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ABSTRACT 
Game AI is defined as the decision-making process of computer-
controlled opponents in computer games. Adaptive game AI can 
improve the entertainment provided by computer games, by 
allowing the computer-controlled opponents to fix automatically 
weaknesses in the game AI, and to respond to changes in human-
player tactics online, i.e., during gameplay. Successful adaptive 
game AI is based invariably on domain knowledge of the game it is 
used in. Dynamic scripting is an algorithm that implements 
adaptive game AI. The domain knowledge used by dynamic 
scripting is stored in a rulebase with manually designed rules. In 
this paper we propose the use of an offline evolutionary algorithm 
to enhance the performance of adaptive game AI, by evolving new 
domain knowledge. We empirically validate our proposal, using 
dynamic scripting as adaptive game AI in a real-time-strategy 
(RTS) game, in three steps: (1) we implement and test dynamic 
scripting in an RTS game; (2) we use an offline evolutionary 
algorithm to evolve new tactics that are able to deal with optimised 
tactics, which dynamic scripting cannot defeat using its original 
rulebase; (3) we translate the evolved tactics to rules in the 
rulebase, and test dynamic scripting with the revised rulebase. The 
empirical validation shows that the revised rulebase yields a 
significantly improved performance of dynamic scripting compared 
to the original rulebase. We therefore conclude that offline 
evolutionary learning can be used to improve the performance of 
adaptive game AI. 
 
1  INTRODUCTION 
Traditionally, commercial game developers spend most of 
their resources on improving a game’s graphics. However, in 
the recent years, game developers have started to compete 
with each other by providing a more challenging gaming 
experience (Rabin 2004). For most games, challenging 
gameplay is equivalent to having high-quality game AI 
(Laird 2000). Game AI is defined as the decision-making 
process of computer-controlled opponents. Even in state-of-
the-art games, game AI is, in general, of inferior quality 
(Schaeffer 2001, Laird 2001, Gold 2004). It tends to be 
predictable, and often contains weaknesses that human 
players can exploit. 
    Adaptive game AI, which implies the online (i.e., during 
gameplay) adaptation of the behaviour of computer-
controlled opponents, has the potential to increase the quality 
of game AI. It has been widely disregarded by game 
developers, because online learning tends to be slow, and can 
lead to undesired behaviour (Manslow 2002). However, 
academic game AI researchers have shown that successful 

adaptive game AI is feasible (Demasi and Cruz 2002, 
Spronck 2004a, Johnson 2004). 
    To ensure the efficiency and reliability of adaptive game 
AI, it must incorporate a great amount of prior domain 
knowledge (Manslow 2002, Spronck 2004b). However, if the 
incorporated domain knowledge is incorrect or insufficient, 
adaptive game AI will not be able to generate satisfying 
results. In this paper we propose an evolutionary algorithm to 
improve the quality of the domain knowledge used for 
adaptive game AI. We empirically validate our proposal by 
testing it on an adaptive game AI technique called “dynamic 
scripting”, used in a real-time strategy (RTS) game. 
    The outline of the remainder of the paper is as follows. 
Section 2 discusses RTS games, and the game environment 
selected for the experiments. Section 3 discusses the 
implementation of dynamic scripting for RTS games. Section 
4 discusses the implementation of an evolutionary algorithm 
that generates successful tactics for RTS games. Section 5 
shows how the tactics discovered in section 4 can be used to 
improve the dynamic scripting implementation discussed in 
section 3. Section 6 concludes and points at future work. 
 
2  REAL-TIME-STRATEGY GAMES 
RTS games are simple military simulations (war games) that 
require the player to control armies (consisting of different 
types of units), and defeat all opposing forces. In most RTS 
games, the key to winning lies in efficiently collecting and 
managing resources, and appropriately distributing these 
resources over the various game elements. Typical game 
elements in RTS games include the construction of buildings, 
the research of new technologies, and combat.  
    Game AI in RTS games determines the tactics of the 
armies controlled by the computer, including the 
management of resources. Game AI in RTS games is 
particularly challenging for game developers, because of two 
reasons: (1) RTS games are complex, i.e., a wide variety of 
tactics can be employed, and (2) decisions have to be made 
in real-time, i.e., under severe time constraints. RTS games 

 

Figure 1:  Screenshot of a battle in WARGUS 



have been called “an ideal test-bed for real-time AI research” 
(Buro 2003).  
    For our experiments, we selected the RTS game WARGUS 
with STRATAGUS as its underlying engine. STRATAGUS is an 
open-source engine for building RTS games. WARGUS 
(illustrated in figure 1) implements a clone of the highly 
popular RTS game WARCRAFT II. While the graphics of 
WARGUS are not to up-to-date with today’s standards, its 
gameplay can still be considered state-of-the-art. 

 
3  ADAPTIVE GAME AI IN RTS GAMES 
Game AI for complex games, such as RTS games, is mostly 
defined in scripts, i.e. lists of rules that are executed 
sequentially (Tozour 2002). Because the scripts tend to be 
long and complex (Brockington and Darrah 2002), they are 
likely to contain weaknesses, which the human player can 
exploit. Because scripts are static they cannot adapt to 
overcome these exploits. Spronck et al. (2004a) designed a 
novel technique called “dynamic scripting” that realises the 
online adaptation of scripted opponent AI. Experiments have 
shown that the dynamic scripting technique can be 
successfully incorporated in commercial Computer 
RolePlaying Games (CRPGs) (Spronck et al. 2004a, 2004b).  
    Because the game AI for WARGUS is defined in scripts, 
dynamic scripting should also be applicable to WARGUS. 
However, because of the differences between RTS games 
and CRPGs, the original dynamic scripting implementation 
cannot be transferred to RTS games unchanged.  
    In this section a dynamic scripting implementation for the 
game AI in RTS games is designed and evaluated. In 
subsection 3.1 we explain the basics of dynamic scripting. 
We highlight the changes made to dynamic scripting to apply 
it to RTS games in subsection 3.2. In subsection 3.3 the 
implementation of dynamic scripting in WARGUS is 
discussed. The evaluation of this implementation is discussed 
in subsection 3.4, and the results in subsection 3.5. 
 
3.1  Dynamic Scripting 
Dynamic scripting is an online learning technique for 
commercial computer games, inspired by reinforcement 
learning (Russel and Norvig 1995). Dynamic scripting 
generates scripted opponents on the fly by extracting rules 
from an adaptive rulebase. The rules in the rulebase are 
manually designed using domain-specific knowledge. The 
probability that a rule is selected for a script is proportional 
to a weight value that is associated with each rule, i.e., rules 
with larger weights have a higher probability of being 
selected. After every game, the weights of rules employed 
during gameplay are increased when having a positive 
contribution to the outcome, and decreased when having a 
negative contribution. The size of the weight changes is 
determined by a weight-update function. To keep the sum of 
all weight values in a rulebase constant, weight changes are 
executed through a redistribution of all weights in the 
rulebase. Through the process of punishments and rewards, 
dynamic scripting gradually adapts to the human player. For 
CRPGs, it has been shown that dynamic scripting is fast, 
effective, robust and efficient (Spronck et al., 2004a). 
 

3.2  Dynamic Scripting for RTS games 
Our design of dynamic scripting for RTS games has two 
differences with dynamic scripting for CRPGs. The first 
difference is that, while dynamic scripting for CRPGs 
employs different rulebases for different opponent types in 
the game (Spronck et al. 2004a), our RTS implementation of 
dynamic scripting employs different rulebases for the 
different states of the game. The reason for this deviation 
from the CRPG implementation of dynamic scripting is that, 
in contrast with CRPGs, the tactics that can be used in an 
RTS game mainly depend on the availability of different unit 
types. For instance, attacking with weak units might be the 
only viable choice in early game states, while in later game 
states, when strong units are available, usually weak units 
will have become useless. 
    The second difference is that, while dynamic scripting for 
CRPGs executes weight updates based on an evaluation of a 
fight, our RTS implementation of dynamic scripting executes 
weight updates based on both an evaluation of the 
performance of the game AI during the whole game (called 
the “overall fitness”), and on an evaluation of the 
performance of the game AI between state changes (called 
the “state fitness”). As such, the weight-update function is 
based on the state fitness, combined with the overall fitness. 
The use of both evaluations for the weight-updates increases 
the efficiency of the learning mechanism (Manslow 2004). 
 
3.3  Dynamic Scripting in WARGUS 
We implemented the dynamic scripting process in WARGUS 
as follows. Dynamic scripting starts by randomly selecting 
rules for the first state. When a rule is selected that spawns a 
state change, from that point on rules will be selected for the 
new state. To avoid monotone behaviour, we restricted each 
rule to be selected only once for each state. At the end of the 
scripts, a loop is implemented that initiates continuous 
attacks against the enemy.  
    Because in WARGUS the available buildings determine the 
unit types that can be built, we decided to distinguish game 
states according to the type of buildings possessed. 
Consequently, state changes are spawned by rules that 
comprise the creation of new buildings. The twenty states for 
WARGUS, and the possible state changes, are illustrated in 
figure 2. 
    We allowed a maximum of 100 rules per script. The 
rulebases for each of the states contained between 21 and 42 
rules. The rules can be divided in four basic categories: (1) 
build rules (for constructing buildings), (2) research rules 
(for acquiring new technologies), (3) economy rules (for 
gathering resources), and (4) combat rules (for military 
activities). To design the rules, we incorporated domain 
knowledge acquired from strategy guides for WARCRAFT II. 
    The ‘overall fitness’ function F for player d controlled by 
dynamic scripting (henceforth called the “dynamic player”) 
yields a value in the range [0,1]. It is defined as:  
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In equation (1), Sd represents the score for the dynamic 
player, So represents the score for the dynamic player’s 
opponent, and b∈[0,1] is the break-even point. At the break-
even point, weights remain unchanged. 
    For the dynamic player, the state fitness Fi for state i is 
defined as: 
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In equation (2), Sd,x represents the score of the dynamic 
player after state x, and So,x represents the score of the 
dynamic player’s opponent after state x. 
    The score function is domain-dependent, and should 
successfully reflect the relative strength of the two opposing 
players in the game. For WARGUS, we defined the score Sx 
for player x as: 
 

xxx BMS 3.07.0 +=                         (3) 
 
In equation (3), Mx represents the military points for player x, 
i.e. the number of points awarded for killing units and 
destruction of buildings, and Bx represents the building points 

for player x, i.e. the number of points awarded for training 
armies and constructing buildings. 
    After each game, the weights of all rules employed are 
updated. The weight-update function translates the fitness 
functions into weight adaptations for the rules in the script. 
The weight-update function W for the dynamic player is 
defined as:  
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In equation (4), W is the new weight value, Worg is the 
original weight value, P is the maximum penalty, R is the 
maximum reward, Wmax is the maximum weight value, Wmin is 
the minimum weight value, F is the overall fitness of the 
dynamic player, Fi is the state fitness for the dynamic player 
in state i, and b is the break-even point. The equation 
indicates that we prioritise state performance over overall 
performance. The reason is that, even if a game is lost, we 
wish to prevent rules in states where performance is 
successful from being punished (too much). In our simulation 
we set P to 175, R to 200, Wmax to 1250, Wmin to 25 and b to 
0.5.  
 
3.4  Evaluating Dynamic Scripting in WARGUS 
We evaluated the performance of dynamic scripting for RTS 
games in WARGUS, by letting the computer play the game 
against itself. One of the two opposing players is controlled 
by dynamic scripting (the dynamic player), and the other is 
controlled by a static script (the static player). Each game 
lasted until one of the players was defeated, or until a certain 
period of time had elapsed. If the game ended due to the time 
restriction (which was rarely the case), the player with the 
highest score was considered to have won. After the game, 
the rulebases were adapted, and the next game was started, 
using the adapted rulebases. A sequence of 100 games 
constituted one test. We tested four different tactics for the 
static player: 
 
1. Small Balanced Land Attack (SBLA): The SBLA is a 

tactic that focuses on land combat, keeping a balance 
between offensive actions, defensive actions, and 
research. The SBLA is applied on a small map. Games 
on a small map are usually decided swiftly, with fierce 
battles between weak armies. 

2. Large Balanced Land Attack (LBLA): The LBLA is 
similar to the SBLA, but applied on a large map. A large 
map allows for a slower-paced game, with long-lasting 
battles between strong armies. 

3. Soldier’s Rush (SR): The soldier’s rush aims at 
overwhelming the opponent with cheap offensive units 
in an early state of the game. Since the soldier’s rush 
works best in fast games, we tested it on a small map. 

4. Knight’s Rush (KR): The knight’s rush aims at quick 
technological advancement, launching large offences as 
soon as strong units are available. Since the knight’s 
rush works best in slower-paced games, we tested it on a 
large map.  
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Figure 2: Game states in WARGUS. 



    To quantify the relative performance of the dynamic 
player against the static player, we used the ‘randomization 
turning point’ (RTP). The RTP is measured as follows. After 
each game, a randomization test (Cohen 1995; pp. 168-170) 
is performed using the fitness values over the last ten games, 
with the null hypothesis that both players are equally strong. 
The dynamic player is said to outperform the static player if 
the randomization test concludes that the null hypothesis can 
be rejected with a probability of 90%. The RTP is the 
number of the first game in which the dynamic player 
outperforms the static player. A low value for the RTP 
indicates good efficiency of dynamic scripting.  
    If the player controlled by dynamic scripting is unable to 
statistically outperform the static player within 100 games, 
the test is stopped. For the SBLA we ran 31 tests. For the 
LBLA we ran 21 tests. For both the SR and KR, we ran 10 
tests. 
 
3.5  Results 
The results of the evaluation of dynamic scripting in 
WARGUS are displayed in table 1. From left to right, the table 
displays (1) the tactic used by the static player, (2) the 
number of tests, (3) the lowest RTP found, (4) the highest 
RTP found, (5) the average RTP, (6) the median RTP, (7) the 
number of tests that did not find an RTP within 100 games, 
and (8) the average number of games won out of 100. From 
the low values for the RTPs for both the SBLA and the 
LBLA, we can conclude that the dynamic player efficiently 
adapts to these two tactics. Therefore, we conclude that 
dynamic scripting in our implementation can be applied 
successfully to RTS games.  
 
Tactic Tests Low High Avg Med >100 Won 
SBLA 31 18 99 50 39 0 59.3 
LBLA 21 19 79 49 47 0 60.2 

SR 10     10 1.2 
KR 10     10 2.3 

 

Table 1: Evaluation results of dynamic scripting in RTS games. 

 
    However, the dynamic player was unable to adapt to the 
soldier’s rush and the knight’s rush within 100 games. As the 
rightmost column in table 1 shows, the dynamic player only 
won approximately 1 out of 100 games against the soldier’s 
rush, and 1 out of 50 games against the knight’s rush. The 
reason for the bad performance of the dynamic player against 
the two rush tactics is twofold, namely (1) the rush tactics are 
optimised, in the sense that it is very hard to design game AI 
that is able to deal with them, and (2) the rulebase does not 
contain the appropriate knowledge to easily design game AI 
that is able to deal with the rush tactics. The remainder of 
this paper investigates how offline evolutionary learning can 
be used to improve the rulebase to deal with optimised 
tactics. 
 

4  EVOLUTIONARY TACTICS 
In this section we empirically investigate to what extent an 
evolutionary algorithm can be used to search for effective 
tactics for RTS games. Our goal is to use offline evolutionary 
learning to design tactics that can be used to defeat the two 
optimised tactics described in section 3, the soldier’s rush 
and the knight’s rush. In the following subsections we 
describe the procedure used (4.1), the encoding of the 
chromosome (4.2), the fitness function (4.3), the genetic 
operators (4.4), and the results (4.5). 
 
4.1  Experimental Procedure 
We designed an evolutionary algorithm that evolves new 
tactics to be used in WARGUS against a static player using the 
soldier’s rush and the knight’s rush tactics. The evolutionary 
algorithm uses a population of size 50, that contains a fixed 
number of sample solutions (i.e., game AI scripts). Relatively 
successful solutions (as determined by a fitness function) are 
allowed to breed. To select parent chromosomes for 
breeding, we used size-3 tournament selection (Buckland 
2004). This method prevents early convergence and is 
computationally fast. Newly generated chromosomes replace 
existing solutions in the population, using size-3 crowding 
(Goldberg 1989). Our goal is to generate a chromosome with 
a fitness exceeding a target value. When such a chromosome 
is found, the evolution process ends. This is the fitness-stop 
criterion. We set to the target value to 0.75 against the 
soldier’s rush, and to 0.7 against the knight’s rush. Since 
there is no guarantee that a solution exceeding the target 
value will be found, the evolution process also ends after it 
has generated a maximum number of solutions. This is the 
run-stop criterion. We set the maximum number of solutions 
to 250. The choices for the fitness-stop and run-stop criteria 
were determined during preliminary experiments. 
 
4.2  Encoding 
Solutions are encoded in chromosomes. A chromosome 
represents a game AI script. We distinguish four different 
gene types, corresponding to the four basic rule categories, 
namely (1) build genes, (2) research genes, (3) economy 
genes, and (4) combat genes. Of the combat gene, there are 
actually 20 variations, one for each possible state. Each gene 
contains a marker that indicates the type of gene (B, R, E and 
C, respectively), followed by values for the parameters 
needed by the gene. The genes are grouped by states, and the 
start of a state is indicates by a separate marker (S), followed 
by the state number. A more detailed description of the genes 
can be found in (Ponsen 2004). 
    An example of the chromosome design we use is shown in 
figure 3. In the figure, the shaded block shows the 
chromosome, and each number in the chromosome 
represents a gene. Each of the white blocks ‘zooms in’ to one 
of the states.  

 

Figure 3: An example chromosome. 



    Chromosomes for the initial population are generated 
randomly, in a way that ensures that only legal game AI 
scripts can be created, namely by taking into account state 
changes spawned by build genes. 
 
4.3  Fitness Function 

To measure the success of a game AI script represented by a 
chromosome, the following fitness function F for the 
dynamic player d, yielding a value in the range [0,1], is 
defined: 
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In equation (5), Md represents the military points for the 
dynamic player, Mo represents the military points for the 
dynamic player’s opponent, and b is the break-even point. 
GC represents the game cycle, i.e., the time it took before the 
game is lost by one of the players. EC represents the end 
cycle, i.e. the longest time a game is allowed to continue. 
When a game reaches the end cycle and neither army has 
been completely defeated, scores at that time are measured 
and the game is aborted. The factor GC/EC ensures that 
losing solutions that play a long game are awarded higher 
fitness scores than losing solutions that play a short game.  
 
4.4  Genetic Operators 

We designed four genetic operators for the evolution of 
tactics in RTS games, namely the following. 
  
1. State Crossover selects two parents, and copies states 

from either parent to the child chromosome. 
2. Rule Replace Mutation selects one parent, and replaces 

economy, research or combat rules with a 25% chance. 
Building rules are excluded here, both for and as 
replacement, because these could spawn a state change 
and thus could possibly corrupt the chromosome. 

3. Rule Biased Mutation selects one parent and mutates 
parameters for existing economy or combat rules with a 
50% chance. The mutations are within a predefined 
range. 

4. Randomization generates a random new chromosome. 
 

Randomization has a 10% chance of being used during 
evolution, and the other genetic operators a 30% chance. 
  
4.5  Results 

The results of ten tests of the evolutionary algorithm against 
each of the two optimised tactics are shown in table 2. From 
left to right, the columns show (1) the tactic used by the static 
player, (2) the number of tests, (3) the lowest fitness value 
found, (4) the highest fitness value found, (5) the average 
fitness value, and (6) the number of tests that ended because 
of the run-stop criterion. 
 

Tactic #Tests Low High Avg >250 
SR 10 0.73 0.85 0.78 2 
KR 10 0.71 0.84 0.75 0 

 

Table 2: Evolutionary algorithm results. 

From table 2 we conclude that the evolutionary algorithm 
was successful in rapidly discovering tactics able to defeat 
both optimised tactics used by the static player. 
 
5  IMPROVING ADAPTIVE AI  
In section 3, we discovered that dynamic scripting did not 
achieve satisfying results against the two rush tactics. In 
section 4 we evolved new tactics that were able to defeat the 
two rush tactics. In this section we discuss how the evolved 
tactics can be used to improve the rulebase used by dynamic 
scripting, to enable it to deal with the rush tactics with more 
success. In subsection 5.1 we discuss how the evolved tactics 
were translated to rulebase improvements. In subsection 5.2 
the new rulebase is evaluated by repeating the experiment 
described in section 3. 
 
5.1  Improving the Rulebase for Dynamic Scripting 
We closely examined all evolved solutions found in section 
4. Against both the soldier’s rush and the knight’s rush, we 
observed that the evolved solutions had a strong preference 
for a specific building priority. Eight out of ten solutions 
found against the soldier’s rush, constructed a ‘blacksmith’ 
very early in the game, and then acquired the technologies 
affiliated with the blacksmith. Seven out of ten solutions 
found against the knight’s rush, were designed to reach state 
11 or 12 very quickly. These two states are important, as they 
are the first states that allow fighting with powerful units 
(namely knights). Furthermore, we noticed that almost all 
evolved solutions emphasised resource gathering.  
    Based on our observations we decided to create four new 
rules for the rulebase, and to (slightly) change the parameters 
for several existing combat rules. One example of a new rule 
is the ‘AntiSoldiersRush’ rule, that combines three actions, 
namely (1) constructing a blacksmith, (2) researching better 
weaponry and armour, (3) building large armies of heavily 
armed soldiers. More details on the original and revised 
rulebases can be found in (Ponsen, 2004). 
 
5.2  Evaluating improved Rule-base in Wargus 
We repeated the experiment described in section 3, but with 
dynamic scripting using the new rulebase, and with the 
values of the maximum reward and maximum penalty both 
set to 400 (to encourage high weights). Table 3 summarises 
the achieved results. The columns in table 3 are equal to 
those in table 1.  
 
Tactic #Tests Low High Avg Med >100 Won 
SBLA 11 10 34 19 14 0 72.5 
LBLA 11 10 61 24 26 0 66.4 

SR 10     10 27.5 
KR 10     10 10.1 

 
Table 3: Evaluation results of dynamic scripting in RTS games using an 
improved rulebase. 
 
A comparison of table 1 and table 3 shows that the 
performance of dynamic scripting is considerably improved 
with the new rulebase. Against the two balanced tactics, 
SBLA and LBLA, the average RTP is reduced by more than 
50%. Against the two optimised tactics, the soldier’s rush 
and the knight’s rush, the number of games won out of 100 



has increased enormously. The improved performance can be 
attributed to the new rules, since we observed that dynamic 
scripting assigned them large weights. 
    Note that, despite the improvements, dynamic scripting is 
still unable to statistically outperform the two rush tactics. 
The explanation is as follows. The two rush tactics are 
‘super-tactics’, that can only be defeated by very specific 
counter-tactics, with little room for variation. By design, 
dynamic scripting generates a variety of tactics at all times, 
thus it is unlikely to make the appropriate choices enough 
times in a row to reach the RTP. 
 
6  CONCLUSIONS AND FUTURE WORK 
We set out to show that offline evolutionary learning can be 
used to improve the performance of adaptive game AI, by 
improving the domain knowledge that is used by the adaptive 
game AI. We implemented an adaptive game AI technique 
called `dynamic scripting’, which uses domain knowledge 
stored in a rulebase, in the RTS game WARGUS. We tested 
the implementation against four manually designed tactics. 
We observed that, while dynamic scripting was successful in 
defeating balanced tactics, it did not do well against two 
optimised rush tactics. We then used evolutionary learning to 
design tactics able to defeat the rush tactics. Finally, we used 
the evolved tactics to improve the rulebase of dynamic 
scripting. From our empirical results we were able to 
conclude that the improved rulebase resulted in significantly 
improved performance of dynamic scripting against all four 
tactics. 
    We draw three conclusions from our experiments. (1) 
Dynamic scripting can be successfully implemented in RTS 
games. (2) Offline evolutionary learning can be used to 
successfully design counter-tactics against strong tactics used 
in an RTS game. (3) Tactics designed by offline evolutionary 
learning can be used to improve the performance of adaptive 
game AI. 
    In future work we will test dynamic scripting in RTS 
games played against humans, to determine if adaptive game 
AI actually increases the entertainment value of a game. 
Furthermore, we will attempt to design an automated 
mechanism that translates tactics evolved by offline 
evolutionary learning into an improved rulebase for dynamic 
scripting. The addition of such a mechanism would enable us 
to completely automate the process of designing successful 
rulebases for dynamic scripting.  
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