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PREFACE 

I have been a ‘gamer’ my whole life. I started playing computer games on an Atari 
console when I was just three years old and I am still playing.  If it is true that we don't 
stop playing because we grow old, but we grow old because we stop playing, then I 
hope I never grow old. 

The concept of artificial intelligence has fascinated me for quite some time. 
Movies such as ‘the Matrix’ and ‘2001: A Space Odyssey’ have always sparkled my 
imagination. My interest grew when I was first introduced to ‘academic artificial 
intelligence’ during my studies at Delft University of Technology.  

In my search for a graduation assignment, I was very fortunate that I was able to 
combine games and artificial intelligence. My thesis is called: “Improving Adaptive 
Game AI with Evolutionary Learning”. It addresses the application of both adaptive 
game artificial intelligence and evolutionary learning techniques in computer games.  

I would like to thank all the people at the Institute of Knowledge and Agent 
Technology (IKAT) in Maastricht for providing me with the tools and guidance to 
complete my master thesis. I especially would like to thank my supervisor, Pieter 
Spronck for his support and inspiration. Thank you for sacrificing at least a dozen red 
pens! I would also like to thank the people at Delft University of Technology. Thank 
you for introducing me to ‘academic artificial intelligence’ and paving the way for my 
future career. Special thanks goes to my graduation coordinator Leon Rothkrantz. 
Furthermore, I would like to thank David Aha for his insightful and lengthily 
comments on my thesis. Also, much appreciation goes out to the Stratagus 
development team for their programming support. Last but certainly not least, I would 
like to express my gratitude to my family and friends for their devotion, support and 
patience.  
 
Marc Ponsen 2004 
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C h a p t e r  1  

INTRODUCTION 

This Chapter presents the background of this thesis. Section 1.1 provides information on 
artificial intelligence in games. Section 1.2 discusses the background of the thesis’ research, first 
explaining the role of dynamic scripting in online learning and then discussing the role that 
offline learning can play in the development of artificial intelligence in games. Section 1.3 
discusses the problem statement and research question. Our approach is explained in Section 1.4. 
Finally, Section 1.5 gives an overview of the remainder of the thesis. 
 
1.1 THE EVOLUTION OF COMPUTER GAME ARTIFICIAL INTELLIGENCE 

Since the birth of computer games, artificial intelligence (AI) has been a standard 
feature of games - especially with developers' emphasis on single-player games, which 
today still represent the majority of released titles. AI is an element of so-called 
gameplay, which comprises everything but the visual and auditory presentation of the 
game. For the gaming industry, AI encompasses many subject areas such as interaction, 
pathfinding, machine learning, flocking, formations, difficulty scaling and decision-
making. The current emphasis in computer game AI is on the illusion of human-like 
behavior. However, there is an increasing demand for a true human-level AI from 
various perspectives. 

The game industry is starting to recognize that sophisticated AI could enhance 
the entertainment value of their products and consequently increase revenues. 
Already, many computer games are marketed based on the quality of their AI (e.g., 
BLACK & WHITE, THE SIMS, FAR CRY). Developers in the past mainly focused on sound 
and graphics. The implementation of computer opponent’s AI was often deferred to 
the final phase of the project. The trend is shifting; AI is often assigned an equal 
priority to graphics and sound in the initial game design. Sweetser (2002) states: “As 
the graphics race subsides and gamers grow weary of predictable and deterministic 
game characters, game developers must set aside their “old faithful” finite state 
machines and look to more advanced techniques that give the users the gaming 
experience they crave. The next industry breakthrough will be with characters that 
behave realistically and that can learn and adapt, rather than more polygons, higher 
resolution textures and more frames-per-second”.  

Military institutions recognize that besides entertainment, computer games can 
also be used for military training and simulation purposes. Military training and 
simulation in the real world is too expensive and dangerous. Computer games with 
ever increasing complex and realistic environments provide a cheap and reliable 
alternative (Laird 2000).  

Interactive computer games are increasingly attractive for academic AI 
researchers. Laird (2000) states that interactive computer games are the ‘killer 
application’ for human-level AI research. “They are the application that will soon need 
human-level AI, and they can provide the environments for research on the right 
kinds of problems that lead to the type of the incremental and integrative research 
needed to achieve human-level AI.”  
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1.2 RESEARCH BACKGROUND 

Is it possible to improve computer game AI in commercial computer games by 
applying machine learning techniques? In this thesis computer game AI will be 
interpreted solely as the decision-making process of non-player characters (in 
particular opponents) in a game. Most games resort to scripts for most, if not all of their 
AI. Scripts, i.e., lists of rules that are executed sequentially (Tozour 2002b) are 
generally static and tend to be quite long and complex (Brockington and Darrah 2002). 
Due to this complexity, AI scripts are likely to contain weaknesses, which can be 
exploited by human players to easily defeat supposedly tough opponents (Spronck, 
Sprinkhuizen-Kuyper and Postma 2003) Furthermore, because the scripts are static 
they cannot deal with unforeseen tactics employed by a human player. Machine 
learning can resolve these shortcomings of static AI and consequently improve the 
quality of opponent AI. Machine learning can either take place online or offline. We 
will discuss online and offline learning in computer games in the next subsections. 
 
1.2.1 Online Learning 

Online learning entails that the AI will adapt during play after the game has been 
released. It allows opponents to automatically repair weaknesses in their scripts that 
are exploited by the human player, and to adapt to changes in human player tactics 
and playing style. Online learning can be either supervised or unsupervised. 
Supervised online learning requires that the human player indicate how successful the 
AI is, which precludes automatic adaptation. Therefore the term “online learning” in 
this thesis, will be reserved for unsupervised online learning. For online learning to 
work in practice, it must be fast, effective, robust and efficient. Spronck et al. (2003) 
explain these requirements as follows: 
 

• Fast: Since online learning takes place during gameplay, the learning 
algorithm should be computationally fast, lest it will disrupt the pacing of the 
game. 

• Effective: Adapted scripts should be at least as challenging as manually 
designed ones, and therefore the learning mechanism must guarantee the 
generation of mostly effective AI. This requirement excludes random learning 
methods, such as evolutionary algorithms. 

• Robust: The learning mechanism must be able to cope with a significant 
amount of randomness inherent in most commercial gaming mechanisms.  

• Efficient: The learning process should learn efficiently, relying on just a small 
number of trials. This requirement excludes slow-learning techniques, such as 
neural networks, evolutionary algorithms and reinforcement learning.  

 
Dynamic scripting (Spronck et al, 2003) is an unsupervised online learning technique 
for commercial computer games. Important factors when attempting to achieve high 
performance for a learning mechanism are using deterministic experiments and adding 
prior domain knowledge. Because of the non-deterministic nature of game 
environments in general, dynamic scripting relies heavily on domain knowledge. In 
dynamic scripting, the rules used in a script that controls an opponent are extracted 
from an adaptive rulebase that contains only manually designed rules. The probability 
that a rule is selected for a script is influenced by a weight value that is associated with 
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each rule. The rulebase adapts by changing the weight values to reflect the success or 
failure rate of the corresponding rules in scripts. 

The dynamic scripting technique meets all four requirements. First, it is 
computationally fast, because it only requires the extraction of rules from a rulebase 
and the updating of weights once per game. Second, it is effective, because all rules in 
the rulebase are based on domain knowledge. Third, it is robust because rules are not 
removed immediately when punished. Finally, Spronck et al. (2003) showed that in a 
simulated as well as a commercial game environment dynamic scripting can adapt 
rapidly to static or changing tactics, and therefore it is also efficient. 
 
1.2.2 Offline Learning 

Offline learning entails that the AI will adapt by self-play, without human 
intervention. Adaptive technologies are giving developers a tool that can help them 
optimize computer game AI parameters offline during the Quality Assurance phase of 
game development. AI tuning is always somewhat problematic; in commercial games 
there can be hundreds of parameters that can affect the AI’s style of play. Testing every 
combination is an impossible task, especially given the short amount of time available 
for AI tuning. Over time, an offline learning mechanism can test out many more AI 
variations than an individual developer could.  

An interesting application of offline learning is creating new strategies and 
tactics for opponent AI by self-play. Offline learning therefore provides the means of 
improving the dynamic scripting process by discovering new strategies and tactics that 
can be added to the dynamic scripting rulebase. This can make the dynamic scripting 
technique more effective in dealing with human player tactics which the developers 
did not foresee, and for which they did not add any rules to the rulebase as 
countermeasures. 
 
1.3 PROBLEM STATEMENT AND RESEARCH QUESTION 

In 1.2.2 we proposed that offline learning can potentially enhance the dynamic 
scripting technique by improving the rulebase through the addition of offline 
discovered strategies and tactics. However, this has as yet not been shown in practice. 
This leads to the following problem statement: 
 
Problem Statement: To what extent can offline learning techniques be used to improve 
the rulebase used for dynamic scripting, in order to improve the AI in commercial 
computer games? 
 
Offline learning does not suffer from any of the four previously mentioned 
requirements associated with online learning. Therefore, many machine learning 
techniques are suitable for offline learning. We will focus on evolutionary techniques 
to enhance the intelligence of opponents by training them against other (scripted) 
opponents. An evolutionary algorithm, when properly implemented, has the ability to 
deal with complex environments, such as computer games. 
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Furthermore, the most complex AI in modern games is found in so-called “computer 
roleplaying games” (CRPGs) and “real-time strategy” (RTS) games (e.g., war 
simulations). Dynamic scripting has already been shown to be successful for CRPGs 
(Spronck et al., 2003), but not yet for RTS games. Since we expect that it is just as 
applicable to RTS games, we decided to focus on these for our research. The following 
research questions will therefore guide our research: 
 
Research Question 1: Is it possible to design and implement an evolutionary algorithm 
that discovers new tactics and strategies for real-time strategy games? 
 
Research Question 2: Will offline discovered tactics and strategies enhance the 
performance for the dynamic scripting rulebase? 
 
1.4 APPROACH 

To answer the research question, we address four main objectives: 
 
1) Selecting a flexible, state-of-the-art RTS game environment for our 

experimental research. 
2) Designing and implementing the dynamic scripting technique in the selected 

RTS game and demonstrating that it works against several opponent strategies 
on several maps. 

3) Applying offline learning using an evolutionary algorithm to discover new 
strategies and tactics in the selected RTS game. 

4) Translating offline-discovered strategies and tactics into rules for the rulebase 
and show that these additions enhance performance for dynamic scripting in 
the selected RTS game. 

 
1.5 THESIS OVERVIEW 

The remainder of the thesis is organized as follows. Chapter 2 discusses various 
artificial intelligence techniques in commercial computer games relevant to our 
research. Chapter 3 addresses the first research objective, namely choosing a flexible 
state-of-the-art RTS game environment for our experiments. The second research 
objective is discussed in Chapter 4 wherein we will explain how we implemented 
dynamic scripting in the selected RTS game environment and we will also discuss the 
results for the dynamic scripting AI against several scripted opponents. Chapter 5 
discusses the third research objective, namely applying an evolutionary algorithm in 
the selected RTS game environment in order to discover new tactics and strategies. 
Our fourth and final objective is addressed in Chapter 6. We will explain how we 
translated the offline-discovered tactics and strategies into rules for the dynamic 
scripting rulebase, and discuss our approach. We will finish the thesis in Chapter 7, 
where we will answer the research questions and problem statement, as well as give 
recommendations for future research. 
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C h a p t e r  2  

COMPUTER GAME ARTIFICIAL INTELLIGENCE 

In 2.1 we will first introduce rule based AI techniques relevant to our research. In 2.2 we will 
discuss the different types of machine learning and explain why machine learning can be 
problematic in computer games. In 2.3 we will give an introduction to evolutionary algorithms. 
 
2.1 RULE BASED ARTIFICIAL INTELLIGENCE IN GAMES 

AI programmers have numerous techniques at their disposal to try to simulate human-
level-behavior. Of these, rule based approaches have been widely accepted and 
successfully employed by game developers for a number of years. Rules in a rule based 
system consist of a condition side (the antecedent) and an action side (the consequent). 
Rules-based AI is currently the technology of choice for AI development because (1) 
these approaches are familiar, taking their principles from familiar programming 
paradigms, (2) rule based designs are generally predictable, hence easy to test and 
debug and (3) most developers lack any training in, or knowledge of, the more 
complex AI technologies, and thus don't use them when deadlines are approaching 
fast. Currently the most dominant rule based AI techniques for computer games 
include scripting and state machines.  

In order to easily implement rules and reactions, over 80% of developers use 
some kind high-level scripting language (Woodcock 2003). A scripting language is any 
programming language created to simplify any complex task for a particular program 
(Sweetser 2002). Scripts are used to control the game engine from the outside. Scripts 
have four main advantages; they are (1) understandable, (2) easy to implement, (3) 
easily extendable, and (4) useable by nonprogrammers (Tozour 2002b). Some games 
use custom scripting languages, such as Bioware’s NWscript, UnrealScript or LUA 
scripting, to manage the AI.  

A finite state machine is a logical hierarchy of rules and conditions that can 
only be in a finite number of states, each state having its own behavior, and its own 
trigger. Finite state machines are used more frequently in computer games than any 
other AI technique (Sweetser 2002) because they are (1) simple to program, (2) easy to 
understand and debug, and (3) generally enough to be used for any problem (Rabin 
2002). One drawback is that using simple finite state machines leads to predictability 
of game AI. When using fuzzy states and fuzzy transitions rather than a finite set of 
states and transitions, a variety of different responses to a given set of stimuli can be 
generated, consequently producing ‘unpredictable’ behavior. 

Scripting and state machines are deterministic AI techniques that require the 
developer to hard-code all aspects of the character behavior. Therefore, the developer 
has to anticipate all possible game states and situations. Most modern computer games 
have hundreds of different parameters and scenarios affecting the AI’s behavior. 
Machine learning techniques may be able to cover the search space in computer games 
and efficiently search for successful combinations of parameters. 
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2.2 MACHINE LEARNING AND ADAPTATION IN GAMES 

The process of learning in games generally implies the adaptation of behavior for 
opponent players in order to improve performance. Note that the terms online and 
offline used in 1.2 apply to the timing of when learning is achieved, i.e. respectively 
during gameplay against humans or during self-play, and tell nothing on how learning 
is achieved. Manslow (2002) distinguishes between direct and indirect learning: 
 
Indirect adaptation: Indirect adaptation occurs when alternations are made to certain 
aspects of behavior based on statistics in the game world. The decision as to what 
statistics are extracted and their interpretation in terms of necessary changes in 
behavior are all made by the AI designer (Manslow 2002). The role of the learning 
mechanism is thus restricted to extracting information from the game world, and plays 
no direct part in changing the behavior. Indirect adaptation is effective, because its 
extensive use of prior knowledge makes the learning mechanism simple, highly 
efficient, and easy to control, test and validate (Manslow 2002). The technique 
“dynamic difficulty settings” used in MAX PAYNE 2 (Figure 1) is an example of indirect 
learning in a computer game. 
 
Direct Adaptation: Direct adaptation applies optimization or reinforcement learning 
algorithms to directly change the AI’s behavior on the basis of assessments of its 
performance in the game world (Manslow 2002). Basically, the learning algorithms 
searches for AI parameters that offer the best performance, i.e. search for the best 
behavior. Direct adaptation is generally not efficient and hard to control, making it 
difficult to debug. Furthermore, it is difficult to design an appropriate performance 
measure (fitness function). However, direct adaptation has the major advantage of not 
limiting the opponents’ AI behavior and it requires minimal human direction. BLACK & 

WHITE, illustrated in Figure 1, proves that direct learning can successfully be applied in 
computer games (Barnes 2002). 
 
Game companies are cautious in using machine learning techniques for their computer 
game AI because (1) these systems can learn the wrong lessons, (2) they are often very 
demanding in terms of processing time and (3) they can be difficult to tune and tweak 
to achieve the desired results. Still, machine learning has the potential of delivering 
more challenging AI the gaming community craves. Machine learning algorithms can 
be used to adapt to conditions that cannot be anticipated prior to a game’s release, such 
as the particular styles, tastes, and dispositions of individual players (Manslow 2002). 
When used correctly, machine learning will help make games more robust and 
resilient to player exploits and will change the way in which games are played by 
forcing the player to continually search for new strategies to defeat the AI, rather than 
perfecting a single technique. Developers can also use machine learning techniques to 
generate sophisticated AI’s ‘in-house’ before shipping the game, without having to 
invest significant (human) resources.  

In conclusion, learning is expected to be the next big thing in computer game 
development (Rabin 2002; 2004) and developers are moving away from a hard-coded, 
rules based approach toward more flexible AI engines based on adaptive technologies 
e.g., decision trees, neural networks and evolutionary algorithms. 
 



 12

  
 

Figure 1: MAX PAYNE 2 (left picture) introduces something called dynamic difficulty settings. Information 
from the game world is extracted to estimate a player’s level of skill and the opponent AI difficulty is set in 
response. Creatures in BLACK & WHITE (right picture) are trained through the process of rewards and 
punishments using a reinforcement learning algorithm.  
 
2.3 INTRODUCTION TO EVOLUTIONARY ALGORITHMS IN GAMES 

Evolutionary algorithms (EAs) are the broad name given to a group of optimization 
and search algorithms that are based on the principle of biological evolution. They 
include genetic algorithms (Goldberg 1989), classifier systems (Goldberg 1989) and 
genetic programming (Koza 1992). 

Traditionally, optimization techniques start with one potential solution to a 
problem and then gradually adapt this solution in order to reach an optimum. EAs 
work with a population of solutions. These solutions are often encoded and are then 
called chromosomes. Each gene in a chromosome represents a variable or aspect of the 
solution. The chromosomes in the population are assigned a fitness value. The fitness 
value indicates how successful this solution is in solving the problem, compared to 
other solutions in the population. To generate new solutions, the EA applies genetic 
operators to existing solutions. Genetic operators that need only one parent' solution 
are called mutation operators. Mutation takes one chromosome as parent and inserts, 
deletes or replaces genes to produce a new child. Genetic operators that need more 
parents are called crossover operators. Crossover occurs when parent chromosomes are 
combined to form a child chromosome.  

To select parent solutions for a genetic operator, a selection mechanism is 
applied that is biased to select the fittest solutions. The production of new individuals, 
called the evolution process, continues until some predefined goal is reached. New 
solutions either replace existing solutions, or are inserted in a new population. The 
result is a population of individuals that gradually adapt themselves to the constraints 
of their digital environments, in effect evolving over time. The fittest individual in the 
population is considered to be the sought solution to the problem.  

EAs are robust search methods i.e. they work well in many different 
environments and on many different problems. They search effectively in large, 
complex, or poorly understood search spaces. Once an appropriate representation and 
fitness function is devised, EAs can be a powerful tool for problems featuring large 
numbers of variables and chaotic interactions, such as computer games. To our 
knowledge, EAs have never been used online in commercial computer games. 
Developers have disregarded EAs because they tend to be computationally expensive 
and generally produce ineffective behavior. Another drawback is that EAs are not 
guaranteed to find a good solution, not even a mediocre one. However, EAs have been 
sporadically used offline in simpler computer games (Demasi & Cruz 2002).  
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C h a p t e r  3  

REAL-TIME STRATEGY GAMES 

This Chapter will address our first research objective namely selecting a flexible, state-of-the-art 
real-time strategy game for our experimental research. We will introduce the real-time strategy 
genre in 3.1 and address important aspects to its artificial intelligence in 3.2. In 3.3 we will 
highlight the selection criteria for our game environment. We will introduce Stratagus, the 
selected game environment, in 3.4. This Chapter is concluded in Section 3.5. 
 
3.1 INTRODUCTION TO REAL-TIME STRATEGY GAMES 

Today’s RTS games are simple military simulations that require the player to control 
armies (consisting of different types of units), and defeat all opposing forces. In most 
RTS games, the key to winning lies in efficiently collecting and managing resources, 
and appropriately distributing these resources over the various game elements. Typical 
game elements in RTS games include the construction of buildings, the research of 
new technologies, and combat.  DUNE 2 (Figure 2) is considered as the first RTS game. 
The genre name was invented by Westwood's Brett Sperry. At first they wanted to 
classify this game as a war- or strategy game, but Sperry was concerned this might 
scare players away because of the tremendous complexity in conventional war- and 
strategy games. Sperry justifies his choice for the name by saying: “Before 1992, war 
games and strategy games were very much niche markets, so my fears were justified. 
But in the end, it was best to call it an RTS because that is exactly what it was." The 
term real-time in the genre name aims at the fact that game time in DUNE 2 progresses 
at a predefined rate. However, many serious strategy gamers disagree with the use of 
the word strategy in RTS, arguing that RTS games are nothing more than a cheap 
imitation of turn-based games because of the tendency of RTS games to devolve into 
‘clickfests’ in which the player who is faster with the mouse generally wins, because 
they can give orders at a faster rate (Geryk 1998).  

Since DUNE 2, plenty of new RTS games were published. In 1994 Blizzard 
released WARCRAFT, a RTS game set in the realm of a fantasy. Its sequel, WARCRAFT II 
(1995), would end up being one of the biggest successes the RTS genre has ever seen. 
The game had a long replay value since Blizzard released a version supporting 
Windows 95/98 in 1999. This is remarkable because games tend to age fast. New RTS 
games since WARCRAFT II brought the genre to a higher level, but mainly in terms of 
graphics and sounds (Figure 2) and not in terms of challenging gameplay. 
 

  
Figure 2: DUNE 2 (left picture) was the first RTS game ever. Electronic Arts (2003) provides gamers with a 
realistic perspective on modern warfare in COMMAND & CONQUER GENERALS (right picture). 



 14

3.2 ARTIFICIAL INTELLIGENCE IN REAL-TIME STRATEGY GAMES 

AI has always been very important feature in strategy games, as strategy games cannot 
rely on graphics alone and requires good AI to even be playable (Tozour 2002a). 
Planning for military success in a RTS game can be divided into two separate 
categories: strategies and tactics. While tactics cover small-scale interactions, such as 
scouting the battlefield or capturing an enemy city, strategies are all encompassing 
(Ramsey 2004). Generally, the most valued strategic principles are unity of command 
(desire for one central leader), control of an objective (having a battle plan and sticking 
to it), flexibility (the ability to change battle plans), economy of force (divide forces 
and resources appropriately among potential conflicts), initiative and mass (Dunningan 
2003). Some developers argue that a well-structured multi-tiered AI layer in 
combination with goal-directed reasoning is already fit to tackle some of these real-
world military ideologies. 

Ramsey (2004) proposes a Multi-Tiered AI Framework, where different levels of 
managers control the AI, this allowing ‘grand strategic decisions’ to be made by AI at a 
higher level, which then has the corresponding manager execute the task. EMPIRE 

EARTH by Stainless Steel Studios, arguably the game with the most successful RTS AI 
up to now, decomposed the AI into the following managers: 
 

• Build manager: responsible for placement of structures and towns. Most 
buildings have requirements on where they can and cannot be placed. 

• Unit manager: keeps track of what units are in training at various buildings, 
monitors the computer player’s population limit and prioritizes unit requests. 

• Resource manager: responsible for tasking citizens to gather resources in 
response to requests from both the unit and build managers. This component 
is also responsible for the expansion to new resource sites. 

• Research manager: the research manager examines technologies and selects 
them based on their usefulness and cost. 

• Combat manager: responsible for directing military units on the battlefield. It 
requests units to be trained via the unit manager and deploys them in 
whatever offensive or defensive position is beneficial. 

• Civilization manager: coordination between build, unit, resource and research 
managers. It handles player expansion, spending limits, building and units 
upgrade. 

 
Forward reasoning is impractical in a (RTS) game environment because the sheer 
number of possible moves from any state is prohibitive (Harmon 2002). Therefore, 
goal-directed (backward) reasoning is preferred over forward reasoning. While the 
ultimate goal of an RTS game should be to win the game, this goal is too complicated 
to address directly. The key is to decompose this goal into sub goals. Sub goals for 
instance could be to  ‘expand the base’ or ‘disable the opponent’s resource gathering’.  

For AI designers RTS games offer many challenges such as resource 
management, robust terrain analysis, opponent modeling, influence mapping 
(Woodcock 2002), the utilization of effective tactics and strategies and more. Providing 
the computer opponent AI with a variety of subtle and complex tactics will greatly 
enhance the user’s sense of challenge and enjoyment (Kent 2004). Providing it with 
‘intelligent’ adaptive behavior would be nothing less than a revolution. 
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3.3 SELECTION REQUIREMENTS FOR THE GAME ENVIRONMENT 

For our experiments we needed to implement machine learning techniques in a RTS 
game environment. In our search for an appropriate environment, we took the 
following list of requirements into account: 
 

1) The game environment required being easily accessible and changeable 
2) The game environment should include a scripting language, preferably with a 

sophisticated AI API, able to support learning techniques. 
3) Preferably experiments in the environment should be fast. 
4) The game environment must be state-of-the-art in terms of gameplay, 

meaning that game will have to incorporate non-trivial AI. 
 
At first we investigated the possibility of using commercial computer games such as 
COMMAND & CONQUER GENERALS or EMPIRE EARTH. Modern commercial games are 
perfect for research in aspect to their realistic environments and non-trivial AI. 
Unfortunately, most game companies don’t leave scripting hooks in the AI engine to 
allow academics to build their own AI mods, mainly because developers don’t have 
enough time or simply feel it just isn’t worth the effort (Woodcock 2003). Although 
some commercial computer games do include editors to change game AI, the process 
of doing this is either too tedious or the possibilities are just too scarce.  

We then turned to open-source game engines such as Michel Buro’s ORTS 

(2003), the FREECNC engine and finally Stratagus, formerly known as FREECRAFT. We 
found Stratagus to be the most stable and appropriate engine for our experiments. 
 
3.4 STRATAGUS 

Stratagus is a sophisticated RTS engine that can be used to build real-time strategy 
games similar to WARCRAFT II, COMMAND & CONQUER, STARCRAFT, AGES OF EMPIRES, 
etc. It successfully runs under GNU/Linux, BSD, BeOS, MacOS/X, MacOS/Darwin and 
Windows. Stratagus uses an AI manager, written in low-level C code, along with 
scripts to control the AI opponents. Stratagus includes several scripted AI opponents, 
each focusing on different strategies such as attacking over land, sea or air.  

Scripts in Stratagus are defined in the high-level scripting language LUA, 
currently one of the most popular scripting languages for games. LUA is a powerful but 
surprisingly comfortable scripting language and is perfectly able to implement 
sophisticated AI techniques such as dynamic scripting and evolutionary algorithms.  

Stratagus already incorporates useful features such as a fast forward mode where 
graphics are partially turned off, resulting in fast experiments (a typical game between 
two computer controlled armies takes about 1 to 3 minutes). The implementation of an 
automated self-play environment (machine versus machine) turned out to be easy. 
During and after the game we can easily access numerous game related data such as 
time elapsed before winning, the number of killed units or the number of units lost 
etc. which is useful when designing a performance measure. 

Initially Stratagus was developed as an open source alternative to WARCRAFT, 
hence the former name FREECRAFT. Currently there are many games built on top of 
the Stratagus engine. We chose the game WARGUS with Stratagus as its underlying 
engine as the test-bed for our experiments. From this point we will refer to WARGUS as 
the game used for the experiments. WARGUS is not a stand-alone game but a mod that 
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implements a WARCRAFT II clone. WARGUS is not completely true to the original 
WARCRAFT II experience because it uses a different engine. However, WARGUS is close 
enough to the original that WARCRAFT II strategies, which are collected in numerous 
strategy guides available on the Internet, are applicable to WARGUS. 

The fact that Blizzard found it worthwhile to re-release WARCRAFT II four years 
after the game was first released shows that, despite inferior graphics and sounds, 
apparently WARCRAFT II was still popular among gamers. Supposedly, the gaming 
community has become indifferent to the incremental improvements in graphics and 
sounds in newer RTS games and is demanding a more challenging AI. 
 
3.5 CHAPTER CONCLUSION 

In this Chapter we addressed the first objectives as listed in Section 1.4: we selected the 
game WARGUS with Stratagus as its underlying engine as the RTS environment for our 
experimental research. This setup meets all 4 selection requirements. First, Stratagus is 
a sophisticated RTS engine and is easily changeable and extensible. Secondly, all game 
content (including the AI) is defined in LUA scripts. LUA is a powerful scripting 
language, allowing the implementation of machine learning techniques such as 
dynamic scripting and evolutionary algorithms. Thirdly, experiments in the engine are 
fast because graphics can be partially turned off. Finally, the game WARCRAFT II – and 
thus WARGUS- can still be considered as state-of-the-art in terms of gameplay.  
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C h a p t e r  4  

DYNAMIC SCRIPTING FOR REAL-TIME 
STRATEGY GAMES 

In 4.1 we will describe the basic principles of the dynamic scripting and how its implementation 
differs in the RTS genre as opposed to its original implementation in CRPG. In 4.2 we will 
discuss how we implemented dynamic scripting in WARGUS, the selected game for the 
experiments. In 4.3 we will present the reader the results for the conducted experiments. We 
will finish this Chapter with a conclusion in 4.4. 
 
4.1 DYNAMIC SCRIPTING APPLIED IN REAL-TIME STRATEGY GAMES 

Dynamic scripting (Spronck et al., 2003) is a direct online learning technique for 
commercial computer games. The learning mechanism in the dynamic scripting 
technique is inspired by reinforcement learning techniques (Russell and Norvig 1995). 
It has been adapted for use in games because regular reinforcement learning 
techniques do not meet the requirement of efficiency (Manslow 2002). In dynamic 
scripting an adaptive rulebase is used for the generation of intelligent opponents on the 
fly. Rules are extracted from a rulebase to form a new script that controls the dynamic 
players’ behavior. The probability that a rule is selected for a script is proportional to a 
weight value that is associated with each rule i.e., rules with larger weights have a 
higher probability of being selected. The idea behind dynamic scripting is that the 
rulebase adapts by changing the weight values to reflect the success or failure rate of 
the corresponding rules in scripts.  After every game, the weights of rules employed in 
the combat are increased when having a positive contribution to the outcome and 
decreased when having a negative contribution. The remaining rules get updated so 
that the total weight of the rules in the rulebase remains unchanged.  Through the 
process of punishments and rewards, the dynamic AI will gradually adapt its strategy 
to the players. Figure 3 illustrates the dynamic scripting process in RTS games.  
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Figure 3: The dynamic scripting technique applied in a RTS game. The rulebase generates a new script at the 
start of a game. After each game, the weights in the rulebase are adapted to reflect the results of the game. 
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Spronck et al.’s (2003) CRPG implementation of dynamic scripting cannot be 
transferred to the RTS genre unchanged. We added some new features to the original 
implementation of dynamic scripting for CRPGs to enable it to work for RTS games. 
Specifically we introduced ‘states’ and ‘state evaluations’.  

A typical RTS skirmish can be divided into phases. The first phases are 
traditionally used to get the economy going as well as setting up a base defense. 
Gradually players will improve their civilization and as time progresses players usually 
tend to act more offensively. Careful timing of military activities in RTS games is 
essential to achieve success, e.g., attacking with weak units might be the only viable 
choice in early game phases, in later game phases, when strong units are available, 
usually weak units will have become useless. We decided to structure these phases into 
game states. While dynamic scripting for CRPGs employs different rulebases for 
different opponent types in the game (Spronck et al. 2003), our RTS implementation of 
dynamic scripting employs different rulebases for the different states of the game. 
These states will then roughly reflect all distinct game situations in a particular RTS 
game. In the original dynamic scripting implementation for CRPGs, the success of a 
rule is reflected by a single weight. This will no longer suffice since we want judge 
rules based on the temporal state of the game. We need to associate rules with several 
weights. More specifically, we need to assign each rule with one weight per state (per 
rulebase). 

   While dynamic scripting for CRPGs executes weight updates based on an 
evaluation of a fight, our RTS implementation of dynamic scripting executes weight 
updates based on both an evaluation of the performance of the game AI during the 
whole game (called the “overall fitness”), and on an evaluation of the performance of 
the game AI between state changes (called the “state fitness”). As such, the weight-
update function is based on the state fitness, combined with the overall fitness.  The 
use of both evaluations for the weight-updates increases the efficiency of the learning 
mechanism (Manslow 2004). 
 
4.2 DYNAMIC SCRIPTING IMPLEMENTED IN WARGUS 

4.2.1 States and State Evaluations 

Manslow (2002) argues that knowledge about the game and the lessons you want AI to 
learn must be taken into account to structure the state space. For most games it is very 
hard to draw a line between different phases and determine how many states are 
appropriate. However, WARGUS has clear distinction in eras. The player starts with a 
‘town hall’. A ‘town hall’ can be upgraded to a ‘keep’, and a ‘keep’ in its turn can be 
upgraded to a ‘castle’. After doing each of these upgrades, many new build options are 
available to the player. In preliminary experiments we used three different states. 
Ideally these would correspond to the town hall, keep and castle era. However, three 
states proved to be insufficient because of the structure dependencies incorporated this 
RTS game. In order to upgrade to castle, a list of other buildings are required. So unless 
we obligate the construction of these dependency buildings, we could never be sure if 
moving to another era was possible. We felt it was best to avoid compulsory behavior, 
because eventually the opposing human player will recognize and exploit this. Taking 
all dependency buildings into account, we found that the ‘natural’ number of states 
was 20 (Figure 4). Each state corresponds with a set of buildings the player currently 
possesses and with a set of potential rules it is allowed to choose from. Some of these 
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rules (e.g. building a blacksmith) cause the player to progress to another state. In our 
implementation for WARGUS, the dynamic scripting technique evaluates the AI’s 
performance for the current state before it moves to a new state. These state 
evaluations will be used to update the weights for rules in the rulebase for the state in 
question. 
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Figure 4: Game-states for WARGUS. The boxes represent the states. Inside each box we see the buildings the 
player already possesses. The arrows represent the state transitions for each state. For example, after building 
a lumber-mill (Lm) in state 1, the player progresses to state 2. In our setup the player always starts with a 
town hall and barracks. 
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4.2.2 Rulebase 

The initial rulebase we designed for WARGUS included 50 higher-level rules, each of 
which exists in all states. We expected it to be crucial to regularly launch firm attacks 
and to have a steady defensive line at all times. For that reason we inserted more 
military rules in the rulebase compared to other rules (Table 1). 
 
Rule type Count 
Build Rules (e.g. Build new barracks) 12 
Economy Rules (e.g. Train more workers to harvest resources) 4 
Military Rules (e.g. Attack the enemy) 25 
Research Rules (e.g. Upgrade your weapons) 9 
 

Table 1: Numerical relation between the different types of rules in rulebase 
 
A typical rule in the rulebase allows the dynamic player to launch an attack on his 
opponent. The domain knowledge here lies in the fact that this rule automatically 
trains the most advanced units available. In WARGUS it is advisable to always attack 
with the most advanced units available e.g., a knight can slaughter a group of soldiers. 
Another form of built-in domain knowledge is incorporated in the building rules. It is 
important to build more than one barrack. On the other hand, it doesn’t really make 
sense to build more than one blacksmith so we prevent the AI from doing this. For a 
complete overview of all rules in the initial rulebase see Appendix C. 
 
4.2.3 Creating a dynamic script 

As mentioned before, each state corresponds with a set of possible rules. The dynamic 
scripting technique will start with randomly selecting rules for state 1 and will 
continue doing this until a rule is selected that spawns a state change. When a rule is 
selected that spawns a state change, from that point on rules will be selected for the 
new state. To avoid monotone behavior, we restricted each rule to be selected only 
once for each state. We allowed a maximum of 100 rules per script. At the end of the 
scripts, a loop is implemented that initiates continuous attacks against the enemy. 

The chance that a rule is chosen depends on the weight of that rule for that 
state. Since we have a total of 20 states and 50 rules in the rulebase, the total number of 
weights for the entire rulebase amounts to 1000, which may be too many to achieve 
fast learning. Taking into consideration that not all rules are applicable for certain 
states, we have narrowed down the average number of selectable rules per state to 30 
(with a minimum of 21 and maximum of 42) by setting the weights in the weight table 
for non-applicable rules to 0. These rules are disregarded in the selection and weight 
updating procedure for the state in question. This way the AI only selects appropriate 
rules. Presenting as little information as possible that is as relevant as possible will 
speed up the learning process (Manslow 2004).  
 
4.2.4 Fitness and Weight-update Functions 

The weight-update function is based on two ‘fitness’ functions; a fitness function 
evaluating the game as a whole (overall fitness) and a fitness function evaluating all 
states visited during the game (state fitness). Both fitness functions yield values in the 
range of [0,1]. Although not always true, the player controlled by dynamic scripting 
(henceforth called the “dynamic player”) normally has lost (all the players buildings 
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and units were destroyed) when it has an overall fitness score lower than 0.5 and the 
dynamic player has mostly won the game (it destroyed all the opponents buildings and 
units) when it has an overall fitness score greater than 0.5. The closer the overall 
fitness is to 0, the greater the defeat was. An overall fitness evaluation close to 1 
represents an overwhelming victory. The same applies for the state performance with 
the slight difference that the state fitness does not represent win or loss, but merely the 
performance for that state. A bad start could still lead to victory. The ‘overall fitness’ 
function F for player d controlled by dynamic scripting is defined as:  
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In equation (1), Sd represents the score for the dynamic player, So represents the 
dynamic player’s opponent, b ∈ [0,1] is the break-even point. At the break-even point, 
weights remain unchanged. The state fitness F for state i ∈ {0,20}, for dynamic player 
d, is formally defined as: 
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In equation (2), Sd,x represents the score of the dynamic player after state x, and So,x 
represents the score of the dynamic player’s opponent after state x. 
    The score function is domain-dependent, and should successfully reflect the relative 
strength of the two players in the game. We defined the score Sx for player x as: 
 

xxx BMS 3.07.0 +=                                                                                                               (3) 
 

In equation (3), Mx represents the military points for player x, i.e. the number of points 
awarded for killing units and destruction of buildings, and Bx represents the building 
points for player x, i.e. the number of points awarded for training armies and 
construction of buildings.  

After each game, the weights of rules employed are updated. The weight-update 
function translates the fitness functions into weight adaptations for the rules in the 
script. The weight-update function W for the dynamic player is formally defined as: 
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In equation (4), W is the new weight value, Worg is the original weight value, P is the 
maximum penalty, R is the maximum reward, Wmax is the maximum weight value, 
Wmin is the minimum weight value, F is the overall fitness of the dynamic player, Fi is 
the state fitness for the dynamic player in state i, and b is the break-even point. The 
equation indicates that we prioritize state performance over the overall performance. 
The reason is that, even if a game is lost, we wish to prevent rules in states where 
performance is successful from being punished (too much). In our simulation we set P 
to 175, R to 200, Wmax to 1250, Wmin to 25 and b to 0.5. 
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4.3 EXPERIMENTS 

4.3.1 Experimental Setup 

With our experiments we aim at proving that the player controlled by the dynamic 
scripting AI successfully adapts to a static opponent. Ideally we want the AI controlled 
by dynamic scripting to be resilient to early attacks as well as long lasting battles; 
therefore we conducted experiments in both a small map and large map. The small 
map will most likely be decided with fierce battles in a really early stage, whereas the 
large map allows both players to advance to other eras, producing interesting battles 
with advanced units (Figure 5). 

For our first experiment, we used the default land attack AI included with the 
Stratagus engine as the static opponent AI. We made some moderate improvements 
(e.g. launching larger offensives) to it because at first the dynamic AI was already 
outperforming the default land attack AI before any learning could have taken place. 
The improved land attack AI is an overall balanced strategy focusing on offense, 
defense and research. It favors ground offenses over air and sea. We employed the 
improved balanced land attack AI on both the small and large map. 

Besides the default land attack AI we also decided to test the dynamic scripting 
technique against two optimized strategies: the soldier’s rush and the knight’s rush. 
The soldier’s rush, which we implemented ourselves, aims at overwhelming the 
opponent with cheap offensive units in the early state of the game. The knight’s rush 
strategy aims at quick technological advancement, launching large offenses as soon as 
strong offensive units are available. The soldier’s rush arguably is most effective on a 
small map, and the knights’ rush on a large map. In summary, the following 
experimental setups were used: 
 
Name AI Strategy Map 
Small Balanced Land Attack Improved default land attack AI Small Map 
Large Balanced Land Attack Improved default land attack AI Large Map 
Soldier’s Rush Soldier’s Rush AI Small Map 
Knight’s Rush Knight’s Rush AI Large Map 
 

Table 2. Experimental setups. 
 
To quantify the relative performance of the dynamic player against the static player, 
we define two notions of the ‘randomization turning point’ (RTP) and the ‘absolute 
turning point’ (ATP). The RTP is explained as follows: after each game we calculate 
the average fitness for each of the players over the last ten games. We then use the 
fitness values over the last ten games to conduct a randomization test (Cohen 1995) 
with the null hypothesis that both players (dynamic and static) are equally good. The 
dynamic player is said to outperform the static player at a point when the null 
hypothesis can be rejected with a probability of 90%.  The RTP is the first round in 
which this is achieved. The ATP is defined as the first game after which a consecutive 
run of games in which the dynamic player wins is never followed by a longer 
consecutive run in which the dynamic player loses. Low values for the randomization 
and absolute turning points indicate good efficiency of dynamic scripting, since they 
indicate that the opponent player (using dynamic scripting) consistently outperforms 
the static player within a few games only (Spronck et al, 2003). If the dynamic AI is 
unable to statistically outperform the static player within 100 games, the experiment is 
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stopped and the average fitness is logged. For the Small Balanced Land AI we ran 31 
tests. For the Large Balanced Land AI we ran 21 tests. For both the soldier’s rush and 
knight’s rush, we ran 10 tests each. The results of these experiments are presented in 
the next Sections. 
 

 
 

Figure 5:  Screenshot of a battle in WARGUS in the small map ‘little ambush’ (64x64 tiles). The upper left 
square in the image above shows an overview of the small map. Because of the relatively small space 
available, the opponents will be at each other’s throats quickly. The second map for our experiments (not 
illustrated here) is the larger map ‘Scandinavian’ (128x128 tiles) where longer journeys have to be undertaken 
to attack the enemy, increasing the chance both players will advance to other eras. 
 
4.3.2 Results 

The results for the Small and Large Balanced Land Attack AI presented in Table 3 
show that the dynamic scripting technique works in RTS games. With average RTP 
and ATP values around respectively 50 and 35, the dynamic AI adapts fast to a static 
opponent. Both the RTP and ATP averages are very similar in both maps. Remarkable 
are the high outliers in the small map. We will discuss these outliers in the next 
Section. 
 
 Randomization Test Statistics Absolute Turning Point Statistics 
Map Low. High. Avg. Med. Low. High. Avg. Med. 
Small 18 99 50 39 8 91 36 27 
Large 19 79 49 47 11 58 34 34 
 

Table 3: Results against the small and large balanced land attack AI. The lowest, highest, average and median 
values are shown. 
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The results for the soldier’s rush and knight’s rush are presented in Table 4. The 
dynamic scripting was unable to statistically outperform the optimized static AI’s 
within 100 games, resulting in low average fitness scores (AFS). On average dynamic 
scripting only won approximately 1 out of 100 against the soldier’s rush, and 1 out of 
50 against the knight’s rush. 
 

Soldier’s Rush  Knight’s Rush 
Test Won AFS  Test Won AFS 
#1 0 0.18  #1 1 0.21 
#2 2 0.18  #2 2 0.23 
#3 0 0.18  #3 1 0.22 
#4 3 0.20  #4 5 0.23 
#5 1 0.19  #5 0 0.22 
#6 3 0.20  #6 7 0.25 
#7 0 0.18  #7 0 0.20 
#8 1 0.19  #8 2 0.21 
#9 2 0.20  #9 3 0.22 
#10 0 0.18  #10 2 0.23 

 1.2 0.19   2.3 0.22 
 

Table 4 – Results for the two optimized AI’s: the soldier’s rush and knight’s rush. The numbers in the last row 
represent the average number of games won, and the average fitness score calculated over all test runs. 
 
4.3.3 Discussion 

Although the RTP and ATP averages are very similar for both the Small and Large 
Balanced Land Attack AI, it can be argued that learning is achieved faster against the 
Small Balanced Land Attack AI (note the significantly lower median for both 
performance measures). A typical battle in the small map is decided before either 
player reaches advanced eras. Consequently weights are updated only for early states. 
Typical battles in the large map, where early offensive combat is not as decisive, does 
effect in updating weights for large numbers of states. Therefore, learning is faster in a 
small map because it involves making changes to a smaller number of states. The fact 
that the RTP and ATP averages are not significantly lower for the Small Balanced Land 
Attack AI is most likely due to the high outliers. Unlike in the large map where the 
dynamic AI has a better chance of recovering after a ‘dumb’ move, the dynamic AI in 
the small map has trouble holding on to a winning tactic (Figure 6). Even when the 
dynamic AI has gained tactical and strategic superiority, an occasional bad start due to 
randomness will result in total defeat. These are most likely the cause of the high 
outliers. Novel additions to the dynamic scripting technique, such as a penalty-
balancing and a history-fallback mechanism (Spronck et al, 2004), enhances the overall 
performance by preventing a rulebase from deteriorating and reducing the number of 
outliers.   

The results presented in Table 4 clearly indicate that dynamic scripting in the 
current implementation is not successful in battling optimized strategies. Although 
dynamic scripting is an adaptive technique, it is still bound to the rules in the rulebase. 
If the rules offer too few solutions, dynamic scripting is unable to (quickly) discover 
winning tactics. 
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Figure 6: Comparing the average number of games before RTP is reached against the Balanced Land Attack 
AI for both maps, calculated over all experiments. The x-axis represents the number of games played. The y-
axis represents the number of times the RTP has been reached (in percents) after a certain number of games 
played (e.g. over all experimental runs in the large map, 20% reached the RTP in approximately 35 games).  
This graph shows that the dynamic AI learns faster in the small map but after considerable training, the 
dynamic AI is more stable in the large map. 
 
4.4     CHAPTER CONCLUSION 

In this Chapter we addressed the second objective as listed in Section 1.4 namely we 
designed and implemented a method to apply dynamic scripting to RTS games. We 
extended the original implementation of dynamic scripting (Spronck et al, 2003) with 
states and state evaluations. Against generalized strategies (the improved default land 
attack AI) dynamic scripting performed well on both the small map and large map. It 
therefore proved to be resilient to early attacks as well as long lasting battles. 
Considering the large state space in Wargus, the dynamic scripting technique adapted 
fast (with RTP averages around 50 and ATP around 35) to its opponent’s strategy.  

However, with our initial rulebase, dynamic scripting was unable to cope with 
two optimized AI’s (the soldier’s rush and the knight’s rush). Overcoming extremely 
optimized strategies as employed by many experienced gamers, can possibly be 
achieved by creating better rules for the rulebase. Discovering new rules (e.g. changing 
rule parameters or discovering successful combinations of rules) will be the main focus 
in the Chapters to come. 
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C h a p t e r  5  

EVOLUTIONARY LEARNING IN REAL-TIME 
STRATEGY GAMES 

In Chapter 4 we noticed that dynamic scripting had trouble coping with optimized strategies. 
AI’s in a RTS game equipped with an evolutionary algorithm can potentially ignore conventional 
military wisdom and ‘think’ out-of-the-box. By mimicking the natural process of survival of the 
fittest and evolution we hope to discover unexpected successful strategies and tactics that can 
outperform these optimized AI’s. In 5.1 and 5.2 we will discuss how evolutionary algorithms can 
be applied to RTS games in general and in WARGUS specifically. The results of our experiments 
with the EA in WARGUS are presented in Section 5.3. This Chapter is concluded in Section 5.4. 
 
5.1 EVOLUTIONARY ALGORITHMS APPLIED IN REAL-TIME STRATEGY 

When designing an EA for RTS games, the most critical design issues involve the 
encoding and evaluation. An encoding scheme needs to able to represent any possible 
solution to the problem, and preferably be designed so that it cannot represent 
infeasible solutions. Therefore, we give the EA maximal freedom in rule selection and 
rule parameterization but prevent it from inserting illegal rules into the solution. We 
do this by using game states that correspond with a set of rules the EA is allowed to 
choose from.  

Designing an appropriate fitness function is essential for the EA to work 
effectively. Basically the better a chromosome is at solving a specific problem, the 
higher the fitness score it should receive. An adequate problem definition is therefore 
crucial when designing the fitness function. In RTS games, the problem can be 
described as overcoming opposing armies on a specific map. Arguably an 
overwhelming victory should be awarded a higher fitness than a narrow victory.  

Another characteristic that requires special attention when designing an EA for 
RTS games is the population size. Very determining for the AI’s strategy in many RTS 
games are the building priorities for the AI (e.g. the specific order the AI chooses to 
construct buildings). The original population should include enough variations in the 
building priorities to test various strategies and search for an optimal solution. If the 
population size is chosen too large, the evolution may take too long. However, if it is 
chosen too small, the EA could converge to a poor solution because of insufficient 
sampling of the search space. 

EAs are initialized by creating a population with a fixed number of sample 
solutions. New solutions are then played against a static AI and their success is 
measured. When the population has been filled and all chromosomes have been 
assigned fitness scores, successful solutions are allowed to breed. The EA will select 
one of the genetic operators available to the system and then select the appropriate 
number of child and parent chromosomes. The process of evolution will continue until 
a certain stopping criterion has been met i.e., when a solution to the problem has been 
found. Figure 7 illustrates schematically the evolutionary process applied in RTS 
games. 
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Figure 7: The evolutionary process applied in RTS games. 
 
5.2 EVOLUTIONARY ALGORITHM IMPLEMENTED IN WARGUS  

5.2.1 Encoding 

The genes in a chromosome are grouped into states. A state is activated when the AI 
has executed at least 1 gene in that state. All chromosomes will at least have state 1 
activated while the other states vary depending on the building priority (Figure 4). For 
WARGUS we encoded 4 types of genes: build, research, economy and combat genes. 

To construct buildings we introduced build genes. These start with the letter ‘B’ 
and are followed by a number ranging from 1 to 12, representing the selected building. 
Research genes, responsible for researching new technologies to improve civilization, 
start with the letter ‘R’ and are followed by a number ranging from 13 to 21. Economy 
genes are responsible for training workers and start with the letter ‘E’ followed by the 
desired number of workers. Military activities are encoded in combat genes. They start 
with the letter ‘C’ and a number representing the current state (each state allows 
fighting with different units). For example, a combat gene in state 1 starts with ‘C1’, 
whereas a combat gene in state 20 starts with ‘C20’. The first parameter for a combat 
gene is always the identifier for an army. Stratagus currently supports 10 controllable 
armies ranging from 0 to 9. The last parameter is always the role of the army: either 
offensive or defensive. The number of parameters between the first and last vary, 
depending on the state. For example, state 1 only has one extra parameter 
(representing the number of soldiers), while state 20 has a total of 6 extra parameters. 
During the initialization phase these parameters are randomly initialized with a 
number between 0 and 9. Figure 8 illustrates the design of a chromosome in WARGUS 
and some example genes. For a complete description of all genes, see Appendix A. 
 

 

 
Figure 8: A chromosome in WARGUS. The gray boxes show the possible states whereas the example genes are 
listed in the white boxes. The tag ‘S’ followed by the number 1 implies that the script currently is in state 1. 
After building a blacksmith with building index 4, we see the script progressing to state 3. Note that the 
combat gene ‘C4’ in state 4 has more parameters than the combat gene ‘C1’ in state 1. 
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5.2.2 Evaluation 

To measure the success of a game AI script represented by a chromosome, the 
following fitness function F for the dynamic player d, that yields a value in the range 
[0,1], is defined: 
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In equation (5), Md represents the military points for the dynamic player, Mo 
represents the military points for the dynamic player’s opponent, and b is the break-
even point. GC represents the game cycle, i.e., the time it took before the game is lost 
by one of the players. EC represents the end cycle, i.e. the longest time a game is 
allowed to continue. When a game reaches the end cycle and neither army has been 
completely defeated, scores at that time are measured and the game is aborted.  

If the evolutionary AI is able to put up a long lasting fight but eventually it still 
loses, it is probable that this chromosome is close to finding a solution and small 
changes to the genes might result in a winning chromosome. The factor GC/EC 
ensures that losing solutions that play a long game are awarded higher fitness scores 
than losing solutions that play a short game.  
 
5.2.3 Genetic Operators 

Genetic operators are often designed to fit the specific problem and chromosome 
design at hand. In WARGUS we designed four genetic operators for the evolution of 
tactics and strategies in RTS-games: (1) State Crossover, (2) Rule Replace Mutation, (3) 
Rule Biased Mutation and (4) Randomization. Randomization has a 10% chance of 
occurring and the remaining genetic operators a 30% chance. We will discuss each of 
them next. 
 
1) State Crossover: We select 2 parents and check if the selected parents have at 

least 3 matching activated states for crossover. We make sure that the child 
chromosome inherits genetic material from both parents to prevent a parent 
from being copied completely onto the child chromosome. Between two 
matching states, all states and genes are copied from either parent.  This way 
we prevent the EA from evolving corrupt chromosomes, i.e. illegal state 
changes. After the last activated state, the remaining part of the chromosome 
is copied from one of the parents. Figure 9 illustrates an example of a state 
crossover. 

 
 

       Parent A: Start State 1 State 3 State 4 State 8 State 12 State 13 State 14 State 17  State 20 End 

 
 

Example Child:  Start State 1 State 3 State 4 State 8 State 12 State 13 State 14 State 17  State 20 End 

 
 

        Parent B: Start State 1 State 2 State 6 State 8 State 12 State 13 State 16 State 19  State 20 End 
 

 

Figure 9: This example illustrates a state crossover. Activate stares are written in bold. The matching 
activated states between parent A and B are 1, 8 and 12. For this specific example, between 1 and 8, all states 
are copied from parent A; state 8 is copied from parent B etc. 
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2) Rule Replace Mutation: Select 1 parent and for every activated state all 
economy, research or combat rules have a 25% chance of being replaced. 
Building rules are excluded here both for replacement and as replacement, 
because these could spawn a state change and could possibly corrupt the 
chromosome. Genes in inactivated states are ignored as they are considered 
‘dead’ and mutation doesn’t really make sense here. 

 
3) Rule Biased Mutation: Select 1 parent and for every activated state the 

parameters for existing combat or economy rules have a 50% chance of being 
mutated. The mutation is within a predefined boundary (between a minimum 
and maximum value). For this genetic operator, we exclude build and research 
rules. Changing parameters for these specific rule types doesn’t make sense 
and could possibly corrupt the chromosome. We disallowed biased mutation 
in ‘dead’ genes. 

 
4) Randomization: Generate a complete new chromosome. 
 
5.2.4 Selection Mechanism 

We implemented tournament selection as the selection mechanism. Tournament 
selection randomly chooses M ‘winning’ chromosomes out of N to become parents. 
The higher the value of N, the higher the selection pressure, or in other words, the 
lower the value of N, the more diverse the selection will be (Buckland 2004). This 
method will most likely select good solutions and prevent early convergence. Since 
little calculation is involved, this mechanism is also computationally fast.  

Many other selection methods exist such as roulette wheel selection, linear 
ranking or stochastic remainder selection. For WARGUS we found tournament selection 
to be the most appropriate selection mechanism because (1) it is easy to implement, (2) 
it most likely will select good solutions, and (3) when choosing a small value for N it 
will prevent the population from converging too soon. In our implementation we set N 
to 3 and M to 1, in other words we choose 3 chromosomes and then pick the best 
solution to become parent. 

Since we replace existing chromosomes in the population, we also need a 
replacement mechanism for which we chose size-3 crowding (Goldberg 1989). We 
discard the worst solution among the 3 selected chromosomes. 
 
5.2.5 Stop Criteria 

If a fitness score exceeds a desired value, a solution has been found. In WARGUS, a 
fitness score higher than 0.7 almost certainly represents a convincing victory. Since 
there is no guarantee an EA will find such a solution, we stop the EA after a fixed 
number of runs (a run equals the generation of a new evolved chromosome). When 
either stop-criterion (fitness- or run-stop criterion) has been met, the process logs the 
best solution, resets the population and starts a new search.  
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5.3 EXPERIMENTS 

5.3.1 Experimental Setup 

In our experiments we used the soldier’s rush and the knight’s rush as static AI’s since 
these proved to be problematic for the dynamic scripting technique. We set the 
population size to 50.  This is a fairly small population size, but the search space in 
WARGUS is not very large and initializing the population with hundreds of solutions is 
not necessary.  

The fitness stop criterion was set to 0.75 and 0.7 for respectively the soldier’s 
rush and the knight’s rush. Since we expected evolution to take longer against the 
knight’s rush in the large map, a fitness score higher than 0.7 will suffice. For the 
soldier’s rush we raised the standard to 0.75. Games against the soldier’s rush never 
take long, therefore the EA has ample opportunity to search for a more optimal 
solution in a relative short time. Our run stop-criterion was set to 250 because 
preliminary experiments showed that the EA was able to discover solutions within 250 
runs. 
 
5.3.2 Results 

The EA rapidly discovered solutions. We repeated experiments until we found 10 
solutions for both setups. Almost all evolutionary experiments ended before 250 runs 
with fitness scores exceeding 0.7 in the large map and 0.75 in the small map (Table 5). 
We can therefore conclude that our EA is able to discover new tactics and strategies to 
deal with optimized AI’s that dynamic scripting was unable to defeat. 
 

 Results fitness scores 
AI Low. High. Avg. >250 
Soldier’ Rush 0.73 0.85 0.78 2 
Knight’s Rush 0.71 0.84 0.75 0 

 

Table 5: The fitness scores for the solutions found by the EA. Respectively the lowest-, highest-, and average 
fitness scores are shown. The column on the far right lists the number of times an experimental run was 
stopped by the run-stop criterion, i.e. the desired fitness was not met. 
 
5.3.3 Discussion 

We examined the 10 solutions for both setups. As expected, the battle in the small map 
never took long. Most solutions found by EA included only two activated states. 
Remarkable was the fact that in 8 out of 10 solutions, the EA chose to first build a 
blacksmith very early in the game. Furthermore, as soon as the EA reached state 3 
(after building a blacksmith) it selected at least 2 out of the 3 possible research 
advancements. Basically the strategy behind these 8 solutions is to keep a steady line of 
defense at all times, build a blacksmith as fast as possible, research better weaponry 
and armor and conclude with large offenses. The remaining 2 solutions overwhelmed 
the enemy with sheer numbers.  

The solutions in the large map offered more genetic diversity and battles took 
longer compared to battles on the small map (on average 5 or 6 states were activated). 
Still, we were able to recognize some obvious patterns in the 10 winning 
chromosomes. A common building order, as employed in 7 out of 10 solutions, was to 
build a blacksmith, a lumber mill, upgrade to keep and a stable in that precise order. 
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Two solutions preferred to reach state 11 really fast. This state is special, since it is the 
first state that allows fighting with advanced units such as knights. A knight arguably 
is the most powerful unit in the game and the sooner the AI is able to train knights, 
the higher its chances are for winning the game. That is why in many solutions, 
whenever the evolutionary AI was in the proximity of a state able to train knights, it 
progressed to that state really fast.  

Boosting up the economy by building additional resource sites and training 
large number of workers was clearly present in all solutions for the large map.  

Another interesting fact is that the evolutionary AI used lots of catapults. This is 
surprising because most strategy guides for WARCRAFT II tell us that catapults are 
generally inferior units because of their high costs and high vulnerability. We expect 
that their impressive damaging abilities and large range make them effective for both 
defensive and offensive purposes, especially against tightly packed armies, such as large 
groups of knights. 
 
5.4 CHAPTER CONCLUSION 

In this Chapter we addressed the third objective as listed in 1.4: we implemented an 
EA in Stratagus that successfully evolved chromosomes that were able to beat two 
optimized AI’s (the soldier’s rush and the knight’s rush). In all evolutionary searches it 
offered solutions with fitness scores higher than 0.7 and almost always in less than 250 
runs. We were able to recognize several strategies and tactics encoded in the 
chromosomes for both setups. The focus of the next Chapter is to translate these 
discovered tactics and strategies into improved rules for the dynamic scripting 
rulebase. 
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C h a p t e r  6  

IMPROVING THE RULEBASE FOR DYNAMIC 
SCRIPTING 

In Chapter 5 we used an EA to discover new tactics and strategies for a RTS game. This Chapter 
will deal with the translation of these discovered tactics and strategies into rules for the dynamic 
scripting rulebase. In 6.1 we will explain how we improved the rulebase. In 6.2 we will discuss 
the experiments with the new rulebase. We will conclude this Chapter in Section 6.3. 
 
6.1 IMPROVING THE DYNAMIC SCRIPTING RULEBASE 

In this Chapter we will discuss how we created new rules based on the solutions found 
by the EA, in order to improve the dynamic scripting rulebase. We aim at proving that 
the new rulebase will outperform the two optimized AI’s (the soldier’s rush and the 
knight’s rush AI’s) or at least perform better compared to the old rulebase while being 
at least equal in performance against the non-optimized AI’s.  

We closely examined and discussed all discovered solutions in Section 5.3.3. 
Based on our discoveries we decided to make five changes to the old rulebase namely: 
 
1) We recognized a very obvious pattern in most solutions found against the soldier’s 

rush. The AI first built a blacksmith, then researched better weaponry and armor, 
and finally overwhelmed the enemy with heavily armed soldiers. The first new 
rule we added under the name ‘AntiSoldiersRush’, did exactly that. 

 
2) In almost all solutions against the knight’s rush, we observed that the EA preferred 

to train advanced units as fast as possible. This inspired us to create another rule. 
Whenever the AI was ‘one building away’ from training advanced units, our 
second new rule, when selected, constructed this building and then attacked with 
advanced units.  

 
3) We also learned from solutions found against the knight’s rush that boosting the 

economy by expanding to new resource sites is very important to achieve game 
success. The original rulebase already offered numerous opportunities for base 
expansion. However, during experiments with the old rulebase we noticed that 
new resource sites were often easily destroyed by the opponent AI (Figure 10). 
Therefore, these rules were often assigned low weights. When we had a closer 
look at the solutions found by the EA, we saw that the EA first organized its 
defenses before building a new base. The lesson we should learn from this is: only 
set up new base if you have the means to defend it. This is why we included the 
training of a defensive army in our new base expansion rule. 

 
4) For our 4th new rule we selected a winning chromosome (in this case against the 

knight’s rush) and copied all encoded actions in activated states directly to the 
new rule.  
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Figure 10: Overview of the large map ‘Scandinavian’. When being ordered to expand to a new gold mine, the 
dynamic AI, which was based on the far left of the map, first chose to expand to gold mine A (the white dot 
left to A). When having insufficient defensive capabilities, this new base is easily destroyed by nearby 
opposing forces controlled by the static AI (based in right bottom corner of the map). Arguably expanding to 
resource site B (the white dot left to B) would be a much safer alternative (out of sight, out of war). 
 
5) For our fifth and final change, we decided not to create an entirely new rule, but 

to change parameters in existing military rules. We examined all activated states 
for all chromosomes, and analyzed what type of unit the EA preferred to fight 
with during a specific temporal state of the game. Based on these statistics we 
changed parameters in the existing military rules. For instance, we encouraged the 
use of catapults. The original rulebase hardly included any rules that attacked or 
defended with large numbers of catapults. 

 
We decided to replace old rules instead of inserting the new rules into the original 
rulebase. This way we keep the original rulebase size unchanged. The military rules in 
the original rulebase responsible for air-combat were replaced since these were 
practically never used in earlier experiments. Besides unused rules, we could also 
choose to replace unsuccessful rules e.g. rules with low weights. 
 
6.2 EXPERIMENTS 

6.2.1 Experimental Setup 

With our experiments we aim at proving that the newly optimized rulebase will 
statistically outperform the two optimized AI’s (the soldier’s rush and the knight’s rush 
AI’s) or at least perform better compared to the old rulebase. For both the soldier’s 
rush and knight’s rush, we ran 10 experiments each. We also tested the new rulebase 
against the Small Balanced Land Attack AI and Large Balanced Land Attack AI. We 
ran 11 experiments for both. Similar to earlier experiments we will quantify the 
relative performance of the evolutionary AI against the static player with the 
‘randomization turning point’ (RTP) and the ‘absolute turning point’ (ATP). If the 
dynamic AI is unable to statistically outperform the static player within 100 games, the 
experiments are stopped and the average fitness is logged. For this experiment we set 
Pmax   to 400, Rmax to 400. We raised these values compared to earlier experiments to 
encourage high weights.  
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6.2.2 Results 

The results against the Small Balanced and Large Balanced Land Attack AI with new 
rulebase are presented in Table 6. The results for the Small Balanced Land Attack AI, 
with an average ATP of 6, clearly show that dynamic scripting with the new rulebase 
already is outperforming the static AI before any learning could have taken place.  The 
same more or less applies to the Large Balanced Land Attack AI with an average ATP 
of 13.  The dynamic AI with the old rulebase had RTP averages around 50 and ATP 
averages around 35. With the new rulebase, the RTP averages dropped to 19 and 24 for 
respectively the Small and Large Balanced Land Attack AI.  
 
 Randomization Test Statistics Absolute Turning Point Statistics 
Map Low. High. Avg. Med. Low. High. Avg. Med. 
Small 10 34 19 14 1 25 6 1 
Large 10 61 24 26 1 52 13 10 
 

Table 6: Results against the small and large balanced land attack AI. The lowest, highest, average and median 
values are shown. 
 
The results against the soldier’s rush and the knight’s rush with new rulebase are 
presented in Table 7. The dynamic AI won approximately 1 out of 3 battles (see Table 
7) against the soldier’s rush, whereas the old rulebase only won 1 out of 100 (see Table 
4). The dynamic AI won approximately 1 out of 10 battles (see Table 7) against the 
knight’s rush, whereas the old rulebase only won 1 out of 50 (see Table 4). The average 
fitness score, calculated over 100 games is approximately 0.3 (see Table 7) for both 
setups, whereas the average fitness score for the old-rulebase was approximately 0.2 
(see Table 4) for both setups. We can therefore conclude that the new rulebase has 
enabled dynamic scripting to deal better with the optimized AI’s. 
 

Soldier’s Rush  Knight’s Rush 
Test Won AFS  Test Won AFS 
#1 21 0.28  #1 11 0.31 
#2 30 0.34  #2 15 0.31 
#3 25 0.31  #3 6 0.27 
#4 21 0.29  #4 10 0.31 
#5 20 0.29  #5 8 0.30 
#6 32 0.34  #6 13 0.29 
#7 38 0.37  #7 11 0.31 
#8 41 0.38  #8 10 0.30 
#9 25 0.31  #9 7 0.29 
#10 22 0.29  #10 10 0.29 

 27.5 0.32   10.1 0.30 
 

Table 7 – Results against the soldier’s rush and knight’s rush, with the new rulebase. The numbers in the last 
row represent the average number of games won, and the average fitness score calculated over all test runs. 
 



 35

6.2.3 Discussion 

The dynamic scripting AI equipped with the new rulebase is still unable to statistically 
outperform the two optimized AI’s. In order to battle these optimized AI’s, there is 
very little room for variation, requiring the dynamic AI to consistently make a series of 
appropriate choices. Because of the randomness inherent in the dynamic scripting 
process, this is unlikely to happen.  

However, performance did improve substantially compared to the original 
rulebase. When examining the weight distribution in the rulebase in more detail, we 
noticed that new rules were almost always assigned high weights, implying that these 
new rules proved to be successful and favored by the dynamic scripting technique. The 
performance increase against the soldier’s rush can be subscribed to the new 
‘AntiSoldiersRush’ rule, which had huge weights assigned to it in every experiment. 
This rule is extremely effective against the soldier’s rush to the extent that learning to 
quickly choose it (this rule is already selectable in the first state) will almost certainly 
bring victory.  

Arguably, no such single effective rule exits against the knight’s rush, or at least 
not that early in the game. We also expect the ‘AntiKnightsRush’ to be very effective 
when selected early, but the dynamic AI has to make a series of choices, divided over 
multiple states, before it even is able to trigger this rule. Since multiple states are 
involved, learning to select this rule is expected to take longer. This is most likely the 
reason why the performance increase is not as substantial for the knight’s rush 
compared to the soldier’s rush.  

The two remaining new rules had larger weights compared to their initial 
values in almost all experiments. However, neither was as successful as the 
‘AntiSoldiersRush’. 
 
6.3 CHAPTER CONCLUSION 

In this Chapter we addressed the fourth and final objective as listed in 1.4: we were 
able to translate the offline discovered tactics and strategies into rules for the rulebase. 
Experiments showed that these changes improved performance of dynamic scripting 
significantly. We can also conclude that this performance increase can be subscribed to 
the new rules since these had large weights assigned to them in almost all experiments. 
In particular, the new ‘AntiSoldiersRush’ rule had gigantic weights against both the 
knight and soldier’s rush. Apparently the ‘AntiSoldiersRush’ rule is also effective 
against the knight’s rush, but not as decisive as against the soldier’s rush. 
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C h a p t e r  7  

CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

At the end of this thesis we return to the problem statement and research question. In Section 
1.3 we presented our problem statement and posed two research questions that should be 
answered before we address the problem statement. Section 7.1 answers the research questions. 
In Section 7.2 we will formulate from these answers a reply to the problem statement. We will 
give future research directions in 7.3. 
 
7.1 ANSWER TO RESEARCH QUESTION 

Our research questions were: 
 
Research Question 1: Is it possible to design and implement an evolutionary algorithm 
that discovers new tactics and strategies for real-time–strategy games? 
 
Research Question 2: Will offline discovered tactics and strategies enhance the 
performance for the dynamic scripting rulebase? 
 
In our attempt to answer the research question, we had four objectives: 
 
1) Selecting a flexible, state-of-the-art RTS game-environment for conducting our 

experimental research in. 
 
The first research objective is discussed in Chapter 3. In accordance with the first 
research objective, we selected the game WARGUS with Stratagus as its underlying 
engine as the RTS environment for our experimental research. Stratagus is an 
appropriate engine for experimental research in game AI. We claim that even today 
the gameplay for WARGUS can still be considered as state-of-the-art in the RTS genre.  
 
2) Designing and implementing the dynamic scripting technique in the selected 

RTS game and proving that it works by testing it against several opponent 
strategies on several maps. 

 
The second research objective is discussed in Chapter 4. In accordance with the second 
research objective, we modified the original dynamic scripting implementation for 
CRPG to meet the requirements for RTS games, i.e. we introduced states and state 
evaluations. We proved that dynamic scripting adapted rapidly to different static AI’s 
on different maps. We additionally discovered that the dynamic scripting technique 
had trouble coping with extremely optimized AI’s. 
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3) Applying offline learning using an evolutionary algorithm to discover new 
strategies and tactics in the selected RTS game. 

 
The third research objective is discussed in Chapter 5. In accordance with the third 
research objective, we implemented an EA for WARGUS that rapidly found solutions to 
two very optimized AI’s. We were able to recognize several strategies and tactics 
encoded in the chromosomes.  
 
4) Translating offline-discovered strategies and tactics into rules for the rulebase 

and show that these additions enhance performance for dynamic scripting in 
the selected RTS game. 

 
The fourth and final research objective is discussed in Chapter 6. In accordance with 
the fourth research objective, we were able to translate the offline-discovered tactics 
and strategies into rules for the rulebase and we showed that these changes improved 
performance for dynamic scripting. 
 
By achieving all our research objectives, we may draw a final conclusion by answering 
the research questions with an unequivocal yes: (1) it is possible to design and 
implement an EA that discovers new tactics and strategies for RTS games and (2) these 
offline discovered tactics and strategies can enhance the dynamic scripting rulebase. 
 
7.2 ANSWER TO PROBLEM STATEMENT 

Our problem statement was: 
 
Problem Statement: To what extent can offline learning techniques be used to improve 
the rulebase used for dynamic scripting, in order to improve the AI in commercial 
computer games? 
 
Taking the answer to the research questions into consideration, we may conclude that 
offline learning techniques do indeed have the potential to improve the rulebase used 
for dynamic scripting and consequently improve the AI in commercial computer 
games. We successfully employed an EA for our offline learning technique. This does 
not preclude different AI techniques, such as artificial neural networks or decision 
trees, to achieve good results in this respect. 
 
7.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

7.3.1 Improving Dynamic Scripting for Wargus 

Dynamic scripting adapted to the static opponents strategy. However, we expect 
performance to improve (1) when searching for better combinations of learning 
parameters, (2) when designing more appropriate fitness and update weight functions 
and (3) when creating better rules for the rulebase. 

Experimenting with different values for the maximum penalty, maximum 
reward, maximum weight value, minimum weight value and break-even point might 
lead to more efficient learning. The values we selected in our initial setup were chosen 
intuitively, so more efficient values most likely do exist.  
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We also expect that further optimizing the fitness and weight update functions 
will improve performance. Perhaps, the overall score function as stated in 4.2.4 
(equation 2) should not reward building points. The goal in a typical RTS game is to 
destroy all opposing forces. In the end game success is determined by military actions. 
Arguably, the overall score should not include ‘guided rewards’ such as points awarded 
for building actions. The score for the state fitness on the other hand should possibly 
include even more guided rewards e.g. for resource gathering, research etc. The weight 
update function (equation 4) indicates we prioritize state performance over the overall 
performance. We may have overstressed the importance of state evaluations. 
Employing different values for state and overall evaluations, might achieve faster 
learning.  

Undoubtedly, providing the dynamic scripting algorithm with a very optimized 
rulebase will have the largest positive contribution to the dynamic scripting 
performance. We expect performance to increase significantly when using rules for 
the rulebase that comprises complete tactics e.g., a combination of fine-tuned actions 
(e.g. build a blacksmith and acquire all related research advancements) rather than 
single actions (e.g. build a blacksmith). This approach can lead to very effective AI, one 
that might even be able to tackle optimized AI’s such as the soldier’s rush and the 
knight’s rush. Our original rulebase included rules with only single actions. Using 
these ‘single rules’, and consequently providing the dynamic AI with minimal 
guidance, does contribute to the diversity for the AI, but has the drawback that 
dynamic scripting is unable to (quickly) adapt to really optimized AI since these leave 
practically no room for variation.  

Another interesting research objective is testing dynamic scripting against 
multiple static opponents or even humans. If we want to stage the dynamic AI against 
multiple opponents, the fitness functions needs to be revised. Currently, the fitness 
functions are designed for one on one combat. 
 
7.3.2 Improving Evolutionary Algorithm for Wargus 

As described in Chapter 5, the EA was able to rapidly find solutions for two supposedly 
very difficult problems. We may conclude that EAs performance is already extremely 
high and there is no need for further improvements. Perhaps when testing the EA 
against even more optimized AI’s or multiple opponents, the need for improvements 
will be more apparent. The EA is potentially improved by applying different EA 
learning parameters (e.g. larger population size) or by encoding more game options 
into the chromosome (e.g. include sea warfare in the combat genes). 
 
7.3.3 Improving Translation Algorithm for Wargus 

As discussed in 6.3, our translation approach for our fourth rule can be achieved 
without human intervention and is therefore highly efficient. Additionally, applying 
this approach we can use the EA to evolve winning chromosomes for distinct 
opponent strategies on several maps and translate these to rules for the dynamic 
scripting rulebase. This way we can rebuild the entire rulebase with rules that are fit to 
battle many different strategies such as rush strategies, defensive strategies, air combat 
strategies, naval strategies etc. Each rule can be considered as a counter-measure rule 
for a distinct opponent strategy. Since the rulebase will solely consist of rules that 
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comprise complete tactics i.e., fine-tuned combination of actions, we expect it can 
produce very effective AI. 
 
7.3.4 Low-level AI Improvements for Stratagus 

The low-level AI in Stratagus, e.g. unit AI, robust terrain analyses and pathfinding, has 
ample room for improvements.  

A good local unit performance is crucial to the overall success of the system 
because generals are overburdened if they have to issue low–level instructions to all 
objects under their command. Instead, objects are required to handle the most basic 
problems they face autonomously and quickly (Buro 2003). For instance, in Stratagus 
the low-level AI for sea units is not very effective. Improving the sea unit AI and 
including ‘sea warfare’ rules to the dynamic scripting technique will vastly contribute 
to the diversity of the AI. Also several other units such as bomb squads and units with 
magical capabilities exists whose full potential are not utilized by the unit AI.  

During our experiments we noticed that in certain situations the AI chose poor 
locations to construct new resource sites (Figure 10). More robust terrain-analyses for 
Stratagus e.g. using influence mapping (Woodcock 2002), could provide valuable 
information for economic planning and prevent situations as illustrated in Figure 10. 
Robust terrain analysis can also provide the pathfinding algorithm with useful data i.e. 
to plan an attack route. 

Pathfinding in Stratagus is handled with an A* algorithm. Practically all game 
developers agree that the A* algorithm or some variant is the best answer for both 
relatively static and dynamic environments and is capable of handling a huge number 
of possible game designs (Woodcock 2003). However, the Stratagus implementation of 
the A* is not flexible. For instance, it is impossible to assign armies different attack 
routes through the higher-level scripts or tell them to attack specific buildings or units. 
Implementing a more flexible pathfinding algorithm for Stratagus allows AI 
programmers as well as machine learning techniques to search for smarter tactics and 
strategies. Armies in COMMAND & CONQUER GENERALS for instance may choose to 
attack an enemy base using 3 different paths, a frontal, flank or backdoor attack 
(Electronic Arts 2003). These 3 paths are hard-coded for every map by the designer. 
Although dynamically determining these way points would increase flexibility even 
more, this simplistic hard-coded approach already makes it far more difficult for 
human players to organize their defenses and greatly enhances the sense of challenge.  
 
7.3.5 Machine Learning in Modern Computer Games 

Implementing dynamic scripting or other machine learning techniques into modern 
game environments is certainly another viable research topic. However, most 
computer games, besides having some mod capabilities, are closed source implying that 
the implementation of complicated AI techniques is practically impossible. This is 
unlikely to change unless developers and academics learn to work side by side. 
Unfortunately, the rift between academics and developers is still far from closed. 
Developers are under continuing pressure to meet deadlines, and do not find time to 
implement complicated academic algorithms, let alone to make tools for academics to 
use in their programs. Academics are therefore forced to invest tremendous efforts in 
building their own games or turn to often unstable, open-source alternatives. Neither 
side is served this way while both can benefit from close cooperation.  
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Developers really do want answers to the harder questions. They are starting to 
realize that games cannot continually rely on improved graphics and sound alone and 
that sophisticated AI can produce more interesting gameplay and consequently 
increase revenues. Academics on the other hand, acknowledge that modern computer 
games, with ever increasing complexity, are an appropriate tool for integrative human-
level AI research. For the near future we expect the rift between developers and 
academics to shrink. We expect that game companies will soon provide academics 
with more sophisticated tools to change game AI that enables them to implement 
machine learning techniques in their games. Consequently we expect academics to 
show an increasing interest in computer games for experimental research. 
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Appendix A: Detailed Gene Description 
 
For the EA in Wargus we designed the following gene types: 
 
Build gene := B, Building 
Building := [1 ..12] 
Example := B,1     ,i.e. build a new town hall  
 

1 :=   BaseExpansion 
2 :=   Barracks 
3 :=   LumberMill 
4 :=   Blacksmith 
5 :=   BetterCityCenter 
6 :=   STables 
7 :=   BestCityCenter 
8 :=   Airport 
9 :=   MageTower 
10 := Temple 
11 := GuardTower 
12 := CannonTower 

 
Research gene := R, Research 
Research := [13..21]  
Example := R,13     ,i.e. research better arrows 
 

 
13 := MissileUpgrade 
14 := ArmorUpgrade 
15 := WeaponUpgrade 
16 := CatapultUpgrade 
17 := MageUpgrade1 
18 := MageUpgrade2 
19 := MageUpgrade3 
20 := MageUpgrade4 
21 := MageUpgrade5 
 

Economy gene := E, worker_count 
worker_count :=  [0…∞> 
Example:  E, 10     ,i.e. train an additional 10 workers to harvest resources 
 
Combat := C<current_state>, force_index, {force}, force_role 
force_index := [0..9] 
force := [unit_type_count, {force}] 
unit_type_count := [soldier, shooter, catapult, knight, flyer, mage] 
force_role := [attack | defend] 
Example:  C1, 0,10,attack     ,i.e. assign force 0 to attack with 10 soldiers. 
 
C1,   force_index, soldier, force_role 
C2,   force_index, soldier, shooter, force_role 
C3,   force_index, soldier, force_role 
C4,   force_index, soldier, shooter, catapult, force_role 
C5,   force_index, soldier, force_role 
C6,   force_index, soldier, shooter, force_role 
C7,   force_index, soldier, force_role 
C8,   force_index, soldier, shooter, catapult, force_role 
C9,   force_index, soldier, force_role 
C10, force_index, soldier, shooter, force_role 
C11, force_index, soldier, knight, force_role 
C12, force_index, soldier, shooter, catapult, knight, force_role 
C13, force_index, soldier, shooter, catapult, knight, force_role 
C14, force_index, soldier, shooter, catapult, knight, flyer, force_role 
C15, force_index, soldier, shooter, catapult, knight, mage, force_role 
C16, force_index, soldier, shooter, catapult, knight, force_role 
C17, force_index, soldier, shooter, catapult, knight, flyer, mage, force_role 
C18, force_index, soldier, shooter, catapult, knight, flyer, force_role 
C19, force_index, soldier, shooter, catapult, knight, mage, force_role 
C20, force_index, soldier, shooter, catapult, knight, flyer, mage, force_role 
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Appendix B: AI API Stratagus (http://stratagus.sourceforge.net/) 
 
Stratagus contains the following high-level API commands (which are called from the LUA scripts):  
 
 AiNeed: Tells the AI that it should have a unit of this unit-type. The AI builds or 
trains units in this order of the ai:set/ai:need commands. If the unit or an equivalent 
unit already exists, the AI does nothing. If the unit is lost, it is automatic rebuild. If the 
units are requested in wrong order, the AI could hang up. Resources are collected 
automatic and farms are automatic build, but additional could be requested. 
 
AiSet: This ai:need with a number. Tells the AI that it should have a specified number 
of a unit of this unit-type. The AI builds or trains units in this order of the 
ai:set/ai:need commands. If the unit or an equivalent unit already exists, the AI does 
nothing. If the units are lost, they are automatic rebuild. If the units are requested in 
wrong order, the AI could hang up. Resources are collected automatic and farms are 
automatic build, but additional could be requested. In the opposite to ai:need, which 
always inserts a request, ai:set modifies the last request to the new number. 
 
AiWait: Waits until the *first* request of this unit-type is completed. Don't forget to 
request a unit-type, before you wait on it. 
 
AiForce: Define a force, what and how many units should belong to a force. Up to 10 
forces are currently supported. Force 0 is currently fixed to be the defense force. Forces 
are automatically sent to a building or unit under attack. If there are unassigned units 
of requested unit-type, than they are assigned to a force.  
 
AiForceRole: Define the role of a force. Either attack or defend. 
 
AiWaitForce: Wait until a force is complete, the forces are built in force number order. 
First 0, than 1, last 9. 
 
AiAttackWithForce: Attack the opponent with a force.  
 
AiSleep: Wait some frames, to let the opponent (you) recover. 
 
AiResearch: Let the AI research an upgrade, upgrades are researched in command 
order. And automatic researched if lost. Building orders have a higher priority. The 
scriptwriter is responsible for the correct order. AI could hang up when the 
scriptwriter employs a wrong order. 
 
AiUpgradeTo: Upgrades units or buildings (e.g. upgrade town-hall to keep). Each 
individual unit or building requires an upgrade command in order to upgrade. The 
computer automatically searches for the appropriate unit to upgrade. 
 
AiPlayer: Return the player index of the running AI. 
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Appendix C: Original Rulebase 
 
This is the initially designed rulebase we used for our first experiments with dynamic scripting. 
 
Index Name Description
1 BaseExpansion Expand to new resource site 
2 Barracks Build barracks 
3 LumberMill Build a lumber-mill  
4 Blacksmith Build a blacksmith 
5 BetterCityCenter Upgrade town hall to keep 
6 STables Build sTables 
7 BestCityCenter Upgrade keep to castle 
8 Airport Build an airport 
9 MageTower Build a mage tower 
10 Temple Build a temple 
11 GuardTower Build a guard tower 
12 CannonTower Build a cannon tower 
13 MissileUpgrade Research better arrows 
14 ArmorUpgrade Research better armor 
15 WeaponUpgrade Research better weapons 
16 CatapultUpgrade Research better catapults 
17 MageUpgrade1 Research mage spell 1 
18 MageUpgrade2 Research mage spell 2 
19 MageUpgrade3 Research mage spell 3 
20 MageUpgrade4 Research mage spell 4 
21 MageUpgrade5 Research mage spell 5 
22 LightWorkersExpansion Train a small amount of new workers 
23 NormalWorkersExpansion Train a medium amount of new workers 
24 HeavyWorkersExpansion Train a large amount of new workers 
25 ExtremeWorkersExpansion Train a extreme large amount of new workers 
26 Defense_Squadran Defend the base with a squadron (smallest-sized force) 
27 Defense_Platoon Defend the base with a platoon (small-sized force) 
28 Defense_Battelion Defend the base with a battalion (medium-sized force) 
29 Defense_Company Defend the base with a company (large-sized force) 
30 Defense_Division Defend the base with a division (largest-sized force) 
31 Offense_Squadran Attack the opponent with a squadron (smallest-sized force) 
32 Offense_Platoon Attack the opponent with a platoon (small-sized force) 
33 Offense_Battelion Attack the opponent with a battalion (medium-sized force) 
34 Offense_Company Attack the opponent with a company (large-sized force) 
35 Offense_Division Attack the opponent with a division (largest-sized force) 
36 SoldiersDefense Defend the base with solely soldiers 
37 ShootersDefense Defend the base with solely archers 
38 CatapultDefense Defend the base with solely catapults 
39 KnightsDefense Defend the base with solely knights 
40 MagesDefense Defend the base with solely mages 
41 SoldiersRush Attack the opponent with solely soldiers 
42 ShootersRush Attack the opponent with solely archers 
43 CatapultRush Attack the opponent with solely catapults 
44 KnightsRush Attack the opponent with solely knights 
45 MagesRush Attack the opponent with solely mages 
46 NormalAirDefenseForce Defend the base with medium-sized air force 
47 HeavyAirDefenseForce Defend the base with large-sized air force 
48 NormalAirAttackForce Attack the opponent with medium-sized air force 
49 HeavyAirAttackForce Attack the opponent with large-sized air force 
50 ExtremeAirAttackForce Attack the opponent with largest-sized air force 
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Appendix D: Improved Rulebase 
 
The improved rulebase used for our second experiment with dynamic scripting. 
 
Index Name Description
1 * BaseExpansion Expand to new resource site 
2 Barracks Build barracks 
3 LumberMill Build a lumber-mill  
4 Blacksmith Build a blacksmith 
5 BetterCityCenter Upgrade town hall to keep 
6 STables Build sTables 
7 BestCityCenter Upgrade keep to castle 
8 Airport Build an airport 
9 MageTower Build a mage tower 
10 Temple Build a temple 
11 GuardTower Build a guard tower 
12 CannonTower Build a cannon tower 
13 MissileUpgrade Research better arrows 
14 ArmorUpgrade Research better armor 
15 WeaponUpgrade Research better weapons 
16 CatapultUpgrade Research better catapults 
17 MageUpgrade1 Research mage spell 1 
18 MageUpgrade2 Research mage spell 2 
19 MageUpgrade3 Research mage spell 3 
20 MageUpgrade4 Research mage spell 4 
21 MageUpgrade5 Research mage spell 5 
22 LightWorkersExpansion Train a small amount of new workers 
23 NormalWorkersExpansion Train a medium amount of new workers 
24 HeavyWorkersExpansion Train a large amount of new workers 
25 ExtremeWorkersExpansion Train a extreme large amount of new workers 
26 ** Defense_Squadran  Defend the base with a squadron (smallest-sized force) 
27 ** Defense_Platoon Defend the base with a platoon (small-sized force) 
28 ** Defense_Battelion Defend the base with a battalion (medium-sized force) 
29 ** Defense_Company Defend the base with a company (large-sized force) 
30 ** Defense_Division Defend the base with a division (largest-sized force) 
31 ** Offense_Squadran Attack the opponent with a squadron (smallest-sized force) 
32 ** Offense_Platoon Attack the opponent with a platoon (small-sized force) 
33 ** Offense_Battelion Attack the opponent with a battalion (medium-sized force) 
34 ** Offense_Company Attack the opponent with a company (large-sized force) 
35 ** Offense_Division Attack the opponent with a division (largest-sized force) 
36  SoldiersDefense Defend the base with solely soldiers 
37  ShootersDefense Defend the base with solely archers 
38 CatapultDefense Defend the base with solely catapults 
39  KnightsDefense Defend the base with solely knights 
40  MagesDefense Defend the base with solely mages 
41  SoldiersRush Attack the opponent with solely soldiers 
42  ShootersRush Attack the opponent with solely archers 
43 CatapultRush Attack the opponent with solely catapults 
44 KnightsRush Attack the opponent with solely knights 
45 MagesRush Attack the opponent with solely mages 
46 *** AntiSoldiersRush - Build a blacksmith 

- Research better armor 
- Research better weapons 
- SoldiersRush 

47 *** AntiKnightsRush - Build a lumber-mill | blacksmith | sTables 
- KnightsRush 

48 *** AllYourBaseAreBelongToUs - Defense_Battalion 
- BaseExpansion 

49 *** Chromosome_Rule <genes were copied directly from chromosome> 
50 * Empty   

*     Disabled rules     **     Parameters modified for existing rules     ***     New rules added to the rulebase 
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