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Chapter 1

Introduction

The interaction between humans and technology is changing and automatic
speech recognition is a driving force in this process. Speech recognition tech-
nology is changing the way information is accessed, tasks are accomplished and
business is done. The growth of speech recognition applications over the past
years has been remarkable. From high-priced, limited dictation systems to af-
fordable products capable of understanding natural speech, operating both at
home and in professional environments. An important factor in this growth
is the mobile telecommunications industry, which provides demand for speech
recognition systems and also drives the development of signal processing tech-
nology, essential to speech recognition.

In modern society people typically interact with several electronic devices
during a day, ranging from mobile phones and personal digital assistants to pho-
tocopiers and common household appliances. The machine, however, dictates
the user interaction and requires the user to adapt to its unnatural, and often
complex ways. Spoken language technology will enable access to machines to
become faster and easier. It is the most natural interface method possible.

Automatic speech recognition research is several decades old. In the 1970s
significant technological breakthroughs were made relating to the modeling of
human speech sounds using hidden Markov models. Hidden Markov models
are still the cornerstone of contemporary speech recognition systems. In this
period, speech recognition research was performed mainly in universities and
government-funded programs. Since the 1990s private companies have had an
active interest in speech recognition. An overview of the history of speech
recognition research can be found in appendix A.

1.1 The Speech Recognition Problem

Automatic speech recognition is essentially the process of mapping an acoustic
signal, captured by a microphone, telephone or other acoustical transducer, to
a sequence of discrete entities, such as phonemes or words. A typical speech
recognition system consists of several components, as is illustrated in figure 1.1.
In this figure, the decoder provides the external application with recognition
results in order for it to perform required actions. The acoustic models include
the representation of knowledge about acoustics, phonetics, signal variability,
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Figure 1.1 A typical speech recognition system.

etc. The language models refer to a system’s knowledge of which words it
is able to recognize, which words are likely to occur together, and in what
order. The voice input signal is processed by the signal processing unit, which
extracts feature vectors from the input signal for the decoder. The decoder uses
the acoustic and the language models to generate the word sequence with the
maximum probability given the input feature vectors.

Automatic speech recognition systems can be characterized by many para-
meters [5], some of which are shown in table 1.1. In an isolated-word speech

Table 1.1 Parameters that characterize speech recognition systems.

Parameter Range
Speaking Mode Isolated words to continuous speech
Speaking Style Read speech to spontaneous speech
Enrollment Speaker-dependent to Speaker-independent
Vocabulary Small (less than 20 words) to large (more than 20,000 words)
Language Model Finite-state to context-sensitive
SNR High (more than 30 dB) to low (less than 10 dB)
Transducer Noise-canceling microphone to telephone

recognition system, the user is required to pause briefly between words, which is
not required in a continuous speech recognition system. Systems can be designed
to handle spontaneous speech, which is much more difficult to recognize than
speech spoken from a written source. In some systems enrollment is required,
which means a user has to provide the system with several speech samples be-
fore being able to use it properly. This is not required in speaker-independent
systems.

Some parameters are related to the task of the system. When using a large
vocabulary, recognition will be more difficult than if a small vocabulary is used.
If system input is a sequence of words, language models are used to restrict the
number of allowed combinations. A finite-state model is a very simple network
specifying the allowable order of words explicitly. Context-sensitive language
models are more complex and are used to approximate natural spoken language.
A final set of parameters include properties of the environmental noise and the
type and placement of the microphone.

Recognition of human speech is considered a difficult problem, mainly due
to two factors [16]. First, the acoustic realization of phonemes is highly depen-



1.2 Speech Recognition at Asahi Kasei 3

dent on the context in which they appear, making it hard to explicitly identify
their boundaries. This problem is the result of coarticulation, which is the
blending of the articulation of a sound into the articulation of the following
and preceding sounds. To avoid this problem it is possible to restrict the un-
derlying recognizable entities to words instead of phonemes. Though far less
powerful, word-based models nevertheless have a wide range of practical appli-
cations. Coarticulation and the production of human speech sounds is discussed
in chapter 2.

The second factor is the large variability in characteristics of the speech sig-
nal. This variability has three main components: linguistic variability, speaker
variability and channel variability. Linguistic variability refers to effects of pho-
netics, syntax, etc. Speaker variability includes intra- and interspeaker variabil-
ity and results from differences in speaking rate, voice quality, etc. Channel
variability include the effects of background noise and properties of the trans-
mission channel. Variability and robustness in speech recognition is discussed
in chapter 4.

1.2 Speech Recognition at Asahi Kasei

This section will focus on speech recognition at Asahi Kasei. The Asahi Kasei
Corporation of Japan is a holding company for seven subsidiary business units
in diverse areas. These include Asahi Kasei Fibers, Asahi Kasei Life & Living
and Asahi Kasei Chemicals. The holding company provides common services
for all subsidiaries and also controls corporate Research & Development (R&D).
Corporate R&D is divided into four laboratories:

• Central Research Laboratory. Research is focussed on biotechnology and
nanotechnology.

• Membrane Technology Laboratory. Research is focussed on membrane
technology.

• Analysis & Simulation Center. Focus is on analysis and computer simu-
lation technology.

• Information Technology Laboratory. Development of innovative software
solutions based on pattern recognition and digital signal processing tech-
nology.

In August 2000 the Voice Interface Project was launched at the Asahi Kasei
Information Technology Laboratory, combining several areas of research related
to speech technology from the Central Research Laboratory. The aim of the
Voice Interface Project is to provide commercially viable speech recognition,
voice compression and text-to-speech middleware solutions. The Voice Interface
Project’s flagship product is VORERO (Voice Recognition Robust), voice recog-
nition middleware. Other products include voice compression/decompression
middleware (MMEV), Japanese text-to-speech middleware (VOStalk) and hands-
free middleware (VOCLE).



4 1.3 Research Objectives

1.2.1 VORERO

VORERO is essentially a voice recognition middleware platform. Its primary
target is embedded systems and it is currently employed in car navigation sys-
tems, cellular phones, personal digital assistants and robotics. VORERO is
based on hidden Markov models and allows phoneme and word models to be
used simultaneously. It includes advanced acoustic analysis, which provides ro-
bustness through noise reduction and echo cancellation techniques. VORERO
speech recognition is speaker independent and uses a small amount of system
memory. The general VORERO system architecture is similar to the typi-
cal speech recognition system described in the previous section and is illus-
trated in figure 1.2. The VORERO engine provides the speech recognition
using VORERO data, which consists of a set of acoustic models, a dictionary
and a vocabulary network. The network specifies the recognition task to be
performed (i.e. what words can be recognized and in what order). Consumer
application can interface the VORERO through the Software Development Kit
(SDK), which is a set of libraries that encapsulate the VORERO engine.

Figure 1.2 VORERO architecture.

1.3 Research Objectives

VORERO supports a number of languages, including Japanese, North American
English, Korean, Mandarin, German, Spanish and French. For the VORERO
SDK release 6.0, additional support for the languages Italian, Dutch and Por-
tuguese was desired. The research objective described in this thesis is the ad-
dition of support for the Dutch language to VORERO. The followings tasks
contribute to achieving the research objective:
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• Understanding of current speech recognition technology, by studying rel-
evant literature.

• Understanding of the mathematical principles involved in stochastic speech
recognition using hidden Markov model theory.

• Study of the Dutch phoneme set and Dutch pronunciation rules.

• Design of the Dutch acoustic models using the Hidden Markov Toolkit
(HTK).

• Training of the Dutch acoustic models using the HTK.

• Evaluation and optimization of Dutch speech recognition.

• Design of the Dutch pronunciation dictionary.

• Addition of the Dutch language to the VORERO SDK 6.0.

1.3.1 About this Document

This document represents the partial fulfillment of the requirements for obtain-
ing a Master of Science degree. Each of the research tasks listed above will be
discussed in detail. In chapter 2 the production of human speech is analyzed,
the concept of a phoneme is introduced and the complete Dutch phoneme set
is described. Chapter 3 is a thorough review of all the mathematical principles
involved in automatic speech recognition. Special focus is on hidden Markov
model theory. Chapter 4 is the result of studying relevant literature related to
contemporary speech recognition. In this chapter a number of key challenges will
be discussed. These challenges were identified in a survey on Human Language
Technology, funded by the U.S. National Science Foundation.

In chapter 5 and 6 the design of acoustic models will be discussed. Chapter
5 describes the Hidden Markov Toolkit (HTK) and its training tools. Chapter
6 represents the core of the training of the Dutch acoustic models. All required
steps from the preparation of data to the evaluation of the models are described
in detail. Chapter 7 introduces a number of techniques related to optimizing the
Dutch acoustic models. In the final chapter the conclusion and final remarks
will be presented.





Chapter 2

Human Speech

In this chapter the basics of human speech production are discussed. The con-
cept of a phoneme is introduced, and the complete phoneme set of the Dutch
language is described in detail. This chapter also covers differences in phoneme
realization depending on context.

2.1 Human Speech Systems

In this section, the organs responsible for the production of speech will be de-
scribed. Essentially, the speech organs can be divided into two groups, each with
a specific function in the production of speech. These groups are the subglottal
system and the supraglottal system and are illustrated in figure 2.1. The names
subglottal and supraglottal refer to the position relative to the glottis, the space
between the vocal folds.

2.1.1 Subglottal System

The main function of the subglottal system is to provide the body with oxygen,
by inhalation of air. The exhalation of air provides the source of energy for
speech production. The subglottal systems consists of the lungs, the trachea
(or windpipe) and the larynx (or voicebox). The larynx sits at the top of the
trachea and contains the vocal folds, essential in speech production. The vocal
folds are two bands of ligament and muscle that vibrate during the articulation
of vowels and various consonants. The space between them is called the glottis.
Its shape determines the production of voiced or unvoiced sounds, which will be
described in the next section. The length of the vocal folds depends on age and
gender: women have significantly shorter vocal folds than men and the vocal
folds of children are smaller still.

2.1.2 Supraglottal System

The supraglottal system consists of the pharynx (or throat) and the articulators
in the oral cavity. The position and movement of the articulators determine the
properties of produced speech sounds. The articulators in the oral cavity are:

• Lips (or labia).
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Figure 2.1 Diagram of human speech organs.

• Teeth (or dentes).

• The alveolar ridge, a small protuberance behind the upper teeth.

• The palate (or palatum), an arched bony structure that forms the forward
part of the roof of the mouth.

• The velum, part of the roof of the mouth, which can be lowered to allow
the passage of air through the nasal cavity or raised to block the nasal
cavity. When the nasal cavity is opened nasalized sounds are produced.

• The uvula, the soft, fleshy tip of the velum.

• The tongue, which basically covers the whole floor of the oral cavity. Five
regions can be distinguished: the tip (or apex), the blade (or lamina), the
front (or antero-dorsum), the back (or dorsum) and the root (or radix).

2.2 Speech Production

The production of speech involves three phases. In the initiation phase a flow of
air is set in motion by an initiator, such as the lungs. The flow of air is turned
into a pulsating stream in the phonation phase. This is caused by repeated
opening and closing of the glottis: the vibration of the vocal folds. This phase
is skipped in unvoiced speech sounds. The final phase is the articulation phase,
in which vowels and consonants are formed by the application of the various
articulators, resulting in resonance of the pulsating airstream in the pharynx,
the oral cavity and/or the nasal cavity.

In human speech science, a basic unit of speech is referred to as a phoneme.
A phoneme is esentially a set of all possible ways of pronouncing a specific
speech sound. An actual realization of a phoneme is called an allophone (or
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phone). Phonemes are typically categorized as vowels or consonants. During
articulation of consonants, the flow of air is in some way obstructed in the vocal
tract and the vocal folds may or may not vibrate. The flow of air is always free
during articulation of vowels and the vocal folds always vibrate.

The rest of this section will cover the definition of the phoneme set of the
Dutch language in detail. For the notation of the phonemes SAMPA symbols
will be used.

2.2.1 Consonants

Consonants can be classified on the basis of their manner and place of articula-
tion, and the state of the vocal folds. The manner of articulation refers to the
degree and type of constriction in the vocal tract. Consonants can be either
voiced or unvoiced, depending on the state of the vocal folds. If the vocal folds
vibrate during speech production, the consonant is voiced. If the vocal folds do
not vibrate, the consonant is unvoiced.

The consonants can be divided between the plosive and fricative consonants,
known as the obstruents (or real consonants), and the remaining consonants,
known as the sonorants. Sonorant consonants include the nasals and the ap-
proximants. The approximant consonants can be further divided into liquids
and glides. This division is illustrated in figure 2.2.

Figure 2.2 Dutch consonant classification.

Plosives

A plosive consonant is produced by a complete obstruction of the air flow in the
vocal tract. The pressure builds up behind the obstruction, which causes the
air to rush out with an ‘explosive’ sound when released. Table 2.1 lists the six
plosive consonants found in the Dutch language and their place of articulation.

Table 2.1 Plosives

labial/ alveolar postalveolar/ velar/uvular/
labiodental palatal glottal

voiced /b/ bak /d/ dak /g/ goal
unvoiced /p/ pak /t/ tak /k/ kat
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Fricatives

Fricative consonants are produced by air being pushed through a constriction
in the vocal tract. If enough air is pushed through the constriction, an area of
turbulence will be formed, which will be perceived as noise. The constriction
is formed by close approximation of two articulators. Table 2.2 lists the eight
fricative consonants found in the Dutch language and their place of articulation.

Table 2.2 Fricatives

labial/ alveolar postalveolar/ velar/uvular/
labiodental palatal glottal

voiced /v/ vel /z/ zak /G/ goed
/Z/ bagage

unvoiced /f/ f el /s/ sok /x/ toch
/S/ sjaal

Nasals

Nasals are produced by the flow of air moving through the nasal cavity, which
is accessible by the lowering of the velum. The oral cavity is obstructed by an
articulator. All nasals are voiced. Table 2.3 lists the three nasal sounds found
in the Dutch language and their place of articulation.

Table 2.3 Nasals

labial/ alveolar postalveolar/ velar/uvular/
labiodental palatal glottal
/m/ man /n/ non /N/ bang

Approximants

Approximants are formed by two articulators approaching each other but not
close enough for an area of turbulence to be formed. The Dutch liquids are /l/
and /r/. The /r/ is a little bit complicated as it has a number of possible real-
izations, that differ in the place of articulation, the number of contact moments
of the articulator and whether the articulation is continuous or not. Glides are
/w/ and /j/. The /h/ phoneme can be considered both an approximant and a
glottal fricative. Table 2.4 lists the approximants found in the Dutch language
and their place of articulation.

Table 2.4 Approximants

labial/ alveolar postalveolar/ velar/uvular/
labiodental palatal glottal
/w/ weer /r/ rand /j/ jas /h/ hoed

/l/ lam /r/ peer
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Figure 2.3 Dutch vowel articulation.

2.2.2 Vowels

Vowels differ from consonants in the fact that the air flow from the lungs is
not constricted in the oral cavity. Vowels can be classified on the basis of
tongue position and rounding of the lips. The tongue plays a major role in
the production of vowels. Its movement determines the manner in which the
flow of air resonates in the pharynx and oral cavity. The tongue position can
be analyzed in the vertical dimension (high, middle, low) and the horizontal
dimension (front, central, back). The lips further determine vowel articulation
and can be either rounded or spread as illustrated in figure 2.3. Table 2.5 lists
the vowels found in the Dutch language and the manner of articulation. It
is also possible to characterize vowels by the amount of tension of the speech
muscles, which can be either ‘tense’ or ‘lax’, though this is considered a minor
phonological feature.

Table 2.5 Dutch vowels.

spread rounded
front central back

high tense /i/ piet /y/ fuut /u/ voet
middle lax /I/ pit /Y/ put /O/ pot

tense /e:/ veel /2:/ beuk /o:/ boot
low diphthong /Ei/ stij l /9y/ huis /Au/ rouw

lax /E/ pet /A/ pat
tense /a:/ paal

A special class of vowels are diphthonic vowels (diphthongs). To produce
diphthongs, the articulator are moved from one to another configuration. The
diphthongs listed in table 2.5 are referred to as ‘real’ diphthongs, while table
2.6 lists the ‘possible’ diphthongs in the Dutch language.

A final class of Dutch vowels are the marginal vowels. These are not native
to the Dutch language and are mainly found in loan words. They are listed in
table 2.7
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Table 2.6 Dutch diphthonic vowels.

SAMPA symbol example word
/a:i/ draai
/o:i/ mooi
/ui/ roei
/iu/ nieuw
/yu/ duw
/e:u/ sneeuw

Table 2.7 Dutch marginal vowels.

SAMPA symbol example word
/i:/ analyse
/y:/ centrifuge
/u:/ cruise
/E:/ crème
/9:/ freule
/O:/ zone
/A:/ basketbal
/Y∼/ parfum
/E∼/ bulletin
/O∼/ chanson
/A∼/ genre

2.3 Sound and Context

The position of the articulators involved in producing speech sounds does not
change abruptly from one speech segment to another. This transition gradual
and fluid, which leads to an effect called coarticulation. Coarticulation is literally
the process of joint articulation, which means that different speech sounds are
articulated simultaneously. If a speech sound is influenced by sounds that are
still unspoken, the coarticulatory effect is referred to as anticipation. If a speech
sound is still not fully realized due to the previous sounds, the coarticulatory
effect is referred to as perseverance.

As was mentioned in the previous section, an actual realization of a phoneme
is referred to as an allophone. Allophonic realizations of phoneme differ between
speakers and even a single speaker will never really produce exactly the same
speech sounds. Allophonic realization of phonemes, however, also depend heav-
ily on the context in which they are produced. If different sounds precede and
follow a particular phoneme, its realization will be affected. An example is the
/l/ sound in the words ‘like’ and ‘kill’.

In general it is harder to become aware of coarticulatory effects than of
allophonic alternatives, though both form a serious obstacle in automatic speech
recognition.



Chapter 3

Speech Recognition

In this chapter some of the essential mathematical theory related to speech
recognition will be discussed. This includes hidden Markov model theory, cor-
nerstone of contemporary speech recognition systems.

3.1 System Overview

The goal of speech recognition can be formulated as follows: for a given acoustic
observation X = X1, X2, . . . , Xn, find the corresponding sequence of words Ŵ =
w1, w2, . . . , wm with maximum a posteriori probability P (W|X). Using Bayes’
decision rule, this can be expressed as:

Ŵ = arg max
W

P (W|X) = arg max
W

P (X|W)P (W)
P (X)

(3.1)

Since the acoustic observation X is fixed, equation 3.1 is equal to:

Ŵ = arg max
W

P (X|W)P (W) (3.2)

Probability P (W) is the a priori probability of observing W independent of
the acoustic observation and is referred to as a language model. Probability
P (X|W) is the probability of observing acoustic observation X given a specific
word sequence W and is determined by an acoustic model. In pattern recog-
nition theory, the probability P (X|W) is referred to as the likelihood function.
It measures how likely it is that the underlying parametric model of W will
generate observation X.

In a typical speech recognition process, a word sequence W is postulated and
its probability determined by the language model. Each word is then converted
into a sequence of phonemes using a pronunciation dictionary, also known as
the lexicon. For each phoneme there is a corresponding statistical model called
a hidden Markov model (HMM). The sequence of HMMs needed to represent
the utterance are concatenated to a single composite model and the probability
P (X|W) of this model generating observation X is calculated. This process is
repeated for all word sequences and the most likely sequence is selected as the
recognizer output.

Most contemporary speech recognition systems share an architecture as il-
lustrated in figure 3.1. The acoustic observations are represented by feature
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Figure 3.1 A general system for training and recognition.

vectors. Choosing appropriate feature vectors is essential to good speech recog-
nition. The process of extracting features from speech waveforms will be de-
scribed in detail in the next section. Hidden Markov models are used almost
exclusively for acoustic modeling in modern speech recognition systems. Hidden
Markov model theory is described in detail in section 3.3 and the application
of HMMs to acoustic modeling in section 3.4. Section 3.5 focusses on language
modeling and section 3.6 on the speech recognition decoding process.

3.2 Acoustic Analysis

The acoustic analysis is the process of extracting feature vectors from input
speech signals (i.e. waveforms). A feature vector is essentially a parametric
representation of a speech signal, containing the most important information
and stored in a compact way. In most speech recognition systems, some form
of preprocessing is applied to the speech signal (i.e. applying transformations
and filters), to reduce noise and correlation and extract a good set of feature
vectors. In figure 3.2 the process of extracting feature vectors is illustrated. The
speech signal is divided into analysis frames at a certain frame rate. The size of
these frames is often 10 ms, the period that speech is assumed to be stationary
for. Features are extracted from an analysis window. The size of this window is
independent of the frame rate. Usually the window size is larger than the frame
rate, leading to successive windows overlapping, as is illustrated in figure 3.2.

Much work is done in the field of signal processing and several methods
of speech analysis exist. Two of the most popular will be discussed: linear
predictive coding and Mel-frequency cepstral analysis.

3.2.1 Linear Predictive Coding

Linear predictive coding (LPC) is a fast, simple and effective way of estimating
the main parameters of speech. In linear predictive coding the human vocal
tract is modeled as an infinite impulse response filter system that produces
the speech signal. This modeling produces an accurate representation of vowel
sounds and other voice speech segments that have a resonant structure and a
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Figure 3.2 Feature extraction.

high degree of similarity over time shifts that are multiples of their pitch period.
The linear prediction problem can be stated as finding the coefficients ak, which
result in the best prediction (that minimizes the mean-square prediction error)
of speech sample s[n] in terms of past samples s[n − k] with k = 1, 2, . . . , P .
The predicted sample ŝ[n] is given by:

ŝ[n] =
P∑

k=1

aks[n− k] (3.3)

with P the required number of past sample of s[n]. The prediction error can be
formulated as:

e[n] = s[n]− ŝ[n] = s[n]−
P∑

k=1

aks[n− k] (3.4)

To find the predictor coefficients several methods exist, such as the Covariance
method and the Autocorrelation method. In both methods the key to finding
the predictor coefficients involves solving large matrix equations.

3.2.2 Mel-Frequency Cepstral Analysis

In contrast to linear predictive coding, Mel-frequency cepstral analysis is a per-
ceptually motivated representation. Perceptually motivated representations in-
clude some aspect of the human auditory system in their design. In the case of
Mel-frequency cepstral analysis, a nonlinear scale, referred to as the Mel-scale,
is used that mimics the acoustic range of the human hearing. The Mel-scale can
be approximated by:

Mel(f) = 2595 log10(1 +
f

700
) (3.5)

The process of obtaining feature vectors based on the Mel-frequency is illus-
trated in figure 3.3. First, the signal is transformed to the spectral domain
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Figure 3.3 Mel-frequency cepstral coefficients.

by a Fourier transform. The obtained spectrum of the speech signal is then
smoothed by integrating the spectral coefficients with triangular frequency bins
arranged on the non-linear Mel-scale. Next, a log compression is applied to the
filter bank output, in order to make the statistics of the estimated speech power
spectrum approximately Gaussian. In the final processing stage, a discrete co-
sine transform (DCT) is applied. It is common for feature vectors derived from
Mel-frequency cepstral analysis to contain first-order and second-order differ-
ential coefficients besides the static coefficients. Sometimes a measure of the
signal energy is included. A typical system usings feature vectors based on Mel-
frequency cepstral coefficients (MFCCs) can have the following configuration:

• 13th-order MFCC ck

• 13th-order 1st-order delta MFCC computed from 4ck = ck+2 − ck−2

• 13th 2nd-order delta MFCC computed from 44ck = 4ck+1 − 4ck−1

xk =

 ck

4ck

44ck

 (3.6)

3.3 Hidden Markov Models

In this section the hidden Markov model (HMM) will be introduced. The HMM
is a powerful statistical method of characterizing data samples of a discrete
time-series. Data samples can be continuously or discretely distributed and can
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be either scalars or vectors. The HMM has become the most popular method for
modeling human speech and is used successfully in automatic speech recognition,
speech synthesis, statistical language modeling and other related areas. As an
introduction to hidden Markov models, the Markov chain will be described first.

3.3.1 The Markov Chain

A Markov chain is essentially a method of modeling a class of random processes,
incorporating a limited amount of memory. Let X = X1, X2, . . . , Xn be a
sequence of random variables from a finite discreet alphabet O = o1, o2, . . . , oM .
Based on Bayes’ rule:

P (X1, X2, . . . , Xn) = P (X1)
n∏

i=2

P (Xi|Xi−1
1 ) (3.7)

with Xi−1
1 = X1, X2, . . . , Xi−1. The random variables X are said to form a

first-order Markov chain provided that

P (Xi|Xi−1
1 ) = P (Xi|Xi−1) (3.8)

Equation 3.7 then becomes

P (X1, X2, . . . , Xn) = P (X1)
n∏

i=2

P (Xi|Xi−1) (3.9)

Equation 3.8 is referred to as the Markov assumption. The Markov assumption
states that the probability of a random variable at a given time depends only
on its probability at the preceding time. This assumption allows dynamic data
sequences to be modeled using very little memory.

If Xi is associated with a state, the Markov chain can be represented by a
finite state machine with transitions between states s and s′ specified by the
probability function

P (s|s′) = P (Xi = s|Xi−1 = s′) (3.10)

With this representation, the Markov assumption is translated into the follow-
ing: the probability that the Markov chain will be in a particular state at a
particular time depends only on the state of the Markov chain at the previous
time.

Consider a Markov chain with N states labeled 1, . . . , N , with the state at
time t denoted by st. The parameters of a Markov chain can be described as
follows:

aij = P (st = j|st−1 = i) 1 ≤ i, j ≤ N (3.11)

πi = P (s1 = i) 1 ≤ i ≤ N (3.12)

with aij the transition probability from state i to state j and πi the initial
probability that the Markov chain will start in state i. The transition and
initial probability are bound by the following constraints:

N∑
j=1

aij = 1 1 ≤ i ≤ N (3.13)
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N∑
i=1

πi = 1 (3.14)

The Markov chain as described, is also referred to as the observable Markov
model, as the output of the process is the set of states at each time instance t,
where each state corresponds to an observable event Xi. There is a one-to-one
correspondence between the observable event sequence X and the Markov chain
states sequence S = s1, s2, . . . , sn

Figure 3.4 illustrates a simple three-state Markov chain. In the example the
three states represent the performance of the stock market in comparison to the
previous day. The output symbols are given by O = {up, down, unchanged}.

state 1 – up

state 2 – down

state 3 – unchanged

Figure 3.4 A Markov chain example.

The parameters for the stock market example include a state-transition proba-
bility matrix

A =
{
aij

}
=

 0.6 0.2 0.2
0.5 0.3 0.2
0.4 0.1 0.5

 (3.15)

and an initial probability matrix

π = (πi)t =

 0.5
0.2
0.3

 (3.16)
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The probability of, for example, five consecutive up days, can be found by

P (5 consecutive up days) = P (1, 1, 1, 1, 1) = π1a11a11a11a11

= 0.5× (0.6)4 = 0.0648 (3.17)

3.3.2 Hidden Markov Models

The hidden Markov model is an extension of the Markov chain. Instead of
each state corresponding to a deterministically observable event, however, the
hidden Markov model features a non-deterministic process that generates output
observation symbols in any given state. The observation becomes a probabilistic
function of the state. In this way the hidden Markov model can be regarded
as a double-embedded stochastic process with an underlying stochastic process
(the state sequence) that is not directly observable.

A hidden Markov model is essentially a Markov chain where the output ob-
servation is a random variable X generated according to an output probabilistic
function associated with each state. Figure 3.5 illustrates the stock market
example from the previous subsection. Each state can generate all output ob-
servations: up, down, unchanged, according to its output probability density
function. There is no longer a one-to-one mapping between the observation
sequence and the state sequence. For a given observation sequence, the state
sequence is not directly observable, hence the naming of hidden Markov models.

Formally, a hidden Markov model is defined by:

• O = {o1, o2, . . . , oM}—An output observation alphabet. The observation
symbols correspond to the physical output of the system being modeled.
In the example, the output observation alphabet is the collection of three
categories O = {up, down, unchanged}.

• Ω = {1, 2, . . . , N}—A set of states representing the state space. Here st

is denoted as the state at time t.

• A = {aij}—A transition probability matrix, where aij is the probability
of taking a transition from state i to state j.

aij = P (st = j|st−1 = i) 1 ≤ i, j ≤ N (3.18)

• B = {bi(k)}—An output probability matrix, with bi(k) the probability of
emitting symbol ok when state i is entered. Let X = X1, X2, . . . , Xt, . . . be
the observed output of the HMM. The state sequence S = s1, s2, . . . , st, . . .
is not observed and bi(k) can be rewritten as follows:

bi(k) = P (Xt = ok|st = i) 1 ≤ i ≤ N (3.19)

• π = {πi}—An initial state distribution with

πi = P (s0 = i) 1 ≤ i ≤ N (3.20)
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Figure 3.5 A hidden Markov model example.

The following constraints must be satisfied:

aij ≥ 0, bi(k) ≥ 0, πi ≥ 0 ∀i, j, k (3.21)

N∑
j=1

aij = 1 (3.22)

M∑
k=1

bi(k) = 1 (3.23)

N∑
i=1

πi = 1 (3.24)

A complete specification of an HMM thus includes two constant-size parameters
N and M , representing the total number of states and the size of observation
alphabets, the observation alphabet O and three probability matrices: A, B
and π. The complete HMM can be denoted by

Φ = (A,B, π) (3.25)

The model described above is a first-order hidden Markov model and is governed
by two assumptions. The first is the Markov assumption as described for the
Markov chain

P (st|st−1
1 ) = P (st|st−1) (3.26)

with st−1
1 state sequence s1, s2, . . . , st−1. The second is the output independence

assumption
P (Xt|Xt−1

1 , st
1) = P (Xt|st) (3.27)
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with Xt−1
1 the output sequence X1, X2, . . . , Xt−1. The output-independence

assumption states that the probability that a particular symbol is emitted at
time t depends only on the state st and is conditionally independent of past
observations.

Given the definition of an HMM above, there are three basic problems that
need to be addressed.

1. The Evaluation Problem Given a model Φ and a sequence of obser-
vations X = (X1, X2, . . . , XT ), what is the probability P (X|Φ), i.e. the
probability that the model generates the observation?

2. The Decoding Problem Given a model Φ and a sequence of obser-
vations X = (X1, X2, . . . , XT ), what is the most likely state sequence
S = (s0, s1, s2, . . . , sT ) that produces the observation?

3. The Learning Problem Given a model Φ and a sequence of observa-
tions, how can the model parameter Φ̂ be adjusted to maximize the joint
probability

∏
X

P (X|Φ)?

To use HMMs for pattern recognition, the evaluation problem needs to be solved,
which will provide a method to determine how well a given HMM matches a
given observation sequence. The likelihood P (X|Φ) can be used to calculate
the a posteriori probability P (Φ|X), and the HMM with the highest probability
can be determined as the pattern for the best observation sequence. Solving the
decoding problem will make it possible to find the best matching state sequence
given an observation sequence (i.e. the hidden state sequence). This is essential
to automatic speech recognition. If the learning problem can be solved, model
parameter Φ can be automatically estimated from training data. The next three
subsections will focus in depth on the algorithms involved in solving these three
problems.

3.3.3 Evaluating HMMs

The most direct method of calculating the probability P (X|Φ) of the obser-
vation sequence X = (X1, X2, . . . , XT ), given the HMM Φ is to sum up the
probabilities of all possible state sequences:

P (X|Φ) =
∑
all S

P (S|Φ)P (X|S,Φ) (3.28)

Basically all possible state sequences S of length T that generate observation
sequence X are enumerated, after which the probabilities are summed. For a
particular state sequence S = (s1, s2, . . . , sT ), the state-sequence probability in
equation 3.28 can be rewritten by applying the Markov assumption:

P (S|Φ) = P (s1|Φ)
T∏

t=2

P (st|st−1,Φ)

= πs1as1s2 . . . asT−1sT
= as0s1as1s2 . . . asT−1st

(3.29)

with as0s1 denoting πs1 for simplicity. For the same state sequence S, the
joint probability in equation 3.28 can be rewritten by applying the output-
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independence assumption:

P (X|S,Φ) = P (XT
1 |sT

1 ,Φ) =
T∏

t=1

P (Xt|st,Φ)

= bs1(X1)bs2(X2) . . . bsT
(XT )

(3.30)

By substituting equations 3.29 and 3.30 into equation 3.28, equation 3.28 can
be rewritten as:

P (X|Φ) =
∑
all S

P (S|Φ)P (X|S,Φ)

=
∑
all S

as0s1bs1(X1)as1s2bs2(X2) . . . asT−1sT
bsT

(XT )
(3.31)

Direct evaluation of equation 3.31 is computationally infeasible, as it requires
the enumeration of O(NT ) possible state sequences. However, a simple and
efficient algorithm to evaluate equation 3.31 exists. This algorithm is referred
to as the Forward Algorithm and is described in table 3.1. The basic idea is to
store intermediate results and use them for subsequent state-sequence calcula-
tions. Let αt(t) be the probability that the HMM is in state i at time t, having
generated partial observation Xt

1 = X1, X2, . . . , Xt.

αt(i) = P (Xt
1, st = i|Φ) (3.32)

The calculation of αt(i) can be illustrated in a trellis, which is depicted in figure
3.6. This figure illustrates the computation of forward probabilities α in a trellis
framework for the stock market example, introduced previously in this section.
Inside each node is the forward probability corresponding to each state at time
t. Given two consecutive up days, the initial forward probabilities α at time
t = 1 are calculated as follows:

α1(i) = πibi(X1)
α1(1) = π1b1(X1) = (0.5) · (0.7) = 0.35
α1(2) = π2b2(X1) = (0.2) · (0.1) = 0.02
α1(3) = π3b3(X1) = (0.3) · (0.3) = 0.09

(3.33)

Table 3.1 The Forward Algorithm

Algorithm 3.1: The Forward Algorithm

Step 1: Initialization
α1(i) = πibi(X1) 1 ≤ i ≤ N

Step 2: Induction

αt(j) =
[ N∑

i=1

αt−1(i)aij

]
bj(Xt) 2 ≤ t ≤ T ; 1 ≤ j ≤ N

Step 3: Termination

P (X|Φ) =
N∑

i=1

αT (i)

If it is required to end in the final state P (X|Φ) = αT (sF )
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Figure 3.6 Forward trellis computation for the stock market example.

The forward probability at time t = 2 for state j = 1 is calculated as follows:

αt(j) =
[ N∑

i=1

αt−1(i)aij

]
bj(Xt)

α2(1) =
[ 3∑

i=1

α1(i)ai1

]
b1(X2)

=
(
α1(1)a11 + α1(2)a21 + α1(3)a31

)
b1(X2)

=
(
(0.35) · (0.6) + (0.02) · (0.5) + (0.09) · (0.4)

)
· (0.7)

= (0.256) · (0.7) = 0.1792

(3.34)

The forward probabilities for states j = 2, 3 at time t = 2 are found similarly:

α2(2) =
[ 3∑

i=1

α1(i)ai2

]
b2(X2)

=
(
α1(1)a12 + α1(2)a22 + α1(3)a32

)
b2(X2) = 0.0085

α2(3) =
[ 3∑

i=1

α1(i)ai3

]
b3(X2)

=
(
α1(1)a13 + α1(2)a23 + α1(3)a33

)
b3(X2) = 0.0357

(3.35)

When the states in the last column have been computed, the sum of all probabili-
ties in the final column is the probability of generating the observation sequence.
The complexity of the forward algorithm is O(N2T ) rather than exponential.

3.3.4 Decoding HMMs

The forward algorithm, as discussed in the previous subsection, computes the
probability of an HMM generating an observation sequence by summing up
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the probabilities of all possible paths. It does not, however, provide the best
path (i.e. state sequence). For many applications of HMMs, such as automatic
speech recognition, finding the best path is essential. The best path is the state
sequence that has the highest probability of being taken while generating the
observation sequence. Formally, this is the state sequence S = (s1, s2, . . . , sT )
that maximizes P (S,X|Φ). An efficient algorithm to find the best state sequence
for an HMM exists and is known as the Viterbi algorithm. The Viterbi algorithm
is described in table 3.2. In practice, this algorithm can also be used to evaluate
HMMs, as it offers an approximate solution close to the solution found using
the Forward algorithm. The Viterbi algorithm can be regarded as a modified
Forward algorithm. Instead of summing up probabilities from different paths
coming to the same destination state, the Viterbi algorithm picks and remembers
the best path. Let Vt(i) be defined as the probability of the most likely state
sequence at time t, which has generated the observation Xt

1 and ends in state i.

Vt(i) = P (Xt
1, S

t−1
1 , st = i|Φ) (3.36)

The Viterbi algorithm can be illustrated in a trellis framework similar to the
one for the Forward algorithm. Figure 3.7 illustrates the computation of Vt for
the stock market example as introduced previously. The number in each cell
indicates the best score Vt. The dark lines indicate the best path leading to
each cell. Initial values for Vt(i) are calculated as follows:

V1(i) = πibi(X1)
V1(1) = π1b1(X1) = (0.5) · (0.7) = 0.35
V1(2) = π2b2(X1) = (0.2) · (0.1) = 0.02
V1(3) = π3b3(X1) = (0.3) · (0.3) = 0.09

(3.37)

Table 3.2 The Viterbi Algorithm

Algorithm 3.2: The Viterbi Algorithm

Step 1: Initialization
Vi(i) = πibi(Xi) 1 ≤ i ≤ N

Bi(i) = 0
Step 2: Induction

Vt(j) = max
1≤i≤N

[
Vt−1(i)aij

]
bj(Xt) 2 ≤ t ≤ T ; 1 ≤ j ≤ N

Bt(j) = arg max
1≤i≤N

[
Vt−1(i)aij

]
2 ≤ t ≤ T ; 1 ≤ j ≤ N

Step 3: Termination

The best score = max
1≤i≤N

[
Vt(i)

]
s∗T = arg max

1≤i≤N

[
BT (i)

]
Step 4: Backtracking

s∗t = Bt+1(s∗t+1) t = T − 1, T − 2, . . . , 1
S∗ = (s∗1, s

∗
2, . . . , s

∗
T ) is the best sequence
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Figure 3.7 Viterbi trellis computation for the stock market example.

Subsequent values for Vt(i) are found as follows:

Vt(j) = max
1≤i≤N

[
Vt−1(i)aij

]
bj(Xt)

V2(1) = max
1≤i≤3

[
V1(i)ai1

]
b1(X2)

= max
1≤i≤3

[
V1(1)a11, V1(2)a21, V1(3)a31

]
b1(X2)

= max
1≤i≤3

(
(0.35) · (0.6), (0.02) · (0.5), (0.09) · (0.4)

)
· (0.7) = 0.147

(3.38)
V2(2) and V2(3) can be found similarly:

V2(2) = max
1≤i≤3

[
V1(i)ai2

]
b2(X2)

= max
1≤i≤3

[
V1(1)a12, V1(2)a22, V1(3)a32

]
b2(X2) = 0.007

V2(3) = max
1≤i≤3

[
V1(i)ai3

]
b3(X2)

= max
1≤i≤3

[
V1(1)a13, V1(2)a23, V1(3)a33

]
b3(X2) = 0.021

(3.39)

Calculation stops at time t = T . At this point the best state sequence S∗ can be
found using the backtracking pointer Bt(i), which holds the index of the state
with the best score Vt(i) in each column of the trellis.

3.3.5 Estimating HMM Parameters

Accurate estimation of model parameters Φ = (A,B, π) is the most difficult
of the three problems. The problem can be solved using an iterative algo-
rithm known as the Baum-Welch algorithm, sometimes also referred to as the
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forward-backward algorithm. The estimation of HMM parameters is a case of
unsupervised learning, for there is incompleteness of data caused by the hidden
state sequence of the HMM. An iterative algorithm for unsupervised learning
exists, known as the expectation maximization (EM) algorithm, on which the
Baum-Welch algorithm is based. It finds model parameter estimates by maxi-
mizing the log-likelihood of incomplete data and by iteratively maximizing the
expectation of log-likelihood from complete data.

Before the Baum-Welch algorithm can be described, it is necessary to define
βt(i), the backward probability as:

βt(i) = P (XT
t+1|st = i,Φ) (3.40)

This is the probability of generating partial observation XT
t+1 given that the

HMM is in state i at time t. The calculation of βt(i) can be performed induc-
tively, as shown in table 3.3. Given αt(i) and βt(i), it is now possible to define
γt(i, j), the probability of taking the transition from state i to state j at time
t, given the model and observation sequence.

γt(i, j) = P (st−1 = i, st = j|XT
1 ,Φ)

=
P (ss−1 = i, st = j, XT

1 |Φ)
P (XT

1 |Φ)

=
αt−1(i)aijbj(Xt)βt(j)

N∑
k=1

αT (k)

(3.41)

The calculation of equation 3.41 is illustrated in figure 3.8.
The HMM parameter vector Φ can be refined iteratively, by maximizing

the likelihood P (X|Φ) for each iteration. The new parameter vector derived
from Φ in the previous iteration, is denoted by Φ̂. In accordance with the EM
algorithm, the following function needs to be maximized:

Q(Φ, Φ̂) =
∑
all S

P (X,S|Φ)
P (X|Φ)

log P (X,S|Φ̂) (3.42)

Equation 3.42 can be rewritten as:

Q(Φ, Φ̂) = Qai(Φ, âi) +Qbj (Φ, b̂j) (3.43)

Table 3.3 Calculation of the backward probability.

Algorithm 3.3: Calculating The Backward Probability

Step 1: Initialization
βT (i) = 1/N 1 ≤ i ≤ N

Step 2: Induction

βt(i) =
[ N∑

j=1

aijbj(Xt+1)βt+1(j)
]

t = T − 1, . . . , 1; 1 ≤ i ≤ N
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Figure 3.8 Operations required to calculate γt(i, j).

with,

Qai(Φ, âi) =
∑

i

∑
j

∑
t

P (X, st−1 = i, st = j|Φ)
P (X|Φ)

log âij (3.44)

Qbj (Φ, b̂j) =
∑

j

∑
k

∑
t∈Xt=ok

P (X, st = j|Φ)
P (X|Φ)

log b̂j(k) (3.45)

Equations 3.44 and 3.45 are both of the form:

F (x) =
∑

i

yi log xi (3.46)

which achieves its maximum value at:

xi =
yi∑
i

yi

(3.47)

Thus,

âij =

1
P (X|Φ)

T∑
t=1

P (X, st−1 = i, st = j|Φ)

1
P (X|Φ)

T∑
t=1

P (X, st−1 = i|Φ)

=

T∑
t=1

γt(i, j)

T∑
t=1

N∑
k=1

γt(i, k)

(3.48)
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b̂j(k) =

1
P (X|Φ)

T∑
t=1

P (X, st = j|Φ)δ(Xt, ok)

1
P (X|Φ)

T∑
t=1

P (X, st = j|Φ)

=

∑
t∈Xt=ok

∑
i

γt(i, j)

T∑
t=1

∑
i

γt(i, j)

(3.49)

Comparable to the EM algorithm, the Baum-Welch algorithm guarantees a
monotonic improvement of the likelihood in each iteration. Eventually the
likelihood will converge to a local maximum. Table 3.4 lists the Baum-Welch
(Forward-Backward) algorithm. The algorithm, as listed, is based on a single
observation sequence, although in practice many observation sequences will be
used. The algorithm can easily be generalized to take multiple training obser-
vation sequences into account.

Table 3.4 The Forward-Backward Algorithm

Algorithm 3.4: The Forward-Backward Algorithm

Step 1: Initialization
Choose an initial estimate Φ.

Step 2: E-step
Compute auxiliary function Q(Φ, Φ̂) based on Φ.

Step 3: M-step
Compute Φ̂ according to the re-estimation equations 3.48 and 3.49
to maximize the auxiliary Q-function.

Step 4: Iteration
Set Φ = Φ̂, repeat from step 2 until convergence.

3.4 Acoustic Modeling

This section focuses on the application of hidden Markov models to modeling
human speech. First, the selection of appropriate modeling units will be de-
scribed, after which model topology will be discussed.

3.4.1 Selecting Model Units

When considering using hidden Markov models to model human speech, an
essential question is what unit of language to use. Several possibilities exist,
such as: words, syllables or phonemes. Each of these possibilities has advantages
as well as disadvantages. At a high level, the following criteria need to be
considered when choosing an appropriate unit:

• The unit should be accurate in representing the acoustic realization in
different contexts.

• The unit should be trainable. Enough training data should exist to prop-
erly estimate unit parameters.
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• The unit should be generalizable, so that any new word can be derived.

A natural choice to consider is using whole-word models, which have the advan-
tage of capturing the coarticulation effects inherent within these words. When
properly trained, word models in small-vocabulary recognition systems yield the
best recognition results compared to other units. Word models are both accu-
rate and trainable and there is no need to be generalizable. For large-vocabulary
continuous speech recognition, however, whole word models are a poor choose.
Given a fixed set of words, there is no obvious way to derive new words, making
word models not generalizable. Each word needs to be trained separately and
thus a lot of training data is required to properly train each unit. Only if such
training data exists, are word models trainable and accurate.

An alternative to using whole-word models is the use of phonemes. Eu-
ropean language, such as English and Dutch, typically have between 40 and
50 phonemes. Acoustic models based on phonemes can be trained sufficiently
with as little as a few hundred sentence, satisfying the trainability criterium.
Phoneme models are by default generalizable as they are the principle units all
vocabulary can be constructed with. Accuracy, however, is more of an issue, as
the realization of phonemes is strongly affected by its neighboring phonemes,
due to coarticulatory effects such as those described in chapter 2.

Phonetic models can be made significantly more accurate by taking con-
text into account, which usually refers to the immediate left and right neigh-
boring phonemes. This leads to biphone and triphone models. A triphone
phoneme model takes into consideration both its left and right neighbor phone
thus capturing the most important coarticulatory effects. Unfortunately train-
ability becomes an issue when using triphone models, as there can be as many
as 50× 50× 50 = 125, 000 of them.

3.4.2 Model Topology

Speech is a non-stationary signal that evolves over time. Each state of an HMM
has the ability to capture some stationary segment in a non-stationary speech
signal. A left-to-right topology thus seems the natural choice to model the
speech signal. Transition from left-to-right enable a natural progression of the
evolving signal and self-transition can be used to model speech features belong-
ing to the same state. Figure 3.9 illustrates a typical 3-state HMM common
to many speech recognition systems. The first state, the entry-state, and the
final state, the exit-state are so called null-states. These states do not have self
loops and do not generate observations. Their purpose is merely to concatenate
different models.

Figure 3.9 Basic structure of a phonetic HMM.
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The number of internal states of an HMM can vary depending on the model
unit. For HMMs representing a phoneme, three to five states are commonly
used. If the HMM represents a word, a significantly larger number of internal
states is required. Depending on the pronunciation and duration of the word,
this can be 15 to 25 states. More complex transitions between states than the
simple topology illustrated in figure 3.9 are also possible. If skipping states is
allowed, the model becomes more flexible, but also harder to train properly.

The choice of output probability function bj(x) is essential to good recog-
nizer design. Early HMM systems used discrete output probability functions in
conjunction with vector quantization. Vector quantization is computationally
efficient but introduces quantization noise, limiting the precision that can be
obtained. Most contemporary systems use parametric continuous density out-
put distributions. Multivariate Gaussian mixture density functions, which can
approximate any continuous density function, are popular among contemporary
recognition systems. Given M Gaussian mixture density functions:

bj(x) =
M∑

k=1

cjkN (x, µjk,Σjk) =
M∑

k=1

cjkbjk(x) (3.50)

with N (x, µij ,Σjk), or bjk(x), a single Gaussian density function with mean
vector µjk and covariance matrix Σjk for state j, M the number of mixture-
components and cjk the weight of the kth mixture component, which satisfies:

M∑
k=1

cjk = 1 (3.51)

3.5 Language Modeling

The purpose of the language model is to make an estimation of the probability
of a word wk in an utterance, given the preceding words W k−1

1 = w1 . . . wk−1.
A popular stochastic language model is the N-gram approach, in which it is
assumed that wk depends only on the preceding n− 1 words,

P (wk|W k−1
1 ) = P (wk|W k−1

k−n+1) (3.52)

N-grams are very effective in languages where word order is important and
strong contextual effects come from near neighbors. N-grams can be computed
directly from corpus data, so no formal grammar or linguistic rules are required.
The estimation of N-grams can be achieved by a simple frequency count. In the
case of trigrams (N = 3)

P̂ (wk|wk−1, wk−2) =
t(wk−2, wk−1, wk)

b(wk−2, wk−1)
(3.53)

where t(a, b, c) is the number of times the trigram a,b,c appears in the training
data and b(a, b) is the number of times the bigram a,b appears.

Unfortunately, when considering V words, there are a total of V 3 potential
trigrams, which, for even a modestly sized vocabularies, can easily be a very
large number. Many of these will not appear in the training data, or only very
few times. The problem is thus one of data sparsity. Several methods have been
developed to cope with this problem and will be discussed in detail in the next
chapter.
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3.6 Decoding

As was described in section 3.1, the aim of the decoder is to find the word
sequence Ŵ = w1, w2, . . . , wm with the maximum a posteriori probability
P (W|X) for the given acoustic observation X = X1, X2, . . . , Xn. Formulated
using Bayes’ decision rule:

Ŵ = arg max
W

P (W|X) = arg max
W

P (X|W)P (W)
P (X)

= arg max
W

P (X|W)P (W)

(3.54)
The unit of acoustic model can be a word model, phoneme model, or some
other type. If subwords models are used, they can be concatenated to form word
models, according to a pronunciation dictionary or lexicon. The language model
P (W), as introduced in the previous section, can be regarded as a network of
states, with each state representing a word. If the words are substituted by
the correct acoustic models, finding the best word sequence Ŵ is equivalent to
searching for an optimal path through this network.

In order to make searching for the optimal path efficient, two techniques
are commonly employed by search algorithms: sharing and pruning. Sharing
refers to keeping intermediate results, or intermediate paths, avoiding redun-
dant re-computation. Pruning means discarding unpromising paths without
wasting time in exploring them further. Search algorithms usually have a cost
function that needs to be minimized and logarithms are used to avoid extensive
multiplication. Equation 3.54 can thus be reformulated as:

Ŵ = arg min
W

C(W|X) = log
[

1
P (X|W)P (W)

]
= − log

[
P (X|W)P (W)

]
(3.55)

As was mentioned in section 3.3, the Viterbi algorithm is used for decoding.
Search algorithms based on the Viterbi algorithm have been applied successfully
to a wide range of speech recognition tasks. In the next subsection Time-
Synchronous Viterbi beam search will be discussed.

3.6.1 Time-Synchronous Viterbi Beam Search

When HMMs are used for acoustic models, the acoustic model likelihood can
be found using the Forward algorithm, introduced in section 3.3. All possible
state sequences must be considered:

P (X|W) =
∑

all possible sT
0

P (X, sT
0 |W) (3.56)

As the goal of decoding is to find the best word sequence, the summation in
equation 3.56 can be approximated with a maximization that finds the best
state sequence instead of the model likelihood. Equation 3.56 becomes:

Ŵ = arg max
W

P (X|W)P (W) ∼= arg max
W

{
P (W) max

sT
0

P (X, sT
0 |W)

}
(3.57)

Equation 3.57 is referred to as the Viterbi approximation. The Viterbi search
is sub-optimal. In principle the search results using the forward probability can
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be different from those using Viterbi, though in practice this is seldom the case.
The Viterbi search algorithm completely processes time t before moving on to
time t + 1. At time t, each state is updated by the best score from all states at
time t − 1. This is why the Viterbi search is time-synchronous. Furthermore,
the Viterbi search algorithm is considered a breadth-first search with dynamic
programming.

As was discussed in section 3.3, the computational complexity of the Viterbi
search is O(N2T ), with N the number of HMM states and T the length of
the utterance. In order to avoid examining an overwhelmingly large number of
possibilities, a heuristic search is required. A heuristic in the Viterbi algorithm
is the pruning beam. Instead of retaining all candidates at every time frame, a
threshold T is used to keep only a subset of promising candidates. The state at
time t with the lowest cost Dmin is first identified. Then each state at time t
with cost > Dmin + T is discarded from further consideration before moving on
to time frame t + 1. The beam search is a simple yet effective method of saving
computation with very little loss of accuracy. Combined with time-synchronous
Viterbi this leads to a powerful search strategy for large vocabulary speech
recognition.



Chapter 4

Key Challenges

Although having grown from a novelty in the research community to a major
field of research in many universities and companies alike, many problems re-
lated to speech recognition still exist. In a U.S. National Science Foundation
funded survey to identify key research challenges related to human language
technology [5], the following challenges were identified with regards to auto-
matic speech recognition:

1. Robustness

2. Portability

3. Adaptation

4. Language Modeling

5. Confidence Measure

6. Out-of-Vocabulary Words

7. Spontaneous Speech

8. Prosody

9. Modeling Dynamics

In this chapter an overview will be given of how three of these key research
challenges, robustness, adaptation and language modeling, have been addressed
in recent years.

4.1 Robustness

Today’s most advanced speech recognition systems can achieve very high ac-
curacy rates if trained for a particular speaker, in a particular language and
speaking style, in a particular environment and limited to a specific task. It
remains a serious challenge however to design a recognition system capable of
understanding virtually anyone’s speech, in any language, on any topic, in any
style in all possible environments. Thus, a speech system trained in a lab with
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clean speech may degrade significantly in the real world if the clean speech used
does not match the real-world speech.

Variability in the speech signal is a main factor involved in the mismatch
between training data and testing, as mentioned in chapter 1. Robustness in
speech recognition refers to the need to maintain good recognition in spite of
this. Over the years many techniques have been developed in order to obtain
robust speech recognition. Figure 4.1 shows a number of these techniques,
classified into two levels: the signal level and the model level [6].

In this section a model of the environment will be presented and some of the
techniques involved in making recognition robust will be discussed in detail.

Figure 4.1 Main methods to obtain robust speech recognition.

4.1.1 Variability in The Speech Signal

Variability in the characteristics of the speech signal has three components:
linguistic variability, speaker variability and channel variability [16].

Linguistic variability includes the effects of phonetics, phonology, syntax and
semantics on the speech signal. When words with different meanings have the
same phonetic realization, it becomes impossible for a recognition system to find
the correct sequence of words. Consider the example:

Mr. Wright should write to Mrs. Wright right away about his
Ford or four door Honda.

Wright, write and right are not only phonetically identical, but also semantically
relevant. The same is true for Ford or and four door.

Speaker variability refers to fact that every individual speaker is different
and will have a unique speech pattern. This is known as interspeaker variabil-
ity. Speakers can differ in a number of different ways. A person’s physical
constitution (age, health, size, lung capacity, the size and shape of the vocal
tract, etc.) will reflect the characteristics of his speech. Gender also plays an
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important role; the pitch of the female voice is in general significantly higher
than that of male speakers. Dialect speakers will use different phonemes to pro-
nounce a word than non-dialect speakers or use different allophones of certain
phonemes. Further, social environment, education and personal history will all
effect the manner in which a person speaks. Intraspeaker variability is caused
by the fact that even the same person will not be able to exactly reproduce
an utterance. This can be caused by a number of reasons such as fatigue and
difference in emotional state (irritated, frustrated). When speaking in a noisy
environment a person’s voice also tends to differ. This is called the Lombard
effect. In general, in such circumstances vowels will grow longer and much of
the voice’s energy will shift to higher frequencies.

Channel variability includes the effects of background noise, characteristics
of the microphone and channel distortion.

4.1.2 The Acoustic Environment

Three main sources of distortion to speech signals can be distinguished: addi-
tive noise, channel distortion and reverberation. Additive noise can be either
stationary or nonstationary. In contrast to stationary noise, nonstationary noise
has statistical properties that change over time. Examples of stationary noise
include fans running in the background, air conditioning, etc. Nonstationary
noise includes such things as door slams, radio, TV and other speakers’ voices.
Channel distortion can be caused by many things: the microphone being used,
the presence of electrical filters, properties of speech codecs, local telephone
lines, etc. Reverberation is also a main source of distortion. Acoustic waves
that reflect off walls and other objects can dramatically alter the signal.

To understand the degradation of the speech signal corrupted by additive
noise, channel distortion and reverberation, a model of the environment is pre-
sented [12]. This model is illustrated in figure 4.2. The relationship between
the clean signal and the corrupted signal in the time domain is given by:

y[n] = x[n] · h[n] + v[n] (4.1)

with x[n] the clean signal captured at the microphone, y[n] the corrupted signal,
v[n] any additive noise present at the microphone and h[n] a linear filter.

Figure 4.2 A model of the environment.

4.1.3 Adaptive Echo Cancellation

In a standard full-duplex speech recognition system, where a microphone is used
for a user’s voice input, and loudspeakers play back the input signal, it often
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occurs that the user’s voice is picked up by the microphone as it is output by
the loudspeakers and played back again after some delay. This problem can be
avoided with a half-duplex system that does not listen when a signal is output
through the loudspeakers. Systems with full-duplex capabilities are desirable,
so some form of echo cancellation is required. An echo canceling system can be
modeled as illustrated in figure 4.3. The return signal r[n] is the sum of speech
signal s[n] and the possibly distorted version d[n] of loudspeaker signal x[n].

r[n] = d[n] + s[n] (4.2)

The purpose of echo cancellation is to remove the echo d[n] from the return
signal. This is usually achieved with an adaptive finite impulse response (FIR)
filter whose coefficients are computed to minimize the energy of the canceled
signal e[n]. The most common algorithm used to update the FIR coefficients is
the least mean square (LMS) algorithm, variations of which include the normal-
ized LMS algorithm, the subband LMS algorithm and the block LMS algorithm.
The recursive least squares algorithm is also common, though computationally
more expensive than the LMS algorithm [12].

Figure 4.3 Echo canceling application.

4.1.4 Environment Compensation Preprocessing

In order to clean an acoustic signal of additive noise and channel distortion, a
number of different techniques can be used. These techniques can also be used to
enhance the signal captured from a bad source. As was mentioned in section 3,
feature vectors based on Mel-frequency cepstral analysis are common in speech
recognition. All techniques presented will be in the context of compensating for
the effects of noise on the cepstrum.

A simple and easy to implement method of reducing the effect of addi-
tive(uncorrelated) noise in a signal is spectral subtraction [12]. The basic idea
of spectral subtraction is to obtain an estimate of clean speech at the spectral
level by subtracting the noise estimation from noisy speech. Consider a clean
signal x[m], corrupted by additive noise n[m],

y[m] = x[m] + n[m] (4.3)

The power spectrum of output y[m] can be approximated by the sum of the
power spectra,

|Y (f)|2 ≈ |X(f)|2 + |N(f)|2 (4.4)
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It is possible to estimate |N(f)|2 by using the average periodogram over M
frames known to be just noise,

|N̂(f)|2 =
1
M

M−1∑
i=0

|Yi(f)|2 (4.5)

Spectral subtraction supplies an estimate for |X(f)|,

|X̂(f)|2 = |Y (f)|2 − |N̂(f)|2 = |Y (f)|2
(
1− 1

SNR(f)

)
(4.6)

with,

SNR(f) =
|Y (f)|2

|N̂(f)|2
(4.7)

Satisfactory results can be obtained using spectral subtraction, though an un-
desirable effect known as musical noise remains. Musical noise is noise con-
centrated in tones of varying and random frequencies. The concept of spectral
subtraction is constantly being improved upon and many variations exist.

Another powerful and simple technique to increase the robustness of speech
recognition is cepstral mean normalization (CMN) [12]. The basic idea is to
remove special characteristics of the current microphone and room acoustics by
subtracting the sample mean of the cepstrum from the input signal. Consider
a signal x[n]. Its cepstrum can be computed and a set of T cepstral vectors
X = {x0,x1, · · · ,xT − 1} obtained. The sample mean x is given by

x =
1
T

T−1∑
t=0

xt (4.8)

The normalized cepstrum vector x̂t can hence be found by

x̂t = xt − x (4.9)

Cepstral mean normalization has been found to provide significant robust-
ness when a system is trained on a certain microphone and tested on another.
It has also been found that using CMN can reduce error rates for utterances
within the same environment as well. This can be explained by the fact that
even when using the same microphone, conditions are never exactly the same.
Slight differences in room acoustics and differences in the exact distance between
mouth and microphone will always exist.

CMN is not suited for real-time systems because a complete utterance is
required to compute the cepstral mean. The CMN techniques can be extended
by making the cepstral mean xt a function of time [12]. The cepstral mean can
be computed by

xt = αxt + (1− α)xt−1 (4.10)

A set of techniques called RASTA also provide a real-time method of cepstral
mean normalization.

Gaussian Mixture Models can also be used to make speech signals environ-
mentally robust [12]. The probability distribution of the noisy speech signal y
can be modeled as a mixture of K Gaussians by
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p(y) =
K−1∑
k=0

p(y|k)P [k] =
K−1∑
k=0

N(y,µk,Σk)P [k] (4.11)

The key is to accurately estimate the parameters µk and Σk. Several efficient
algorithms for this exist [1] [2]. Other methods of signal preprocessing includes
techniques such as Frequency-Domain MMSE from Stereo Data and Wiener
Filtering [12].

4.1.5 Environmental Model Adaptation

Robust speech recognition can also be achieved by adapting the HMMs to noisy
conditions. Training a large-vocabulary recognition system requires a large
amount of training data, which is often not available for specific noise envi-
ronments. A possible solution is to corrupt the clean speech database with
sample sound data taken from a noisy environment and retraining the models.
Though it is hard to obtain samples that match the target environment exactly,
this adaptation technique nevertheless yields satisfactory results. If the vocab-
ulary is small enough, the retraining can also be done at runtime by keeping
the training data in memory.

If the training database is corrupted with noise files of different types and
signal-to-noise ratios, a multistyle training can be performed. In this case the
recognizer will be robust to varying noisy conditions because of the diversity of
the training data.

Besides retraining the HMMs by adding environment noise to the speech
training database, it is also possible to retrain using feature vectors that have
been compensated for distortion effects. The methods described earlier attempt
to remove noise and channel effects from the signal during recognition. Given the
fact that these techniques are not perfect, it makes sense to consider retraining
the HMMs with feature vectors that have been preprocessed.

By far the most popular method of environmental model adaptation is par-
allel model combination (PMC), which is a method to obtain the distribution
of noisy speech given the distribution of clean speech and noise as a mixture
of Gaussians [12]. Several variants of PMC exist, such as data-driven parallel
model combination.

Other adaptation methods include using vector Taylor series, which attempt
to model certain nonlinearities in the speech signal [12].

4.2 Adaptation

In order to make speech recognition systems robust against a continuously
changing environment, the use of adaptive techniques is essential. Adaptive
techniques are methods to improve the acoustic model accuracy without requir-
ing them to be fully retrained.

Adaptation methods can be either supervised or unsupervised [28]. In su-
pervised methods the training words or utterances are known to the system in
advance, in contrast to unsupervised methods where utterances can be arbi-
trary. Adaptation methods can be further classified as on-line or off-line. The
on-line methods are used incrementally as the system is in use, working in the
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background all the time. Off-line adaptation requires a new speaker to input a
certain, fixed amount of training utterances. This process is sometimes referred
to as enrollment [12], during which a wide range of parameters can be analyzed.
Each of these methods may be appropriate for a particular system, however the
most useful approach is on-line instantaneous adaptation. This approach is non-
intrusive and generally unsupervised; parameters can be modified continuously
while the user is speaking.

Two conventional adaptive techniques are maximum a posteriori probability
(MAP) estimation and maximum likelihood linear regression (MLLR) [9]. MAP
estimation can effectively deal with data-sparseness problems, as it takes advan-
tage of a priori information about existing models. Parameters of pretrained
models can be adjusted in such a way that the limited new data will modify
the model parameters guided by the a priori knowledge. Formally, an HMM is
characterized by a parameter vector Φ. The a priori knowledge about the ran-
dom vector is characterized by the a priori probability density function p(Φ).
With observation data X, the MAP estimate can be expressed as

Φ̂ = arg max
Φ

[
p(Φ|X)

]
= arg max

Φ

[
p(X|Φ)p(Φ)

]
(4.12)

A limitation of the MAP-based adaptation approach is that a significant amount
of new training data is still required, that is, only the model parameters that
are actually observed in the adaptation data can be modified.

The most important parameters to adapt, if continuous HMMs are used for
acoustic modeling, are the output probability Gaussian density parameters: the
mean vector and the covariance matrix. A set of linear regression transformation
functions can be used to map the mean and the covariance in order to maximize
the likelihood of the adaptation data. The MLLR method is effective for quick
adaptation as the transformation parameters can be estimated from a relatively
small data set. MLLR is used widely to adapt models to new speakers and new
environments. Formally, in the mixture Gaussian density functions, the kth
mean vector µik for each state i can be transformed using the equation

µ̃ik = Acµik + bc (4.13)

with Ac the regression matrix and bc an additive bias vector. Besides using
MAP and MLLR independently, it is also possible to combine the methods.
Satisfactory results can be obtained using this approach.

Another adaptive approach is clustering of similar speakers and environ-
ments in the training data [12] and building a set of models for each cluster
with minimal mismatch for different conditions. When there is enough train-
ing data and enough conditions are represented, significant robustness can be
achieved. It is possible to have clusters for different gender, different channels,
different speaking styles, etc.

To select the appropriate model in the recognition process, the likelihood
of the evaluation speech against all the models can be tested, after which the
model with the highest likelihood will be chosen. It is also possible to include
the computation of the likelihoods in the recognition system decoder.

Using gender-dependent models can improve the word recognition rate by
as much as 10%. More refined clusters can further reduce the error rate. The
success of clustering relies on properly anticipating the kind of environment and
its characteristics the system will have to deal with.
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4.3 Language Modeling

Language modeling in modern speech recognition systems is commonly based
on statistics rather than on linguistic theory. Stochastic language modeling
(SLM) employs statistical estimation techniques using language training data
(i.e. text). The quality of SLM has increased substantially over the past years,
as a considerable amount of text of different types has become available on-
line. In this section, two stochastic approaches will be discussed in more detail:
probabilistic context-free grammars and N-gram language models.

4.3.1 Probabilistic Context-Free Grammars

The context-free grammar (CFG), according to Chomsky’s formal language the-
ory, is a system of rules to represent an arbitrary sentence as a set of formal
symbols. It is defined as

G = (V, T, P, S) (4.14)

with V and T sets of symbols, P the set of production rules and S the start
symbol [12]. The process of mapping a sentence to a set of formal symbols
is called parsing. A parser systematically applies the production rules P to a
sentence to obtain a parse tree representation of it. The CFG has been around
since the 1950s and many parsing algorithms have been developed since. The
bottom-up chart parsing algorithm is among the state-of-the-art and found in
many spoken language understanding systems.

When the CFG is extended to include probabilities for each production rule,
a probabilistic CFG (PCFG) is obtained. The use of probabilities allows for a
better way to handle ambiguity and becomes increasingly important to correctly
applying the production rules when there are many to consider. Formally, the
PCFG is concerned with finding the probability of start symbol S generating
word sequence W = w1, w2 . . . wT , given grammar G

P (S ⇒ W |G) (4.15)

with ⇒ symbolizing one or more parsing steps. To determine the probabilities
of each rule in G, a training corpus is used. The simplest approach is to count
the number of times each rule is used in a corpus containing parsed sentences.
The probability of a rule A → α occurring is denoted as P (A → α|G). If there
are m rules for tree node A : A → α1, A → α2, . . . A → αm, the probability of
these rules can be estimated by

P (A → αj |G) = C(A → αj)/
m∑

i=1

C(A → αi) (4.16)

with C(. . .) the number of times each rule is used. The key to PCFG is the
correct estimation of the production rule probabilities and many sophisticated
estimation techniques have been developed.

4.3.2 N-gram Language Models

As mentioned earlier, a language model can be formulated as a probability
distribution P (W ) over word strings W that reflect how frequently W occurs
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as a sentence. P (W ) can be expressed as

P (W ) = P (w1, w2, . . . , wn)
= P (w1)P (w2|w1)P (w3|w1, w2) · · ·P (wn|w1, w2, . . . , wn−1)

=
n∏

i=1

P (wi|w1, w2, . . . , wi−1) (4.17)

with P (wi|w1, w2, . . . , wi−1) the probability that wi will follow, given word
sequence w1, w2, . . . , wi−1. In reality, P (wi|w1, w2, . . . , wi−1) is impossible to
estimate. For a vocabulary size V , there are a total of V i−1 possible histories
w1, w2, . . . , wi−1, most of which are unique or occur only a few times.

The N-gram language model assumes the probability of the occurrence of a
word depends only on the N−1 previous words. For instance, in a trigram model
P (wi|wi−2, wi−1) the word depends only on the previous two words. Unigram
and bigram language models can be expressed similarly.

The estimation of P (wi|wi−2, wi−1) is as straightforward as counting how
often the sequence (wi−2, wi−1, wi) occurs in a given training corpus and nor-
malizing by the number of times sequence (wi−2, wi−1) occurs

P (wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
(4.18)

with C(. . .) the frequency count of pair (wi−2, wi−1) and triplet (wi−2, wi−1, wi).
Consider the example sentence: John read her a book. I read a different book.
John read a book by Mulan. The symbol <s> marks the beginning of a sentence
and </s> the end of a sentence. P (John read a book) can be found by

P (John| <s>) =
C(<s>, John)

C(<s>)
=

2
3

P (read |John) =
C(John, read)

C(John)
=

2
2

P (a|read) =
C(read , a)
C(read)

=
2
3

P (book |a) =
C(a, book)

C(a)
=

1
2

P (</s> |book) =
C(book , </s>)

C(book)
=

2
3

Thus,

P (John read a book)
= P (John| <s>)P (read |John)P (a|read)P (book |a)P (</s> |book)
≈ 0.148

(4.19)

In this example the training data is extremely limited. Many new sentences will
have zero probability even though they are quite reasonable. Also, the N-gram
model is essentially blind to grammar. If N is small, grammatically incorrect
sentences can still be assigned high probabilities.

Data sparseness is a key problem in N-gram modeling. If the training corpus
is too small many possible word successions will not be observed, resulting in



42 4.3 Language Modeling

very small probabilities. Consider Mulan read a book from the previous example

P (read |Mulan) =
C(Mulan, read)∑
w

C(Mulan,w)
=

0
1

(4.20)

leading to P (Mulan read a book) = 0. Most state-of-the-art speech recognition
systems use some form of smoothing to handle this problem [12] [19]. In essence
smoothing is a technique to make distributions flatter, that is, adjusting low
and zero probabilities upward and high probabilities downward.

A simple smoothing technique is to pretend each bigram occurs once more
often than it actually does

P (wi|wi−1) =
1 + C(wi−1, wi)∑

wi

(1 + C(wi−1, wi))
=

1 + C(wi−1, wi)

V +
∑
wi

C(wi−1, wi)
(4.21)

with V the size of the vocabulary. Considering the previous example V is the set
of all occurring words, with V = 11, including <s> and </s>. The probability
of the sentence John read a book becomes

P (John read a book)
= P (John| <s>)P (read |John)P (a|read)P (book |a)P (</s> |book)
≈ 0.00035

(4.22)

The probability of sentence Mulan read a book becomes

P (Mulan read a book)
= P (Mulan| <s>)P (read |Mulan)P (a|read)P (book |a)P (</s> |book)
≈ 0.000084

(4.23)

Both estimations are much more reasonable than the initial maximum likelihood
estimates. In general, most existing smoothing algorithms can be described with
the following equation

Psmooth(wi|wi−n+1 . . . wi−1)

=
{

α(wi|wi−n+1 . . . wi−1) if C(wi−n+1 . . . wi) > 0
γ(wi−n+1 . . . wi−1)Psmooth(wi|wi−n+2 . . . wi−1) if C(wi−n+1 . . . wi) = 0

(4.24)
If an N-gram has a nonzero count the distribution α(wi|wi−n+1 . . . wi−1) is used.
Otherwise, a backoff occurs to the lower-order N-gram distribution
Psmooth(wi|wi−n+2 . . . wi−1) with γ(wi−n+1 . . . wi−1) a scaling factor to make
the conditional distribution sum to one.

Algorithms in this framework are called backoff models. The most popular
smoothing technique is Katz smoothing [12]. Other smoothing techniques are
Good-Turing estimates and Kneser-Ney bigram smoothing [12].

Many other language modeling methods exist [19] [28]. Adaptive language
models include cache language models, topic-adaptive models and maximum en-
tropy models. Models also exist based on decision trees and CART-style algo-
rithms. Other models include trigger models, trellis models, history models and
dependency models.



Chapter 5

The Hidden Markov Model
Toolkit

The Hidden Markov Model Toolkit (HTK) is a collection of programming tools
for creating and manipulating hidden Markov models (HMMs). The HTK is
primarily intended for speech recognition research, though can be used to create
HMMs that model any time series.

The HTK was developed at the Speech Vision and Robotics Group of the
Cambridge University Engineering Department (CUED) to build large vocab-
ulary speech recognition systems. All rights to sell HTK were acquired by
Entropic Research Laboratory Inc. in 1993 and full HTK development was
transferred to the Entropic Cambridge Research Laboratory Ltd, when it was
established in 1995. Microsoft bought Entropic in 1999 and licensed HTK back
to CUED in 2000. Microsoft retains the copyright to the HTK code, though it
is freely available for research purposes.

This chapter is intended to provide an overview of the HTK. In the following
sections the software architecture of the HTK will be described and an outline
will be given of the HTK tools and the way they are used to construct and test
HMM-based speech recognizers.

5.1 HTK Software Architecture

Essentially, the HTK consists of a number of tools, which realize much of their
functionality through a set of library modules. These modules are common
across the tools and ensure that each tool interfaces with the outside world in
exactly the same way. They also provide access to commonly used functions.
The software architecture of HTK is illustrated in figure 5.1. User I/O and in-
teraction with the operating system is controlled by module HShell and memory
management is controlled by HMem. Math support is provided by HMath and
signal processing operations are provided by HSigP.

Each of the files used by HTK has a dedicated interface module. HLa-
bel provides the interface for label files, HLM for language model files, HNet
for networks and lattices, HDict for dictionaries, HVQ for VQ codebooks and
HModel for HMM definitions.
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Figure 5.1 HTK software architecture.

Speech I/O is controlled by HWave at the waveform level and by HParm
at the parameter level. These modules support multiple types of audio data.
Direct audio input is supported by HAudio and simple graphics is provided by
HGraf. HUtil provides functionality for manipulating HMMs while HTrain and
HFB provides support for the HTK training tools. HAdapt provides support
for the HTK adaptation tools. Finally, HRec contains the main recognition
processing functions.

Figure 5.2 shows an example of how to run a typical HTK tool. All HTK
tools are run from a system command prompt and have optional and required
arguments. Optional arguments are prefixed by a minus sign and can have real
numbers, integers or string values associated with them. If an option name is
a capital letter, it is common across all the HTK tools. In the example the -T
option indicates the required level of tracing and the -S option indicates a script
file will be used to supply the tool with the required input files. The HTK text-
based command prompt interface has several benefits: it allows shell scripts to
control tool execution, which is useful when building large-scale systems that
require many files, and it allows details of system development and experiments
to be documented easily.

HVite -S lpcfiles.lst -i labels.mlf -T 01 -o S -w sabw0001.slf HMMList.txt

Figure 5.2 Running an HTK tool.

5.2 The Toolkit

In this section the HTK tools will be described. The tools are divided into four
categories that correspond with the three main phases involved in building a
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speech recognizer. These are:

1. Data preparation

2. Training

3. Evaluation (Testing & Analysis)

The various HTK tools and the processing phases are illustrated in figure 5.3.

Figure 5.3 HTK processing phases.

5.2.1 Data Preparation Tools

In order to build a speech recognizer a set of speech data files and associated
transcriptions are required. A typical database of audio files, referred to as a
corpus, will contain speech data recorded by many different speakers and is often
quite large. Before the corpus can be used to train HMMs it must be converted
to an appropriate parametric form and the transcriptions must be converted to
the correct format and use the required labels. HTK provides the HSlab tool to
record audio data and manually annotate it with appropriate transcriptions.

To parameterize audio HCopy is used. Essentially, HCopy performs a copy
operation on an audio file and converts it to the required parametric form while
copying. Besides copying the whole file, HCopy allows extraction of relevant
segments and concatenation of files by specifying appropriate configuration pa-
rameters. The tool HList can be used to check the contents of speech files and
parametric conversion.

Transcriptions usually need some further preparing, as the original source
transcriptions will not be exactly as required, for example, because of differences
in used phoneme sets. To convert transcriptions to HTK label format, HLed can
be used. HLed is a script-driven label editor and can output transcription files
to a single Master Label File (MLF).
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Other data preparation tools include HLStats, which can gather and display
statistic on label files and HQuant, which can be used to build a VQ codebook
for building discrete probability HMM systems.

5.2.2 Training Tools

The next step in building a speech recognizer is to define the topology of each
HMM in a prototype definition. The HTK allows HMMs to be built with
arbitrary topology. HMM prototype definitions are stored as text files and
can be edited with a simple text editor. The prototype definition is intended
only to specify the overall characteristics and topology of the HMM, as actual
parameters will be computed by the training tools. Sensible values must be
chosen for the transition probabilities, but the training process is very insensitive
to these. A simple strategy is to give all transition probabilities equal values.

The training of the HMMs takes place in a number of stages, as illustrated
in figure 5.4. The first stage is to create an initial set of models. If there is some
training data available for which the phone boundaries have been transcribed,
then this can be used as bootstrap data. In this case, the tools HInit and HRest
provide isolated word training using the bootstrap data. The HMMs are gener-
ated individually. HInit read in all the bootstrap data and cuts out examples of
the required phone, after which an initial set of parameters values is computed
iteratively using a segmental k-means procedure. On the first iteration, training
data is segmented uniformly, each model state is matched with corresponding
data segments and means and variances are estimated. In further iterations uni-
form segmentation is replaced by Viterbi alignment. After HInit has computed
the initial parameter values, they are further re-estimated by HRest. HRest also
uses the bootstrap data, but the segmental k-means procedure is replaced by
Baum-Welch re-estimation. If there is no bootstrap data available a flat start

Figure 5.4 Training HMMs.
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can be made. In this case HMMs are initialized identically and have state means
and variances equal to the global speech mean and variance. The tool HCompV
can be used for this.

Once an initial set of models has been created, the tool HERest is used to
perform an embedded training using the entire training set. HERest performs
a single Baum-Welch re-estimation of the whole set of HMM phone models
simultaneously. For each training utterance, the corresponding phone models
are concatenated and then the forward-backward algorithm is used to gather
the relevant statistics of state occupation, means, variance, etc., for each HMM
in the sequence. After all training data has been processed, the accumulated
statistics are used to compute re-estimates of the HMM parameters. HERest is
the main HTK tool and many options, such as pruning, can be set.

The HTK allows HMMs to be refined incrementally. Typically, single Gaussian,
context-independent models are created first. These can then be iteratively
refined by expanding them to include context-dependency (e.g. biphones, tri-
phones) and use multiple mixture component Gaussian distributions. The tool
HHed can be used to clone models into context-dependent sets and increment
the number of mixture components. Using the tools HEAdapt and HVite per-
formance for specific speakers can be improved by adapting the HMMs using a
small amount of adaptation data.

One of the biggest problems in creating context-dependent HMMs is insuffi-
ciency of training data. The more complex the model set, the more training data
is required, so that a balance must be struck between complexity and available
data. This balance can be achieved by tying parameters together, which allows
data to be pooled in order to robustly estimate shared parameters. HTK also
supports tied mixture and discrete probability systems. The tool HSmooth can
be used in these cases to address data insufficiency.

5.2.3 Testing Tools

The recognition tool provided by the HTK is called HVite. HVite uses an
algorithm called the token passing algorithm to perform Viterbi-based speech
recognition. As input, HVite requires a network describing the allowable word
sequences, a dictionary defining how each word is pronounced and a set of
HMMs. HVite will convert the word network to a phone network and attach
the appropriate HMM definition to each phone instance, after which recognition
can be performed on direct audio input or on a list of stored speech files.

The word network required by HVite can be a simple word loop or a finite-
state task grammar represented by directed graphs. In a simple word loop
network any word can follow any other word and bigram probabilities are nor-
mally attached to the word transitions. Network files are stored in HTK stan-
dard lattice format, which is text-based and can be edited with any text-editor.
HTK provides two tools to assist in building the networks: HBuild and HParse.
HBuild allows the creation of sub-networks that can be used in higher level net-
works and can facilitate the generation of word loops. HParse is a tool that can
convert networks written in a higher level grammar notation to HTK standard
lattice format. The higher level grammar notation is based on the Extended
Backus Naur Form (EBNF).

To see examples of the possible paths contained within a network, the tool
HSGen can be used. HSgen takes a network as input and will randomly traverse
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it and output word strings. These strings can be inspected to confirm the
network meets its design specifications.

The construction of large dictionaries can involve merging different sources
and performing various transformations on these sources. The tool HDMan can
assist in this process.

5.2.4 Analysis Tools

Analysing an HMM-based recognizer’s performance is usually done by matching
a set of transcriptions output by the recognizer with correct reference transcrip-
tions. The tool HResults can perform this comparison. It uses dynamic pro-
gramming to align the two transcriptions and counts substitution, deletion and
insertion errors. Optional parameters can be set to ensure that the HResults
output is compatible with standards set by the U.S. National Institute of Stan-
dards and Technology (NIST). HResults can also provide speakers-by-speaker
breakdowns, confusion matrices and time-aligned transcriptions.



Chapter 6

Developing Acoustic
Models

In this chapter the development of acoustic models for the Dutch language is
described. Several model sets will be presented: monophone phoneme models,
biphone phoneme models, word digit models and word alphabet models.

The target environment of the acoustic models is embedded systems, such
as PDAs and car navigation systems. This operating environment imposes
several restrictions on the acoustic models. Computational time and memory
are limited, thus the model sets need to be small and recognition time must be
short. These requirements are reflected in the nature of the acoustic models.
Biphones are used instead of triphones, as the number of models will be smaller,
and a single Gaussian output probability function is used instead of a more
sophisticated distribution.

With regard to the operating environment, robustness of the acoustic models
is also essential. A number of techniques are employed to achieve this. First, the
models are trained with speech files to which noise has been added. If the train-
ing noise accurately matches the noise conditions of the operating environment,
model performance in noisy conditions can improve significantly. Also, during
acoustic analysis, two environmental compensation techniques are applied to
enhance the speech files.

6.1 Overview

The development of acoustic models is performed in three phases: data prepa-
ration, training and evaluation. These are illustrated in figure 6.1. In the
data preparation phase, all data relevant to model training is selected and pre-
processed as required. The core data set is the speech corpus, which contains
speech samples recorded by many different speakers. Besides the corpus, there
are a number of files and parameters that need to be set up. The following steps
constitute the data preparation phase:

1. Selection and categorization of speech data from the Amsterdam corpus.

2. Resampling and noise mixing of speech data.
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3. Acoustic analysis of speech data (feature vector extraction).

4. Preparation of pronunciation dictionary.

5. Definition of HTK subwords.

6. Preparation of training network and training label files.

7. Preparation of HMM prototypes.

Data preparation is discussed in section 6.3. The second phase of acoustic
model development is the training phase. The training of the acoustic models
is discussed in section 6.4 and consists of the following steps:

1. Training of initial models.

2. Ten iterations of Baum-Welch re-estimation.

After model training, the models need to be evaluated and results need to be
analyzed. Model evaluation is discussed in section 6.5. The following steps
constitute the evaluation phase:

1. Preparation of evaluation network and evaluation labels.

2. Perform recognition on evaluation data.

3. Analysis of results.

After monophone phoneme models have been trained and evaluated, they are
expanded into context dependent models. This is discussed in section 6.6. The
final section of this chapter is concerned with the development of word digit
models and word alphabet models. First, the development environment is de-
scribed.

Figure 6.1 Three phases of model development.

6.2 Visual Acoustic Model Builder

The Visual Acoustic Models Builder (VAMB) is a framework around the HTK
designed to facilitate and simplify the development of acoustic models. In
essence, VAMB is a set of tools that manipulate training data and model files,
combined with a set of scripts that run the HTK commands. The VAMB is
illustrated in figure 6.2.

The core of the VAMB is a training configuration file, which contains all the
parameters relevant to the training of a particular model set. These parameters
include:
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• The type of acoustic models to train. Monophone, biphone, phonemic
based, word based, etc.

• The categories and location of the training data.

• The training data sample frequency, the type of noise and the signal-to-
noise ratio.

• The location of label files, network files and other model configuration
files.

• Various other parameters, such as the number of HERest iterations and
its update flags.

The configuration file is a simple text file which can be edited by hand or using
the MakeModelWizard, a graphical user interface to the VAMB. A screenshot
of the MakeModelWizard and a configuration file used to create monophone
phoneme models are provided in appendix B.

The model creation process is controlled by 21 Perl scripts that use the
parameters specified in the configuration file. The scripts are designed to au-
tomate a number of mundane tasks related to the training of acoustic models
with HTK, such as the creation of folders, copying files, etc. The scripts also

Figure 6.2 VAMB overview.
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manage the HTK tools, which usually have long lists of input files and require
many parameters to be set up. There are also a number auxiliary scripts within
the VAMB framework, designed to perform various other tasks related to the
model training process. An overview of the scripts and their purpose can be
found in appendix B.

Besides the scripts, VAMB consists of several tools, some of which are shown
in figure 6.2. The most important tools will be described in the relevant sections
of this chapter.

VAMB was first developed in 2001 to assist in the creation of acoustic models
with HTK. Over the years it has been revised, updated and added to.

6.3 Data Preparation

This section describes the steps required to prepare the data that is used to
train the Dutch acoustic models.

6.3.1 Corpus Information

The corpus of speech data used to train the Dutch acoustic models consists
of studio-quality recordings made in Amsterdam by 150 speakers. The speech
audio data is stored as 16-bit, mono, Intel PCM files (waveforms), sampled at
48 kHz.

Recording was done by 75 native Dutch speakers of each gender, originating
from different parts of the country, aged between 18 and 55. The speakers are
divided into several groups and the utterances are divided into several categories
as is illustrated in Table 6.1. Table 6.1 also shows the number of utterances per
category and the total number of utterances spoken by each speaker. The corpus
contains the following categories:

SABW (Specified Acevet Balanced Word) Mainly single word utterances with a bal-
anced phoneme distribution.

SALW (Specified Allophon Word) Single word utterances containing all phonemes at
least once.

SFQW (Specified Frequent Word) A selection of words common in the Dutch language.

EVW (Evaluation Word) A selection of words chosen for system evaluation.

CSD (Common Single Digit) Single digits between 0 and 9, 10 to 14 and tens from 10 to
90.

CCD (Common Connected Digit) Five digits spoken in sequence.

CSA (Common Single Alphabet) The Dutch alphabet.

SCA (Specified Connected Alphabet) Sequences of five letters.

SCD (Specified Connected Digit) Sequences of five numbers in the range 10 to 99.

Categories are either common or specified. Common categories contain utter-
ances spoken by all speakers in all groups, while specified categories contain
utterances that are unique to a particular speaker group.

The five speaker groups A, B, C, D and E each contain 15 speakers and are
distinguished by difference in utterances from the specified categories and by
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Table 6.1 Dutch language corpus.

ID SABW SALW SFQW EVW CSD CCD CSA SCA SCD

Total Specified Word Common Specified

A FH 453 0 0 0 145 25 26 29 100 128
A LH 453 0 0 0 145 25 26 29 100 128
B 575 327 39 30 0 25 26 29 35 64
C 575 327 39 30 0 25 26 29 35 64
D 575 327 39 30 0 25 26 29 35 64
E 574 327 39 30 0 25 26 29 34 64

Total 1308 156 120 145 100 104 116 139 256

A SABWA SALWA SFQWA EVW CSD CCD CSA SCAA SCDA
B SABWB SALWB SFQWB CSD CCD CSA SCAB SCDB
C SABWC SALWC SFQWC CSD CCD CSA SCAC SCDC
D SABWD SALWD SFQWD CSD CCD CSA SCAD SCDD
E SABWE SALWE SFQWE CSD CCD CSA SCAE SCDE

difference in speaking style. The speaking style relates primarily to the speed
at which the utterances are spoken. Six styles are distinguished in the corpus,
in a range between normal and fast.

The corpus is divided into training and evaluation speakers. Utterances
spoken by speakers from groups B, C, D and E are used in the training of the
acoustic models, while utterances spoken by speakers from group A are used for
evaluating the models. No utterances from the SABW, SALW and SFQW
categories are spoken by speakers in group A. Utterances from the evaluation
category EVW are spoken instead.

The corpus was designed specifically to train models for speech recognition
in car navigation systems and similar command based applications. This is
reflected in the nature of the recordings, which are mainly short words of one
or two syllables. There are also many recordings of digits.

Associated with the corpus is a corpus list file that contains a list of the
audio files and the utterances spoken within that file.

6.3.2 Resampling and Noise Mixing

Several operations are performed on the PCM speech data files before they are
used to train the acoustic models, as illustrated in figure 6.3. First the data is re-
sampled. The original files are sampled at 48 kHz, yet in the target environment
audio input is frequently sampled at lower rates. For car navigation systems the
audio data is resampled at 11 kHz. For mobile telephone applications a sample
rate of 8 kHz is used.

The next step is noise mixing of the audio data. A relatively simple method
to create robust acoustic models is to train them with audio data that has been
mixed with certain kinds of noise, as discussed in section 4.1. The type of
noise that will be used depends on the target environment. For car navigation
systems, car noise data will be mixed with the speech files. Though the car
noise data is recorded in a certain vehicle, with a certain engine type and other
specific acoustic characteristics, the addition of this noise nevertheless increases
the performance of the acoustic models when applied in other car environments.
For other environments, noise data recorded in an exhibition hall is used. This
noise data is referred to as Booth noise. The speech data and the noise can
be mixed at different signal-to-noise ratios, ranging from -5 dB to 20 dB. Both
noise mixing and resampling is performed using the tool NoiseMixerC.

The final step in the preparation of the speech data files is the acoustic
analysis.
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Figure 6.3 Audio data flow.

6.3.3 Acoustic Analysis

The purpose of the acoustic analysis is to transform the PCM speech data into a
parameterized form as was discussed in section 3.2. The discrete feature vectors
extracted from the waveform data consist of the following components:

• 10 static Mel-frequency cepstrum coefficients (MFCCs)

• 10 first order Mel-frequency regression coefficients (referred to as delta
coefficients)

• delta log of the signal energy

In the HTK these components are called streams. The process of obtaining the
21-dimensional acoustic feature vectors consists of three main stages, illustrated
in figure 6.4. In the first stage two filters are applied to the signal in the time
domain. The first, a DC-cut filter removes certain electrical properties from the
signal. The second, a pre-emphasis (or high-pass) filter is used to boost the
higher frequencies.

Figure 6.4 Acoustic analysis.
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In the second stage a 256 point Fast Fourier Transform is applied to the sig-
nal. Once the signal is represented in the spectral domain, continuous spectral
subtraction (CSS) is applied. Continuous spectral subtraction is a variant of
spectral subtraction, a simple method of removing noise by subtracting an es-
timate of the noise from the signal, described in section 4.1. The estimate is
obtained by calculating the mean of the first frames of the signal, which do not
yet contain speech information. In continuous spectral subtraction the mean is
updated each frame.

In the final stage, the mel-frequency cepstrum of the signal is obtained by
applying a 20 triangular bin filterbank, a log compression operation and a dis-
crete cosine transform (DCT) to the signal. In the log cepstral domain, a lifter
is applied to re-scale the cepstral coefficients to have similar magnitudes and
exact cepstral mean normalization (E-CMN) is performed. Similar to spectral
subtraction, cepstral mean normalization attempts to compensate for long term
effects caused by different microphones and audio channels, by computing and
the average of each cepstral coefficient and removing it from the signal. E-CMN
differs from CMN in that two mean vectors are used to normalize the signal
instead of one, one containing speech data and one containing non-speech data.
CMN was discussed in section 4.1. Because of the custom nature of the acoustic
analysis, a specially developed tool called AcousticAnalysisC11kHz is used to
perform the acoustic feature vector extraction. The acoustic feature vectors are
stored alongside the PCM files.

6.3.4 Pronunciation Dictionary

The pronunciation dictionary plays a role in determining the phonetic transcrip-
tion of words uttered by speakers in the training corpus. It is a text file with an
entry on each line, consisting of a headword followed by a phoneme sequence.
The pronunciation dictionary used to train the Dutch acoustic models was com-
piled from two different sources: the transcription information belonging to the
Dutch corpus and an off-the-shelf lexicon acquired from a company specialized
in speech technology. The two sources differ in phoneme definition and tran-
scription protocol, thus in order to merge them, they have to be transformed to
a common format.

The phoneme definition is given in tables 6.2 and 6.3, which list the Dutch
consonants and vowels respectively. Besides listing the phonemes in SAMPA
format, tables 6.2 and 6.3 also list the HTK subwords associated with them.
HTK subwords will be described in more detail in the next section.

Table 6.4 lists the total number of entries in the dictionary, along with the
number of entries that have multiple pronunciation candidates associated with
them.

6.3.5 HTK Subwords

The HTK subwords represent the actual hidden Markov models that will be
trained by the HTK. As is apparent from table 6.2 and table 6.3, the set of
phonemes is not mapped one-to-one to a set of subwords. There are several
reasons for this. First, if a certain phoneme is uncommon, it is possible that
there is limited or no speech data available to train a good model. In this
case it is sensible to choose a subword to represent this phoneme that is also
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Table 6.2 Dutch consonants.

Category SAMPA HTK Example Pronunciation
Plosive p p pak p A k

b b bak b A k
t t tak t A k
d d dak d A k
k k kap k A p
g g goal g o: l

Fricative f f f el f E l
v v vel v E l
s s sok s O k
z z zak z A k
x x toch t O x
G x goed x u t
h h hond h O n t
Z ge bagage b a: g a: Z @
S sj sjaal S a: l

Sonorant m m man m A n
n n non n O n
N ng bang b A N
l l lam, bal l A m, b A l
r r rand r A n t
w w weer w e: r
j j ja, haai j a:, h a: j

Table 6.3 Dutch vowels.

Category SAMPA HTK Example Pronunciation
Checked I i pit p I t

E e pet p E t
A a pak p A k
O o pot p O t
Y u put p Y t
@ sjwa gedoe G @ d u

Free i ie piet p i t
y uu fuut f y t
u oe voet v u t
a: aa paal p a: l
e: ee veel v e: l
2: eu beuk b 2: k
o: oo boot b o: t
Ei ei stij l, stei l s t Ei l
9y ui huis h 9y s
Au au rouw, rauw r Au w

Diphthong a:i aai draai d r a:i
o:i ooi mooi m o:i
ui oei roei r ui
iu ieu nieuw n iu
yu uw duw d yu
e:u eeuw sneeuw s n e:u

Marginal E: me crème k r E: m
9: meu freule f r 9: l @
O: mo zone s O: n @
e∼ e vin v e∼
a∼ a vent v a∼
o∼ o bon b o∼
9∼ u brun, parfum b r 9∼, p A r f 9∼
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Table 6.4 Dictionary

dictionary revision 0706
Total number of entries 16146
Total number of phonemes 51
Words with 1 variant 15672
Words with 2 variants 471
Words with 3 variants 3

used to represent a more common phoneme of similar sound. Table 6.3 shows
that there are four marginal vowels that have no unique subword associated
with them. Second, if two phonemes are very close in sound it makes sense
to train just one model for both of them. Table 6.2 shows that /x/ and /G/
both have the same subword associated with them. Third, it is sometimes
desirable to use two models to represent a certain phoneme. Diphthongs, for
instance, can be split into a vowel and a semivowel (or glide) part, such as the
Dutch phoneme /a:i/ which can be represented by the subword sequence aa
j. Finally, it is possible that a phoneme is represented by different subwords
in different circumstances. For example, different subwords can be chosen to
represent a phoneme, depending on its position within a word or depending on
the phonemes it is preceded or followed by.

The mechanism by which the mapping from SAMPA phonemes to HTK sub-
words takes place is in the form of Pronunciation to Subword (P2S) rules. The
P2S rules are specified in a text file, which contains four sections: a list of the
subwords, a list of the elements (i.e. SAMPA phonemes), a list of groups and a
list of rules. The rules are written in a simple syntax. Each line is a rule, start-
ing with an element sequence and ending with a subword sequence. Optionally,
context parameters, increment width and rule priorities can be specified. Table
6.5 shows an excerpt of the P2S rule file. The complete file can be found in
appendix B. Table 6.5 shows that /Y/ and /9∼/ are both mapped to subword
u, as is /2:/, but only if followed by /r/.

In total 47 models are defined, 21 models representing consonants, 25 models
representing vowels and a model representing pauses.

Table 6.5 Excerpt of P2S Rule file.

rule begin
p * : 1 p
x * : 1 x
G * : 1 x
Y * : 1 u
a: * : 1 aa
e: * : 1 ee
e: r : 1 i
2: * : 1 eu
2: r : 1 u
e∼ * : 1 e
a∼ * : 1 a
o∼ * : 1 o
9∼ * : 1 u
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6.3.6 Time Alignment Information

In order to obtain an initial set of models bootstrap data is used. As men-
tioned in chapter 5, bootstrap data is speech audio data for which the phone
boundaries have been indentified. The phone boundaries determine the start
and end positions of individual phones within a speech data file. The HTK will
determine initial values for the model parameters using this information.

For training the Dutch acoustic models, the bootstrap data is acquired by
using pre-existing acoustic models from other languages closely related to Dutch.
Using these foreign approximate HMMs, the HTK Viterbi recognizer will match
speech files against a word-level network and output a transcription for each file.
The transcriptions with associated time alignment information, are referred to
as label files. The foreign approximate models used were mainly of German and
English origin, although several French models were used as well.

Figure 6.5 illustrates the process of acquiring the time label files. The net-
work files need to be created first. The concept of a word network was briefly
described in chapter 5. The function of the network is to provide a grammar for
the HTK tool HVite to perform the time alignment. Table 6.6 lists an example
network for the Dutch words ‘tulp’ and ‘kijk een’. The networks are created by a
tool called HTKNetworkMaker. For each entry in the corpus list file, HTKNet-

Figure 6.5 Time alignment process.

Table 6.6 HTK network files.

( pau

((k ei k))

[ pau ] ((sjwa n))

pau )

( pau

((t u l sjwa p))

pau )
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workMaker will transcribe the word label associated with the speech data file
into a SAMPA phoneme sequence and, using the P2S rule mechanism, produce
a network file with HTK subwords in the required HTK network syntax.

Once the network files have been created, HVite will process all the speech
files in the training corpus and, using the associated network and the set of
foreign approximate HMMs, create the HTK label files. Example label files
belonging to the networks given in table 6.6 are listed in table 6.7. Once this
process is complete all speech files in the training corpus have time aligned label
files associated with them, thus the bootstrap data is the entire training corpus.

Table 6.7 HTK label files.

0 2793644 pau
2793644 3292509 k
3292509 5188196 ei
5188196 6185926 k
6185926 7383202 pau
7383202 8879797 sjwa
8879797 10276619 n

10276619 14566858 pau
0 2793644 pau

2793644 3392282 t
3392282 4190466 u
4190466 4589558 l
4589558 5387742 sjwa
5387742 6185926 p
6185926 10575938 pau

6.3.7 HMM Prototypes

In the final step of data preparation, the topology of the hidden Markov models
is defined. All models share a similar topology, they have an entry state, an exit
state and a number of states in between, depending on the phoneme the model
represents. Transitions are from left to right only and skipping of states is not
allowed. The output probability is determined by a single Gaussian density
function.

The initial HMMs, called the prototypes, are created with a tool called
HMMPrototype. HMMPrototype makes a separate file for each model and gives
default values to the transition and output probability parameters. All means
of the Gaussian density functions are set to 0 and the variances to 1.0. The
number of states of each model is specified by a prototype definition file, which
is listed in table 6.8. As is shown, most models have three emitting states. The
models with more emitting states are the pause model, pau, and the models for
the Dutch diphthongs, as these are longer sounds.

In the prototype HMM files only the basic structure of the HMMs is de-
fined: the number of states, number of mixes (Gaussian mixture components)
and number of streams (MFCC sets). The actual values of the parameters are
determined in the training phase, which will be discussed in detail in the next
section.
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Table 6.8 HMM emitting states.

Number of emitting states
pau 12 v 3 n 3 a 3 ee 3 oei 4
p 3 s 3 ng 3 o 3 eu 3 ieu 5
b 3 z 3 l 3 u 3 oo 3 uw 4
t 3 x 3 r 3 sjwa 3 ei 3 eeuw 5
d 3 h 3 w 3 ie 3 ui 3 me 3
k 3 ge 3 j 3 uu 3 au 3 meu 4
g 3 sj 3 i 3 oe 3 aai 5 mo 4
f 3 m 3 e 3 aa 3 ooi 5

6.4 Training

This section will cover the training of the HMMs. Training takes place in two
stages. First, initial estimates of the parameters of a single HMM are estimated
by the HTK tools HInit and HRest. In the second stage, whole sets of models
are re-estimated simultaneously by the Baum-Welch algorithm using the HTK
tool HERest.

The training of the models is split between male and female gender. In total
47 models will be trained for each. Splitting the models between the genders is
a form of clustering. Clustering will be described in more detail in chapter 7.

The training data consists of speakers from groups B, C, D and E; 60 speakers
in total per gender. The corpus category SABW is used to train the phonemic
based models, with 1308 utterances divided over the four speaker groups. Thus,
a total of 19,620 utterances per gender is used in the training process.

6.4.1 Initial Models

The training process is illustrated in figure 6.6. Before applying the Baum-
Welch algorithm to train the acoustic models, it is necessary to provide initial
values for the model parameters. The choice of initial parameters is important
as the HMMs are sensitive to them. To provide the initial parameters HInit
and HRest are used. HInit uses the bootstrap data as described in the previ-
ous section, illustrated in figure 6.6. The label files provide phone boundary
information which HInit uses to ‘cut out’ instances of each phone from para-
meterized speech data. Using a segmental k-means procedure HInit calculates
initial means and variances for the models. In further iterations k-means is re-
placed by Viterbi alignment. HInit runs with an option to limit the maximum
number of estimation cycles to 20. The output of HInit is input to HRest which
further re-estimates the model parameters. HRest is similar to HInit in that
it uses the time aligned label files to estimate the parameters of each model
individually. Instead of the segmental k-means procedure however, HRest uses
the Baum-Welch algorithm. The output of HRest is input to HERest

6.4.2 Embedded Re-estimation

The main HTK training tool is HERest, as discussed in chapter 5. Once ini-
tial values have been estimated for the model parameters, HERest performs
an embedded re-estimation using the entire training set. This re-estimation is
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Figure 6.6 Model training overview.

performed by the Baum-Welch algorithm, using transcription label files without
time alignment information. For each training utterance, the relevant phoneme
models are concatenated into a composite model, for which HERest simultane-
ously updates all parameters by performing a standard Baum-Welch pass. This
process is performed in two steps:

1. Each input data file contains training data which is processed and the
accumulators for state occupation, state transition, means and variances
are updated.

2. The accumulators are used to calculate new estimates for the HMM pa-
rameters.

HERest provides several optimizations to improve the speed of the training
process. It is capable of pruning the transition and output probability matrices,
thus also achieving a reduction in memory usage. It is also possible to operate
HERest in parallel mode. When running in parallel, the training data is split
into groups, which HERest can process individually. Accumulators for each
group are stored into files. When all groups are processed, the accumulators are
combined into a single set and used to calculate new estimates for the HMM
parameters.

When an HERest process is completed, the set of acoustic models is fully
trained. The training of models with HERest is performed a total of ten times,
each trained set of models from one iteration forming the input for the next
as initial models. The final HMMs are saved as simple text files, an example
of which is included in appendix B. In the next section the evaluation of the
acoustic models will be described.

6.5 Evaluation

As mentioned before, the Dutch language corpus contains utterances from a
total of 75 speakers of each gender, 60 of which are used to train the Dutch
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acoustic models. The final 15 speakers from each gender are used as evaluation
speakers. The training is both category closed as well as speaker closed. That
is, no category of utterances from the corpus used in training, is used in evalu-
ation and no group of speakers used in training the acoustic models, is used in
evaluating them.

The category used for training is the SABW category, which contains ut-
terances spoken by speakers from groups B, C, D and E. The category used for
evaluating the models is the EVW category, which contains utterances spoken
by speakers from group A. The EVW category consists of 145 utterances.

Recognition of the evaluation speech data is performed by the HTK recog-
nition tool HVite. The process is much similar to that of the creation of time
label files as was described earlier. It is controlled by a recognition network, a
dictionary and a set of HMMs. The process is illustrated in figure 6.7 and will
be described in detail in the rest of this section.

Figure 6.7 Overview of the evaluation process.

6.5.1 Data Preparation

The networks are created by a tool called HTKNetworkMaker, as mentioned in
a previous section. For each entry in the corpus list file, HTKNetworkMaker
will transcribe the word label associated with the speech data file into a SAMPA
phoneme sequence and, using the P2S rule mechanism, produce a network file
with HTK subwords in the required HTK network syntax. The recognition net-
work is a simple word network as listed in table 6.9. If the network is large,
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Table 6.9 HTK evaluation network.

( SIL

( aankoop ) |
( aardappel ) |
( plant ) |
( beker ) |
( aardbei ) |
( arbeider ) |
( aandacht ) |
( aardbeving ) |
( technisch ) |
( diploma ) |
... |

SIL )

HVite can perform pruning. Pruning is a method of reducing required com-
putation. This is done by dismissing paths through the network with a log
probability that falls below a certain threshold, called the beam-width. Besides
the network, the evaluation labels have to be created. The evaluation labels are
reference labels that, in order to calculate the model performance, are compared
to the labels that HVite will output as recognition results. Sample evaluation
labels are listed in table 6.10. The job of the decoder is to find those paths
through the network which have the highest log probability. For all evalua-
tion utterances HVite will output an answer label file containing the recognized
word, its boundaries and its recognition probability. Example answer labels are
listed in table 6.11.

Table 6.10 HTK evaluation label files.

0 0 aankoop
0 0 aardappel
0 0 plant

Table 6.11 HTK answer label files.

frames label log probability
3092963 10875257 aankoop -4959.134766
3192736 10875257 aardappel -5024.846191
2993190 8181386 plant -3352.746582

6.5.2 Recognition Results

Once the evaluation data has been processed by the recognizer, the next step
is to analyze the results. The analysis is performed by the HTK tool HResults.
HResults compares the answer labels, as they are output by HVite with the
evaluation labels, which contain transcriptions of the utterances as they should
have been recognized. The comparison is performed using dynamic program-
ming. Once HResults has found the optimal alignment between answer labels
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and reference labels, the number of substitution errors (S), deletion errors (D)
and insertion errors (I) can be calculated. The percentage of correctly recog-
nized word is:

Percent correct =
N −D − S

N
× 100% (6.1)

with N the total number of labels in the reference transcription. This measure
ignores insertion errors. The the total model accuracy is defined as:

Percent accuracy =
N −D − S − I

N
× 100% (6.2)

Every set of models obtained in the iterations of HERest is evaluated. The best
models are often not found in the final iteration. This can be explained by the
fact that the more HERest iterations are performed, the greater the risk of over
training the acoustic models. The models are over trained when their output
probabilities will match the training data with great accuracy but will match
less well to any new speech data. Hence the final models are selected from the
best iteration.

Table 6.12 shows the final results of the Dutch monophone phoneme models.
Two sets of models were trained, mixed with different kinds of noise at different
signal-to-noise ratios. These models were trained in version 1.2 of the VAMB
environment. The results are the effect of various different training cycles all
with different configurations of the training and model parameters.

The monophone models form a basic set of Dutch acoustic models. The next
section will explain how these models are expanded to biphone models to take
into account the effects of context dependency.

Table 6.12 Model 400 results.

Model
Model Name Model 400
Created 01-Mar-04

Training Information
Category SABW
Noise Kind Booth2
SNR 20 dB
VAD n/a

Results
HVite Female Male Average

92.42 90.37 91.40
VV100 Female Male Average

n/a n/a n/a

Model
Model Name Model 400
Created 05-Mar-04

Training Information
Category SABW
Noise Kind NAT Car
SNR -5 dB
VAD n/a

Results
HVite Female Male Average

75.31 71.11 73.21
VV100 Female Male Average

n/a n/a n/a

6.6 Context Dependent Models

Monophone models do not accurately reflect the nature of human speech. As
was described in chapter 2, the realization of a phoneme depends greatly on
its context, that is, preceding and following sounds. To better model human
speech, it is necessary to include context into the design of acoustic models.

A common technique is to use triphone models. Triphone models contain a
core phoneme and left and right contexts. Using triphones has several limita-
tions. First, to consider all phonemes in all possible contexts requires a great
many triphones to be created. This has severe effects on the memory con-
sumption and computational speed of the recognizer. Second, to train triphone
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models properly a considerable amount of training data is required. Usually in
the design of triphones, the problem of data sparsity is taken care of by a variety
of techniques including smoothing, parameter tying and model clustering.

In embedded environments, such as car navigation systems, the memory and
computational power limits the total number of models a system can handle. A
good alternative to using triphones to model context dependency, is the use of
biphones.

The rest of this section will describe the process of creating and training a
biphone phoneme acoustic model set for the Dutch language.

6.6.1 Biphone Models

To expand monophone models into biphones, a tool called HMMChanger is
used. Essentially, HMMChanger combines two monophone models into one
biphone model, for all possible combinations of monophones. This is done by
splitting the monophone models. The exact mechanism by which this in done is
proprietary to Asahi Kasei and will not be discussed. The naming convention
of a biphone model is leftMonophone rightMonophone. Figure 6.8 illustrates
the creation of the biphone model a r from the monophone models a and r. An
example of a biphone transcription using HTK subwords is given in table 6.13.

Figure 6.8 Creation of biphone models.

Table 6.13 Transcription of the Dutch word ‘tulp’ using biphones.

pau pau t t t u u u l l l sjwa sjwa sjwa p p p pau pau

6.6.2 Training

The biphone models are trained similar to the monophone models. As the
initial models are already created using the monophones, only an embedded
re-estimation is performed. In total, HERest runs for ten iterations, the output
of each iteration forming the input of the next. As was mentioned before,
HERest requires transcription information of all training data in the form of
label files, but does not require time alignment information. The label files for
the biphone training are obtained from the monophone label files using the tool
Uni2AceLabelChanger, which changes the monophone labels to biphone labels
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using a configuration file. The configuration file simply lists all biphone models
and which two monophone models are used to create them. Table 6.14 lists two
biphone label files belonging to the Dutch words ‘tulp’ and ‘kijk een’.

The corpus training categories used to train the biphone models are the
same as those used to train the monophone models. A distinction is also made
between male and female models. In total 2255 models are trained for each
gender. This number is the sum of all combinations of monophones (472) and
the 47 stable parts (47). Subtracted from this is the model pau pau, which is
not trained.

Table 6.14 HTK biphone label files.

0 0 pau
0 0 pau t
0 0 t
0 0 t u
0 0 u
0 0 u l
0 0 l
0 0 l sjwa
0 0 sjwa
0 0 sjwa p
0 0 p
0 0 p pau
0 0 pau
0 0 pau
0 0 pau k
0 0 k
0 0 k ei
0 0 ei
0 0 ei k
0 0 k
0 0 k pau
0 0 pau
0 0 pau sjwa
0 0 sjwa
0 0 sjwa n
0 0 n
0 0 n pau
0 0 pau

6.6.3 Recognition Results

The biphone models are evaluated in much the same way as the monophone
models. The evaluation network, the evaluation labels and the noise conditions
are all the same. All ten HERest iterations are evaluated. Table 6.15 shows the
final results of the Dutch biphone phoneme models. Two sets of models were
trained, mixed with different kinds of noise at different signal-to-noise ratios.
The final results are the effect of various different training cycles, with different
configurations of the training and model parameters.
The final section of this chapter covers the creation of monophone word models
for the recognition of the Dutch digits and the Dutch alphabet.
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Table 6.15 Biphone 400 results.

Model
Model Name Biphone 400
Created 01-Mar-04

Training Information
Category SABW
Noise Kind Booth2
SNR 20 dB
VAD NORMAL

Results
HVite Female Male Average

96.77 96.55 96.66
VV100 Female Male Average

97.69 96.78 97.21

Model
Model Name Biphone 400
Created 05-Mar-04

Training Information
Category SABW
Noise Kind NAT Car
SNR -5 dB
VAD HIGHEST

Results
HVite Female Male Average

86.29 82.57 84.43
VV100 Female Male Average

81.63 79.79 80.60

6.7 Word Models

In this section the creation of two more model sets will be described: models for
recognition of Dutch digits and models for recognizing the Dutch alphabet. In
contrast to previously created models, these models are word based. For each
digit and each letter of the alphabet there is a unique model.

The process of training the word models is similar to that of training the
phonetic based acoustic models. Although isolated word recognition is much
simpler and less powerful than phonemic based recognition, it is well suited for
command based environments, such as car navigation systems. The restricted
vocabulary allows digits to be recognized with a high degree of accuracy.

6.7.1 Digit Models

The corpus training category to train the digit models is the CCD category.
There are 26 utterances in this category, each utterance consists of five dig-
its spoken consecutively. Speaker groups B, C, D and E contain the training
speakers, 60 for each gender, making a total of 1560 training utterances per
gender. Evaluation is done by 15 speakers from speaker group A, each speaking
26 utterances.

Table 6.16 lists the models that are trained as well as the model topology.
The recognition network is given in table 6.17. It is a simple word loop network
that specifies that any of the digits can be spoken, any number of times, with
or without a pause in between. Recognition results are listed in table 6.18.

Table 6.16 Digit model topology.

Number of emitting states
pau 12 vijf 17
nyl 12 zes 19
een 11 zeven 17
twee 15 acht 16
drie 11 negen 16
vier 15
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Table 6.17 Digit 500 evaluation network.

$digit = ( nyl | een | twee | drie | vier | vijf | zes | zeven | acht | negen );

( SIL [pau] $digit SIL )

Table 6.18 Digit 500 results.

Model
Model Name Digit 500
Created 01-Mar-04

Training Information
Category CCD
Noise Kind Booth2
SNR 20 dB
VAD NORMAL

Results
HVite Female Male Average

95.36 97.16 96.26
VV100 Female Male Average

93.31 96.40 94.73

Model
Model Name Digit 500
Created 03-Mar-04

Training Information
Category CCD
Noise Kind NAT Car
SNR -5 dB
VAD HIGHEST

Results
HVite Female Male Average

60.58 69.83 65.21
VV100 Female Male Average

42.53 64.65 53.20

6.7.2 Alphabet Models

The corpus training category to train the alphabet models is the CSA category.
Each utterance is a letter from the Dutch alphabet. Speaker groups B, C, D and
E contain the training speakers, 60 for each gender, each speaking 29 utterances.
This makes a total of 1740 training utterances per gender. Evaluation is done
by 15 speakers from speaker group A, each speaking 29 utterances.

Table 6.19 lists the models that are trained as well as the model topology.
The Dutch language contains four different possibilities for expressing ‘y’. These
are IJ, i-grec, griekse-y and ypsilon. Recognition results are listed in table 6.20.

Table 6.19 Alphabet model topology.

Number of emitting states
pau 12 F 13 L 10 R 9 X 16
A 9 G 13 M 10 S 14 IJ 10
B 11 H 11 N 10 T 10 Z 15
C 13 I 7 O 9 U 7 i-grec 18
D 11 J 12 P 9 V 13 griekse-y 25
E 9 K 10 Q 8 W 12 ypsilon 20
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Table 6.20 Alphabet 120 results.

Model
Model Name Alphabet 120
Created 27-Feb-04

Training Information
Category CSA
Noise Kind Booth2
SNR 20 dB
VAD NORMAL

Results
HVite Female Male Average

93.33 94.94 94.14
VV100 Female Male Average

93.33 93.56 93.10

Model
Model Name Alphabet 120
Created 03-Mar-04

Training Information
Category CSA
Noise Kind NAT Car
SNR -5 dB
VAD NORMAL

Results
HVite Female Male Average

82.76 80.00 81.38
VV100 Female Male Average

80.95 83.77 82.10





Chapter 7

Advanced Topics

In this chapter a number of techniques will be discussed related to the optimiza-
tion of the acoustic models developed for the Dutch language. These techniques
are: use of acoustic visualization, adding Gaussian mixture components and
reduction of the number of biphones.

7.1 Acoustic Visualization

Demand for practical application of HMM-based speaker-independent auto-
matic speech recognition continues to grow each year. Very satisfactory results
can be achieved with the current generation of speech recognition software, yet
high results are usually restricted to a relatively small group of speakers, that
speak in an ideal manner, that is, close to the speakers of the development set.
Furthermore, variation in ambient noise can severely affect recognition perfor-
mance. In section 4.1 variability in the speech signal is discussed in detail.

Completely speaker-independent speech recognition is thus yet to be achieved.
There are several speaker-adaptation methods that enable the recognition rate
to increase given some sample data by a particular speaker. The most common
techniques developed for this purpose, based on MAP estimation and MLLR
were discussed in section 4.2. It is, however, often difficult to obtain a sufficient
amount of voice samples. Users find it troublesome to spend a lot of time ‘train-
ing’ a system to recognize their voice and are often unmotivated for this task.
A typical user expects a speech recognition system to provide high recognition
from the moment of first activation.

An alternative approach to adaptation is the use of a library of acoustic mod-
els [21] corresponding to all possible variability in the speech signal as described
in section 4.1. A speech recognition system could potentially select the most
appropriate acoustic models from the library depending on the circumstances.
The acoustic models in the library can compensate for differences among human
speakers, but can also contain models for varying environmental circumstances.
In car navigation systems different acoustic models can correspond with different
engine types and other kinds of noise.

The development of acoustic models is not a trivial task and developers
are scarce. Developing acoustic models requires a high level of expertise and
advanced knowledge of hidden Markov models. This section introduces a visu-
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alization system that provides a two-dimensional visualization of the acoustic
space, which facilitates the construction of advanced acoustic model libraries by
developers that can use visual cues for classification of acoustic models.

7.1.1 COSMOS

In order to increase the accuracy of acoustic models, it is essential to comprehend
the configuration of the acoustic space formed by the voice and noise signals as
processed by a speech recognition system. This can be achieved by visualization
of multidimensional acoustic information mapped onto a space of lower order,
using a process referred to as Multidimensional Scaling (MDS). A visual map-
ping onto a two-dimensional space using the MDS method, typically involves
approaches based on principal component analysis, discriminative analysis and
others. All techniques, however, perform two-dimensional projections of multi-
dimensional vectors and are thus not suitable for projection of multidimensional
Gaussian distributions, such as those used in acoustic models.

A technique developed by Shozokai [21] at Asahi Kasei, does allow for HMMs
to be mapped onto a two-dimensional space. This is a nonlinear projection
technique based on the Sammon method [20]. In general, an acoustic model
set is regarded as consisting of multiple acoustic models. The distance D(i, j)
between acoustic model set i and j is defined as follows:

D(i, j) ≡ 1
K

K∑
k=1

d(i, j, k) · w(k) (7.1)

with K the total number of acoustic models, d(i, j, k) the mutual distance be-
tween acoustic model k within model set i and the acoustic model k within model
set j and w(k) the occurrence frequency of acoustic model k. The resulting rep-
resentation is referred to as the Acoustic Space Map Of Sound (COSMOS). An
acoustic model set projected onto the COSMOS is referred to as a STAR. Using
the Euclidean distance of mean vectors normalized by variance vectors, d(i, j, k)
can be expressed as:

d(i, j, k) =
1

S(k)

S(k)−1∑
s=0

1
L

L−1∑
l=0

(
µ(i, k, s, l)− µ(j, k, s, l)

)2

σ(i, k, sl) · σ(j, k, s, l)
(7.2)

with µ(i, k, s, l) and σ(i, k, s, l)2 the mean and variance vectors of dimension l
for state s of acoustic model k within acoustic model set i, S(k) the number
of states of acoustic model k and L the number of dimensions of the acoustic
models.

The plotting of the two dimensional position of each acoustic model results in
a COSMOS map. Several COSMOS maps are illustrated in the next subsection.

7.1.2 COSMOS Maps

In figure 7.1 the acoustic space of the Dutch digit category common connected
digit (CCD) is plotted on a COSMOS map. Each STAR corresponds to a
particular speaker. There are 75 female speakers, represented by red dots, and
75 male speakers, represented by blue squares. What is immediately apparent,
is that there are two very distinct clusters, corresponding to each gender. An
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Figure 7.1 Cosmos CCD female and male.

obvious separation in two dimensional space also means a separation in the
multi dimensional space. This supports the fact that a model set is created for
each gender, as was discussed in chapter 6.

The information contained within the COSMOS map of figure 7.1 can also be
used to decide which of the speakers will be designated as training and which
as evaluation speakers. The COSMOS maps show the distribution of all the
speakers in two dimensional space and thus training and evaluation speakers
can be chosen so as to be properly distributed across the map.

Using COSMOS maps different properties of acoustic models can be inves-
tigated:

• Gender. In accordance with figure 7.1, plotting male and female acoustic
model in the same map usually shows two distinct clusters, one for each
gender.

• Signal-to-noise ratio. Voice data contaminated with noise at varying
signal-to-noise ratio (SNR) shows up in different cluster on the COSMOS
map.

• Task. Acoustic models created to recognize digits will show up on a dif-
ferent part of the map if plotted together with models created for another
task, such as recognizing the alphabet.

• Speaking style. Whispering or speaking at higher pitch, for example,
leads to distinctive clusters on a COSMOS map.
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7.2 Multiple Mixture Components

The acoustic models developed for the Asahi Kasei VORERO middleware plat-
form, use a single Gaussian density function as output probability function, as
was discussed in 1. This restriction is based on the computational expense re-
lated to the more complex multivariate Gaussian mixture density functions. The
HTK software, however, is not limited to the single Gaussian as output prob-
ability function, and it is interesting to see how the acoustic models perform
using a different number of mixture components.

The multivariate Gaussian mixture output probability function is described
as follows. Given M Gaussian mixture density functions:

bj(x) =
M∑

k=1

cjkN (x, µjk,Σjk) =
M∑

k=1

cjkbjk(x) (7.3)

with N (x, µij ,Σjk), or bjk(x), a single Gaussian density function with mean
vector µjk and covariance matrix Σjk for state j, M the number of mixture-
components and cjk the weight of the kth mixture component, which satisfies:

M∑
k=1

cjk = 1 (7.4)

Figure 7.2 illustrates a multivariate Gaussian mixture probability density func-
tion. As is apparent, the multivariate Gaussian mixture probability function is
essentially a superposition of individual Gaussian density functions, each with
an own mean and variance.

Figure 7.2 Multivariate Gaussian mixture density function.

Results of experiments carried out with an increased number of mixtures are
listed in table 7.1. In model set Model 610, the number of mixture components
per stream has been increased to two, for all models. In model set Model 611, all
streams of all models have three mixture components. Both model sets share the
same training conditions as the models sets described in chapter 6. If compared
to the results of section 6.5, a substantial increase in performance is noticeable.
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Table 7.1 Model 61x results.

Model
Model Name Model 610
Created 26-Jul-04

Training Information
Category SABW
Noise Kind Booth2
SNR 20 dB
VAD n/a

Results
HVite Female Male Average

93.53 92.37 92.95
VV100 Female Male Average

n/a n/a n/a

Model
Model Name Model 611
Created 26-Jul-04

Training Information
Category SABW
Noise Kind Booth2
SNR 20 dB
VAD n/a

Results
HVite Female Male Average

94.13 93.16 93.65
VV100 Female Male Average

n/a n/a n/a

7.3 Biphone Reduction

When designing for an embedded platform, memory consumption and process-
ing speed are of crucial importance. Considering this, it is important to minimize
the total number of acoustic models that are to be used, as less acoustic models
require less calculations for the decoder and less memory is consumed.

The total number of biphones in the Dutch phoneme based model set, as
described in section 6.6, is 2255, for each gender. This number is the sum of all
combinations of monophones (472) and 47 stable parts (47). Subtracted from
this is the model pau pau, which is not trained.

Several methods exist to handle the issue of reducing the total number of
models. A possible method is based on analysis of the dictionary. The dictio-
nary file used in training the acoustic models provides a number of insights into
what models can possibly be excluded from the model set. Depending on the
language, there are always certain combinations of phonemes that will never
occur. Table 7.2 lists a number of biphones, constructed from monophones,
that are invalid for the Dutch language. To find similar invalid combinations,

Table 7.2 Invalid biphones.

HTK Subword Left SAMPA Right SAMPA
a a A A
aai ieu a:i iu
h ng h N
p ng p N
b v b v

the most obvious method is to analyze the dictionary to see what combina-
tions occur, and thus determine which ones do not. A total of 1170 biphones,
combinations of phonemes, can be extracted from the dictionary. This, how-
ever, would not constitute all the valid possibilities. Consider a word ending
on a certain phone concatenated with a word beginning with a certain phone.
the combination of these two phones would also be a valid biphone. Accord-
ing to the words listed in the dictionary, there are 42 phonemes occurring in
head position, and 41 phonemes occurring in tail position. Thus, a total of
1722 tail head combinations are found. The union of the sets of combinations
previously calculated yield a total of 1824 valid biphones, and 431 invalid bi-
phones. The invalid biphones, however, contain all the combinations with the
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pau model in both head and tail position, as well as all the models representing
the stable parts, described in section 6.6. Correcting for these, the dictionary
analysis method allows a reduction of 292 biphones, or 13%. Table 7.3 lists the
calculation described above.

Merely relying on the information contained within the dictionary allows
only modest reduction in the number of acoustic models.

Table 7.3 Invalid biphone count.

Total number of biphones: 2255
Biphones extracted from dictionary: 1170

Phonemes occurring at head position: 42
Phonemes occurring at tail position: 41

Tail head combinations: 1722

Union of the sets: 1824
Missing biphones: 431

Correction for pau model: 292

Total reduction: 13 %



Chapter 8

Conclusion

In this final chapter an overview will be presented of how the research objectives
stated in the introduction of this thesis have been addressed. Some future
developments of speech recognition will also be discussed.

8.1 Research Objectives

The main research objective, the addition of support for the Dutch language
to VORERO, was successfully realized. The pronunciation dictionary and the
Dutch acoustic models were added to the VORERO SDK 6.0, which was released
in the spring of 2004. In this section the completion of the individual tasks
leading to the realization of the main research objective are discussed.

Understanding of current speech recognition technology, by studying
relevant literature.

Speech recognition is a popular research topic. A lot of research on the subject
is done around the world, both in private companies, as well as in universi-
ties and publicly funded programs. International conferences related to speech
recognition technology are held regularly and there are several journals that
publish new speech recognition developments on a monthly basis. In studying
contemporary publications on speech recognition, two things can be remarked.
First, recent developments are often focussed on a very small part of the speech
recognition problem, making it difficult to place in a bigger context. Second,
current speech recognition systems are based on proven research carried out
over a number of years. Cutting-edge research has yet to prove its worth.

Chapter 4 contains most of the results of studying relevant speech recogni-
tion literature. The approach taken was to see what ‘key challenges’ face modern
speech recognition research. One of the main challenges is robustness. As was
described, robustness relates to the design of a system capable of understanding
anyone’s speech in all possible environments. Two of the environmental com-
pensation techniques, described in section 4.1, have also been implemented in
the VORERO system. These are spectral subtraction and cepstral mean nor-
malization. They are related to the acoustic analysis described in section 6.3.
With regard to environmental model adaption, the VORERO acoustic models
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have been trained to include environmental noise as was described in section
6.3.

Understanding of the mathematical principles involved in stochastic
speech recognition using hidden Markov model theory.

There is much mathematics involved in stochastic speech recognition. Basic
mathematical theory is discussed in chapter 3. Acoustic analysis was discussed
and the hidden Markov model introduced. Three of the main issues related to
hidden Markov models were addressed: the evaluation problem, the decoding
problem and the learning problem. Also in chapter 3 the application of HMMs
to modeling human speech was discussed.

By understanding the mathematics of speech recognition, better acoustic
models can be trained. Well-founded decisions can be made regarding model
topology and other model parameters and valuable insight is gained for correct
analysis of training results.

Study of the Dutch phoneme set and Dutch pronunciation rules.

The concept of a phoneme was introduced in chapter 2 and the complete Dutch
phoneme set was described. Chapter 2 contains a systematic investigation into
the mechanics of human speech. This information is relevant to the design of
the acoustic models as described in section 6.3. The acoustic models reflect the
phonemes, but not necessarily on a one-to-one basis.

The study of production of the Dutch speech sounds has allowed well-founded
decisions to be made related to the design of the acoustic models.

Design of the Dutch acoustic models using the Hidden Markov Toolkit
(HTK).

Chapters 5 and chapter 6 are related to the development of the Dutch acoustic
models. In chapter 5 the HTK was described. The HTK has been found to be a
flexible environment for training acoustic models. Chapter 6 is the core chapter
of this thesis work. All steps required to training acoustic models using HTK
were discussed in detail. Section 6.3 is particularly related to the design of the
Dutch acoustic models and contains all the design decisions that were made.

Design of the acoustic models, represented by HTK subwords, includes find-
ing the right amount of subwords to train, and establishing a correct mapping
between the subwords and the Dutch phoneme set. The mapping between HTK
subwords and the phonemes is essential to good speech recognition performance
and many different mapping configurations were tried.

Training of the Dutch acoustic models using the HTK.

The training of the models was discussed in section 6.4. With all the required
data in place, the actual training requires very little supervision. Setting up a
training is, however, a nontrivial task. Model training is controlled by many pa-
rameters and finding the proper values for these parameters is a time-consuming
process. Also, the development environment (VAMB) and the HTK are both
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poorly documented and provide very little feedback in case of error. Much dif-
ficulty was experienced in detecting and correcting anomalies in the training
process.

Four sets of acoustic models were trained: a monophone phoneme set, a
biphone phoneme set, a word digit model set and a word alphabet model set.

Evaluation and optimization of Dutch speech recognition.

Once the Dutch acoustic models had been trained their performance needed
to be evaluated. This process was discussed in section 6.5. The speech data
not used in the training process was used for the evaluation. The recognition
results given in chapter 6 were obtained using HTK and version 1.2 of the VAMB
development environment.

The first model set trained and evaluated was not the final release set. The
tuning of certain model parameters allowed a higher performance to be ob-
tained. The number of emitting states in a model is one of such parameters. In
chapter 7 model optimization was also discussed. The COSMOS visualization
tool provides a method to visualize the acoustic model space, allowing better
models to be trained.

Design of the Dutch pronunciation dictionary.

Design of the pronunciation dictionary was discussed in section 6.3. It was
succesfully assembled from two different sources and converted to VORERO
format.

Addition of the Dutch language to the VORERO SDK 6.0.

The Dutch acoustic model that were designed, trained and optimized as dis-
cussed in chapter 6 were successfully added to the VORERO system.

8.2 Future Developments

Speech recognition technology today is still a niche market and likely to remain
that way for several more years [3]. Although speech recognition applications
are pre-installed on modern PCs, the PC will not be the driving force behind
adoption of speech recognition technology. Current trends indicate that next-
generation mobile devices, such as tablet PCs, PDAs and cell phones, are being
fitted with speech recognition capabilities. Car navigation systems are also
ideally suited for speech recognition systems as the driving environment limits
the use of hands for system interaction.

Some promising areas of current speech recognition research include the
addition of semantic knowledge to recognition systems. Today’s systems are
designed with the goal to recognize a user’s speech, though essentially a user
doesn’t want his speech to be recognized, he wants to perform a certain task.
Adding semantic knowledge to a system means making the system understand
the actual speech being recognized and will make computer systems significantly
more efficient.

It has been found that current stochastic speech recognition architectures
have a limit to minimal word-error rates. This means that in order to improve
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accuracy beyond a certain point, systems might need to be augmented by other
data. This is referred to as multimodality. Examples of multimodality are
including eye- and lip movement data into current system design [9]. Many
research efforts are currently focused on this.



Appendix A

Speech Recognition
Research

A.1 History of Speech Recognition

In order to properly comprehend current global speech recognition research, this
section will attempt to place the ongoing effort in a historical context.

A.1.1 The Early Years

Arguably the first machine to respond to the human voice was a toy dog with the
name Radio Rex [3]. Manufactured sometime in the 1920s, Rex was designed
to respond to its name. On picking up enough acoustic energy around 500 Hz,
an electromagnetic bridge would break an electric circuit causing a spring to
release Rex from the cage he was housed in. Rex’s major weakness, his inabil-
ity to properly discern between his name being spoken and similar sounding
utterances, continues to plague speech recognition researchers today.

Throughout the 1930s and 1940s very limited advances were made in the field
of speech recognition research, though there were modest improvements in voice
compression and speech analysis techniques. It was in the 1950s that the world
saw the birth of the first computerized word recognition system. Developed at
AT&T’s Bell Laboratory in 1952, the system could recognize an input of digits
between zero and nine, spoken by a single speaker with significantly long pauses
in between. Speech research in this period also introduced the use of phonemes
as basic linguistic units in recognition systems, leading to a systems developed
at MIT in 1959 capable of recognizing vowel sounds with a 93% accuracy rate.

Research in the 1960s remained primarily focused on acoustic models. In
1966 MIT improved their system to be able to cope with a 50 word vocabulary
instead of mere vowels. Speech recognition received a large amount of public
attention in 1968 with the release of Stanley Kubrick’s classic space saga 2001:
A Space Odyssey, featuring the intelligent HAL 9000 computer system. The
movie unfortunately set unrealistically high expectations for speech recognition
and understanding.
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A.1.2 DARPA Funds Speech Recognition Research

In the 1970s two things occurred that significantly advanced the field of speech
recognition research. First, Hidden Markov Model (HMM) theory was intro-
duced to model speech sounds. Second, the U.S. Department of Defense’s Ad-
vanced Research Projects Agency (DARPA) decides to fund a five-year study
of speech recognition.

HMM theory was developed in the late 1960s by L.E. Baum and J.A. Eagon
working at the Institute for Defense Analyses (IDA) [16]. In the early 1970s
Jim and Janet Baker, researchers at Carnegie Mellon University (CMU) applied
HMM theory to continuous speech recognition. The Hidden Markov Model is a
sophisticated stochastic technique that uses probability distributions to model
speech sounds and has grown to be the dominant acoustic modeling approach
in speech recognition research.

Since the 1940s the U.S. Department of Defense had pursued an active inter-
est in human language technology, its primary goal being to develop a system
capable of automatically decoding and translating Russian messages. All at-
tempts to this end turned out as failures, but with speech technology at peak
public appreciation, in 1971 DARPA established the Speech Understanding Re-
search (SUR) program in order to develop a computer system that could under-
stand continuous speech. The SUR Advisory Board specified the system should
be able to recognize normally spoken English in a quiet environment with a 1000
word vocabulary, reasonable response times and an error rate of less than 10%.
The main contractors of the SUR program were Carnegie Mellon University
(CMU), Stanford Research Institute (SRI), MIT’s Lincoln Laboratory, Systems
Development Corporation (SDC) and Bolt, Beranek and Newman (BBN).

Systems developed at CMU during this period included HEARSAY-I and
DRAGON, and later HEARSAY-II and HARPY of which the latter was the
most impressive at the time, being able to recognize complete sentences con-
sisting of a limited range of grammar structures. HARPY required around 50
state of the art computers to performs its calculations and could recognize 1011
words with a 95% accuracy rate. The main systems developed at BNN were
SPEECHLIS and HWIM (Hear What I Mean).

In 1976 the HEARSAY-I, HARPY and BNN’s HWIM were evaluated by
DARPA. Other systems, including one co-developed by SRI and SDC, were not
evaluated. CMU’s HARPY outperformed the other systems, though because
the SUR board had never fully specified its evaluation criteria, some researchers
disputed the test results. This led to a great deal of controversy and eventually
DARPA was forced to cancel funding for the SUR program and a five year
follow-up study.

Funding for speech recognition research was resumed in 1984 as part of
DARPA’s Strategic Computing Program. As well as many of the original con-
tractors several private companies took part including IBM and Dragon Sys-
tems, founded in 1982 by CMU researchers Jim and Janet Baker. In order to
minimize testing controversies, full system evaluation standards and guidelines
were laid down in advance by DARPA and the National Institute of Standards
and Technology (NIST).

In 1989 CMU’s SPHINX system wins the DARPA evaluation. From 1990
on private companies started determining the landscape of speech recognition
research.
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A.2 Timeline of Speech Recognition Research

1920 Commercial toy dog Radio Rex responds to 500Hz sounds
which trigger an electromagnetic circuit to release him from
his cage.

1936 AT&T’s Bell Labs produces the first electronic speech syn-
thesizer called the Voder (Dudley, Riesz and Watkins).
This machine is demonstrated at the 1939 World Fair by
experts that use a keyboard and foot pedals to play the
machine and emit speech.

1952 AT&T Bell Laboratory develops a crude discrete, speaker
dependent single digit recognition system. The world’s first
computerized ‘word’ recognition system.

1959 MIT develops a system that successfully identifies vowel
sounds with 93% accuracy.

1966 New MIT system is able to cope with a 50 word vocabulary.
1967 L.E Baum and J.A. Eagon develop Hidden Markov Model

theory at the Institute for Defense Analyses(IDA).
1968 The world-popular science fiction movie 2001: A Space

Odyssey introduces the idea of speech recognition with the
space ship computer, HAL and set high public expectations.

1969 John Pierce of Bell Labs says automatic speech recogni-
tion will be infeasible for several decades because artificial
intelligence is a prerequisite.

Early 1970’s Jim and Janet Baker apply HMM theory to speech recog-
nition research at Carnegie Mellon University(CMU).

1971 U.S. Department of Defense’s Advanced Research Projects
Agency(DARPA) funds the Speech Understanding Re-
search(SUR) program, a five-year study to determine the
feasibility of automatic speech recognition.

1971 - 1973 HEARSAY-I, DRAGON, HEARSAY-II and HARPY sys-
tems are developed at Carnegie Mellon University.
SPEECHLIS and HWIM are developed at Bolt, Beranek
and Newman.

1976 DARPA evaluates speech recognition systems designed for
the SUR program. Funding is canceled because of contro-
versy over testing results.

1978 Texas Instruments introduces the popular toy Speak and
Spell which used a speech chip leading to huge strides in
the development of more human-like sounding synthesized
speech.
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1982 Dragon Systems is founded by Carnegie Mellon University
researchers Jim and Janet Baker.

1984 DARPA resumes funding of speech recognition research as
part of the Strategic Computing Program.

1984 SpeechWorks, a company providing state-of-the-art auto-
mated speech recognition telephony solutions is founded.

Early 1990’s Japan announces a fifth generation computing project. The
effort is primarily intended for Japan to catch up with US
software production, considered to be more advanced at the
time. The five year effort included an attempt at machine
translation and extensive speech recognition research.

1994 Dragon Systems releases DragonDictate, the first software-
only commercial automated transcription product for the
personal computer.

1996 The consumer company, Charles Schwab becomes the first
company to implement a speech recognition system for its
customer interface.

1997 Dragon Systems releases ”Naturally Speaking,” the first
continuous speech dictation software.

1999 Japan commences government sponsored five year speech
research project.

2002 TellMe supplies the first global voice portal, and later that
year, NetByTel launched the first voice enabler. This en-
abled users to fill out a web-based data form over the phone.

2003 Dragon Naturally Speaking version 7.0 released.



Appendix B

Training Files

In this appendix some of the tools and configuration files are listed that are
required by the HTK or VAMB environment to train acoustic models.

B.1 VAMB Tools

B.1.1 MakeModelWizard

Figure B.1 is a screenshot of the VAMB MakeModelWizard.

Figure B.1 VAMB MakeModelWizard
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B.1.2 Perl Scripts

The following Perl scripts control the process of creating acoustic models using
HTK.

1. 00 MakeTrainingDir.pl
Creates a folder structure in which all files created in the training process
will be stored.

2. 005 CopyCleanData.pl
Copies the original speech data files from a backup server to the local
workstation.

3. 01 NoiseMixTrainData.pl
Mixes the training speech data files with the noise specified in the config-
uration file.

4. 02 AcousticAnalysisTrainData.pl
Performs the acoustic analysis on the training data. Outputs feature vec-
tor files.

5. 023 PrepareForTimeLabelMaker.pl
Prepares network files and the dictionary needed to create time label files.

6. 025 TimeLabelMaker.pl
Creates time label files.

7. 03 MakeHMMPrototype.pl
Create the initial HMM model files.

8. 04 MakeHInitTrainingScript.pl
Creates a list of all the speech data files that will be used to run HInit.

9. 05 HInitTrainingScriptCheck.pl
Performs a check of all files required in the training process.

10. 06 HInit.pl
Runs the HTK HInit tool.

11. 07 HRest.pl
Runs the HTK HRest tool.

12. 08 FromHRESTtoHER0.pl
Copies the output from HRest to a new folder.

13. 085 AllLabelMaker.pl
Creates the label files used to train biphones.

14. 09 LabelCheck.pl
Performs a check of the label files.

15. 10 MakeHERestTrainingScript.pl
Creates a list of all speech data files that will be used to run HERest.

16. 11 HERest.pl
Runs the HTK HERest tool.



B.1 VAMB Tools 87

17. 12 NoiseMixEVData.pl
Mixes the evaluation speech data files with the noise specified in the con-
figuration file.

18. 13 AcousticAnalysisEVData.pl Performs the acoustic analysis on the
evaluation data. Outputs feature vector files.

19. 14 PrepareForEvaluation.pl
Create reference label files.

20. 145 MakeEvaluationScript.pl
Creates a list of all speech data files that will be used in the evaluation of
the acoustic models.

21. 15 Evaluation.pl
Performs the evaluation of the acoustic models using the HTK HVite tool.
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B.2 HMM List

pau
a
aa
aai
au
b
d
e
ee
eeuw
ei
eu
f
g
ge
h
i
ie
ieu
j
k
l
m
me
meu
mo
n
ng
o
oe
oei
oo
ooi
p
r
s
sj
sjwa
t
u
ui
uu
uw
v
w
x
z
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B.3 HMM Prototype List

pau 12
a 3
aa 3
aai 5
au 3
b 3
d 3
e 3
ee 3
eeuw 5
ei 3
eu 3
f 3
g 3
ge 3
h 3
i 3
ie 3
ieu 5
j 3
k 3
l 3
m 3
me 3
meu 4
mo 4
n 3
ng 3
o 3
oe 3
oei 4
oo 3
ooi 5
p 3
r 3
s 3
sj 3
sjwa 3
t 3
u 3
ui 3
uu 3
uw 4
v 3
w 3
x 3
z 3
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B.4 P2S Rules

//==========================================
// RULE STRUCTURE DEFINITION
//==========================================
RULE_INFO_BEGIN
2 0
RULE_INFO_END
//==========================================
// SUBWORD DEFINITION
//==========================================
SUBWORD_BEGIN
pau
p
b
t
d
k
g
f
v
s
z
x
h
ge
sj
m
n
ng
l
r
w
j
i
e
a
o
u
sjwa
ie
uu
oe
aa
ee
eu
oo
ei
ui
au
aai
ooi
oei
ieu
uw
eeuw
me
meu
mo
SUBWORD_END
//==========================================
// PHONEME ELEMENTS DEFINITION
//==========================================
ELEMENT_BEGIN
p
b
t
d
k
g
f
v
s
z
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x
G
h
Z
S
m
n
N
l
r
w
j
I
E
A
O
Y
@
i
y
u
a:
e:
2:
o:
Ei
9y
Au
a:i
o:i
ui
iu
yu
e:u
E:
9:
O:
e~
a~
o~
9~
ELEMENT_END
//==========================================
// GROUP NAME DEFINITION
//==========================================
GROUP_BEGIN
p p
b b
t t
d d
k k
g g
f f
v v
s s
z z
x x
G G
h h
Z Z
S S
m m
n n
N N
l l
r r
w w
j j
I I
E E
A A
O O
Y Y
@ @
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i i
y y
u u
a: a:
e: e:
2: 2:
o: o:
Ei Ei
9y 9y
Au Au
a:i a:i
o:i o:i
ui ui
iu iu
yu yu
e:u e:u
E: E:
9: 9:
O: O:
e~ e~
a~ a~
o~ o~
9~ 9~
GROUP_END
//==========================================
// RULE DEFINITION
//==========================================
RULE_BEGIN
p * : 1 1 p
b * : 1 1 b
t * : 1 1 t
d * : 1 1 d
k * : 1 1 k
g * : 1 1 g
f * : 1 1 f
v * : 1 1 v
s * : 1 1 s
z * : 1 1 z
x * : 1 1 x
G * : 1 1 x
h * : 1 1 h
Z * : 1 1 ge
S * : 1 1 sj
m * : 1 1 m
n * : 1 1 n
N * : 1 1 ng
l * : 1 1 l
r * : 1 1 r
w * : 1 1 w
j * : 1 1 j
I * : 1 1 i
E * : 1 1 e
A * : 1 1 a
O * : 1 1 o
Y * : 1 1 u
@ * : 1 1 sjwa
i * : 1 1 ie
y * : 1 1 uu
u * : 1 1 oe
a: * : 1 1 aa
e: * : 1 1 ee
e: r : 1 2 i
2: * : 1 1 eu
2: r : 1 2 u
o: * : 1 1 oo
o: r : 1 2 o
Ei * : 1 1 ei
9y * : 1 1 ui
Au * : 1 1 au
a:i * : 1 1 aai
o:i * : 1 1 ooi
ui * : 1 1 oei
iu * : 1 1 ieu
yu * : 1 1 uw
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e:u * : 1 1 eeuw
E: * : 1 1 me
9: * : 1 1 meu
O: * : 1 1 mo
e~ * : 1 1 e
a~ * : 1 1 a
o~ * : 1 1 o
9~ * : 1 1 u
RULE_END
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B.5 HMM File

~o
<STREAMINFO> 3 10 10 1
<VECSIZE> 21<NULLD><MFCC_E_D_N_Z>
~h "a"
<BEGINHMM>
<NUMSTATES> 5
<STATE> 2
<SWEIGHTS> 3
1.000000e+000 1.000000e+000 1.000000e+000

<STREAM> 1
<MEAN> 10
4.392169e+000 -1.835883e+001 -1.856646e+001 -4.802609e-001 9.296501e+000
-8.347454e+000 3.038810e+000 6.059074e+000 -5.951744e+000 -1.426319e+001

<VARIANCE> 10
8.435698e+001 1.562133e+002 2.103653e+002 2.028356e+002 4.088173e+002
2.436477e+002 3.317146e+002 2.918913e+002 3.219072e+002 2.556351e+002

<GCONST> 7.283395e+001
<STREAM> 2
<MEAN> 10
1.015623e+000 -5.022286e+000 -4.805974e+000 1.184052e+000 5.451186e+000
2.730356e-001 5.598592e-001 1.025321e+000 -9.950465e-001 -3.224453e+000

<VARIANCE> 10
9.612884e+000 1.314085e+001 1.562393e+001 2.125271e+001 2.571497e+001
2.634945e+001 2.692418e+001 2.415101e+001 2.628845e+001 2.248129e+001

<GCONST> 4.840057e+001
<STREAM> 3
<MEAN> 1
4.602402e-001

<VARIANCE> 1
1.442221e-001

<GCONST> -9.852346e-002
<STATE> 3
<SWEIGHTS> 3
1.000000e+000 1.000000e+000 1.000000e+000

<STREAM> 1
<MEAN> 10
7.285262e+000 -2.291535e+001 -2.692610e+001 5.476334e+000 2.639052e+001
-5.475887e+000 7.725285e-001 5.307328e+000 -1.154641e+000 -1.320635e+001

<VARIANCE> 10
5.516068e+001 1.385840e+002 1.715508e+002 1.922638e+002 2.789575e+002
2.356212e+002 2.233625e+002 2.867267e+002 2.563056e+002 2.588150e+002

<GCONST> 7.098734e+001
<STREAM> 2
<MEAN> 10
5.743587e-001 9.277705e-001 8.465187e-002 3.744146e-001 1.041124e-001
6.500685e-001 -5.524901e-001 -1.391898e+000 8.157665e-001 8.419775e-001

<VARIANCE> 10
2.665063e+000 5.832265e+000 6.309563e+000 9.770234e+000 1.715404e+001
1.201659e+001 1.405833e+001 1.410173e+001 1.518725e+001 1.278765e+001

<GCONST> 4.113078e+001
<STREAM> 3
<MEAN> 1
-8.301759e-002

<VARIANCE> 1
2.657933e-002

<GCONST> -1.789744e+000
<STATE> 4
<SWEIGHTS> 3
1.000000e+000 1.000000e+000 1.000000e+000

<STREAM> 1
<MEAN> 10
9.231950e+000 -1.050927e+001 -1.616354e+001 4.698371e+000 1.135131e+001
-3.775125e+000 -3.478979e+000 -1.709562e+000 -2.035034e+000 -1.167247e+001

<VARIANCE> 10
5.138276e+001 1.678958e+002 2.026178e+002 1.920019e+002 2.722980e+002
2.211892e+002 2.342433e+002 2.830846e+002 2.740561e+002 2.852538e+002

<GCONST> 7.138498e+001
<STREAM> 2
<MEAN> 10
-6.309538e-001 5.156171e+000 5.236431e+000 2.608254e-002 -3.991354e+000
6.056778e-001 -9.733906e-001 -9.512351e-001 8.613650e-002 2.521105e+000

<VARIANCE> 10
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8.252870e+000 8.585522e+000 1.235152e+001 1.821269e+001 2.170505e+001
1.966403e+001 2.213204e+001 1.997124e+001 2.123106e+001 1.867451e+001

<GCONST> 4.618559e+001
<STREAM> 3
<MEAN> 1
-4.591587e-001

<VARIANCE> 1
5.824743e-002

<GCONST> -1.005178e+000
<TRANSP> 5
0.000000e+000 1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 6.906633e-001 3.093368e-001 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 7.574322e-001 2.425678e-001 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 7.036940e-001 2.963060e-001
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000

<ENDHMM>
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#====================================================================
# MODEL INFORMATION
#====================================================================
SAMPLE_FREQ = 11
LANGUAGE = DUTCH
MODEL_CATEGORY = PHONEME
AMU_MODEL_CATEGORY = PHONEMIC_BASED
MODEL_NAME = MONOPHONE
GENDER_TYPE = GENDER
HINIT_TRAIN_DATA = AMSTERDAM_SABW
HEREST_TRAIN_DATA = AMSTERDAM_SABW
HINIT_TRAIN_USE_FILE = ---
HEREST_TRAIN_USE_FILE = ---
HINIT_CORPUS = Default
HEREST_CORPUS = Default
PROFILE_NAME = Female,Male
NOISE_KIND = Booth2
NOISE_SNR = 20
OPTION = Model_403
HINIT_LABEL = TIME_LABEL
HEREST_LABEL = TIME_LABEL
HREST_UPDATE_FLAG = mvwt
HEREST_UPDATE_FLAG = mvwt
HINIT_MAX_DATA = 15000
HEREST_ITER = 10
BASE_OF_BIPHONE = BEST,BEST
#====================================================================
# INFORMATION FILE PATH
#====================================================================
HMM_LIST_HINIT = F:\VAMB1.3\Models\Model_403\HMMList.txt
HMM_LIST_HEREST = F:\VAMB1.3\Models\Model_403\HMMList.txt
HMM_LIST_HEREST_NON_TRAINING = ---
CONFUSION_HMM_LIST = ---
PROTO_INFO = F:\VAMB1.3\Models\Model_403\HMMProto.txt
UNI2ACE_RULE = ---
BIPHONE_INFO = ---
ELEMENT_COMP = F:\VAMB1.3\Models\Model_403\ElementComp.txt
MERGE_COMMAND = ---
PHONEME_CONVERSION_RULE = F:\VAMB1.3\Models\Model_403\P2SRules.txt
AMU_ELEMENT_COMP = ---
GERBAGE_ELEMENTS = ---
#====================================================================
# EVALUATION INFORMATION
#====================================================================
EVALUATION_MODE = NORMAL
EV_DATA = AMSTERDAM_EVW
EV_NOISE_KIND = Booth:20
EV_EDITCOM = Default
EV_LIST4NETWORK = Default
EV_CORPUS = Default
EV_PERSON_SCRIPT_FILE = ---
EV_VAD_LEVEL = NORMAL
EV_VORERO_CONFIG = ---
#====================================================================
# GENERAL TRAINING DIRECTORY INFORMATION
#====================================================================
BASE_PATH = F:\VAMB1.3\Models\Model_403
PCM_PATH = F:\VAMB1.3\MAKE_MODEL\11kHz\DUTCH\PCM\TRAIN
EV_PCM_BASE = F:\VAMB1.3\MAKE_MODEL\11kHz\DUTCH\PCM\EV
LPC_PATH = F:\VAMB1.3\MAKE_MODEL\11kHz\DUTCH\LPC\TRAIN
EV_LPC_BASE = F:\VAMB1.3\MAKE_MODEL\11kHz\DUTCH\LPC\EV
NETWORK_PATH = F:\VAMB1.3\Models\Model_403\Network\TRAIN
EV_NETWORK_BASE = F:\VAMB1.3\Models\Model_403\Network\EV
LABEL_PATH = F:\VAMB1.3\Models\Model_403
EV_LABEL_BASE = F:\VAMB1.3\Models\Model_403\EV_LABEL
EV_CONFUSION_LABEL_BASE = F:\VAMB1.3\Models\Model_403\EV_CONFUSION
MODEL_PATH = F:\VAMB1.3\Models\Model_403\MODEL
WORK_PATH = F:\VAMB1.3\Models\Model_403\WORK
ORG_CLEAN_PCM_LOCAL_PATH = F:\VAMB1.3\MAKE_MODEL\OrgCleanPCM
ORG_NOISE_LOCAL_PATH = F:\VAMB1.3\MAKE_MODEL\OrgNoise
ENG_DICT_PATH = F:\VAMB1.3\Models\Model_403\Dictionary
WORD_LIST_PATH = F:\VAMB1.3\CorpusList
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ORG_MODEL_HMM_LIST = F:\VAMB1.3\OrgModel\VAMB1.2_Model_400\HMMList.txt
ORG_MODEL_PATH = F:\VAMB1.3\OrgModel\VAMB1.2_Model_400\Female,F:\VAMB1.3\OrgModel\VAMB1.2_Model_400\Male
ORG_MODEL_TYPE = PHONEME # PHONEME or WORD
ORGIN_OF_ALLLABEL = ---
ORIGIN_OF_HEREST_MODEL_PATH = ---,---
ORIGIN_OF_HMMPROTO_PATH = ---,---
#====================================================================
# TOOL PATH
#====================================================================
HTK_PATH = F:\VAMB1.3\HTK_BIN
TOOL_PATH = F:\VAMB1.3\TOOLS
NOISEMIXER = F:\VAMB1.3\TOOLS\ConsoleTools\NoiseMixerC.exe
ACOUSTICANALYSIS = F:\VAMB1.3\TOOLS\ConsoleTools\AcousticAnalysisC11kHz.exe
TRAINSCRIPTBUILDER = F:\VAMB1.3\TOOLS\ConsoleTools\TrainingScriptBuilder.exe
HMMPROTOTYPE = F:\VAMB1.3\TOOLS\ConsoleTools\HMMPrototype.exe
CONVERT_UNI2ACE = F:\VAMB1.3\TOOLS\ConsoleTools\HMMCHANGER.exe
EVALUATION_TOOL = F:\VAMB1.3\TOOLS\ConsoleTools\getRecognition.pl
HINIT_DATA_CHECKER = F:\VAMB1.3\TOOLS\ConsoleTools\HInitTrainScriptChecker.exe
LABEL_CHECKER = F:\VAMB1.3\TOOLS\ConsoleTools\LabelChecker.exe
EV_EACH_WORD = F:\VAMB1.3\TOOLS\ConsoleTools\EachWordAccuracy.pl
EV_CALC_TIME = F:\VAMB1.3\TOOLS\ConsoleTools\EachWordCalcTime.pl
CONFUSION_MATRIX_TOOL = F:\VAMB1.3\TOOLS\ConsoleTools\GetConfusionMatrix.pl
LABEL_MAKER = F:\VAMB1.3\TOOLS\ConsoleTools\LabelMaker\LabelMaker.pl
HTK_NETMAKER = F:\VAMB1.3\TOOLS\ConsoleTools\LabelMaker\HTKNetworkMaker.exe
LABEL_CHANGER_U2B = F:\VAMB1.3\TOOLS\ConsoleTools\LabelMaker\UNI2ACE_LabelChanger.exe
LABEL_EDIT = F:\VAMB1.3\TOOLS\ConsoleTools\LabelMaker\LabelEdit.pl
NET_DRIVE = F:\VAMB1.3\TOOLS\ConsoleTools\NetDrive\NetDrive.exe
CHAR_CONVERT = F:\VAMB1.3\TOOLS\ConsoleTools\CharacterCodeConverter\csconv.exe
AMU_BUILDER = F:\VAMB1.3\TOOLS\ConsoleTools\AcousticModelUnitBuilderC.exe
VORERO_RECOGNITION = F:\VAMB1.3\TOOLS\ConsoleTools\VoiceRecognitionCVer6_0_11kHz.exe
#====================================================================
# NETWORK DATA INFORMATION (fixed information)
#====================================================================
<CLEAN_DATA_INFO>
AMSTERDAM_EVW \\Vorero-fs4\Clean\DUTCH\AMSTERDAM_48k\EVW 48000 0 0
AMSTERDAM_SABW \\Vorero-fs4\Clean\DUTCH\AMSTERDAM_48k\SABW 48000 0 0
<NOISE_DATA_INFO>
Booth \\Vorero-fs0\Clean\NoiseDataForVAMB\Booth_48k.pcm 48000
Booth2 \\Vorero-fs0\Clean\NoiseDataForVAMB\boothnoise11kHz.pcm 11025





Bibliography

[1] A. Acero, Acoustical and Environmental Robustness in Automatic Speech
Recognition, Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pennsylvania, September 1990

[2] A. Acero and R.M. Stern, Environmental Robustness in Automatic Speech
Recognition, International Conference on Acoustics, Speech and Signal
Processing, 1990, Albuquerque, NM, pp. 849-852

[3] D. Barker, Microsoft Research Spawns a New Era in Speech Technology:
Simpler, Faster, and Easier Speech Application Development, PC AI Vol-
ume 16.6, 2003

[4] E. Baum and J.A. Eagon, An Inequality with Applications to Statistical
Estimation for Probabilistic Functions of Markov Processes and to a Model
for Ecology, Bulletin of American Mathematical Society, 1967, 73, pp. 160-
363

[5] R.A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen and V. Zue, Survey of
the State of the Art in Human Language Technology, Center for Spoken
Language Understanding CSLU, Carnegie Mellon University, Pittsburgh,
PA., 1995

[6] S. Furui, Recent Advances in Robust Speech Recognition, ESCA-NATO
Workshop on Robust Speech Recognition for Unknown Communication
Channels, Pont-a-Mousson, France, pp. 11-20, April 1997

[7] S. Furui, Steps Toward Flexible Speech Recognition, Proc. 8th Australian In-
ternational Conference on Speech Science and Technology, Canberra, Aus-
tralia, pp. 19-29, 2000-12

[8] S. Furui, Recent Advances in Spontaneous Speech Recognition and Under-
standing, Proc. SSPR2003, Tokyo, Japan, pp. 1-6, 2003-4

[9] S. Furui, Toward Robust Speech Recognition and Understanding, TSD 2003,
LNAI 2807, pp. 2-11, 2003

[10] S. Furui, From Read Speech Recognition to Spontaneous Speech Recognition,
NLPRS 2001, pp. 19-25

[11] S. Furui, Digital Speech Processing, Synthesis, and Recognition, Second
edition, revised and expanded, Marcel Dekker Inc., New York, 2001



100 BIBLIOGRAPHY

[12] X. Huang, A. Acero and H. Hon, Spoken Language Processing: a guide to
theory, algorithm and system development, 2001, Upper Sadle River, NJ,
Prentice Hall

[13] K. Iwano, T. Seki, and S. Furui, Noise Robust Speech Recognition Using
Prosodic Information, Proceedings Workshop on DSP in Mobile and Ve-
hicular Systems, Nagoya, Japan, 2003-4

[14] L. Lamel, F. Lefevre, J. Gauvain, G. Adda, Portability Issues for Speech
Recognition Technologies, Spoken Language Processing Group, CNRS-
LIMSI, 91403 Orsay, France, 1999

[15] D. Liu, L. Nguyen, S. Matsoukas, J. Davenport, F. Kubala, R. Schwartz,
Improvements in spontaneous speech recognition, Proceedings DARPA
Broadcast News Transcription and Understanding Workshop, Lansdowne,
VA, February, 1998, pp. 123-126.

[16] J. Makhoul and R. Schwartz, State of the art in continuous speech recogni-
tion, Proc. Natl. Acad. Sci. USA, Vol. 92, pp. 9956-9963, October 1995

[17] L. Rabiner, The Power of Speech, Science Magazine, Volume 301, Septem-
ber 12, 2003

[18] A.C.M. Rietveld and V.J. van Heuven, Algemene Fonetiek, Uitgeverij
Coutinho, Bussum, 2de druk, 2001

[19] R. Rosenfeld, Two Decades of Statistical Language Modeling: Where do we
go from here?, Proc. IEEE 88(8), 2000

[20] J. Sammon, A Nonlinear Mapping for Data Structure Analysis, IEEE
Transactions on Computers, Vol. C-18. No. 5, May 1969

[21] M. Shozokai, Acoustic Space Analysis Method Utilizing Multidimensional
Scaling Technique, Information Technology Laboratory, Asahi Kasei Cor-
poration, Atsugi, Kanagawa, Japan, 2004

[22] M. Shozokai and G. Nagino, Analysis of Speaking Styles by Two-
Dimensional Visualization of Aggregate of Acoustic Models, Information
Technology Library, Asahi Kasei Corporation, Atsugi, Kanagawa, Japan,
2004

[23] M. Shozokai and G. Nagino, Design of Ready-Made Acoustic Model Library
by Two Dimensional Visualization of Acoustic Space, Information Technol-
ogy Library, Asahi Kasei Corporation, Atsugi, Kanagawa, Japan, 2004

[24] M. Stefik, Strategic Computing at DARPA: Overview and Assessment,
Communications of the ACM, Volume 28, Number 7, July 1985, pp. 690-
704

[25] C. Wang, Prosodic Modeling for Improved Speech Recognition and Un-
derstanding, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2001



BIBLIOGRAPHY 101

[26] D. Willett, A. Worm, C. Neukirchen, G. Rigoll, Confidence Measures For
HMM-Based Speech Recognition, 5th International Conference on Spoken
Language Processing (ICSLP), Sydney, pp. 3241-3244, 1998

[27] S.J. Young, N.H. Russell, J.H.S. Thornton, Token Passing: a Simple Con-
ceptual Model for Connected Speech Recognition Systems, Cambridge Uni-
versity Engineering Department, July 31, 1989

[28] S.J. Young, Large Vocabulary Continuous Speech Recognition: a Review,
Cambridge University Engineering Department, April 8, 1996

[29] S.J. Young, The HTK Book, Cambridge University Engineering Depart-
ment, December 2001

[30] S.R. Young, Learning New Words from Spontaneous Speech: A Project
Summary, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA., 1993


