
IMPROVING ADAPTIVE GAME AI WITH EVOLUTIONARY LEARNING

Marc Ponsen
Delft University of Technology
Mekelweg 4, 2628 CD Delft,

The Netherlands
marcponsen@hotmail.com

Pieter Spronck
Universiteit Maastricht / IKAT

P.O. Box 616, NL-6200 MD Maastricht,
The Netherlands

p.spronck@cs.unimaas.nl

KEYWORDS
Games, artificial intelligence, real-time-strategy, dynamic
scripting, evolutionary algorithms.

ABSTRACT
Game AI is defined as the decision-making process of computer-
controlled opponents in computer games. Adaptive game AI can
improve the entertainment provided by computer games, by
allowing the computer-controlled opponents to fix automatically
weaknesses in the game AI, and to respond to changes in human-
player tactics online, i.e., during gameplay. Successful adaptive
game AI is based invariably on domain knowledge of the game it is
used in. Dynamic scripting is an algorithm that implements
adaptive game AI. The domain knowledge used by dynamic
scripting is stored in a rulebase with manually designed rules. In
this paper we propose the use of an offline evolutionary algorithm
to enhance the performance of adaptive game AI, by evolving new
domain knowledge. We empirically validate our proposal, using
dynamic scripting as adaptive game AI in a real-time-strategy
(RTS) game, in three steps: (1) we implement and test dynamic
scripting in an RTS game; (2) we use an offline evolutionary
algorithm to evolve new tactics that are able to deal with optimised
tactics, which dynamic scripting cannot defeat using its original
rulebase; (3) we translate the evolved tactics to rules in the
rulebase, and test dynamic scripting with the revised rulebase. The
empirical validation shows that the revised rulebase yields a
significantly improved performance of dynamic scripting compared
to the original rulebase. We therefore conclude that offline
evolutionary learning can be used to improve the performance of
adaptive game AI.

1 INTRODUCTION
Traditionally, commercial game developers spend most of
their resources on improving a game’s graphics. However, in
the recent years, game developers have started to compete
with each other by providing a more challenging gaming
experience (Rabin 2004). For most games, challenging
gameplay is equivalent to having high-quality game AI
(Laird 2000). Game AI is defined as the decision-making
process of computer-controlled opponents. Even in state-of-
the-art games, game AI is, in general, of inferior quality
(Schaeffer 2001, Laird 2001, Gold 2004). It tends to be
predictable, and often contains weaknesses that human
players can exploit.
 Adaptive game AI, which implies the online (i.e., during
gameplay) adaptation of the behaviour of computer-
controlled opponents, has the potential to increase the quality
of game AI. It has been widely disregarded by game
developers, because online learning tends to be slow, and can
lead to undesired behaviour (Manslow 2002). However,
academic game AI researchers have shown that successful

adaptive game AI is feasible (Demasi and Cruz 2002,
Spronck 2004a, Johnson 2004).
 To ensure the efficiency and reliability of adaptive game
AI, it must incorporate a great amount of prior domain
knowledge (Manslow 2002, Spronck 2004b). However, if the
incorporated domain knowledge is incorrect or insufficient,
adaptive game AI will not be able to generate satisfying
results. In this paper we propose an evolutionary algorithm to
improve the quality of the domain knowledge used for
adaptive game AI. We empirically validate our proposal by
testing it on an adaptive game AI technique called “dynamic
scripting”, used in a real-time strategy (RTS) game.
 The outline of the remainder of the paper is as follows.
Section 2 discusses RTS games, and the game environment
selected for the experiments. Section 3 discusses the
implementation of dynamic scripting for RTS games. Section
4 discusses the implementation of an evolutionary algorithm
that generates successful tactics for RTS games. Section 5
shows how the tactics discovered in section 4 can be used to
improve the dynamic scripting implementation discussed in
section 3. Section 6 concludes and points at future work.

2 REAL-TIME-STRATEGY GAMES
RTS games are simple military simulations (war games) that
require the player to control armies (consisting of different
types of units), and defeat all opposing forces. In most RTS
games, the key to winning lies in efficiently collecting and
managing resources, and appropriately distributing these
resources over the various game elements. Typical game
elements in RTS games include the construction of buildings,
the research of new technologies, and combat.
 Game AI in RTS games determines the tactics of the
armies controlled by the computer, including the
management of resources. Game AI in RTS games is
particularly challenging for game developers, because of two
reasons: (1) RTS games are complex, i.e., a wide variety of
tactics can be employed, and (2) decisions have to be made
in real-time, i.e., under severe time constraints. RTS games

Figure 1: Screenshot of a battle in WARGUS

have been called “an ideal test-bed for real-time AI research”
(Buro 2003).
 For our experiments, we selected the RTS game WARGUS
with STRATAGUS as its underlying engine. STRATAGUS is an
open-source engine for building RTS games. WARGUS
(illustrated in figure 1) implements a clone of the highly
popular RTS game WARCRAFT II. While the graphics of
WARGUS are not to up-to-date with today’s standards, its
gameplay can still be considered state-of-the-art.

3 ADAPTIVE GAME AI IN RTS GAMES
Game AI for complex games, such as RTS games, is mostly
defined in scripts, i.e. lists of rules that are executed
sequentially (Tozour 2002). Because the scripts tend to be
long and complex (Brockington and Darrah 2002), they are
likely to contain weaknesses, which the human player can
exploit. Because scripts are static they cannot adapt to
overcome these exploits. Spronck et al. (2004a) designed a
novel technique called “dynamic scripting” that realises the
online adaptation of scripted opponent AI. Experiments have
shown that the dynamic scripting technique can be
successfully incorporated in commercial Computer
RolePlaying Games (CRPGs) (Spronck et al. 2004a, 2004b).
 Because the game AI for WARGUS is defined in scripts,
dynamic scripting should also be applicable to WARGUS.
However, because of the differences between RTS games
and CRPGs, the original dynamic scripting implementation
cannot be transferred to RTS games unchanged.
 In this section a dynamic scripting implementation for the
game AI in RTS games is designed and evaluated. In
subsection 3.1 we explain the basics of dynamic scripting.
We highlight the changes made to dynamic scripting to apply
it to RTS games in subsection 3.2. In subsection 3.3 the
implementation of dynamic scripting in WARGUS is
discussed. The evaluation of this implementation is discussed
in subsection 3.4, and the results in subsection 3.5.

3.1 Dynamic Scripting
Dynamic scripting is an online learning technique for
commercial computer games, inspired by reinforcement
learning (Russel and Norvig 1995). Dynamic scripting
generates scripted opponents on the fly by extracting rules
from an adaptive rulebase. The rules in the rulebase are
manually designed using domain-specific knowledge. The
probability that a rule is selected for a script is proportional
to a weight value that is associated with each rule, i.e., rules
with larger weights have a higher probability of being
selected. After every game, the weights of rules employed
during gameplay are increased when having a positive
contribution to the outcome, and decreased when having a
negative contribution. The size of the weight changes is
determined by a weight-update function. To keep the sum of
all weight values in a rulebase constant, weight changes are
executed through a redistribution of all weights in the
rulebase. Through the process of punishments and rewards,
dynamic scripting gradually adapts to the human player. For
CRPGs, it has been shown that dynamic scripting is fast,
effective, robust and efficient (Spronck et al., 2004a).

3.2 Dynamic Scripting for RTS games
Our design of dynamic scripting for RTS games has two
differences with dynamic scripting for CRPGs. The first
difference is that, while dynamic scripting for CRPGs
employs different rulebases for different opponent types in
the game (Spronck et al. 2004a), our RTS implementation of
dynamic scripting employs different rulebases for the
different states of the game. The reason for this deviation
from the CRPG implementation of dynamic scripting is that,
in contrast with CRPGs, the tactics that can be used in an
RTS game mainly depend on the availability of different unit
types. For instance, attacking with weak units might be the
only viable choice in early game states, while in later game
states, when strong units are available, usually weak units
will have become useless.
 The second difference is that, while dynamic scripting for
CRPGs executes weight updates based on an evaluation of a
fight, our RTS implementation of dynamic scripting executes
weight updates based on both an evaluation of the
performance of the game AI during the whole game (called
the “overall fitness”), and on an evaluation of the
performance of the game AI between state changes (called
the “state fitness”). As such, the weight-update function is
based on the state fitness, combined with the overall fitness.
The use of both evaluations for the weight-updates increases
the efficiency of the learning mechanism (Manslow 2004).

3.3 Dynamic Scripting in WARGUS
We implemented the dynamic scripting process in WARGUS
as follows. Dynamic scripting starts by randomly selecting
rules for the first state. When a rule is selected that spawns a
state change, from that point on rules will be selected for the
new state. To avoid monotone behaviour, we restricted each
rule to be selected only once for each state. At the end of the
scripts, a loop is implemented that initiates continuous
attacks against the enemy.
 Because in WARGUS the available buildings determine the
unit types that can be built, we decided to distinguish game
states according to the type of buildings possessed.
Consequently, state changes are spawned by rules that
comprise the creation of new buildings. The twenty states for
WARGUS, and the possible state changes, are illustrated in
figure 2.
 We allowed a maximum of 100 rules per script. The
rulebases for each of the states contained between 21 and 42
rules. The rules can be divided in four basic categories: (1)
build rules (for constructing buildings), (2) research rules
(for acquiring new technologies), (3) economy rules (for
gathering resources), and (4) combat rules (for military
activities). To design the rules, we incorporated domain
knowledge acquired from strategy guides for WARCRAFT II.
 The ‘overall fitness’ function F for player d controlled by
dynamic scripting (henceforth called the “dynamic player”)
yields a value in the range [0,1]. It is defined as:

{ }

{ }

+

+=
wond

SS
Sb

lostdb
SS

S

F

od

d

od

d

),max(

),min(
 (1)

In equation (1), Sd represents the score for the dynamic
player, So represents the score for the dynamic player’s
opponent, and b∈[0,1] is the break-even point. At the break-
even point, weights remain unchanged.
 For the dynamic player, the state fitness Fi for state i is
defined as:

{ }

{ }

>
+

−
+

=
+

=

−−

− 1

1

1,1,

1,

,,

,

,,

,

i
SS

S
SS

S

i
SS

S

F

ioid

id

ioid

id

ioid

id

i
 (2)

In equation (2), Sd,x represents the score of the dynamic
player after state x, and So,x represents the score of the
dynamic player’s opponent after state x.
 The score function is domain-dependent, and should
successfully reflect the relative strength of the two opposing
players in the game. For WARGUS, we defined the score Sx
for player x as:

xxx BMS 3.07.0 += (3)

In equation (3), Mx represents the military points for player x,
i.e. the number of points awarded for killing units and
destruction of buildings, and Bx represents the building points

for player x, i.e. the number of points awarded for training
armies and constructing buildings.
 After each game, the weights of all rules employed are
updated. The weight-update function translates the fitness
functions into weight adaptations for the rules in the script.
The weight-update function W for the dynamic player is
defined as:

{ }

{ }

≥

−
−+

−
−+

<

 −−−−

=
bFWR

b
bFR

b
bFW

bFP
b

FbP
b

FbWW
W

i
org

i
org

max

min

,
1

7.0
1

3.0min

7.03.0,max (4)

In equation (4), W is the new weight value, Worg is the
original weight value, P is the maximum penalty, R is the
maximum reward, Wmax is the maximum weight value, Wmin is
the minimum weight value, F is the overall fitness of the
dynamic player, Fi is the state fitness for the dynamic player
in state i, and b is the break-even point. The equation
indicates that we prioritise state performance over overall
performance. The reason is that, even if a game is lost, we
wish to prevent rules in states where performance is
successful from being punished (too much). In our simulation
we set P to 175, R to 200, Wmax to 1250, Wmin to 25 and b to
0.5.

3.4 Evaluating Dynamic Scripting in WARGUS
We evaluated the performance of dynamic scripting for RTS
games in WARGUS, by letting the computer play the game
against itself. One of the two opposing players is controlled
by dynamic scripting (the dynamic player), and the other is
controlled by a static script (the static player). Each game
lasted until one of the players was defeated, or until a certain
period of time had elapsed. If the game ended due to the time
restriction (which was rarely the case), the player with the
highest score was considered to have won. After the game,
the rulebases were adapted, and the next game was started,
using the adapted rulebases. A sequence of 100 games
constituted one test. We tested four different tactics for the
static player:

1. Small Balanced Land Attack (SBLA): The SBLA is a

tactic that focuses on land combat, keeping a balance
between offensive actions, defensive actions, and
research. The SBLA is applied on a small map. Games
on a small map are usually decided swiftly, with fierce
battles between weak armies.

2. Large Balanced Land Attack (LBLA): The LBLA is
similar to the SBLA, but applied on a large map. A large
map allows for a slower-paced game, with long-lasting
battles between strong armies.

3. Soldier’s Rush (SR): The soldier’s rush aims at
overwhelming the opponent with cheap offensive units
in an early state of the game. Since the soldier’s rush
works best in fast games, we tested it on a small map.

4. Knight’s Rush (KR): The knight’s rush aims at quick
technological advancement, launching large offences as
soon as strong units are available. Since the knight’s
rush works best in slower-paced games, we tested it on a
large map.

M t
Ap

M t M t
Ap Tm Tm Ap

Tm

Tm Ap

Bs
Lm St

Kp
Bs Lm Lm

St St
Bs

Bs Bs
Lm Kp Kp Lm St

Lm Kp Bs

Th: Town Hall

Ba: Barracks

Lm : Lum ber-m ill

Bs: Blacksm ith
Kp: Keep

St: Stables
Ca: Castle

Ap: Airport

M t: M age-tower

Tm : Tem ple

Ca

M t

20

Ca,Ba,Lm ,Bs,St,

Ap,M t,Tm

17

Ca,Ba,Lm ,Bs,St,

Ap,M t

18

Ca,Ba,Lm ,Bs,St,

Ap,Tm

19

Ca,Ba,Lm ,Bs,St,

M t,Tm

14

Ca,Ba,Lm ,Bs,St,

Ap

15

Ca,Ba,Lm ,Bs,St,

M t

16

Ca,Ba,Lm ,Bs,St,

Tm

12

Kp,Ba,Lm ,Bs,St

13
Ca,Ba,Lm ,Bs,St

10

Kp,Ba,Lm ,St

11

Kp,Ba,Bs,St

4

Th,Ba,Lm ,Bs

6

Kp,Ba,Lm

7

Kp,Ba,Bs

2

Th,Ba,Lm

3

Th,Ba,Bs

5

Kp,Ba

1
Th,Ba

8

Kp,Ba,Lm ,Bs

9

Kp,Ba,St

Figure 2: Game states in WARGUS.

 To quantify the relative performance of the dynamic
player against the static player, we used the ‘randomization
turning point’ (RTP). The RTP is measured as follows. After
each game, a randomization test (Cohen 1995; pp. 168-170)
is performed using the fitness values over the last ten games,
with the null hypothesis that both players are equally strong.
The dynamic player is said to outperform the static player if
the randomization test concludes that the null hypothesis can
be rejected with a probability of 90%. The RTP is the
number of the first game in which the dynamic player
outperforms the static player. A low value for the RTP
indicates good efficiency of dynamic scripting.
 If the player controlled by dynamic scripting is unable to
statistically outperform the static player within 100 games,
the test is stopped. For the SBLA we ran 31 tests. For the
LBLA we ran 21 tests. For both the SR and KR, we ran 10
tests.

3.5 Results
The results of the evaluation of dynamic scripting in
WARGUS are displayed in table 1. From left to right, the table
displays (1) the tactic used by the static player, (2) the
number of tests, (3) the lowest RTP found, (4) the highest
RTP found, (5) the average RTP, (6) the median RTP, (7) the
number of tests that did not find an RTP within 100 games,
and (8) the average number of games won out of 100. From
the low values for the RTPs for both the SBLA and the
LBLA, we can conclude that the dynamic player efficiently
adapts to these two tactics. Therefore, we conclude that
dynamic scripting in our implementation can be applied
successfully to RTS games.

Tactic Tests Low High Avg Med >100 Won
SBLA 31 18 99 50 39 0 59.3
LBLA 21 19 79 49 47 0 60.2

SR 10 10 1.2
KR 10 10 2.3

Table 1: Evaluation results of dynamic scripting in RTS games.

 However, the dynamic player was unable to adapt to the
soldier’s rush and the knight’s rush within 100 games. As the
rightmost column in table 1 shows, the dynamic player only
won approximately 1 out of 100 games against the soldier’s
rush, and 1 out of 50 games against the knight’s rush. The
reason for the bad performance of the dynamic player against
the two rush tactics is twofold, namely (1) the rush tactics are
optimised, in the sense that it is very hard to design game AI
that is able to deal with them, and (2) the rulebase does not
contain the appropriate knowledge to easily design game AI
that is able to deal with the rush tactics. The remainder of
this paper investigates how offline evolutionary learning can
be used to improve the rulebase to deal with optimised
tactics.

4 EVOLUTIONARY TACTICS
In this section we empirically investigate to what extent an
evolutionary algorithm can be used to search for effective
tactics for RTS games. Our goal is to use offline evolutionary
learning to design tactics that can be used to defeat the two
optimised tactics described in section 3, the soldier’s rush
and the knight’s rush. In the following subsections we
describe the procedure used (4.1), the encoding of the
chromosome (4.2), the fitness function (4.3), the genetic
operators (4.4), and the results (4.5).

4.1 Experimental Procedure
We designed an evolutionary algorithm that evolves new
tactics to be used in WARGUS against a static player using the
soldier’s rush and the knight’s rush tactics. The evolutionary
algorithm uses a population of size 50, that contains a fixed
number of sample solutions (i.e., game AI scripts). Relatively
successful solutions (as determined by a fitness function) are
allowed to breed. To select parent chromosomes for
breeding, we used size-3 tournament selection (Buckland
2004). This method prevents early convergence and is
computationally fast. Newly generated chromosomes replace
existing solutions in the population, using size-3 crowding
(Goldberg 1989). Our goal is to generate a chromosome with
a fitness exceeding a target value. When such a chromosome
is found, the evolution process ends. This is the fitness-stop
criterion. We set to the target value to 0.75 against the
soldier’s rush, and to 0.7 against the knight’s rush. Since
there is no guarantee that a solution exceeding the target
value will be found, the evolution process also ends after it
has generated a maximum number of solutions. This is the
run-stop criterion. We set the maximum number of solutions
to 250. The choices for the fitness-stop and run-stop criteria
were determined during preliminary experiments.

4.2 Encoding
Solutions are encoded in chromosomes. A chromosome
represents a game AI script. We distinguish four different
gene types, corresponding to the four basic rule categories,
namely (1) build genes, (2) research genes, (3) economy
genes, and (4) combat genes. Of the combat gene, there are
actually 20 variations, one for each possible state. Each gene
contains a marker that indicates the type of gene (B, R, E and
C, respectively), followed by values for the parameters
needed by the gene. The genes are grouped by states, and the
start of a state is indicates by a separate marker (S), followed
by the state number. A more detailed description of the genes
can be found in (Ponsen 2004).
 An example of the chromosome design we use is shown in
figure 3. In the figure, the shaded block shows the
chromosome, and each number in the chromosome
represents a gene. Each of the white blocks ‘zooms in’ to one
of the states.

Figure 3: An example chromosome.

 Chromosomes for the initial population are generated
randomly, in a way that ensures that only legal game AI
scripts can be created, namely by taking into account state
changes spawned by build genes.

4.3 Fitness Function

To measure the success of a game AI script represented by a
chromosome, the following fitness function F for the
dynamic player d, yielding a value in the range [0,1], is
defined:

{ }

{ }

+

+

⋅
=

wond
MM

M
b

lostdb
MM

M
EC
GC

F

od

d

od

d

,max

,min (5)

In equation (5), Md represents the military points for the
dynamic player, Mo represents the military points for the
dynamic player’s opponent, and b is the break-even point.
GC represents the game cycle, i.e., the time it took before the
game is lost by one of the players. EC represents the end
cycle, i.e. the longest time a game is allowed to continue.
When a game reaches the end cycle and neither army has
been completely defeated, scores at that time are measured
and the game is aborted. The factor GC/EC ensures that
losing solutions that play a long game are awarded higher
fitness scores than losing solutions that play a short game.

4.4 Genetic Operators

We designed four genetic operators for the evolution of
tactics in RTS games, namely the following.

1. State Crossover selects two parents, and copies states

from either parent to the child chromosome.
2. Rule Replace Mutation selects one parent, and replaces

economy, research or combat rules with a 25% chance.
Building rules are excluded here, both for and as
replacement, because these could spawn a state change
and thus could possibly corrupt the chromosome.

3. Rule Biased Mutation selects one parent and mutates
parameters for existing economy or combat rules with a
50% chance. The mutations are within a predefined
range.

4. Randomization generates a random new chromosome.

Randomization has a 10% chance of being used during
evolution, and the other genetic operators a 30% chance.

4.5 Results

The results of ten tests of the evolutionary algorithm against
each of the two optimised tactics are shown in table 2. From
left to right, the columns show (1) the tactic used by the static
player, (2) the number of tests, (3) the lowest fitness value
found, (4) the highest fitness value found, (5) the average
fitness value, and (6) the number of tests that ended because
of the run-stop criterion.

Tactic #Tests Low High Avg >250
SR 10 0.73 0.85 0.78 2
KR 10 0.71 0.84 0.75 0

Table 2: Evolutionary algorithm results.

From table 2 we conclude that the evolutionary algorithm
was successful in rapidly discovering tactics able to defeat
both optimised tactics used by the static player.

5 IMPROVING ADAPTIVE AI
In section 3, we discovered that dynamic scripting did not
achieve satisfying results against the two rush tactics. In
section 4 we evolved new tactics that were able to defeat the
two rush tactics. In this section we discuss how the evolved
tactics can be used to improve the rulebase used by dynamic
scripting, to enable it to deal with the rush tactics with more
success. In subsection 5.1 we discuss how the evolved tactics
were translated to rulebase improvements. In subsection 5.2
the new rulebase is evaluated by repeating the experiment
described in section 3.

5.1 Improving the Rulebase for Dynamic Scripting
We closely examined all evolved solutions found in section
4. Against both the soldier’s rush and the knight’s rush, we
observed that the evolved solutions had a strong preference
for a specific building priority. Eight out of ten solutions
found against the soldier’s rush, constructed a ‘blacksmith’
very early in the game, and then acquired the technologies
affiliated with the blacksmith. Seven out of ten solutions
found against the knight’s rush, were designed to reach state
11 or 12 very quickly. These two states are important, as they
are the first states that allow fighting with powerful units
(namely knights). Furthermore, we noticed that almost all
evolved solutions emphasised resource gathering.
 Based on our observations we decided to create four new
rules for the rulebase, and to (slightly) change the parameters
for several existing combat rules. One example of a new rule
is the ‘AntiSoldiersRush’ rule, that combines three actions,
namely (1) constructing a blacksmith, (2) researching better
weaponry and armour, (3) building large armies of heavily
armed soldiers. More details on the original and revised
rulebases can be found in (Ponsen, 2004).

5.2 Evaluating improved Rule-base in Wargus
We repeated the experiment described in section 3, but with
dynamic scripting using the new rulebase, and with the
values of the maximum reward and maximum penalty both
set to 400 (to encourage high weights). Table 3 summarises
the achieved results. The columns in table 3 are equal to
those in table 1.

Tactic #Tests Low High Avg Med >100 Won
SBLA 11 10 34 19 14 0 72.5
LBLA 11 10 61 24 26 0 66.4

SR 10 10 27.5
KR 10 10 10.1

Table 3: Evaluation results of dynamic scripting in RTS games using an
improved rulebase.

A comparison of table 1 and table 3 shows that the
performance of dynamic scripting is considerably improved
with the new rulebase. Against the two balanced tactics,
SBLA and LBLA, the average RTP is reduced by more than
50%. Against the two optimised tactics, the soldier’s rush
and the knight’s rush, the number of games won out of 100

has increased enormously. The improved performance can be
attributed to the new rules, since we observed that dynamic
scripting assigned them large weights.
 Note that, despite the improvements, dynamic scripting is
still unable to statistically outperform the two rush tactics.
The explanation is as follows. The two rush tactics are
‘super-tactics’, that can only be defeated by very specific
counter-tactics, with little room for variation. By design,
dynamic scripting generates a variety of tactics at all times,
thus it is unlikely to make the appropriate choices enough
times in a row to reach the RTP.

6 CONCLUSIONS AND FUTURE WORK
We set out to show that offline evolutionary learning can be
used to improve the performance of adaptive game AI, by
improving the domain knowledge that is used by the adaptive
game AI. We implemented an adaptive game AI technique
called `dynamic scripting’, which uses domain knowledge
stored in a rulebase, in the RTS game WARGUS. We tested
the implementation against four manually designed tactics.
We observed that, while dynamic scripting was successful in
defeating balanced tactics, it did not do well against two
optimised rush tactics. We then used evolutionary learning to
design tactics able to defeat the rush tactics. Finally, we used
the evolved tactics to improve the rulebase of dynamic
scripting. From our empirical results we were able to
conclude that the improved rulebase resulted in significantly
improved performance of dynamic scripting against all four
tactics.
 We draw three conclusions from our experiments. (1)
Dynamic scripting can be successfully implemented in RTS
games. (2) Offline evolutionary learning can be used to
successfully design counter-tactics against strong tactics used
in an RTS game. (3) Tactics designed by offline evolutionary
learning can be used to improve the performance of adaptive
game AI.
 In future work we will test dynamic scripting in RTS
games played against humans, to determine if adaptive game
AI actually increases the entertainment value of a game.
Furthermore, we will attempt to design an automated
mechanism that translates tactics evolved by offline
evolutionary learning into an improved rulebase for dynamic
scripting. The addition of such a mechanism would enable us
to completely automate the process of designing successful
rulebases for dynamic scripting.

REFERENCES
Brockington, M and M. Darrah. 2002. “How Not to

Implement a Basic Scripting Language.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River
Media, Hingham, MA, pp. 548-554.

Buckland, M. 2004. “Building better Genetic Algorithms.”
AI Game Programming Wisdom 2 (ed. S. Rabin), Charles
River Media, Hingham, MA, pp. 649-660.

Buro, M. 2003. “RTS Games as Test-Bed for Real-Time AI
Research”. Proceedings of the 7th Joint Conference on
Information Science (JCIS 2003) (eds. K. Chen et al.),
pp. 481-484.

Cohen, R.C. (1995). Empirical Methods for Artificial
Intelligence, MIT Press, Cambridge, MA.

Demasi, P. and A.J. de O. Cruz. 2002. “Online Coevolution
for Action Games.” GAME-ON 2002 3rd International
Conference on Intelligent Games and Simulation (eds. Q.
Medhi, N. Gough and M. Cavazza), SCS Europe Bvba,
pp. 113-120.

Gold, J. 2004. Object-Oriented Game Development,
Addison-Wesley, harrow, UK.

Goldberg, D.E. 1989. Genetic Algorithms in Search,
Optimization & Machine Learning, Addison-Wesley,
Reading, UK.

Johnson, S. 2004. “Adaptive AI: A Practical Example.” AI
Game Programming Wisdom 2 (ed. S. Rabin), Charles
River Media, Hingham, MA, pp. 639-647.

Laird, J. E. and M. van Lent. 2000. Human-Level AI's Killer
Application: Computer Game AI. Proceedings of AAAI
2000 Fall Symposium on Simulating Human Agents,
Technical Report FS-00-03. AAAI Press 2000, pp. 80-87.

Laird, J.E. 2001. “It Knows What You’re Going To Do:
Adding Anticipation to a Quakebot.” Proceedings of the
Fifth International Conference on Autonomous Agents
(eds. J.P. Müller et al.), ACM Press, Montreal, Canada,
pp. 385-392.

Manslow, J. 2002. “Learning and Adaptation.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River
Media, Hingham, MA, pp. 557-566.

Manslow, J. 2004. “Using reinforcement learning to Solve
AI Control Problems.” AI Game Programming Wisdom 2
(ed. S. Rabin), Charles River Media, Hingham, MA, pp.
591-601.

Ponsen, M. 2004. Improving Adaptive AI with Evolutionary
Learning. MSc Thesis, Delft University of Technology.

Rabin, S. 2004. AI Game Programming Wisdom 2. Charles
River Media, Hingham, MA.

Russel, S. and J. Norvig. 1995. Artificial Intelligence: A
Modern Approach. Prentice Hall, Pearson Education,
Upper Saddle River, NJ.

Schaeffer, J. 2001. “A Gamut of Games.” AI Magazine, Vol.
22, No. 3, pp. 29-46.

Spronck, P., I. Sprinkhuizen-Kuyper, and E. Postma. 2004a.
“Online Adaptation of Game Opponent AI with Dynamic
Scripting.” International Journal of Intelligent Games
and Simulation (eds. N.E. Gough and Q.H. Mehdi), Vol.
3, No. 1, University of Wolverhampton and EUROSIS,
pp 45-53.

Spronck, P., I. Sprinkhuizen-Kuyper, and E. Postma. 2004b.
“Enhancing the Performance of Dynamic Scripting in
Computer Games.” Proceedings of the 4th International
Conference on Entertainment Computing (ICEC 2004)

Tozour, P. 2002. “The Perils of AI Scripting.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River
Media, Hingham, MA, pp. 541-547.

	KEYWORDS
	ABSTRACT
	1 INTRODUCTION
	2 REAL-TIME-STRATEGY GAMES
	3 ADAPTIVE GAME AI IN RTS GAMES
	3.1 Dynamic Scripting
	3.2 Dynamic Scripting for RTS games
	3.3 Dynamic Scripting in Wargus
	3.4 Evaluating Dynamic Scripting in Wargus
	3.5 Results

	4 EVOLUTIONARY TACTICS
	4.1 Experimental Procedure
	4.2 Encoding
	4.3 Fitness Function
	4.4 Genetic Operators
	4.5 Results

	5 IMPROVING ADAPTIVE AI
	5.1 Improving the Rulebase for Dynamic Scripting
	5.2 Evaluating improved Rule-base in Wargus

	6 CONCLUSIONS AND FUTURE WORK
	REFERENCES

