5 kernerl function, (b) The result of RVM with L-2.0 kernel function. 

The rules we used to gene
 

1. Assign a list of values 
range 
 
arameters for generating synthetic corners. 
 the black LCD screen, we generate more samples that 
riant factors, so that RVM can give more accurate 

rate samples are listed below: 

for the color of the border of the screen in a reasonable 
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2. Assign a list of positions of P in a reasonable range 

 
3. Assign a list of angles α  in a reasonable range. 

 
4. Assign a list of angle β  in a reasonable range.  

 
5. Generate the samples with all possible combination of the values in those 

lists. 
 

The dataset size will affect the speed of training. So in the final system we use 
the synthetic dataset shown in Table 5.9 and Table 5.10 generated by combination of 
following values of parameters: 
 

z α  values are changed 6 degree every time from 60 to 120.  So there are 10 
samples with different angles.  

 
z β  value keeps 0 degree. 

 
z The color of border and content are randomly pre-selected from 10 real 

frames and randomly assigned to the 10 samples. 
 

z Non-corners samples are randomly select from some images by program. 
 

Table 5.9: Synthetic dataset for black LCD screen specification. 

Dataset Specification Items Values and Description 
Type Synthetic Dataset II 
Sample Size 20 x 20 pixels 
Number of Sample Class 5 
Number of Samples 100 
Samples Distribution 10/10/10/10/60 
Class 0 Left-Top screen corner 
Class 1 Right-Top screen corner 
Class 2 Left-Bottom screen corner 
Class 3 Right-Bottom screen corner 
Class 4 Non-Corner 
 
 
 

Table 5.10: Synthetic black LCD screen samples generated automatically. 

Corner Types Screen Corner Samples 

Left-Top           
Right-Top           
Left-Bottom           
Right-Bottom           
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Non-Corner           
           
           
           
           
           
 
Table 5.11: Error Analysis utility results by using synthetic dataset for black LCD screen on 30 

images of a sequence (see Appendix B). 

RVM Error Analysis Utility Outputs 
KF RVN HCV MV GV CGV MUR CD WV 
G-0.5 4.4 36.94 5.38 3.47 2.57 84% 100% 6.65 
*KF: Kernel function. 
  RVN: The number of relevance vectors. 

CD: The number of detected screen corners. 
  WV: The same item with “wh_V” in section 10.2.3.2 

 

    
(a)                                                               (b) 

Figure 5.15: The classification results by using black LCD synthetic dataset. (a) Original image 
(b) Classification results by using RVM with G-0.5 kernel function. 

The test results (see Table 5.11 and Fig. 5.15) show that the RVM get a very 
good classification performance on this synthetic dataset, the detection rate is high to 
100 percent in 30 images test and also the whole variance is very low. Another 
important value we easily noted is RVN in G-0.5. It is very small, 4.4 means that it 
only needs five samples from 100 to classify, which give a strong support to the 
advantages of RVM for sparsity. The hyperparameters convergence curves shown in 
Fig. 5.16: 
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Figure 5.16: The learning process of RVM models for black LCD screen synthetic dataset. 

Each curve represents one RVM model used to classify four types of screen corner and non-
corner. The class0/1/2/3/4 in the figure is left-top/right-top/left-bottom/right-bottom/non-

corners in the dataset. 

 
Besides getting ridge of human samples collection work, another advantage of 

using this synthetic dataset is that we can use a smaller target window to recognize 
screen corners, which will accelerate the speed of classification very much. Instead of 
the same size with samples, 20 x 20, we used in reality, 10 x 10 target window to 
select the target samples to be classified. The reason is obvious. That is because in this 
dataset we only consider a corner’s geometric features, which means we do not 
consider the situation to recognize if the target is real screen corner. Instead we only 
go to find out the type of a corner. When a frame with a screen is coming in, we use a 
very small target window to scan it. It is easy to imagine that within a very small 
target window the content gray values curve will be flat, so it can be represented by a 
certain gray value. The same, the border gray curve also can be seen as a flat one. 
Therefore the samples in the dataset are very suitable for this case. Another problem is 
that if it can work when the screen is far from the camera. For this problem we have 
two ways to solve it, one is to shrink the target window continually. The second way 
is do a Gaussian blur to the image so that the content gray values curve will be 
smoothed and changed to a flat. Considering the limitation of time, in the final system, 
we did not realize these ideas, but it did not affect the performance of the system. The 
final system is running well with this dataset under the fixed target window 10 x 10. It 
is robust for changes in lighting and in varying shooting positions. 

However, as what we said in system design chapter and what you have seen in 
tests result in this chapter, only with RVM the system cannot directly select out the 
screen corners. No matter what’s kind of kernel functions we use and what’s dataset 
above we choose, the misunderstanding rate keeps very high, which means plenty of 
non-corner samples are classified to one of screen corners so it cannot tell which four 
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corners are screen corners by giving a list of candidates. Also the highest confidence 
points are incorrect, which means we cannot choose the four points with highest-class 
probability as screen corners. The problem is not in kernel functions but in dataset. So 
we collect another dataset that gives a much better result for us. 
 
5.4.3 RVM improvement by adaptive sample dataset  

In our synthetic dataset mentioned in section 5.4.2.2, we know the benefits of using 
samples without including content of displaying in the screen.  But since the samples 
are faked and the target window suitable for this dataset is small, so the 
misunderstanding rate is still high and also the non-corner samples cannot be easily 
found out, because the features are not clear when the sample is small. So in this 
dataset, we try on the contrary, instead of excluding content of display, we enlarge the 
samples size and select them from real image so that they can include more features of 
real screen corners and more important the features of non-corners increase so that the 
misunderstanding rate get much reduction.  
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Figure 5.17: The process to generate adaptive dataset automatically. Blue boxes represent
model and algorithms utilized. Yellow boxes are dataset. 

 

 
But how can we get these samples? This is a question that user want to know. 

ndeed, for this dataset if we have to select manually then we are back to the problems 
xisting in the first dataset. So this time we select it automatically.  

It can be done automatically now (see Fig. 5.17) because we already got the one 
f datasets described before. By using one of above datasets in RVM and running our 
andidates-Winners approach, we can be successful in detecting four screen corners 

n consecutive frames. Then it is easy for us to select screen corners samples with 
nowledge of their exact positions. To non-corners samples, we just let algorithm to 
elect the samples far from the screen corners, then we got the sample dataset below 
see Table 5.12 and Table 5.13). 

Table 5.12: Adaptive dataset 1 specification. 

ataset Specification Items Values and Description 
ype Adaptive Dataset I 
ample Size 40 x 40 pixels 
umber of Sample Class 5 
umber of Samples 120 
amples Distribution 10/10/10/10/80 
lass 0 Left-Top screen corner 
lass 1 Right-Top screen corner 
lass 2 Left-Bottom screen corner 
lass 3 Right-Bottom screen corner 
lass 4 Non-Corner 
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Table 5.13: Samples in adaptive dataset for white screen. 

Type Screen Corners Samples 

LT 
     

RT 
     

LB 
     

RB 
     

           

     

     

     

     

     

     

     

NON 

     
 

Table 5.14: Error Analysis utility results by using adaptive dataset for white screen in the 
sequence (see Appendix A). 

RVM Error Analysis Utility Outputs 
KF RVN HCV MV GV CGV MUR CD WV 
G-1.5 45.4 97.01 16.14 7.99 6.50 68% 100% 17.11 
L-2.0 17.8 17.99 10.48 5.44 4.33 50% 100% 6.76 
*KF: Kernel function. 
  RVN: The number of relevance vectors. 

CD: The number of detected screen corners. 
  WV: The same item with “wh_V” in section 10.2.3.2 
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It’s good news that the MUR values in Table 5.14 are reduced on both kernel 

functions. If the percentage is still not direct, Fig. 5.18 will explain the improvements. 
From (b) figure we can clearly distinguish the four screen corners now. The four 
clusters form a rectangle with the screen behind.  

 

Figure 5.19:  Larger size 

In case of the black LC
with some extra operation th
samples. Firstly, we conside
screen corner sample, we ro
with different β  angles (se
samples, we separate the no
which includes the border o
The second class consists of
randomly from those places 
non-corner samples are ver
misclassified to one of the 
target window. We think the
the bigger MUR value. So 
bigger size (see Fig. 5.19), s
adaptive procedure so we na

By instructing our alg
different β  angles, 8 base n
 
of non-corner sample gives more features than smaller one. 
    
                               (a)                                                                    (b) 
Figure 5.18: The RVM classification result by using Scanimg on the image shown in Fig. 5.11a. 

(a) RVM with G-1.5 kernel function. (b) RVM with L-2.0 kernel function. 
D we use the same approach to collect the samples, but 
at helps to raise the rationality of the distribution of those 
r the angle changes in corner samples. When we get a 
tate it with some angles so that we got several samples 
e Fig. 5.14). Secondly, for the selection of non-corner 
n-corner as three classes. The first one is the base class, 
f a real screen that is often classified to screen corners. 
 some samples from the background, which are selected 
that are far away from screen corners. The third class of 
y important, these samples are the samples that were 
screen corners classes by using a small size dataset and 
 small size of these samples is the main reason to cause 
in this dataset, we take these non-corner samples with 
o that they can contain more features. This step is like an 
med this dataset as adaptive dataset.  
orithm that we want to get each screen corner with 2 
on-corner samples, 20 background non-corner samples 
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and 40 corrected non-corner samples finally the system selected the following 
samples as dataset for us (see Table 5.15 and Table 5.16). 

Table 5.15: Adaptive dataset 2 for black LCD specification. 

Dataset Specification Items Values and Description 
Type Adaptive Dataset II 
Sample Size 40 x 40 pixels 
Number of Sample Class 5 
Number of Samples 108 
Samples Distribution 10/10/10/10/68 
Class 0 Left-Top screen corner 
Class 1 Right-Top screen corner 
Class 2 Left-Bottom screen corner 
Class 3 Right-Bottom screen corner 
Class 4 Non-Corner 
 

Table 5.16: Samples in Adaptive dataset 2 for black LCD. 

Type Screen Corners Samples 

LT 
     

RT 
     

LB 
     

RB 
     

           

N-BS 
    

  

     N-BG 

     

     

     

     

N-C 
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Table 5.17: Error Analysis utility results by using adaptive dataset for black LCD screen on 
the black LCD screen image sequence 

RVM Error Analysis Utility Outputs 
KF RVN HCV MV GV CGV MUR CD WV 
L-2.0 15.6 13.01 7.56 4.33 2.84 29% 100% 4.93 
L-3.0 12.4 11.67 8.03 4.54 3.16 30% 100% 5.05 
*KF: Kernel function. 
  RVN: The number of relevance vectors. 

CD: The number of detected screen corners. 
  WV: The same item with “wh_V” in section 10.2.3.2 

 
Still, after testing the misunderstanding rate is getting very low as shown in 

Table 5.17 and can be observed directly from Fig. 5.20. It is getting down from 84% 
(synthetic dataset) to 30% around. And also the HCV values and WV values become 
smaller.  

Though the bigger size of samples brings higher accuracy of classification, at the 
same time it also brings some troubles. The biggest trouble is feature extraction speed. 
Since the size becomes 40 x 40 so we need to do more calculations (almost 16 times 
to use 10 x 10 target window) to get DCT coefficients and also for the rotated images, 
we need to do much more transformations. Therefore the speed by using this dataset 
becomes slower. Another drawback is that this dataset is content dependent, so if the 
contend of displaying is changing, then the recognition rate will decrease definitely. 
The solution for this problem is to increase the samples with all possible displaying 
content included, but this will need much more time on training, in the finally system 
this is not implemented.  
 

 

      
                               (a)                                                                      (b) 
 

Figure 5.20: RVM classification result for black LCD screen by using Scanimg utility. (a) The 
classification results on image shown in Fig.4.3a by using L-2.0 kernel function. (b) The 

classification results on image shown in Fig.4.3a by using L-3.0 kernel function. 
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5.5 Conclusions 
In this chapter, we have discussed plenty of work on classification by RVM. Now it is 
time to summarize and come to some conclusions. 

In the first section, we introduced the theory of RVM and we know that RVM 
essentially is sparse Bayesian learning. Though its principle is totally different with 
SVM, but RVM has to appreciate it, because it still uses the same linear model and try 
to search out suitable weights and kernels to make predication.  

Comparing to SVM, RVM brings some advantages, probability outputs, fewer 
vectors to the classification model and free kernel functions selection. In the tests on 
our screen corners recognition, we can easily see that the probability outputs are very 
useful information, by using them as weight factor, the geometric center is closer to 
the reference screen corner points. Moreover, in the final system, they are used to 
select out the screen corner candidates in rectangle filter algorithm. In a synthetic 
dataset for a black LCD screen, the sparsity of RVM is shown. After training, the final 
model on average only keeps 4.4 sample vectors for classification model, which much 
increase the classification speed. But there are still some drawbacks of RVM. The 
biggest potential problem is the training speed of RVM. Even for our dataset (not very 
big), the training also needs some time, so if the dataset becomes bigger then it will 
get much more slower. Therefore, in the paper [TipNew], the author gives an 
algorithm to raise the speed of training, though it is still slower than SVM, but it get 
much faster than before. But since we have not the time to implement it, we have to 
keep it as a future work.  

Besides the theory of RVM, the more important part for this chapter is how to 
use it in screen corner detection. To do the real problem, firstly we use DCT as our 
feature extraction algorithm, because it can extract samples into small dimensional 
vectors. That makes the sample size independent and accelerates the training and 
classification speed. Another thing we consider is the rotation problem. Without 
rotating the whole image, we designed an algorithm that rotates target window, and 
reduces the computation and accelerate the speed as well. Finally, we came to the 
most important step that is sample dataset selection and training. In our research 
period on RVM, we found 3 ways to get sample dataset: 
 

1. Manually select some screen corners from real images as corner samples and 
randomly select some images as non-corner samples. 

 
2. Generate automatically screen corners as corner samples and randomly select 

some images as non-corner samples. 
 
3. By using the Candidates-Winners approach and one of above dataset in RVM, 

automatically select bigger screen corners as dataset and the previously as 
wrong classified samples, background samples, and easily misclassified 
samples as non-corners samples.  

 
Anyone of the three selection procedures has advantages and disadvantages. The 

first one is more accurate since the samples are selected manually, so we can easily 
control the samples quality. But the problem is the inconvenience for users. The third 
one is the most accurate one, because the MUR value of RVM is much lower than 
others, which can be easily seen from the figures in section 5.4.3. With this dataset we 
can train RVM, and are able to do the screen corner detection only by RVM. But 
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since the samples’ size is bigger than other datasets’ the feature extraction speed in 
this dataset becomes much slower than others that finally effects our real-time speed 
requirement. So considering the two evident disadvantages of these dataset, finally, 
we take the synthetic dataset in the UI-Wand. Although its MUR is value still high but 
the detection rate is on the same level compared to other datasets. And for the black 
LCD screen, the G-0.5 kernel function is very suitable for the dataset, so that only 4.4 
sample vectors keep in the end, which gives a much faster performance to RVM.  

The Table 5.18 and Table 5.19 show performance results by using different 
dataset and kernel functions, which we have already shown separately in the sections 
before. The values marked in gray are the best value in one output item of Error 
analysis utility. 
 
Table 5.18: Summary of datasets and kernel functions to RVM performance on white screen. 

Dataset KF RVN HCV MV GV CGV MUR CD WV 
ME G-0.5 18.5 70.00 14.13 7.07 4.62 93% 98% 13.08 
 G-1 27.8 79.88 18.01 9.3 4.72 93% 99% 15.40 
 L-1.0 21.0 7.06 14.97 6.73 3.93 94% 74% 6.47 
 L-2.0 18.4 7.26 11.99 5.62 3.85 93% 98% 5.71 
 L-3.0 27.6 6.81 12.09 5.68 3.9 93% 98% 5.72 
SYN G-0.5 15.6 47.63 28.16 12.57 10.47 94% 99% 17.07 
 L-2.0 56.2 69.88 24.41 12.00 9.09 93% 99% 18.14 
ADAP G-1.5 45.4 97.01 16.14 7.99 6.50 68% 100% 17.11 
 L-2.0 17.8 17.99 10.48 5.44 4.33 50% 100% 6.76 
*KF: Kernel function. 
  RVN: The number of relevance vectors. 

CD: The number of detected screen corners. 
  WV: The same item with “wh_V” in section 10.2.3.2 
  ME: Manually selected sample dataset 
  SYN: synthetic sample dataset 
  ADAP: Adaptive sample dataset 
 

Table 5.19: Summary of datasets and kernel functions to RVM performance on black LCD 
screen. 

Dataset KF RVN HCV MV GV CGV MUR CD SCO 
SYN G-0.5 4.4 36.94 5.38 3.47 2.57 84% 100% 6.65 
ADAP L-2.0 15.6 13.01 7.56 4.33 2.84 29% 100% 4.93 
 L-3.0 12.4 11.67 8.03 4.54 3.16 30% 100% 5.05 
*KF: Kernel function. 
  RVN: The number of relevance vectors. 

CD: The number of detected screen corners. 
  WV: The same item with “wh_V” in section 10.2.3.2 
  SYN: synthetic sample dataset 
  ADAP: Adaptive sample dataset 

 
Besides the accuracy of RVM, another important factor to UI-Wand is the speed 

that we did not mentioned in the previous sections, since the speed is fast enough for 
real-time application. Now to give a clearer concept to the users, we give some tests 
results in the following tables. The speed unit is samples per second the model can 
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operate. From Table 5.20, we can see that smaller target size will make the DCT 
feature extraction faster and Table 5.21 shows the effect of the number of relevance 
vectors to the speed.  There we only list two situations with the most relevance 
vectors and the least relevance vectors respectively. 
 

Table 5.20: The speed of DCT feature extraction algorithm for different targets size. 

Targets Size 10x10 20x20 40x40 
Speed (samples/sec) 718  199 49 

 
Table 5.21: The speed of RVM with different number of relevance vectors. 

Dataset and Kernel Function B/SYN/G-0.5 W/SYN/L-2.0 
RVN 4.4 56.2 
Speed  (samples/sec) 1232 961 

 
 

Given the with high detection rate and real-time speed, however, RVM still 
suffer from the high MUR value, which means that the chance to classify a non-corner 
sample to a screen corner class is very high. Thus we cannot just depend on RVM as 
winner selection method (see Fig. 5.21). There must be an additional algorithm to 
select out the final screen corners. So we introduce a rectangle filter as post-
processing to finish this final task in Candidates-Winners approach.  

           

 

                            (a)                                                                        (b) 
Figure 5.21: Candidates-Winners approach only with Sojka corner detector and RVM 
classification with synthetic dataset. (a) Candidates after Sojka corner detection (b) 

Candidates after RVM classification. Red/Green/Blue/Yellow/ represents left-top/right-top/left-
bottom/right-bottom screen corner respectively. 
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6  
Rectangle Filter 

We showed in last section that we couldn’t use an adaptive dataset for RVM because 
it needs too much time on feature extraction step. So in the final UI-wand system we 
utilize synthetic sample dataset, which can give the system a real-time processing 
speed, but the problem it brings is that RVM cannot select out the four screen corners 
directly (see Fig.5.21).  

Because still lots of candidates are classified as screen corners by RVM, we need 
an additional algorithm to select the real screen corners out. Till now there is 
important information we did not use that is rectangle geometric feature of the screen. 
Because the physical screens UI-Wand might be used on have a rectangle shape, their 
four corners should also compose a rectangle shape in the image when UI-Wand just 
aiming directly in front of screen. Moreover, even when the UI-Wand orientation has 
some angles with the screen in a reasonable range, the relationship of those four 
corners is still keeping a similar rectangle shape. Of cause, you can argue that this 
rectangle will be distorted very much when the angle is very big, but this can be 
figured out in the tracking algorithm. As long as we know the screen in the first frame 
then we can track the possible four screen corners in the later frames and we can 
know the screen shape exactly by continually updating the angles, then the distortion 
will not be a problem. And for the first frame detection, we can just constrain the user 
to stand in a suitable position and hold the UI-Wand in a correct way, so that the four 
corners make a similar rectangle shape, and which ensures a correct detection will be 
taken.  

 
6.1 Rectangle filter given corner type 
The problem displayed in Fig. 6.1a is that RVM classified more than four corners to 
screen corners. Considering the rectangle feature of the screen, we wrote a rectangle 
filter to find out which should be the real screen corners. The filter algorithm consists 
of the following steps: 
 

1. Define a rectangle by given a width and height, which the screen might be on. 
 

2. Read a list of corners with type assigned by RVM. 
 

3. Run a circle to get each corner from the list and analyze if it can be a screen 
corner. Firstly we assume a corner was a screen corner and then we go to find if 
the three other types screen corners are in the right places defined by the 
rectangle in the first step. For example, see Fig. 6.1b, assume P2 is a left-top 
screen corner, then we go “width” pixels left to find if the right-top corner is in 
an area that is centered at P(P2.x+width,P2.y+0) and radius is the offset value 
we defined. In this case we can find a possible right-top screen corner. Repeat 
the same procedure then we go to find if left-bottom and right-bottom exists at 
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the same time. In this case, both of these two corners are found. So we assume 
these four corners possibly are the screen corners thus we record them into a list. 
The gray rectangle in Fig. 6.1b shows the candidates corners that are not screen 
corners. P5 and P15 are not screen corners because P5 only find one possible 
left-bottom screen corner and P15 did not find any others.  

 
4. We get the final screen corners after analysis of every corner in the input list. 

 

              
(a)                                                                                   (b) 

 
(c)   

Figure 6.1: Algorithm of rectangle geometric filter given corners type. Red, Green, Blue and 
Black represent the left-top, right-top, left-bottom and right-bottom screen corners. (a) The 

corner points after RVM. (b) The rectangle filter algorithm process. The black rectangle is the 
possible position of the screen and the corners in the black circles are the possible screen 

corners. (c) The four screen corners after rectangle filter with corner type. 
There are two extra rules for two complicated cases. One is for the case that the 
algorithm detected more than one comer in the offset circle. The other is for the case 
that the algorithm found more than one screen corners combination. For these 
problems we can use the probability values outputted to handle. For the first case, we 
select the corner with the highest probability. For the second case, the same, we select 
the combination corners with the highest probability.  

Another problem we need to consider is the rotated image. When the input image 
is rotated then we cannot use a right rectangle to filter the screen corers any more. But 
this problem can be solved easily. We use the same mechanism as in feature 
extraction. When we know the angle of rotated image, we do a transformation to the 
rectangle so that it will become tilted as the same angle with rotated image, then it can 
filter out the screen corners and the problem is solved. Fig. 6.2 shows the filter 
performance.  
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By using the rectangle filter described above, we can success fully selecting out 
the real screen corners. But before we summarize our Candidates-Winners approach, 
we have to mention here another filter that was used after Sojka corner detection 
algorithm. 

 
6.2 Rectangle filter without type information 

T
w
a
r
R

 

 

          
                             (a)                                                                     (b)            

            
(c)   

Figure 6.2: Rectangle filter without corner type information. (a) The corners detected by sojka
detector. (b) The algorithm of the filter process. (c) The candidates after rectangle filter used 

after sojka corner detection. 
his rectangle filter’s principle is the same as the last one, but the difference is that it 
as used before RVM. So it will filter out the corners without type information and 

ctually the purpose of this filter is to find out the corners that possible form a 
ectangle shape with each other so as to reduce the number of candidates feeding to 
VM.  

Figure 6.3: Se

 

arch directions in rectangle filter algorithm. 
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Let’s consider the same situation as shown in Fig. 6.1a. Now this time we have 
not corner type information so that the corners color change to gray one (see Fig. 
6.2a). 

The specific filter algorithm is almost the same with as the last filter. The only 
difference is in the third step of the algorithm. Now we cannot constrain the search to 
three directions to find the other three corners, instead we need to explore eights 
directions to search the possible corners that can form a rectangle with the center 
corner (see Fig. 6.3). Whether the center point can be filtered out depends on if it can 
find 3 corners around it, which can form a rectangle together with it. In the case 
shown in Fig. 6.3 the center point will not be filtered out because it finds out other 
three corners in direction four, five and six. But in the final system, we give a more 
flexible rule to both rectangle filters, which keeps those corners that have two other 
corners around it (in Fig. 6.3, the points in direction one and two let center point 
satisfy the rule), which make the filters tolerant for missing points situation that can 
be caused by Sojka detection and RVM.  

In Fig. 6.2b the corner P10 and p14 are filtered out, because they cannot find 
other points around it. After this filter we got the corner list as shown in Fig. 6.2c. The 
number of candidates is reduced so that the speed gets improvement.  
 
6.3 Conclusions 
The rectangle filters play the last role in Candidates-Winners approach. After testing, 
the results show that it gives a very accurate selection in the end (see Fig. 6.4 for some 
examples). With respect to the speed, it also performs very well. Both of the filter’s 
time complexities are O , where N is the number of candidates that are received. 
Because in reality the number is not big (less than 40 candidates), the processing time 
for one image is generally less than 1 millisecond.  

)( 2N

A prerequisite of this filter algorithm is that we have to setup an initial width and 
height of the screen in the image to fixed values, which means that the user has to 
start using UI-Wand from a certain location in front of screen. This can be improved 
by giving a set of possible starting location of user then calculate the possible width 
and heights pairs or even make some hypothesis of four screen corners. After that use 
a loss function to figure out which filter can give a best score to a combination of 
screen corners, which can be seen as the final selection. But we did not realize this 
idea in our final system. 
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                             (a)                                                                (b) 
 

    
                             (c)                                                                (d) 
 

     
                             (e)                                                                 (f) 

Figure 6.4: Rectangle filter used in Candidates-Winners approach. (a) (c) (e) The 
candidates after classification by RVM. (b) (d) (f) The final screen corners selected after the

rectangle filter. Red, green, blue and yellow represents left-top, right-top, left-bottom and 
right-bottom respectively. In (e) the left-bottom corner is missed, but it can be estimated by 

other 3 corners.  
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7  
ROI Tracking  

In the last chapter, we described the models and algorithms used for screen corner 
detection. After the screen corners have been detected, we can use positioning model 
mentioned in section 3.2.2 to get pointing position and also can start doing gesture 
recognition, which is another important functionality of UI-Wand. So in this chapter 
and next chapter we will discuss issues of gesture recognition. Especially, in this 
chapter, we will discuss issues about tracking, which gives a faster detection to screen 
corners in a sequence of frames. 
 
7.1 ROI tracking filter 
Before gesture recognition model in UI-Wand, we have to know the trace the UI-
Wand has passed. In our solution, the positions of screen corners in a sequence of 
frames can form a representative and effective trace of UI-Wand. So the current 
problem is to detect screen corners in every frame of a sequence and save them into a 
list then pass it to the gesture model to recognize. The screen corner detection model 
is Candidates-Winners approach, which was already proved to be effective to screen 
detection. But the problem of using Candidates-Winners approach on a sequence is 
the speed. Although we consider this problem in the detection step and use compact 
algorithms in it, the speed of detection still not satisfies the requirement, 10 frames 
per second, i.e. 100 milliseconds per frame. So we have to use some tracking method 
in the detection step.  
 
7.1.1 ROI selection and predication 

The essential aspect and purpose in tracking algorithm is to reduce the detection 
complexity in a sequence of frames and accelerate the speed. By using tracking 
algorithm, we only need to detect the targets we are interested in the first frame and 
then the algorithm will find the targets in the following frames by just searching the 
targets around the previous positions. The classical tracking method is to compare the 
target intensity values with the area around it then choose a place as the target new 
place that has the lowest difference score of intensity between the new position and 
the old one.  

But in our case, we did not use this typical method. Instead, as what we 
described in the system design, we still use Candidates-Winners approach to detect 
screen corners on the frames after the first detection. We constrain the detection on a 
small area that is a region of interest (ROI) where the screen corners might show up. 
Since the ROI areas are much smaller comparing to the size of the complete image, so 
the computation complexity is reduced and the speed acceleration is reached. 

Now the question is how to choose the ROIs in a frame. Fig. 3.5 shows the 
selection method. Given four screen corners detected in the last frame, the ROIs of 
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screen corners in the next frame is the area, centered at the positions in the last frame 
and a certain value as diameter. The procedure of selection is shown in Fig. 7.1. 
 

 

m
k
i

   
                              (a)                                                                (b)  

   
                               (c)                                                                 (d) 

 

   
                              (e)                                                                  (f) 

Figure 7.1: ROI selection procedure in a sequence of two frames. The white circle represents 
ROIs. (a) The first frame. (b) Screen corners detected in the first frame. (c) ROIs selection in first

frame according to the screen corners. (d) The ROIs show up in the second frame. (e) The 
screen corners detected in the ROIs in the second frame. (f) The new ROIs created by the 

screen corners detected in the second frame. 
But this simple selection method has potential problems, because the faster 
ovement of UI-Wand can cause error detection or missing detection by using this 

ind of selection of ROI. If the user moved UI-Wand very quickly then the screen of 
mage would jump far from the last image, so if the diameter of ROI is too small then 
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definitely you will miss the screen corners. To solve this problem, the first way is to 
expend the ROI by giving it a bigger diameter value, but that will increase the 
computation workload. The second way is to make more accurate selection to ROI, so 
that the system can detect the screen corners keeping the size small.  
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2: Prediction of ROI center procedure. The solid ROI is obtained directly use the 
oint. The dot ROI is obtained by doing a prediction with motion vectors. 
thod to make more accurate selection of ROI is to do some predication. 
ize the positions of screen corners detected in previous frames to predict 
e positions in the new frame. Then use the predicted position as the center 
 value as diameter to form the new ROIs where we go to detect the screen 

lman filter [Kal60][Wel01] is known as a good model for this kind of 
But considering the limited time, we did not realize it but use a simple 
lgorithm to replace it. The principle of this algorithm is to predict the 
on or ROIs by previous motion vectors (see Fig. 7.2). The algorithm is 
 follows: 

e is only one frame in the past, then the center point of ROI in the new 
 is at the screen corners positions in the last frame, which is the same with 

ple selection mentioned above. 

e are two frames in the past then the center point of ROI in the new frame 
P , where P  is the screen corner’s position in the second 
 and mv  is the motion vector calculated by

123 mv+= P

1

2

12 PP − . 

e are more than two frames, we calculate out the center point of ROI by 
us two motion vectors, 11 −−= nn PPmv and 212 −− −= nn PPmv

predictednn P mv

, where P  
 position of that point in the nth frame. After that, we predict that the 
 of ROI in the new coming frame is at P

n

+=+1 , where 
 is calculated by  and mv .  dicted 1 2mv

 
211 /* mvmvmvmv =predicted
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The angle of mv , predicted )( 211 αααα −∗+= wpredicted , 

 
where 1α  is the angle of mv ,1 2α  is the angle of mv , and the w is 2

12mv / mv , if mv  2 ≤  mv , 1 2/ mv1mv  if mv  < mv . 1 2

 
But the problem of this is that it can be disturbed easily by noise. To solve this 

problem, we add extra rules in this algorithm to let it stop when the movement of 
points seems strange, e.g. sudden change of the angle or sudden increase or decrease 
of the magnitude of the motion vectors. With these additional rules, the tests results 
show that the algorithm becomes more stable. 
 
7.1.2 Screen corner detection in ROIs 

By the above ROI prediction method, we can directly detect screen corners on the 
ROIs with smaller size. The special detection approach is almost the same with 
Candidates-Winners approach, but the only difference is that now we do not need to 
use rectangle filter to select out the final winners since the four ROIs already 
satisfying a similar rectangle shape. The final winner selection step is to only choose 
the biggest screen corner with the highest probability value in one ROI.  

The final tracking algorithm accelerates the detection very much and also keeps 
high detection rate when the UI-Wand moves quickly (see Fig. 7.3). But there are still 
a lot of cases that the tracking filter would fail to track. So in the final system, if it 
cannot correctly detect screen corners in several frames consecutively, then the ROI 
tracking filter would stop working and the UI-Wand would use Candidates-Winners 
approach on the whole image again to select screen corners, after which the track 
filter will start running again.  

 

       
                              (a)                                                                (b)             
Figure 7.3: The trace of screen geometric center in the image, which tracked by ROI tracking 

filter. The geometric center is calculated according to the four screen corners. (a) The 
movement from pointing one place to another place. (b) The UI-Wand is doing a “cross” 

gesture. 

Besides the more accurate ROI position can be estimated, another advantage of 
this prediction is that it can smooth the trace of UI-Wand and give trend information 
of moving UI-Wand even if Candidates-Winners approach cannot detect the screen 
corners in the predicted ROIs. Because in the final system, if we cannot detect screen 
corners in ROIs, then we will save the centers of ROIs as the screen corners positions, 
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though these positions are not the correct ones, at least they can be seen as giving 
correct movement direction information, which will be useful enough for the gesture 
recognition. 
 
7.2 Missing screen corners predication 
By far, we have described many procedures about filter algorithms including 
rectangle filter and tracking filter, which can ensure the correct and faster detection of 
screen corners. But there is still a big problem with these filters, haven’t mentioned 
yet, which is missing detection problem. The variant of lighting conditions and the 
distortion of the image captured by the camera often make the detection work much 
harder, so the missing detection situation occasionally happen in Sojka detection 
algorithm or RVM recognition step. In order to prevent the final system from this 
problem, we write some algorithms to predict corners when there are some ones 
missing. 

The missing situation can be divided into two categories, one is missing in the 
first frame before that we did not detect any screen corners, and the other one is 
missing in the frame before we ever detect a combination of four screen corners. To 
more convenient, we name the first missing situation as Type-I and the second one as 
Type-II.  

To the Type-I missing, since we have not detected screen corners before, there 
are few things we can do to predict the missing corner. Actually we can only estimate 
one missing corner with other three screen corners detected. The estimation method 
we took is very simple. We just assume the three screen corners as three convexes of a 
parallelogram then calculate one corner position by the three screen corners 
coordinates. It is not accurate since in reality, we cannot ensure the screen is a 
parallelogram, but since this Type-I missing seldom happens, it will not affect the 
accuracy of the final system.  

Comparing to Type-I missing, Type-II missing often happened and caused much 
problems. But since we already have screen corners been detected before, there are 
much more prediction methods for this type of problem, which also make the 
prediction more accurate. In the final system, we use the following rules to predict the 
missing corners.  
 

1. After the detection step in every frame, we analyze the detected screen corners. 
If the system detected more than three screen corners, we think the screen is 
detected and then we save the screen corners positions into a list that can be 
seen as forming the screen shape in that frame. Keeping update of the screen 
shape will let the system know the recent screen shape. 

 
2. When the tracking filter cannot track anyone of four screen corners, then we 

predict them like this. Firstly, we predict the screen corners position in the 
current frame by their previous positions detected in frames before. Then to 
make the prediction more accurate, we use an alignment method that utilizes 
the screen shape obtained in the first rule to adjust the four screen corners. The 
special procedure is shown in Fig. 7.4 below. 

 
3. When the tracking filter detected more than one screen corner, we do not 

predict the others by their trace before, instead, we directly use the screen 
shape obtained in the first rule to align it with the screen corners that we have 
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detected we can work out the missing corners’ positions.  The detailed 
procedure is shown in Fig. 7.5 below. 

 

                    (a)                                          (b)                                          (c) 
Figure 7.4: Prediction and alignment when missing four corners. (a) The screen shape saved 
in a previous frame. GC is geometric center. (b) The screen corners after prediction by their 
previous traces. CGC is current geometric center. The gray quadrangle is the position of the 

real screen. (c) The four screen corners after alignment. 
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                    (a)                                          (b)                                          (c) 
Figure 7.5: Prediction and alignment when missing three screen corners. (a) The screen 

saved in a previous frame. (b) The detected and estimated screen corners. The yellow one is 
detected and the others are estimated. The gray quadrangle is the real screen in the image. 

(c) Based on the screen shape saved in (a), align the three estimated screen corners 
according to the right-bottom corner.  
.3 Conclusions 
n Fig. 7.5, we show the prediction procedure on the case, one corner detected. The 
ther three corners will be aligned only on this corner. For the cases that there are two 
r three corner detected, we take the same method but use each of the detected corners 
s reference corner to align the missing corners, then get the geometric centers as the 
inal positions of those missing corners.  

With this missing corners prediction procedure, the tests result shows a 
ignificant improvement for the screen corners tracking work. Now it can accurately 
redict the ROI positions and find out the screen corners even if the movement of UI-
and is very fast. The Figure 7.6 shows 4 frames in a “cross” gesture, which cannot 

e tracked correctly only by ROI tracker but was correctly tracked by ROI tracker 
ith missing corners prediction and alignment algorithm. The better tracker filter 
ives smoother trace information, though sometimes it is still not so accurate but it is 
nough for gesture recognition that is not sensitive too small deviation if only the 
ystem gives correct direction information.  
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                             (a) 

 

Figure 7.6: Tracking results with different algorithm
without alignment step. (b) The better tracking res

 

                           (b)
s. (a) The tracking results by ROI tracker 
ults by ROI tracker with alignment step. 
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8  
Gesture Recognition 

Pattern recognition forms the mathematical basis of gesture recognition problems. 
Pattern recognition is a mathematically rigorous field with the purpose of classifying 
objects into one of a number of classes. The pattern recognition process is generally 
implemented in a manner that allows automatic recognition without human 
intervention. In gesture recognition, those gestures in 2D or 3D space are patterns. 
Our gesture recognition process is following the rules of pattern recognition, which is 
formed in three phases (see Fig.8.1). 

 

 
Figure 8.1: Gesture recognition process. 
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Observation capturing: where the actual gesture patterns are transformed into some 
discrete geometric points, which show the characteristic of that gesture. 

 
Feature extraction: where the observations vectors of a gesture are transformed into 

a sequence of feature vectors, because feature vectors contain most of the 
information necessary for classification of the gestures and they are generally 
much more tractable for the system. 

 
Classification: where a classifier specifies the class membership of the observations. 

In our UI-Wand project, we adopt two different approaches for our gesture 
classification [Jai00]; one approach is Hidden Markov Model (HMM) approach, 
which is a sequential pattern recognition method to decide the gesture label with 
highest probability of HMMs. we realized the HMM classification model in this 
thesis but without implementing in the real world. The other approach is RVM 
model approach, which partitions the feature space of a candidate gesture trace 
into disjoint regions and each region corresponds to a gesture class. This RVM 
model is really implemented in our project.  
 
In the following sections, we will first introduce our HMM approach and then 

describe our RVM approach. The test result of our RVM gesture recognition approach 
will be given in the end of this chapter. 
 
8.1 HMM for gesture recognition 
Hidden Markov Model (HMM) is already a well-known model in gesture recognition 
field and there are a lot of projects based on HMM for gesture recognition (i.e. 
[Yan99], [Liu03] and [Lee99]). It falls into the “supervised pattern recognition” 
system. In our approach, we use an HMM-based classifier for our gesture recognition.  

 

 
Figure 8.2: A five states left to right HMM model. 

 

8.1.1 Introduction of Hidden Markov Model 

A Hidden Markov Model (demoted λ ) is a doubly stochastic process [Lus95]. The 
first stochastic layer is the underlying first-order Markov process (a stochastic process 
called a -order Markov process if the conditional probability density of the current 
event, given all past and present events, depends only on the  most recent events), 
each state is a possible observation of the Markov process, and a transition probability 
from one state to the other state. The second stochastic layer of the HMM is the set of 
output probabilities for each state, the output probabilities specifies the likelihood of 
seeing certain observations, given the HMM is actually in a state.  

thj
j

In our HMM approach, we choose a semi-continuous HMM model, which is a 
hybrid of the discrete and continuous HMMs. Like the discrete HMM, the observation 
vectors are quantized into one of a finite set of classes, however like the continuous 
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HMM, the observation classes are modeled by a multivariate Gaussian pdf 
(probability density function), removing the distortion due to quantization and 
effectively modeling the variance of an observation class. 

Now lets describe the process of our HMM approach [Lus95], we divided the 
whole process into training-model phase (Phase 1) and recognition phase (Phase 2) 
(see Fig. 8.3). 

 

 
Figure 8.3: Generate HMM model for gesture recognition. 

 
Training phase is to generate the stable HMM models for different gestures. In a 

HMM model (denoted by λ ), there are some parameters involved [Lee99], they are: 
 

z : A set of states in HMM. { Nssss ,,,, 321 K }

}

N
 

z : A set of { Txxxx ,,,, 321 K T  distinct observation symbols. The observation 
at time  is denoted as . t tx

 
z { }ija=A

ija
: A N  matrix for the state transition probability distributions 

where  is the probability of making a transition from state  to . 
N×

is js
 

z ( ){ }tjb xB =

js

: A  matrix for the observation symbol probability 
distributions where b  is the probability of emitting  at time  in state 

. 

TN ×

( tj x ) tx t

 
z Initial conditions for that the HMM model is left to right with non-circle 

model, which begins at state  and end at state . 1s Ns
 
8.1.2 Theory of HMM model for gesture recognition 

We use 2D mouse gesture trace points on the screen as the input of our HMM model. 
These data are then transformed into a feature vectors sequences. Each sequence 
contains a few vectors; each vector has four dimensions and contains screen-scaled 
position and velocity components. These feature vector sequences generate the 



Chapter 8, Gesture Recognition   102 
 

training data sets and the testing data sets. After the training data has been generated, 
we generate a new codebook of specified size and a set of HMMs (one per gesture) 
with a specified number of states. The codebook is clustered on the observation 
vectors into different HMM states using a modified K-means algorithm. The HMM 
are created with a choice of left-right transition matrix.  

After initialization, the HMM parameters are iteratively improved with a 
modified Baum-Welch reestimation algorithm [The03].   

The “output” quantity in any path procedure is ( )λXp , thus estimating the 

parameters of the HMM model λ  so that ( )λXp  is a maximum is nothing but a 
maximum likelihood parameter estimation procedure. We define two probabilities: 
 

z ( ≡λξ X,, jit )  The probability of the joint event:  
a) A path passes through state i  at time t . 
b) Through state j  at the next time 1+t .  
c) The model generates the available sequence of observations X  given the 

parameters of the HMM model λ . 
 
z ( ) ≡λγ X,jt  The probability of the joint event: 

a) A path passes through state  at time t . j
b) The model generates the available observation sequence X , given the 

parameters of the HMM model λ .  
 
From the above definition, we can see there are two procedures that form the 

forward-backward algorithm, where ( )jtα  accounts for the path history terminating 
at time t  and state ; j ( )jtβ  accounts for the future of the path, which at time t  is 
state  and then evolves unconstrained until the end. The forward probability 

1+
( )jtj α  is 

defined as the joint probability of observing the first t  vectors and being in state  at 
time t : 

j

 
( ) ( )λα jsPj ttt == ,,, 21 xxx K                                                                  (8.1) 

 
In a HMM model, states 1 and N  are non-emitting, the forward probability is 

recursively calculated by the equation: 
 

( ) ( ) ( )tj

N

i
ijtt baij x








= ∑

−

=
−

1

2
1αα                                                                        (8.2) 

 
which with initial conditions ( ) 111 =α  and ( ) ( )tjjt baj x1=α  for Nj <<1  and final 

condition ( ) ( )∑ −

=
=

1

2

N

i TT iN αα

j t

ija

iNa . This recursion asserts that the probability of being 

in state  at time  and seeing observation x  can be calculated by adding the 
forward probabilities for all possible predecessor states i  weighted by the transition 
probability . The backward probability

t

( ) ( )λ,2 Kβ ,1Pi ttt = ++ xx ,istT =x , in an 
opposite manner, can be recursively computed using the equation: 
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( ) ( ) ( )jbai ttj

N

j
ijt 11

1

2
++

−

=
∑= ββ x                                                                         (8.3) 

 
which with the initial conditions ( ) iNT ai =β  for Ni <<1  and the initial condition 

( ) ( ) ( )∑ −

=
=

1

2 1111 1 N

j jj jba ββ x .  

The forward and backward probabilities lead to a convenient method for finding 
the likelihood of state occupation ( ) ( )λγ ,XjsPj tt ==  as follows: 

 

( ) ( ) ( )jj
P

j ttt βαγ 1
=                                                                                   (8.4) 

 
where ( ) ( )NPP Tαλ == X , which is the probability of observing the sequence X

r
 

given the HMM model λ . Then we can get ( )jit ,ξ  very easily: 
 

( ) ( ) ( ) ( ) ( )
P

jjPijPi
ji ttt

t

βα
ξ 1, +=

x
                                                              (8.5) 

 
From the foregoing it is not difficult to see that: 

 
z  can be regarded as the expected number of times that state ( )∑ =

N

t t j
1
γ j  

occurs, given the observation sequence X .When the upper index in the 
summation is , this quantity is the excepted number of transitions from 
state 

1−N
j . 

 
z  can be regarded as the expected number of transitions from 

state  to 
(∑ −

=

1

1
,N

t t jiξ
i

)
j , given the HMM model and the observation sequence . X

 
8.1.3 Realization HMM model for gesture recognition  

The preceding definitions lead us to adopt the following re-estimation formulas as 
reasonable estimations of the unknown model parameters. 

 

( ) ( )
( )∑

∑
−

=

−

== 1

1

1

1
,

N

t t

N

t t

i

ji
ijP

γ

ξ
                                                                                  (8.6) 

( ) ( )iiP 1γ=                                                                                                   (8.7) 
 

In order to realize the algorithm in a software program, the whole iterative 
algorithm can now be expressed in terms of the following steps (see Phase 1 in Fig 
8.3): 

 
1. Initial conditions: Assume initial conditions for the unknown quantities. 

Compute ( ).λXP  
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2. Step 1: From the current estimates of the model parameters re-estimate the new 
model λ  via Eq. (8.6) to Eq. (8.7). 

 
3. Step 2: Compute ( )λXP . If ( ) ( ) ελλ >− XX PP  set λλ =  and go to step 1. 

Otherwise stop. 
 

We can use this way to train several HMM models, and each model for one 
gesture. While training the HMM model is a complex and time-consuming process, 
performing recognition process is much simpler. Given an observation sequence, each 
HMM model is scored on how well they describe the sequence. The HMM model 
with the highest score is chosen as the likely generator of the observation and then the 
label belongs to that model can be given. The gesture should be recognized then. 
We use Viterbi algorithm to find the single best state sequence ( )Tsss ,,,ˆ 21 K=s  for 
the observation sequence . In our approach we only need the score 
of the state sequence rather than the actual state sequence. So the intermediate score 
can be defined as: 

( TxxxX ,,, 21 K= )

 
( ) ( )[ ] ( )jbaij tijtit 1max −= δδ                                                                         (8.8) 

 
which with the initial conditions ( ) 111 =δ  and ( ) ( )jbaj j 111 =δ  for Nj <<1  and final 
condition ( ) ( )[ iNTiT aiN ]δδ max= . The score of the HMM for a particular observation 

sequence is simply ( ) Tδλ =X ( )NP . To decide the label of a gesture observation, all 
HMM models go through the Viterbi procedure. The gesture’s classification is the 
gesture label corresponding to the highest scoring HMM. 
 
8.1.4 Conclusions of HMM for gesture recognition 

HMM is already a very popular approach in gesture recognition field, but we have to 
predefine the HMM model for each gesture and need much time and efforts to train 
these models. The quality of the model is determined by the training samples and 
quantities. For more complex and maybe continuous gesture, we must find a way to 
detect the end point of the former gesture and the start point of the next gesture, which 
is more challenged work. The speed of the HMM procedure is also a problem for real-
time recognition, although there are some existing method to speed up HMM process 
(such as [Lee99]), but we still need to do more research on it. All the above problems 
cause us to find a new way, which better depends on our existing resource and cutting 
the developing time. Naturally we think about using our RVM classification model to 
do the gesture recognition work, which is described in details in the next part. 
 
8.2 RVM for gesture recognition 
Relevant Vector Machine (RVM) has already been proved to be a very good 
classification model in [Tip01] and also been successfully used by us for corner 
classification in Chapter 5. So we think about using RVM to realize our gesture 
recognition task. Like other pattern recognition project, we will follow the same 
process as we did with HMM model approach. First of all we will get the observations 
of the gesture, analyze the gesture to find candidate gesture trace, interpolate the 
candidate gesture trace for extracting features from these new observations. Then we 
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will make many samples for training our RVM classification model. After training the 
RVM model, we can use this model to classify the different gestures. The whole 
procedure is depicted in Fig.8.4. In the following, we will describe how we design this 
gesture recognition model. 
 
 

 
Figure 8.4: RVM for gesture recognition process flow chart. 

 
8.2.1 Observation getting 

In Chapter 7, we have already discussed how to use ROI for tracking screen corners. 
Here we will use these 2D screen corner points to get the gesture observations. We 
use the geometric centre of the detected four screen corners as the observations (one 
position per frame and the frame without screen corners will be marked as 
“MISSING”). From these centre points we can get a gesture trace, but how to choose 
candidate gesture trace from this trace is a problem for us, because in this trace, there 
may exist more than one candidate gestures. So we must analyze this trace then we 
can know which parts of the trace are candidate gesture traces.  
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8.2.2 List analysis for getting candidate gesture traces 

We define a point list (see Fig. 8.5) with limited length (usually it has at least 50 
elements in the real case, and can be changed in different conditions) to store the 
geometric center of the screen corners. 
 

 
Figure 8.5: Analysis list example (n>=50). 

 
Now let us explain the list analyzing process. In the initial state, the list is empty, 

and the first observation position enters the list, it is named base_position. Then the 
second position enters the list and compares its position with the base_position, if the 
distance is within the MOVEMENT_SENSITIVITY, then its status is marked as 
“HOLD”, else it is marked as “MOVE”, where MOVEMENT_SENSITIVITY is a 
limited circle range centered at the base_position. The following positions will enter 
the list one by one in order and be marked in the same way. This process stopped until 
there is a position, whose status is marked as “MOVE” and its direct previous position 
status is marked as “HOLD”. If the number of its direct previous continuous “HOLD” 
positions is more than the HOLDING_NUM_UNITTIME, which is the minimum 
number of continuous “HOLD” positions, the process then marks this position’s 
previous “HOLD” status as “MOVE_START”, otherwise the process will change the 
status of all its previous “HOLD” positions into “MOVE”.  

Now the current position is the new base_position. Then the process works the 
same way as before until one “HOLD” position appears with more than 
HOLDING_NUM_UNITTIME number of continuous previous “HOLD” positions. 
The current position will be marked as a new initial position and the first “HOLD” 
position of these directly continuous previous “HOLD” positions will be marked as 
“MOVE_END”. Now we can get a candidate gesture trace from the 
“MOVE_START” position to the “MOVE_END” position. Then we will send this 
trace to the gesture classification process or save the trace as a RVM gesture training 
sample, which depends on what kind of process we would like to do.  

After a trace is found, all the processed position will not affect the future analysis 
of the list and the process is continued from the new initial position. This list analysis 
process will run in the same way again and again until all the positions of the original 
trace is processed. The analysis list will always pop-up the position at the beginning 
of the list and push a new positions in the end. So the length of the list will always be 
constant. An example of the list is shown in Fig. 8.6. 
 

 
Figure 8.6: An example of analysis list with length of 11 positions (this is just a list example, 

the real list should have at least 50 positions). 
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It should be mentioned that, our approach can handle some worse situations, for 
example, if some frames in the sequence lost the screen corner positions (these 
positions status in the observation list will be marked as “MISSING”), within some 
tolerance, our approach still can get candidate gestures correctly. But if the number of 
“MISSING” positions exceeds the MISSING_TOLERANCE the initial position will be 
updated.  

In our practical implementation, we set parameters: MOVEMENT_SENSITIVITY, 
HOLDING_NUM_UNITTIME and MISSING_TOLERANCE according to the possible 
situations in different applications.  

 
Pseudo code of this list analyzing process is as following: 

 

list_length=0; 
list_begin=position(current);                                     
do  
{ 
 list_length++; 
 base_position=position(current) 
 list_current=list_current.next; 
 if (distance(list_current)-distance(base_position)< MOVEMENT_SENSITIVITY)
 { 
  list_current_status="HOLD"; 
  hold_num++; 
  list_current=list_current.next; 
 } 
 else 
 { 
   list_current_status="MOVE"; 
   if(hold_num< HOLDING_NUM_UNITTIME) 
   { 
      do 
      { 
       list_previous=list_current.previous; 
       list_previous_status="MOVE"; 
      } until (list_previous_status="MOVE") 
   } 
   else 
   { 
     hold_num=0; 
      if (list_previous=="HOLD") 
      { 
       list_previous_status="MOVE_START"; 
      } 
      else 
      { 
        do 
        { 
          list_previous=list_current.previous; 

} until (list_previous_status="MOVE") 
 
list_previous_next_status="MOVE_END"; 
gesture_trace=trace("MOVE_START","MOVE_END"); 
gesture.analysis(gestrue_trace); 

      }  
      base_position=position(current); 
   } 
 } 
} until (list_length=N) 
 
pop_up(list_begin); 
push(list_end.next); 
renew(list); 
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From our analysis process, the candidate gesture trace that we take must satisfy 
the following two conditions: 

 
a) A candidate gesture must be made within a limited time range. 
 
b) A candidate gesture must begin with a short pause and also end with a short 

pause. 
 

In our final system, we consider three kinds of gestures (“Left-Right” gesture, 
“Right-Left” gesture and “Cross” gesture), which are designed for our UI-Wand 
system. Three gesture examples are shown in Fig.8.7. 
 

 
(a)                                   (b)                                       (c) 

Figure 8.7: Three kinds of gestures. (a) Right-Left gesture. (b) Left-Right gesture. (c) Cross 
gesture. 

 
8.2.3 Candidate trace interpolation  

Now we get candidate gesture traces, but the distribution of the observations along 
these traces are very unbalanced, this can cause the same gestures to have very 
different observations lists. If we just extract features from these observations, we can 
image that the classification result may be bad. So we need better features from these 
observations. We use trace interpolation algorithm to resolve this problem, since the 
observations are lying very unbalanced along the trace, if we can re-arrange our 
observations balanced along the trace, then the same-labeled gesture trace should have 
much similar position relationship.  

From our experience, we decide to locate 10 observations along each a candidate 
gesture trace. And then the trace interpolation procedure can be done following these 
steps: 
 

1. Calculate the whole distance of the observations by plus together the 
distance between each neighbored observation positions. 

 
2. Divide the whole by 10 , the we get a distance  for one step.   l

 
3. From the first observation of the trace, walk distance l  along the same 

direction from this observation to the next observation. Here there are two 
conditions may occur: The first one is if the original distance l  between 
these two observations is longer than l , then we interpolate a new 
observation at the position along this direction and l  distance away from 
first observation. The second one is if the original distance l  between 
these two observations is shorter than l , we still walk along the direction 

ori

ori
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and when we arrive at the second observation, we will continue walk along 
the direction from the second observation to the third observation and walk 
for  distance away from the second observation, then we can 
interpolate a new observation there. 

orill −

 
4. Start from the first new observation position and walk along the direction 

from this new observation to the next old observation and walk distance and 
direction changed in the same way as in step 3.   

 
5. Repeat step 3 and step 4 until get the end of observation position. 

 
From the above steps, we can see that the route for finding a new observation is 

always along the old observations trace, but the observations are located in a more 
balanced way. The procedure is shown in Fig.8.8. 
 

 
Figure 8.8: Trace interpolation process. Orange points are original observations and orange 

line is original gesture. The blue points are the interpolated observations. 
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8.2.4 Feature extraction  

This is the crucial step of the gesture recognition task. The quality of the extracted 
feature directly affects the RVM classification result. So we comprehensively think 
about the feature selection. For the future real-time application, the feature must be 
very easy and fast to obtain, it also need to cover enough space and time information 
for discriminating among different gestures. Considering the above requirement, we 
choose the motion vector as our gesture features, which contain space information and 
also velocity information. 

First we introduce the motion vector of the gesture trace. Motion vector is a very 
popular used feature, it is defined very simple, if we just consider a target moving in 
2D space when it moves from position A  to position , and its 

moving vector is 

),( ii yx ),( jj yxB

ijij yyxx −− ,  (see Fig. 8.9). By the trace interpolation step, we 
can get some candidate gesture traces as some position arrays. Then it is very easy to 
generate a motion vector array for each candidate gesture trace. After collecting all 
the motion vectors of a candidate gesture trace, the feature of this gesture trace is 
formed by a single vector, which contains 20 elements and the elements are arranged 
orderly, for example, assume the case that we get a candidate gesture trace as: 

>><><><><><><><><><< 6,515,717,1020,1525,1113,910,87,64,35,2  
Then we can get a motion vector array for this candidate gesture as: 

>−−><−−><−−><−><><><><><−< 9,22,33,55,42,23,13,24,31,1  and the corresponding 
feature vector for this gesture trace is >−−−−−−−−< 9,2,2,3,3,5,5,4,2,2,3,1,3,2,4,3,1,1 . 
Thus we use the same way to extract a feature vector for each selected candidate 
gesture trace. Finally we can collect these feature vectors as RVM training samples 
with marked label or we can send them directly to existing RVM for classification. 

 
 

 
Figure 8.9: Motion vector generation example. 

 
8.2.5 Training samples generation 

After feature extraction, we can generate several training samples by extracting 
feature vectors for each candidate gesture trace. But until now we only can generate 
three classes training samples from three gesture labels. But to get more accurate 
gesture recognition rate, we still need to generate lots of non-gesture samples for 
finally getting a good RVM model that can classify four kinds of labeled gestures: 
“Left-Right” gesture, “Right-Left” gesture, “Cross” gesture and non-gesture.  

Considering the attributes of the three kinds of gestures, we want to generate 
non-gestures, which cover as many as the movements that are different with those 
three gestures but can happen when using UI-Wand. One way for generating non-
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gesture is just to capture some non-gesture frame sequences and analyze them to 
extract feature vectors. But this way is time-consuming and may not cover some 
occasions. So we chose another way to get non-gestures. We divide the non-gestures 
into the following two categories: 

 
Random straight line: this category contains the non-gestures, which are similar to a 

straight line but with a little direction change in every step (see Fig.8.10). It first 
chooses a direction as main direction from the eight directions and chooses a step 
length from three different lengths in Fig.8.10, and then the trace walks a step 
length along this direction but with a little random deflection. The next step is 
along the same main direction as before and still deflects a little bit randomly. 
After ten steps, which are the same with the number of interpolated candidate 
gesture observations, a non-gesture is generated. Because there are eight kinds of 
main directions and three different lengths, so after generation, this category 
contains twenty-four non-gestures. 

 

 
Figure 8.10: Generation procedure of a random straight line non-gesture. 

 
Random line: this category can also separate into two types. The first type generates 

such the following traces: it randomly gets a moving direction as main direction 
and walks along a changeable length along this direction but deflecting a random 
angle, which is much bigger than that in the random straight line (see Fig.8.11-a). 
Then it repeats ten times to generate a whole non-gesture trace. The second type 
generates every non-gestures step in a random direction and also with a little 
direction change in every step (see Fig.8.11-b). In every step, it chooses a 
random move direction, and then the trace walks this step length along this 
direction and with a little random deflection. The following steps are the same as 
the first one. After ten steps, a non-gesture is generated.  
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Figure 8.11: Generation procedure of random line non-gesture. 

 
8.2.6 RVM training 

Based on the previous work, we already can get the training samples from the 
previous process. We need to use these training samples to train our RVM gesture 
recognition model. We still use the same RVM model as described in Chapter 5, but 
for adaptive reason, we changed the kernel function of it. We choose a new kernel 
function for RVM, a polynomial function shown as follows: 
 

rK )1(),( += nmnm xxxx                                                                          (8.9) 
 
where  and  are the sample feature vectors, r is the length parameter.  mx nx
 

8.2.7 RVM classification 

When the new gesture image sequence arrives, in the same way as we described 
before (observation getting—list analysis for getting available candidate gesture 
trace—trace interpolation—feature extraction), we can easily abstract candidate 
gesture samples from it. After the training process, we can use the trained RVM 
classifier to recognize which kind of gesture it should belong to, specify the class 
label and give a class confidence for each gesture sample.  
 
8.2.8 Gestures recognition test 

After modeling the gesture recognition procedure by RVM, we want to test how well 
it works. The test step includes two steps. The first one is to collect gestures samples 
and train the RVM model and then the second step is to use new gestures to test. This 
gesture test is only on the Black LCD screen. 

In gestures samples collection step, as described in the model above, in the 
training process, in order to give correct gestures label to the gestures the user has to 
do one gesture in a sequence. In this sequence, we select candidate gestures as gesture 
samples in the current gesture class. The user should always do one type of gesture 
until we collect enough samples. So in our samples collection step, we took many 
sequences of frames doing the same gestures and then run our system to analyze the 
trace in these sequences and then save the gestures samples and their feature vectors 
by using trace interpolation algorithm and motion vector extraction algorithm.  
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Finally, we got 10 gestures samples for each gesture class. To the non-gestures 
samples collection, we run the automatic generation algorithm and got 60 different 
samples.  The details of these algorithms have already been introduced in former 
sections. Some of the samples are shown in Fig. 8.12. Please note that the gesture 
shown in Fig. 8.12 is UI-Wand moving traces that is inverse with user’s movement. 
That is why Fig. 8.12a is a Left-Right gesture and Fig.8.12.b is a Right-Left gesture. 
 

 

                                    
              (a)                                              (b)                                                 (c) 
 

                                   
(d)                                              (e)                                                (f)  

 
Figure 8.12: Gestures samples extracted from some sequences of frames. (a) One sample 

of Left-Right gestures. (b) One sample of  Right-Left gestures. (c) One sample of cross 
gestures. (d)(e)(f) Three samples of non-gestures. 

After training RVM model we got the final weights file, by which we can start to 
classify. In order to do the test, we took two sequences of frames. Each of them 
contains 600 frames and contains many gestures and non-gestures movements. After 
feeding these two sequences to the UI-Wand system, finally we got the test results in 
Table 8.1. 

Table 8.1: Test results of gesture recognition on two sequences. 

 Left-Right Right-Left Cross Non Accuracy 
Sequence 1 2/2 3/3 3/1  7/6  80.0% 
Sequence 2 2/2 1/0  3/1  9/9 73.3% 

 
The value with format “x/y” in this table means that there are x gestures in the 

sequence and y of them are recognized correctly. This result does not show very high 
classification rates. But after checking the results we found an interesting point. In all 
misclassification cases in effective gestures (Left-Right, Right-Left, Cross gestures), 
they were misclassified to non-gesture class, which means that effective gestures 
cannot be misclassified with each other. This point is very important, because only 
misclassify gestures to non-gestures will not lead users to do a wrong action, which is 
the worst result for gesture recognition. Moreover, this kind of misclassification can 
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be improved by reselection the dataset samples.  In this gesture test, the dataset that 
we are using contains 60 non-gestures samples, which may be too much comparing to 
other classes. In addition, since these non-gestures have been generated automatically, 
it is very possible that some of them are similar to some samples in effective gesture 
classes, which will result in the inaccuracy of the classification.  
 
8.2.9 Conclusions 

Gesture recognition is a challenging task in the human-computer interaction field. 
There are lots of existing approaches already, the most popular one is the HMM 
model approach, it can perform very good classification accuracy and can be used in 
real-time applications, but the drawback of it is also clear. It is still not easy for people 
to construct a HMM chain for each gesture.  

For our task, the previous experiments imply that RVM has a very excellent 
ability for classification, which supplies more advantages comparing to other 
approaches. This enlightens us to consider about using our existing RVM model to 
realize gesture recognition task. The testing result shows that it is a very promising 
approach for future research.  
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9  
 

UI-Wand System Design  

9.1 The existing framework introduction 
In Part II, we described all models and algorithms suitable for our problems. Now we 
need to implement and integrate them so that the prototype UI-Wand system can run 
properly. Before the implementation, the first step is to design the whole system. In 
PHILIPS, there is an existing C++ software framework for previous projects on 
computer vision, which is called Visipirin. Visipirin supplies many packages 
containing a lot of basic and utility classes, which stipulates the structure to new 
applications. So all our design and implementation works are based on Visipirin.  
 

Fig. 
packages
utility pac

Ther
 

 
Figure 9.1: Existing C++ packages of pervious projects. 
9.1 shows the existing packages of Visipirin. The white ones are the 
 developed for the projects on computer vision, and the cyan ones are the 
kages, which are developed for all projects.  

 

e are two advantages of this framework that we can describe as follows: 
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1. Visipirin defined a set of base classes and utility classes suitable for image and 
video processing. With these classes we can directly go to do the real work for 
our special applications. 

 
2. Visipirin defined an algorithm class, based on which all of special algorithms 

are constructed, which gives a very flexible way to combine various 
algorithms that might be used in the final applications and change their 
parameters by using parameters file. So in the final system, if we want to try 
other models or algorithms in the application, instead of modifying the code 
and compiling the entire system, we just need to revise the application 
parameters files, which will make a recombination of the algorithms in the 
application. This advantage is very important for the project during the 
research period, because this makes much easier for us to test algorithms 
individually or embed new algorithms into the system. 

 
9.2 UML models introduction 
It is difficult somehow for us to design our system based on Visipirin, since there is 
no documentation about this framework. So before starting the design of our special 
system, we have to figure out the current framework’s principle and then follow its 
features to construct our system. Because Visipirin is a C++ object-oriented project, 
the suitable design mechanism is the Unified Modeling Language, also known as 
UML.  

The main advantage of UML is that it can design the object-oriented software on 
different levels of abstractions and consideration. It can design very high-level 
software structure and also detailed individual class by using different diagrams. In 
our system, we reconstruct Visipirin and design our UI-Wand system by using UML 
models. The main UML diagrams we used to design the system are listed as follows: 
 

1. Class diagrams that show the structure and relationship between classes used 
in one application.  

 
2. Individual class diagrams that show the main attributes and member functions 

in one class of the interface. Moreover, above the individual classes, we use 
some text to explain the functionality of the class, which will be helpful to 
readers to understand.  

 
3. Sequence diagrams that show the message exchange between the objects in 

one application, which will let users easily figure out the running procedure in 
one application. 
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Figure 9.2: UML elements used in our UML diagrams. 

 
Although most of elements and diagrams in UML are standard, sometimes some 
symbols look different in different tools. In addition, we use some special elements in 
our UML models to express the concept more simple and clear. Therefore in order to 
make it clearer, we explain briefly here the elements we used in UML diagrams. Fig. 
9.2 shows the elements we used in our UML models design.  
 

a) Represents the user of the system who can use the application in the system. 
 

b) Represents the application that is implemented in the system for users to use. 
 

c) Represents a derivation relationship. It connects two classes. The class in head 
side is the abstract class of the class in tail side. 

 
d) Represents a derivation relationship. It connects with many classes, the classes 

pointed by the head of the arrow is the abstract class of every class place in the 
line segment. This is a symbol we define in order to simplify the class diagram. 

 
e) Represents a combination relationship. It connects with two classes. The class 

in its tail side is a component of class in the head side.  
 

f) Represents a class indicating its attributes and member functions. 
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g) Represents a template class, which is often used in our system. The template 
classes are designed to handle different type of images, i.e. color ones or gray 
ones. 

 
h) Represents an interface showing its member functions. 

 
i) Represents an interface without showing anything. 

 
j) Represents a class without indicating its attributes and member functions. 

 
k) An example of sequence diagram. The object box is the object used in an 

application, the message 1 is an invocation from one object to another one, the 
message 2 is an invocation from one object to itself and the message 3 is the 
return message. 

 
l) Represents a package, which contains the classes handling the same problem.   

  
9.3 UML models of Visipirin 
Now we start to describe Visipirin by UML. If we use Use-Case diagram to express 
the framework, it will be a very simple diagram (see Fig. 9.3). The use case in the 
framework is just to let a user run an application, which clearly indicates the 
framework purpose. After this simple figure, now we start to extend the class diagram 
of this framework. The main classes of the framework are Application class and 
Algorithm interface, their relationship is described in Fig. 9.4. From this figure we can 
clearly see that all algorithms in the system are derived from the abstract interface, 
Algorithm, and Application base class can include as many as possible algorithm 
classes that are implementation to the various specific algorithms interface. For 
example, in Fig. 9.6, FileInputPPM is an implementation class of InputAlgorithm 
interface, which is a special algorithm interface derived from Algorithm interface.  
 

 

Figure 9

 

 
.3: The simple use case diagram for existing framework. 
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Figure 9.4: Application and Algorithm Class diagram of Visipirin. 
Figure 9.5: Application and Algorithm sequence diagram of Visipirin. 
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Figure 9.6: Class diagram of Visipirin. 
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Fig. 9.6 shows some important classes used in Visipirin. Because the special 
algorithm interface and implementation class are also used in our system, so we will 
introduce them together with our system later. Here, we just introduce more about 
Application class, Algorithm class and the base classes that are common use, so that 
you can really get the idea of this framework and know its advantage.  
 
9.3.1 Individual class description 

Application Class 
Application class is a base class. Every special application class need to be derived 
from this class. The basic functionality of this class is to read image sequences from 
files or from devices and initialize special algorithms indicated from command lines 
or a parameter file.  
 

 
 
Algorithm Interface 
Algorithm interface defines a common interface for all special algorithms. All of 
algorithms need to use in an application have to be implemented or derived from this 
interface.  
 

 
 
Frame Class 
This class is very simple. It just combines Frameinfo class and Image class together. 
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FrameInfo Class 
This class supplies the information about one frame, which includes the timestamp of 
a frame, the count of a frame in a sequence. These information will be useful for the 
special algorithm class to operate with a frame.  
 

 
 
Image Class 
Image class an important class. The functionality is to store an image into the memory 
in order to let other classes operate. Many attributes and member functions of this 
class comes from its parent class MatrixAllocator which is in charge for memory 
allocation. But since we did not use MatrixAllocator class directly we will not give 
detailed description of it. In Image class, we just show one attribute and one member 
function, which are enough information for your understanding to its function. The 
allocatiedMem_ is a pointer to point a block of memory and operator(x,y) can access 
one pixel value on the image. 
 

 
 
FrameSequenceInfo Class 
In this class information on the frame sequence level are collected. Those are frame 
sizes, number of frames, name of the sequence, etc. This class is used more often than 
Frame class. 
 

 
 
9.3.2 Applications execution 

A compiled application class will run like what the Fig. 9.5 shows. The parameters 
that this application need to have can be inputted from command line or from a 
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parameters file formatted as follows. The first part of which indicate the location of 
the application to run, the second part is the parameters or parameters file created, and 
the last part is a sequence of frames to feed into the application to handle. 
 

The command line format:  
(a) applicationname parameters ./theframesyouwanttorun/* 
(b) applicationname parameters.par ./theframesyouwanttorun/*  

 
The parameters have the following format: 

(a) Scopename=AlgorithmName 
(b) Scopename::ParameterName=ParameterValue  

 
The Scopename indicates the domain within which the parameters will be used. 

Every different Scopename can has one line in format (a) which indicates the 
algorithm that will be used for this domain, and several lines in format (b) which 
indicates the special parameters needed to run the algorithm. A parameters file 
example is shown in Table 9.1. This example parameters file tells the application to 
run an algorithm to do features extraction operation. The algorithm’s name is 
indicated as WindowedDCT, so that this application will use the windowed DCT 
feature extraction algorithm, all needed parameters of which are given after the first 
effective line. 
 

Table 9.1: Parameters file for feature extraction. 

 

# A parameters file for windowed DCT feature extraction application  
features=WindowedDCT  
features::window_size_x=20  
features::window_size_y=20  
features::num_steps_x=1  
features::num_steps_y=1 
features::normalize_mean=false  
features::normalize_stddev=false  
features::dct_min_modes=0  
features::dct_max_modes=3 
features::x_feature=false  
features::y_feature=false  
features::eol_marker=false 

  
9.4 UI-Wand system introduction 
Based on Visipirin presented above, now we start designing our system. The first step 
is to define our use cases. The main use case in the UI-Wand system is UI-Wand 
application, by which the system can realize all the function required such as screen 
corner detection, pointing positioning, and gesture recognition. But UI-Wand 
application is not the only case in our system. To run the final application, UI-Wand 
have to get screen corners samples and train RVM so that it can classify the corners, 
and the same with gestures recognition, the UI-Wand must get gestures samples and 
corresponding RVM models to do the classification. All of these tasks are application 
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cases in our system. So in the end, we design six cases (applications) in our final UI-
Wand prototype system (see Fig. 9.7). They are Synthetic Dataset Generation 
Application, Adaptive Dataset Collection Application, Gestures Dataset Collection 
Application, Screen Corners Training Application, Gestures Training Application, and 
UI-Wand application. The detailed description about these application cases will be 
given respectively in the later sections of this chapter. In the same way as we used in 
before, this section we will still use UML models to design. The model diagrams we 
used are use case diagram, classes diagram, sequence diagram, detailed individual 
class diagram and text to explain the functionality and principle of them. 

Figure 9.7: UI-Wand system use cases UML. 
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9.5 Synthetic dataset generation application 
We used structure programming to generate synthetic samples for our RVM classifier. 
This program is separated from our UI-Wand system. Fig. 9.8 shows the program 
flow chart. The parameters of this program as follows: 
 

z save_dir: Generation directory. It is the directory given by the user for saving 
the generated samples. When this directory is given, the program will 
automatically generate four sub-directories, which are lefttop corner 
directory, righttop corner directory, leftbottom corner directory and 
rightbottom corner directory. When the program is running, the generated 
corners will be saved into this directory corresponding to their class name. 

 
z base_outer_color: Outer border color of the screen. The user specifies this 

color value. The valid range of this value is between 50 and 205, which is 
considered as the most popular color distribution range of the normal screen 
border. 
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Figure 9.8: Synthetic screen corners dataset generation application flow chart. 
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9.6 Screen corners training application 

 

Figure 9.9: Class diagram in screen corners training application case. Classes in cyan are
the algorithms used in TrainModelsApplication class shown in blue. 
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Screen corners training application is an application that can read a set of screen 
corners samples saved as files on the disk and extract their feature vectors and then 
use these vectors to train RVM models. This is the compulsory application before 
running final UI-Wand application, because it will supply the weights information to 
the final classification RVM models used in screen corner detection step. In Fig. 9.9, 
we can see that the TrainModelsApplication uses four different algorithms to finish 
this task. In order to give clear explanation about the functionality of different classes 
and algorithms, we use the following method to describe. Firstly, like what we did in 
section 9.3 we will give a text description about its functionality, and then we will 
give a detailed individual class diagram to show its important attributes and member 
functions. For the algorithm class and application class, we will give a table to 
describe the parameters they accept which control their running status for particular 
cases.  
 
9.6.1 Individual class description 
TrainModelsApplication Class 
This is the main application class that integrates all algorithms needed for training 
classification models to let it classify screen corners.  
 

 
 
InputAlgorithm Interface 
This interface supplies interface function processFrame which obtains a non-constant 
reference to an Image to which it will write all pixels of the current frame. The special 
implementation of this function will be finished in other algorithm implementation 
classes. 
 

 
 
FileInputPPM Class 
The functionality of this class is to read a .ppm file, ascII or binary format, from disk 
and save it into Frame class, so that the other algorithm can easily use it. 
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FeatureExtractionAlgorithm Interface 
This interface supplies two functions for special feature extraction algorithm. 
ProcessFrame is the main function, which will extract the features of a frame then 
save them into a list. The updateParameters is a simple function for updating the 
parameters used in the special algorithm. In our AnnotationFeatures class, we update 
tilted image angle. 
 

 
 
WindowsFeatures Class  
The functionality of this class is to do Discrete Cosine Transform to a sequence of 
sub-images of an image. The DCT coefficients after transformation will be stored into 
a vector list, which is used as the feature vectors for this sequence of sub-images. The 
sub-images selection is controlled by its parameters. Essentially, the parameters will 
fix a target-window size by defining its width and height, and the algorithm will use 
this target-window to scan the entire image, by fixing the move step size and the 
number of move step of the target window. The special main parameters it uses are 
listed below: 

Table 9.2: Parameters used in WindowsFeatures class. 

Parameters Description 
scan_row_wise Is the outer loop over cols (true) or rows (false)? 
eol_marker If true, an empty vector is added at end of lines. 
window_size_x Window size in x direction. 
window_size_y Window size in y direction. 
extract_size_x Scaled target window size in x direction for extraction. 
extract_size_y Scaled target window size in y direction for extraction. 
step_width_x Distance the window moves in x between two steps (in pixels). 
step_width_y Distance the window moves in y between two steps (in pixels). 
num_steps_x Number of steps in x direction. 
num_steps_y Number of steps in y direction. 
dct_min_modes DCT coefficients with at least that many modes (sum of both 

directions) are taken as feature components. 
dct_max_modes DCT coefficients with at most that many modes (sum of both 

directions) are taken as feature components. 
x_feature The x coordinate is taken as feature component. 
y_feature The y coordinate is taken as feature component. 
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FeatureExtractionUtil Class 
The functionality of this class is to help the TrainModelsApplication to save feature 
vectors easily. It indicates which sample belongs to which class by the sample file’s 
name and save the feature vector into the feature vector file. The parameters it uses 
are listed below: 

Table 9.3: Parameters used in FeatureExtractionUtil class. 

Parameters Description 
class_num The number of classes in a dataset. 
samples_num The number of samples of a dataset. 
class_0_label The string label of class 0. 
class_1_label The string label of class 1. 
class_2_label The string label of class 2. 
class_3_label The string label of class 3. 
class_4_label The string label of class 4. 
feature_file The file to save feature vectors of samples. 

 

 
 
ClassificationAlgorithm Interface 
This interface supplies two interface functions, process and processTraining. The first 
function is to execute the classification procedure given a feature vector. The second 
one is to execute the training process of a corresponding classification models.  
 

 
 
RVMClassifier Class 
The functionality of this class is to create a list of RVM models and to train them by 
invoking the member function of RelevanceVectorMachine class. After the training, 
final weights for the models will be stored into a weight file indicated by the 
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parameter. Another state of this class is multi-classification. When the train_model 
parameter is set to false, the class will not run to train RVM models, instead, it will 
read models weights from the weights file indicated by the parameter and classify a 
input sample by invoking process function. The parameters file of this class is shown 
below: 

Table 9.4: Parameters of RVMClassifier class. 

Parameters Description 
class_num The number of classes in a dataset. 
feature_dim The dimension of the feature vectors. 
kernel The kernel function you will use in RVM. 
kernel_length The parameter of kernel function used in RVM. 
train_model If the value is “ture”, the class will be set on training state. 
samples_vectors_filename The location of the file where the feature vectors of samples 

stored. 
model_weights_filename The weights file storing the final weights of model. When 

class state is training, it will be written otherwise it would 
be read. 

 

 
 
RelevanceVectorMachine Class 
This class is the real RVM model class but not an algorithm class. It implements the 
RVM classification model and will really do the training and classification operation. 
The limitation of this class is that it only can handle two classes classification case.  
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9.6.2 Sequence diagram 
Fig. 9.10 shows the procedure of the training of RVM. Firstly, the application will 
read sample files from the disk. Then the feature extraction algorithm will extract 
their features and send them to RVM. When RVM receives enough sample feature 
vectors, it will start to use them to train the classification model. After training, RVM 
classifier will write the final weights into a file that will be reload into RVM when it 
need to make classification.  
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Figure 9.10: Sequence diagram of screen corners training application case. 
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9.7 UI-Wand application 

Figure 9.11: Class diagram in UI-Wand application case. Classes in cyan are the algorithms used in 
UIWandApplication class shown in blue. The dot derivation line means that all special algorithms 

interface are deriving from algorithm interface. 
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UI-Wand application is the main application in UI-Wand system. It is the final 
application that detects screen corners, finds pointing position and analyzes the user’s 
gestures. It is also the base application for adaptive dataset generation application, and 
gestures collection application. So it is the application that has most algorithms 
embedded in, which can easily be seen from Fig. 9.11. But we noticed that the 
InputAlgorithm interface is implemented by FileInputPPM class, which means we 
still get the sequence of frames from files on disk instead of collecting the sequence of 
frames from cameras directly. And the pointing positioning analysis class misses as 
well in this structure. So the structure shown in this figure is not for the final 
prototype of UI-Wand used for demonstration. Actually it is the UI-Wand application 
for running off-line. But these are not big problems for understanding the structure of 
UI-Wand application, because the main algorithms are already combined into the 
system. For the final prototype UI-Wand system, the only thing we need to do is to 
replace FileInputPPM class with CamInput class and add pointing positioning 
analysis class then the UI-Wand application can work properly on-line.  
 
9.7.1 Individual class description 
UIWandApplication Class 
This is the main application class that integrates all algorithms needed for UI-Wand.  
 

 
 
UIWandApplicationUtil Class 
This class is designed for control the running states and logging states of UI-Wand 
application by setting its parameters with different values. Because 
UIWandApplication class contains many algorithms, it is important to test the 
performance of every algorithm in it. So we design some different running states for it, 
by running on which the UI-Wand application can select different algorithms for 
running so that we can easily test their performance. In order to save some results of 
algorithm, we need to write some information into file, which can also be controlled 
by the parameter. The special parameters are listed in Table 9.5. 
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Table 9.5: Parameters of UIWandApplicationUtil class 

Parameters Description 
Run_level The running states of UI-Wand application, the possible 

value for states are 1, 2, 3, and 4. 
1. Running only with Sojka Corner Detection. 
2. Running with Sojka Corner Detection and a rectangle 

filter. 
3. Running with Sojka Corner Detection and RVM. 
4. Running with all algorithms (screen corner detection 

and gesture recognition). 
log_level If true, the application will save some algorithms results. 
log_directory The location to save results. 

  

 
 
DetectionAlgorithm Interface 
This interface supplies two functions for the special implementation class. The first 
function is to detect a special place in a frame then save the detection results into a list. 
The second function is just for updating the parameters used in the special algorithm. 
In our SojkaCornerDetection algorithm we update its ROIs. 
 

 
 
SojkaCornerDetector Class 
This class implements the Sojka corner detection model, which can detect the corners 
in an image.  
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SojkaCornerDetection Class 
The functionality of this class is to invoke SojkaCornerDetector class and let it do the 
detection work. The main difference of this class in structure with 
SojkaCornerDetector class is that it is an algorithm class that can configure the 
parameters by parameters file. The functionality difference of this class with the 
above class is that it can do the corner detection only on some sub-images indicated 
by ROIs and another improvement is that it can do the corner detection both on gray 
level image and color image by changing the value of the template. The special 
parameters are listed in Table 9.6: 

Table 9.6: Parameters of SojkaCornerDetection class 

Parameters Description 
halfPsgMaskSize See section 4.4. 
angleThresh See section 4.4. 
noiseGradSizeThresh See section 4.4. 
apparenceThresh See section 4.4. 
sigmaD See section 4.4. 
sigmaR See section 4.4. 
halfExtMaskSize See section 4.4. 
ROI_x_size The width of region-of-interest area 
ROI_y_size The height of region-of-interest area 
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AnnotationFeatures Class 
The functionality of this class is to use DCT to extract sample features, which is 
similar to WindowsFeatures class. But the difference is that, instead of scanning a 
whole image with a target window to get a list of feature vectors, this class will only 
extract the feature vectors of target windows defined by a list of points. It is designed 
for our Candidates-Winners approach requirement. By giving a list of corners, this 
class will extract the sub-images in target windows with the corners as the centers and 
size defined by parameters, so that feature vectors represent those corners and can be 
sent to RVM to classify. The special parameters are listed in Table 9.7: 

Table 9.7: Parameters of AnnotationFeatures class. 

Parameters Description 
window_size_x Window size in x direction. 
window_size_y Window size in y direction. 
extract_size_x Scaled window size in x direction to be extracted. 
extract_size_y Scaled window size in y direction to be extracted. 
extract_mode Zoom every sample or zoom the whole image. 
tilted_angle The tilted angle of the image. 
dct_min_modes DCT coefficients with at least that many modes (sum of both 

directions) are taken as feature components. 
dct_max_modes DCT coefficients with at most that many modes (sum of both 

directions) are taken as feature components. 
x_feature The x coordinate is taken as feature component. 
y_feature The y coordinate is taken as feature component. 

 

 
 
ScreenCornersFilter Class 
It is another important class in our system. The main functionality of this class is to 
filter out the screen corners by rectangle filters. It also contains missing corner 
prediction and ROI selection algorithms we introduced in Chapter 6. The parameters 
are listed below: 

Table 9.8: Parameters of ScreenCornersFilter class. 

Parameters Description 
distance_x The width of a possible rectangle used as filter (in pixels). 
distance_y The height of a possible rectangle used as filter (in pixels). 
offset The tolerable distortion of the rectangle. 
tilted_angle The tilted angle of the current image. 
predication_num_frame The number of frame used to predict corners trace (fixed to 

three in our final system). 
history_size How many history detection you want to save. 
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TraceAnalysisAlgorithm Interface 
This interface supplies three functions for the special implementation class. The 
processCollection function is used to collect sample gestures, extract their features 
and then save the features into a file. The processAnalysis function will just do feature 
extraction on a trace then return the feature vectors. The third function is 
updateParameters like other interface, which is just for updating the parameters used 
in the special algorithm. In our InterpolationTrace algorithm we update the trace 
information. 
 

 
 
TraceInterpolation Class 
The functionality of this class is to use interpolation method to do the trace analysis 
like what we introduced in Chapter 8. There are two running states in this class. One 
state is for collecting gesture samples from an input sequence and the interpolation 
analysis for the gestures then saves the feature vectors into a file. The other state is 
only for the trace analysis for one trace and returns its feature vector for RVM 
classification. The special parameters used are listed below: 
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Table 9.9: Parameters of TraceInterpolation class. 

Parameters Description 
trace_size How long is the trace to keep? 
model Two values, “collect” or “analysis”. 
samples_dir The directory for saving gesture samples. 
feature_vectors_filename The file for saving feature vectors of gestures. 
num_motion_vector The number of motion vectors for analyzing trace. 
current_gesture The mark to indicate which kind of the gestures are 

collected now. 
gesture0_label Gesture label for indicating the type of gesture. 
gesture1_label Gesture label for indicating the type of gesture. 
gesture2_label Gesture label for indicating the type of gesture. 
gesture3_label Gesture label for indicating the type of gesture. 
gesture4_label Gesture label for indicating the type of gesture. 
num_gesture_samples How many gestures to get? 
num_nongesture_samples How many invalid gestures at most you want to get? 
base_non_gesture To generate basic invalid gestures? 
non_gesture_step_min The minimum step size for invalid gestures generation. 
non_gesture_step_max The maximum step size for invalid gestures generation. 
non_gesture_step_distribution How many kinds of step to have? 
non_gesture_angle_min The minimum angle degree variant for invalid gestures 

generation. 
non_gesture_angle_max The maximum angle degree variant for invalid gestures 

generation. 
non_gesture_angle_distribution How many different angles to have? 
movement_sensitivity The sensitivity to detect moving (in pixels). 
holding_num_unittime The number of frames moving within the range of 

movement_sensitivity. 
missing_tolerance  How many missing frames it can tolerant? 
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AnnotationAlgorithm Interface 
This interface supplies one function for its implementation class, which will draw 
some annotation into a frame. 
 

 
 
DrawAnnotation Class 
This class is designed for visualization of the detection results. What it does is to use a 
color rectangle box to draw an annotation in the input image, so that a user can see the 
detection results directly. Some parameters it accepts are listed below: 

Table 9.10: Parameters of DrawAnnotation class. 

Parameters Description 
box_color_r Red color component for drawing boxes. 
box_color_g Green color component for drawing boxes. 
box_color_b Blue color component for drawing boxes. 

 

 
 
OutputAlgorithm Interface 
This interface only supplies one function to implementation class, which will output a 
frame. The special output methods, such as writing to files, displaying in windows, 
and etc, will be implemented by the special classes. 
 

 
 
OutputPPM Class 
The functionality of this class is to write a Frame to a ppm file. The parameters of this 
class are listed below: 

Table 9.11: Parameters of OutputPPM class. 

Parameters Description 
filename_base Base filename (if not set: use input name). 
append_framecount Append frame count to filename. 
append_sequencecount Append sequence count to filename. 
binary_format Write raw values. 
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9.7.2 Sequence diagram 
Fig. 9.12 presents a period of lifetime of UIWandApplication. During this period, the 
application finishes screen corner detection on one frame and gesture recognition 
based on the current trace information. This sequence diagram is a brief 
representation for the real work of UIWandApplication, many detailed message and 
data exchange have not been shown. But it will not affect your understanding to its 
global procedure. 
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Figure 9.12: The sequence diagram of UI-Wand application. Dot box means the object was or 
will be activated sometime. 
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9.8 Gestures dataset collection application 
Gesture dataset collection application is based on UI-Wand application. The class 
diagram is the same with UI-Wand application shown in Fig. 9.11. The main 
functionality and procedure of this application is to run the UI-Wand application to 
detect the screen corners and then save them into a history list so that the movement 
information of UI-Wand is kept as a trace. With this UI-Wand trace information, the 
InterpolationTrace algorithm will do some analysis to the trace, such as justifying if 
the current trace contains a valid gesture and execute the interpolation operation on 
the gesture to get its feature vector. The InterpolationTrace algorithm keeps analyzing 
and collects those traces, which are effective gestures until enough gestures samples 
have been collected and extracted to feature vectors, so that the RVM models can be 
trained as a gestures recognizer. The detailed procedure is shown in Fig. 9.13, which 
can be seen as a modification of Fig. 9.12. The traceInterpolation object in Fig. 9.12 
is just for feature extraction to a gesture, instead the traceInterpolation object in Fig. 
9.13 is to find samples, extract features and save them into dataset.  
 
 

 
Figure 9.13: Part of sequence diagram for gestures dataset collection application. 
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9.9 Gestures training application 
The functionality of gesture training application is to use samples feature vectors 
collected by gestures dataset collection application to train RVM models so that it can 
do the classification for gestures. This application framework is very simple. It only 
use RVMClassifier algorithm. The classes diagram is shown in Fig. 9.14. Fig. 9.15 
shows the application execution procedure by sequence diagram. 
 

 

Figure 9.14: Class diagram of gestures training application.  

 

 

Figure 9.15: Sequence frame of gestures training application. 
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9.10 Adaptive screen corner dataset collection application 
The functionality of this application is to collect bigger screen corners samples and 
special non-screen corners samples from input frames. By these new bigger sample 
images, the accuracy of RVM models for classification will be much improved so that 
UI-Wand can even use only RVM models to realize screen corners. The algorithms 
used in this application are basically the same as in the with UI-Wand application case. 
The difference is that we add an OutROIAlgorithm interface and OuputCorners class 
into this application, which will help the system to select the samples from frames and 
save them into the disk as adaptive dataset. The new class and interface is shown in 
the class diagram (see Fig. 9.16). 
 

 
Figure 9.16: Class diagram of adaptive screen corners dataset collection application case.  

 
9.10.1 Individual class description 
OutputROIAlgorithm Interface 
This interface supplies two functions to the implementation class. The first one will 
select the frame according to the positions in roiPlist. The second function is just for 
updating the parameters used in the special implementation class. 
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OuputCorners Class 
The functionality of this class is to find out the ROIs in the frames and select them 
and then save into dataset. The ROIs in this class are sub-images containing screen 
corners and sub-images in special places as selective non-screen corners. The special 
algorithm to select ROIs was introduced in Chapter 7.  

 
 
 
9.10.2 Sequence diagram 

 

Figure 9.17: Part of sequence diagram of adaptive screen corners dataset collection 
application. 
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10  
UI-Wand Utilities Design 

 
In Chapter 9, we introduced the design for the UI-Wand system. Most of the 
application cases in the system are useful and compulsory for the final running UI-
Wand prototype. But those are not all applications we designed. There are some 
utility application cases we used for helping evaluate the system. In the real system, 
we design three utilities for the system evaluation. The first one is a visualization 
utility, by which we can easily see the RVM classification result on one image. The 
second one is reference corners utility that is a GUI utility. By using this utility we 
can manually mark four screen corners in one image as reference when we want to 
know our screen corner detection result. The third utility is error analysis utility, 
which can specially evaluate the performance of some algorithms by comparing the 
special algorithms results with the reference corners results. The use cases diagram is 
shown in Fig. 10.1.  
 

 
Figure 10.1: Use cases diagram for UI-Wand utilities. 

 
 

10.1 Visualization Utility 
The visualization utility we used for our UI-Wand system is to give a direct 
impression of RVM models classification to one image. The special results of this 
utility were already shown in Chapter 4. Now we will see its special design by giving 
the UML models. The Fig 10.2 below is the visualization application class diagram.  
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Figure 10.2: Class diagram of visualization utility case. 

 
10.1.1 Individual class description 
ScanImageApplication Class 
This is the visualization application class, which combines all needed algorithms 
together to realize RVM classification results visualization. Since the output 
algorithms are not suitable for our case, so we did not use them to output our results. 
The visualization result is output by a member function in this class.  
 

 
 
10.1.2 Sequence diagram 
Fig. 10.3 shows the sequence diagram of visualization utility. The classification 
procedure likes UI-Wand application’s one, but the feature extraction algorithms they 
used are different. The UI-Wand application uses AnnotionFeatures to extract the 
feature vectors of sub-image by giving the special pixel positions (possible screen 
corner positions) as the center of the sub-images, but windowsFeatures class will 
extract the feature vectors of sub-images by scanning a whole frame. Therefore, if 
target window step size is set as 1 pixel, then almost every position in the frame will 
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be classified except some margins. So with this classification results we can write a 
picture file, giving different color to every pixel, which results in the impressive result 
images shown in Chapter 4.  
 

 

Figure 10.3: Sequence diagram of visualization application. 

 
 

10.2 UI-Wand application error analysis utility 
In order to test the performance of our algorithms and do some analysis about the 
parameter optimization, we designed an error analysis utility. Users can specify the 
reference screen corner points by the GUI of this utility and the utility can analyze 
these reference points together with the result of our UI-Wand system, then some 
analysis tables can be given by the utility. These tables give users very clear outline 
for each important quality. In the following part of this section, we will introduce this 
utility in details. 
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10.2.1 Utility GUI introduction 
The graphical user interface (GUI) of the utility is shown in Fig. 10.4: 

Figure 10.4: Reference points and error analysis GUI. 

The graphical interface is mainly divided into three function parts: “Reload” part, 
“Input” part and “Testing” part. The functions of these parts and the signed labels in 
each part are explained in the following:  
 
“Reload” part: reload the previous image sequence and the corresponding   reference 

points.  
 

“1” Browse the previous image sequence, which was analyzed already, and reload 
it to the utility for analyzing again. 

 
“2” Show the directory and file name of reload sequence. 
 

“Input” part: draw the reference points in the selected image sequence and save   
them into a file. If the reload button was clicked before, this part will show the 
reloaded sequence with its reference points. The GUI during drawing the 
reference corner points is shown in Fig. 10.5. 
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“3” Show the directory and file name of browed image. 
 
“4” Select the new image sequence for analyzing; if you push “1” button before, 

this button is used for reload the previous image sequence and its 
corresponding reference points into “7”. 

 
“5” Show the file directory and name, where the reference corner points will be 

saved. 
 
“6” Choose the save directory and confirm the file name that reference corner 

points will be saved. 
 
“7” Show the image sequence that is browsed by “3” and draw the reference 

points in it, the position information will be shown in “8”. 
 

“8” Show the reference point position yx ,  in the 2D image plot. 

 
“9” Confirm the reference point position information. 
 
“10” Browse the previous image of the image that is being shown in “7”. 
 
“11” Browse the next image of the image that is being shown in “7”. 
 
“12” Save the confirmed reference points information to the file, which the user 
already chose by “6”. 
 

“Testing” part: run the three analyses and show the result table in the other windows. 
 

“13” Run the corner detection algorithm analysis. 
 
“14” Run the RVM classification algorithm analysis. 
 
“15” Run the whole application analysis. 
 

Others: control whole utility. 
  

“16” Renew the utility. 
 
 “17” Quit the utility. 
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Figure 10.5: GUI of reference points utility during assigning the reference corner points. 
 
The operation flow of the whole utility is mainly divided into the following two 

function flows and each flow contains different operations in the GUI for the different 
intentions. The two flows are: 
 
Reload analysis flow: The user flow chart is shown in Fig. 10.6 (orange flow). 

In this flow, the utility will reload the reference corner points in a previous image 
sequence for analyzing again.  
 

New analysis flow: The user flow chart is shown in Fig. 10.6 (blue flow). 
In this flow, the utility will draw the reference corner points in a new image 
sequence for new analyzing. 
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Figure 10.6: Function flow of the analysis utility GUI (reload analysis flow—orange line; new 
analysis flow—blue line; shared flow line—black line). 

 
10.2.2 Error analysis utility introduction 
The main part of this error analysis utility is to give the reference screen corner 
positions and run the three error analysis programs (Sojka corner detection analysis, 
RVM corner classification analysis and whole application analysis). So we can divide 
this utility into two modules: one is reference screen corner positions specification 
module and the other one is error analysis module. 

The reference screen corner positions specification module is used for the users 
to give the reference screen corner positions. This module will display frames in the 
GUI and let users draw the reference screen corners directly in the GUI, finally it will 
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save the reference positions to a text file. This module also has reload ability, which 
can make it easier for users to reload the previous specified frames result whenever 
they need.  

The other module in the utility is the error analysis module. By pressing the three 
analysis buttons, the error analysis module will do some analysis work and give the 
analysis table after that. Because this module is more complex, we will discuss it in 
the next section.  
 
10.2.3 Error analysis module  
In order to test on our main algorithms and do some data analysis work, we designed 
three analysis functions in this module, which can be called by separate function 
buttons on our GUI. 
 
10.2.3.1 Corner detection error analysis 
This function can get the detection result data from Sojka corner detector and 
compare it with the reference screen corner points. The function first reads the result 
data from some text files (one detect result file per image) and then does some 
calculation work with the corner data from the reference corner file. The analysis 
results will be shown by some parameters in a table (see Fig. 10.7). From this table 
we can see the performance of the Sojka corner detector.  
 

 
W

Figure 10.7: Corner detection analysis table. 
e use the following parameters in the table: 
z DCN: detect corner number by Sojka corner detector. 
z lt_D: left top corner detection status (“y” if detected any corner within a 

circle neighborhood of five pixels radius, which is centered at the reference 
left top corner). 

z lt_V: nearest distance variance form detected left top corner to reference left 
top corner. 
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z rt_D: right top corner detection status (“y” if detected any corner within a 
circle neighborhood of five pixels , which is centered at the reference right 
top corner). 

z rt_V: nearest distance variance form detected right top corner to reference 
right top corner. 

z lb_D: left bottom corner detection status (“y” if detected any corner within a 
circle neighborhood of five pixels radius, which is centered at the reference 
left bottom corner). 

z lb_V: nearest distance variance form detected left bottom corner to reference 
left bottom corner. 

z rb_D: right bottom corner detection status (“y” if detected any corner within 
a circle neighborhood of five pixels radius, which is centered at the reference 
right bottom corner). 

z lt_V: nearest distance variance form detected right bottom corner to reference 
right bottom corner. 

z wh_RR: whole detection corner number in an image. 
 
10.2.3.2 RVM classification error analysis 
This function can get the classification result data from RVM classifier and compare 
it with the reference corner points. The function first read the result data from some 
text files (one classification result file per image) and then does some calculation 
work with the corner data from the reference file. The analysis results will be shown 
by some parameters in a table (see Fig. 10.8, we cut the table into two images). From 
this table we can see the performance of the RVM classifier.  
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Figure 10.8: RVM corner classification analysis table. 

 
We use the following parameters in the result table: 

z lt_C: left top corner classification status (“y” if there exists any corner 
classified into left top corner class within a circle neighborhood of 2 pixels 
radius, which is centered at the reference left top corner). 

z lt_HCV: the distance variance from the point that is classified into left top 
corner by RVM and with the highest confidence to the reference left top 
corner. 

z lt_MV: the maximum distance variance from the point that is within the 
cluster that is classified into left top corner by RVM to the reference left top 
corner (the cluster is defined as a points gathering covering the corresponding 
reference corner points and in the cluster all the points are neighbored). 

z lt_GV: geometric center of the left top corner cluster. 
z lt_CGV: geometric center weighted by each point’s classification confidence 

of the left top corner cluster.  
z rt_C: right top corner classification status (“y” if there exists any corner 

classified into right top corner class within a circle neighborhood of 2 pixels 
radius, which is centered at the reference right top corner). 
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z rt_HCV: the distance variance from the point that is classified into right top 
corner by RVM and with the highest confidence to the reference right top 
corner. 

z rt_MV: the maximum distance variance from the point that is within the 
cluster that is classified into right top corner by RVM to the reference right 
top corner (the cluster is defined as a points gathering covering the 
corresponding reference corner points and in the cluster all the points are 
neighbored). 

z rt_GV: geometric center of the right top corner cluster. 
z rt_CGV: geometric center weighted by each point’s classification confidence 

of the right top corner cluster.  
z lb_C: left bottom corner classification status (“y” if there exists any corner 

classified into left bottom corner class within a circle neighborhood of 2 
pixels radius, which is centered at the reference left bottom corner). 

z lb_HCV: the distance variance from the point that is classified into left 
bottom corner by RVM and with the highest confidence to the reference left 
bottom corner. 

z lb_MV: the maximum distance variance from the point that is within the 
cluster that is classified into left bottom corner by RVM to the reference left 
bottom corner (the cluster is defined as a points gathering covering the 
corresponding reference corner points and in the cluster all the points are 
neighbored). 

z lb_GV: geometric center of the left bottom corner cluster. 
z lb_CGV: geometric center weighted by each point’s classification confidence 

of the left bottom corner cluster.  
z rb_C: right bottom corner classification status (“y” if there exists any corner 

classified into right bottom corner class within a circle neighborhood of 2 
pixels radius, which is centered at the reference right bottom corner). 

z rb_HCV: the distance variance from the point that is classified into right 
bottom corner by RVM and with the highest confidence to the reference right 
bottom corner. 

z rb_MV: the maximum distance variance from the point that is within the 
cluster that is classified into right bottom corner by RVM to the reference 
right bottom corner (the cluster is defined as a points gathering covering the 
corresponding reference corner points and in the cluster all the points are 
neighbored). 

z rb_GV: geometric center of the right bottom corner cluster. 
z rb_CGV: geometric center weighted by each point’s classification confidence 

of the right bottom corner cluster.  
z MUR: misunderstanding rate of the classification (number of points that 

should be non-corner but are classified into screen corners divided by the 
number of all points that is classified into screen corners). 

z wh_RR: whole classification right rate of the screen corner (the number of 
clusters that cover the right corner divided by the number of screen corners).    
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z wh_V: weighted average variance of HCV, MV, GV, CGV.  
   

10.2.3.3 Whole application error analysis  
This function can get the detection result data from the application and compare it 
with the reference corner points. The function first read the result data from some text 
files (one detect result file per image) and then does some calculation work with the 
corner data from reference file. The analysis results will be shown by some 
parameters in a table (see Fig. 10.9). From this table we can see the performance of 
our Candidates-Winners approach.  
 

 

Figure 10.9: Whole application analysis table. 

 
We use the following parameters in the result table: 

z lt_E: left top corner existing status (“y” if the left top corner is detected). 
z lt_V: the distance variance from the detected left top corner to the reference 

left top corner. 
z rt_E: right top corner existing status (“y” if the right top corner is detected). 
z rt_V: the distance variance from the detected right top corner to the reference 

right top corner. 
z lb_E: left bottom corner existing status (“y” if the left bottom corner is 

detected). 
z lb_V: the distance variance from the detected left bottom corner to the 

reference left bottom corner. 
z rb_E: right bottom corner existing status (“y” if the right bottom corner is 

detected). 
z rb_V: the distance variance from the detected right bottom corner to the 

reference right bottom corner. 
z whole_V: average distance variance of lt_V, rt_V, lb_V, rb_V. 
z HCF: have reference corner frame (“y” if there are screen corner in the 

original image). 
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z LCF: lost real corner frame (“y” if the original image has reference screen 
corners but our application can not detect them) 

z WCF: wrong detection corner frame (“y” if the original image have no screen 
corner but our application wrongly detect corners). 

z WF: wrong detection frame (“y” if this frame are wrongly detected in any 
case). 

 
10.2.3.4 Utility implementation 
We used QT Designer software under Linux to implement the UI-Wand application 
error analysis utility. The GUI was designed base on the utility requirement and the 
two modules in this utility are all implemented based on the basic classes of QT 
Designer.  
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11  
System Tests 

 
We divided our system test into two parts: off-line test and on-line test. The off-line 
test focuses on testing our Candidates-Winners approach without capturing image 
sequences from the camera and mouse positioning process. From off-line test, we 
want to show the different effects of the algorithms that we used in our Candidates-
Winners approach and confirm that this approach can accurately detect screen corner. 
The on-line test performs test of the whole integrated UI-Wand system, which will 
capture image sequence from the camera, detect screen corners and find out the 
pointing position then drive the mouse cursor. From the on-line test, we want to show 
that the UI-Wand system developed by us can work on real-time in the real 
environment.  
 

11.1 Off-line tests 
In this section we will introduce the test environment of the off-line test including 
hardware and software conditions. Then the test goal, test materials and the specified 
system parameters will be clearly described. Finally we show the test results and do 
some analysis.    
 
11.1.1 Off-line test environment introduction 
Hardware conditions:  
Machine for test: Pentium IV-2.4G, 256M memory/Linux. 
 
Software conditions:  
Test system: Red Hat Linux. 
Error analysis tool: UI-Wand application error analysis utility. 
 
11.1.2 Off-line test goal 
In off-line test, we mainly test our Candidates-Winners approach, because it is the 
most crucial part of our system. By this test, we want to know the effect of every 
algorithm or model used to the screen corner detection in this approach, for example, 
if the RVM can really classify and reduce the candidate corners, if the system can 
detect the four screen corners accurately and how fast the algorithms are. In a nutshell, 
we want to prove that our screen corners detection approach can satisfy the 
requirements as we defined in Chapter 2. 
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11.1.3 Off-line test sequences selection 
We used two categories of frame sequences for our off-line test, one category contains 
three long sequences (each has 600 frames) and the other category contains ten short 
sequences (each has 20-30 frames). These test sequences are all captured in front of 
the computer screen for demonstration (PHILIPS brilliance 180P2 black LCD 
computer screen). 
  
Three long test sequences: We used UI-Wand system to get three sequences from 

UI-Wand in the real demonstration environment. Each sequence contains 600 
frames and is captured in real-time (10 frames per second). In each sequence, 
some gesture actions are made and these gesture actions cover most possible 
movements what we expect users to do when using our UI-Wand system. These 
three sequences are used for speed test of our Candidates-Winners approach, 
because they are continuously captured and processed by our system.  

Here we use “BS” to stand for the long sequence. The special movements in 
the three big sequences are: 
 
LS1 which contains movements of picking up the UI-Wand and pointing to the 

screen, moving UI-Wand pointing position from one place to another place 
within screen, pointing UI-Wand to the screen and pushing forward and 
backward, pointing UI-Wand to the screen and rotating it.    

 
LS2 which contains movements of pointing UI-Wand to the screen and moving 

UI-Wand to left and right within small range, pointing UI-Wand to the 
screen and moving it up and down within small range, pointing UI-Wand to 
the screen and moving it as a cross trace. 

 
LS3 which contains movements of pointing UI-Wand to the screen and moving 

it to left and right within large range, pointing UI-Wand to the screen and 
moving it up and down within large range, pointing UI-Wand to the screen 
and moving it to point on a place outside the screen. 

  
Ten short test sequences: The other ten small sequences we used in the off-line test 

part are selected from these above three long sequences by hand. Each of these 
short sequences contains one special movement. Totally, the ten sequences cover 
most of the possible movements that the user can do. These ten sequences are 
used for accuracy test of our Candidates-Winners approach, since they show 
most of the possible movements in using our UI-Wand system.    

We briefly use “SS” to stand for the short test sequence. The special 
movements in the ten small sequences are: 

 
SS1 contains movement of picking up the UI-Wand and pointing to somewhere 

in the screen. 
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SS2 contains movement of pointing UI-Wand to the screen and pushing it 
forward. 

 
SS3 contains movement of pointing UI-Wand to the screen and pulling it 

backward. 
 

SS4 contains movement of pointing UI-Wand to the screen and moving to left 
and right within small range. 

 
SS5 contains movement of pointing UI-Wand to the screen and moving up and 

down within small range. 
 

SS6 contains movement of pointing UI-Wand to the screen and moving it as a 
cross trace. 

 
SS7 contains movement of pointing UI-Wand to the screen and moving to left 

and right within large range. 
 
SS8 contains movement of pointing UI-Wand to the screen and moving up and 

down within large range. 
 
SS9 contains movement of pointing UI-Wand to the screen and left rotating it. 

 
SS10 contains movement of pointing UI-Wand to the screen and right rotating it. 

 
11.1.4 Off-line test results 
Before off-line test, we specified the parameters file (see Appendix D.1) of the UI-
Wand system. These parameters are set for the three long test sequences.  

After testing, we divided the result of our off-line test into Table 11.1 and Table 
11.2. Table 11.1 shows the accuracy rate of our Candidates-Winners approach and the 
detection number in each step of this structure, from which the improvement made by 
our Candidates-Winners approach can be clearly seen. Table 11.2 shows the process 
speed of our Candidates-Winners approach and from this table we can see the speed 
acceleration by using the tracking filter.  
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Table 11.1: Algorithms combination test in Candidates-Winners approach.  

Seq. Corner 
detection 

Corner detection 
+RVM 

classification 

Corner detection 
+ RVM classification 

+ Filter 
 Corner number Corner number Variance Rates 

SS1 82 16 2.09 87% 
SS2 78 22 1.60 100% 
SS3 78 23 1.52 100% 
SS4 79 17 1.81 100% 
SS5 50 10 1.83 75% 
SS6 69 13 2.12 93% 
SS7 61 11 4.90 70% 
SS8 60 10 9.57 90% 
SS9 78 20 1.72 100% 
SS10 66 18 1.46 100% 

 

Table 11.2: Sequence processing speed test (data is in millisecond).  

Seq. 
Corner 

detection 
 

Corner detection 
+ RVM 

classification 

Corner detection 
+ RVM classification 

+ Filters 
 DT FE RVM DT FE RVM WHOLE 

LS1 138.80 127.27 60.93 27.93 51.77 9.07 88.77 
LS2 127.00 132.82 61.65 29.60 54.98 7.92 92.5 
LS3 113.05 123.70 63.03 42.87 52.95 9.83 105.65 
AVR 126.28 127.93 61.87 33.47 53.23 8.94 95.64 
*DT: corner detection time 
 FE: feature extraction time 
 RVM: RVM classification time 
 WHOLE: whole structure processing time 
 
11.1.5 Off-line test result analysis 
Both the test results in Table 11.1 and Table 11.2 clearly show the performance by 
using our Candidates-Winners approach.  

In Table 11.1 we can see when we combine the RVM classification algorithm 
together with the Sojka corner detection algorithm, the detected corner number will be 
decreased a lot. When we combine all algorithms in Candidates-Winners approach 
together, we can accurately detect only the four screen corners from the sequences. 
But for some sequences such as SS1, SS5, SS6, SS7 and SS8, the final detection rates 
are not so high compared to the results of other sequences. This is because there are 
fast movements in the sequences. If a movement is too fast, the captured frames will 
be very blur and our Candidates-Winners approach cannot accurately detect the 
screen corners. But we can conclude that our Candidates-Winners approach can 
handle normal movement sequences very well. For the fast movement, although the 
detections are not accurate, but as what we mentioned in Chapter 7, the tracking filter 
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will at least predict correct direction information, which is enough for fast moving UI-
Wand. 

From Table 11.2, we can see the obviously speed up performance by our 
Candidates-Winners approach. If we only use Sojka corner detection algorithm or its 
combination with RVM classification algorithm, the processing speed is not satisfied 
the real-time requirement. But if we use ROI tracking algorithm, the total processing 
time will be shorter, because the corner number for feature extraction and 
classification is decreased quite a lot. This improvement can lead our system to satisfy 
the real-time processing requirement. 

11.2 On-line tests 

11.2.1 On-line test environment introduction 

Hardware conditions: 
Test monitor: A PHILIPS brilliance 180P2 black LCD computer screen 
Test machine: Pentium IV-2.4G CPU and 256M memory 
Devices: UI-Wand hardware components (see Chapter 2) 
 
Software conditions:  
Test system: Window XP 
 
Room conditions: 
A normal working room with changeable light conditions in PHILIPS Research 
Laboratories Aachen (see Fig. 11.1)  
 
11.2.2 On-line test goals 
Finally we realized the UI-Wand system prototype for computer mouse control as we 
earlier defined in Chapter 1. The goal of our on-line test is to evaluate the 
performance of our UI-Wand system in a real environment. In this test, we embedded 
all the algorithms (camera input algorithm + pointing positioning algorithms+ mouse 
driver) together, so the test data we got should correctly reflect the final performance 
of our UI-Wand system. 
 
11.2.3 On-line test procedure 
Firstly we set up the whole UI-Wand system and then handle the UI-Wand in 
different valid positions, which can be close to the screen (>0.9m), far from screen 
(<4m) and with different left or right pointing angle. We also change the light 
conditions of the room during our test. So our on-line test can cover the possible 
conditions of using the UI-Wand and the result we got can present the real 
performance of the whole system. Examples of on-line test environments are shown 
in Fig. 11.1.  
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Figure 11.1: On-line test environments examples (the left image is captured in a dark 
condition and the right image is captured in a bright condition).    

 
11.2.4 On-line test result and result analysis 
The parameters file for on-line test is listed in Appendix D.2. Since we cannot use our 
Error Analysis utility to analyze screen corner detection results in on-line test, so we 
will describe in section 11.2.5 by text. The only useful result data can present here is 
the speed of system. We can see the speed data getting during using the UI-Wand 
from Table 11.3. The speed is shown as frames per second (fps). 
 

Table 11.3: On-line test speed results. 

No. Number of frames Processing speed (fps) 
1 813 10.11 
2 875 10.92 
3 1381 9.3 
4 1490 11.35 
5 1524 10.98 
6 2186 10.93 
7 2328 11.27 
8 2420 11.79 
9 2758 12.63 
10 3309 10.32 
AVR 1908 10.96 

 
11.2.5 On-line test result analysis 
After on-line test, our UI-Wand system is proved that it can work well within valid 
pointing distance, directions and a certain lighting changes. The cursor can move 
along the pointing trace on the screen in real-time base on our hardware conditions 
now (around 11fps), which can satisfy the real-time processing speed defined in our 
problem definition part in Chapter 2. From observation, the performance accuracy 
rate of our system is quite good, in most of cases even fast speed, our system can get 
an ideal positioning result. But there are some problems of the system: if the 
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background of the screen and the light condition of the room change too much, the 
positioning results are not so good. These problems are mainly caused by the training 
dataset currently used for training RVM model, which is not too big and cannot cover 
enough variant corners. So in the future we can use more training materials under 
different conditions that may happen in the real world, then the performance of the 
system should be highly improved. 
  

11.3 Conclusions 
After the off-line and on-line tests for our UI-Wand system, the results show a good 
performance to our UI-Wand system, which satisfies the system requirements that we 
defined in Chapter 2. Our Candidates-Winners approach used in UI-Wand system can 
detect the four screen corners with high accuracy rate and fast detection speed, which 
guarantees the integrated UI-Wand system can work well. 

But we still find some problems during test our system. First, the image quality 
affects the detection accuracy rate, for example, if the UI-Wand movements in the 
sequence are too fast, the captured frames may be blur, then the Candidates-Winners 
approach will lost screen corners in some frames. This can lead our system to lose the 
pointing positions. The resolution of this problem is that we can use a better camera in 
UI-Wand, which can capture frames in a moving mode with the higher quality. The 
other problem of our system is that the screen content and the room environment (e.g. 
strong light conditions changes) affect the performance of the system. If the screen 
contains a lot of application windows or the monitor is located in front of a complex 
background, the detection result could be wrong and causes the wrong positioning 
result. The improvement is to increase the training materials for the RVM model, 
which can cover more variant conditions that may happen in the real world. 
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12  
Conclusions and Future Works 

 
So far, we have presented all works in this project. All chapters before gave very 
detailed explanations about a Candidates-Winners approach to detect screen corners, 
based upon which a novel pointing device of PHILIPS, UI-Wand, manages to 
estimate the screen and realize pointing positioning on a real-time level. In addition to 
the pointing positioning functionality, in Chapter 8, we described a new approach 
based on RVM to recognize gestures, which was proved a promising method by the 
test results in that chapter. Finally, all the models and algorithms are implemented on 
Vispirin and got satisfying test results. But, that is not all, in future, there are many 
algorithms can be improved and many new models or approaches can be utilized in 
the system. In this chapter we will summarize our current models and algorithms and 
purpose some works to improve the system in the future. 
 

12.1 Conclusions 
The problem of this project for us is to find a way to detect screen corners, by which a 
camera can estimate the screen position so that the pointing position of the camera can 
be figured out. After investigation, we found that there are many algorithms or models 
suitable for the corner detection problem. The most direct way is to use the corner 
detection algorithm, which can directly research out the corners with various sizes in 
one image. This kind of method is very fast and can be used for real-time applications, 
but the problem is that it is very hard for these corner detection algorithms to detect 
the exact four screen corners of a screen. Without knowing which four corners are 
screen corners, it is not possible to find out the screen position and figure out the 
pointing position of a camera. Another way to find the corners is by using 
classification models. After training a classification model by many corner samples, it 
can classify if a new sample is a corner or not. Classification models are popular in 
objects recognition problem and in our case, they can be seen as screen corners 
recognizer. If the model is ideal, then it can accurately detect the positions of screen 
corners after analyzing a whole image. But in reality, there are two problems with the 
classification models. The first one is the speed problem. It need to scan a whole 
image to detect the screen corners, which will spend a lot of time on feature extraction 
and classification so that it cannot reach the real-time speed requirement. The second 
problem is that the classification models are not as accurate as what we expected. 
Plenty of non-screen corners are recognized as screen corners, which does not allow 
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us to get screen corners directly and have to use some filters to select out the final 
screen corners.  

Considering the advantages and disadvantages of these two methods, finally, we 
designed a Candidates-Winners approach that can detect screen corners accurately 
and quickly. The first step of Candidates-Winners approach is to use Sojka corner 
detection algorithm to select the candidates screen corners, which is a very accurate 
and real-time detection algorithm. Then in second step, we use a new classification 
model, RVM that has probability outputs and utilizes much few sample vectors, 
classify these candidates. Finally, when RVM cannot select out the final four screen 
corners, we use a rectangle filter utilizing the geometric shape of the screen to search 
out the exact four screen corners. In this approach, the detections are very accurate in 
different situations such as fast moving and rotating, and the time on feature 
extraction and RVM classification got much reduced since only screen corner 
candidates are needed to be classified. To detect screen corners on consecutive frames 
capturing from the camera, we use a tracking filter by which we only do the detection 
work in some region-of-interests that are selected by our ROI tracking filter algorithm. 
This much increases the speed and ensures that our final system can work on a real-
time level.  

In order to control the applications more conveniently, the UI-Wand needs to 
recognize some gestures that can be set as corresponding commands. For this 
functionality, instead of using general HMM, we directly use motion vectors as 
feature vectors and RVM as classification model to recognize gestures. The test 
results indicate that the RVM is a very promising model for gesture recognition, 
which would get much higher recognition accuracy after future improvement. 

The final working system and utilities of the system are implemented based on 
an existing framework for computer vision, which makes it easy to combine and test 
algorithms in the system. The UML design for the system shows a readable system 
framework so that the people working on this project in the future will be much easier 
to understand its principles and can modify it seamless.  

Although the system has some problems when working on-line, but it already 
satisfies all the project goals listed in Chapter 2.  
 

z It can detect screen corners from frames captured by UI-Wand. 
 

z It is able to utilize RVM models to recognize some gestures. 
 

z The screen corner detection is robust with some lighting changes. 
 

z It can run different applications. 
 

z It works in a range of working space. 
 

z Its speed is faster than 10 frames/sec. 
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z Its results can be evaluated by system utilities. 
 

z The development is based on Vispirin, an existing framework for computer 
vision. 

  

12.2 Future Works 
Though the final system satisfies the requirements, but the system still has many 
places that can be improved. 
 
Parameter optimization: Because a lot of algorithms are used in the final system, 

there are many parameters to be setup. Now, we just setup these parameters 
manually, but in the future, they should be justified automatically. For example, 
what is the best combination of parameters in Sojka corners detector, by which it 
can detect as less as possible corners but without missing screen corners and as 
faster as it can be. Those parameters controlling the detector will be easily 
affected by lighting and noise changes. So if we want to let it adapt with more 
environments, it is better to design an algorithm that can collect some samples of 
current environment and find out the suitable parameters values. 

ROI tracking filter has the similar problem. What is the best “offset” value? 
It should be decided by the moving speed of UI-Wand. In the future, a parameter 
optimization algorithm should be written to learn the speed on which the user 
moves his/her UI-Wand so that the algorithm can find an optimal value.  

The parameters optimization in RVM also needs to be improved. Like what 
we described in Chapter 5, we need to rewrite our training algorithm, so that it 
can find out the best suitable kernel function and corresponding parameter values.  

There are also parameters in other algorithms, like trace analysis algorithm 
and feature extraction algorithm, need to justify automatically. So parameters 
optimization is an important work in the future, with which the system will 
become more stable and flexible. 

 
RVM dataset selection: From the on-line test, we saw that for some applications the 

RVM classification rates are not very high. One of the reasons is the current 
sample dataset we used is not too big. The current sample dataset is a synthetic 
dataset and only contains 10 corner samples for each class, which did not cover 
enough lighting or gray level changes and should be filled more in the future.  

Another factor to affect the classification rates is the reasonability of 
samples selection. A good distribution of samples in one class will have their 
feature vectors be distributed averagely in the feature space. But the problem is 
how to evaluate the distribution. The distribution of samples in the synthetic 
dataset is reasonable but we still cannot explicitly evaluate the quality before 
using that for training. So it is better to invent a model that can evaluate the 
quality of the sample dataset and even reselect some samples in the dataset so 
that it can construct a more stable classification model.  
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More complex tracking filter: In the current system, we are using a simple motion 

estimation algorithm in ROI tracking filter. It is proved effective for some cases, 
but if the movement is very fast then it has some problems. One reason caused 
the problem is that the camera capturing rate is 10 frames/sec, which will result 
in some jerk when movement is fast. Another reason is that maybe our simple 
motion estimation is not accurate enough. So in the future we should try other 
prediction filter such as Kalman filter, by which we can get a better tracking 
result. 

 
Color images: Now both of Sojka corners detector and RVM are based on gray level 

images, which will result in inaccurate detection when the border gray level is 
similar to the content’s color. We have written a color version Sojka corner 
detector. Though the detection is getting more accurate but it is 3 times slower 
than gray level version. So in the future, we can do some research to increase its 
speed. For RVM model, we have not tried it on color images, since the speed is 
the problem as well. Maybe the classification rates will be much improved by 
using color training samples, but the same as Sojka corners detector, the feature 
extraction speed will become 3 times slower than doing on gray level. Moreover, 
the color is very unstable information when lighting conditions change, so we 
need more training samples to train the classification model, which will cause 
much more training time.  But color information indeed help for recognition, so 
in the future we should do some research on it.  

 
Gesture recognition: The current RVM model constructed for gesture recognition is 

not so accurate. The possible reason is that the qualities of gestures samples are 
not very good. So in the future, we should reselect the training samples and do 
more tests. Another try we need to do is to classify the trace immediately after 
UI-Wand moves, which is better than the current method, to find a candidates 
gesture between two pauses. If we can train RVM models and get a threshold for 
every gesture, then we can classify the trace in every frame, which reduce the 
delay time and response much rapidly.   

 
The above possible improvements are based on the current system. Now we 

mention a new method to detect screen corners, which could be a good way to go in 
the future.  

By the current Candidates-Winners approach, we can detect screen corners, but it 
has some problems when we move the UI-Wand very fast. Because the performance 
of Sojka corner detection will become worse if the movement is very fast and also the 
ROI tracking filter cannot track the trace. But there is one algorithm, which do not be 
affected too much. That is RVM. Because the fast movement will not change too 
much on the corners features, so if the corner samples are big enough, then they will 
keep enough features for classification so that the RVM models still can work. If the 
RVM classification rates are very high, then it is possible for us to only use RVM to 
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detect screen corners. In Chapter 5, we tested many dataset and finally got an adaptive 
dataset which can get much higher classification rates and very low misunderstanding 
rates. With this dataset we can directly use RVM to classify a whole image and detect 
the screen corners. But as what we said in that chapter, the problem of this dataset is 
the speed. [Avi01][Wil03] mentioned Gaussian pyramids method to make quick 
match, which accelerates the scanning time very much. We have tried the similar 
method in our system. Indeed, the speed was significantly accelerated, but it was still 
not fast enough. So how to accelerate the algorithms is the key problem in the future 
works. 
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 Appendix B 
Black LCD Screen Sequence 
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 Appendix C 
Ten Off-line Test Sequences Detection Results 

 
SS1: Pick and  Pointing 
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SS2: Forward 
 

 

 
 



Appendix C, Ten Off-line Test Sequences Detection Results 187 
 

SS3: Backward 
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SS4: Left-Right 
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SS5: Down-Up 
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SS6: Cross 
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SS7: Right-left 
 

 
 



Appendix C, Ten Off-line Test Sequences Detection Results 192 
 

SS8: Up-down 
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SS9: Left-Rotation 
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SS10: Right rotation 
 

 
 



Appendix D.1, Algorithm Parameters for off-line Tests 195 
 

 Appendix D.1 
Algorithm Parameters for Off-line Tests 

 
# Parameters of UI-Wand application utility algorithm. 

# It is called RunningCtrl. 

applicationutil=RunningCtrl 

applicationutil::run_level=1            

applicationutil::log_level=1            

applicationutil::log_directory=./cornerlist/    

 

# Parameters of Corner Detection Algorithm. 

# In implementation we called sojka detection  

# algorithm as BayesCornerDetection. 

cornersdetection=BayesCornerDetection 

cornersdetection::halfPsgMaskSize=4 

cornersdetection::angleThresh=0.5 

cornersdetection::noiseGradSizeThresh=5 

cornersdetection::apparenceThresh=5 

cornersdetection::meanGradSizeThresh=0.0 

cornersdetection::inertiaRadiusThresh=0.0 

cornersdetection::sigmaD=0.75 

cornersdetection::sigmaR=2.5 

cornersdetection::halfExtMaskSize=2 

cornersdetection::options=1 

cornersdetection::annotationWindowedSize=20 

cornersdetection::ROI_x_size=50 

cornersdetection::ROI_y_size=50 

 

# Parameters of feature extraction algorithm. 

# The algorithm extract a sub-window features  

# by given its center point. 

# Its name is ROIWindowedDCT (AnnotationFeatures Class) 

features=ROIWindowedDCT 

features::window_size_x=10 

features::window_size_y=10 

features::extract_size_x=10 

features::extract_size_y=10 

features::extract_mode=0 

features::normalize_mean=false 

features::normalize_stddev=false 

features::dct_min_modes=0 

features::dct_max_modes=3 
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features::x_feature=true 

features::y_feature=true 

features::tilted_angle=-10 

 

# Parameters for the corner classification algorithm. 

# In this case we are using RVM. 

classification=RVMClassifier 

classification::train_model=false 

classification::class_num=5 

classification::feature_dim=10 

classification::discard_class=4 

classification::kernel=gauss 

classification::kernel_length=0.5 

classification::samples_vectors_filename=./featurevectors_autoblack.mod 

classification::model_weights_filename=./rvmweights_autoblack.mod 

 

# Parameters of rectangle filter algorithm. 

# It can select out the 4 screen corners 

# by geometric properties.  

screenfilter=ScreenCornersFilter 

screenfilter::distance_x=95 

screenfilter::distance_y=75 

screenfilter::offset=20 

screenfilter::tilted_angle=-10 

screenfilter::predication_num_frame=3 

screenfilter::history_size=30 

 

# Parameters of trace analysis algorithm. 

# It will do some analysis on a certain size trace, 

# like trace feature extraction and storing. 

traceanalysis=InterpolationMV 

traceanalysis::model=analysis 

 # parameters for collecting gesture samples 

 traceanalysis::samples_dir=./training_samples/gestures/ 

 traceanalysis::feature_vectors_filename=./gfeaturevectors.mod 

 traceanalysis::current_gesture=cross 

 traceanalysis::gesture0_label=updown 

 traceanalysis::gesture1_label=downup 

 traceanalysis::gesture2_label=leftright 

 traceanalysis::gesture3_label=rightleft 

 traceanalysis::gesture4_label=cross 

 traceanalysis::nongesture_label=others 

 # parameters for generating random gestures 

 traceanalysis::non_gesture_step_min=5 
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 traceanalysis::non_gesture_step_max=30 

 traceanalysis::non_gesture_step_distribution=3 

 traceanalysis::non_gesture_angle_min=30 

 traceanalysis::non_gesture_angle_max=180 

 traceanalysis::non_gesture_angle_distribution=4 

 traceanalysis::non_gesture_num_perdistribution=3 

 # parameters for gestures analysis 

 traceanalysis::trace_size=50 

 traceanalysis::num_motion_vector=10 

 traceanalysis::num_gesture_samples=10 

 traceanalysis::num_nongesture_samples=40 

 traceanalysis::base_non_gesture=false 

 traceanalysis::movement_sensitivity=5 

 traceanalysis::holding_num_unittime=6 

 traceanalysis::missing_tolerance=6 

 

# Parameters for output algorithm 

output=ppm 

output::binary_format=true 

output::filename_base=./resultdata/result 

 

# Parameters for drawing annotation on images 

annotation=Draw 

annotation::contour_color_r=255 

annotation::contour_color_g=255 

annotation::contour_color_b=255 
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 Appendix D.2 
Algorithm Parameters for On-line Tests 

 

# The parameters below are part of parameters used in the UI-Wand prototype 

system. We did not list other parameters used for pointing positioning 

algorithms, which are independent part from screen corner detection. 

 

# Parameters of Corner Detection Algorithm. 

# In implementation we called sojka detection  

# algorithm as BayesCornerDetection. 

detection=BayesCornerDetection  

detection::halfPsgMaskSize=4  

detection::angleThresh=0.5 

detection::noiseGradSizeThresh=18  

detection::apparenceThresh=4 

detection::meanGradSizeThresh=0.0  

detection::inertiaRadiusThresh=0.0 

detection::sigmaD=0.75  

detection::sigmaR=2.5  

detection::halfExtMaskSize=2 

detection::options=1  

detection::annotationWindowedSize=20 

detection::ROI_x_size=50 

detection::ROI_y_size=50 

 

# Parameters of feature extraction algorithm. 

# The algorithm extract a sub-window features  

# by given its center point. 

# Its name is ROIWindowedDCT (AnnotationFeatures Class) 

features=ROIWindowedDCT  

features::window_size_x=10 

features::window_size_y=10 

features::extract_size_x=10 

features::extract_size_y=10 

features::extract_mode=0 

features::normalize_mean=false  

features::normalize_stddev=false  

features::dct_min_modes=0  

features::dct_max_modes=3 

features::x_feature=true 

features::y_feature=true 

features::tilted_angle=0 
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# Parameters for the corner classification algorithm. 

# In this case we are using RVM. 

classification=RVMClassifier  

classification::train_model=false 

classification::class_num=5  

classification::feature_dim=10  

classification::kernel=gauss 

classification::kernel_length=0.5 

classification::samples_vectors_filename=./featurevectors_autoblack.mod 

classification::model_weights_filename=./rvmweights_autoblack.mod 

 

# Parameters of rectangle filter algorithm. 

# It can select out the 4 screen corners 

# by geometric properties.  

screenfilter=ScreenCornersFilter  

screenfilter::distance_x=125 

screenfilter::distance_y=125 

screenfilter::offset=20 

screenfilter::tilted_angle=0.0 

screenfilter::predication_num_frame=3 

screenfilter::history_size=10 

 

# Parameters file of pointing positioning algorithm. 

# The name of this algorithm is EdgeCornerMarkerRegistration 

registration.par 
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