
 i

IMPROVING ADAPTIVE GAME AI
WITH EVOLUTIONARY LEARNING

Marc Ponsen
(B.Sc.)

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

Delft, 2004

Faculty of Media & Knowledge Engineering
Delft University of Technology

Thesis Committee:
Prof. Dr. Drs. L.J.M. Rohtkrantz

Prof. Dr. H. Koppelaar
Ir.P.H.M. Spronck

 2

Bless all forms of intelligence

 3

PREFACE

I have been a ‘gamer’ my whole life. I started playing computer games on an Atari
console when I was just three years old and I am still playing. If it is true that we don't
stop playing because we grow old, but we grow old because we stop playing, then I
hope I never grow old.

The concept of artificial intelligence has fascinated me for quite some time.
Movies such as ‘the Matrix’ and ‘2001: A Space Odyssey’ have always sparkled my
imagination. My interest grew when I was first introduced to ‘academic artificial
intelligence’ during my studies at Delft University of Technology.

In my search for a graduation assignment, I was very fortunate that I was able to
combine games and artificial intelligence. My thesis is called: “Improving Adaptive
Game AI with Evolutionary Learning”. It addresses the application of both adaptive
game artificial intelligence and evolutionary learning techniques in computer games.

I would like to thank all the people at the Institute of Knowledge and Agent
Technology (IKAT) in Maastricht for providing me with the tools and guidance to
complete my master thesis. I especially would like to thank my supervisor, Pieter
Spronck for his support and inspiration. Thank you for sacrificing at least a dozen red
pens! I would also like to thank the people at Delft University of Technology. Thank
you for introducing me to ‘academic artificial intelligence’ and paving the way for my
future career. Special thanks goes to my graduation coordinator Leon Rothkrantz.
Furthermore, I would like to thank David Aha for his insightful and lengthily
comments on my thesis. Also, much appreciation goes out to the Stratagus
development team for their programming support. Last but certainly not least, I would
like to express my gratitude to my family and friends for their devotion, support and
patience.

Marc Ponsen 2004

 4

TABLE OF CONTENTS

INTRODUCTION 6
1.1 The Evolution of Computer Game Artificial Intelligence...............................6
1.2 Research Background...7

1.2.1 Online Learning...7
1.2.2 Offline Learning ..8

1.3 Problem Statement and Research Question..8
1.4 Approach ...9
1.5 Thesis Overview ...9

COMPUTER GAME ARTIFICIAL INTELLIGENCE 10
2.1 Rule based Artificial Intelligence in Games... 10
2.2 Machine Learning and Adaptation in Games .. 11
2.3 Introduction to Evolutionary Algorithms in Games..................................... 12

REAL-TIME STRATEGY GAMES 13
3.1 Introduction to Real-time strategy Games... 13
3.2 Artificial Intelligence in Real-time strategy Games...................................... 14
3.3 Selection Requirements for the Game Environment.................................... 15
3.4 Stratagus.. 15
3.5 Chapter Conclusion... 16

DYNAMIC SCRIPTING FOR REAL-TIME STRATEGY GAMES 17
4.1 Dynamic Scripting applied in Real-time strategy Games............................. 17
4.2 Dynamic Scripting implemented in Wargus ... 18

4.2.1 States and State Evaluations .. 18
4.2.2 Rulebase... 20
4.2.3 Creating a dynamic script.. 20
4.2.4 Fitness and Weight-update Functions... 20

4.3 Experiments ... 22
4.3.1 Experimental Setup.. 22
4.3.2 Results.. 23
4.3.3 Discussion.. 24

4.4 Chapter Conclusion.. 25
EVOLUTIONARY LEARNING IN REAL-TIME STRATEGY GAMES 26

5.1 Evolutionary Algorithms applied in Real-time strategy............................... 26
5.2 Evolutionary Algorithm implemented in Wargus.. 27

5.2.1 Encoding.. 27
5.2.2 Evaluation.. 28
5.2.3 Genetic Operators .. 28
5.2.4 Selection Mechanism... 29
5.2.5 Stop Criteria .. 29

5.3 Experiments ... 30
5.3.1 Experimental Setup.. 30

 5

5.3.2 Results.. 30
5.3.3 Discussion.. 30

5.4 Chapter Conclusion... 31
IMPROVING THE RULEBASE FOR DYNAMIC SCRIPTING 32

6.1 Improving the Dynamic Scripting Rulebase.. 32
6.2 Experiments ... 33

6.2.1 Experimental Setup.. 33
6.2.2 Results.. 34
6.2.3 Discussion.. 35

6.3 Chapter Conclusion... 35
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 36

7.1 Answer to Research Question.. 36
7.2 Answer to Problem Statement... 37
7.3 Recommendations for Future Research ... 37

7.3.1 Improving Dynamic Scripting for Wargus ... 37
7.3.2 Improving Evolutionary Algorithm for Wargus 38
7.3.3 Improving Translation Algorithm for Wargus... 38
7.3.4 Low-level AI Improvements for Stratagus.. 39
7.3.5 Machine Learning in Modern Computer Games 39

 6

C h a p t e r 1

INTRODUCTION

This Chapter presents the background of this thesis. Section 1.1 provides information on
artificial intelligence in games. Section 1.2 discusses the background of the thesis’ research, first
explaining the role of dynamic scripting in online learning and then discussing the role that
offline learning can play in the development of artificial intelligence in games. Section 1.3
discusses the problem statement and research question. Our approach is explained in Section 1.4.
Finally, Section 1.5 gives an overview of the remainder of the thesis.

1.1 THE EVOLUTION OF COMPUTER GAME ARTIFICIAL INTELLIGENCE

Since the birth of computer games, artificial intelligence (AI) has been a standard
feature of games - especially with developers' emphasis on single-player games, which
today still represent the majority of released titles. AI is an element of so-called
gameplay, which comprises everything but the visual and auditory presentation of the
game. For the gaming industry, AI encompasses many subject areas such as interaction,
pathfinding, machine learning, flocking, formations, difficulty scaling and decision-
making. The current emphasis in computer game AI is on the illusion of human-like
behavior. However, there is an increasing demand for a true human-level AI from
various perspectives.

The game industry is starting to recognize that sophisticated AI could enhance
the entertainment value of their products and consequently increase revenues.
Already, many computer games are marketed based on the quality of their AI (e.g.,
BLACK & WHITE, THE SIMS, FAR CRY). Developers in the past mainly focused on sound
and graphics. The implementation of computer opponent’s AI was often deferred to
the final phase of the project. The trend is shifting; AI is often assigned an equal
priority to graphics and sound in the initial game design. Sweetser (2002) states: “As
the graphics race subsides and gamers grow weary of predictable and deterministic
game characters, game developers must set aside their “old faithful” finite state
machines and look to more advanced techniques that give the users the gaming
experience they crave. The next industry breakthrough will be with characters that
behave realistically and that can learn and adapt, rather than more polygons, higher
resolution textures and more frames-per-second”.

Military institutions recognize that besides entertainment, computer games can
also be used for military training and simulation purposes. Military training and
simulation in the real world is too expensive and dangerous. Computer games with
ever increasing complex and realistic environments provide a cheap and reliable
alternative (Laird 2000).

Interactive computer games are increasingly attractive for academic AI
researchers. Laird (2000) states that interactive computer games are the ‘killer
application’ for human-level AI research. “They are the application that will soon need
human-level AI, and they can provide the environments for research on the right
kinds of problems that lead to the type of the incremental and integrative research
needed to achieve human-level AI.”

 7

1.2 RESEARCH BACKGROUND

Is it possible to improve computer game AI in commercial computer games by
applying machine learning techniques? In this thesis computer game AI will be
interpreted solely as the decision-making process of non-player characters (in
particular opponents) in a game. Most games resort to scripts for most, if not all of their
AI. Scripts, i.e., lists of rules that are executed sequentially (Tozour 2002b) are
generally static and tend to be quite long and complex (Brockington and Darrah 2002).
Due to this complexity, AI scripts are likely to contain weaknesses, which can be
exploited by human players to easily defeat supposedly tough opponents (Spronck,
Sprinkhuizen-Kuyper and Postma 2003) Furthermore, because the scripts are static
they cannot deal with unforeseen tactics employed by a human player. Machine
learning can resolve these shortcomings of static AI and consequently improve the
quality of opponent AI. Machine learning can either take place online or offline. We
will discuss online and offline learning in computer games in the next subsections.

1.2.1 Online Learning

Online learning entails that the AI will adapt during play after the game has been
released. It allows opponents to automatically repair weaknesses in their scripts that
are exploited by the human player, and to adapt to changes in human player tactics
and playing style. Online learning can be either supervised or unsupervised.
Supervised online learning requires that the human player indicate how successful the
AI is, which precludes automatic adaptation. Therefore the term “online learning” in
this thesis, will be reserved for unsupervised online learning. For online learning to
work in practice, it must be fast, effective, robust and efficient. Spronck et al. (2003)
explain these requirements as follows:

• Fast: Since online learning takes place during gameplay, the learning
algorithm should be computationally fast, lest it will disrupt the pacing of the
game.

• Effective: Adapted scripts should be at least as challenging as manually
designed ones, and therefore the learning mechanism must guarantee the
generation of mostly effective AI. This requirement excludes random learning
methods, such as evolutionary algorithms.

• Robust: The learning mechanism must be able to cope with a significant
amount of randomness inherent in most commercial gaming mechanisms.

• Efficient: The learning process should learn efficiently, relying on just a small
number of trials. This requirement excludes slow-learning techniques, such as
neural networks, evolutionary algorithms and reinforcement learning.

Dynamic scripting (Spronck et al, 2003) is an unsupervised online learning technique
for commercial computer games. Important factors when attempting to achieve high
performance for a learning mechanism are using deterministic experiments and adding
prior domain knowledge. Because of the non-deterministic nature of game
environments in general, dynamic scripting relies heavily on domain knowledge. In
dynamic scripting, the rules used in a script that controls an opponent are extracted
from an adaptive rulebase that contains only manually designed rules. The probability
that a rule is selected for a script is influenced by a weight value that is associated with

 8

each rule. The rulebase adapts by changing the weight values to reflect the success or
failure rate of the corresponding rules in scripts.

The dynamic scripting technique meets all four requirements. First, it is
computationally fast, because it only requires the extraction of rules from a rulebase
and the updating of weights once per game. Second, it is effective, because all rules in
the rulebase are based on domain knowledge. Third, it is robust because rules are not
removed immediately when punished. Finally, Spronck et al. (2003) showed that in a
simulated as well as a commercial game environment dynamic scripting can adapt
rapidly to static or changing tactics, and therefore it is also efficient.

1.2.2 Offline Learning

Offline learning entails that the AI will adapt by self-play, without human
intervention. Adaptive technologies are giving developers a tool that can help them
optimize computer game AI parameters offline during the Quality Assurance phase of
game development. AI tuning is always somewhat problematic; in commercial games
there can be hundreds of parameters that can affect the AI’s style of play. Testing every
combination is an impossible task, especially given the short amount of time available
for AI tuning. Over time, an offline learning mechanism can test out many more AI
variations than an individual developer could.

An interesting application of offline learning is creating new strategies and
tactics for opponent AI by self-play. Offline learning therefore provides the means of
improving the dynamic scripting process by discovering new strategies and tactics that
can be added to the dynamic scripting rulebase. This can make the dynamic scripting
technique more effective in dealing with human player tactics which the developers
did not foresee, and for which they did not add any rules to the rulebase as
countermeasures.

1.3 PROBLEM STATEMENT AND RESEARCH QUESTION

In 1.2.2 we proposed that offline learning can potentially enhance the dynamic
scripting technique by improving the rulebase through the addition of offline
discovered strategies and tactics. However, this has as yet not been shown in practice.
This leads to the following problem statement:

Problem Statement: To what extent can offline learning techniques be used to improve
the rulebase used for dynamic scripting, in order to improve the AI in commercial
computer games?

Offline learning does not suffer from any of the four previously mentioned
requirements associated with online learning. Therefore, many machine learning
techniques are suitable for offline learning. We will focus on evolutionary techniques
to enhance the intelligence of opponents by training them against other (scripted)
opponents. An evolutionary algorithm, when properly implemented, has the ability to
deal with complex environments, such as computer games.

 9

Furthermore, the most complex AI in modern games is found in so-called “computer
roleplaying games” (CRPGs) and “real-time strategy” (RTS) games (e.g., war
simulations). Dynamic scripting has already been shown to be successful for CRPGs
(Spronck et al., 2003), but not yet for RTS games. Since we expect that it is just as
applicable to RTS games, we decided to focus on these for our research. The following
research questions will therefore guide our research:

Research Question 1: Is it possible to design and implement an evolutionary algorithm
that discovers new tactics and strategies for real-time strategy games?

Research Question 2: Will offline discovered tactics and strategies enhance the
performance for the dynamic scripting rulebase?

1.4 APPROACH

To answer the research question, we address four main objectives:

1) Selecting a flexible, state-of-the-art RTS game environment for our

experimental research.
2) Designing and implementing the dynamic scripting technique in the selected

RTS game and demonstrating that it works against several opponent strategies
on several maps.

3) Applying offline learning using an evolutionary algorithm to discover new
strategies and tactics in the selected RTS game.

4) Translating offline-discovered strategies and tactics into rules for the rulebase
and show that these additions enhance performance for dynamic scripting in
the selected RTS game.

1.5 THESIS OVERVIEW

The remainder of the thesis is organized as follows. Chapter 2 discusses various
artificial intelligence techniques in commercial computer games relevant to our
research. Chapter 3 addresses the first research objective, namely choosing a flexible
state-of-the-art RTS game environment for our experiments. The second research
objective is discussed in Chapter 4 wherein we will explain how we implemented
dynamic scripting in the selected RTS game environment and we will also discuss the
results for the dynamic scripting AI against several scripted opponents. Chapter 5
discusses the third research objective, namely applying an evolutionary algorithm in
the selected RTS game environment in order to discover new tactics and strategies.
Our fourth and final objective is addressed in Chapter 6. We will explain how we
translated the offline-discovered tactics and strategies into rules for the dynamic
scripting rulebase, and discuss our approach. We will finish the thesis in Chapter 7,
where we will answer the research questions and problem statement, as well as give
recommendations for future research.

 10

C h a p t e r 2

COMPUTER GAME ARTIFICIAL INTELLIGENCE

In 2.1 we will first introduce rule based AI techniques relevant to our research. In 2.2 we will
discuss the different types of machine learning and explain why machine learning can be
problematic in computer games. In 2.3 we will give an introduction to evolutionary algorithms.

2.1 RULE BASED ARTIFICIAL INTELLIGENCE IN GAMES

AI programmers have numerous techniques at their disposal to try to simulate human-
level-behavior. Of these, rule based approaches have been widely accepted and
successfully employed by game developers for a number of years. Rules in a rule based
system consist of a condition side (the antecedent) and an action side (the consequent).
Rules-based AI is currently the technology of choice for AI development because (1)
these approaches are familiar, taking their principles from familiar programming
paradigms, (2) rule based designs are generally predictable, hence easy to test and
debug and (3) most developers lack any training in, or knowledge of, the more
complex AI technologies, and thus don't use them when deadlines are approaching
fast. Currently the most dominant rule based AI techniques for computer games
include scripting and state machines.

In order to easily implement rules and reactions, over 80% of developers use
some kind high-level scripting language (Woodcock 2003). A scripting language is any
programming language created to simplify any complex task for a particular program
(Sweetser 2002). Scripts are used to control the game engine from the outside. Scripts
have four main advantages; they are (1) understandable, (2) easy to implement, (3)
easily extendable, and (4) useable by nonprogrammers (Tozour 2002b). Some games
use custom scripting languages, such as Bioware’s NWscript, UnrealScript or LUA
scripting, to manage the AI.

A finite state machine is a logical hierarchy of rules and conditions that can
only be in a finite number of states, each state having its own behavior, and its own
trigger. Finite state machines are used more frequently in computer games than any
other AI technique (Sweetser 2002) because they are (1) simple to program, (2) easy to
understand and debug, and (3) generally enough to be used for any problem (Rabin
2002). One drawback is that using simple finite state machines leads to predictability
of game AI. When using fuzzy states and fuzzy transitions rather than a finite set of
states and transitions, a variety of different responses to a given set of stimuli can be
generated, consequently producing ‘unpredictable’ behavior.

Scripting and state machines are deterministic AI techniques that require the
developer to hard-code all aspects of the character behavior. Therefore, the developer
has to anticipate all possible game states and situations. Most modern computer games
have hundreds of different parameters and scenarios affecting the AI’s behavior.
Machine learning techniques may be able to cover the search space in computer games
and efficiently search for successful combinations of parameters.

 11

2.2 MACHINE LEARNING AND ADAPTATION IN GAMES

The process of learning in games generally implies the adaptation of behavior for
opponent players in order to improve performance. Note that the terms online and
offline used in 1.2 apply to the timing of when learning is achieved, i.e. respectively
during gameplay against humans or during self-play, and tell nothing on how learning
is achieved. Manslow (2002) distinguishes between direct and indirect learning:

Indirect adaptation: Indirect adaptation occurs when alternations are made to certain
aspects of behavior based on statistics in the game world. The decision as to what
statistics are extracted and their interpretation in terms of necessary changes in
behavior are all made by the AI designer (Manslow 2002). The role of the learning
mechanism is thus restricted to extracting information from the game world, and plays
no direct part in changing the behavior. Indirect adaptation is effective, because its
extensive use of prior knowledge makes the learning mechanism simple, highly
efficient, and easy to control, test and validate (Manslow 2002). The technique
“dynamic difficulty settings” used in MAX PAYNE 2 (Figure 1) is an example of indirect
learning in a computer game.

Direct Adaptation: Direct adaptation applies optimization or reinforcement learning
algorithms to directly change the AI’s behavior on the basis of assessments of its
performance in the game world (Manslow 2002). Basically, the learning algorithms
searches for AI parameters that offer the best performance, i.e. search for the best
behavior. Direct adaptation is generally not efficient and hard to control, making it
difficult to debug. Furthermore, it is difficult to design an appropriate performance
measure (fitness function). However, direct adaptation has the major advantage of not
limiting the opponents’ AI behavior and it requires minimal human direction. BLACK &

WHITE, illustrated in Figure 1, proves that direct learning can successfully be applied in
computer games (Barnes 2002).

Game companies are cautious in using machine learning techniques for their computer
game AI because (1) these systems can learn the wrong lessons, (2) they are often very
demanding in terms of processing time and (3) they can be difficult to tune and tweak
to achieve the desired results. Still, machine learning has the potential of delivering
more challenging AI the gaming community craves. Machine learning algorithms can
be used to adapt to conditions that cannot be anticipated prior to a game’s release, such
as the particular styles, tastes, and dispositions of individual players (Manslow 2002).
When used correctly, machine learning will help make games more robust and
resilient to player exploits and will change the way in which games are played by
forcing the player to continually search for new strategies to defeat the AI, rather than
perfecting a single technique. Developers can also use machine learning techniques to
generate sophisticated AI’s ‘in-house’ before shipping the game, without having to
invest significant (human) resources.

In conclusion, learning is expected to be the next big thing in computer game
development (Rabin 2002; 2004) and developers are moving away from a hard-coded,
rules based approach toward more flexible AI engines based on adaptive technologies
e.g., decision trees, neural networks and evolutionary algorithms.

 12

Figure 1: MAX PAYNE 2 (left picture) introduces something called dynamic difficulty settings. Information
from the game world is extracted to estimate a player’s level of skill and the opponent AI difficulty is set in
response. Creatures in BLACK & WHITE (right picture) are trained through the process of rewards and
punishments using a reinforcement learning algorithm.

2.3 INTRODUCTION TO EVOLUTIONARY ALGORITHMS IN GAMES

Evolutionary algorithms (EAs) are the broad name given to a group of optimization
and search algorithms that are based on the principle of biological evolution. They
include genetic algorithms (Goldberg 1989), classifier systems (Goldberg 1989) and
genetic programming (Koza 1992).

Traditionally, optimization techniques start with one potential solution to a
problem and then gradually adapt this solution in order to reach an optimum. EAs
work with a population of solutions. These solutions are often encoded and are then
called chromosomes. Each gene in a chromosome represents a variable or aspect of the
solution. The chromosomes in the population are assigned a fitness value. The fitness
value indicates how successful this solution is in solving the problem, compared to
other solutions in the population. To generate new solutions, the EA applies genetic
operators to existing solutions. Genetic operators that need only one parent' solution
are called mutation operators. Mutation takes one chromosome as parent and inserts,
deletes or replaces genes to produce a new child. Genetic operators that need more
parents are called crossover operators. Crossover occurs when parent chromosomes are
combined to form a child chromosome.

To select parent solutions for a genetic operator, a selection mechanism is
applied that is biased to select the fittest solutions. The production of new individuals,
called the evolution process, continues until some predefined goal is reached. New
solutions either replace existing solutions, or are inserted in a new population. The
result is a population of individuals that gradually adapt themselves to the constraints
of their digital environments, in effect evolving over time. The fittest individual in the
population is considered to be the sought solution to the problem.

EAs are robust search methods i.e. they work well in many different
environments and on many different problems. They search effectively in large,
complex, or poorly understood search spaces. Once an appropriate representation and
fitness function is devised, EAs can be a powerful tool for problems featuring large
numbers of variables and chaotic interactions, such as computer games. To our
knowledge, EAs have never been used online in commercial computer games.
Developers have disregarded EAs because they tend to be computationally expensive
and generally produce ineffective behavior. Another drawback is that EAs are not
guaranteed to find a good solution, not even a mediocre one. However, EAs have been
sporadically used offline in simpler computer games (Demasi & Cruz 2002).

 13

C h a p t e r 3

REAL-TIME STRATEGY GAMES

This Chapter will address our first research objective namely selecting a flexible, state-of-the-art
real-time strategy game for our experimental research. We will introduce the real-time strategy
genre in 3.1 and address important aspects to its artificial intelligence in 3.2. In 3.3 we will
highlight the selection criteria for our game environment. We will introduce Stratagus, the
selected game environment, in 3.4. This Chapter is concluded in Section 3.5.

3.1 INTRODUCTION TO REAL-TIME STRATEGY GAMES

Today’s RTS games are simple military simulations that require the player to control
armies (consisting of different types of units), and defeat all opposing forces. In most
RTS games, the key to winning lies in efficiently collecting and managing resources,
and appropriately distributing these resources over the various game elements. Typical
game elements in RTS games include the construction of buildings, the research of
new technologies, and combat. DUNE 2 (Figure 2) is considered as the first RTS game.
The genre name was invented by Westwood's Brett Sperry. At first they wanted to
classify this game as a war- or strategy game, but Sperry was concerned this might
scare players away because of the tremendous complexity in conventional war- and
strategy games. Sperry justifies his choice for the name by saying: “Before 1992, war
games and strategy games were very much niche markets, so my fears were justified.
But in the end, it was best to call it an RTS because that is exactly what it was." The
term real-time in the genre name aims at the fact that game time in DUNE 2 progresses
at a predefined rate. However, many serious strategy gamers disagree with the use of
the word strategy in RTS, arguing that RTS games are nothing more than a cheap
imitation of turn-based games because of the tendency of RTS games to devolve into
‘clickfests’ in which the player who is faster with the mouse generally wins, because
they can give orders at a faster rate (Geryk 1998).

Since DUNE 2, plenty of new RTS games were published. In 1994 Blizzard
released WARCRAFT, a RTS game set in the realm of a fantasy. Its sequel, WARCRAFT II
(1995), would end up being one of the biggest successes the RTS genre has ever seen.
The game had a long replay value since Blizzard released a version supporting
Windows 95/98 in 1999. This is remarkable because games tend to age fast. New RTS
games since WARCRAFT II brought the genre to a higher level, but mainly in terms of
graphics and sounds (Figure 2) and not in terms of challenging gameplay.

Figure 2: DUNE 2 (left picture) was the first RTS game ever. Electronic Arts (2003) provides gamers with a
realistic perspective on modern warfare in COMMAND & CONQUER GENERALS (right picture).

 14

3.2 ARTIFICIAL INTELLIGENCE IN REAL-TIME STRATEGY GAMES

AI has always been very important feature in strategy games, as strategy games cannot
rely on graphics alone and requires good AI to even be playable (Tozour 2002a).
Planning for military success in a RTS game can be divided into two separate
categories: strategies and tactics. While tactics cover small-scale interactions, such as
scouting the battlefield or capturing an enemy city, strategies are all encompassing
(Ramsey 2004). Generally, the most valued strategic principles are unity of command
(desire for one central leader), control of an objective (having a battle plan and sticking
to it), flexibility (the ability to change battle plans), economy of force (divide forces
and resources appropriately among potential conflicts), initiative and mass (Dunningan
2003). Some developers argue that a well-structured multi-tiered AI layer in
combination with goal-directed reasoning is already fit to tackle some of these real-
world military ideologies.

Ramsey (2004) proposes a Multi-Tiered AI Framework, where different levels of
managers control the AI, this allowing ‘grand strategic decisions’ to be made by AI at a
higher level, which then has the corresponding manager execute the task. EMPIRE

EARTH by Stainless Steel Studios, arguably the game with the most successful RTS AI
up to now, decomposed the AI into the following managers:

• Build manager: responsible for placement of structures and towns. Most
buildings have requirements on where they can and cannot be placed.

• Unit manager: keeps track of what units are in training at various buildings,
monitors the computer player’s population limit and prioritizes unit requests.

• Resource manager: responsible for tasking citizens to gather resources in
response to requests from both the unit and build managers. This component
is also responsible for the expansion to new resource sites.

• Research manager: the research manager examines technologies and selects
them based on their usefulness and cost.

• Combat manager: responsible for directing military units on the battlefield. It
requests units to be trained via the unit manager and deploys them in
whatever offensive or defensive position is beneficial.

• Civilization manager: coordination between build, unit, resource and research
managers. It handles player expansion, spending limits, building and units
upgrade.

Forward reasoning is impractical in a (RTS) game environment because the sheer
number of possible moves from any state is prohibitive (Harmon 2002). Therefore,
goal-directed (backward) reasoning is preferred over forward reasoning. While the
ultimate goal of an RTS game should be to win the game, this goal is too complicated
to address directly. The key is to decompose this goal into sub goals. Sub goals for
instance could be to ‘expand the base’ or ‘disable the opponent’s resource gathering’.

For AI designers RTS games offer many challenges such as resource
management, robust terrain analysis, opponent modeling, influence mapping
(Woodcock 2002), the utilization of effective tactics and strategies and more. Providing
the computer opponent AI with a variety of subtle and complex tactics will greatly
enhance the user’s sense of challenge and enjoyment (Kent 2004). Providing it with
‘intelligent’ adaptive behavior would be nothing less than a revolution.

 15

3.3 SELECTION REQUIREMENTS FOR THE GAME ENVIRONMENT

For our experiments we needed to implement machine learning techniques in a RTS
game environment. In our search for an appropriate environment, we took the
following list of requirements into account:

1) The game environment required being easily accessible and changeable
2) The game environment should include a scripting language, preferably with a

sophisticated AI API, able to support learning techniques.
3) Preferably experiments in the environment should be fast.
4) The game environment must be state-of-the-art in terms of gameplay,

meaning that game will have to incorporate non-trivial AI.

At first we investigated the possibility of using commercial computer games such as
COMMAND & CONQUER GENERALS or EMPIRE EARTH. Modern commercial games are
perfect for research in aspect to their realistic environments and non-trivial AI.
Unfortunately, most game companies don’t leave scripting hooks in the AI engine to
allow academics to build their own AI mods, mainly because developers don’t have
enough time or simply feel it just isn’t worth the effort (Woodcock 2003). Although
some commercial computer games do include editors to change game AI, the process
of doing this is either too tedious or the possibilities are just too scarce.

We then turned to open-source game engines such as Michel Buro’s ORTS

(2003), the FREECNC engine and finally Stratagus, formerly known as FREECRAFT. We
found Stratagus to be the most stable and appropriate engine for our experiments.

3.4 STRATAGUS

Stratagus is a sophisticated RTS engine that can be used to build real-time strategy
games similar to WARCRAFT II, COMMAND & CONQUER, STARCRAFT, AGES OF EMPIRES,
etc. It successfully runs under GNU/Linux, BSD, BeOS, MacOS/X, MacOS/Darwin and
Windows. Stratagus uses an AI manager, written in low-level C code, along with
scripts to control the AI opponents. Stratagus includes several scripted AI opponents,
each focusing on different strategies such as attacking over land, sea or air.

Scripts in Stratagus are defined in the high-level scripting language LUA,
currently one of the most popular scripting languages for games. LUA is a powerful but
surprisingly comfortable scripting language and is perfectly able to implement
sophisticated AI techniques such as dynamic scripting and evolutionary algorithms.

Stratagus already incorporates useful features such as a fast forward mode where
graphics are partially turned off, resulting in fast experiments (a typical game between
two computer controlled armies takes about 1 to 3 minutes). The implementation of an
automated self-play environment (machine versus machine) turned out to be easy.
During and after the game we can easily access numerous game related data such as
time elapsed before winning, the number of killed units or the number of units lost
etc. which is useful when designing a performance measure.

Initially Stratagus was developed as an open source alternative to WARCRAFT,
hence the former name FREECRAFT. Currently there are many games built on top of
the Stratagus engine. We chose the game WARGUS with Stratagus as its underlying
engine as the test-bed for our experiments. From this point we will refer to WARGUS as
the game used for the experiments. WARGUS is not a stand-alone game but a mod that

 16

implements a WARCRAFT II clone. WARGUS is not completely true to the original
WARCRAFT II experience because it uses a different engine. However, WARGUS is close
enough to the original that WARCRAFT II strategies, which are collected in numerous
strategy guides available on the Internet, are applicable to WARGUS.

The fact that Blizzard found it worthwhile to re-release WARCRAFT II four years
after the game was first released shows that, despite inferior graphics and sounds,
apparently WARCRAFT II was still popular among gamers. Supposedly, the gaming
community has become indifferent to the incremental improvements in graphics and
sounds in newer RTS games and is demanding a more challenging AI.

3.5 CHAPTER CONCLUSION

In this Chapter we addressed the first objectives as listed in Section 1.4: we selected the
game WARGUS with Stratagus as its underlying engine as the RTS environment for our
experimental research. This setup meets all 4 selection requirements. First, Stratagus is
a sophisticated RTS engine and is easily changeable and extensible. Secondly, all game
content (including the AI) is defined in LUA scripts. LUA is a powerful scripting
language, allowing the implementation of machine learning techniques such as
dynamic scripting and evolutionary algorithms. Thirdly, experiments in the engine are
fast because graphics can be partially turned off. Finally, the game WARCRAFT II – and
thus WARGUS- can still be considered as state-of-the-art in terms of gameplay.

 17

C h a p t e r 4

DYNAMIC SCRIPTING FOR REAL-TIME
STRATEGY GAMES

In 4.1 we will describe the basic principles of the dynamic scripting and how its implementation
differs in the RTS genre as opposed to its original implementation in CRPG. In 4.2 we will
discuss how we implemented dynamic scripting in WARGUS, the selected game for the
experiments. In 4.3 we will present the reader the results for the conducted experiments. We
will finish this Chapter with a conclusion in 4.4.

4.1 DYNAMIC SCRIPTING APPLIED IN REAL-TIME STRATEGY GAMES

Dynamic scripting (Spronck et al., 2003) is a direct online learning technique for
commercial computer games. The learning mechanism in the dynamic scripting
technique is inspired by reinforcement learning techniques (Russell and Norvig 1995).
It has been adapted for use in games because regular reinforcement learning
techniques do not meet the requirement of efficiency (Manslow 2002). In dynamic
scripting an adaptive rulebase is used for the generation of intelligent opponents on the
fly. Rules are extracted from a rulebase to form a new script that controls the dynamic
players’ behavior. The probability that a rule is selected for a script is proportional to a
weight value that is associated with each rule i.e., rules with larger weights have a
higher probability of being selected. The idea behind dynamic scripting is that the
rulebase adapts by changing the weight values to reflect the success or failure rate of
the corresponding rules in scripts. After every game, the weights of rules employed in
the combat are increased when having a positive contribution to the outcome and
decreased when having a negative contribution. The remaining rules get updated so
that the total weight of the rules in the rulebase remains unchanged. Through the
process of punishments and rewards, the dynamic AI will gradually adapt its strategy
to the players. Figure 3 illustrates the dynamic scripting process in RTS games.

human-
controlled

Rulebase for
computer -
controlled
opponent

generate
script Generated

script for
computer-
controlled
opponent

scripted
control

Update weights based
on performance (state & overall)

computer-
controlled

human
control

Combat between
the two teams

Figure 3: The dynamic scripting technique applied in a RTS game. The rulebase generates a new script at the
start of a game. After each game, the weights in the rulebase are adapted to reflect the results of the game.

 18

Spronck et al.’s (2003) CRPG implementation of dynamic scripting cannot be
transferred to the RTS genre unchanged. We added some new features to the original
implementation of dynamic scripting for CRPGs to enable it to work for RTS games.
Specifically we introduced ‘states’ and ‘state evaluations’.

A typical RTS skirmish can be divided into phases. The first phases are
traditionally used to get the economy going as well as setting up a base defense.
Gradually players will improve their civilization and as time progresses players usually
tend to act more offensively. Careful timing of military activities in RTS games is
essential to achieve success, e.g., attacking with weak units might be the only viable
choice in early game phases, in later game phases, when strong units are available,
usually weak units will have become useless. We decided to structure these phases into
game states. While dynamic scripting for CRPGs employs different rulebases for
different opponent types in the game (Spronck et al. 2003), our RTS implementation of
dynamic scripting employs different rulebases for the different states of the game.
These states will then roughly reflect all distinct game situations in a particular RTS
game. In the original dynamic scripting implementation for CRPGs, the success of a
rule is reflected by a single weight. This will no longer suffice since we want judge
rules based on the temporal state of the game. We need to associate rules with several
weights. More specifically, we need to assign each rule with one weight per state (per
rulebase).

 While dynamic scripting for CRPGs executes weight updates based on an
evaluation of a fight, our RTS implementation of dynamic scripting executes weight
updates based on both an evaluation of the performance of the game AI during the
whole game (called the “overall fitness”), and on an evaluation of the performance of
the game AI between state changes (called the “state fitness”). As such, the weight-
update function is based on the state fitness, combined with the overall fitness. The
use of both evaluations for the weight-updates increases the efficiency of the learning
mechanism (Manslow 2004).

4.2 DYNAMIC SCRIPTING IMPLEMENTED IN WARGUS

4.2.1 States and State Evaluations

Manslow (2002) argues that knowledge about the game and the lessons you want AI to
learn must be taken into account to structure the state space. For most games it is very
hard to draw a line between different phases and determine how many states are
appropriate. However, WARGUS has clear distinction in eras. The player starts with a
‘town hall’. A ‘town hall’ can be upgraded to a ‘keep’, and a ‘keep’ in its turn can be
upgraded to a ‘castle’. After doing each of these upgrades, many new build options are
available to the player. In preliminary experiments we used three different states.
Ideally these would correspond to the town hall, keep and castle era. However, three
states proved to be insufficient because of the structure dependencies incorporated this
RTS game. In order to upgrade to castle, a list of other buildings are required. So unless
we obligate the construction of these dependency buildings, we could never be sure if
moving to another era was possible. We felt it was best to avoid compulsory behavior,
because eventually the opposing human player will recognize and exploit this. Taking
all dependency buildings into account, we found that the ‘natural’ number of states
was 20 (Figure 4). Each state corresponds with a set of buildings the player currently
possesses and with a set of potential rules it is allowed to choose from. Some of these

 19

rules (e.g. building a blacksmith) cause the player to progress to another state. In our
implementation for WARGUS, the dynamic scripting technique evaluates the AI’s
performance for the current state before it moves to a new state. These state
evaluations will be used to update the weights for rules in the rulebase for the state in
question.

Mt
Ap

Mt Mt
ApTm TmAp

Tm

TmAp

Bs
LmSt

Kp
Bs Lm LmSt St

Bs

Bs BsLmKp KpLm St

Lm KpBs

Th: Town Hall
Ba: Barracks
Lm: Lumber-mill
Bs: Blacksmith
Kp: Keep
St: Stables
Ca: Castle
Ap: Airport
Mt: Mage-tower
Tm: Temple

Ca

Mt

20
Ca,Ba,Lm,Bs,St,

Ap,Mt,Tm

17
Ca,Ba,Lm,Bs,St,

Ap,Mt

18
Ca,Ba,Lm,Bs,St,

Ap,Tm

19
Ca,Ba,Lm,Bs,St,

Mt,Tm

14
Ca,Ba,Lm,Bs,St,

Ap

15
Ca,Ba,Lm,Bs,St,

Mt

16
Ca,Ba,Lm,Bs,St,

Tm

12
Kp,Ba,Lm,Bs,St

13
Ca,Ba,Lm,Bs,St

10
Kp,Ba,Lm,St

11
Kp,Ba,Bs,St

4
Th,Ba,Lm,Bs

6
Kp,Ba,Lm

7
Kp,Ba,Bs

2
Th,Ba,Lm

3
Th,Ba,Bs

5
Kp,Ba

1
Th,Ba

8
Kp,Ba,Lm,Bs

9
Kp,Ba,St

Figure 4: Game-states for WARGUS. The boxes represent the states. Inside each box we see the buildings the
player already possesses. The arrows represent the state transitions for each state. For example, after building
a lumber-mill (Lm) in state 1, the player progresses to state 2. In our setup the player always starts with a
town hall and barracks.

 20

4.2.2 Rulebase

The initial rulebase we designed for WARGUS included 50 higher-level rules, each of
which exists in all states. We expected it to be crucial to regularly launch firm attacks
and to have a steady defensive line at all times. For that reason we inserted more
military rules in the rulebase compared to other rules (Table 1).

Rule type Count
Build Rules (e.g. Build new barracks) 12
Economy Rules (e.g. Train more workers to harvest resources) 4
Military Rules (e.g. Attack the enemy) 25
Research Rules (e.g. Upgrade your weapons) 9

Table 1: Numerical relation between the different types of rules in rulebase

A typical rule in the rulebase allows the dynamic player to launch an attack on his
opponent. The domain knowledge here lies in the fact that this rule automatically
trains the most advanced units available. In WARGUS it is advisable to always attack
with the most advanced units available e.g., a knight can slaughter a group of soldiers.
Another form of built-in domain knowledge is incorporated in the building rules. It is
important to build more than one barrack. On the other hand, it doesn’t really make
sense to build more than one blacksmith so we prevent the AI from doing this. For a
complete overview of all rules in the initial rulebase see Appendix C.

4.2.3 Creating a dynamic script

As mentioned before, each state corresponds with a set of possible rules. The dynamic
scripting technique will start with randomly selecting rules for state 1 and will
continue doing this until a rule is selected that spawns a state change. When a rule is
selected that spawns a state change, from that point on rules will be selected for the
new state. To avoid monotone behavior, we restricted each rule to be selected only
once for each state. We allowed a maximum of 100 rules per script. At the end of the
scripts, a loop is implemented that initiates continuous attacks against the enemy.

The chance that a rule is chosen depends on the weight of that rule for that
state. Since we have a total of 20 states and 50 rules in the rulebase, the total number of
weights for the entire rulebase amounts to 1000, which may be too many to achieve
fast learning. Taking into consideration that not all rules are applicable for certain
states, we have narrowed down the average number of selectable rules per state to 30
(with a minimum of 21 and maximum of 42) by setting the weights in the weight table
for non-applicable rules to 0. These rules are disregarded in the selection and weight
updating procedure for the state in question. This way the AI only selects appropriate
rules. Presenting as little information as possible that is as relevant as possible will
speed up the learning process (Manslow 2004).

4.2.4 Fitness and Weight-update Functions

The weight-update function is based on two ‘fitness’ functions; a fitness function
evaluating the game as a whole (overall fitness) and a fitness function evaluating all
states visited during the game (state fitness). Both fitness functions yield values in the
range of [0,1]. Although not always true, the player controlled by dynamic scripting
(henceforth called the “dynamic player”) normally has lost (all the players buildings

 21

and units were destroyed) when it has an overall fitness score lower than 0.5 and the
dynamic player has mostly won the game (it destroyed all the opponents buildings and
units) when it has an overall fitness score greater than 0.5. The closer the overall
fitness is to 0, the greater the defeat was. An overall fitness evaluation close to 1
represents an overwhelming victory. The same applies for the state performance with
the slight difference that the state fitness does not represent win or loss, but merely the
performance for that state. A bad start could still lead to victory. The ‘overall fitness’
function F for player d controlled by dynamic scripting is defined as:

{ }

{ }
⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+=
wond

SS
S

b

lostdb
SS

S

F

od

d

od

d

),max(

),min(
 (1)

In equation (1), Sd represents the score for the dynamic player, So represents the
dynamic player’s opponent, b ∈ [0,1] is the break-even point. At the break-even point,
weights remain unchanged. The state fitness F for state i ∈ {0,20}, for dynamic player
d, is formally defined as:

{ }

{ }
⎪
⎪
⎩

⎪
⎪
⎨

⎧

>
+

−
+

=
+

=

−−

− 1

1

1,1,

1,

,,

,

,,

,

i
SS

S
SS

S

i
SS

S

F

ioid

id

ioid

id

ioid

id

i

 (2)

In equation (2), Sd,x represents the score of the dynamic player after state x, and So,x
represents the score of the dynamic player’s opponent after state x.
 The score function is domain-dependent, and should successfully reflect the relative
strength of the two players in the game. We defined the score Sx for player x as:

xxx BMS 3.07.0 += (3)

In equation (3), Mx represents the military points for player x, i.e. the number of points
awarded for killing units and destruction of buildings, and Bx represents the building
points for player x, i.e. the number of points awarded for training armies and
construction of buildings.

After each game, the weights of rules employed are updated. The weight-update
function translates the fitness functions into weight adaptations for the rules in the
script. The weight-update function W for the dynamic player is formally defined as:

{ }

{ }
⎪
⎪
⎩

⎪⎪
⎨

⎧

≥⎟
⎠
⎞

⎜
⎝
⎛

−
−

+
−
−

+

<⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

−
=

bFWR
b
bFR

b
bFW

bFP
b

FbP
b

FbWW
W

i
org

i
org

max

min

,
1

7.0
1

3.0min

7.03.0,max (4)

In equation (4), W is the new weight value, Worg is the original weight value, P is the
maximum penalty, R is the maximum reward, Wmax is the maximum weight value,
Wmin is the minimum weight value, F is the overall fitness of the dynamic player, Fi is
the state fitness for the dynamic player in state i, and b is the break-even point. The
equation indicates that we prioritize state performance over the overall performance.
The reason is that, even if a game is lost, we wish to prevent rules in states where
performance is successful from being punished (too much). In our simulation we set P
to 175, R to 200, Wmax to 1250, Wmin to 25 and b to 0.5.

 22

4.3 EXPERIMENTS

4.3.1 Experimental Setup

With our experiments we aim at proving that the player controlled by the dynamic
scripting AI successfully adapts to a static opponent. Ideally we want the AI controlled
by dynamic scripting to be resilient to early attacks as well as long lasting battles;
therefore we conducted experiments in both a small map and large map. The small
map will most likely be decided with fierce battles in a really early stage, whereas the
large map allows both players to advance to other eras, producing interesting battles
with advanced units (Figure 5).

For our first experiment, we used the default land attack AI included with the
Stratagus engine as the static opponent AI. We made some moderate improvements
(e.g. launching larger offensives) to it because at first the dynamic AI was already
outperforming the default land attack AI before any learning could have taken place.
The improved land attack AI is an overall balanced strategy focusing on offense,
defense and research. It favors ground offenses over air and sea. We employed the
improved balanced land attack AI on both the small and large map.

Besides the default land attack AI we also decided to test the dynamic scripting
technique against two optimized strategies: the soldier’s rush and the knight’s rush.
The soldier’s rush, which we implemented ourselves, aims at overwhelming the
opponent with cheap offensive units in the early state of the game. The knight’s rush
strategy aims at quick technological advancement, launching large offenses as soon as
strong offensive units are available. The soldier’s rush arguably is most effective on a
small map, and the knights’ rush on a large map. In summary, the following
experimental setups were used:

Name AI Strategy Map
Small Balanced Land Attack Improved default land attack AI Small Map
Large Balanced Land Attack Improved default land attack AI Large Map
Soldier’s Rush Soldier’s Rush AI Small Map
Knight’s Rush Knight’s Rush AI Large Map

Table 2. Experimental setups.

To quantify the relative performance of the dynamic player against the static player,
we define two notions of the ‘randomization turning point’ (RTP) and the ‘absolute
turning point’ (ATP). The RTP is explained as follows: after each game we calculate
the average fitness for each of the players over the last ten games. We then use the
fitness values over the last ten games to conduct a randomization test (Cohen 1995)
with the null hypothesis that both players (dynamic and static) are equally good. The
dynamic player is said to outperform the static player at a point when the null
hypothesis can be rejected with a probability of 90%. The RTP is the first round in
which this is achieved. The ATP is defined as the first game after which a consecutive
run of games in which the dynamic player wins is never followed by a longer
consecutive run in which the dynamic player loses. Low values for the randomization
and absolute turning points indicate good efficiency of dynamic scripting, since they
indicate that the opponent player (using dynamic scripting) consistently outperforms
the static player within a few games only (Spronck et al, 2003). If the dynamic AI is
unable to statistically outperform the static player within 100 games, the experiment is

 23

stopped and the average fitness is logged. For the Small Balanced Land AI we ran 31
tests. For the Large Balanced Land AI we ran 21 tests. For both the soldier’s rush and
knight’s rush, we ran 10 tests each. The results of these experiments are presented in
the next Sections.

Figure 5: Screenshot of a battle in WARGUS in the small map ‘little ambush’ (64x64 tiles). The upper left
square in the image above shows an overview of the small map. Because of the relatively small space
available, the opponents will be at each other’s throats quickly. The second map for our experiments (not
illustrated here) is the larger map ‘Scandinavian’ (128x128 tiles) where longer journeys have to be undertaken
to attack the enemy, increasing the chance both players will advance to other eras.

4.3.2 Results

The results for the Small and Large Balanced Land Attack AI presented in Table 3
show that the dynamic scripting technique works in RTS games. With average RTP
and ATP values around respectively 50 and 35, the dynamic AI adapts fast to a static
opponent. Both the RTP and ATP averages are very similar in both maps. Remarkable
are the high outliers in the small map. We will discuss these outliers in the next
Section.

 Randomization Test Statistics Absolute Turning Point Statistics
Map Low. High. Avg. Med. Low. High. Avg. Med.
Small 18 99 50 39 8 91 36 27
Large 19 79 49 47 11 58 34 34

Table 3: Results against the small and large balanced land attack AI. The lowest, highest, average and median
values are shown.

 24

The results for the soldier’s rush and knight’s rush are presented in Table 4. The
dynamic scripting was unable to statistically outperform the optimized static AI’s
within 100 games, resulting in low average fitness scores (AFS). On average dynamic
scripting only won approximately 1 out of 100 against the soldier’s rush, and 1 out of
50 against the knight’s rush.

Soldier’s Rush Knight’s Rush
Test Won AFS Test Won AFS
#1 0 0.18 #1 1 0.21
#2 2 0.18 #2 2 0.23
#3 0 0.18 #3 1 0.22
#4 3 0.20 #4 5 0.23
#5 1 0.19 #5 0 0.22
#6 3 0.20 #6 7 0.25
#7 0 0.18 #7 0 0.20
#8 1 0.19 #8 2 0.21
#9 2 0.20 #9 3 0.22
#10 0 0.18 #10 2 0.23

 1.2 0.19 2.3 0.22

Table 4 – Results for the two optimized AI’s: the soldier’s rush and knight’s rush. The numbers in the last row
represent the average number of games won, and the average fitness score calculated over all test runs.

4.3.3 Discussion

Although the RTP and ATP averages are very similar for both the Small and Large
Balanced Land Attack AI, it can be argued that learning is achieved faster against the
Small Balanced Land Attack AI (note the significantly lower median for both
performance measures). A typical battle in the small map is decided before either
player reaches advanced eras. Consequently weights are updated only for early states.
Typical battles in the large map, where early offensive combat is not as decisive, does
effect in updating weights for large numbers of states. Therefore, learning is faster in a
small map because it involves making changes to a smaller number of states. The fact
that the RTP and ATP averages are not significantly lower for the Small Balanced Land
Attack AI is most likely due to the high outliers. Unlike in the large map where the
dynamic AI has a better chance of recovering after a ‘dumb’ move, the dynamic AI in
the small map has trouble holding on to a winning tactic (Figure 6). Even when the
dynamic AI has gained tactical and strategic superiority, an occasional bad start due to
randomness will result in total defeat. These are most likely the cause of the high
outliers. Novel additions to the dynamic scripting technique, such as a penalty-
balancing and a history-fallback mechanism (Spronck et al, 2004), enhances the overall
performance by preventing a rulebase from deteriorating and reducing the number of
outliers.

The results presented in Table 4 clearly indicate that dynamic scripting in the
current implementation is not successful in battling optimized strategies. Although
dynamic scripting is an adaptive technique, it is still bound to the rules in the rulebase.
If the rules offer too few solutions, dynamic scripting is unable to (quickly) discover
winning tactics.

 25

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Large Balanced Land Attack AI

Small Balanced Land Attack AI

Figure 6: Comparing the average number of games before RTP is reached against the Balanced Land Attack
AI for both maps, calculated over all experiments. The x-axis represents the number of games played. The y-
axis represents the number of times the RTP has been reached (in percents) after a certain number of games
played (e.g. over all experimental runs in the large map, 20% reached the RTP in approximately 35 games).
This graph shows that the dynamic AI learns faster in the small map but after considerable training, the
dynamic AI is more stable in the large map.

4.4 CHAPTER CONCLUSION

In this Chapter we addressed the second objective as listed in Section 1.4 namely we
designed and implemented a method to apply dynamic scripting to RTS games. We
extended the original implementation of dynamic scripting (Spronck et al, 2003) with
states and state evaluations. Against generalized strategies (the improved default land
attack AI) dynamic scripting performed well on both the small map and large map. It
therefore proved to be resilient to early attacks as well as long lasting battles.
Considering the large state space in Wargus, the dynamic scripting technique adapted
fast (with RTP averages around 50 and ATP around 35) to its opponent’s strategy.

However, with our initial rulebase, dynamic scripting was unable to cope with
two optimized AI’s (the soldier’s rush and the knight’s rush). Overcoming extremely
optimized strategies as employed by many experienced gamers, can possibly be
achieved by creating better rules for the rulebase. Discovering new rules (e.g. changing
rule parameters or discovering successful combinations of rules) will be the main focus
in the Chapters to come.

 26

C h a p t e r 5

EVOLUTIONARY LEARNING IN REAL-TIME
STRATEGY GAMES

In Chapter 4 we noticed that dynamic scripting had trouble coping with optimized strategies.
AI’s in a RTS game equipped with an evolutionary algorithm can potentially ignore conventional
military wisdom and ‘think’ out-of-the-box. By mimicking the natural process of survival of the
fittest and evolution we hope to discover unexpected successful strategies and tactics that can
outperform these optimized AI’s. In 5.1 and 5.2 we will discuss how evolutionary algorithms can
be applied to RTS games in general and in WARGUS specifically. The results of our experiments
with the EA in WARGUS are presented in Section 5.3. This Chapter is concluded in Section 5.4.

5.1 EVOLUTIONARY ALGORITHMS APPLIED IN REAL-TIME STRATEGY

When designing an EA for RTS games, the most critical design issues involve the
encoding and evaluation. An encoding scheme needs to able to represent any possible
solution to the problem, and preferably be designed so that it cannot represent
infeasible solutions. Therefore, we give the EA maximal freedom in rule selection and
rule parameterization but prevent it from inserting illegal rules into the solution. We
do this by using game states that correspond with a set of rules the EA is allowed to
choose from.

Designing an appropriate fitness function is essential for the EA to work
effectively. Basically the better a chromosome is at solving a specific problem, the
higher the fitness score it should receive. An adequate problem definition is therefore
crucial when designing the fitness function. In RTS games, the problem can be
described as overcoming opposing armies on a specific map. Arguably an
overwhelming victory should be awarded a higher fitness than a narrow victory.

Another characteristic that requires special attention when designing an EA for
RTS games is the population size. Very determining for the AI’s strategy in many RTS
games are the building priorities for the AI (e.g. the specific order the AI chooses to
construct buildings). The original population should include enough variations in the
building priorities to test various strategies and search for an optimal solution. If the
population size is chosen too large, the evolution may take too long. However, if it is
chosen too small, the EA could converge to a poor solution because of insufficient
sampling of the search space.

EAs are initialized by creating a population with a fixed number of sample
solutions. New solutions are then played against a static AI and their success is
measured. When the population has been filled and all chromosomes have been
assigned fitness scores, successful solutions are allowed to breed. The EA will select
one of the genetic operators available to the system and then select the appropriate
number of child and parent chromosomes. The process of evolution will continue until
a certain stopping criterion has been met i.e., when a solution to the problem has been
found. Figure 7 illustrates schematically the evolutionary process applied in RTS
games.

 27

Population for
Evolutionary
controlled AI

Evolutionary
generated
script for
computer-
controlled
opponent

scripted
control

Replace parent with child
chromosome into population. Store
chromosome evaluation (fitness and
activated states).

Initialize
Population

Generate new
script

Evolve new child chromosome (script)
by selecting and applying a genetic
operator to parent chromosome(s).

Static script
for computer-

controlled
opponent

scripted
control

static AI evolutionary AI

Combat between
the two teams

Figure 7: The evolutionary process applied in RTS games.

5.2 EVOLUTIONARY ALGORITHM IMPLEMENTED IN WARGUS

5.2.1 Encoding

The genes in a chromosome are grouped into states. A state is activated when the AI
has executed at least 1 gene in that state. All chromosomes will at least have state 1
activated while the other states vary depending on the building priority (Figure 4). For
WARGUS we encoded 4 types of genes: build, research, economy and combat genes.

To construct buildings we introduced build genes. These start with the letter ‘B’
and are followed by a number ranging from 1 to 12, representing the selected building.
Research genes, responsible for researching new technologies to improve civilization,
start with the letter ‘R’ and are followed by a number ranging from 13 to 21. Economy
genes are responsible for training workers and start with the letter ‘E’ followed by the
desired number of workers. Military activities are encoded in combat genes. They start
with the letter ‘C’ and a number representing the current state (each state allows
fighting with different units). For example, a combat gene in state 1 starts with ‘C1’,
whereas a combat gene in state 20 starts with ‘C20’. The first parameter for a combat
gene is always the identifier for an army. Stratagus currently supports 10 controllable
armies ranging from 0 to 9. The last parameter is always the role of the army: either
offensive or defensive. The number of parameters between the first and last vary,
depending on the state. For example, state 1 only has one extra parameter
(representing the number of soldiers), while state 20 has a total of 6 extra parameters.
During the initialization phase these parameters are randomly initialized with a
number between 0 and 9. Figure 8 illustrates the design of a chromosome in WARGUS
and some example genes. For a complete description of all genes, see Appendix A.

Figure 8: A chromosome in WARGUS. The gray boxes show the possible states whereas the example genes are
listed in the white boxes. The tag ‘S’ followed by the number 1 implies that the script currently is in state 1.
After building a blacksmith with building index 4, we see the script progressing to state 3. Note that the
combat gene ‘C4’ in state 4 has more parameters than the combat gene ‘C1’ in state 1.

 28

5.2.2 Evaluation

To measure the success of a game AI script represented by a chromosome, the
following fitness function F for the dynamic player d, that yields a value in the range
[0,1], is defined:

{ }

{ }
⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
=

wond
MM

M
b

lostdb
MM

M
EC
GC

F

od

d

od

d

,max

,min (5)

In equation (5), Md represents the military points for the dynamic player, Mo
represents the military points for the dynamic player’s opponent, and b is the break-
even point. GC represents the game cycle, i.e., the time it took before the game is lost
by one of the players. EC represents the end cycle, i.e. the longest time a game is
allowed to continue. When a game reaches the end cycle and neither army has been
completely defeated, scores at that time are measured and the game is aborted.

If the evolutionary AI is able to put up a long lasting fight but eventually it still
loses, it is probable that this chromosome is close to finding a solution and small
changes to the genes might result in a winning chromosome. The factor GC/EC
ensures that losing solutions that play a long game are awarded higher fitness scores
than losing solutions that play a short game.

5.2.3 Genetic Operators

Genetic operators are often designed to fit the specific problem and chromosome
design at hand. In WARGUS we designed four genetic operators for the evolution of
tactics and strategies in RTS-games: (1) State Crossover, (2) Rule Replace Mutation, (3)
Rule Biased Mutation and (4) Randomization. Randomization has a 10% chance of
occurring and the remaining genetic operators a 30% chance. We will discuss each of
them next.

1) State Crossover: We select 2 parents and check if the selected parents have at

least 3 matching activated states for crossover. We make sure that the child
chromosome inherits genetic material from both parents to prevent a parent
from being copied completely onto the child chromosome. Between two
matching states, all states and genes are copied from either parent. This way
we prevent the EA from evolving corrupt chromosomes, i.e. illegal state
changes. After the last activated state, the remaining part of the chromosome
is copied from one of the parents. Figure 9 illustrates an example of a state
crossover.

 Parent A: Start State 1 State 3 State 4 State 8 State 12 State 13 State 14 State 17 State 20 End

Example Child: Start State 1 State 3 State 4 State 8 State 12 State 13 State 14 State 17 State 20 End

 Parent B: Start State 1 State 2 State 6 State 8 State 12 State 13 State 16 State 19 State 20 End

Figure 9: This example illustrates a state crossover. Activate stares are written in bold. The matching
activated states between parent A and B are 1, 8 and 12. For this specific example, between 1 and 8, all states
are copied from parent A; state 8 is copied from parent B etc.

 29

2) Rule Replace Mutation: Select 1 parent and for every activated state all
economy, research or combat rules have a 25% chance of being replaced.
Building rules are excluded here both for replacement and as replacement,
because these could spawn a state change and could possibly corrupt the
chromosome. Genes in inactivated states are ignored as they are considered
‘dead’ and mutation doesn’t really make sense here.

3) Rule Biased Mutation: Select 1 parent and for every activated state the

parameters for existing combat or economy rules have a 50% chance of being
mutated. The mutation is within a predefined boundary (between a minimum
and maximum value). For this genetic operator, we exclude build and research
rules. Changing parameters for these specific rule types doesn’t make sense
and could possibly corrupt the chromosome. We disallowed biased mutation
in ‘dead’ genes.

4) Randomization: Generate a complete new chromosome.

5.2.4 Selection Mechanism

We implemented tournament selection as the selection mechanism. Tournament
selection randomly chooses M ‘winning’ chromosomes out of N to become parents.
The higher the value of N, the higher the selection pressure, or in other words, the
lower the value of N, the more diverse the selection will be (Buckland 2004). This
method will most likely select good solutions and prevent early convergence. Since
little calculation is involved, this mechanism is also computationally fast.

Many other selection methods exist such as roulette wheel selection, linear
ranking or stochastic remainder selection. For WARGUS we found tournament selection
to be the most appropriate selection mechanism because (1) it is easy to implement, (2)
it most likely will select good solutions, and (3) when choosing a small value for N it
will prevent the population from converging too soon. In our implementation we set N
to 3 and M to 1, in other words we choose 3 chromosomes and then pick the best
solution to become parent.

Since we replace existing chromosomes in the population, we also need a
replacement mechanism for which we chose size-3 crowding (Goldberg 1989). We
discard the worst solution among the 3 selected chromosomes.

5.2.5 Stop Criteria

If a fitness score exceeds a desired value, a solution has been found. In WARGUS, a
fitness score higher than 0.7 almost certainly represents a convincing victory. Since
there is no guarantee an EA will find such a solution, we stop the EA after a fixed
number of runs (a run equals the generation of a new evolved chromosome). When
either stop-criterion (fitness- or run-stop criterion) has been met, the process logs the
best solution, resets the population and starts a new search.

 30

5.3 EXPERIMENTS

5.3.1 Experimental Setup

In our experiments we used the soldier’s rush and the knight’s rush as static AI’s since
these proved to be problematic for the dynamic scripting technique. We set the
population size to 50. This is a fairly small population size, but the search space in
WARGUS is not very large and initializing the population with hundreds of solutions is
not necessary.

The fitness stop criterion was set to 0.75 and 0.7 for respectively the soldier’s
rush and the knight’s rush. Since we expected evolution to take longer against the
knight’s rush in the large map, a fitness score higher than 0.7 will suffice. For the
soldier’s rush we raised the standard to 0.75. Games against the soldier’s rush never
take long, therefore the EA has ample opportunity to search for a more optimal
solution in a relative short time. Our run stop-criterion was set to 250 because
preliminary experiments showed that the EA was able to discover solutions within 250
runs.

5.3.2 Results

The EA rapidly discovered solutions. We repeated experiments until we found 10
solutions for both setups. Almost all evolutionary experiments ended before 250 runs
with fitness scores exceeding 0.7 in the large map and 0.75 in the small map (Table 5).
We can therefore conclude that our EA is able to discover new tactics and strategies to
deal with optimized AI’s that dynamic scripting was unable to defeat.

 Results fitness scores
AI Low. High. Avg. >250
Soldier’ Rush 0.73 0.85 0.78 2
Knight’s Rush 0.71 0.84 0.75 0

Table 5: The fitness scores for the solutions found by the EA. Respectively the lowest-, highest-, and average
fitness scores are shown. The column on the far right lists the number of times an experimental run was
stopped by the run-stop criterion, i.e. the desired fitness was not met.

5.3.3 Discussion

We examined the 10 solutions for both setups. As expected, the battle in the small map
never took long. Most solutions found by EA included only two activated states.
Remarkable was the fact that in 8 out of 10 solutions, the EA chose to first build a
blacksmith very early in the game. Furthermore, as soon as the EA reached state 3
(after building a blacksmith) it selected at least 2 out of the 3 possible research
advancements. Basically the strategy behind these 8 solutions is to keep a steady line of
defense at all times, build a blacksmith as fast as possible, research better weaponry
and armor and conclude with large offenses. The remaining 2 solutions overwhelmed
the enemy with sheer numbers.

The solutions in the large map offered more genetic diversity and battles took
longer compared to battles on the small map (on average 5 or 6 states were activated).
Still, we were able to recognize some obvious patterns in the 10 winning
chromosomes. A common building order, as employed in 7 out of 10 solutions, was to
build a blacksmith, a lumber mill, upgrade to keep and a stable in that precise order.

 31

Two solutions preferred to reach state 11 really fast. This state is special, since it is the
first state that allows fighting with advanced units such as knights. A knight arguably
is the most powerful unit in the game and the sooner the AI is able to train knights,
the higher its chances are for winning the game. That is why in many solutions,
whenever the evolutionary AI was in the proximity of a state able to train knights, it
progressed to that state really fast.

Boosting up the economy by building additional resource sites and training
large number of workers was clearly present in all solutions for the large map.

Another interesting fact is that the evolutionary AI used lots of catapults. This is
surprising because most strategy guides for WARCRAFT II tell us that catapults are
generally inferior units because of their high costs and high vulnerability. We expect
that their impressive damaging abilities and large range make them effective for both
defensive and offensive purposes, especially against tightly packed armies, such as large
groups of knights.

5.4 CHAPTER CONCLUSION

In this Chapter we addressed the third objective as listed in 1.4: we implemented an
EA in Stratagus that successfully evolved chromosomes that were able to beat two
optimized AI’s (the soldier’s rush and the knight’s rush). In all evolutionary searches it
offered solutions with fitness scores higher than 0.7 and almost always in less than 250
runs. We were able to recognize several strategies and tactics encoded in the
chromosomes for both setups. The focus of the next Chapter is to translate these
discovered tactics and strategies into improved rules for the dynamic scripting
rulebase.

 32

C h a p t e r 6

IMPROVING THE RULEBASE FOR DYNAMIC
SCRIPTING

In Chapter 5 we used an EA to discover new tactics and strategies for a RTS game. This Chapter
will deal with the translation of these discovered tactics and strategies into rules for the dynamic
scripting rulebase. In 6.1 we will explain how we improved the rulebase. In 6.2 we will discuss
the experiments with the new rulebase. We will conclude this Chapter in Section 6.3.

6.1 IMPROVING THE DYNAMIC SCRIPTING RULEBASE

In this Chapter we will discuss how we created new rules based on the solutions found
by the EA, in order to improve the dynamic scripting rulebase. We aim at proving that
the new rulebase will outperform the two optimized AI’s (the soldier’s rush and the
knight’s rush AI’s) or at least perform better compared to the old rulebase while being
at least equal in performance against the non-optimized AI’s.

We closely examined and discussed all discovered solutions in Section 5.3.3.
Based on our discoveries we decided to make five changes to the old rulebase namely:

1) We recognized a very obvious pattern in most solutions found against the soldier’s

rush. The AI first built a blacksmith, then researched better weaponry and armor,
and finally overwhelmed the enemy with heavily armed soldiers. The first new
rule we added under the name ‘AntiSoldiersRush’, did exactly that.

2) In almost all solutions against the knight’s rush, we observed that the EA preferred

to train advanced units as fast as possible. This inspired us to create another rule.
Whenever the AI was ‘one building away’ from training advanced units, our
second new rule, when selected, constructed this building and then attacked with
advanced units.

3) We also learned from solutions found against the knight’s rush that boosting the

economy by expanding to new resource sites is very important to achieve game
success. The original rulebase already offered numerous opportunities for base
expansion. However, during experiments with the old rulebase we noticed that
new resource sites were often easily destroyed by the opponent AI (Figure 10).
Therefore, these rules were often assigned low weights. When we had a closer
look at the solutions found by the EA, we saw that the EA first organized its
defenses before building a new base. The lesson we should learn from this is: only
set up new base if you have the means to defend it. This is why we included the
training of a defensive army in our new base expansion rule.

4) For our 4th new rule we selected a winning chromosome (in this case against the

knight’s rush) and copied all encoded actions in activated states directly to the
new rule.

 33

Figure 10: Overview of the large map ‘Scandinavian’. When being ordered to expand to a new gold mine, the
dynamic AI, which was based on the far left of the map, first chose to expand to gold mine A (the white dot
left to A). When having insufficient defensive capabilities, this new base is easily destroyed by nearby
opposing forces controlled by the static AI (based in right bottom corner of the map). Arguably expanding to
resource site B (the white dot left to B) would be a much safer alternative (out of sight, out of war).

5) For our fifth and final change, we decided not to create an entirely new rule, but

to change parameters in existing military rules. We examined all activated states
for all chromosomes, and analyzed what type of unit the EA preferred to fight
with during a specific temporal state of the game. Based on these statistics we
changed parameters in the existing military rules. For instance, we encouraged the
use of catapults. The original rulebase hardly included any rules that attacked or
defended with large numbers of catapults.

We decided to replace old rules instead of inserting the new rules into the original
rulebase. This way we keep the original rulebase size unchanged. The military rules in
the original rulebase responsible for air-combat were replaced since these were
practically never used in earlier experiments. Besides unused rules, we could also
choose to replace unsuccessful rules e.g. rules with low weights.

6.2 EXPERIMENTS

6.2.1 Experimental Setup

With our experiments we aim at proving that the newly optimized rulebase will
statistically outperform the two optimized AI’s (the soldier’s rush and the knight’s rush
AI’s) or at least perform better compared to the old rulebase. For both the soldier’s
rush and knight’s rush, we ran 10 experiments each. We also tested the new rulebase
against the Small Balanced Land Attack AI and Large Balanced Land Attack AI. We
ran 11 experiments for both. Similar to earlier experiments we will quantify the
relative performance of the evolutionary AI against the static player with the
‘randomization turning point’ (RTP) and the ‘absolute turning point’ (ATP). If the
dynamic AI is unable to statistically outperform the static player within 100 games, the
experiments are stopped and the average fitness is logged. For this experiment we set
Pmax to 400, Rmax to 400. We raised these values compared to earlier experiments to
encourage high weights.

 34

6.2.2 Results

The results against the Small Balanced and Large Balanced Land Attack AI with new
rulebase are presented in Table 6. The results for the Small Balanced Land Attack AI,
with an average ATP of 6, clearly show that dynamic scripting with the new rulebase
already is outperforming the static AI before any learning could have taken place. The
same more or less applies to the Large Balanced Land Attack AI with an average ATP
of 13. The dynamic AI with the old rulebase had RTP averages around 50 and ATP
averages around 35. With the new rulebase, the RTP averages dropped to 19 and 24 for
respectively the Small and Large Balanced Land Attack AI.

 Randomization Test Statistics Absolute Turning Point Statistics
Map Low. High. Avg. Med. Low. High. Avg. Med.
Small 10 34 19 14 1 25 6 1
Large 10 61 24 26 1 52 13 10

Table 6: Results against the small and large balanced land attack AI. The lowest, highest, average and median
values are shown.

The results against the soldier’s rush and the knight’s rush with new rulebase are
presented in Table 7. The dynamic AI won approximately 1 out of 3 battles (see Table
7) against the soldier’s rush, whereas the old rulebase only won 1 out of 100 (see Table
4). The dynamic AI won approximately 1 out of 10 battles (see Table 7) against the
knight’s rush, whereas the old rulebase only won 1 out of 50 (see Table 4). The average
fitness score, calculated over 100 games is approximately 0.3 (see Table 7) for both
setups, whereas the average fitness score for the old-rulebase was approximately 0.2
(see Table 4) for both setups. We can therefore conclude that the new rulebase has
enabled dynamic scripting to deal better with the optimized AI’s.

Soldier’s Rush Knight’s Rush
Test Won AFS Test Won AFS
#1 21 0.28 #1 11 0.31
#2 30 0.34 #2 15 0.31
#3 25 0.31 #3 6 0.27
#4 21 0.29 #4 10 0.31
#5 20 0.29 #5 8 0.30
#6 32 0.34 #6 13 0.29
#7 38 0.37 #7 11 0.31
#8 41 0.38 #8 10 0.30
#9 25 0.31 #9 7 0.29
#10 22 0.29 #10 10 0.29

 27.5 0.32 10.1 0.30

Table 7 – Results against the soldier’s rush and knight’s rush, with the new rulebase. The numbers in the last
row represent the average number of games won, and the average fitness score calculated over all test runs.

 35

6.2.3 Discussion

The dynamic scripting AI equipped with the new rulebase is still unable to statistically
outperform the two optimized AI’s. In order to battle these optimized AI’s, there is
very little room for variation, requiring the dynamic AI to consistently make a series of
appropriate choices. Because of the randomness inherent in the dynamic scripting
process, this is unlikely to happen.

However, performance did improve substantially compared to the original
rulebase. When examining the weight distribution in the rulebase in more detail, we
noticed that new rules were almost always assigned high weights, implying that these
new rules proved to be successful and favored by the dynamic scripting technique. The
performance increase against the soldier’s rush can be subscribed to the new
‘AntiSoldiersRush’ rule, which had huge weights assigned to it in every experiment.
This rule is extremely effective against the soldier’s rush to the extent that learning to
quickly choose it (this rule is already selectable in the first state) will almost certainly
bring victory.

Arguably, no such single effective rule exits against the knight’s rush, or at least
not that early in the game. We also expect the ‘AntiKnightsRush’ to be very effective
when selected early, but the dynamic AI has to make a series of choices, divided over
multiple states, before it even is able to trigger this rule. Since multiple states are
involved, learning to select this rule is expected to take longer. This is most likely the
reason why the performance increase is not as substantial for the knight’s rush
compared to the soldier’s rush.

The two remaining new rules had larger weights compared to their initial
values in almost all experiments. However, neither was as successful as the
‘AntiSoldiersRush’.

6.3 CHAPTER CONCLUSION

In this Chapter we addressed the fourth and final objective as listed in 1.4: we were
able to translate the offline discovered tactics and strategies into rules for the rulebase.
Experiments showed that these changes improved performance of dynamic scripting
significantly. We can also conclude that this performance increase can be subscribed to
the new rules since these had large weights assigned to them in almost all experiments.
In particular, the new ‘AntiSoldiersRush’ rule had gigantic weights against both the
knight and soldier’s rush. Apparently the ‘AntiSoldiersRush’ rule is also effective
against the knight’s rush, but not as decisive as against the soldier’s rush.

 36

C h a p t e r 7

CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

At the end of this thesis we return to the problem statement and research question. In Section
1.3 we presented our problem statement and posed two research questions that should be
answered before we address the problem statement. Section 7.1 answers the research questions.
In Section 7.2 we will formulate from these answers a reply to the problem statement. We will
give future research directions in 7.3.

7.1 ANSWER TO RESEARCH QUESTION

Our research questions were:

Research Question 1: Is it possible to design and implement an evolutionary algorithm
that discovers new tactics and strategies for real-time–strategy games?

Research Question 2: Will offline discovered tactics and strategies enhance the
performance for the dynamic scripting rulebase?

In our attempt to answer the research question, we had four objectives:

1) Selecting a flexible, state-of-the-art RTS game-environment for conducting our

experimental research in.

The first research objective is discussed in Chapter 3. In accordance with the first
research objective, we selected the game WARGUS with Stratagus as its underlying
engine as the RTS environment for our experimental research. Stratagus is an
appropriate engine for experimental research in game AI. We claim that even today
the gameplay for WARGUS can still be considered as state-of-the-art in the RTS genre.

2) Designing and implementing the dynamic scripting technique in the selected

RTS game and proving that it works by testing it against several opponent
strategies on several maps.

The second research objective is discussed in Chapter 4. In accordance with the second
research objective, we modified the original dynamic scripting implementation for
CRPG to meet the requirements for RTS games, i.e. we introduced states and state
evaluations. We proved that dynamic scripting adapted rapidly to different static AI’s
on different maps. We additionally discovered that the dynamic scripting technique
had trouble coping with extremely optimized AI’s.

 37

3) Applying offline learning using an evolutionary algorithm to discover new
strategies and tactics in the selected RTS game.

The third research objective is discussed in Chapter 5. In accordance with the third
research objective, we implemented an EA for WARGUS that rapidly found solutions to
two very optimized AI’s. We were able to recognize several strategies and tactics
encoded in the chromosomes.

4) Translating offline-discovered strategies and tactics into rules for the rulebase

and show that these additions enhance performance for dynamic scripting in
the selected RTS game.

The fourth and final research objective is discussed in Chapter 6. In accordance with
the fourth research objective, we were able to translate the offline-discovered tactics
and strategies into rules for the rulebase and we showed that these changes improved
performance for dynamic scripting.

By achieving all our research objectives, we may draw a final conclusion by answering
the research questions with an unequivocal yes: (1) it is possible to design and
implement an EA that discovers new tactics and strategies for RTS games and (2) these
offline discovered tactics and strategies can enhance the dynamic scripting rulebase.

7.2 ANSWER TO PROBLEM STATEMENT

Our problem statement was:

Problem Statement: To what extent can offline learning techniques be used to improve
the rulebase used for dynamic scripting, in order to improve the AI in commercial
computer games?

Taking the answer to the research questions into consideration, we may conclude that
offline learning techniques do indeed have the potential to improve the rulebase used
for dynamic scripting and consequently improve the AI in commercial computer
games. We successfully employed an EA for our offline learning technique. This does
not preclude different AI techniques, such as artificial neural networks or decision
trees, to achieve good results in this respect.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

7.3.1 Improving Dynamic Scripting for Wargus

Dynamic scripting adapted to the static opponents strategy. However, we expect
performance to improve (1) when searching for better combinations of learning
parameters, (2) when designing more appropriate fitness and update weight functions
and (3) when creating better rules for the rulebase.

Experimenting with different values for the maximum penalty, maximum
reward, maximum weight value, minimum weight value and break-even point might
lead to more efficient learning. The values we selected in our initial setup were chosen
intuitively, so more efficient values most likely do exist.

 38

We also expect that further optimizing the fitness and weight update functions
will improve performance. Perhaps, the overall score function as stated in 4.2.4
(equation 2) should not reward building points. The goal in a typical RTS game is to
destroy all opposing forces. In the end game success is determined by military actions.
Arguably, the overall score should not include ‘guided rewards’ such as points awarded
for building actions. The score for the state fitness on the other hand should possibly
include even more guided rewards e.g. for resource gathering, research etc. The weight
update function (equation 4) indicates we prioritize state performance over the overall
performance. We may have overstressed the importance of state evaluations.
Employing different values for state and overall evaluations, might achieve faster
learning.

Undoubtedly, providing the dynamic scripting algorithm with a very optimized
rulebase will have the largest positive contribution to the dynamic scripting
performance. We expect performance to increase significantly when using rules for
the rulebase that comprises complete tactics e.g., a combination of fine-tuned actions
(e.g. build a blacksmith and acquire all related research advancements) rather than
single actions (e.g. build a blacksmith). This approach can lead to very effective AI, one
that might even be able to tackle optimized AI’s such as the soldier’s rush and the
knight’s rush. Our original rulebase included rules with only single actions. Using
these ‘single rules’, and consequently providing the dynamic AI with minimal
guidance, does contribute to the diversity for the AI, but has the drawback that
dynamic scripting is unable to (quickly) adapt to really optimized AI since these leave
practically no room for variation.

Another interesting research objective is testing dynamic scripting against
multiple static opponents or even humans. If we want to stage the dynamic AI against
multiple opponents, the fitness functions needs to be revised. Currently, the fitness
functions are designed for one on one combat.

7.3.2 Improving Evolutionary Algorithm for Wargus

As described in Chapter 5, the EA was able to rapidly find solutions for two supposedly
very difficult problems. We may conclude that EAs performance is already extremely
high and there is no need for further improvements. Perhaps when testing the EA
against even more optimized AI’s or multiple opponents, the need for improvements
will be more apparent. The EA is potentially improved by applying different EA
learning parameters (e.g. larger population size) or by encoding more game options
into the chromosome (e.g. include sea warfare in the combat genes).

7.3.3 Improving Translation Algorithm for Wargus

As discussed in 6.3, our translation approach for our fourth rule can be achieved
without human intervention and is therefore highly efficient. Additionally, applying
this approach we can use the EA to evolve winning chromosomes for distinct
opponent strategies on several maps and translate these to rules for the dynamic
scripting rulebase. This way we can rebuild the entire rulebase with rules that are fit to
battle many different strategies such as rush strategies, defensive strategies, air combat
strategies, naval strategies etc. Each rule can be considered as a counter-measure rule
for a distinct opponent strategy. Since the rulebase will solely consist of rules that

 39

comprise complete tactics i.e., fine-tuned combination of actions, we expect it can
produce very effective AI.

7.3.4 Low-level AI Improvements for Stratagus

The low-level AI in Stratagus, e.g. unit AI, robust terrain analyses and pathfinding, has
ample room for improvements.

A good local unit performance is crucial to the overall success of the system
because generals are overburdened if they have to issue low–level instructions to all
objects under their command. Instead, objects are required to handle the most basic
problems they face autonomously and quickly (Buro 2003). For instance, in Stratagus
the low-level AI for sea units is not very effective. Improving the sea unit AI and
including ‘sea warfare’ rules to the dynamic scripting technique will vastly contribute
to the diversity of the AI. Also several other units such as bomb squads and units with
magical capabilities exists whose full potential are not utilized by the unit AI.

During our experiments we noticed that in certain situations the AI chose poor
locations to construct new resource sites (Figure 10). More robust terrain-analyses for
Stratagus e.g. using influence mapping (Woodcock 2002), could provide valuable
information for economic planning and prevent situations as illustrated in Figure 10.
Robust terrain analysis can also provide the pathfinding algorithm with useful data i.e.
to plan an attack route.

Pathfinding in Stratagus is handled with an A* algorithm. Practically all game
developers agree that the A* algorithm or some variant is the best answer for both
relatively static and dynamic environments and is capable of handling a huge number
of possible game designs (Woodcock 2003). However, the Stratagus implementation of
the A* is not flexible. For instance, it is impossible to assign armies different attack
routes through the higher-level scripts or tell them to attack specific buildings or units.
Implementing a more flexible pathfinding algorithm for Stratagus allows AI
programmers as well as machine learning techniques to search for smarter tactics and
strategies. Armies in COMMAND & CONQUER GENERALS for instance may choose to
attack an enemy base using 3 different paths, a frontal, flank or backdoor attack
(Electronic Arts 2003). These 3 paths are hard-coded for every map by the designer.
Although dynamically determining these way points would increase flexibility even
more, this simplistic hard-coded approach already makes it far more difficult for
human players to organize their defenses and greatly enhances the sense of challenge.

7.3.5 Machine Learning in Modern Computer Games

Implementing dynamic scripting or other machine learning techniques into modern
game environments is certainly another viable research topic. However, most
computer games, besides having some mod capabilities, are closed source implying that
the implementation of complicated AI techniques is practically impossible. This is
unlikely to change unless developers and academics learn to work side by side.
Unfortunately, the rift between academics and developers is still far from closed.
Developers are under continuing pressure to meet deadlines, and do not find time to
implement complicated academic algorithms, let alone to make tools for academics to
use in their programs. Academics are therefore forced to invest tremendous efforts in
building their own games or turn to often unstable, open-source alternatives. Neither
side is served this way while both can benefit from close cooperation.

 40

Developers really do want answers to the harder questions. They are starting to
realize that games cannot continually rely on improved graphics and sound alone and
that sophisticated AI can produce more interesting gameplay and consequently
increase revenues. Academics on the other hand, acknowledge that modern computer
games, with ever increasing complexity, are an appropriate tool for integrative human-
level AI research. For the near future we expect the rift between developers and
academics to shrink. We expect that game companies will soon provide academics
with more sophisticated tools to change game AI that enables them to implement
machine learning techniques in their games. Consequently we expect academics to
show an increasing interest in computer games for experimental research.

 41

Appendix A: Detailed Gene Description

For the EA in Wargus we designed the following gene types:

Build gene := B, Building
Building := [1 ..12]
Example := B,1 ,i.e. build a new town hall

1 := BaseExpansion
2 := Barracks
3 := LumberMill
4 := Blacksmith
5 := BetterCityCenter
6 := STables
7 := BestCityCenter
8 := Airport
9 := MageTower
10 := Temple
11 := GuardTower
12 := CannonTower

Research gene := R, Research
Research := [13..21]
Example := R,13 ,i.e. research better arrows

13 := MissileUpgrade
14 := ArmorUpgrade
15 := WeaponUpgrade
16 := CatapultUpgrade
17 := MageUpgrade1
18 := MageUpgrade2
19 := MageUpgrade3
20 := MageUpgrade4
21 := MageUpgrade5

Economy gene := E, worker_count
worker_count := [0…∞>
Example: E, 10 ,i.e. train an additional 10 workers to harvest resources

Combat := C<current_state>, force_index, {force}, force_role
force_index := [0..9]
force := [unit_type_count, {force}]
unit_type_count := [soldier, shooter, catapult, knight, flyer, mage]
force_role := [attack | defend]
Example: C1, 0,10,attack ,i.e. assign force 0 to attack with 10 soldiers.

C1, force_index, soldier, force_role
C2, force_index, soldier, shooter, force_role
C3, force_index, soldier, force_role
C4, force_index, soldier, shooter, catapult, force_role
C5, force_index, soldier, force_role
C6, force_index, soldier, shooter, force_role
C7, force_index, soldier, force_role
C8, force_index, soldier, shooter, catapult, force_role
C9, force_index, soldier, force_role
C10, force_index, soldier, shooter, force_role
C11, force_index, soldier, knight, force_role
C12, force_index, soldier, shooter, catapult, knight, force_role
C13, force_index, soldier, shooter, catapult, knight, force_role
C14, force_index, soldier, shooter, catapult, knight, flyer, force_role
C15, force_index, soldier, shooter, catapult, knight, mage, force_role
C16, force_index, soldier, shooter, catapult, knight, force_role
C17, force_index, soldier, shooter, catapult, knight, flyer, mage, force_role
C18, force_index, soldier, shooter, catapult, knight, flyer, force_role
C19, force_index, soldier, shooter, catapult, knight, mage, force_role
C20, force_index, soldier, shooter, catapult, knight, flyer, mage, force_role

 42

Appendix B: AI API Stratagus (http://stratagus.sourceforge.net/)

Stratagus contains the following high-level API commands (which are called from the LUA scripts):

 AiNeed: Tells the AI that it should have a unit of this unit-type. The AI builds or
trains units in this order of the ai:set/ai:need commands. If the unit or an equivalent
unit already exists, the AI does nothing. If the unit is lost, it is automatic rebuild. If the
units are requested in wrong order, the AI could hang up. Resources are collected
automatic and farms are automatic build, but additional could be requested.

AiSet: This ai:need with a number. Tells the AI that it should have a specified number
of a unit of this unit-type. The AI builds or trains units in this order of the
ai:set/ai:need commands. If the unit or an equivalent unit already exists, the AI does
nothing. If the units are lost, they are automatic rebuild. If the units are requested in
wrong order, the AI could hang up. Resources are collected automatic and farms are
automatic build, but additional could be requested. In the opposite to ai:need, which
always inserts a request, ai:set modifies the last request to the new number.

AiWait: Waits until the *first* request of this unit-type is completed. Don't forget to
request a unit-type, before you wait on it.

AiForce: Define a force, what and how many units should belong to a force. Up to 10
forces are currently supported. Force 0 is currently fixed to be the defense force. Forces
are automatically sent to a building or unit under attack. If there are unassigned units
of requested unit-type, than they are assigned to a force.

AiForceRole: Define the role of a force. Either attack or defend.

AiWaitForce: Wait until a force is complete, the forces are built in force number order.
First 0, than 1, last 9.

AiAttackWithForce: Attack the opponent with a force.

AiSleep: Wait some frames, to let the opponent (you) recover.

AiResearch: Let the AI research an upgrade, upgrades are researched in command
order. And automatic researched if lost. Building orders have a higher priority. The
scriptwriter is responsible for the correct order. AI could hang up when the
scriptwriter employs a wrong order.

AiUpgradeTo: Upgrades units or buildings (e.g. upgrade town-hall to keep). Each
individual unit or building requires an upgrade command in order to upgrade. The
computer automatically searches for the appropriate unit to upgrade.

AiPlayer: Return the player index of the running AI.

 43

Appendix C: Original Rulebase

This is the initially designed rulebase we used for our first experiments with dynamic scripting.

Index Name Description
1 BaseExpansion Expand to new resource site
2 Barracks Build barracks
3 LumberMill Build a lumber-mill
4 Blacksmith Build a blacksmith
5 BetterCityCenter Upgrade town hall to keep
6 STables Build sTables
7 BestCityCenter Upgrade keep to castle
8 Airport Build an airport
9 MageTower Build a mage tower
10 Temple Build a temple
11 GuardTower Build a guard tower
12 CannonTower Build a cannon tower
13 MissileUpgrade Research better arrows
14 ArmorUpgrade Research better armor
15 WeaponUpgrade Research better weapons
16 CatapultUpgrade Research better catapults
17 MageUpgrade1 Research mage spell 1
18 MageUpgrade2 Research mage spell 2
19 MageUpgrade3 Research mage spell 3
20 MageUpgrade4 Research mage spell 4
21 MageUpgrade5 Research mage spell 5
22 LightWorkersExpansion Train a small amount of new workers
23 NormalWorkersExpansion Train a medium amount of new workers
24 HeavyWorkersExpansion Train a large amount of new workers
25 ExtremeWorkersExpansion Train a extreme large amount of new workers
26 Defense_Squadran Defend the base with a squadron (smallest-sized force)
27 Defense_Platoon Defend the base with a platoon (small-sized force)
28 Defense_Battelion Defend the base with a battalion (medium-sized force)
29 Defense_Company Defend the base with a company (large-sized force)
30 Defense_Division Defend the base with a division (largest-sized force)
31 Offense_Squadran Attack the opponent with a squadron (smallest-sized force)
32 Offense_Platoon Attack the opponent with a platoon (small-sized force)
33 Offense_Battelion Attack the opponent with a battalion (medium-sized force)
34 Offense_Company Attack the opponent with a company (large-sized force)
35 Offense_Division Attack the opponent with a division (largest-sized force)
36 SoldiersDefense Defend the base with solely soldiers
37 ShootersDefense Defend the base with solely archers
38 CatapultDefense Defend the base with solely catapults
39 KnightsDefense Defend the base with solely knights
40 MagesDefense Defend the base with solely mages
41 SoldiersRush Attack the opponent with solely soldiers
42 ShootersRush Attack the opponent with solely archers
43 CatapultRush Attack the opponent with solely catapults
44 KnightsRush Attack the opponent with solely knights
45 MagesRush Attack the opponent with solely mages
46 NormalAirDefenseForce Defend the base with medium-sized air force
47 HeavyAirDefenseForce Defend the base with large-sized air force
48 NormalAirAttackForce Attack the opponent with medium-sized air force
49 HeavyAirAttackForce Attack the opponent with large-sized air force
50 ExtremeAirAttackForce Attack the opponent with largest-sized air force

 44

Appendix D: Improved Rulebase

The improved rulebase used for our second experiment with dynamic scripting.

Index Name Description
1 * BaseExpansion Expand to new resource site
2 Barracks Build barracks
3 LumberMill Build a lumber-mill
4 Blacksmith Build a blacksmith
5 BetterCityCenter Upgrade town hall to keep
6 STables Build sTables
7 BestCityCenter Upgrade keep to castle
8 Airport Build an airport
9 MageTower Build a mage tower
10 Temple Build a temple
11 GuardTower Build a guard tower
12 CannonTower Build a cannon tower
13 MissileUpgrade Research better arrows
14 ArmorUpgrade Research better armor
15 WeaponUpgrade Research better weapons
16 CatapultUpgrade Research better catapults
17 MageUpgrade1 Research mage spell 1
18 MageUpgrade2 Research mage spell 2
19 MageUpgrade3 Research mage spell 3
20 MageUpgrade4 Research mage spell 4
21 MageUpgrade5 Research mage spell 5
22 LightWorkersExpansion Train a small amount of new workers
23 NormalWorkersExpansion Train a medium amount of new workers
24 HeavyWorkersExpansion Train a large amount of new workers
25 ExtremeWorkersExpansion Train a extreme large amount of new workers
26 ** Defense_Squadran Defend the base with a squadron (smallest-sized force)
27 ** Defense_Platoon Defend the base with a platoon (small-sized force)
28 ** Defense_Battelion Defend the base with a battalion (medium-sized force)
29 ** Defense_Company Defend the base with a company (large-sized force)
30 ** Defense_Division Defend the base with a division (largest-sized force)
31 ** Offense_Squadran Attack the opponent with a squadron (smallest-sized force)
32 ** Offense_Platoon Attack the opponent with a platoon (small-sized force)
33 ** Offense_Battelion Attack the opponent with a battalion (medium-sized force)
34 ** Offense_Company Attack the opponent with a company (large-sized force)
35 ** Offense_Division Attack the opponent with a division (largest-sized force)
36 SoldiersDefense Defend the base with solely soldiers
37 ShootersDefense Defend the base with solely archers
38 CatapultDefense Defend the base with solely catapults
39 KnightsDefense Defend the base with solely knights
40 MagesDefense Defend the base with solely mages
41 SoldiersRush Attack the opponent with solely soldiers
42 ShootersRush Attack the opponent with solely archers
43 CatapultRush Attack the opponent with solely catapults
44 KnightsRush Attack the opponent with solely knights
45 MagesRush Attack the opponent with solely mages
46 *** AntiSoldiersRush - Build a blacksmith

- Research better armor
- Research better weapons
- SoldiersRush

47 *** AntiKnightsRush - Build a lumber-mill | blacksmith | sTables
- KnightsRush

48 *** AllYourBaseAreBelongToUs - Defense_Battalion
- BaseExpansion

49 *** Chromosome_Rule <genes were copied directly from chromosome>
50 * Empty

* Disabled rules ** Parameters modified for existing rules *** New rules added to the rulebase

 45

REFERENCES

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice, Oxford University
Press, New York.

Barnes, L. (2002). Testing Undefined Behavior as a Result of Learning. AI Game
Programming Wisdom (ed. S. Rabin), Charles River Media, 2002, pp. 615-623.

Buckland, M. (2004). Building better Genetic Algorithms. AI Game Programming
Wisdom 2 (ed. S. Rabin), Charles River Media, 2002, pp. 649-660.

Buro, M. (2003). RTS Games as Test-Bed for Real-Time AI Research. Department of
Computing Science, University of Alberta, Canada. Proceedings of the 7th Joint
Conference on Information Science, JCIS 2003,
(Ed. Chen, K., et al.)

Brockington, M. and Darrah, M. (2002). How Not to Implement a Basic Scripting
Language. AI Game Programming Wisdom (ed. S. Rabin), Charles River Media, pp.
548-554.

Cohen, R.C. (1995). Paragraph 5.3.2: A Randomization of the Paired Sample Test,
Empirical Methods for Artificial Intelligence, MIT Press, pp. 168-170.

Dunningham J. (2003). How to make war, Quill 2003

Demasi, P., Cruz, A.J. de. O. (2002). Online coevolution for action games. Instituto de
Matemática, Universidade Federal do Rio de Janeiro

Electronic Arts. (2003). Command & Conquer Generals Worldbuilder.
url: http://www.generals.ea.com

Geryk, B (1998). A history of Real-time strategy Games.
url: http://www.gamespot.com

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Machine
Learning, Addison-Wesley Publishing Company, Inc.

Harmon, V. (2002). An Economic Approach to Goal-Directed reasoning in an RTS. AI
Game Programming Wisdom (ed. S. Rabin), Charles River Media, 2002, pp. 402-410.

Kent, T. (2004). Multi-Tiered AI Layers and Terrain Analyses for RTS games. AI Game
Programming Wisdom 2 (ed. S. Rabin), Charles River Media, 2002, pp. 447-455.
Koza, J. (1992). Genetic Programming, MIT Press, Cambridge, MA

 46

Laird, J. E. van Lent, M (2000). Human-Level AI's Killer Application: Computer Game
AI. Proceedings of AAAI 2000 Fall Symposium on Simulating Human Agents,
Technical Report FS-00-03. AAAI Press 2000, pp. 80-87

Manslow, J. (2002). Learning and Adaptation. AI Game Programming Wisdom (ed. S.
Rabin), Charles River Media, 2002, pp. 557-566.

Manslow, J. 2004. “Using reinforcement learning to Solve AI Control Problems.” AI
Game Programming Wisdom 2 (ed. S. Rabin), Charles River Media, pp. 591-601.

Rabin, S. (2002). Implementing a state machine language. AI Game Programming
Wisdom (ed. S. Rabin), Charles River Media, pp. 314-320

Rabin, S. (2004). AI Game Programming Wisdom 2. Charles River Media

Ramsey, M (2004), Designing a Multi-Tiered AI Framework, AI Game Programming
Wisdom 2 (ed. S. Rabin), Charles River Media, pp. 457-466

Russel, S. and Norvig, J (1995). Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River.

Spronck, P. and Sprinkhuizen-Kuyper, I. and Postma, E. (2003). Online Adaptation of
Game Opponent AI in Theory and Practice. Proceedings of the 4th International
Conference on Intelligent Games and Simulation (GAME-ON 2004) (ed. Q. Mehdi and
N. Gough), EUROSIS, pp. 93-100.

Spronck, P. and Sprinkhuizen-Kuyper, I. and Postma, E. (2004). Enhancing the
Performance of Dynamic Scripting in Computer Games. Proceedings of the 4th
International Conference on Entertainment Computing (ICEC 2004)

Sweetser, P. (2002). Current AI in Games: A review. Australian Journal of Intelligent
Information Processing Systems. Scool of ITEE, University of Queensland

Tozour, P. (2002a). The Evolution of Game AI. AI Game Programming Wisdom (ed. S.
Rabin), Charles River Media,pp 3-15

Tozour, P. (2002b). The Perils of AI Scripting. AI Game Programming Wisdom (ed. S.
Rabin), Charles River Media, pp. 541-547

Woodcock, S. (2002), Recognizing Strategic Dispositions: Engaging the enemy. AI
Game Programming Wisdom (ed. S. Rabin). Charles River Media, pp. 221-232.

Woodcock, S. (2003). AI RoundTable Moderator’s Report 2003. url:
http://www.gameai.com

