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Abstract 

UI-Wand is a new project in Machine Interface Group of Philips. Its concept for 
future is to use a stick attached with a camera on the top to recognize the objects in 
your home and control them by doing some gestures with it. But for its current 
version, Philips want to make it control some applications running on some devices 
with a screen, like Computer, Laptop, or TV. So the basic requirement for current UI-
Wand control is the screen and point positioning and gesture recognition. 
 
This literature survey is an investigation to the theories and approaches that might be 
used in UI-Wand. Due to that UI-Wand is a new project and its idea is also new, there 
were no previous tries that we can study. Therefore, this paper does not focus directly 
on the topic or some model theory, instead we figured out and studied a set of 
possible theories or approaches that different with each other, but could be used solely 
or combined together later in the system.  
 
So the paper we studied and summarized in this survey consists of several parts 
talking about different theories, they are corner detection approaches, classification 
and regression models, tracking and gesture recognition methods. In every part of this 
paper, we summarized the basic idea of each paper, and give a comment below it. 
And for the theory or algorithm to solve the same problems, we did some 
comparisons between them so that we can get a rough idea about their performances.  
 
 
Index Terms � Corner Detection Algorithms, Relevance Vector Machine, Support 
Vector Machine, Hidden-Markov Model, Tracking Algorithm, Gesture Recognition  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  iii 
 

 

Contents 

1 Problem Definition.................................................................................................1 
1.1 What is UI-Wand? .......................................................................................1 
1.2 Problem statement........................................................................................1 
1.3 Requirement of UI-Wand application..........................................................1 
1.4 The organization of this investigation..........................................................2 

2 Corner Detection Approaches ................................................................................4 
2.1 Gradient approaches.....................................................................................5 
2.1.1 Beaudet�s detector..................................................................................5 
2.1.2 Kitchen and Rosenfeld�s detector ..........................................................7 
2.1.3 Noble�s detector .....................................................................................9 
2.1.4 Harris and Stephens� detector ..............................................................11 
2.1.5 Sojka�s new algorithm for corner detection in digital images .............13 
2.2 Color distribution approaches ....................................................................17 
2.2.1 SUSAN edge and corner detector ........................................................17 
2.2.2 Edge, junction, and corner detection using Compass operator ............20 
2.2.3 A color-distribution-based detector .....................................................25 
2.3 Corner Detection Approaches Comparison ...............................................30 

3 Classification, Regression Models .......................................................................35 
3.1 K-Nearest Neighbors Classification ..........................................................35 
3.1.1 Theory brief description.......................................................................35 
3.1.2 Fast k-Nearest Neighbor Classification Using Cluster-Based Trees ...36 
3.2 Support Vector Machine ............................................................................38 
3.2.1 SVM Theoretical Overview.................................................................38 
3.2.2 Support Vector Machines for 3D object Recognition..........................39 
3.2.3 Visual Object Recognition With Supervised Learning........................40 
3.2.4 Feature-Based Shape Recognition by Support Vector Machine..........42 
3.3 Relevance Vector Machine ........................................................................45 
3.3.1 Sparse Bayesian Learning and the Relevance Vector Machine...........45 
3.3.2 Fast Marginal Likelihood Maximization for Sparse Bayesian Models49 
3.4 Markov Models and Hidden Markov Models............................................52 
3.4.1 MM and HMM Theory Overview .......................................................52 
3.4.2 Hidden Markov Models Structure .......................................................53 
3.4.3 Hidden Markov Models for Face Recognition ....................................54 
3.4.4 Face Recognition Using An Embedded HMM....................................55 
3.5 Classification Models Comparison ............................................................57 

4 Objects Tracking and Gesture Recognition .........................................................59 
4.1 Object tracking methods ............................................................................59 
4.1.1 Support Vector Tracking......................................................................59 
4.1.2 A Sparse Probabilistic Learning Algorithm for Real-Time Tracking .61 
4.1.3 Kalman Algorithm ...............................................................................63 
4.2 Gesture Recognition...................................................................................68 
4.2.1 Recognition of human gestures and behavior......................................68 
4.2.2 Recognizing temporal trajectories using the condensation algorithm .69 
4.2.3 An HMM-Based Threshold Model for Gesture Recognition ..............72 



  iv 
 

4.2.4 Gesture Modeling and Recognition Using Finite State Machines.......75 
4.3 Gesture Recognition Approaches Conclusion ...........................................78 

5 Literature Summary .............................................................................................79 
6 Reference..............................................................................................................82 
 



Chapter 1, Problem Definition  - 1 - 

Chapter 1 

1 Problem Definition 

1.1 What is UI-Wand? 
Did you notice the wand in the hand of magician? It is a fantastic stick that can 
control everything he wants as his will. Philips�s new project, UI-Wand, with full 
name �User Interface Wand�, just came from such an idea. Its concept is to use a 
camera as a control and let users control every object in their home just by aiming at 
it, and then doing a gesture. For example, you can control the TV volume by just 
aiming at TV and turning it or you can change the current channel to next one by 
moving the wand a little right and back, and more you can control the menu 
displaying on TV, even play some games. For the future, it can control other objects 
like windows, to open and close, your digital camera, to download pictures, and etc. 
UI-Wand is a powerful control using different technology to be adaptive for various 
objects. Since it just starts, the real UI-Wand has a long way to go. The UI-Wand 
mentioned in our papers is just for the screen detection and positioning. 
 
1.2 Problem statement 
Considering the current requirements and feasibility, Philips defined the current UI-
Wand as a control for personal computer, laptop, or television set. It should recognize 
where the users are pointing at and should recognize the gestures the users are doing 
and execute the corresponding action related to those gestures.  
 
The possible applications for UI-Wand is a Philips medical application control, a 
presentation slides control or a TV control. As a medical application, it should control 
the menu and can rotate, move or do the other adjustment for the medical model in the 
application. For the presentation slides control, it can control the slides to go next or 
go back and some other functions like drawing a curve or dragging an icon from one 
place to another. As a TV control, the UI-Wand has some functionalities such as to 
control menu, change channel, volume, mosaic choices and so on. Although the 
specific applications are different, the kernel technical requirements for UI-Wand are 
the same, which are screen positioning and gesture recognition, which are also our 
tasks to be finished in our master thesis.  
 
1.3 Requirement of UI-Wand application 
According to above problem statement, there are some requirements of current UI-
Wand listed below: 

• Recognize screen only 
• Realize screen positioning and simple gesture recognition  
• It can be used for some specific applications 
• Operate easily 
• The speed should be in real time level 
• The technique embedded in should be extensive and easy to integrate into real 

system. 
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So this literature research paper is an investigation to the current techniques and 
approaches that might be used in the current UI-Wand.  
 
1.4 The organization of this investigation 
Because UI-Wand is a new project in PHIILPS and its idea to recognize screens by 
camera also did not be tried before by others. Even though some companies have 
made similar mouse products that can control presentation slides remotely by doing 
some gestures, but that is by using mechanical sensors methods, which essentially is 
different with UI-Wand. 
  
So the difficult of this system is that 
there are no existing papers for the 
similar project that can be referred 
directly. Considering this fact, we 
did not put our literature research 
strictly and directly on our topic, 
UI-Wand. We analyzed the whole 
system, got a possible solution, and 
studied the possible theories, 
approaches that might be used later. 
The rough UI-Wand system 
structure we designed is shown right 
side (See Fig.1.1).  From the figure, 
you can briefly get our approaches 
to detect screen and position. That is 
to use corner detection method to 
detect 4 screen corners in a 2 
dimensional space and then figure 
out the real 3D pointer positioning. 
Finally, according to the positioning 
track history it works out the 
possible gestures the user is doing.  
 
Because of the specific models we are in 
gesture recognition, so our literature sur
Corners Detection� and �Gesture Recognit
 
We organized our survey as following: 
 
There are many different approaches to 
methods, to analysis gradient values curv
recognition methods, like classification. T
recognition too. So in Chapter 2, we find
techniques on corners detection and edges
gradients values in an image. In Chapter 3
classifications and regression models are 
very useful for the corner and gesture r
comparison to some existing gesture reco
Figure 1.1 Rough structure of UI-Wand
charge of study are screen positioning and 
vey just focuses on two models, �Screen 
ion�.  

recognize corners, like image processing 
es or geometric properties. Or the pattern 
he latter techniques can be used in gesture 
 out and compare some image processing 

 detection that can detect screen directly by 
, many pattern recognition techniques like 
investigated and compared, which will be 

ecognition models. In Chapter 4, we give 
gnition methods and tracking approaches, 
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which could be helpful for UI-Wand gesture model and screen corners tracking 
problem. Considering the requirements of this system, this literature survey includes 
different type of papers like theoretical papers, literature survey, algorithm papers, 
application papers, or even some books. Every paper has its features that give us 
many hints for our future study. So In the last chapter, besides summary of this 
literature survey, in order to let users get a brief overview of these papers we make a 
table to summarize them.  
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Chapter 2 

2 Corner Detection Approaches 

With respect to its practical applications, the feature detection has already been 
studied insensitively for more than three decades. Among many kinds of features, 
one-dimensional features such as edges, and two-dimensional features such as corners 
and junctions are more popular than others. Detection of these low-level features in 
images is also a classic problem in computer vision since it is believed that these 
features can be detected without knowledge of the object in the world that caused 
them. From these features people can get the geometric property of any objects, which 

is very useful for image analysis, object recognition, 
motion tracking, or the other applications. Many different 
models have been proposed, some to detect one of these 
features, others to detect all of them. Some detectors are 
designed for real-time applications, while others are more 
complex. Because our project is mainly about the screen 
corner detection, so in the following part, we will mainly 
focus on the corner detection. But we will still mention 
other features that also detected by these algorithms if 
they are related to the corner detection.   
 

By the term corner, it means the point at which the direction of the boundary of object 
changes abruptly. The object is a continuous image area with a constant (or nearly 
constant) brightness or color. We can then define the corner as an intersection point 
between two or more edge segments; Fig.2.1 shows some examples of the common 
corners. And in the real images the corners can be different kind of shapes; Fig 2.2 
shows the zoom-in corners in the real images. And Fig 2.3 shows a brightness 
function ),( yxb  in a neighborhood of a simplest L-corner. 
                                                                                                 

 
 
 
 
 
 
 
  

 
In
a
e
w
d
 

 

Figure 2.1 Normal corners 
Figure 2.2 Corners in the real 
images                    
 the rest of this chapter we will br
ppeared in the history of the corner 
very detector that we have introduced.
e will use many comparing table to 
etectors.    
Figure 2.3 The brightness function ),( yxb in a
neighborhood of a simplest L-corner. 
iefly characterize the main approaches that 
detection. We will give some comments for 
 Finally in the conclusion part of this chapter 
show the different performance of all these 
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2.1 Gradient approaches 
2.1.1 Beaudet�s detector 
[Bea78][Dre82][Der93] 

This detector is among one of the oldest direct corner detector. Beaudet presented it in 
his paper [Bea78]. The author used ),( yxb to denote the brightness function of the 
image and proposed to compute the quantity ),( yxDet for each image point ),( yx . 
The definition of ),( yxDet can be shown as following equation: 
 
                       2

xyyyxx bbbDet −= .                                                                              (2.1) 
 
where yyxx bb , and xyb  are the second partial derivatives of the brightness function and 
b stands for the brightness function ),( yxb . Then whether an image point belongs to 
the corner points can be decide by the value of its Dev . Each image point at which 
the value of Dev exhibits its positive local maximum and is greater than a predefined 
threshold s  is marked as a corner point. The quantity of Dev  is connected with the 
Gaussian curvature of the surface of the brightness: ),( yxbz = . The Gaussian 
curvature is defined by the equation 21kkK =  where 1k  and 2k  are the principal 
curvatures of the surface ),( yxbz =  at the point to be processed. Evaluating the 
principal curvatures yields the result: 
 

                       ( )222

2

1 yx

xyyyxx

bb

bbb
K

++

−
=  .                                                                           (2.2) 

 
It can be seen in above Eq. (2.2), the numerator of the equation is equal to Beaudet�s 
Dev . And it is also very clear that the denominator is always be positive, so the sign 
of the value of Dev  is always the same as the sign of the Gaussian curvature. Thus 
the value of Dev  can be used to classify the points lying on the brightness surface 
(see table 2.1). 

Table 2.1 Points classification 

Point category Value range 
Elliptic point 0>Dev  
Parabolic point 0=Dev  
Hyperbolic point 0<Dev  

                                         
 
This method proposed by Beaudet detects 
the elliptic points with a locally maximal 
value of Gaussian curvature. It should be 
remarked that Dev  could be interpreted as 
the Hessian determinant. If we depict the 
function ),( yxDev  for the corner defined by 
Eq. )2.2( (the shape of the corner is shown in 
Fig.2.3 ), the principle of Beaudet method is 
illustrated by Fig.2.4. It can be seen that 

Figure 2.4 The response provided by   
Beaudet�s Dev  operator. 
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Dev  gives two local extremum for a corner, a negative extremum for the hyperbolic 
point and a positive extremum for the elliptic point. According to the extreme value, 
the corner point can be found respectively. 
 
Later on there are several other authors who also proposed different algorithms based 
on the Gaussian curvature principle or directly on based on Beaudet�s operator Dev . 
For example, Dreschler and Nagel [Dre82] proposed an operator based on the 
curvature but not use the Beaudet operator. The different way is that they select the 
locations of the corners with locally extreme Gaussian curvature and pair each 
maximum elliptic point E  (the point at which the Gaussian curvature exhibits its 
positive local maximum) with a maximal hyperbolic point H  in its neighborhood (the 
point where Gaussian curvature has its negative local minimum). Then the corner is 
detected on the line connecting E  and H , at the point where one of the principal 
curvatures is equal to zero. In Fig.2.5, this kind of pair is depicted clearly. The authors 
used several straightforward rules for finding such kind of pairs: 
1. One of the principal curvatures should have approximately the same size and 

direction at both points that from the pair. 
2. For the second curvature, the same is required. In addition, the curvatures should 

have the opposite signs at both points. 
3. The points should be closed enough, here the author used value of 4 pixels. 

 

 
 
 
Deriche and Giraudon presented another different approach [Der93]; they use quite 
similar idea with the above methods. In their algorithm, the authors convolve the 

input image with the Gaussian function. They do this kind 
of convolve twice with two different values of σ . In this 
way they get two blurred images, it is essential that the 
degree of blurring in both images is significantly 
different. Then they use Beaudet�s corner detector method 
to find corners in both blurred images. When each corner 
in one image is detected, its corresponding corner is 
determined in the other image, here they used nearest 
criterion to decide the correspondent corners. The authors 
proposed to use the �spiral searching technique� and the 
space in which the corresponding corner is searched for is 
limited to a certain small searching window, here they 

used 77 × pixels window. Then each pair of corners (a corner from one image and its 
nearest corresponding corner in the other image) defines the axis of a corner in the 
original input image. For example, in Fig. 2.6, the theoretical corner point X. (The 
corners X1 and X2 detected in the images with different level of blur determine the 
corner axis (dotted line). The theoretical corner point is determined by passing along 

Figure 2.5 Method proposed by Dreschler and Nagel 

Figure 2.6 Searching 
for the real corner  
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the corner axis in the direction of the arrow and by searching for the zero-crossing 
location of the Laplacian of the original input image. 
 
2.1.1.1 Comments 

These papers are all related to Beaudet�s corner detection algorithm, so they can be 
included in the more or less the same kind of approach. But they still have difference 
in the way to deal with the operator and also data. Each method is based on the former 
method but gives some kind of improvement comparing to the former one.  In paper 
[Bea78], the author did not present the mathematical analysis of the Beaudet detector 
in his original work, but we can find some of the explanations in [Der93] and 
[Roh94]. From the papers we can see that Dev  gives two local extreme for a corner 
(a negative extreme for the hyperbolic point and a positive extreme for the elliptic 
point), and that is exactly the reason to explain why a localization error occurs if the 
corners are detected simply as the points with the local extreme Dev value. It is due to 
the fact that the elliptic maximum point always lies inside the corner, which can be 
seen in Fig.2.3 and Fig.2.4. In [Roh94], the localization error of the detector was 
analyzed very exactly and it was shown that it depends on the corner angle. Deriche 
and Giraudon studied the known corner detectors and revealed that most of them 
detect the corners with more or less significant localization errors. They tried to 
remedy the problem by constructing their own algorithm in [Der93]. They observe 
that Beaudet�s operator always gives the maximal responses on the corner axis inside 
the corner and the size of the localization error increase with the increasing blurring of 
the image. In the other paper [Soj02a], the authors mentioned their own experience 
with Deriche and Giraudon algorithm, this algorithm works well especially on simpler 
images in which the pairs of corresponding corners may be found reliably. If an image 
is to be processed containing areas with dense occurrence of corners, the 
corresponding pairs of corners cannot usually be found reliably, which yields 
completely false detections.   
 
 
2.1.2 Kitchen and Rosenfeld�s detector 
[Kit82][Zun83][Bru92][Wan95] 

Kitchen and Rosenfeld presented their corner detection almost the same period as 
Beaudet in [Kit82]. Their method is based on edge detection and they evaluated the 
change of the gradient direction along the edge contour and multiplied this quantity 
by local gradient magnitude. They used ),( yxϕ  as the function to describe the 
gradient direction along the edge. Let 
 

                        .tan),( 1








= −

x

y

b
b

yxϕ                                                                          (2.3) 

 
 It is very clear that if passing along the edge, the gradient direction must be almost 
constant, but in the case that passing edge contour through the corner, the gradient 
direction must change. The fact whether the gradient direction changes along the edge 
can be examined by computing the derivative of ),( yxϕ in the direction of edge. From 
Fig.2.7, the idea can be illustrate clearly.  
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Because the gradient dir
of KRC  may be either po
positive maxim and th
concluded that the value
the brightness function 
depict the response prov
Fig.2.8 from Fig. 2.3. 

 
 
 
Later on, Brunnstrőm et 
their corner response fun
with high gradient magni
 
Wang and Brady presen
proposed to use t
Figure 2.7 Kitchen and Rosenfeld�s method 
d to multiply this derivative by the local gradient magnitude. 
and Rosenfeld�s corner response function by KRC , since the 
icular to the gradient, its direction can be expressed by 
n get 
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ection may be increase or decrease along the edge, the value 
sitive or negative correspondently. Therefore, both the local 

e negative minim of KRC  can be determined. It can be 
 of KRC  is equal to the second derivative of the gradient of 
in the direction perpendicular to the gradient. We can also 
ided by Kitchen and Rosenfeld�s operator for the corner in 

 

 
Figure 2.8 The response provided by Kitchen and Rosenfeld�s operator.
al. [Bru92] proposed to use only the numerator of Eq. (2.4) as 
ction BRC , and 2bCC KRBR ∇= . In their approach the corner 
tudes are thus preferred. 

ted another approach in [Wan95] in the similar idea. They 
he corner response function in the form of 
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( ) 2222 / bStbCWB ∇−∂∂= , where t  is the direction perpendicular to the gradient and 

S  is a constant. They use 2bS ∇  to reduce the false responses.  
 
There are also several other authors presented the modifications of Kitchen and 
Rosenfeld�s approach for corner detection. For example, Zugina and Haralick [Zun83] 
presented a very similar with Kitchen and Rosenfeld, but they used only the curvature 
of the edge contour without multiplying it by the gradient magnitude b∇ . Thus their 
corner response function ZHC  is tightly connected with the function KRC  by the 
equation bCC KRZH ∇= / . , Zugina and Haralick also used the facet model in their 
approach. In the neighborhood of the point being examined, they modeled the 
brightness function by the bi-cubic polynomial surface.    
 
2.1.2.1 Comments 

Kitchen and Rosenfeld mentioned fitting a function of two spatial variables to the 
gray-level values in image, and determining the value of KRC  by analytic means, 
which should reduce the influence of noise. The authors typically chose a function 
that was a polynomial of a low degree (usually 2 or 3) that fits the gray-level data in a 
small neighborhood (from 33×  to 77 ×  pixels) with minimal sun of squared errors. 
In Kitchen and Rosenfeld�s version of their algorithm, however, does not seem to be 
realized too frequently since it is computationally expensive. At this point, many other 
authors even do not mention this fact. Instead, the noise reduction is often achieved by 
convolving the image with the Gaussian function, which is carried out before the 
corner detection. The derivatives in Eq. (2.4) are then replaced by the differences. 
Later on in [Soj02a], the author figured out that the algorithm in Kitchen and 
Rosenfeld�s version tended to give too many false responses if only the simple 
detection of maxima/minima of KRC  in a window of a certain size was used. The 
algorithm can be improved in such way that in the KRC  image, the continuous areas 
where the value of KRC  is greater or less than a threshold are detected. If the size as 
the number of pixels of such an area lies in a predefined range, then we choose the 
extremum in the area that is declared to be a corner. By this kind of improvement the 
performance of Kitchen and Rosenfeld�s algorithm should be better than the original 
one. 
 
 
2.1.3 Noble�s detector 
[Nob88] 

Noble proposed a method in [Nob88] that detects the corners at places where the 
gradient magnitude and the principal curvature are high.  He defined the corner 
response function as following equation: 
 

                      .
2

212
122211

kk
gggCN

+
−=                                                             (2.5) 

where 1211 , gg  and 22g  are the coefficients of the first fundamental form of the 
surface that is defined by the brightness function ( )yxbz ,=  and k , 2k  are the 
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principal curvatures of this surface. Here it is worth mentioning that, except the 
absolute values, the second term in Eq. (2.5) resembles the so called ��mean 
curvature��, which is the simple average ( 2/)( 21 kk + . The principal curvature and, 
therefore, also the sum of their absolute values are high in the corner neighborhood. It 
can be easily shown that the following equations hold 2

11 1 xbg += , 2
22 1 ybg += , 

yxbbg =12 , which yields 
 
                     .1 222

122211 yx bbggg ++=−                                                              (2.6) 
 
From the differential theory of surface, it is also known that the expression: 
 
                     yxddggg 2

122211 −                                                                               (2.7) 
 
which determines the size of the area on the surface ),( yxbz =  over the rectangle 

yxdd . This explains the meaning of the first term in the right part of Eq.(2.5), which 
is the size of the area of the brightness surface over a square that corresponds to a 
point. Fig, 2.9 a) shows when this size is the lowest possible if the brightness is 
constant, and Fig. 2.9 b) shows in all other cases that this size must necessarily be 
higher then the former situation. 

 

Figure 2.9 The size of the area of brightness over a unit square expressed by 2
122211 ggg −

in Eq. (2.5) 
The values of NC  for the corner from Fig. 
2.3 are shown in Fig. 2.10. As can be seen 
from the image that the value of NC  are 
high not only in the neighborhood of the 
corner but also in the neighborhood of the 
edges connecting in the corner. And also 
the same time, two maxima values are 
obtained in the neighborhood of each 
corner. In Noble�s algorithm, it then 
combines computing the value of NC  with 

c
s

Figure 2.10 The response provided by 
Noble�s operator 
classification of image points using the 
oefficients of the second fundamental form of the brightness surface. Only very 
trong hyperbolic points are accepted as corners.   
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2.1.3.1 Comments 

This paper proposes a solution to the 2D corner and junction feature problem. 
Although this algorithm will isolate image L-junctions, its performance cannot be 
predicted for T-junctions and other higher-order image structures. Instead, an image 
representation is proposed that exploits the local differential geometrical 
�topography� of the intensity surface. Theoretical and experimental results are 
presented which demonstrate how idealized instances of 2D surface features such as 
junctions can be characterized by the differential geometry of a simple facet model. 
He also presents the needed equations for the Chebychev facet model over a 33×  
neighborhood. But later on according to the other authors such as [Soj02a], Noble�s 
method is not an efficient one. 
 
   
2.1.4 Harris and Stephens� detector 
[Har88][Tra98][Zhe99] 

In [Har88] Harris and Stephens described well-known Plessey feature point detector. 
The computations in his algorithm were entirely based on the first-differential 
quantities. The detector computes the derivatives yx bb ,  using nn ×  first-difference 

approximations (where 
y
Ib

x
Ib yx ∂

∂=
∂
∂= , and ),( yxI  is the gray level intensity of the 

image point). Using the Gaussian smoothing kernel ( )yxG ,  of a standard deviation 
σ , the algorithm then continues with computing the sampled means 2

xb , 2
yb , and 

yxbb . Let the value of ( )yxb ,  defined as following: 
 
                      ( ) ( ) ( )yxGyxbyxb ,*,, = .                                                                 (2.8)    
 
For each image pixel we have such matrix to be considered: 
 

                      .2

2












=

yyx

yxx

bbb
bbb

M                                                                        (2.9) 

 
Then the two eigenvalues 1µ  and 2µ  of matrix M can be used to decide the ratio of 
the cornerness. Let the ratio to be PC  then we can get the corner response function 
(here we use CRF to denote the corner response function) as following: 
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MDet
MTraceC                             (2.10)   

 
If at a certain pixel point the two eigenvalues of the matrix M  are sufficiently large, 
then a small motion in any direction will cause an important change of gray level. 
This indicates the point is a corner. A point is marked as a corner if the value of PC  is 
small (which is a locally minimal).  
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Later on Harris and Stephens presents a modified version of the Plessey detector, they 
change the corner response function into the following expression: 
 
                      MkTraceMDetCHS

2−= .                                                              (2.11) 
   
They set the value of k  to 0.04 and they explained the goal of the second term in Eq. 
(2.11) is that it provides the discrimination against the high-contrast pixel step edges. 
The value of the corner response function HSC  for the corner from Fig.2.3 can be 
depicted in Fig.2.11. From the figure we can see that the valleys in the edge area are 
caused by the second term on the right side of Eq. (2.11). 
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Figure 2.11 The response provided by Harris and Stephens� operator 
 Trajkovič and Hedley presented a way to reduce the computational 
ty of Plessey detector in [Tra98]. In their paper they propose a modified 
f Harris algorithm that achieves almost the same performance as the original 
, but has a much lower computational cost. In addition to a high CRF, it also 

a pixel to have high image gradient in order to be a comer candidate. For 
el they first compute the image gradient, and if it is lower than some 
 it is not necessary to evaluate the computationally expensive CRF. Since for 
 images only 10-20% of image pixels have a high gradient, we do not need 
te the CRF for the majority of pixels. The drawback is that the Gaussian 
on now cannot be fully decomposed. Nonetheless, a speed up factor of two 
 obtained, depending of content of the image. 

another detector inspired by Harris and Stephens� algorithm was proposed in 
y Z.Zheng, H.Wang and E.K.Teoh. In this paper the analysis of gray level 
tection has been carried out. Performances of various cornerness measures 
ssed with respect to four performances of robustness: detection, localization, 
nd complexity. They have analyzed the interior differential features of the 
rface of these cornerness measures. This paper presents a new approach 
dient-direction corner detector for the corner detection, which is developed 
popular Plessey corner detection. The gradient-direction corner detector is 

 the measure of the gradient module of the image gradient direction and the 
ts of the false corner response suppression.  

Comments 

ifferent authors in their papers nicely explained the Plessey algorithm, but 
tely the analysis is too long to be outlined clearly in the original paper. 
ith Harris and Stephens� approach, different authors use different corner 

function know as CRF to decide the cornerness of the point. Before Harris 
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and Stephens, Főrster used 
MTrace

MDetCP =  as the CRF, Harris and Stephens then used 

MDet
MTraceCP =  as the CRF, later on they improved their algorithm and used 

MkTraceMDetCHS
2−=  instead of the PC that they presented in earlier time. 

Recently there are also lots of new corner detectors focuses on Harris and Stephens� 
algorithm but giving some new modified speeding up the algorithm and improving the 
performance of Harris and Stephens� Plessey algorithm.    
 
Harris and Stephens� corner detector with the corner response function (CRF) defined 
by Eq.(2.8) is commonly regarded as very good performance in the sense of reliability 
and stability of detection [Ale02]. A certain drawback is that it may potentially be 
slower than other detectors, which is mainly due to the fact that the Gaussian 
smoothing must be computed three times during the processing phase. But this 
problem has already been resolved in Trajkovič and Hedley�s paper. They reduced the 
time complexity by excluding the pixels with low values of gradient magnitude from 
computation. Later on Z.Zheng, H.Wang and E.K.Teoh derived a certain 
approximation of the Harris corner response function Eq. (2.11) and introduced k  as 
a function ),( yxk . Their method requires only one use of Gaussian smoothing. But 
they reported slightly worse successfulness of detection than in the case of the Harris 
and Stephens� detector, better localization of corners, and better running times.  
 
 
2.1.5 Sojka�s new algorithm for corner detection in digital images 
[Soj02a] 

E.Sojka presented his new algorithm [Soj02a], [Soj02b], [Soj03] for corner detection 
recently. Like the other known algorithms, the new algorithm also determines the 
corner response function  (CRF) that combines the angle and the contrast of the 
corner. The algorithm that they propose is based on measuring the variance of the 
directions of the gradient of brightness. The probability of the event that the image 
points belongs to the approximation of the straight segments of the isoline of 
brightness containing the corner candidate being examined is determined using the 
technique of Bayesian estimations and then used for computing the angle between the 
segments intersecting at the candidate. 
 
The main idea of the new algorithm is as following. The values of ( )Xg  and ( )Yϕ  
are the magnitude and the direction of the gradient of brightness. First of all, ( )Xg  

and ( )Yϕ  are computed for all image points (pixels). The derivatives ( )
x
Xb

∂
∂  and 

( )
y
Yb

∂
∂  are replaced by the differences that are computed using the following mask 
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After getting ( )Xg  and ( )Yϕ , the image points at which the magnitude of the 
gradient of brightness is greater than a predefined threshold are considered to be 
candidates for corners. The candidates are then examined by determining the values 

( )Qϕµ , ( )Qϕσ , ( )QCorr  and ( )QAppar . They can be calculated in such way: 
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      (2.12) 

 
where ( )Xw  is a weight expression for determining the angle of the break at a point Q 
and it comes from a positive weight function ( )( )Xrwr  ( in this function ( )Xr  stands 
for the distance. The weight can be calculate as following: 
 

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( ){ } ( )( ).min 1
0 XrwYAngQPYhpYbpAXrwXPXw rddQXYrSG ϕ∆∆β −

∈
==    (2.13) 

 
Here it should be mentioned that the ( )XpSG  indicated the probability of the event 
that X belongs to the approximation of a straight isoline segment containing Q. And 
the authors set ( )XpSG  like this: 
 

( ) ( )( ) ( )( ) ( )( ){ } .min YAngQPYhDirQPYbBrQPXP
QXYSG ϕ∆∆

∈
=                          (2.14) 

 
The term ( )( )YbBrQP ∆  expresses the probability of the event that Y is a point of the 
approximation of the isoline whose brightness is ( )Qb  (Y is a point of the line 
segment QX ). The term ( )( )YhDirQP  expresses the probability of the event that Y is 
a point of the approximation of an isoline segment (not the same brightness as Q) that 
aims at Q. Both events are independent. Since the neighborhood )(QΩ (the 
neighborhood )(QΩ  is square-shaped with Q at its center) may contain more than 
one corner, the segments of the isoline whose brightness is ( )Qb  need not generally 
aim at point Q (see Fig. 2.12). 

 

seg

Figure 2.12 The isoline of brightness passing through Q (continuous line), an isoline 

ment aiming at Q (bold line), a point X of the approximation of the segment, the deviation 
d(X) of X from the segment, the deviation h(X) of Q from xp . 
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Conversely, an isoline segment aiming at Q may generally have an arbitrary 
brightness. The term ( )( )YAngQP ϕ∆  expresses the probability of the event that Y 
belongs to the area of possible corner at Q. Fig. 2.13 shows that there may exist points 
that do not belong to the corner area in spite of the fact that the ( ) 0=Xb∆ , ( ) 0=Yh  
are both satisfied. 

 

Then we can get )(QCorr  and )(QAppar  easily from ( )Qϕµ  and ( )Qϕσ  in the 
following functions: 
 
                            ( ) ( ) ( ),2 QQgQCorr ϕσ=                                                        (2.15)             
 

                            ( ) ( ) ( ) ( ) .ϕ
Ω

µϕ −= ∑
∈

i
X

iiSG XXgXPQAppar
i

                            (2.16) 

The candidate at which the value )(QCorr  exhibits its local maximum and at which 
the values of ( )Qϕσ , )(QAppar  are greater than chosen thresholds is a corner. The 
authors mentioned here the declared size (usually from 77 ×  up to 1111× ) of the 
neighborhood )(QΩ  is not too critical since the effective size is always determined 
adaptively by the value of ( )XpSG . 
 
The author introduce the theoretical foundations of the corner detector in details very 
clearly in their paper, but here we will not use many words to explain it. Now let�s see 
the computational complexity of this algorithm. If the size of neighborhood )(QΩ  is 

MM ×  pixels, it is easy to see that the value of ( )XpSG  for all )(QX Ω∈  can be 
computed in ( )2Mθ . The same time is needed to compute ( )Qϕµ , )(Qϕσ  and 

)(QAppar . So one corner candidate is thus completely processed in ( )2Mθ . The 
authors mentioned some methods to speed up the program:  
If the value of ( )XpSG  is very small, then X need not be considered in the sums on 
the right-hand sides of Equations of computing ( )Qϕµ , )(Qϕσ , and )(QAppar ; the 
influence of such a point may be neglected.  

Figure 2.13 Although the conditions 0)( =Yb∆ , h(Y)=0 are both satisfied at Y, Y does not 
belong to the area of the corner at Q (both the bold isolines have the same brightness). This 
fact is detected by the condition 2/)(0 πϕ∆ ≤≤ Y , which is not satisfied for Y. Small circles 

show the position of samples. 
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If the technique of neglecting is used, the small values of ( )XpSG  need not even be 
evaluated. Applying this rule recursively, we see that we can neglect a lot of points 
within )(QΩ  then. Therefore, the values of ( )XpSG are usually computed only for 
small parts of )(QΩ . 
   
2.1.5.1 Comments 

In this paper, a new and efficient algorithm is presented. The probability of the event 
that a point belongs to the approximation of the straight segment of the isoline of 
brightness containing the corner candidate being tested is determined using the 
technique of Bayesian estimations, and then used for computing the angle between the 
segments. The results of the tests show that, in the sense of the successfulness of 
detection, the new algorithm is better than the other known algorithms that are usually 
used for solving the problem. In the test they found their detector was better (the 
successfulness of detection) than other recognized direct corner detectors such as 
Beaudet, Harris-Stephens [Har88] and Kitchen-Rosenfeld�s [Kit82] approachs and 
also better than the Susan algorithm. Further more the speed of their detector is a little 
bit slower than the formal direct corner detectors but significantly much faster than 
the M.A.Ruzon and C.Tomasi�s Compass operator [Ruz01] and J.Q.Song, M.R.Lyu 
and M.Cai�s proposed operator [Son03]. According to this strong advantage, it can be 
used in a real-time application. So their new approach is very fit for our UI-Wand 
project. But the new algorithm has several parameters need to be changed according 
to the different conditions of the processing images and the application command. 
Some of these parameters also have very significant influence on the accuracy and the 
speed of the detecting procedure. Although the authors gave some suggestions in their 
program about how to choose these parameters, but we find from our own experience 
the best combination of the parameters is still a big challenge for us.  
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2.2 Color distribution approaches 
2.2.1 SUSAN edge and corner detector 
[Smi97] 

S.M Smith and J.M. Brady presented their new approach [Smi97] in 1997. The Susan 
(Smallest Univalue Segment Assimilating Nucleus) method is an approach to low-
level image processing, especially, one-dimensional feature detection as edge 
detection, two-dimensional feature detection as corner/junction detection and also 
structure preserving noise reduction. This approach is substantially different from 
those that were published before.. 
 
The concept of each image point is associated with its local area of similar brightness 
is the basis for the SUSAN principle. Fig.2.14 showing a dark rectangle on white 
background, and five circular masks having a center pixel called �nucleus� are shown 
at five image positions. If brightness of each pixel within a mask is compared with the 
brightness of that mask�s nucleus, then an area of the mask can be defined which has 
the same (or similar) brightness as the nucleus. This area of the mask can be defined 
as the �USAN�(Univalue Segment Assimilating Nucleus).  
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Figure 2.14 Five circular masks at different places on a simple image. The right image 
draws each mask from the left image is depicted with its USAN (in white). 
area of USAN conveys the important information about the structure of the image 
e region around any point in question. As that can be seen from Fig.2.14, the 
N area is at a maximum when the nucleus lies in a flat region of the image 
ce, it falls to half of this maximum very near a straight edge, and falls even 
er when inside a corner. It is this property of the USAN �s area, which is used as 
ain determinant of the presence of edges and two-dimensional features. From 

ize of the USAN and gravity center of the mask related to nucleus position and 
r information, features such as edges and corners can be detected.  

.1 The SUSAN edge detector 

algorithm performs the following steps at each image pixel: 

lace a circular mask around the pixel in question (the nucleus). 
he mask (usually 33× ) is placed at each point in the image and for each point; 

he brightness of each pixel within the mask is compared with that of the nucleus 
the center point of the mask):  
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where 0r

r  is the position of the nucleus in the two dimensional image, rr  is the 
position of any other point within the mask, ( )rI r  is the brightness of any pixel, t  
is the brightness difference threshold and c  is the output of the comparison. The 
parameter t  determines the minimum contrast of features that will be detected and 
also the maximum amount of noise, which will be ignored. Using Eq. (2.17) can 
give very good result, but a much more stable and sensible Eq. (2.18) is used in 
place of Eq.(2.17) is: 
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The form of Eq.(2.18) was chosen to give a �smoother� version of Eq.(1.17). This 
allows a pixel�s brightness to vary slightly without having too large an effect on 
c ; even it is near the threshold position. The power chosen as 6 is a theoretical 
optimum.  

 
2. Using Eq.(2.19) calculate the number of pixels within the circular mask 

which have similar brightness to the nucleus. (These pixels define the USAN). 
Originally a simple Eq. (2.19) determined this comparison. Then this comparison 
is done for each pixel within the mask, and a running total n out of the outputs c  
is made. 

 
                        ( ) ( )., 00 ∑=
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If we just use simple Eq. (2.17), then this total n  is just the number of pixels in 
USAN. Next, n  is compared with a fixed threshold g , which is called �geometric 
threshold� and it is always set to 4/3 maxn , where maxn is maximum value which n  
can take. 

 
3. Using Eq. (2.20) subtract the USAN size from the geometric threshold to 

produce an edge strength image. 
Using the following rule then creates the initial edge response: 
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where ( )0rR r  is the initial edge response. This is a simple formulation of SUSAN 
principle, and it means the smaller the SUSAN area, the larger the edge response.  

 
4. Use moment calculations applied to the USAN to find the edge direction. 

Computation of the edge direction is necessary for feature detection especially for 
the screen edge detection that maybe we will use in our project. Because with the 
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direction information we can estimate the screen edge by it�s geometric profile. 
The direction of an edge associated with an image point which has a non zero 
edge strength is found by analyzing the USAN in one of the two ways, depending 
on the type of edge point which is being examined. If USAN shapes that would be 
expected for an ideal step edge, (inter-pixel edge case), the vector between the 
center of gravity r  of the USAN and the nucleus of the mask is perpendicular to 
the local edge direction. The central gravity can be calculate in this way: 
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If the point lies on a thin band, which has brightness roughly half 
way between the brightness of the two regions, generate the edge 
(intra-pixel edge case). The USAN formed is a thin line in the 
direction if the edge. The edge direction is thus calculated by 
finding the longest axis of symmetry. This estimated by taking 
the sums: 
 
                  ( ) ( ) ( ) ( ),, 0

2
00

2
0 ∑ −=−

r
rrcxxrxx

r

rrr         (2.22) 

                  ( ) ( ) ( ) ( ),, 0
2

00
2

0 ∑ −=−
r

rrcyyryy
r

rrr        (2.23)  

               ( )( )( ) ( )( ) ( ),, 000000 ∑ −−=−−
r

rrcyyxxryyxx
r

rrr (2.24) 

 
The ratio of 2

0 )( yy −  to 2
0 )( xx − is used to determine the 

orientation of the edge; the sign of )()( 00 yyxx −−  is used to 
determine whether a diagonal edge has positive or negative 
gradient. Thus in case (c) the edge direction is again found in a 
simple manner. The remaining question is how to automatically 
determine which case fits any image point. . Fig. 2.15 shows 
clearly the logic behind this. Firstly, if the USAN area (in pixels) 
is smaller than the mask diameter (in pixels) then the intra pixel 
edge case is assumed.    If the USAN area is larger than this 
threshold, then the center of gravity USAN is found, and used to 
calculate the edge direction according to the inter-pixel edge 
case. If however, the center of gravity is found to lay less than 
one pixel away from the nucleus then it is likely that the intra-
pixel edge case more accurately described this situation.  

 
5. Apply non-maximum suppression, thin and sub-pixel estimation, if required. 

Finally, therefore, the edge response image is suppressed so that non-maxim (in 
the direction perpendicular to the edge (are prevented from being reported as edge 
points. Following this, the �strength thinned� image can be �binary thinned�. A 
set of rules for binary thinning has been implemented (still making use of the 
strengths in the non-suppressed edge response image) which work well to give a 
good final binary edge image.     

  

Figure 2.15 Two 
main edge types 



Chapter 2, Corner Detection Approaches  - 20 - 

2.2.1.2 The SUSAN corner detector 

The SUSAN �corner� detector is very similar to the edge detector, particularly in the 
early stages. First, all pixels within a circular mask are compared with the nucleus, 
using exactly the same comparison equation. The sum of these comparisons is also 
calculated in the same way, using Eq. (2.19). Next, n  is again compared with the 
geometric threshold g , here the �corner� detector is quite different from the edge 
detector, where g  only necessary in the presence of noise. For a � corner� to be 
present, n  must be less than half of its maximum possible value, maxn . For the reason 
that if the nucleus lies on a corner then the USAN area will be less than half of the 
mask area, and will be local minimum. It is safe to set g  to be exactly half of maxn  
because of the nature of a quantized straight edge; an USAN formed from a straight 
edge will always be larger than half of the mask size, as it includes the nucleus. 
 
In summary then, the algorithm performs the following steps at each image pixel: 
1. Place a circular mask around the pixel in question (the nucleus). 
2. Using Eq.(2.19) calculate the number of pixels within the circular mask which 
have similar brightness to the nucleus. (These pixels define the USAN).  
3. Using Eq.(2.20) subtract the USAN size from the geometric threshold (which is 
set lower then when finding edges) to produce a corner strength image. 
4. Test of false positives by finding the USAN �s centroid and its contiguity. 
5. Use non-maximum suppression to find corners. 
 
2.2.1.3 Comments 

This approach to feature detection has many differences to the well-known methods; 
the most obvious is that no image derivatives are used and no noise reduction is 
needed. So the principle of SUSAN method is: An image processed to give as output 
inverted USAN area has edges and two-dimensional features strongly enhanced, with 
the two-dimensional features more strongly enhanced than edges. The fact that 
SUSAN edge and corner enhancement uses no image derivatives explains why the 
performance in the presence of noise is good. The integrating effect of the principle, 
together with its non-linear response, also gives strong noise rejection. This can be 
understood very simply if an input signal with identically independently distributed 
Gaussian noise is considered. As long as the noise is small enough for the SUAN 
function to contain each similar value, the noise is ignored. The integration of 
individual values in the calculation of areas further reduces the effect of noise. The 
other strength of the SUSAN edge detector is that the use of controlling parameters is 
much simpler and less arbitrary and therefore easier to automate than with most other 
edge detection algorithms.   
 
 
2.2.2 Edge, junction, and corner detection using Compass operator 
[Ruz01] 

This algorithm was presented by M.A. Ruzon, and C. Tomasi in [Ruz99a] [Ruz99b] 
and [Ruz01]. Their detector is well known as the Compass operator. The Compass 
Operator detects step edges without assuming that the regions on either side have 
constant color. Using distributions of pixel colors rather than the mean; the operator 
finds the orientation of a diameter that maximizes the difference between two halves 
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of a circular window. Junctions can also be detected by exploiting their lack of 
bilateral symmetry. This approach is superior to a multidimensional gradient method 
in situations that often result in false negatives, and it localizes edges better as scale 
increases. 
 
The algorithm requires computing the perceptual distance between the representations 
of adjacent image neighborhoods. First of all they consider the problems of 
representing a neighborhood as a color distribution, computing the similarity between 
individual colors, and computing the dissimilarity between two color distributions. 
They create color signatures in such a way: a color signature is a data structure 
consisting of a set of ordered pairs ( ) ( ) ( ){ }nn vxvxvx ,,,,,, 2211 K , where the iv s are 
vectors in a color space to which the weights ix  are assigned. A signature is 
equivalent to a probability mass function when the iv s sum to one. Signatures are 
superior to histograms because they adapt to the data; they do not force an arbitrary 
partitioning of color space. Before computing the perceptual distance between two 
color signatures, they compute the ground distance between each pair of colors in the 
window. They chose the ground distance as { }γ/exp1 ijij Ed −−= . The ground 
distance between color i  and color j  is an exponential measure, with steepness 
governed by γ (they theme 0.14=γ ), of the Euclidean distance ijE  between them in 
CIE-Lab. Then measuring distance between two color signatures is a sub-problem of 
measuring distance between probability density functions. The Earth Mover�s 
Distance (EMD) formulates the distance measurement as an instance of the 
transportation problem.  
 
2.2.2.1 Compass Edge detection 

Here, they present a method of estimating the strength and orientation of an edge 
hypothesized to split a window. They divide the window in half with a line segment, 
compute a color signature for each half, and find the EMD between them. Repeating 
this process using line segments with different orientations reveals the true strength 
and orientation of the edge. The radius of the circle is σ3 , where σ  is a scale 
parameter. They perform vector quantization on all pixels whose intersection with this 
circle is nonzero. To form two color signatures, they map each pixel in a semicircle to 
its nearest color cluster and add its weight to the corresponding point mass. The 
weight given to each pixel in this method is the product of three factors: the area of a 
pixel (which they model as a unit square) that falls inside a semicircle, its relative 
importance to the computation, and a normalization factor so that the total mass of 
each signature is one. They model a pixel�s importance as a Rayleigh distribution on 
the distance from a pixel�s center to the circle�s center. Rayleigh distributions are 
expressed in polar coordinates as ( ) { }22 2/exp, σθ rrrf −= . They depart 
significantly from their formulations in D2  by revolving the D1  curve into an 
isotropic function. The result of computing the EMD over a set of orientations at each 
window is a function ( ) 1800, ≤≤ θθh . Fig. 2.16 shows two applications of the 
algorithm on two windows, the first straddling an ideal step edge and the second taken 
from an image containing a bush and a tree. The strength of each edge is the 
maximum value of ( )θh , which never exceeds one, and the orientation of the edge is 
the argument that produced the strength. 
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Figure 2.16 Applying the EMD to a circular neighborhood over a range of diameter 
orientations produces a function from which edge information is extracted. 
 Compass Junction detection  

tion is a point where three or more image regions meet, but the EMD, like other 
ce measures, cannot handle three-color signatures at a time. It is certainly 
le to split a circle into three or more neighborhoods and find the EMD between 
air, but this is an order of magnitude more expensive, and the added problem of 
ining the number of image regions meeting at a point is cumbersome. Instead, 

pt for a less direct but simpler approach. The minimum value of ( )θh  is called 
normality and it serves a much more interesting purpose. When abnormality is 
it indicates a complete lack of symmetry in the image data that usually 
ponds to a junction. The synthetic image in Fig. 2.17 illustrates this concept.  

 

 

Figure 2.17 Whereas the strength at each point represents the maximum EMD value over all 

orientations, the abnormality represents the minimum, which is high near junctions. The shape
of the mesh resembles a triangular pyramid.
 near the edges have high strength, but only those near the junction have high 
ality as well. The shape of the mesh provides a clue as to how to interpret the 

 content in this neighborhood. They propose the following algorithm for 
tructing junctions containing three regions: For each local maximum above a 
old, examine a small neighborhood (with size proportional to σ ) centered at the 
um. Fit a triangular pyramid to the abnormality values and the sides of the base 
 almost normal to the edges that form the junction. For T-junctions, the error in 
proximation must be more than for Y-junctions. 

 Compass Corner detection 

annot detect corners using abnormality because the EMD of the corner point at 
ientation the bisectors the corner is usually zero. Finding corners, therefore, 
es a separate approach. 
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In this paper they presents a method based on their edge detector that works directly 
on color images. Under the proposed framework of color distributions, the only 
difference between detecting edges and detecting 
corners is that they no longer have half the wedges of 
the circle in each signature. An extra parameter β  is 
introduced to measure the angle subtended by the 
corner. The range of θ  must now be [ )360,0 since the 
two radii that split the circle no longer have odd 
symmetry. They refer to the two sides as clockwise 
and counterclockwise, and θ  refer to the orientation 
of the clockwise side. Fig. 2.18 illustrates the 
parameters. Otherwise, the algorithm for computing 
strength and orientation at each point is similar to that for edge detection. A circular 
neighborhood is quantized and two color signatures are formed. The EMD measures 
the perceptual distance between signatures. 
 
1. Computing Distance between Signatures of Unequal Mass 

When β  is less than o180 , the two color signatures have unequal amounts of 
mass. There are two possible methods for accounting for this difference. The first 
method, normalized matching, is to normalize the larger signature so that its mass 
equals that of the smaller. The second method, partial matching, matches the 
smaller signature to the subset of a larger signature that minimizes the total work. 
Regardless of the method, the mass of the smaller signature is set to one so that 
the EMD continues to lie in the range [ ]1,0 . Both types of matching can fail under 
certain circumstances. Partial matching method will miss the corners and 
normalized matching, however, often performs worse than partial matching on 
typical corners. The testing result is that the size of a corner is often 
underestimated using normalized matching. They finally chose partial matching 
for their experiments. They may miss a few small corners, but experience shows 
that such corners rarely appear in natural images. For the corners that are found, it 
is better to describe them accurately. 

 
2. Finding Corners 

The result of applying the corner detector to an image is a four-dimensional 
),,,( βθyx  array of EMD values, and corners are relative maxima above a 

minimum strength in this array. However, there are some complicating factors: 
first, a corner is a response to a phenomenon that takes place over a relatively 
large portion of the image, so checking only the nearest neighbors in the array will 
produce too many corners. It is possible to get many maxima all responding to the 
same corner phenomenon but with noticeably different parameters; second, they 
cannot directly compare EMD responses from parameter values that differ in β . 
Changing the size of the corner also changes the statistics of the EMDs that are 
generated. Therefore, they include edge information to winnow the set of maxima 
over x , y , and θ  for every value of β  to the actual corners. If multiple 
responses to a corner still remain, they select one according to a heuristic. The 
steps are explained in details below. 

 
• Testing Corner Candidates 

Figure 2.18 Parameters 
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For each corner, they compute Cθ  and CCθ , the difference between the 
orientation of the clockwise and counterclockwise sides of the corner, 
respectively, and the edge orientation found at the endpoint of each side. The 
fit to the model is expressed as CCCP θθ coscos += , where P lies between 0 
and 2. Then they set the threshold P at 1.97. Also, where the edge crosses the 
corner�s axis of 
symmetry, the projection 
of the edge response 
vector onto the line 
normal to this axis must 
be weaker than the corner 
response. They check 
responses on a small 
interval along this axis 
centered at a point that is 

)
2

tan
2

(sec3 ββσ −  pixels 

away from the corner. This quantity is the distance from the corner point to the 
circumference of an imaginary circle tangent to the sides of the corner at its 
endpoints. Fig. 2.19-middle) shows the initial corner candidates found by 
setting threshold of the relative maxima. Most of these responses are false 
positives, and this procedure greatly reduces their number. 

 
• Pruning Multiple Responses 

Fig. 2.19-middle shows that after the above testing the remained corner 
candidates are always not just one. So they offer a heuristic to deal with this 
condition. First, they must decide when two corner candidates are responding 
to the same actual corner. They define two corners as being close enough if the 
corner points are within 4/9σ  pixels of each other and one of two conditions 
is true: 1) either the two clockwise or the two counterclockwise orientations 
differ by no more than o10 , or 2) the sum of these differences is no more than 

o40 . These conditions group nested corners while preserving multiple corners 
near junctions. An ambiguity arises when corner X  is close to corners Y  and 
Z , but Y  and Z  are not close to each other. However, the application of the 
edge model removes enough candidates to prevent this. Once they have 
computed the transitive closure, they select the member of each set that 
maximizes the expression EPC ++2 , where C  is the corner strength, P  is 
the degree of orientation match described earlier, and E  is the sum of the edge 
strengths at the endpoints of the two sides of the corner. C  is doubled so that 
each term contributes equally. 

 
2.2.2.4 Comments 

This research models a neighborhood as a distribution of colors. Their method shows 
that the increase in accuracy of this representation translates into higher-quality 
results for low-level vision tasks on difficult, natural images, especially as 
neighborhood size increases. They emphasize large neighborhoods because small 
ones often do not contain enough information. They emphasize color because it 
subsumes gray scale as an image range and because it is the dominant form of human 

Figure 2.19 Detecting corners from an initial set 
of candidates, applying an edge model followed 

by pruning multiple responses if they exist. 
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perception. They discuss distributions in the context of detecting edges, corners, and 
junctions, and they show results for each. They believe the resulting algorithm to be 
the first corner detector that can handle either color or most arbitrary textures. 
 
The improvement in the quality of edges detected, the potential for reconstructing 
junctions, and the ability to find corners in textured, color images at large scales all 
give testimonial to the added power of distributions in feature detection. Being able to 
find all three features from one array of values is encouraging. They believe this work 
to be most applicable to figure-ground separation, a task other operators can carry out 
only in simple situations. Finding corners with the help of edges and finding 
occluding edges through the reconstruction of junctions brings them closer to this 
ultimate goal than other methods. Among the secondary principles established by this 
work, three stand out. The first is that it is best to treat color as a vector instead of 
three components; only then can they be reasonably certain that an algorithm�s 
representation of color is similar to that of a person. Second, using a saturating 
distance measure is more in line with the notion that all pairs of dissimilar colors are 
equally different. Finally, the Earth Mover�s Distance, previously shown to be 
applicable to the color distributions of entire images, has been found to be useful for 
local neighborhoods. It is what allows them to combine distributions and the 
saturating distance measure. The limitations of the algorithm are more practical and 
deal with the high computation cost. Quantizing each image window and computing 
the EMD many times is much slower than the corresponding operations in other 
detectors, though these operations can be done largely in parallel. Experiments 
designed to reduce the running time had the disadvantage of producing less accurate 
results.  
 
 
2.2.3 A color-distribution-based detector  
[Son03] 

J.Song, M.R.Lyu, and M.Cai presented their approach [Son03] in 2003. This is an 
algorithm to detect edges, corners and junctions in one pass based on both spatial and 
statistic color distributions in a neighborhood.  
 
2.2.3.1 Generic neighborhood model 

First of all the ��generic neighborhood model�� is defined as a circular neighborhood 
of any pixel P consists of all pixels whose Euclidean distances of image coordinate to 
P is less than the circular mask. The neighborhood of P  (labeled NB(P)) can be 
represented by a set of sectors. Each sector is of the most homogeneous color 
distribution inside, and every two adjacent sectors are of the most significant 
difference in color distribution. After getting the best-divided sectors, the type of P 
can be classified according to the number and relationship of the sectors. Let θi be the 
angle subtended by Sectori (0< iθ  <2π). Table 2.2 shows the classification criteria.  
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Table 2.2 Classification criteria of the pixel type based on the best-divided sectors 

Sector number Pixel type Example Relation 
n=1 Plain Below (a) Any 

Edge Below (b) |θ1-θ2|<=ε n=2 
Corner Below (c) |θ1-θ2|>ε 

n>2 Junction Below (d) Any 
 

             
 
2.2.3.2 A generic edge, corner and junction detection algorithm 

The splitting-and-merging sectors scheme is applied in their algorithm. The circular 
neighborhood is split along radial directions, by which they can obtain the spatial 
color distributions. The complete detection algorithm consists of eight steps: 
 
1.  Splitting 

The circular neighborhood is split into n even 
(usually 8 to 24) unit sectors (hereinafter, called 
slice) with the same angle. Fig. 2.20 shows a 
synthetic example of circular neighborhood, 
which is split into 12 slices.   

 
2.  Color distribution feature 

Merging slices into sectors is based on 
comparing the color distribution features of 
slices. iCDF  denotes the color distribution 
feature of iSlice . The function ),( ji CDFCDFDist  
is to calculate the distance between two sCDF , 
which returns a real number between [0,1]. The 

),( ji CDFCDFDist  approaches 0 when iCDF  and C
perceptually, and approaches 1 when they are significantly

 
3.  Integrated slice distance 

Since the merging operation only takes place between t
circular neighborhood, the distance between every pa
Adjacent Slice Distance (ASD), is first calculated as: 

 
                      ( )( ) ...1,, niCDFDCFDistASD iNextii ==      
 

Let dT denote the threshold of CDF distance. Two slices 
larger than dT  are classified into different regions. There
than dT ) in the ASD profile indicate the potential bound
Figure 2.20 A split 
neighborhood 
expected response of 
jDF  are very similar 

 different. 

wo adjacent slices in a 
ir of adjacent slices, 

                            (2.25) 

whose CDF distance is 
fore, the peaks (higher 
aries between different 
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regions. However, from the Fig.2.21-a) the weakness of ASD comes from its 
"local" nature, the Global Slice Distance (GSD) is then calculated. GSD is 
actually a normalized distance whose base is the slice with the smallest ASD. 
GSD is defined as: 

  
                     ( ) ...1,, min_ niCDFCDFDistGSD inxii ==                                         (2.26) 
 

 
 
 
 

But, the GSD profile cannot be used directly because they need the relative 
distance of adjacent regions. So, they translate the GSD profile into the RGSD 
(Relative GSD) profile. Fig. 2.21-b) shows the RGSD profile (dashed line). 
However, the weakness of GSD/RGSD is that it cannot distinguish the difference 
between two slices whose distances to inxSlicemin_  are similar but whose sCDF are 
very different. Fortunately, ASD can distinguish them. So ASD and RGSD are 
complementary. They are integrated into the Integrated Slice Distance (ISD) for 
merging slices correctly.  

 
                      ( ) ...1, niRGSDASDMAXISD iii ==                                          (2.27) 
 

In the ISD profile (Fig. 2.21-c)), the slices that are the boundaries of different 
regions are enhanced, and the internal slices are suppressed. Therefore, obtaining 
the best-divided sectors. 

 
4.  Boundary slice detection 

To merge slices into sectors, they detect the boundary slices to separate sectors in 
the ISD profile. They detect the boundary slices by the following four steps: 
• Step 1: Detect all peaks in the ISD profile, and sort them in a list in the 

descending order. 
• Step 2: If the list is empty, terminate the detection; otherwise, pop the first 

peak as the current peak and go to Step 3. The current slice is 
corresponding to the current peak. 

• Step 3: If neither the preceding slice nor the succeeding slice of the current 
slice is a boundary slice, the current slice is identified as a boundary 
slice. If both of them are already boundary slices, judge whether or 
not to add a new boundary slice.  

• Step 4: Go to Step 2. 
 
After the detection terminates, they obtain a group of boundary slices. Normally, 
the number of boundary slices should be 0 (for "Plain"), 2 (for "Edge" or 
"Corner") or more than 2 (for "Junction�). 

Figure 2.21 Slice distance analysis: a) ASD profile: b) GSD/RGSD profile; c) ISD profile. 
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5.  Spurious junction elimination 
When the number of sectors is larger than 2, there is a potential junction, some of 
them are better considered as edges or corners, especially for weak junctions. 
Thus, for a weak junction, they compare the strength of being a junction and that 
of being an edge (or corner) to decide which is the better result. If its junction 
strength is lower than the edge (or corner) strength, it should be converted into an 
edge (or corner). They first calculate the junction strength as follows: 

 

( )( )∑
=

⋅=
m

i
iNextSectori SectorCDFSectorCDFDist

m
rengthJunctionSt

1
,1               (2.28) 

 
Note iSectorCDF is the color distribution feature of iSector . It is unnecessary to 
check strong junctions, the junctions whose strengths are higher than jsT  are 
accepted directly without the following check. Then, they compute the strength of 
being an edge (or a corner) for this junction. To divide the sectors into two 
groups of consecutive sectors that are most similar within each group and most 
different between two groups 1g and 2g . They define ( )gS to calculate the 
similarity of a group of sectors, and define ),( 21 ggD to calculate the difference 
between two groups of sectors. Therefore, the maximum strength of being an 
edge (or a corner) is:  
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2
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>=
        (2.29)                               

 
Note Th is the similarity threshold, which should be larger than (1- dT ). If 
MaxStrength is larger than JunctionStrength, the junction is converted to an edge 
(or a corner) by merging sectors according to the division and by updating the 
boundary slices. 

 
6.  Boundary refinement 

As described above, the boundaries of sectors are the borders of boundary slices, 
which are not necessarily the real boundaries. It is safer to state that the real 
boundary is between the bisectors. They defined the Distance Ratio (DR) 
and )(DRx  to calculate the exact boundary in the bisectors. 

 
7.  Classification 

With the best-divided sectors and their accurate boundaries, edges, corners and 
junctions can be classified clearly according to the criteria listed in Table 1. If the 
number of sectors is two, the smaller angle of two boundaries, denoted by α 
(α<=π), is calculated to discriminate between edge and corner. If there are more 
than two sectors, the pixel type is "Junction". The strength of all junctions has 
already been calculated using Eq. (2.28), but not that of edges and corners. With 
the accurate boundary information, they compute the edge strength and the corner 
strength as follows: 

                      ( ) ., 21 επ
α
−

×′= ggDthEdgeStreng                                      (2.30) 

                      ( )., 21 ggDngthCornerStre ′=                                            (2.31) 
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),( 21

' ggD  has a form similar to ),( 21 ggD (GSD) with a small difference that the 
two slices containing the real boundaries are ignored. The rightmost part of Eq. 
(2.30) is to enhance the edge whose α is approaching π. 

 
8. Localization 

This is the last step of the edge, corner and junction detection process. The above 
seven steps are performed orderly on each pixel in an image. After all feature 
pixels (i.e., not "Plain" pixels) are classified and assigned the strength, this step 
takes place to locate the final feature position accurately. It consists of three 
successive operations: (1) use directional non-maximal suppression to locate 
edges and to eliminate false positives of corners; (2) use regional non-maximal 
suppression to locate them rather than use the directional suppression, and (3) use 
integrity verification to match the branches of remaining corners or junctions with 
edges. 

 
2.2.3.3 Comments 

Unlike the previous detectors which only focus on the statistic color distribution, their 
approach emphasizes both spatial and statistic color distributions. It splits the circular 
neighborhood into slices to obtain the spatial color distribution, and calculates the 
statistic color distribution in each slice. By analyzing the integrated slice distance, the 
slices are merged into sectors, whose number and relationship determine the pixel 
type. They implemented the approach with improved techniques and test it using both 
synthetic and real images. The experimental results demonstrate that their new 
approach has high accuracy on both feature localization and boundary direction. This 
model emphasize (1) the circular neighborhood to ensure the isotropy, (2) the statistic 
color distribution to handle both uniform-colored regions and textured regions, and 
(3) the spatial color distribution to distinguish edge, corner and junction. So this 
detector not only gives the location of edges, corners and junctions, but also indicates 
the accurate direction of their boundaries, which are very important in reconstructing 
the image structure. Based on this model, they propose a low-level feature detection 
approach which is the first one with all the following four capabilities: (1) detecting 
edges, corners and junctions in the same pass, which makes the reconstruction of 
corner/junction very convenient since all the required information, including 
corner/junction location, their boundary directions and edge direction, is ready; (2) 
handling both uniform-colored regions and textured regions; (3) able to detect free-
shaped corners and junctions; (4) producing the accurate boundary direction for 
corners and junctions. They also mentioned some speed-up techniques in their paper 
to resolve the speed problem, which is occurred very seriously in Compass operator. 
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2.3 Corner Detection Approaches Comparison 
After deeply studying the main known corner detectors, we can divide them into three 
paradigms. The first paradigm is boundary-based corner detectors, the second 
paradigm is direct corner detectors and the third paradigm is color distribution based 
detectors. The main idea of boundary-based corner detectors is to extract the 
boundary of the object first and analyze the shape afterwards. However, this kind of 
method is computationally expensive. The direct corner detectors work directly with 
the values of brightness of images without segmenting the image in advance, they 
usually model the image as a surface and try to fit some kind of template to the image 
in a neighborhood, where the template can be either a parametric surface or a 
definition of �points of interest�. So the processing speed is usually fast enough for 
real-time application. So above two paradigms (boundary-based corner detectors and 
direct corner detectors) can be included into gradient approaches. The color 
distribution based detectors are very different with the gradient approaches, it do not 
model an image as a surface; instead, they concern the statistic color distribution in 
the circular neighborhood centering at each pixel rather than compute the directional 
gradients or derivatives. So the color distribution based detectors can be included into 
color distribution approaches. Table 2.3 shows which paradigm the different corner 
detectors belong to. 
 

Table 2.3 Corner detector paradigms 

Detector Name Paradigm Paper Index 
Beaudet Direct corner detectors [Bea78] 
Kitchen-Rosenfeld Boundary-based Corner detectors [Kit82] 
Harris-Stephens Direct corner detectors [Har88] 
Deriche-Giraudon Direct corner detectors [Der93] 
SUSAN Color distribution based detectors [Smi97] 
Compass Color distribution based detectors [Ruz01] 
Song-Lyu-Cai Color distribution based detectors [Son03] 
Sojka Direct corner detectors [Soj02a] 
     
Now some compares between these different detectors can be made. In order to 
compare the accuracy between different corner detectors, we need common criteria. 
The corner detectors should satisfied the following criteria: 
 
1. All the true corners should be detected. 
2. No false corners in the detected corners. 
3. The detected corners should be located with a small localization error. 
4. The detection should be stable, which means if a corner is detected in one image, 

the corresponding similar corners should also be detected in another image.   
5. The detectors should not be sensitive to the noise in images. 
6. A low time complexity of detector is often required by the real time processing. 
 
First of all, the processing speed of these detectors is shown in Table 2.4 (here we 
choose the same hardware conditions for each detector): 
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Table 2.4 Processing time comparing 

Detector Name Feature Detected Running Time (ms) Grade
Beaudet Corner 5-8 5 
Harris-Stephens(Plessy) Corner 34-39 4 
Kitchen-Rosenfeld Corner 16-20 4.5 

Edge 26-48 SUSAN 
( 43 == σσ or ) Corner 27-49 

4 

Song-Lyu-Cai 
( 43 == σσ or ) 

Edge, Corner & Junction 46-78 3.5 

Edge & Junction 682-807 Compass 
( 43 == σσ or ) Corner 6847-7460 

1 

Sojka Corner 80-155 3 
 

Table 2.5 Test images 

 
Form Table 2.4, it is very clear shown that most of the direct corner detectors are 
much faster than color distribution based approach. Especially, the Compass 
detector, it is so slow to using in any real-time applications. The Song-Lyu-Cai �s 
approach is much faster than the Compass operator, but it will detect the edge, corner 
and junction in just one round, which is not so necessary for our further application. 
In the direct corner detectors the processing speed are also not quite the same, for 
example, Beaudet detector is the most faster one, and the Sojka detector is a little bit 
slow comparing to others. Because we will focus on the real-time processing 

 Test Image Reference Solution Sojka algorithm Result 
Image 
#1 
(A 
synthetic 
image 
without 
noise) 

Image 
#2 
(A 
synthetic 
image 
with a 
Gaussian 
noise) 

Image 
#3 
(An 
image 
from a 
CCD 
camera) 
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application in our project, we will mainly do the following compares in those fast 
corner detectors (e.g. Beaudet, Harris-Stephens, Kitchen-Rosenfeld, SUSAN and 
Sojka).  
 
Except the speed aspect, the accurate level is also among the most critical criteria to 
evaluate the quality of the detectors. In Table 2.5, the testing images are shown, where 
test image #1 is a synthetic image without noise, the test image #2 is the same as test 
image #1 but with a Gaussian noise in it, the test image #3 is a real image obtained 
from a CCD camera, all the test images are gray level images. 
                 
In Table 2.6, Table 2.7 and Table 2.8, using the above three test images, the accurate 
compares between these detectors are carried out among the Beaudet�s, the Harris-
Stephens�, the Kitchen-Rosenfeld�s, the SUSAN�s and Sojka�s corner detectors. 
 

Table 2.6 The testing result of test image #1  

Detector 
Name 

Total 
Corners 

Correct 
Detections 

Missed 
Corners 

False 
Detections 

Multiple 
Detections 

Total 
Error 

Localization 
Error 

Grade 

Beaudet 406 64 5 35 104 1.49 3.0 
Deriche-
Giraudon 

337 133 0 7 140 1.21 2.0 

Harris-
Stephens 

442 28 0 6 34 0.72 4.0 

Kitchen-
Rosenfeld 

420 50 32 67 149 0.96 3.0 

SUSAN 370 100 20 9 129 1.23 2.5 
Sojka 

470 

470 0 0 0 0 0.56 5.0 
 

Table 2.7 The testing result of test image #2  

Detector 
Name 

Total 
Corners 

Correct 
Detections 

Missed 
Corners 

False 
Detections 

Multiple 
Detections 

Total 
Error 

Localization 
Error 

Grade 

Beaudet 363 107 54 24 185 1.62 2.5 
Deriche-
Giraudon 

308 162 22 5 189 1.49 2.0 

Harris-
Stephens 

429 41 10 9 60 0.77 4.0 

Kitchen-
Rosenfeld 

360 110 59 30 199 1.37 2.5 

SUSAN 358 112 29 2 143 1.58 2.0 
Sojka 

470 

466 4 1 1 6 0.57 5.0 
 

Table 2.8 The testing result of test image #3  

Detector 
Name 

Total 
Corners 

Correct 
Detections 

Missed 
Corners 

False 
Detections 

Multiple 
Detections 

Total 
Error 

Localization 
Error 

Grade 

Beaudet 155 136 21 10 167 1.85 2.0 
Deriche-
Giraudon 

142 149 25 10 184 2.05 1.5 

Harris-
Stephens 

187 104 10 6 120 0.98 3.5 

Kitchen-
Rosenfeld 

163 128 26 15 169 1.87 2.0 

SUSAN 152 139 29 1 169 1.63 2.5 
Sojka 

291 

229 62 9 8 79 0.81 4.5 
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Comparing criterion: 
• Total corners: the number of corners that is given by the reference ahead of time. 
• Correct detections: the number of detected corners that have the same (or near) 

location with the reference corners. 
• Missed corners: the number of reference corners subtracts the number of correct 

detections. 
• False detections: the number of corners that are detected at a point at which (near 

which) no real corner exists. 
• Multiple detections: the number of corners that are detected at a correct place but 

more than once.  
• Total error: the sum of  missed corners, false detections and multiple detections. 
• Localization error: the average location deviation error of the total detections. 
• Grade: the level of detection performance (from 0-5, higher score means better 

performance). 
 
Analyzing from the above tables, the performance of the Beaudet detector, the 
Deriche-Giraudon detector, the Kitchen-Rosenfeld detector and the SUSAN detector 
is not so satisfied, there are a lot of errors take place when using these detectors. For 
the real image, the test result shows that the accurate of all the detector will fall down, 
but Sojka and Harris detector still can get very high score, especially, the Sojka 
detector, it can detect all the corners in image #1, detect 98.2% corners in image #2 
and almost 80% corners in the real image, which is quite higher than the other 
detectors.  
 
Finally, it is also necessary for a good detector to be stable, which means the detectors 
should get the similar results from the similar test image. Here we use the rotated 
image for the stable testing (see Table 2.9). 

Table 2.9 The stability of the different kind of detectors (rotated from + 29/π  to + 4/π ) and 
the total number of corners should be 470.  

Name Rotate 
Angle 

Correct 
Detection 

Missed 
Corners 

False 
Detection 

Multiple 
Detection 

Total 
Error 

Localization 
Error 

Grade 

29/π  136 334 4 1 339 1.89 

13/π  293 117 40 10 227 1.89 

7/π  114 356 4 0 360 1.76 

Beaudet 

4/π  152 318 13 0 331 1.91 

3 

29/π  376 94 10 7 111 1.36 

13/π  399 71 14 7 92 1.22 

7/π  390 80 9 7 96 1.30 

Harris-
Stephens 

4/π  370 100 10 5 115 1.41 

4 

29/π  346 124 77 14 215 1.97 

13/π  342 128 78 24 230 1.56 

7/π  340 130 33 19 182 1.60 

Kitchen-
Rosenfel
d 

4/π  326 144 13 6 163 1.66 

3.5 

29/π  455 15 4 9 28 1.12 

13/π  458 12 2 8 22 1.07 

7/π  463 7 4 7 18 1.10 

Sojka 

4/π  453 17 6 6 29 1.30 

4.5 
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From the Table 2.9, you can see the Sojka detector works best and the Beaudet 
detector is not so stable with the rotated images. 
 
Until now all the necessary compares are shown in the above tables, from the result 
data, we find that the boundary-based corner detectors are a little bit computational 
complex, because they must based on the edge or contour information. And now it is 
not a popular method for corner detection. The direct corner detectors usually have 
faster processing speed than other kind of detectors. So they are very fitful for the 
real-time applications. But most of old direct corner detectors are not accurate 
enough for detecting the corners in real image with a lot of noise. Sojka�s detector is 
an exception of them, it can work very accurately with the real images and the speed 
is just a little bit slower than the older ones.The color distribution based approaches 
work very good in the complex real image, but some of them (Compass) are quite 
slow and is impossible for lots of real time application. The Song-Lyu-Cai�s detector 
is the best one in the color distribution based approaches, it can detect the edges, 
corners and junctions during the same round, and the processing speed is almost the 
same fast as the direct corner detectors. In Table 2.10, the final grades of all the 
corner detectors are given. 
 

Table 2.10 Final Grade of all the corner detectors 

Detector 
Name 

Feature 
Detected 

Accurate Speed Real Time 
Processing 

Grade 

Beaudet Corner Low Very fast Yes 3 
Harris-
Stephens(Pl
essy) 

Corner High Middle Yes 4 

Kitchen-
Rosenfeld 

Corner Low Fast Yes 3 

Deriche-
Giraudon 

Corner Very low   2 

SUSAN Edge & 
Corner 

Low Middle Yes 3 

Song-Lyu-
Cai 

Corner, 
Edge & 
Junction 

Very high Middle Yes 4.5 

Compass Corner, 
Edge, & 
Junction 

Very high Very slow No 3 

Sojka Corner Very high Middle Yes 5 
 
Because our project will be focus on the screen corner detection, the direct corner 
detectors are most fitful for the application, and among them, the Sojka�s approach is 
the best one, which is satisfied with almost all the most important aspects of an idea 
corner detector, so we will probably choose it as the screen corner detector that will 
be used in our future application.  
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Chapter 3 

3 Classification, Regression Models   

In the previous sections, we investigated many papers that use image-processing 
methods to detect corners and edges. But they are not enough for our purpose. In 
corner detection model, we want to select out not only general corners but also want 
to indicate the corners of the special screen, and for edge detection we cannot use it 
directly for screen detection without detailed recognition algorithm, which is also time 
consuming procedure. So another solution to finish this task is based on classification 
approaches. Without detecting the corners, edges, shapes or contours in one image, 
classification approaches are just to train a model with lots of sample images labeled 
with target and after it learn the parameters for the target, it can justify whether a new 
target is the target we are expecting by doing a simple computation. In this case, these 
classification tasks are to classify if a sample image is a screen corner or not. There 
are many classification approaches. Which is better for our tasks? And how they 
work? So in this section, we give our research on several papers focusing on 
classification methods theory, corresponding techniques implementation and some 
practical use.  
 
3.1 K-Nearest Neighbors Classification 
The basic classification method is K-Nearest Neighbors algorithm, the theory of 
which can be easily understood, and its performance is also not bad for some of 
classification cases. But its disadvantage is also obvious that is the low comparison 
speed given a huge training samples data set. Therefore, there are many algorithms to 
accelerate it and some of them success in speeding up it. The sections below show its 
theory and one promising accelerating algorithm.  
 
3.1.1 Theory brief description  
[Web02] 

k-Nearest Neighbors (k-NN) algorithm, is a simple nonparametric technique of 
pattern recognition. For density estimation, its principle is very easy. The key issue is 
just to calculate the radius of the hyper sphere, which include a certain number of 
nearest neighbors inside it [Web02]. Then it can define the density of the point (the 
center of the hyper sphere) and realize classification by classify the current point to 
the class that has most points in this sphere.  
 
However, the exhaustive k-NN search, which requires intensive dissimilarity 
computations, particularly for a large training set, becomes unacceptable. 
Accelerating the k-NN search has been an active research field in the past three 
decades. While non-metric dissimilarity measures have been briefly explained in 
pattern recognition literature, most of the existing fast algorithms for the k-NN search 
are effective only with metric dissimilarity measures. 
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3.1.2 Fast k-Nearest Neighbor Classification Using Cluster-Based Trees  
[Zha04] 

In this paper, the author proposed a new cluster-based tree method to accelerate k-NN 
classification. The more important feature is this algorithm need not to any 
presuppositions about the metric form and properties of a dissimilarity measure, 
which is necessary for most of k-NN accelerating algorithms.  
 
As the author summarized, the algorithms for speeding-up the k-NN search fall into 
two categories: template condensation and template reorganization. Template 
condensation removes redundant patterns in a template set [RIT75] and template 
reorganization restructures templates for efficient search of k nearest neighbors 
[BRO86]. Incorporating the template condensation rules into template reorganization 
leads to an innovative algorithm, the condensation-based tree algorithm by Brown 
[BRO95]. While a number of template reorganization algorithms rely on the essential 
properties of metric dissimilarity measures, the others, which are applicable for non-
metrics, are only effective in low-dimensional feature spaces. The exception is the 
condensation-based tree algorithm, which is applicable for any dissimilarity measure, 
metric, or nonmetric. The condensation-based tree algorithm, however, is not 
sufficiently efficient. The algorithm requires intensive sorting operations in 
intermediate nodes when performing classification and the computation cost of 
sorting becomes substantial although dissimilarity computations can be largely 
pruned. So in this paper, they proposed a new method to accelerate k-NN 
classification with out any presuppositions about the metric form and properties of 
dissimilarity measures.  
 
The cluster-based algorithm consists of two phases: tree generation and classification. 
Different from the existing tree classification methods, this algorithm introduces 
class-conditional clustering and establishes two decision levels for early decision 
making. A decision level in a tree is a level where each node and its sub-nodes have a 
unique class label. Thus, at a decision level, the class of an unseen template can be 
decided using k-NN classification. It is obviously, the bottom level of the tree, B, 
consisting of all templates in the set of training, T, is a decision level. Another 
decision level, the hyper-level, is generated through class-conditional clustering over 
T. The detailed tree generation procedure and classification procedure can be found 
[Zha04].  
 
They tested their approach on NIST database and MNIST database respectively, the 
latter one is more difficult to recognize than the former one. The cluster tree structure 
after training was 4-level, 28,252,1564,53994 for NIST test and 29,337,2888,60000 
for MNIST test. The results they obtained are quite well. Comparing to condense tree 
algorithm (Condense: 400), their approach performed much faster and executed much 
less computation under the same accuracy condition. Below are two tables to indicate 
their performance.  

Table 3.1 Cluster tree and condensation tree (Condense: 400) performance on NIST 

Acc=99.03% Acc=99.17% Acc=99.24% Acc=99.28%  
Comp. Time Comp. Time Comp. Time Comp. Time 

Cluster 992 0.447 1394 0.725 1737 1.080 2079 1.511 
Condense 1316 1.782 1555 2.104 1839 2.492 2178 2.960 
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Table 3.2 Cluster tree and condensation tree (Condense: 400) performance on MNIST 

Acc=99.03% Acc=99.17% Acc=99.24% Acc=99.28%  
Comp. Time Comp. Time Comp. Time Comp. Time 

Cluster 1115 0.506 1919 1.066 2329 1.484 3840 4.010 
Condense 1580 1.998 2675 3.415 3509 4.524 4052 5.230 
 
 
3.1.2.1 Comments 

We can draw a conclusion from the extensive experiments that the cluster tree method 
is a very good algorithm to accelerate k-NN classification. Its mechanism of early 
decision making and minimal side-operations for choosing searching paths largely 
contribute to the efficiency of classification through a cluster tree. Moreover, it can be 
easily tuned to fit any trade off between accuracy and speed by changing the value of 
ς utilized in the algorithm. The bigger ς  is the higher accuracy but low recognition 
speed.  
 
In addition, although the cluster tree generation is time consuming, the accuracy is 
comparable with SVM. In the test on MNIST database, cluster algorithm�s accuracy is 
around 99%, the same with SVM 99%. The speed of classification is also very fast, 
and only uses 1.179-millisecond per sample 16.5 times faster than the exhaustive 
search, which reached a real-time application requirement.  
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3.2 Support Vector Machine 
Though the last algorithm about KNN reaches very high classification accuracy and a 
high speed, for most of classification tasks people more likely choose the popular 
model, SVM, because of its high training speed and classification rates. Since the 
theory of SVM is known for every people, we give a brief overview for its theory part 
and give more papers about its practical use. 
 
3.2.1 SVM Theoretical Overview  
[Vap95][Cor95] 

If use a brief sentence to describe SVM, it is that given a set of feature vectors which 
belong to either of two classes, a SVM finds the hyperplane leaving the largest 
possible fraction of points of the same class on the same side, while maximizing the 
distance of either class from the hyperplane. This hyperplane is called Optimal 
Separating Hyperplane (OSH), which is minimizes the risk of misclassifying not only 
the examples in the training set but also the examples of the test set. There are several 
cases in SVM, they are linearly separable case, linearly non-separable case, and non-
linearly case.  
 
In linearly separable case, assume, there is a set of training samples they 
are lxxx ,,, 21 K , d

i ℜ∈x , and the target values are lyyy ,,, 21 K , { }1,1 −∈iy , which 
indicate the class of ix . Then if hyperplane b+wx can separate these sample points, 
then we can express it as: 
 

1)( ≥+ by ii wx , { }li ,,1K∈∀                                                           (3.1) 
 
According to statistical theory, OSH should not only be a separable hyperplane, but 

also maximize the margin. So the problem is to minimize w  in 
w

w 2),( =bd  with 

the subject to the constrain of Eq. (3.1). Based on Lagrange multipliers method, the 

problem transform to minimize: ∑∑ ⋅−
ji

jijiji
i

i yy
,2

1 xxααα , with subject to 

constrain, 0≥iα and ∑ =
i

ii y 0α , { }li ,,1K∈∀ . Every Lagrange multiplier is 

associated with one sample in the training set. And those samples whose 0≥iα , are 
called support vectors. The final classification function we obtained is: 
 

)( *xf = )sgn( * by
N

i
iii +⋅∑ xxα = )sgn( * b+wx ,                              (3.2) 

 
where N is the number of support vectors.  
 
For the linearly non-separable case, we cannot use the optimization method and SVM 
introduced an error term and the problem turns to minimize: )(2 ∑+

i
iC ξw . In this 

case, support vectors are the points on the hyperplane, and the samples were classified 
incorrectly.  
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Another case in SVM is that the problem is non-linearly case, to deal with this, SVM 
utilize the kernel function to solve the transform from non-linear to linear. By 
introducing a kernel function, the new classification function change to: 
 

)( *xf = ))()(sgn(
1

* by
N

i
iii +⋅∑

=

xx φφα = )),(sgn(
1

* bKy
N

i
iii +∑

=

xxα   (3.3) 

 
In the SVM, kernel function cannot be used arbitrarily. The kernel function must be a 
function satisfying Mercer�s condition, such functions as, polynomial function 

pK )1(),( += xyyx , Gaussian function 
22 2/||)( σyxyx, −−= eK , and etc. 

 
 
3.2.2 Support Vector Machines for 3D object Recognition  
[Pon98] 

The aim of this paper is to introduce the theory of SVM and illustrate the potential of 
SVMs on a computer vision problem, the recognition of 3D objects from single 
images.  
 
In this paper, the authors implemented SVM as a classifier and test it on the COIL 
(Columbia Object Image Library database) consisting of 7,200 images of 100 objects. 
Half of the images were used as training examples, the remaining half as test images. 
They discarded color information and tested the method on the remaining images 
corrupted by synthetically generated noise, bias, and occlusions. The remarkable 
recognition rates achieved in the performed experiments indicate that SVMs are well 
suited for aspect-based recognition. Comparisons with other pattern recognition 
methods, like perceptions, show that the proposed method is far more robust in the 
presence of noise.  
 
In their recognition system, they did some pre-processing to the images like reducing 
the resolution of the images from 128x128 to 32x32 and change color image to gray 
level by function, E= 0.31R + 0.59G + 0.10B. After that by using 36 images for each 
of the 32 objects and the test sets of the remaining 36 images for each object, they got 
the results below: 
 
For plain images they got average error rates (A.E.R) as: 0.03% 
For noise-corrupted images they got A.E.R as: )100%(6.1),25%(3.0 ±± 2 
For shifted images they got A.E.R as: 0.6% (3 pixels), 2.0% (5 pixels) 
For shifted and noise-corrupted images, A.E.R are: )100%(8.1),25%(6.0 ±±  
For occlusions test, they did two series of experiments. In the first series they 
randomly selected a subwindow (k by k) in the test images and assigned a random 
value between zero and 255 to the pixels inside the subwindow. In the second series, 
they randomly selected n columns and m rows in the rescaled images and assigned a 
random value to the corresponding pixels. (See Fig. 3.1) 
 

                                                 
2 The value in the brackets is a criterion to indicate noise level. 
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Figure 3.1 Occluded objects correctly classified by the system 

The A.E.R of the first test of occlusions is: 0.7% (k=4), 2,0% (k=6) 
The A.E.R of the second test of occlusions is: 2.1% (n=1,m=1), 6.1%(n=2,m=2) 
 
In these experiments, by inspection of the obtained results, they mentioned that most 
of the errors were due the three chewing gum packets that become practically 
indistinguishable as the noise increases. After leaving out two of them, the result is 
much better. About detailed experiments data, you can refer to the original paper. 
In addition, the authors also compare SVM with Single Perceptrons method (SP) and 
Average Perceptrons method (AP), and got the result that for the case if the noise is 
very big, then the SVM accuracy is much higher than them.  
I.e. noise= 50± , A.E.R: SP=2.8%, AP=1.7%, SVM=0.0% 
      noise= 250± , A.E.R: SP=29.3%, AP=20.2%, SVM=0.0% 
 
3.2.2.1 Comments 

From this paper, we got known that SVM perform very well on 3D objects 
recognition and by the experiments result it is very flexible and tolerant for some 
image transformation, such as, noise, shift and occlusion. The most important result is 
the occlusion case, and it shows that SVM even works with lack of content, which tell 
us we can use SVM to classify content unstable objects, such as screen corners. In 
addition, the author compared SVM to perceptron methods, and proofed the former is 
more robust.  
 
 
3.2.3 Visual Object Recognition With Supervised Learning  
[Hei03] 

This paper gives a component-based approach to visual object recognition rooted in 
supervised learning, which allows for a vision system that is more robust against 
changes in an object�s pose or illumination. The author mentioned that generally 
people approach object categorization by representing all the search window�s 
contents by one feature vector that is fed to a single classifier. This global approach 
worked well for detecting objects under fixed viewing conditions. However, problems 
occur when the objects� viewpoint and pose vary especially when the training set 
doesn�t cover all viewing variations in the test set. For example, a face detection 
system that is trained on frontal, upright faces was tested on small-rotated faces and 
got a worse result. To overcome this problem, they developed a component-based 
approach that breaks the object into a set of components that are interconnected by a 
flexible geometrical model.  
 
They developed a two-level classification system (See Fig.3.2) for face detection that 
implies geometrical relations between components.  On the first level, face 
components are detected. On the second level, the system combine all components� 
location into one feature vector and send it to a classifier trained by geometrical 
model of a face and check if it is correct one. 
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Figure 3.2 System overview of the component-based detection system.  

 
For the second level, it is not very difficult, just realized by one linear SVM. But in 
the first level, there is one issue is not easy that is instead of manually choosing the 
components, it would make more sense to choose automatically based on their 
discriminative power and robustness against pose and illumination changes. In this 
paper, the author raised an algorithm to do that. The algorithm started with a small, 
rectangular component located around a pre-selected point on the face (center of the 
left eye, for example). The algorithm extracted the component from all face images to 
build a training set of positive examples. They also generated a training set of non-
face patterns that had the same rectangular shape as the face component. After 
training an SVM on the component data, they determined the SVM�s performance 

based on a rough estimate
~
L of given by 2

2~ 1
M
R

l
L = , which is a quantity that indicates 

the expected error of the SVM. After determining this 
~
L , they enlarged the 

component by expanding the rectangle into one of the four directions. Again, they 

generated training data, trained an SVM, and determined 
~
L . They did this for 

expansions in all four directions and kept the expansion that decreased the most. 
Continued this process until the expansions in all four directions led to an increase of 
~
L . Finally, they got 14 components for human face.  
 
3.2.3.1 Comments 

Comparing to a global classifier trained on the whole face pattern, the component-
based system got a much better result. (See Fig.3.3) 
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Figure 3.3 Characteristic curves for a linear whole face classifier and a component classifier 

consisting of 14 linear component classifiers and a linear combination classifier. 

 
The important hint we got from this paper is that perhaps we should not fix an object 
into one feature vector. By decomposing it into several feature components, may be 
we can get much better classification rates.  
 
 
3.2.4 Feature-Based Shape Recognition by Support Vector Machine  
[Ard00] 

A model identification 
technique for the objects in a 
gray level image is proposed, 
based on the extraction of a 
compact shape feature in 
terms of the statistical 
variance pattern of the 
objects� surface. A shape 
recognition system has been 
developed, that detects 
automatically image ROIs 
(region-of-interesting) 
containing single objects, and 
classifies them as belonging 
to a particular class of shapes, 
which are cube, cylinder, 
pyramid, cone, ellipsoid, and 
box. Fig.3.4 is the result of 
this system 
 

 
Figure 3.4 Detection result of this system
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The two important information we got from this paper are, the first, they use the eigen 
values of the covariance matrix computed from the pixel rows of a single ROI, and 
arranged these quantities in a vector, then classified using Support Vector Machines 
(SVMs). The selected feature allows them to recognize shapes in a robust fashion, 
despite rotations or scaling, and, to some extent, independently from the light 
conditions. The second thing is, that they used two-level classification strategy in their 
system. Two groups of SVMs were trained and separately for one-versus-others 
classification phase and pair-wise classification phase. They tested their classification 
strategy and got some interesting results.  
 
Below is a brief description to two important phases in their system: 
 
• Eignenvlaues as Feature Vectors: In their approach, the image is automatically 

scanned to locate ROIs containing single objects. The objects� shape is described 
in terms of the eigenvalues of the covariance matrix computed from the pixel rows 
of the ROI by KL transform [Gon87][Pen91][Tai98]: the eigenvalues are arranged 
as a vector, λ. They analyzed the histogram of the components of λ computed from 
several images both synthetic and real, depicting single shapes under varying 
attitudes and lighting. This histogram performs as an "almost invariant" under 
varying illuminant conditions and attitude of the object. The histogram exhibits 
some dominant modes, whose relative position and amplitude depend on the 
shape observed. The amplitude and position of these histogram modes remain 
almost unchanged under rotation, translation, and scaling of the object. In 
addition, after experiments, the light direction affects in a uniform manner all the 
components of λ. So they have experimental evidence that in their setup varying l 
doesn�t affect the histogram too much. The almost invariant behavior of the λ 
vector implies that similar shapes tend to form clusters in the feature space.  

 
• 2-level classification procedure: Like all other object recognition algorithm, 

before the classification, their system uses a search algorithm to realize 
localization. The search algorithm they implemented is based on a two-pass 
strategy. The first step performs a rough location of the ROIs for the horizontal 
and vertical displacement. The second step defines the windows� dimensions for 
all the selected positions. The principle of this search is based on the 
maximization of correlation between the actual λ vector and some sample vectors 
from the different shape classes, we don�t describe more here.  

 
After searching out the ROIs, the classification phase comes. The SVM in its 
original formulation is designed for two-class discrimination, so they used a 
particular training strategy, in order to cope with the multi-class task. Two 
different kinds of SVMs have been trained on six shape classes: cube, cylinder, 
pyramid, cone, ellipsoid, and box. First, six SVMs have been trained in a one-
versus-others fashion, each of them being able to discriminate between a 
particular class and all other objects. Besides, a second pool of 15 SVMs have 
been trained using a pair-wise strategy: each SVM is trained to discriminate 
between a single pair of the desired classes, so for K classes it need K(K-1)/2 
different machines.  
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3.2.4.1 Comments 

By their feature vector 
extraction method and 2-level 
classification strategy, they 
got a not bad result. But the 
interesting thing is that the 2-
level classification strategy 
did not help a lot to their 
system. As they imagined, if 
a one-versus-others training 
leaves some uncertainty 
regions in the feature spaces 
where they are not able to 
decide correctly to which 
class belongs the actual 
sample, then to provide a 
refinement of the boundary 
locations between multiple 
classes is the use of a pair-
wise learning strategy. But 
their result shows pair-wise clas
was wrong due to the closeness
us that pair-wise strategy for m
others strategy in some case. So
with multi-classification problem
 
Another very useful conclusion 
insensible to the shape displac
which indicates it is a good featu
when we are facing feature prob

 
Figure 3.5 Shape samples (left), relative vector λ histogram
(right) 
sification only refined one of test cases. In addition, it 
 between the two shape classes. This conclusion told 
ulti-classification does not prior to the one-versus-

 we should choose carefully from them when we deal 
.  

of their paper is the KLT eigenvalues feature vector is 
ement and transforms a feature in a compact way, 
re extraction method and give us another good choice 
lems. (See Fig.3.5)  
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3.3 Relevance Vector Machine  
SVM is very popular for classification tasks, there are huge existing projects using 
this model. But a disadvantage of SVM is that it is a hard classification method, 
which cannot supply a probability output for this classification result. For some cases, 
maybe it is not important, but for some projects the probability value for a classified 
target will be very helpful information. So there are some papers add some calculation 
steps into SVM to get a score for the classification, but they are not based real 
Bayesian theory. To solve this problem, Tipping give us an alternative model to SVM, 
which is called relevance vector machine. Because RVM is a new model, there are 
few papers to talk about its practical use, so we investigate more papers on its theory. 
 
3.3.1 Sparse Bayesian Learning and the Relevance Vector Machine   
[Tip01] 

3.3.1.1 What is RVM? 

Relevance Vector Machine, RVM for abbreviation, is a new classification method 
based on Bayesian framework. The model it utilizing is identical functional form to 
the popular and state-of-the-art �SVM� discussed in above sections. The differences 
are that by exploiting a probabilistic Bayesian learning framework, the author derive 
accurate prediction models which typically utilize dramatically fewer basis functions 
than a comparable SVM while offering a number of additional advantages, which 
include the benefits of probabilistic predictions, automatic estimation of parameters, 
and the facility to utilize arbitrary basis functions, which are not necessary to be 
�Mercer� kernels.  
 
In supervised learning we are given a set of examples of input vectors N

1nn }{ =x  along 
with corresponding targets N

nnt 1}{ = , the latter of which might be real values (in 
regression) or class labels (classification). From this �training� set we wish to learn a 
model of the dependency of the targets on the inputs with the objective of making 
accurate predictions of t for previously unseen values of x.  
 
Typically, we base our predictions upon some function y(x) defined over the input 
space, and �learning� is the process of inferring this function. The popular y(x) is that 
of the form: 

∑
=

=φ=
M

i
iiwy

1

T)();( φ(x)wxwx ,                                                       (3.4) 

Where the output is a linearly weighted sum of M, generally non-linear and fixed, 
basis functions ( ) ( )T

21 )(),...,(),( xxxx Mφφφ=φ . The objective is to estimate good 
values for parameters T

21 ),...,,( Mwww=w .  
 
Above theory is the same with SVM, but the key feature of RVM is that as well as 
offering good generalization performance, the inferred predictors are exceedingly 
sparse in that they contain relatively few non-zero iw parameters. The majority of 
parameters are automatically set to zero during the learning process, by a Bayesian 
probabilistic framework learning in general models of the form Eq. (3.4). In addition, 
comparing to RVM, SVM has some defects, such as: 
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• Although relatively sparse, SVM make unnecessarily liberal use of basis 
functions. Some form of post-processing is often required to reduce computational 
complexity. 

• SVM predictions are not probabilistic. 
• Have to estimate the error/margin trade-off parameter �C�, which is wasteful both 

of data and computation. 
• The kernel function ),( iK xx  must satisfy Mercer�s condition. 
 
Instead, RVM does not suffer from any of these limitations. The author adopt a fully 
probabilistic framework and introduce a prior over the model weights governed by a 
set of hyperparameters, one associated with each weight, whose most probable values 
are iteratively estimated from the data. Sparsity then is achieved because in practice 
the result shows that the posterior distributions of many of the weights are sharply 
(indeed infinitely) peaked around zero. The author term those training vectors 
associated with the remaining non-zero weights �relevance� vectors. 
 
3.3.1.2 RVM regression model specification 

The author define the standard probabilistic formulation as: 
 

nnn yt ε+= );( wx ,                                                                            (3.5) 
 
Where nε  are independent samples from some noise process, mean-zero Gaussian 
with variance 2σ  . Thus )),(|()|( 2σnnn ytNtp xx =  and the function y is Eq. (3.4). 
He also defined his basis function as: )()( ii K xx,x ≡φ , so he got the likelihood of the 
complete data set as: 
 







 −−= − 2
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2
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σ

πσσ Np ,                          (3.6) 

 
where T

N
T

N wwtt )(,)( 01 LL == wt  and Φ  is the )1( +× NN  matrix with Φ  = 
,)](,),(),([ 21

T
Nxxx φφφ K  wherein T

Nnnnn KKK )],(,),,(),,(,1[)( 21 xxxxxxx K=φ . 
To avoid over-fitting by maximum-likelihood estimation of w and 2σ  from Eq. (3.6), 
the author introduced a set of hyperparameters α , each of elements control a weight 
parameter, and chose a zero-mean Gaussian prior distribution over w: 
 

∏
=

−=
N

i
iwNp

0

1 ),,0|()( αα|w                                                             (3.7) 

 
He also defined the prior distribution for 2σ and α , which are two Gamma 

distribution: ∏
=

=
N

i
i bap

0

),|(Gamma)( αα , and ),|(Gamma)( 2 dcp βσ =− . 

Actually, we want to know the predictive target *t  distribution, given a new test point 

∗x , by Bayes� rules we can write the distribution as following expression: 
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∫= 222
** )|,,(),,|()|( σσσ dddptptp αwtαwαwt ,                       (3.8)  

 
But )|,,( 2 tαw σp cannot be computed so the author depose the posterior as: 
 
                        )|,(),,|()|,,( 222 tααtwtαw σσσ ppp = ,                                     (3.9)         
 
Where, the first term is directly computable by Bayes rules: 
 







 −−−= −−+− )()(

2
1exp)2(),,|( 1T2/12/)1(2 µwΣµwΣαtw Np πσ ,                       (3.10) 

 
Where the posterior covariance and mean are respectively: 
 
 

12 )( −− += AΦΦΣ Tσ ,  tΣΦµ t2−= σ , with ),,,(diag 10 Nααα K=A                   (3.11) 
 
For the second term of Eq.(3.9),  the value have to be learned. Because of 

)()(),|()|,( 222 σσσ pppp ααttα ∝ , the author just maximized the term ),|( 2σαtp  
with respect to 2σ and α  by using type-II maximum likelihood method. The detailed 
hyperparameters optimizing procedure can be found in the original paper. 
 
After the maximization, we can get the final µ  and Σ  and by passing them into 
below function, then given a new datum ∗x , we can get predicative target value and 
noise variance: )( *

T
* xµ φ=y , )()( **

22
* xΣx φφσσ T

MP += , and predictive distribution 
is: ),|()|( 2

**** σytNtp =t . 

 
3.3.1.3 RVM classification 

The sparse Bayesian learning let RVM classification works like regression very much. 
RVM classification follows an essentially identical framework as detailed for 
regression, but the different is there is no �noise� variance here, and likelihood is 
changed to: 
 

∏
=
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n

t
n

t
n

nn yywtP
1

1)}];({1[)};({)|( wxwx σσ , Where }1,0{∈nt                       (3.12) 

 
and )1/(1)( yey −+=σ  is applied by following statistical convention. 
 
But in classification case, weights cannot be computed analytically, so the author used 
an approximation procedure based on Laplace�s method. The detailed procedure can 
be found in the original paper. After the approximation, we can get: 
 

1T )( −+= ABΦΦΣ                                                                         (3.13) 
and      

BtΣΦw T
MP =                                                                                (3.14) 
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Using these two statistics Σ  and MPw , the hyperparameters α  are updated using the 
same expression with regression case. The final MPw  are the parameters we are 
expecting, and in the practice both in regression case and the classification case, most 
of them are zero, so that the sparsity is accomplished.  
 

 
Figure 3.6 SVM (left) and RVM (right) classifiers on 100 examples from Ripley�s Gaussian-

mixture data set. The decision boundary is shown dashed, and support/relevance vectors are 
shown. 

 
3.3.1.4 Comments 

In this paper, the author compared his RVM with the popular SVM, and we show two 
of the tables here. They show respectively the accuracy and �important� vectors 
number in regression test and classification test. 
 

Table 3.3 Comparison table for regression 

   SVM          RVM SVM          RVM 
Data Set Num Dim. Errors Number of vectors 
Sinc (Gaussian noise) 100 1 0.378 0.326 45.2 6.7 
Sinc (Uniform noise) 100 1 0.215 0.187 44.3 7.0 
Friedman #2 240 4 4140 3505 110.3 6.9 
Friedman #3 240 4 0.0202 0.0164 106.5 11.5 
Boston Housing 481 13 8.04 7.46 142.8 39.0 
Normalized Mean   1.00 0.86 1.00 0.15 
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Table 3.4 Comparison table for classification 

   SVM RVM SVM RVM 
Data Set Num Dim Errors (%) Number of vectors 
Pima Diabetes 200 8 20.1 19.6 109 4 
U.S.P.S. 7291 256 4.4 5.1 2540 316 
Banana 400 2 10.9 10.8 135.2 11.4 
Breast Cancer 200 9 26.9 29.9 116.7 6.3 
Titanic 150 3 22.1 23.0 93.7 65.3 
Waveform 400 21 10.3 10.9 146.4 14.6 
German 700 20 22.6 22.2 411.2 12.5 
Image 1300 18 3.0 3.9 166.6 34.6 
Normalized Mean   1.00 1.08 1.00 0.17 
 
From the above tables, we can see that RVM�s accuracy keep the same level with 
SVM and give more advantages, such as fewer basis functions, probabilistic output, 
and etc. But the disadvantage of RVM is obvious as well, that is it need much longer 
time on learning then SVM, in this time, SVM is extremely high speed. But the author 
gives us a faster algorithm in the next paper.  
 
 
3.3.2 Fast Marginal Likelihood Maximization for Sparse Bayesian Models  
[TipNEW] 

In the previous papers, we introduce the sparse Bayesian modeling approach, which 
benefits a number of advantages comparing to SVM. But the defect of RVM is that its 
training time is very long. In this paper, Tipping gives us a new algorithm, which 
exploits recently elucidated properties of marginal likelihood function to enable 
maximization via a principled and efficient sequential addition and deletion of 
candidate basis functions. 
 
From the previous RVM introduction paper [Tip01], we have known the key step for 
RVM is to use type-II maximum likelihood procedure to estimate MPα . That is, sparse 
Bayesian learning is formulated as the (local) maximization with respect to α of the 
marginal likelihood, or equivalently, its logarithm )(αl : 
 

]||log2log[
2
1)|(),|(log),|(log)( 1T2 tCtCwαwwtαtα −∞

∞−
++−=== ∫ πσσ Ndpppl

With 
T1ΦΦAIC −+= σ                                                                           (3.15) 

 
In this paper, the author raises a new algorithm for maximization of this marginal 
likelihood, which is dependent on its properties. The author figures out some key 
properties in this paper, which can increase the effectiveness. 
 
These two properties are denoted as is  and iq which definition can be found in this 
paper. The important thing is through analysis of reformulated formula )(αl , we will 
get following conclusion that )(αl  has a unique maximum with respect to iα : 
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Another two important rules with respect to these two quantities are: 
• If iφ  is �in the model� (i.e. ∞<iα ) yet ii sq ≤2 , then iφ may be deleted (i.e. iα set 

to ∞ ), 
• If iφ  is excluded from the model ( ∞=iα ) and ii sq >2 , iφ , may be added (i.e. iα  

is set to some optimal finite value). 
 
In both these cases, the algorithm can make discrete changes to the model structure 
while at the same time increasing the marginal likelihood objective function. 
 
The proposed marginal likelihood maximization algorithm is as follows: 

1. If regression initialize 2σ to some sensible value (e.g. var[t] x 0.1). 

2. Initialize with a single basis vector iφ , setting, 
222T

2

/ σφφ
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t
. All 

other mα are notionally set to infinity. 
3. Explicitly compute ∑  and µ  (which are scalars initially), along with initial 

values of ms  and mq  for all M bases mφ . 
4. Select a candidate basis vector iφ from the set of all M. 
5. Compute iii sq −≅ 2θ . 

If 0>iθ and ∞<iα (i.e. iφ  is in the model), re-estimate iα . 
If 0>iθ and ∞=iα , add iφ to the model with updated iα . 
If 0≤iθ and ∞<iα , then delete iφ  from the model and set ∞=iα . 

6. If regression and estimating the noise level, update 2σ . 
7. Recompute/update∑ , µ , and all ms and mq . 
8. If converged terminate, otherwise go to 4. 

 
3.3.2.1 Comments 

 

Com  

The author compares this algorithm in this 
paper with the old RVM and one of 
implementation of RVM called lightSVM . (See 
Table 3.5 and Fig.3.7): 
 
From these figures, we can get that the new 
RVM, is highly effectively. Though it still 
much slower than SVM but it offers a very 
clear speed advantage over the originally 
proposed approach. Another advantage it 
offers is that it use less basic functions than old 
RVM, so together with a number of 
Figure 3.7: Classification 
parison Between SVM, old RVM

and new RVM
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advantageous features when compared with SVM in previous papers, RVM now 
shows more powerful. 
 

Table 3.5 Comparison between old RVM, new RVM and SVM (samples num N=1000) 

 Regression Classification 
Old RVM 4 mins 17 secs 4 mins 58 secs 
New RVM 14.42 secs 12.84 secs 

lightSVM  1.03 secs 0.38 secs 
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3.4 Markov Models and Hidden Markov Models 
If we talk about objects recognition, the model we choose maybe one of them 
mentioned above. But if we talk about speech recognition, gesture recognition, 
especially in face recognition, the topic we cannot avoid is HMM, which is a very 
powerful mathematical model and play a very important role in many areas. So we 
investigated some papers talking about this technology, which might be useful for our 
later project. In this section, we chose some papers to describe briefly to its theory and 
give its practical use in face recognition. And for its use in gesture recognition, we 
give more papers in the next chapter. 
 
3.4.1 MM and HMM Theory Overview  
[Lus95] 

In this paper, the author used one very simple case to explain Markov model and 
Hidden Markov Models. The example he gave is the weather, which also is taken as 
an example by other people.  
 
For Markov model, it can be easy to understand that the key is to use Markov 
assumption that assume )|(P),,,|(P 1121 −−− ≈ nnnnn wwwwww K , which simplified the 
calculation of the probability based on a transition probability matrix. In weather case, 
it is to say that we can expect tomorrow weather just based on of today instead of 
other history days.  
 
As to hidden Markov model, the case is more complicated. In this model, the idea is 
that we cannot know the history states when we want to make a predication, the only 
information we got are some observations that are related somehow to the states. So 
we call the states are hidden behind some observation. In weather case, the author 
supposed that someone was locked in one room and don�t know the weather outside. 
If that person wants to predict the weather, the only piece of evidence he have is 
whether the person who comes into the room carrying his daily meal is carrying an 
umbrella or not. So in this case, the observation is the appearance of the umbrella and 
the states still are the weather condition hidden behind.  
 
The more real instance he gave is about speech recognition.  
In speech recognition, the basic idea is to find the most likely string of words given 
some acoustic input, or:  
 

)|(Pmaxarg ywLw∈                                                                         (3.17)  
 

Where w is a string of words, L is the language we are interested in, and y is the set of 
acoustic vectors that you've gotten from your end processor. To compare this to the 
weather example, the acoustics are observations, similar to the umbrella observations, 
and the words are similar to the weather on successive days. Remember that the basic 
equation of speech recognition is Bayes' Rule: 
 

)(P
)(P)|(Pmaxarg)|(Pmaxarg

y
wwyyw LwLw ∈∈ =                              (3.18) 
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For a single speech input (e.g. one sentence), the acoustics (y) will be constant, so will 
P(y), therefore we only need to find:  
 

)(P)|(Pmaxarg wwyLw∈                                                                 (3.19)  
 
The first part of this expression is called the model likelihood, and the second part is a 
prior probability of the word string. Then the author gave a simple word �of� 
pronunciation example: 

 

 
Figure 3.8 Word �of� model 

 
),,,|(P),,,|(P)|(P EndvahStartyEndvaxStartywy i +=  

)|(P)|(P)|(P)|(P)|(P)|(P)|(P)|(P)|(P 1010 cdcdadcdcbabof qyqqqyqqqyqqqyqqwy +=  
 
The individual )|(P ii qy  are given by a Gaussian or multi-layer-perceptron likelihood 
estimator. The transitions )|(P ji qq  depend on the pronunciations of words. The 
author made a simplifying assumption here that for the word �of� he only have two 
acoustic vectors, y0 and y1. 
 
 
3.4.2 Hidden Markov Models Structure  
[Nef98] 

HMM consist of two interrelated processes: (1) an underlying, unobservable Markov 
chain with a finite number of states, a state transition probability matrix and an initial 
state probability distribution and (2) a set of probability density functions associated 
with each state. The elements of a HMM are: 
 

1. N, the number of states in the model. If S is the set of states, 
then },,,{ 21 NSSSS K= . The state of the model at time t is given by Sqt ∈ , 

Tt ≤≤1 , where T is the length of the observation sequence (number of 
frames). 

2. M, the number of different observation symbols. If V is the set of all possible 
observation symbols (also called the codebook of the model), then 

},,,{ 21 MvvvV K= . 
3. A, the state transition probability matrix, i.e. A={ ija }where 
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NjiSqSqa itjtij ≤≤=== − ,1]|[P 1  
with the constraint, 

10 , ≤≤ jia , and ∑
=

=
N

j
jia

1
, 1 , Ni ≤≤1  

4. B, the observation symbol probability matrix, i.e. B={ )(kb j }, where 
]|P[)( jtkj Sqvkb === tO , Ni ≤≤1 , Nj ≤≤1  

and tO is the observation symbol at time t. 
5. Π , the initial state distribution, i.e. }{ iπ=Π where: ]P[ i1 Sqi ==π , 

Ni ≤≤1  
 
Using a shorthand notation, a HMM is defined as the triplet )(λ ΠB,A,= . 
 
 
3.4.3 Hidden Markov Models for Face Recognition   
[Nef98] 

The author made use of HMM to recognize face, which is ready proved the best 
method to go in face recognition. In this paper and the paper following, we can get a 
brief concept about how to use HMM to detect faces and recognize them.  
 
The author constructed a 5-states HMM in his paper, which is based on the significant 
facial regions hair, forehead, eyes, nose and mouth. Each of these facial regions is 
assigned to a state in a left to right 1D continuous HMM. The state structure of the 
face model and the non-zero transition probabilities ija are shown below. 

 
Figure 3.9: Left to right HMM for face recognition 

 
During the process of training the face models, a face database was used. Each 
individual in the database is represented by a HMM face model. A set of five images 
representing different instances of the same face is selected to train each HMM. 
 
First, the HMM )(λ ΠB,A,= is initialized. The training data is uniformly segmented 
from top to bottom in N=5 states and the observation vectors associated with each 
state are used to obtain initial estimates of the observation probability matrix B. The 
initial values for A and Π are set given the left to right structure of the face model.  
 
In the next steps the model parameters are re-estimated using the EM procedure to 
maximize λ)|P(O . The iterations stop, after model convergence is achieved, i.e. the 
difference between model probabilities at consecutive iterations (k and k+1) is smaller 
than a threshold C. 
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One thing should mention is that the author using 2D-DCT coefficients as observation 
vector instead of the pixel values that were used as observation vector by pervious 
algorithms. The advantages of DCT coefficient are (1) it will be not sensitive to the 
noise in the image and (2) it will reduce greatly the dimension of observation vectors. 
In this case, the author used 13x3 frequencies elements as observation vector 
elements, so that the dimension of the vector is 23 times smaller than before, which 
reduce much on computation time.  
 
3.4.3.1 Comments 

After experiment, this HMM face recognition method got much higher performance 
than eigenface method. By testing on the same database, HMM achieved a 
recognition rate of 84% that is 10 percent higher than eigenface method. Moreover, 
the processing time required to compute the likelihood of one test image given a face 
model is decreased from 25 seconds (a previous HMM method), to 2.5 seconds in the 
present work.  
 
This HMM method is very simple to understand, because it only used 1 dimensional 
HMM structure. In order to get much higher accuracy rate in recognition, the author 
invented another 2 dimensional HMM structure that resulted in the recognition rate to 
98%.  
 
 
3.4.4 Face Recognition Using An Embedded HMM   
[Nef99] 

Following the last paper, the author raised another topology for HMM, an embedded 
HMM, which change 1 dimensional HMM to 2 dimensional HMM.  
 
The author think like this way. A one-
dimensional HMM maybe generalized, to give it 
the appearance of a two-dimensional structure, 
by allowing each state in a one-dimensional 
HMM to be an HMM. In this way, the HMM 
consists of a set of super states, along with a set 
of embedded states. The super states may then 
be used to model two-dimensional data along 
one direction, with the embedded HMM 
modeling the data along the other direction. This 
model differs from a true two-dimensional 
HMM since transitions between the states in 
different super states are not allowed. Therefore, 
this is referred to as an embedded HMM. The 
elements of an embedded HMM were given in 
the original paper and I don�t show it again. The 
structure of embedded HMM can be seen from 
the figure.  
 

M 
Figure 3.10: Embedded HM
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3.4.4.1 Comments 

After testing, the use of an embedded HMM model for the human face is justified by 
the structure of the face, and is invariant for a large range of orientations, gestures, 
and face appearances. The use of an embedded HMM increases by over 10% the 
recognition rate of the one-dimensional HMM and the classical eigenfaces method. 
The accuracy of the system presented in this paper is increased to 98%. That is why 
HMM is accepted as the most effective model for face recognition. 
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3.5 Classification Models Comparison 
There are many models for classification, but the popular models are what we 
mentioned in this chapter, KNN, SVM, HMM and the new method, RVM. Each of 
them has their advantages and corresponding problems to solve, and also has their 
disadvantages. For example, KNN is a method on basis of simple theory and can be 
implemented easily. For simple classification and small size of data set, it can reach a 
high classification rates with a high speed. But to deal with more complicated 
problems, most of people seek help for SVM and RVM, especially for some object or 
shape recognition problems. Between them RVM gives more advantages like 
probability output, less and unconditional kernels and etc, and SVM gives much faster 
training speed. HMM is a little bit far from other models, it describe the states 
transition status, but it has been successfully used in speech recognition, face 
recognition, and gesture recognition, and gives a very high recognition rates when 
dealing with these tasks.  
 
To give a brief overview for all the theories in this chapter, we summarize a table 
below that shows their features, so that you can get a rough comparison between 
them. For detailed comparison of some models like SVM and RVM, you can refer the 
�relevance vector machine� section, where we gave more accurate tests result. 
 
Lets do some definition to the features of different models in the following table 
 
• KN: Kernel Model. Which model it is. 
• MN: Mature or New. If the model is mature, well wide used technique or it is a 

new one. 
• SP:  Suitable Problems. To describe which kinds of problems are suitable for this 

model to solve. 
• FL: Flexibility. If this model could be used in other classification problems. 
• CO: Complexity. If this model is easy to implement.  
• LS: Learning Speed. Need training procedure or not and how fast?  
• LSI: Learning Speed Improved. The training speed of improved algorithm 
• CS: Classification Speed. How fast to classify one sample? 
• CSI: Classification Speed Improved. How fast to classify one sample after 

Improvement? 
• CR: Classification Rates in its problem. What�s the performance of this model 

used to solve its suitable problems. 
• PO: Probability Output. If the original model performs based on a probability 

framework and will give a probability output. 
• PI: Paper�s Index. Which papers in this chapter are talking about this model?  
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Table 3.6 Classification models comparison (Assume: 2 classes cases) 

KN KNN SVM RVM HMM 
MA Mature Mature New Mature 
SP General 

Classification 
Objects 
Recognition 

Objects 
Recognition 

Face/Gesture/Speech 
Recognition 

FL Flexible Flexible Flexible Flexible 
CO Easy Not Easy Not Easy Not Easy 
LS No Yes/Fast Yes/Slow Yes/Slow 
CS Slow Very Fast Very Fast (1ms)3 Fast (800 ms) 
LSI Slow Very Fast Fast Fast 
CSI 1 ms Very Fast Very Fast (1ms) Fast (800 ms) 
CR High Very High Very High Very High 
PO No No Yes Yes 
PI [WEB02] 

[ZHA04] 
[VAP95]  
[COR95]  
[PON98]  
[HEI03]  
[ZHA04]  

[Tip01]  
[TipNEW]  

[Lus95]  
[Nef98]  
[Nef99]  

 

                                                 
3 The speed indicated in the brackets is a rough value and comes from the other papers or our test.  



Chapter 4, Objects Tracking and Gesture Recognition - 59 - 

Chapter 4 

4 Objects Tracking and Gesture Recognition 

If UI-Wand can indicate the accurate position on the screen, then the user should 
expect it could control something instead of just pointing somewhere. For this 
purpose, we can easily put many buttons on UI-Wand, but that will be not convenient 
for users. The natural and the simple way to let user control while he or she is 
pointing somewhere, is to use some gestures. Pointing and hold is the simplest 
gesture, like a computer mouse, we can map a �click� function to this gesture. That is 
say to invoke some function, if we realize the user is pointing somewhere and that 
point does not move in last several frames.  
 
This is a gesture which can be used communicate with the target application. But for 
more function invocation of that application, one simple gesture will be not enough. 
We expect to use more complicated gestures to control it. For example, we can make 
a cross to shut down the application, move it right and back to realize �page up�, or 
rotate it to turn up or down the volume. Then the tasks are not easy any more. So in 
this chapter, we investigate many practical papers to explain how did they solve 
gesture recognition in their problems, then we can find the interesting points for our 
project.  
 
4.1 Object tracking methods 
Before the gesture recognition, the basic information we need to have is the track 
information. Given a specific point or pattern, we need to know the places it passed in 
a sequence of frames. So how to detect that point or pattern and how to track it in the 
following frames are the important techniques in this section. Below are two papers, 
which used SVM or RVM to detect the objects need to track, and even track by using 
these classification methods, which are very interesting and give us many hints. 
 
4.1.1 Support Vector Tracking  
[Avi01] 

In this paper, the author introduces a method named Support Vector Tracking, which 
integrates the Support Vector Machine classifier into an optic-flow based tracker. 
Instead of minimizing an intensity difference function between successive frames, 
SVT maximizes the SVM classification score. To account for large motions between 
successive frames he build pyramids from the support vectors and use a coarse-to fine 
approach in the classification stage. The paper introduces the SVM as his classifier 
that we already investigated in the previous section. Here, we just focus on his 
tracking approach.  
 
Tracking algorithms find how does an image region move from one frame to the next. 
This implies the existence of an error function to be minimized, such as the sum of 
squared differences (SSD), between the two image regions. This paradigm makes no 
assumption about the nature of the tracked object. For the interest that people want to 
tracking a particular class of objects, the general method is to use the tracker and the 
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classifier sequentially. The tracker will find where did the object move to and the 
classifier will give it a score. But the problem of it is that the tracker is not guaranteed 
to move to the best location. Shuai�s solution is to try to maximize the classification 
score given by classifier, SVM in this case, take the replace of minimizing the SSD 
error function. 
 
The SVT principles are following alike: 

Kernel-SVM is: ∑
=

+
l

j
jjj bky

1

),( xIα where jx  are the l support vectors, jy  are their 

sign and jα  are their distances from the hyperplane. ),( jk xI , I is the kernel they 
choose, in his case, he chose homogeneous quadratic polynomial given by 

2)(),( j
T

jk xxxx = , and I is the image region to test. 
If let initI  represent some initial guess of the position of the object in a given image, 

finalI can be expressed by using first-order Taylor expansion: 
 

yxinit IIII vu ++=final ,                                                                     (4.1) 
 
where xI , yI are the x and y derivatives of image initI  and u, v are the motion 
parameters. Plugging Eq. (4.1) in kernel-SVM and taking the u and v derivatives and 
rearranging terms then we will get a equation, which resembles the standard optic-
flow equations with the support vectors replacing the role of the second image in the 
equation. This means that all computations are done on a single frame each time and 
not on a pair of successive frames. After a number of iterations, using the derived 
equation, the maximum SVM score can be reached. But the problem is, this approach 
can handle small motions in the image. Larger motions must be handled in a coarse-
to-fine manner, which the author call it Pyramid SVT. 
 
Shai created two pyramids in his algorithm, one is 
created on support vectors, which actually are 
sub-sampled images of learning set, and another 
one is created for the test image with the same 
size as support vectors. In the tracking algorithm, 
he first runs SVT on the top level of the support 
vector pyramid and the top level of the test image 
pyramid. The recovered motion parameters are at 
the position with the best SVM score. This 
position serves as the initial guess for the SVT on 
the next level of the pyramid and so on until the 
motion parameters are recovered. The SVM score 
is the score of the bottom level of the pyramid. 
 
In the experiments phase, he took 10000 images of vehicles and non-vehicles. 
Vehicles include cars, SUVs and trucks in different colours and sizes. The pyramids 
he took are 2 level Gaussian pyramids. By his experiments, SVT give a better result 
(See Fig.4.1) comparing to SSD tracker. The detailed experiments data, you can refer 
his paper. 
 

Figure 4.1 The solid rectangle 
denotes the SVT tracking result, the 
dashed rectangle denotes a simple 

SSD tracker. 
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4.1.1.1 Comments 

Avidan�s paper is very interesting and gives us many hints. For example, instead of 
finding the motion vector from intensities values of image, he calculated the SVM 
score in an area to indicate the place with the highest score as the target place. And 
the pyramids method he used also gives us a hint for the acceleration of track speed.  
 
As the test result show, Avidan�s method gives a very good method both from speed 
and from the positioning accuracy, which can help us to realize screen tracking in UI-
Wand, but for screen tracking, there are some unavoidable problems, such as the 
changeable content of the screen, the rotation of the image, and etc. If we want to use 
similar algorithm, we have to find good solutions for these issues. 
 
 
4.1.2 A Sparse Probabilistic Learning Algorithm for Real-Time Tracking  
[Wil03] 

This paper focus on the tracking issues, the authors raise a new tracker algorithm 
using sparse probabilistic regression by RVMs. Comparing to SVT [Avi01], instead 
of constructing a recogniser based on SVM, this paper�s algorithm invents a localizer 
based on RVM regression form that give a fusion between observation (obtained from 
RVM) and Gaussian distributions. This algorithm shows probabilistic inference has 
greatly increased both the stability and the robustness of tracking and the speed is 
rapid for real-time requirement. (During continuous tracking only around 15ms/frame 
of CPU time is required.) Below is brief indication to their algorithm. 
 
As their understanding, the SVT is a procedure that is: Given an object q (sub-image), 
perturbation analysis allows the translation uT , by a vector u, to be found such that 
the value )( quTf  of the classification function is maximized. The perturbed 
classification function is expressed in terms of image gradient as: 
 

)()( quqqu ∇⋅+= fTf                                                                     (4.2) 
 
Using this expression to compute approximately the displacement u that maximized 
the classification function f can save computation by reducing the density of 
tessellation required to achieve a given degree of tracking precision. So in SVT 
algorithm, SVM is looked as a recogniser function f that classify whether this is an 
object or not and give a score as confidence.  
 
But in their approach, instead of training a machine to recognize known objects verses 
non-objects, they trained a machine to estimate the displacement of known objects 
alone, which is a kind of regression estimation. They think this is of primary interest 
for tracking motion. So they construct a model for motion classification, which they 
use several SVMs to implement, but the result is not as good as they expected. But 
after they change them to RVMs, together with Kalman filter, the experiments results 
are got greatly improvement. The motion classification procedure is summarized as 
following: 
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The tracker follows a 2D image region containing an object. Intensity changes within 
this region are assumed to be due to motion only. Therefore, a four-dimensional state 
vector is used describing a Euclidean similarity transformation: 

)2(],,,[ GEsvu ∈θ=X                                                                      (4.3) 

tI , is a vectorized pixel array at time t, which is some unknown function of the 
present state: )( tt H XI = . Inverse the function, we got )(1

tt H IX −= . It should be 

possible to find a regression inferring a state estimate, 
~
X .  

 
They constructed a vector of RVMs required in order to obtain a vector estimate of 
state dimension value as output. Each element has one of the four state space 
dimensions as its dependent variable. They all use the same training set. This means 
that the machine inferring x-translation, say, has been trained on images perturbed in 
the other three dimensions too and is insensitive to these. The regression function 
values of the 4 RVMs will be the displacement value in corresponding state 
dimension. These values are passed to the expression below to get estimated change 
in state, Xδ : 

bAf(I)X +=δ                                                                                   (4.4) 
4ℜ∈b  44xℜ∈A , A and B can be learned by conventional regression. 

 
To secure benefits of temporal 
fusion of data, observations must 
be obtained in a probabilistic 
setting. So the authors use the 
probabilistic result and together 
Kalman filter construct a 
probabilistic state inference. And 
the experiments result (See 
Fig.4.2) shows this combination 
increase the performance greatly.  
       
For the initialisation and recovery, 
this paper did not give some new 
method. They just used SVM as 
object as recogniser.  
 

 
Figure 4.3 The result of this Tracking approach to track a car and its license plate 

Figure 4.2 the performance after using 
Kalman filter 
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4.1.2.1 Comments 

It is a good mechanism to realize tracking (See Fig.4.3), instead of SVM like [Avi01], 
they use RVM regression form to estimate current state change, which give a 
probabilistic value to displacement and fused temporally with motion prediction by 
Kalman filtering. This probabilistic inference has greatly increased both the stability 
and the robustness of tracking. From their experiment, this algorithm speed reached 
the requirement for real-time application. But it seems they did not consider too much 
on initialization and recovery method, which will spend 1 second, which might be a 
lack for their tracking approach.  
 
 
4.1.3 Kalman Algorithm 
[Kal60][Wel01] 

Within the significant toolbox of mathematical tools that can be used for stochastic 
estimation from noisy sensor measurements, one of the most well-known and often-
used tools is what is known as the Kalman filter. The Kalman filter is named after 
Rudolph E. Kalman, who in 1960 published his famous paper [Kal60] describing a 
recursive solution to the discrete-data linear filtering problem. Later on a lot of 
different application using Kalman filter appeared. And there is a very detailed 
explanation about the Kalman algorithm in [Wel01]. Kalman filter is a very popular 
model that can be used to track target and do some parameter estimation. Kalman 
filter also has very convenient form for online real time processing, so it can be used 
as a tracking model in UI-Wand.   
 
4.1.3.1 The Discrete Kalman Filter 

This section describes the filter in its original formulation (Kalman 1960) where the 
measurements occur and the state is estimated at discrete points in time. 
 
4.1.3.2 The Process to be estimated 

The Kalman filter addresses the general problem of trying to estimate the state of a 
discrete-time controlled process that is governed by the linear stochastic difference 
equation 
 

.11 −− ++= kkkk wBuAxx                                                                    (4.5) 
 
with a measurement mz ℜ∈  that is 
 

.kkk vHxz +=                                                                                  (4.6) 
 
The random variables kw  and kv  represent the process and measurement noise 
(respectively). They are assumed to be independent (of each other), white, and with 
normal probability distributions 
 

),,0(~)( QNwp                                                                          (4.7) 
).,0(~)( RNvp                                                                           (4.8)  
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In practice, the process noise covariance and measurement noise covariance matrices 
might change with each time step or measurement, however here we assume they are 
constant.  
The nn ×  matrix A in the difference equation Eq. (4.5) relates the state at the previous 
time step 1−k  to the state at the current step, in the absence of either a driving 
function or process noise. The ln ×  matrix B relates the optional control input lu ℜ∈  
to the state x. The nm ×  matrix H in the measurement equation Eq. (4.6) relates the 
state to the measurement kz . In practice H might change with each time step or 
measurement, but here we assume it is constant. 
 
4.1.3.3 The Computational Origins of the Filter 

We define n
kx ℜ∈−) to be our a priori state estimate at step k given knowledge of the 

process prior to step k, and n
kx ℜ∈)  to be our a posteriori state estimate at step k 

given measurement kz . We can define a priori and a posteriori estimate errors as 
−− −≡ kkk xxe )  and .kkk xxe )−≡   

The a priori estimate error covariance is then 
[ ]T

kkk eeEP −−− = ,                                                                                 (4.9) 
and the a posteriori estimate error covariance is 

[ ]T
kkk eeEP = .                                                                                  (4.10) 

In deriving the equations for the Kalman filter, we begin with the goal of finding an 
equation that computes an a posteriori state estimate kx) as a linear combination of an 
a priori estimate −

kx)  and a weighted difference between an actual measurement 

kz and a measurement prediction as shown below in Eq. (4.11). Some justification for 
Eq. (4.11) is given in �The Probabilistic Origins of the Filter� found below. 
 

)( −− −+= kkkk xHzKxx )))                                                                   (4.11) 
 
The difference )( −− kk xHz )  in Eq. (4.11) is called the measurement innovation, or the 
residual. The residual reflects the discrepancy between the predicted measurement 

−
kxH)  and the actual measurement kz . A residual of zero means that the two are in 

complete agreement. The matrix K in Eq. (4.11) is chosen to be the gain or blending 
factor that minimizes the a posteriori error covariance Eq.(4.11). This minimization 
can be accomplished by first substituting Eq. (4.11) into the above definition for ke , 
substituting that into Eq. (4.10), performing the indicated expectations, taking the 
derivative of the trace of the result with respect to K, setting that result equal to zero, 
and then solving for K. One form of the resulting K that minimizes Eq. (4.10) is given 
by  

.)( 1

RHHP
HPRHHPHPK T

k

T
kT

k
T

kk +
=+= −

−
−−−                                 (4.12) 

Looking at Eq.(4.12) we see that as the measurement error covariance approaches 
zero, the gain K weights the residual more heavily, specifically, 1

0
lim −

→
= HK kRk

. On 

the other hand, as the a priori estimate error covariance −
kP  approaches zero, the gain 
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K weights the residual less heavily, specifically, .0lim
0

=
→− k

P
K

k

 

Another way of thinking about the weighting by K is that as the measurement error 
covariance R approaches zero, the actual measurement kz  is �trusted� more and more, 
while the predicted measurement −

kxH)  is trusted less and less. On the other hand, as 
the a priori estimate error covariance −

kP  approaches zero the actual measurement kz  
is trusted less and less, while the predicted measurement is trusted more and more. 
 
4.1.3.4 The Probabilistic Origins of the Filter 

The justification for Eq. (4.11) is rooted in the probability of the a priori estimate 
−
kx)  conditioned on all prior measurements kz (Bayes�rule). For now let it suffice to 

point out that the Kalman filter maintains the first two moments of the state 
distribution kk xxE )=][   and  .]))([( k

T
kkkk PxxxxE =−− ))  

 
The a posteriori state estimate Eq. (4.11) reflects the mean (the first moment) of the 
state distribution� it is normally distributed if the conditions of Eq.(4.7) and Eq.(4.8) 
are met. The a posteriori estimate error covariance Eq.(4.10) reflects the variance of 
the state distribution (the second non-central moment). In other words 

).(])))(([],[(~)( , kk
T

kkkkkkk PxNxxxxExENzxp ))) =−−  
 
4.1.3.5 The Discrete Kalman Filter Algorithm 

We will begin this section with a broad overview, covering the �high-level� operation 
of one form of the discrete Kalman filter (see the previous footnote). After presenting 
this high-level view, we will narrow the focus to the specific equations and their use 
in this version of the filter.  
The Kalman filter estimates a process by using a form of feedback control: the filter 
estimates the process state at some time and then obtains feedback in the form of 
(noisy) measurements. As such, the equations for the Kalman filter fall into two 
groups: time update equations and measurement update equations. The time update 
equations are responsible for projecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates for the next time step. The 
measurement update equations are responsible for the feedback�i.e. for 
incorporating a new measurement into the a priori estimate to obtain an improved a 
posteriori estimate. The time update equations can also be thought of as predictor 
equations, while the measurement update equations can be thought of as corrector 
equations. Indeed the final estimation algorithm resembles that of a predictor-
corrector algorithm for solving numerical problems as shown below in Fig 4.4. 
 
                                
  
 
 
 

                                    
 
 
 

   Time Update 
  
    � Predict� 

   Measurement Update 
 
            �Correct� 

 
Figure 4.4 The ongoing discrete Kalman filter cycle. The time update projects the
current state estimate ahead in time. The measurement update adjusts the 

projected estimate by an actual measurement at that time.
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The specific equations for the time updates are presented below in Eq. (4.13) and Eq. 
(4.14). 

kkk BuxAx += −
−

1
)                                                                             (4.13) 

QAAPP T
kk += −

−
1                                                                           (4.14) 

 
The specific equations for the measurement updates are presented below in Eq. (4.15) 
Eq. (4.16) and Eq. (4.17). 
 

1)( −−− += RHHPHPK T
k

T
kk                                                           (4.15) 

)( −− −+= kkkkk xHzKxx )))                                                                 (4.16) 
−−= kkk PHKIP )(                                                                           (4.17) 

 
Again notice how the time update equations project the state and covariance estimates 
forward from time step to step, and B are from Eq. (4.5), while is from Eq. (4.7). 
Initial conditions for the filter are discussed in the earlier references. The first task 
during the measurement update is to compute the Kalman gain, kK . Notice that the 
equation given here as Eq. (4.15) is the same as Eq. (4.12). The next step is to actually 
measure the process to obtain kz , and then to generate an a posteriori state estimate 
by incorporating the measurement as in Eq.(4.16). Again Eq.(4.16) is simply 
Eq.(4.11) repeated here for completeness. The final step is to obtain an a posteriori 
error covariance estimate via Eq.(4.17). After each time and measurement update pair, 
the process is repeated with the previous a posteriori estimates used to project or 
predict the new a priori estimates. This recursive nature is one of the very appealing 
features of the Kalman filter. The Kalman filter instead recursively conditions the 
current estimate on all of the past measurements. Fig. 4.5 below offers a complete 
picture of the operation of the filter, combining the high-level diagram of Fig. 4.4 
with the above equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 11 −− kk PandxforestimatesInitial )  
 

 

      Time Update (Predict) 
 
1.Project the state ahead 

kkk BuxAx += −
−

1
))  

2.Project the error covariance
ahead 

QAAPP T
kk += −

−
1  

   Measurement Update (Correct) 
 
1.Compute the Kalman gain 

1)( −−− += RHHPHPK T
k

T
kk  

2.Updata estimate with measurement 
kz  

)( −− −+= kkkkk xHzKxx )))  
3.Update the error convariance 

−== kkk PHKIP )(  
 

Figure 4.5  A complete picture of the operation of the Kalman .lter, combining the 

high-level diagram of Figure 4.4 with the above equations 
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4.1.3.6 Comments 

Kalman filter addresses the general problem of trying to estimate the state of a 
discrete-time controlled process that is governed by a linear stochastic difference 
equation. It also can be used to solve the nonlinear problem using the �Extended 
Kalman Filter�(EKF). The Kalman filter is essentially a set of mathematical equations 
that implement a predictor-corrector type estimator that is optimal in the sense that it 
minimizes the estimated error covariance�when some presumed conditions are met. 
Since the time of its introduction, the Kalman filter has been the subject of extensive 
research and application, particularly in the area of autonomous or assisted 
navigation. This is likely due in large part to advances in digital computing that made 
the use of the filter practical, but also to the relative simplicity and robust nature of 
the filter itself. Rarely do the conditions necessary for optimality actually exist, and 
yet the filter apparently works well for many applications in spite of this situation. It 
has been used extensively for tracking in interactive computer graphics.  
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4.2 Gesture Recognition 
4.2.1 Recognition of human gestures and behavior  
[Psa02] 

In this paper, the authors purpose an improved recognition method for gestures and 
human behavior. They did two kinds of experiments to test their approach. One is for 
human movements in an office and the other is for human gestures made by a people 
sitting in front of single color background. The result of these tests shows that the 
accuracy of the algorithm is improved better than some method before.  
 
The authors firstly summarize several gestures recognition method and mentioned the 
disadvantages in these methods: 
• DTW (Dynamic Time Warping): It is successful in small tasks, but its main 

limitations are that it needs a large number of templates in order to model a range 
of variations and it cannot handle undefined patterns.  

• HMM (Hidden Markov Models): The main disadvantages are that they can be 
used to estimate the probabilities for only one model at a time and they can only 
give an estimate of the final probability for each model. 

• ANN (Artificial Neural Networks): Its problem is the network inability to 
converge when trained with high-dimensional structures.  

• Condensation (Conditional Density Propagation): Its defect is that the model does 
not use any prior knowledge on both state transitions and measurement 
covariance.  

 
Then they introduce a framework to recognize gestures and behaviors based on both 
learning prior and continuous propagation of density models of behavior patterns. 
Prior models are learned from training sequences using HMM and density models are 
augmented by current visual observation.  
 
They described the spatial-temporal trajectory exhibited by a gesture or behavior as a 
first-order Markov process under which salient phases or states of the movement are 
explicitly modeled over time. By their first-order Markov processes, the final issues is 
to calculate the state probability )O|( ttp q  based on Bayes� rule as follows: 
 

)O|()|()|( 1−= ttttttt ppkOp qqoq                                               (4.18) 
 
where )O|( 1−ttp q  is the prior from the accumulated observation history up to time t-
1, )|( ttp qo  is the conditional observation density and tk  is a normalization factor. In 
order to get priors on temporal structures, they use HMM to learn it from training 
examples. By training HMMs on a set of observed trajectories of activities, a priori 
knowledge on both state propagation and conditional observation density can be 
learned by assigning the hidden Markov state transition probabilities 

)|( ijp tt == qq  of a trained model λ = )π( b,A,  to the condensation state 
propagation densities of: 
 

ijtttt aijpp ====− )λ,|()|( 1 qqqq                                            (4.19) 
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And the prior on the observation conditional density )|( ttp qo  is given by the 
Markov observation densities at each hidden state as: 
 

)()λ,|()|( tjtttt bjpp oqoqo ===                                             (4.20) 
 
The Markov observation density at each Markov state )( tjb o is used to provide the 
prior knowledge about the observation covariance. As a result, the process of both 
sampling and propagating condensation states is made not only more focused but also 
robust against observation noise. 
 
Another technique they used in their 
approach is to take current observation 
into account before predication, which 
made recognition based on prior more 
robust. In this step, the kernel issue is 
to calculate the state transition density, 

),|( 1 tttp oqq −  instead of )|( 1−ttp qq , 
which both improves the recognition 
rate and reduces the number of 
samples used for propagation. 
 
 
4.2.1.1 Comments 

In this paper, the authors did not 
mention the speed of their system. 
But comparing the approach with 
condensation algorithm, the accuracy 
of recognition is improved much. 
The recognition rate of the walking 
behavior is increased by 70% and the 
recognition rate of the 
communicative and symbol gestures 
is increased by 40% and 25%, 
respectively. Moreover, they also 
showed that their algorithm only 
needs a small number of samples. 
 
 
 
 
4.2.2 Recognizing temporal trajectori
[Bla98] 

This paper describes an incremental reco
�Condensation� algorithm proposed by 
modeled as temporal trajectories of some
velocity). The condensation algorithm i
models to the input data. Their method
Figure 4.6 The office environment, and 
movement track 
es using the condensation algorithm  

gnition strategy that is an extension of the 
Isard and Blake (ECCV�96). Gestures are 
 estimated parameter over time (in this case 
s used to incrementally match the gesture 
 was demonstrated with an example of an 

Figure 4.7 Behavior likelihood estimated over time. 
Their approach (top), condensation (bottom) 
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augmented office whiteboard in which a user made simple hand gestures to grab 
regions of the board, print them, save them, etc. 
 
4.2.2.1 The model of their 

approach 

Their goal is to take a set of M 
model trajectories 

},,1,{ )( MK=µµm  and 
match them against an input 
trajectory (see Fig.4.8). The 
models are taken to be 
discretely sampled curves with 
a phase parameter 

],0[ maxφφ∈  representing the 
current position in the model. 
The model values at position 
φ  are a vector of N values 

)m,,m( )(
,

)(
1,

)( µ
φ

µ
φ

µ
φ NK=m  where 

the stored discrete curve is 
linearly interpolated at phase 
φ . At time t the input 
trajectory is an observation 
vector ),,( ,Nttt zz K=z .  
 
The parameters they need to 
estimate to match a model to 
the data are: 
• µ , the model number. 
• φ , the position within 

model that aligns the 
model at the time t. 

• α , the parameter to scale 
the model vertically. 

• ρ , the parameter to scale the mo
 
Then they defined a state at time t 
their goal is to find the state ts  tha

data ),,( 1 K−= tttZ zz , and then t

itZ , = ),,,( ,2,1, Kititit zzz −− that is the v
over time. By this definition, they c
probability distribution over the pos
the state )|( ttp sz . They did this fo
of samples, then they normalized
producing weights )(n

tπ : 
Figure 4.8 Their approach idea is to match input 
trajectory with the models 
del horizontally. 

to be a vector of parameters ),,,( ραφµ=ts . So 
t is most likely to have given rise to the observed 

hey defined, ∏ =
= N

i tittt Zpp
1 , )|()|( ssz , where 

ector of observations of a particular trajectory, i, 
an construct a discrete representation of the entire 
sible states. And they computed the probability of 
r S samples and gives them a set },,1,{ )( Snn

t K=s  
 these probabilities so that they sum to one, 
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The condensation algorithm uses the sample states and their weights to predict the 
entire probability distribution at the next time instant. Detailed procedure is in 
[Jep98]. 
 
4.2.2.2 Experiment 

In their experiment, they construct several gesture models attached with nine 
primitive events). To construct models for the gestures, each gesture was performed 
approximately half a dozen times and the trajectories were saved. For a given gesture 
the training trajectories were manually aligned and the mean trajectories were 
computed. A standard deviation from the mean trajectory was also computed for each 
curve. The trajectory models for each gesture are shown in Figure. 
 

 
Figure 4.9 Gesture models. Temporal trajectories of x-velocity and y-velocity 

 
4.2.2.3 Comments 

The approach purposed in this paper, is an extension to the Condensation algorithm 
that performs probabilistic matching of model curves to input curves. This method 
allows the recognition of complex gestures than is possible with the standard 
Condensation algorithm. But the disadvantages are obvious in the approach. The 
speed is significantly slower than real time, which need to do some change in the 
algorithm and the transition probabilities were set by hand, which should be learned 
automatically.  
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4.2.3 An HMM-Based Threshold Model for Gesture Recognition 
[Lee99] 

M.Isard and A.Blake in [Isa96] and [Isa98] used the extension of  �Condensation 
algorithm� to deal with gesture recognition. Later on M.H.Yang and N.Ahuja [Yan99] 
used a method that uses multi-scale motion segmentation to monitor motion over time 
and a Time Delayed Neural Network to match this motion to recognize gestures. But 
the most popular way to realize the gesture recognition is using Hidden Makov 
Model(HMM), a lot of HMM-based model have already made by different people. 
In1999, Hyeon-Kyu Lee and Jin H.Kim presented their HMM-based model [Lee99] 
for gesture recognition. They chose the HMM-based approach because it can be 
applied to analyzing time-series with spatio-temporal visibilities and can handle 
undefined patterns. It also has elegant and efficient algorithms for learning and 
recognition, such as the Baum-Welch algorithm and Viterbi search algorithm. 
 
For correct gesture spotting, the likelihood of a gesture model for a given pattern 
should be distinct enough. But they found a simple threshold for the likelihood often 
does not work. Therefore, they propose a new concept, called threshold model, which 
yields the likelihood value to be used as a threshold. A gesture is recognized only if 
the likelihood of the best gesture model is higher than that of the threshold model. The 
HMM's internal segmentation property implies that each state with its self-transition 

represents a segmental pattern of a 
target gesture and that outgoing 
transitions represent a sequential 
progression of the segments in a 
gesture. With this property, they 
construct an ergodic model with the 
states copied from all gesture models 
in the system and then fully connect 
the states (Fig. 4.10). 
 

In this m
Output o
as in the

as aij =

js  and N
states). T
given a 
because 
 

 
Figure 4.10 Ergodic HMM model  
 
odel, each state can be reached by all other states in a single transition. 

bservation probabilities and self-transition probabilities in this model are kept 
 gesture models, but all outgoing transition probabilities are equally assigned 

),,(
1

1
jijallfor

N
aij ≠
−

−
 where ija  is the transition probability from state is  to 

 is the number of states (the sum of all states excluding the start and final 
he start and final states produce no observation. The likelihood of the model, 
gesture pattern, would be smaller than that of the dedicated gesture model 
of the reduced forward transition probabilities. The likelihood can be used as 

an adaptive threshold for 
selecting the proper 
gesture model. For this 
reason, they call it the 
threshold model. The 
threshold model acts as a 
base-line. A candidate 
gesture is found when a  
Figure 4.11 Gesture spotting precedure
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specific gesture model rises above the threshold model. 
 
A gesture spotter receives a stream of continuous hand motion with an intermittent 
sequence of several gestures (see Fig. 4.11). To spot them in the input stream, they 
constructed a circular gesture-spotting network (GSN). The gesture-spotting network 
finds the start and end points of gestures embedded in the input stream. For this, it is 
desirable to know how and in what state sequence the model produces the most likely 
observation sequence. They can uncover a state sequence using the Viterbi algorithm, 
where they adopt the optimality criterion of maximizing the probability of a state 
sequence that produces the observation sequence. They use the Viterbi algorithm for 
calculating likelihood and finding the start point from the end point. 
 
For reliable spotting, the model transition probability into the threshold model 

( )TMp is tuned to satisfy: 
 

                      
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )TMpXPGpXP

TMpXPGpXP

TMTMGTM

TMGGG

λλ
λλ

<

>
                                         (4.22) 

 
where GX  denotes a gesture pattern, TMX  a non gesture pattern, Gλ  the target gesture 
model, TMλ  the threshold model, and GN  the number of gesture models in the 
system. 
Inequalities (4.22) imply that a gesture should best match with the corresponding 
gesture model and a non-gesture with the threshold model, respectively. The model 
transition probabilities into gesture model ( )Gp  are set equal using ( )TMp  as 

( ) ( )
GN
TMpGp −= 1 . With a sequence of spotting experiments, they have decided 

( )TMp  as the value generating the best result. First inequality of Eq. (4.22) says that 
the likelihood of a gesture model should be greater than that of the threshold model. 
The time satisfying such a condition can be called a Candidate End Point (CEP). Once 
they obtain CEP, its corresponding start point can easily be found by backtracking the 
Viterbi path because the final state can only be reached through the start state in the 
left-right HMM. There are, in general, several such CEPs satisfying First inequality of 
Eq. (4.22). Thus, the remaining problem is the determination of the right end point. 
This will be described in the next section. 
 
The end-point detection is the process of choosing the best among these CEPs. It 
removes nested gestures and makes the spotter fire only once when a gesture is 
encountered. The process is initiated when the last CEP of the current gesture is found 
after the preceding gesture to fire or when the elapsed time steps since the last gesture 
are greater than a given length. The last condition implements a duration constraint. 
The detection criterions defined as follows: 
 
1. When the immediately following pattern B is not a gesture, as in Fig. 4.12(a), the 

last CEP of the preceding gesture A is determined as the end point. A is reported. 
 
2. When the immediately following pattern B is by itself a gesture, there are two 

alternatives: 
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a. When the start point of B precedes the first CEP, as in Fig. 4.12(b) of A, A is 
regarded        as a part of a larger current gesture (B), which includes A and 
extends beyond the CEP of    A. All the CEPs of A are ignored.  

b. When B starts between the first and the last CEPs of A, as in Fig. 4.12(c), the 
immediately preceding CEP is chosen as the end point of A. 

 
 

 
 
 
 
 
 
 
 

 
Since they constructed the threshold model by combining all the gesture models in the 
system, the number of states in the threshold model is equal to the sum of the states of 
all gesture models excluding the start and final states. This means that the number of 
states in the threshold model increases as the number of gesture models increases. 
Consequently, the increased number of states increases time and space requirements. 
To overcome this problem, they propose using relative entropy to reduce the number 
of states of the threshold model. In their gesture spotter, they quantize the direction of 
hand movement in 16 values and the number of states in the threshold model is 
reduced from 44 to 24. Consequently, the expected saving of the matching time with 
such a reduction is 63.91 percent. 
 
4.2.3.1 Comments 

This paper is about the HMM-based threshold model approach for gesture 
recognition. The task of automatic gesture recognition is highly challenging due to the 
presence of unpredictable and ambiguous non-gesture hand motions. To handle non-
gesture patterns, they introduce the concept of a threshold model that calculates the 
likelihood threshold of an input pattern and provides a confirmation mechanism for 
the provisionally matched gesture patterns. Because some weakness of the threshold 
model, the likelihood can be used as an adaptive threshold for selecting proper gesture 
model. The other advantage of their approach is that they merge the states with 
similar probability distributions, utilizing the relative entropy. By using this method a 
lot of states can be reduced. Because without reduction the threshold model is 
constructed by collecting the states of all gesture models in the system, the time and 
space requirement will be increased. In their paper they also give a lot of math 
explanation for their algorithm. Their method is highly accurate and also has very fast 
speed for real-time applications. Experimental results show that the proposed method 
can successfully extract trained gestures from continuous hand motion with 93.14 
percent reliability. 

Figure 4.12 Detection of an end point. (a) Non-gesture is following. (b) Nested gesture. (c) 
Gesture is following. Each dark curve A presents the preceding gesture that may be reported 

and the dotted curve B represents the immediately pattern or gesture. 
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4.2.4 Gesture Modeling and Recognition Using Finite State Machines 
[Hon02] 

Pengyu Hong, Matthew Turk and Thomas S. Huang�s method [Hon02] proposed a 
technique for gesture modeling and recognition in real-time, interactive environments. 
The training data consists of tracked 2D head and hand locations, captured while 
performing each repeatedly. The spatial and temporal information of the data are first 
decoupled. In the first phase, the algorithm learns the distribution of the data without 
temporal information via dynamic k-means. The result of the first phase provides 
support for data segmentation and alignment. The temporal information is then 
learned from the aligned data segments. The spatial information is then updated. This 
produces the final state sequence, which represents the gesture. Each state sequence is 
a FSM recognizer for a gesture. 
 
4.2.4.1 Gesture Modeling 

The features used for input to gesture modeling and recognition, are the 2D positions 
of the centers of the user�s face and hands (see Fig. 4.13). Basically, a gesture is 
defined as an ordered sequence of states in the spatial-
temporal space. Each state S has parameters 

>Σ< maxmin ,,,, sssss TTd
ρ
µ to specify the spatial-temporal 

information captured by it, where 
ρ

µ s  is the 2D centroid 
of a state, sΣ  is the 22×  spatial covariance matrix, sd  is 
the distance threshold, and [ ]maxmin , ss TT is a duration 
interval. The spatial-temporal information of a state and 
its neighbor states specifies the motion and the speed of 
the trajectory within a certain range of variance.  
 
4.2.4.2 Computing the gesture model 

They first decouple the tempora
spatial information, roughly learn
incorporate the temporal informat
spatial information. The trainin
observing a gesture repeated sev
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defined as the Mahalanobis distance: 
T

sss xxSxD 
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 −=






 −

ρρρρρ
µµ 1, . At 

beginning, they assume that the variance of each state is isotropic. Beginning with a 
model of two states, they train the model to represent the data using dynamic k-means. 
When the error improvement is very small, they split the state with the largest 
variance that is higher than the chosen threshold. The training stops after all the 
variances of the states drop below the threshold. For example, after training, the data 
in Fig. 4.14(a) has three states whose centroids are represented by the white circles in 
Fig. 4.14(b). 
 
In the temporal alignment phase, each data point is assigned a label corresponding to 
the state to which it belongs. Thus they get a state sequence corresponding to the data 
sequence, as illustrated in Fig.4.14. By manually specifying the temporal sequence of 
states from the gesture examples, they obtain the structure of the Finite State Machine 
(FSM) for the gesture. For example, the state sequence for one cycle of the �wave left 

hand� gesture, shown in Fig.4.15, is [1 
2 0 2 1]. Once this is determined, the 
training data is segmented into gesture 
samples. A sample of [1 1 1 2 2 2 2 0 0 
0 0 2 2 2 1 1], for example, consists of 
the five states with (3, 4, 4, 3, and 2) 
samples per state, respectively. The 
number of samples in a state is 
proportional to the duration of the 
state. The example gestures are all 
aligned in this manner, resulting in N 
examples with the same state sequence, 
differing only in the number of 
samples per state. Calculating the 
minimum and maximum number of 
samples per state over the training data 
set the duration interval [ ]maxmin ,TT . 
Figure 4.15 The state sequence for one cycle 
of the �wave left hand� gesture  
ss

Since the user may stay at the first state of the FSM for an indefinite period of time, 
they set max

0T to be infinite. They use the simple FSM to model the spatial-temporal 
information of the gestures. The temporal information of each state is represented by a 
duration variable whose probability is modeled as uniform over a finite interval 
[ ]maxmin , ss TT . The duration variable tells approximately how long the trajectory should 
stay at a certain state. 
 
4.2.4.3 Recognition 

Real-time, online recognition is done by considering only the data acquired at the 
current time point. A gesture is recognized when all the states of a gesture recognizer 
are passed. Although they only examine the data sample at current time point, they do 
use the context information stored in the FSM for recognition. The context 
information of a gesture recognizer g can be represented as: >=< tsc k , where ks  is 
the current state of the recognizer g, t is the how long the recognizer has stayed at ks . 
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Since a FSM is an ordered state sequence, ks  stores the history of the trajectory. 
When a new data sample x comes, if one of the following conditions is met, the state 
transition happens. 
 
 )(&)),(()1( max

11 kkk ttdsxD >≤ ++  
 )(&)),(),((&)),(()2( min

111 kkkkk ttsxDsxDdsxD ≥≤≤ +++  
 )(&)),(()3( max

11 kkk ttdsxD >≤ ++  
 
The recognizer only takes into account the current data sample, since the past is 
modeled by the current state. Each state S has its own threshold sd . If the new data x 
does not belong to the current state and the state transition cannot happen, the 
recognizer is reset, Thus the computation complexity at each time point is 
approximately O(n) where n is the total number of the FSM models. If a data sample 
happens to make more than one gesture recognizer fire, there is an ambiguity. To 
resolve the ambiguity, they choose the gesture with the minimum average accumulate 

distance: 
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ix  belongs to, gn is the number of the data accepted by the 
recognizer of the gesture g up to the current time point. 
 
4.2.4.4 Comments 

A major advantage of the method is that it handles gestures which with different 
number of states. Their method quickly produces a recognizer for different gestures 
by specify only the variance, even when only a few training examples are available. 
Potentially, their approach is able to handle gestures with trajectories that contain 
loops with more than one intersection. Real-time, online recognition is done by 
considering only the data acquired at the current time point. A gesture is recognized 
when all the states of a gesture recognizer are passed. This is different from the 
traditional approaches, which require that the data segment provided to the recognizer 
contain the complete gesture data. There are similarities between HMMs and their 
approach. One difference is that with HMMs the number of states and the structure of 
the HMM must be predefined. To train a HMM, well-aligned data segments are 
required. The FSM method they proposed segments and aligns the training data and 
simultaneously produces the gesture model. They are currently pursuing an 
unsupervised model construction method to make the training simpler and better. 
During the recognition phase of an HMM, the system takes a segment of data as 
input, calculates the combined probability of the membership, compares the 
probability with a threshold, and decides whether the data is accepted or rejected. In 
their approach, since each state is associated with a threshold that is learned from the 
data, recognition is done based on the data at current point in time and the context 
information that is stored in the FSM. This dramatically reduces the computation 
complexity.  
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4.3 Gesture Recognition Approaches Conclusion  
We found four different kinds of models for gesture recognition; they are improved 
HMM model approach, Condensation extension algorithm approach, HMM-based 
threshold model approach, Finite State Machines model approach. These approaches 
are based on different kinds of models and also apply for different kinds of gesture.  
• The improved HMM model mentioned in [Psa02] is constructed for a behavior 

recognition in a certain environment, the theory is based on HMM, but introduced 
observation density into the model so that the whole system got improvement 
comparing with pure HMM methods, but the paper did not mention the speed of 
system, which is a little bit pity for us. 

• The condensation extension algorithm gave an approach to raise the gesture 
recognition rates. It gave a curve model set that can help us gesture models easily. 
After the tests, it indeed makes the rates higher, but the disadvantage is the speed 
is not fast, cannot used in real time application.  

• The HMM-based threshold model approach is to recognize the user�s hand gesture 
from an image sequence in real time using HMM model, and for handling the 
non-gesture patterns they introduce the concept of a threshold model that 
calculates the likelihood threshold of an input pattern and provides a confirmation 
mechanism for the provisionally matched gesture patterns, they also use the 
merging states way to speed up the application. 

• The Finite State Machines model approach is used in a real-time interactive 
system. The feature of the gesture is the center of the user�s head and both hands. 
The recognition is done based on the data at current point in time and the context 
information that is stored in the FSM. This model has low computation 
complexity. 

 
Now from the usual criteria of a gesture recognition model, we can conclude these 
four models in 

Table 4.9 Comparison of gestures models 

Model Name Improved 
HMM  

HMM-based 
Threshold  

FSM  Improved 
Condensation  

Features Walking 
Behavior 

Hand 
positions 

Center of the 
user�s head and 
both hands 

Hand positions 

Model HMM HMM FSM Condensition 
Training Yes  Yes  Yes  Yes  
Complexity High High Low  High 
Real Time Yes Yes Yes No 
Accurate High Very High High High 
Paper Index [Psa02] [Lee99] [Han02] [Bla98] 
 
The gesture recognition is still a very hot topic being studied. Until now the HMM 
model is the most popular approach with high accurate and it can be used in the real-
time processing. But HMM model will need a lot of effort with the training step, so 
there are still lots of other simple models can be used. How to choose a good and 
fitful model for the application depends on what kind of features you will take, what 
kind of gesture that you want to recognize, how fast the recognition speed that you 
need, and so on.  
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Chapter 5 

5 Literature Summary  

Based on the main requirements of our application UI-Wand, we divide our literature 
research into the following three main sub topics as Corner detection, Corner 
classification and recognition, Gesture recognition. We found a lot of papers related to 
each of these three topics. Our literature survey is organized in the same order and 
each part relates to one requirement of our UI-Wand application.  
 
In the first part of our literature survey, we define the UI-Wand application and 
introduce the following part of the survey. 
 
In the second part of our literature survey, we introduced a lot of corner detectors. 
There are lots of different approaches already exist, among them boundary based 
corner detectors, direct corner detectors and color distribution based detectors are the 
main three paradigms.  Each kind of approaches has its own properties, for example, 
direct corner detectors have very fast processing speed but the accurate is always not 
very high; color distribution based detectors always have very high accurate and some 
of them can detect edges, corners and junctions within one round, but sometimes their 
processing speed is not fast enough for real time application. Because UI-Wand needs 
to detect accurate four screen corners in real time, so we must focus our application 
on a corner detector with very high accuracy and also very fast processing speed. It is 
a big challenge for us, it seems that these two criterions are often conflict to each 
other. In quite recent years, this conflict seems to be solved. There are a few new 
detectors appeared, which are also based on the traditional approaches but have 
excellent performance. They have fast speed for real time processing and can give 
satisfied accuracy result in corner detection, which is exactly what we need in our UI-
Wand application.  
 
After getting accurate corner positions in the image sequence, we need to know which 
corner is exact the screen corner. So in the third part of our literature survey, we 
carried out a lot of approaches can be used. One traditional approach is to use the 
geometric relations to get the screen corner. But this approach need more information 
about the shape of the object, here in UI-Wand, we need to know the edge 
information, distance information or more other information. And the biggest 
drawback of the geometric approach is that it cannot be extended if we change the 
application into the other fields. For example, if we do not use UI-Wand to detect the 
screen point anymore, we must change all the geometric information, because for a 
new object, the former geometric information will be totally useless. So we prefer to 
use the classification way for corner recognition. There are a lot of models can be 
used as classification model, such as HMM (Hidden Markov Model), KNN (K 
Nearest Neighborhood), SVM (Support Vector Machine) and RVM (Relevance 
Vector Machine). Among these four models, HMM is a little bit different from other 
three models, it describe the states transition status, and it has already been 
successfully used in speech recognition, face recognition and gesture recognition. It 
can give a very high recognition rates when dealing with these problems. KNN is a 
very old and quite simple model, for simple classification and small data set, it can 
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reach a high classification rates with a high speed. But to deal with more complicated 
problems, SVM and RVM will be more efficient, especially for the object recognition 
problems. Comparing between RVM and SVM, RVM is a quite new model, and it 
can give probability output, which is the classification confidence that SVM can not 
gives. But SVM has much faster training speed than RVM. Because SVM is already a 
well-known model, in most object classification papers, authors still choose SVM as 
their classification model. As to RVM, the research is still going on, and there are still 
some open questions existing. But according to the properties of RVM, it is a very 
attractive model for us. 
 
From classification step, we can get four 2D corner positions in the digital image. 
Using these 2D positions as the input we can get 3D positions of these screen corners 
within UI-Wand by searching in a 3 dimensional space. After the positioning work, 
we can track the gestures of UI-Wand and finally recognize these gestures. We 
focused on the gesture recognition in the fourth part of our literature survey. In the 
gesture recognition part, a lot of similar applications can be found, but they are based 
on different features and also different kind of gestures. We found out four different 
kinds of models in gesture recognition; they are improved HMM model approach, 
Condensation extension algorithm approach, HMM-based threshold model approach, 
Finite State Machines (FSM) model approach. Improved HMM model approach is 
mainly based on HMM model but introduce observation density into the model, 
which can improve the performance of HMM.  The condensation extension algorithm 
can raise the gesture recognition rates. It gave a curve model set that can help us to 
recognize gesture models more easily. Using this model can give high accuracy but 
the speed cannot be real time. HMM-based threshold model is a quite good approach, 
it introduces the concept of a threshold model that calculates the likelihood threshold 
of an input pattern and provides a confirmation mechanism for the provisionally 
matched gesture patterns, they also use the merging states way to speed up the 
application. This model can correctly recognize more complicated gesture in real 
time. Quite different from the above HMM based models, FSM model is quite simpler 
and this approach is able to handle gestures with trajectories that contain loops with 
more than one intersection. Real-time, online recognition is done by considering only 
the data acquired at the current time point. For our UI-Wand application, we do not 
expect too complicated modeling and training work to be done such as using HMM 
model. Inspired by the pattern recognition idea, we think we can try a new way in 
gesture recognition part, RVM or other classification model can be used to recognize 
different gestures by their different tracking positions, which can be easily got from 
former steps in UI-Wand. But with no existing experience, the efficiency of this 
approach cannot be known clearly. 
 
In the conclusion part of every chapter, we gave many detailed technical tables to 
compare different models and algorithms that dealing with the same problem. In this 
chapter, we summarized the most important 25 papers that we read during the 
literature research period in the following Table 5.1, in order to give readers a brief 
overview for papers about their topics and reading value. The columns of this table 
we indicate as following: 
 
• In paper type, we use [APP] to indicate that this is a paper about an application or 

approach to its corresponding topic. The same thing, we use [ALG] to say it is an 
algorithm, [THE] is theory, [TES] is test, and [SUR] means it is a survey.  
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• In paper topic column, we filled in the topic or model that this paper mainly 
focuses on. If this paper is about an application, then we give the application field 
after a comma.  

• Paper Quality of the table marks our evaluation for the quality of this paper, and 
�Reading Value� item means how valuable it is for UI-Wand. We used score from 
1 to 5 to mark. For those scores are highest, 5, we used gray color to highlight. 

 
Table 5.1 Features of important papers investigated in this literature survey 

Paper Index Paper Type Paper Topic Paper 
Quality 

Reading 
Value 

[Ard00] [APP] SVM, Shape 3 4 
[Avi01] [APP] Track, Objects 4 4 
[Bla98] [ALG][APP] Gesture, Hands 2 2 
[Cor95] [THE] SVM 4 4 
[Der93] [ALG] Corner Detector 3 4 
[Har88] [ALG] Corner Detector 3 3 
[Hei03] [APP] SVM, Face 3 3 
[Hon02] [APP] Gesture, Head and Hands 4 4 
[Lee99] [ALG][APP] Gesture, Hands 4 5 
[Lus95] [THE] HMM 4 5 
[Nef98] [THE][APP] HMM, Face 5 4 
[Pon98] [TES] SVM 3 3 
[Psa02] [APP] Gesture, Behavior 3 3 
[Ruz01] [THE] Corner and Edge Detector 4 4.5 
[Smi97] [THE] Corner and Edge Detector 4 4 
[Soj02a] [SUR][ALG] Corner Detector 5 5 
[Son03] [ALG] Corner and Edge Detector 4 5 
[Tip01] [THE] RVM 5 5 
[TipNEW] [THE][ALG] RVM 5 4 
[Tra98] [ALG] Corner Detector 3.5 3.5 
[Web02] [THE] Pattern Recognition 5 5 
[Wel01] [THE] Kalman Filter 4 4 
[Wil03] [APP] Track, Objects 4 4 
[Zha04] [ALG] KNN Classification 4 3 
[Zhe99] [ALG] Corner Detector 3 3 
 
 
After widely researching on each related technique that will probably be applied in 
the UI-Wand application, we get an overview of almost all the existing approaches in 
each part of the whole application, and now we have a more clear idea about how to 
realize the whole system. But UI-Wand is still a quite new application in computer 
vision, no more experience can be found from others, so there are still a lot of 
exploring work waiting for us.   
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