
Reasoning with uncertainty in the

situational awareness of air targets

LTZE2 B.G.M.Mertens

21st July 2004

Man-Machine Interaction, Mediamatics,

Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology,

Royal Netherlands Naval College,

Combat System Department,

The Netherlands





Graduation Committee:

Dr. drs. L.J.M.Rothkrantz,
Prof. dr. ir. E.J.H. Kerckhoffs,
Prof. dr. H. Koppelaar,
KLTZE ir. F. Bolderheij,
Prof. dr. ir. F.G.J. Absil.





Abstract

In combat simulations target classification and identification are very impor-
tant. In this research area several studies about simulating identification have
been done, most of them take a set of information like “the target is visually
identified hostile” to start the simulation with. Mostly classification is not taken
into account in identification problems.

In this report the input consists of basic sensor data and a priori knowl-
edge. This will be combined into information which is necessary to evaluate
the situation. Based on this information the complete situational awareness is
evaluated.

To derive information out of sensor data, facts have to be derived in three
areas, these are facts concerning position, identity and behaviour. Based on
these derived facts a decision will be made about the classification and the
identification of the target.

Two Bayesian reasoning models were designed for the decision processes of
the targets classification and identification. These models are designed as much
alike as possible. An implementation was made to test the models. In the
implementation temporal aspects are not taken into account but the results
were promising.

To conclude we conducted a literature survey to investigate the possibilities
of temporal reasoning in this project.
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Preface

This thesis has been written as a result of a research assignment that I have
worked on during my graduation at the Royal Netherlands Naval College, Com-
bat Systems Department and as part of my graduation project for the Delft
University of Technology. The project was partially carried out at TNO Physics
and Electronics Laboratory (TNO-FEL) and concerns the naval air defence sim-
ulation model SEAROADS II. The second part of this project was carried out
at the Delft University of Technology and the Royal Netherlands Naval College.
In the second part the system designed in the first part of the project was im-
plemented and tested. Because real data is hard to get a simulation was used
to acquire the necessary information. The simulation that was used in this part
of the project was made for the STATOR project.
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Chapter 1

Introduction

This report was written as a part of my graduation project for the Royal
Netherlands Naval College and the Delft University of Technology. Because of
the military aspect of this research project several military terms will be used
frequently. These terms are explained in Appendix A. Two terms are significant
to the understanding of this report so I will define them first.

Classification is the process in which the sort of target is determined, e.g.
is it an airplane or a missile?

Identification is the process in which the intention of the target is deter-
mined, e.g. is it a friend or a foe?

1.1 Project description

The first part of this project was carried out at the Netherlands Organisation for
Applied Scientific Research - Physics and Electronics Laboratory (TNO-FEL)
and concerns the naval air defence simulation model SEAROADS II. This model
was developed by TNO-FEL and was funded by the Royal Netherlands Navy.
SEAROADS II simulates scenarios composed of an attack by fighters, Anti-Ship
Missiles, or Tactical Ballistic Missiles and the defence of a single ship or a task
group against this attack. I used SEAROADS II to develop a model for the
classification and identification of air targets in a naval environment.

The second part of this project was carried out at the Delft University of
Technology and the Royal Netherlands Naval College. In the second part the
model designed in the first part of the project was implemented and tested.
Because real data is hard to get a simulation was used to acquire the necessary
information. The simulation that was used in this part of the project was made
for the STATOR project.

In this report an overview is presented for the picture compilation of a target.
There have been several studies about simulating identification, most of them
take a set of information like “the target is visually identified hostile”. Mostly
classification is not taken into account in identification problems.

This report will formalise the derivation of facts concerning position, identity
and behaviour out of sensor information. Based on these derived facts a decision
will be made about the classification and identification of the target. The role
of Rules Of Engagement (ROE) in this decision process is made clear. Finally
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1.2 Project goal Introduction

the influence of time in this simulation will become clear and the benefits of
temporal reasoning will be looked at.

1.2 Project goal

Because SEAROADS II is a simulation of combat vessels in an air defence
scenario, this project is narrowed to Anti-Air Warfare (AAW).

My graduation project involves modeling and implementing a temporal rea-
soning system which is able to make a decision about the classification and
identification of an air target. This is a challenging problem because most rules
used on board combat vessels are vague.

Therefore we will start with a study of the classification and identification
process as it is currently done on board Dutch combat vessels. We then conduct
a literature study of reasoning models with and without temporal features which
can be used. We will design a system that is able to make a decision about
the classification and identification of an air target based on basic sensor data
collected by a naval vessel. This system will be implemented and tested using
simulated data, because real data is classified and therefore hard to obtain.

1.3 Report structure

In Chapter 2 an overview of the way a target is represented on board a combat
vessel is presented and an introduction to the existing SEAROADS II system is
given. Some possible solutions for the reasoning in the model are presented and
discussed in Chapter 3. We also make a choice between the possible artificial
intelligence techniques and explain how the chosen techniques could be used. In
Chapter 4 an overview of the model is given. Then in Chapter 5 the architecture
of the model is worked out in more detail. In Chapter 5 the model is formalised
and in Chapter 6 the probabilistic and causal models are presented. As an
extension of these models the time aspect is introduced by investigating some
temporal reasoning techniques in Chapter 7.

After a thorough description of the model we describe the design of the
prototype using Unified Modeling Language (UML) in Chapter 8. In Chapter
9 the prototype is presented. In Chapter 10 we will describe the test scenario’s
and their results.

6



Chapter 2

The existing situation

2.1 Situational awareness on board

On board a combat vessel a clear picture of all surrounding targets is essential.
Therefore a team of experts evaluates all information gathered by sensors on
board the vessel and data communication with allied forces. Based on this infor-
mation together with guidelines and rules supplied by the government (ROE) a
decision is made on several topics. These topics are classification, identification
and attack-decision evaluation. Although the decision-making on board a com-
bat vessel sometimes differs from the methods used in the simulation the former
is the base from which the model is built. Therefore the decision process is
investigated and analysed into gathered information elements and the usage of
these elements in the actual evaluation. In this chapter an overview is given for
all information that is necessary to draw sensible conclusions. An explanation
of terms used in this chapter can be found in Appendix A. The decisions on
board combat vessels can be represented in an OODA loop (Observe, Orient,
Decide and Act). In Figure 2.1 these phases are translated to military terms
[6] and [1]. In this report we take a look at the first three phases, Situational
Awareness (SA), Threat Evaluation (TE) and Decision Making (DM).

Situation
Awareness

Threat
Evaluation

Decision
Making

SensorSensor WeaponWeapon
Direction

and
Control

Observe

Orient Decide

Act

Figure 2.1: An overview of the process
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2.1 Situational awareness on board The existing situation

2.1.1 Basic information about the situation

To make classification and identification possible the following information about
the target has to be gathered from the environment. This information is gath-
ered for all surrounding targets by sensors on board the vessel and the link 11
system which provides target information which is already processed by allied
vessels. A list of direct measurable sensor data and a-priori knowledge which is
necessary is given here:

• Target track;

• IFF1 on board?

• IFF mode;

• Vesta2 on board?

• Link 113 on board?

• ESM4 signature;

• ROE in force.

2.1.2 Derived information

The data gathered by sensors gives raw information. By combining this raw
information in the right way detailed information can be derived. On board the
combination of information is done by operators which are trained to recognise
certain patterns on their screen. But they also combine information on their
screen with information in maps and a priori knowledge about the enemy. They
derive information concerning position, identity and behaviour.

According to the position:

• Adherence to airlane;

• Adherence to air co-ordination order(ACO);

• In military speed/altitude domain;

• Flying in formation;

• Manoeuvring;

• Inside identification safety range (ISR).

According to identification:

• Visual identification friendly/hostile;

• ESM friendly/hostile;

• IFF.
1see Appendix A
2see Appendix A
3see Appendix A
4see Appendix A
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The existing situation 2.1 Situational awareness on board

According to behaviour evaluation:

• Hostile act;

• Hostile intent;

• Performs identification.

2.1.3 Decision making

In the process several decisions have to be made based on derived information
and ROE. ROE are a list of directives to military forces (including individuals)
that define the authorisation for, or limits on, the use of force during military
operations. In Figure 2.2 the influence of ROE on the reasoning process is
visualised. These decisions are made by OPSROOM (operations room) officers.

Threat
Environment

Mission

EMCONIDCRITS

Sensor
Information

Operator
Information

Identity Attack?

ROE

ROE 230-232

ROE 420-427

Authorities

Ship

input

rules

information

output

Figure 2.2: An overview of how ROE influence the decision process
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2.1 Situational awareness on board The existing situation

The authorities decide based on the environment, the threat and the mission
which ROE will be in force, which identification criteria (IDCRITS) have to be
satisfied and which sensors may be used (EMCON). This information is sent to
every allied ship in the operation so they can update their sensor configuration.
The ship will receive sensor information which is dependent on the EMCON, this
sensor information will be analysed and combined by operators which leads to
facts about surrounding targets. Decisions about the identification of the target
and the authority to attack the target may be done based on the IDCRITS and
the ROE in force. The meaning of specific ROE mentioned in the figure can be
found in Appendix B.

Classification

Classification is an important matter, because during the identification process
as well as during the evaluation of the rules of engagement, the target’s ca-
pability has to be considered. Sometimes a classification can lead to a direct
identification. For example if the enemy is the only one with F-16’s the classi-
fication of a target being an F-16 directly indicates that the target is hostile.

target

air

surface

subsurface

military

civil

weapon

military

civil

military

weapon

Figure 2.3: [2] An overview of the classical approach of classification
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The existing situation 2.1 Situational awareness on board

air

military civil weapon

fixed wing helicopter fixed wing helicopter ASM SSM

type/unit type/unit class/unitclass/unit

Figure 2.4: [2] An overview of the classical approach of classification of air
targets

The classic way of dealing with a classification problem is shown in Figure
2.3 and Figure 2.4 [2].

It was very common to divide targets in civil and military targets. But
nowadays the difference between civil and military is fading because of terrorism.
Therefore the division made in both diagrams is not up to date anymore. In
this report we will present an alternative approach, in Section 6.1 this approach
is worked out in detail.

Identification

Some of the facts mentioned in Section 2.1.1 and 2.1.2 contain stronger informa-
tion than others about identification5 of the target. In the real situation some of
these facts immediately lead to a positive identification. These facts are listed
below:

• Visual identification

• IFF mode 4

• unique ESM

• link 11

• voice cross-tell

• 2 way communication + position check

• identification manoeuvres

• according to ACO

5see Appendix A
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2.1 Situational awareness on board The existing situation

The other facts out of the list in Section 2.1.2 give a direction for the iden-
tification of the target but on their own they cannot be the base of a positive
identification. It is possible to assign a pending identification to a target based
on these facts. If more information is gathered the pending identification may
be changed to a positive identification. These facts have to be combined by
using IDCRITS6. Based on this combination an identification can be assigned
to a target. IDCRITS can differ per operation, these criteria are based on the
ROE. Before an identification is assigned to a target we have to check if all ROE
are satisfied.

2.1.4 Reasoning with uncertainty

Human experts show remarkable skill in drawing conclusions from limited in-
formation. Typically, the evidence available to an expert is merely suggestive,
vague and highly incomplete. Nevertheless experts are usually able to draw
sensible conclusions. In a combat situation the enemy will try to mask as many
features as possible which will reveal his identity. Therefore an operator is
never entirely certain about a conclusion. In the classification and identification
process there are three kinds of uncertainty.

The first one is the uncertainty about the sensors; the sensor information will
never be exactly the same as the real situation. This uncertainty is left out of
consideration in our model, because the sensors modeled in the simulation give
exact values. In the definition of the model possible solutions for dealing with
this uncertainty are given. The second one is uncertainty about the correctness
of the information derivation. The last one is uncertainty about the consequence
of a certain fact. The problem of handling uncertainty in knowledge-based
systems has proven to be hard. Literature contains many approaches, in the
next chapter the most commonly used approaches will be treated.

6see Appendix C
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2.2 SEAROADS II: The existing system

The maritime section of the Operations Research and Business Management
division of the TNO-FEL supports the Royal Netherlands Navy (RNlN) and
other clients in the procurement and deployment of naval ships. For the Anti
Air Warfare (AAW) aspects the medium-level simulation model SEAROADS
is used in many maritime air defence studies. SEAROADS is an acronym for
“Simulation, Evaluation, Analysis and Research On Air Defence Systems”. It
is used to quantify and analyse the air defence capability of one or more ships
or land based units. The model simulates scenarios composed of an attack (by
fighters, Anti-Ship Missiles (ASM), or Tactical Ballistic Missiles (TBM), which
can be seen in Figure 2.5) and the defence of a single ship or a task group
against this attack. This includes simulation of the attack, all relevant sensor
and weapon systems, the threat evaluation and weapon assignment rules of all
units, and the possible communication and co-ordination between the units.
The development of SEAROADS was initiated and funded by the RNlN. It
started as a single ship model, containing only hard kill weapon systems. Over
the years the model has been expanded; the current version of SEAROADS
includes hard kill and soft kill weapon systems and is able to handle a task
group. The development is carried out by TNO-FEL, who is also the direct
user of the model, so the model can easily be adapted to incorporate specific
combat systems [35]. In the next sections topics in SEAROADS concerning this
report are discussed.

2.2.1 Sensor information

Traditionally, warships are equipped with rotating radars, fire control radars
and passive sensors like Electronic Support Measures (ESM) and Infrared (IR)
Search and Track systems. In SEAROADS, these systems are modeled in detail.
A detailed radar equation including aspects like clutter, ducting and multi-path
is used for radar. A new system is the multi-function radar APAR (Active
Phased Array Radar), for evaluation of this new system on the new Dutch Air
Defence and Command Frigates (ADCF), this radar has also been included in
SEAROADS.

Apart from functions as search and track, APAR can also perform Mid-
Course Guidance and Terminal Illumination to guide own deployed missiles
(SAMs). For the Royal Netherlands Navy and most other navies, the APAR
is a new type of system. By using SEAROADS the benefits of this multi-
function radar for naval AAW could be demonstrated. Detailed modeling of
the scheduling on millisecond-level of the APAR functions is done by the model
PARSER, providing input parameters for SEAROADS. An example of such
input parameters are the number of Terminal Illuminations that one APAR-
antenna face can execute simultaneously and the remaining search capability as
a function of this number [35].

2.2.2 Classification and identification

Classification and Identification in SEAROADS are implemented as a delay.
When a target is in sensor-range, after a set delay all information about the
target is known and is equal to the information given in the operation order.

13
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Figure 2.5: An overview of possible simulated attacks

The delay is set as the reaction time, this is in the existing model about 4
seconds [40].
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Chapter 3

Possible reasoning models

3.1 Introduction

The reasoning models that are described in this chapter can be seen as tools to
be used to reason about the information we get about the situation. From these
tools we have to select the one that will fit our purpose best. The reasoning
model we choose will determine the way the information from the simulated
situation will be handled, how the information is rated and how these rates
are combined into probabilities. In the end this will have an effect on the
identification assigned to a target. To make a deliberate choice we will determine
the requirements that our program must fulfill. Then a short description will
be given for the most common used reasoning models, with advantages and
disadvantages of each model. Finally we will choose the best model for this
project and discuss the arguments that led to the choice.

3.2 Requirements

Our model has to be able to draw a conclusion for the classification and the
identification of a target based on just little information. An enemy will try to
conceal as much information as possible, so mostly the available information is
very poor. The model has to draw a conclusion based on facts and confidence
gained from the existing situation. A list with probabilities assigned to conclu-
sions based on facts has to be assembled in consult with an expert. The program
has to combine these probabilities with the confidence factor of the proven facts
to a probability for a certain identification. These probabilities will lead to a
decision about the identification of the target based on the ROE. Therefore the
program will need the features listed on the next page.

17
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• Collect all necessary information from the situation;

• Derive facts from the gained values;

• Rate the confidence in each fact;

• Assign probabilities for certain conclusions based on each fact;

• Combine the confidence and probabilities for all facts;

• Draw conclusions from the given information.

This process is applicable to classification and identification, with the dif-
ference that in the classification process an iterative deepening will take place.
The reasoning process for the attack evaluation is slightly different, because the
only facts that have to be considered are ROE. In ROE there is no uncertainty,
they are in force or they are not. The only uncertainty is located in the input.
The facts which are used to draw conclusions differ in these cases.

3.3 Reasoning models

Now the possible models will be described. For each model we will give a short
description and sum up the advantages and/or the disadvantages of the model.
In this section uncertainty will be represented as a probability. More detailed
information about the most commonly used approaches can be found in the
following books, papers and internet sites [9], [10], [11], [14], [21], [25], [28], [29],
[32], [33], [43], [44] and [45].

3.3.1 Bayesian Belief Network

Bayesian belief networks are often used in reasoning systems. They have proven
themselves in a number of applications. In a Bayesian Belief Network one can
indicate the effect an event has on another event. One can say for example that
the chance it will start raining given the fact that it is cloudy is 0.3. If one also
adds the fact that it rained yesterday and specifies the influence that has on
the probability that it will start raining a Bayesian network has been created.
Bayesian networks can be visualised as directed graphs (see Figure 3.1). Given
some evidence (some facts should be specified as being true) the probability of
the events one is interested in (the query events) can be calculated. For example
the query event can be the fact that it is raining given the facts that it is cloudy,
but it did not rain yesterday, but the query event can also be the fact that it
is cloudy given the fact that it is raining. One can also state that it is not
completely certain an event has happened, but that it happened with a certain
probability. This probability is then taken into account when the probability of
the queried event is calculated.
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Cloudy Rained
Yesterday

Rain Today

Figure 3.1: An example of a Bayesian Belief Network

Advantages: A lot of research has been done on Bayesian belief networks
and they are being used in a lot of applications.

Disadvantages: Bayesian belief networks can be very time-consuming and
probability inference in complicated belief networks has been shown to be diffi-
cult [4]. A lot of research on real-time inference algorithms has been done though
and a couple of approximation algorithms have been developed. There is no real
difference between uncertainty about the information and lack of information
in the basic Bayesian networks.

Another disadvantage is that the probabilities used in the Bayesian Belief
Network should be very precise and should in the ideal case be derived from
datasets. This is not the case in our model where the probabilities have been
derived by expert information and are just indications, not crisp numbers.

3.3.2 Certainty factors

The certainty factor model, which was introduced by Shortliffe and Buchanan, is
a model that can be applied to expert system using a rule base for the reasoning
process. Certainty factors can be used if one wants to state that for a rule “if
fact then conclusion” the conclusion is not entirely certain, uncertainty in this
model is handled by assigning (un)certainty factors to every rule and basic fact.
This might seem a very interesting model, but there is one major drawback.
Several researchers showed that the certainty factor model is inconsistent with
the basic axioms of probability theory. The certainty factor model was very
popular in expert systems in the 1980’s but got so much criticism over the years
that it has been abandoned and nowadays it is only considered to be interesting
from a historical point of view [16]. In most applications the certainty factor
model has been replaced by Bayesian belief networks, since the two models have
a lot in common.

Advantages: The simplicity of this model is very appealing; it seems to be
intuitively correct.

Disadvantages: The model cannot be theoretically justified. The results
with MYCIN (the first certainty factor model) were promising and quite good,
but research showed the model being very robust, variations of 0.2 in the
certainty factors hardly affected the conclusion [32].
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3.3.3 Markov models

Markov models are sequential model using a finite number of possible states that
obey the Markov assumption. The Markov assumption states that future states
are independent from the past, given the current state. In a transition matrix the
probabilities (Si) of every possible transition from state m to state n are listed.
The process can be only in one state at a time. Markov models are statistical
models of sequential data that can be used to recognise a pattern in a sequence
of data over a period of time. Markov models have successfully been applied to
speech recognition, pattern recognition and target tracking applications. They
are particularly useful to analyse a sequence of data that can be characterised
as a signal. A Markov model can be visualised using a Bayesian network. An
example is given in Figure 3.2 and Table 3.1.

S1 S2

P11 P12

P21

P22

Figure 3.2: An example of a Markov model

S1 S2

S1 P11 P12

S2 P21 P22

Table 3.1: A transition matrix

Advantages: Markov models have successfully been applied in a number
of pattern recognition applications.

Disadvantages: To use Markov models one needs precise information
about the probabilities of the state transitions.

3.3.4 Dempster-Shafer theory

The Dempster-Shafer theory is a mathematical model to model a person’s belief
in a fact. It provides a method to combine measures of belief in a fact induced
by different pieces of evidence, the so-called Dempster’s rule of combination. In
the Dempster-Shafer theory evidence of different levels of abstraction can be
represented easily and discrimination between uncertainty and ignorance can
be made. In the Dempster-Shafer theory the probabilities of the facts do not
all have to be specified exactly. So it is possible to reason with only partial
information.
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Advantages: One of the advantages of the Dempster-Shafer theory is that
the degrees of belief for a question can be obtained from the probability dis-
tribution for another question [27]. Dempster’s rule of combination gives the
availability to combine different bodies of evidence.

Disadvantages: A theoretical justification for Dempster’s rule is prob-
lematic, still Dempster-Shafer theory is considered to be an alternative. The
Dempster-Shafer model gives an interval between the lower probability and the
higher probability, a decision rule is essential to draw the right conclusion.

3.3.5 Fuzzy logic

Fuzzy logic is one of the approaches that could be used to represent uncertainty
too. Fuzzy logic makes it possible to convert a crisp value into a fuzzy value
and reason with that fuzzy value to come to a fuzzy conclusion. This fuzzy
conclusion can then be defuzzified to get a crisp conclusion. For example, we
can define the fuzzy set for temperature as T={HOT, TEPID, COOL} and
radiator setting R={HIGH, NORMAL, LOW} as visualised in Figure 3.3.

HIGH

14 16 18 20 22 24 26 28

Temperature

0.5

1.0

COOL TEPID HOT

t = {0.5 COOL, 0.15
TEPID, 0 HOT}

1 2 3 4 5 6 7

Radiator

0.5

1.0

LOW NORMAL

r = 5

Figure 3.3: An example of a fuzzy set

Suppose we have two rules in our knowledge base:

if temperature is COOL then radiator is HIGH
if temperature is TEPID then radiator is NORMAL

And suppose we have a temperature reading of 16◦ , what value would
the radiator get? To calculate the answer to that question we would use the
reasoning method shown in Figure 3.3. The crisp temperature value of 16◦

can be fuzzified as t={0 HOT, 0.15 TEPID, 0.5 COOL}. Now we can reason
with this fuzzy value and the rules in the rule base to get a fuzzy value for the
radiator setting as shown in the figure. The fuzzy output value is r={0 LOW,
0.15 NORMAL, 0.5 HIGH}, this value would have to be defuzzified, which can
be done in several ways. The method that is shown in the figure is called the
First Maximum defuzzification method. In this method the fuzzy set with the
highest value is observed, in this case radiator HIGH.
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The first time the fuzzy set reaches the computed value the defuzzified output
results in a radiator setting of 5, as shown in the figure. Fuzzy logic has proven
to be particularly useful for small control applications. But it is usually not the
best choice when it comes to bigger applications.

Advantages: Fuzzy logic is a nice method because it is intuitive and it
makes it possible to define the rules in normal language.

Disadvantages: There is no completeness in the inference formalism and
the mathematical basis for fuzzy logic is rather coarse [20].

3.4 Choosing a model

From the described models we have to choose the one that can implement the
required functions best. If we look at the requirements given in Section 3.2
we see that reasoning with just a little information must be possible. Not all
information will be available, the amount of information depends on the situ-
ation. The classic Bayesian model is therefore less appropriate, but there has
been research in this matter and solutions are offered. Although the classic
Bayesian mathematical model is the basis of Bayesian belief networks research
has shown that these can handle situations in which not all information is avail-
able. Bayesian belief networks are an option for the implementation of the given
requirements.

In this situation the past influences the future and it is not possible to assign
any sensible probability to transitions like from assumed friendly to friendly, so
a Markov model is not useful.

The mathematical basis for Fuzzy combinations is coarse. There is not one
clear combinational rule, but several different ways are offered to combine the
given facts. Lots of testing is necessary to find the best fuzzy combination
algorithm for this problem. Therefore a fuzzy solution is rejected.

In a Dempster-Shafer model the outcome is presented as an interval, there
has to be another decision process to draw a final conclusion, this will slow
the process down and is not desirable. But in Dempster-Shafer’s model there
is an explicit difference between uncertainty about the information and lack of
information. Another advantage of Dempster-Shafer’s model in this case is that
the probability of occurrence of a hypothesis does not imply any probability of
the inverted case, and last but not least Dempster’s rule of combination gives a
strong basis for the combination of several facts to one conclusion. Because of
these advantages Dempster-Shafer’s theory is an option for the implementation
of our requirements.

Based on the previous discussion, we decided that both Dempster-Shafer and
Bayesian belief networks are suitable for this situation, a closer look is given to
them both. Therefore a more detailed description of the Dempster-Shafer model
and the Bayesian belief model are given in the next sections. A final decision is
made afterward.
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3.4.1 The Dempster-Shafer model

Dempster-Shafer theory has been developed by Glenn Shafer based on earlier
work of Arthur Dempster, who attempted to model uncertainty by a range of
probabilities rather than as a single probabilistic number [7]. Dempster-Shafer
has its own extensive terminology which is explained in Appendix D. The
Dempster-Shafer theory assumes that there is a fixed set of mutually exclusive
and exhaustive elements called the environment (Θ) or frame of discernment.

In the identification case for example:

Θ = {hostile, suspect, neutral, assumedfriendly, friendly, unknown}

Each subset of Θ can be seen as a possible answer to the question “What is the
identification of the target?”.

In Dempster-Shafer theory a degree of belief is used in stead of probabilities,
this degree of belief has to be seen analogous to the mass function of a physical
object. The evidence measure (m) is analogous to the amount of mass. A priori
a set of evidence measures is assigned, this is called the basic probability assign-
ment (BPA). A fundamental difference between Dempster-Shafer theory and
probability theory is the treatment of ignorance. The Dempster-Shafer theory
does not force belief to be assigned to ignorance or refutation of a hypothesis.
Where probability theory assigns 50% chance to the target being friendly even
if there is no evidence at all about the identification of the target Dempster-
Shafer theory has another solution. The mass is assigned only to those subsets
of the environment to which you wish to assign belief. Any belief that is not
assigned to a specific subset is considered nonbelief and is just associated with
the environment Θ. Belief that refutes a hypothesis is disbelief, which is not
nonbelief.

Now let’s look at the case in which additional evidence becomes available.
We have to combine the evidence to produce a better estimate of belief in the
evidence. The way the combination is done using Dempster’s rule of combina-
tion will be made clear using an example. Given two evidence measures, for
fact 1 the mass-distribution for the possible conclusion (X) can be given as:

m1 (X) =







0.3 if X=Θ
0.7 if X={hostile,neutral}
0 else

(3.1)

For fact 2 the mass-distribution for the possible conclusion (Y) can be given
as:

m2 (Y ) =







0.4 if Y=Θ
0.6 if Y={hostile}
0 else

(3.2)

This evidence can be combined using Dempster’s rule of combination, given
with the following formula:

m1 ⊕ m2 (Z) =
∑

X∩Y =Z

m1 (X)m2 (Y ) (3.3)

Table 3.4.1 shows the masses and product intersections for the identification
arranged in a table.
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Table 3.2: Confirming evidence
m1 {hostile, neutral} Θ

m2 0.7 0.3
{hostile} {hostile} {hostile}

0.6 0.42 0.18
Θ {hostile, neutral} Θ
0.4 0.28 0.12

Each set intersection is followed by its numeric mass product. The entries in
the table are calculated by cross-multiplying mass products of rows and columns.
This leads to a new evidence measure:

m1 ⊕ m2 (Z) =















0.12 if Z=Θ
0.60 if Z={hostile}
0.28 if Z={hostile, neutral}
0 else

(3.4)

But instead of restricting belief to a single value there is a range of belief in
Dempster-Shafer’s theory. The belief ranges from a 0.60 that the identification of
the target is hostile to (0.60+0.12+0.28=1) that the identification of the target
might be hostile. In evidentional reasoning the evidence is said to induce an
evidential interval. The lower bound is called the support and the upper bound
is called the plausibility. For this example the evidential interval is [0.6,1].

The plausibility can be calculated in a way similar to the calculation of the
belief, in that case the evidence which contradicts with the given conclusion
is used. For example if there had been any evidence for the target not being
hostile, the plausibility would be less than 1.

Let’s look at an other case to make it clear:

m1 (X) =







0.3 if X=Θ
0.7 if X={hostile,neutral}
0 else

(3.5)

m2 (Y ) =















0.4 if Y=Θ
0.5 if Y={hostile}
0.1 if Y={neutral}
0 else

(3.6)

Table 3.4.1 shows the masses and product intersections for the identification
arranged in a table.
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Table 3.3: Confirming evidence of the case study
m1 {hostile, neutral} Θ

m2 0.7 0.3
{hostile} {hostile} {hostile}

0.5 0.35 0.15
{neutral} {neutral} {neutral}

0.1 0.07 0.03
Θ {hostile, neutral} Θ
0.4 0.28 0.12

Each set intersection is followed by its numeric mass product. The entries in
the table are calculated by cross-multiplying mass products of rows and columns.
This leads to a new evidence measure:

m1 ⊕ m2 (Z) =























0.12 if Z=Θ
0.50 if Z={hostile}
0.10 if Z={neutral}
0.28 if Z={hostile, neutral}
0 else

(3.7)

In this case the belief ranges from a 0.50 that the identification of the target is
hostile to (0.50+0.12+0.28=0.9) that the identification of the target might be
hostile. For this example the evidential interval is [0.5,0.9].

In Figure 3.4 some common evidential intervals are shown. In this overview
Bel indicates the belief and Pl indicates the plausibility.

Evidential Interval Meaning
[1;1] Completely true
[0;0] Completely false
[0;1] Completely ignorant
[Bel,1] Tends to support
[0;Pl] Tends to refute
[Bel;Pl] Tends to both support and refute

Figure 3.4: Some common evidential intervals

25



3.4 Choosing a model Possible reasoning models

3.4.2 The Bayesian Belief Network

Bayesian Belief Networks are a network-based framework for representing and
analysing models involving uncertainty. Bayesian Belief Networks (BBN) come
from the cross disciplines of probability, artificial intelligence, and decision anal-
ysis. Bayesian Belief Networks exploit conditional independence relationships
to create natural and compact domain models, thereby supporting useful rea-
soning patterns. The key feature of Bayesian belief networks is that they enable
us to model and reason about uncertainty. Typically in Bayesian Belief Network
modeling, we assign a Bayesian belief value to each uncertain event, such as the
belief value of “It is cloudy”is assigned as 0.55, the belief value of “John is late”
is 0.2, etc. All these probabilities for the uncertain events come from peoples
subjective judgments which are determined by collecting empirical, historical or
statistical data. In our case these probabilities are decided by domain experts.
In BBN modeling, the probability representations of uncertainties are assigned
as the prior belief values to each node in a certain Bayesian Belief Network.

A Bayesian Belief Network consists of the following:

• A set of variables and a set of directed edges between variables;

• Each variable has a finite set of mutually exclusive states;

• The variables together with the directed edges from a directed acyclic
graph (DAG).

The general probabilistic inference problem is to find the probability of an
event given a set of evidence. This can be done in Bayesian Belief Networks
with sequential applications of Bayes rule.

Having entered the probabilities we can now use the Bayesian belief network
to do various types of analysis. The most important use of Bayesian belief
networks is in revising probabilities in the light of actual observations of events.
The totality of such episode-specific information is called evidence (e) and can
be used to update the probability of conclusion (u) into P (u) using P (u | e)
and P (e). There are two possible ways to combine evidence: the first one
are deterministic nodes, a deterministic node has its value specified exactly by
the values of its parents, with no uncertainty. The second one are noisy logical
relationships, such as noisy and and noisy or, the noisy gates are a generalisation
of logical gates, where uncertainty is represented as a leak (P (L)). There are
two possible methods to combine evidence using noisy logical relationships, first
if both facts have to be true before the conclusion may be drawn the noisyand

mode has to be used. Otherwise if every piece of evidence can lead to the
conclusion the noisyor mode is used [16]. In the case of noisy and, the total
belief can be calculated using the following formula:

p (u) = p (e1) p (u |e1 ) ∗ p (e2) p (u |e2 ) ∗ . . . ∗ p (en) p (u |en ) ∗ p (L) (3.8)

In the case of noisy or, the total belief can be calculated using the following
formula:

p (u) = 1−((1 − p (e1) p (u |e1 )) (1 − p (e2) p (u |e2 )) . . . (1 − p (en) p (u |en )) (1 − p (L)))
(3.9)
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The more episode-specific evidence we gather, the closer we come to the
ideals where the conclusion agrees with the actual cause (e.g. the target’s be-
haviour can be explained when knowing the target is friendly). The event for
which we want to determine its conditional probability given the evidence is
called the query.

IFF mode 2 ACO

friendly

p(friendly|IFF2)=0.6 p(friendly|ACO)=0.75

noisy or

p(friendly)=1-(1-0.6)(1-0.75)=0.9

Figure 3.5: Decision making with a Bayesian network

friendly

ESM
friendlyACOIFF mode 2

p(friendly|ESMf)=0.7

noisy or

p(friendly|IFF2)=0.6 p(friendly|ACO)=0.75

p(friendly)=1-(1-0.6)(1-0.75)(1-0.7)=0.97

Figure 3.6: More evidential information in a Bayesian network

To explain the way evidence is combined in our Bayesian networks an ex-
ample is shown in Figure 3.5 and 3.6. It becomes clear that the more evidence
is gathered the more we are sure about the conclusion.
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When we enter evidence and use it to update the probabilities in this way
we call it propagation. Here, we see how the evidence effects the conditional
probability distribution for this particular network. In general, there are four
types of reasoning:

1. Causal reasoning is the pattern of reasoning that reasons from a cause to
its effects;

2. Evidential reasoning is the reasoning from effects to its possible causes;

3. Mixed reasoning combines both causal and evidential reasoning;

4. Inter-causal reasoning involves reasoning between two different causes that
have an effect in common.

If we look at the problem from the ships point of view we use evidential reason-
ing because we use the observed events to reason about its cause. For example
the decision of a plane being hostile based on the visual observation of a hostile
plane. But if we look at this problem from the pilot’s point of view we already
know that the plane is hostile and we use causal reasoning to explain the ob-
served event. In our case we look at the environment from the ship’s point of
view and we use evidential reasoning.

3.5 Final choice

Regarding the last two sections we see that the problems with the classic
Bayesian belief networks can be worked out. Therefore both methods seem
to be equally suitable.

But if we take another look at the requirements we see that because of the
requirement to make a real-time decision Dempster-Shafer is not suitable for
this situation. There are a lot of facts which have to be combined into one
solution, this will take a lot of time to compute. Bayesian belief networks take
less time to compute and are because of the graphical representation easy to
explain to the user.

Based on these arguments we have chosen to use Bayesian belief networks
in this model.
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Chapter 4

Overview of the entire
system

4.1 Introduction

In the previous chapters the knowledge is described that can be used to reason
about the current situation. More detailed information about classification and
identification can be found in the following books, papers and internet sites [5],
[15], [17], [23], [26], [37] and [38]. The complete system consists of three parts,
first we gather all necessary information, then we derive as much facts as possible
and to conclude we reason with these derived facts to decide on the classification
and identification of the target. These three parts are shown in Figure 4.1 and
will be worked out in the following chapters. The reasoning process will be
modeled in two phases. In the first phase we will design an overall model to
reason with the available information. In the second phase we will make clear
how the necessary facts can be derived from the sensor information. In this
chapter the first phase of the reasoning model will be explained.

Input, basic sensor data given in
Chapter 2:

   Target track
   IFF
   Vesta
   Link
   ESM

Preprocessing, deriving information given in
Chapter 2 and 5:

  Adherence to airlane
  Adherence to ACO
  In military domain
  Flying in formation
  Manoeuvring
  Inside ISR
  Visual identification
  ESM
  IFF
  Hostile act
  Hostile intent
  Performs identification

Reasoning process, decision making given in
Chapter 6 and 7:

  Classification
  Air target

  Weapon carrier
  Fighter
  Patrol
  Helicopter

  Weapon
  Seaskimmer
  Highdiver
  Ballistic missile

  Surface target

  Identification
  Friendly
  Assumed friendly
  Neutral
  Suspect
  Hostile

Figure 4.1: An overview of the entire system
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Reasoning processPre-processingInput

Classification

output

Identification

output

fact

true

false

fact

true

false
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fact

true

false

Pt

Pt

Pt

Pt

Pt

Pt

Pt

Pt

Pt

Pf

sensor information

input

input

input

input

conclusion

Figure 4.2: An overview of the reasoning process

4.2 The reasoning model

To make the data flow in the model clear an overview of the reasoning process is
given in Figure 4.2. In this figure the overall structure of the model can be seen.
Sensor information gives a representation of the existing situation of surrounding
targets. For each target an evaluation is made based on this diagram. The
received sensor data is in some cases compared to databases to evaluate if the
facts are true or false. Some of these facts can be used to reason about the
classification, others about the identification. For the identification reasoning
process the classification conclusion can be used as input in some cases. The
following example will make clear that classification can be important for the
identification of a target.

If a ship is approaching and classification is done correctly, the classification
will be deepened like, it is a surface target, it is a ship, it is a frigate, it is an
M-frigate, it is HNLMS Van Galen. If all this information is collected it is easy
to identify the target as a friendly unit, because HNLMS Van Galen is a Dutch
frigate.

A more detailed overview of the classification is given in Figure 4.3 and of
the identification in Figure 4.4.
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Figure 4.3: A detailed overview of the classification reasoning process

In the classification process the sensor information is compared to several
databases. For all targets the facts which influence the classification are eval-
uated. The first time the diagram is passed the highest level is evaluated; air
target or surface target. Each time the diagram is passed the system will try to
deepen the information level. If the target is classified up to class/type name
the classification has reached the deepest level.

comparison

classification check

sensor
information

rules

belief

facts

IDCRITS

output conclusion

ROE

Figure 4.4: A detailed overview of the identification reasoning process
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In the identification process the sensor information is compared to several
databases. For all targets the facts which influence the identification are eval-
uated. Using these facts together with the belief values and the IDCRITS
Bayesian belief networks can be generated, these are given in Chapter 6. All
targets are evaluated in sequence, first the target that will reach the ship first,
then the next and so on. In this way a new target is compared to other targets
to evaluate if the targets are in formation. If a target is evaluated an output is
generated, but before the output is made public the system has to check if all
demands of the ROE have been covered. These ROE are partially covered by
IDCRITS, but by using Bayesian belief networks with a noisy or combination
not always a high probability for a certain conclusion implies that the ROE are
satisfied. It may be possible to gain a lot of substantial evidence which leads
to a high probability but the ROE are not satisfied. In that case a pending
identification should be assigned.
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Chapter 5

Formalisation of the
preprocessing

5.1 Introduction

To make the model work in a simulation the derivation of facts has to be for-
malised. In this chapter first an overview is presented of all facts that have to
be derived from the sensor information and how this derivation can be done is
explained shortly. For each part of the reasoning process all facts which may
influence the decision are mentioned and the reasoning process is formalised.

5.2 Derivation of information

In the real situation the decision making process is done by humans, they are
experts in deriving facts from given information. In our model rules are neces-
sary to do the same job. As mentioned in Section 2.1.1 and Section 2.1.2 certain
information is necessary for the classification and identification of a target. Here
follows a short description how these facts can be derived using sensor data:

• Adherence to airlane: compare the target track to the references of civil
airlanes to determine if the target is moving in an airlane. This will be
measured in the model as follows:

– The altitude of the target has to be part of a fuzzy set of the limits
of the airlane.

– The position of the target has to be part of a fuzzy set of the limits
of the airlane.

– The heading of the target has to be part of a fuzzy set of the limits
of the airlane.

– The velocity of the target has to be part of a fuzzy set of the limits
of the airlane.
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• Adherence to ACO: if the target is moving in an airlane, analyse the track
to determine if the target is moving according to a known flight plan. This
will be measured in the model as follows:

– The altitude of the target has to be part of a fuzzy set of the flight-
plan’s altitude.

– The position of the target has to be part of a fuzzy set of the flight-
plan’s position at that time.

– The heading of the target has to be part of a fuzzy set of the flight-
plan’s heading.

– The velocity of the target has to be part of a fuzzy set of the flight-
plan’s velocity.

• In military domain: compare the target position with the military air
domain.

• In formation: compare tracks of neighbouring targets, if moving in same
direction with little separation the targets are in formation. This will be
measured in the model as follows:

– The distance of the target to the neighbouring target has to be part
of a fuzzy set around zero.

– The heading of the target has to be part of a fuzzy set of the heading
of the neighbouring target.

– The velocity of the target has to be part of a fuzzy set of the velocity
of the neighbouring target.

• Manoeuvring: if the current track differs from the track history the target
is manoeuvring.

• Inside ISR: compare the target range to the ISR.

• Visual identification: if the target is in visual range of an ally, identifica-
tion takes place. The visual features lead to a type of target.

• ESM identification: if the target is in ESM range of an ally, identification
takes place, if the ESM signature matches a known radar type.

• IFF mode 2: if IFF response, mode 2.

• IFF mode 3: if IFF response, mode 3.

• IFF mode 4: if IFF response, mode 4.
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• Hostile act1: penetrating NATO secure area, intentionally impeding NATO/NATO-
led operations, breaching or attempting to breach the security of a NATO/NATO-
led military installation or restricted area. This will be measured in the
model somewhat different. In the model the following actions are called a
hostile act:

– there has been an attack; or

– the target enters the ISR without performing identification; or

– the target is aiming an illumination radar at the vessel.

• Hostile intent2: capable, prepared and intention to inflict damage. This
will be measured in the model as follows, a target has a hostile intent if it
is closing in on the vessel and aiming a radar device at the vessel.

• Performs identification: compare manoeuvring to known identification
sequence.

The fuzzy sets mentioned in the list above are a very simple way to determine
with uncertainty if the target satisfies the given facts. For example take the
boundaries in altitude for a certain airlane as between 4 and 5 kft. In that case
the fuzzy set of the altitude will look like Figure 5.1

4 5 kft

1

0

degree of belief

Figure 5.1: Fuzzy set for the altitude of an airlane

It is easy to be seen that if the altitude of the target is below 3.5 or above
5.5 kft the target is not in the airlane but if the altitude for example is 3.75 kft
the probability that the target is in the airlane is 50 %.

If the ESM is unique for friendly/hostile targets information is gained, if the
ESM is non-unique identification depends on the parties owning that type of
vehicle. All facts that are evaluated can have three outcomes. The fact is true,
the fact is false or there is not yet enough information about the fact.

1see Appendix A
2see Appendix A

35



5.2 Derivation of information Formalisation of the preprocessing

36



Chapter 6

The Reasoning Model

6.1 Classification

The classic way of dealing with the classification problem is addressed in Section
2.1.3. In our model targets are divided in a number of mutual exclusive groups
in several layers. If a target is detected it is classified in the first layer containing
two groups:

• air target

• surface target.

In the next iteration an air target will be classified in the second layer if possible,
a surface target is not worked out in this report. In the second layer a little
more information can be given about the type of target, a weapon is discerned
from a weapon carrier. In the final layer the sort of weapon or platform will
be identified. There is no difference between civil and military targets in the
classification. If necessary the difference between civil and military can be made
based on the identification.

In the classification process we will use iterative deepening to evaluate the
target gradually. First we examine the target being an air target or a surface
target. How the classification tree is organised is worked out in Figure 6.1 and
6.2. The classification in the way shown in Figure 6.1 might be very difficult,
because the UAV group is not mutually exclusive with the two other defined
groups and the same for the ARM and CM missile. There are many different
UAV’s, different in size, speed, mission and it can be fixed wings as well as
helicopters. The ARM and CM come in many different forms, they have no
real distinctive features. Therefore the second division may be better, but from
literature only there cannot be made a sensible conclusion about the feasibility
of these two versions. For this report we will use the second tree, because the
Bayesian models will be more complete.
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air

weapon carrier weapon

fixed wing UAV TBM CM

target

surface

helicopter ARM

Figure 6.1: Classification by way of propulsion and weapon type

air

weapon carrier weapon

fighter helicopter TBM seaskimmer

target

surface

patrol highdiver

Figure 6.2: Classification by threat

The Bayesian belief networks for the different layers make clear which infor-
mation can be used to distinguish between the different groups. This informa-
tion can be found in the following book and internet site [8] and [42], further
information about distinguishing features we gathered by interviewing experts
at the OPSCHOOL. In Figures 6.3 and 6.4 The Bayesian belief networks for the
first layer are given, in these figures a noisy or is used to complement the evi-
dence. The numbers displayed in the figures are gathered by interviewing several
experts at the OPSCHOOL. The interviewed experts gave similar beliefs to the
same relation, these answers were combined into the used values.
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Figure 6.3: Bayesian belief model of an air target
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target

0.95

speed < 100
kts

0.8

noisy or

Figure 6.4: Bayesian belief model of a surface target
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In the second layer there has to be made a difference between a weapon or
a weapon carrier. In Figure 6.5 and 6.6 the Bayesian belief networks are shown
for this examination. In the following iteration more information will be given
about the target.
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Figure 6.5: Bayesian belief model of a weapon carrier
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Figure 6.6: Bayesian belief model of a weapon
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In the third and last layer there are six groups, but depending on the outcome
of layer two they are divided in two groups. If in level two the probability of a
weapon carrier is the highest, there are three possible outcomes for level three, it
could be a helicopter, a patrol aircraft or a fighter. The Bayesian belief networks
for this decision can be found in Figure 6.7, 6.8 and 6.9. Based on all gathered
information every option is evaluated and the one classification which has the
highest probability will be chosen in this evaluation the classification history
will be used as a guideline in the new classification.
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ESM fighter

fighter target
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in formation

0.8

noisy and
noisy or
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domain

velocity  >
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noisy and

0.80.8

500 kts <
velocity <
mach 2.5

Figure 6.7: Bayesian belief model of a fighter
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Figure 6.8: Bayesian belief model of a patrol aircraft

If in level two the probability of a weapon is highest there are also three
possible outcomes for level three, the target could be a seaskimming missile, a
highdiving missile or a TBM. In Figure 6.10, 6.11 and 6.12 the Bayesian belief
networks for this decision are illustrated.

43



6.1 Classification The Reasoning Model

weapon
carrier

helicopter

ESM
helicopter

heli target

0.7

Vesta

0.95

noisy or

noisy and

helicopter
domain

0.80.8

noisy and
altitude < 20

kft
0 kts <

velocity <
160 kts

noisy and

Figure 6.9: Bayesian belief model of a helicopter
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Figure 6.10: Bayesian belief model of a TBM
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Figure 6.11: Bayesian belief model of a highdiving missile
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Figure 6.12: Bayesian belief model of a seaskimming missile
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6.2 Identification

In the identification process all possible identifications are evaluated and the one
that has the highest probability will be chosen if all constraints are satisfied.
These constraints are the ROE, e.g. if the ROE in force tells to visually identify
a target before calling it hostile or friendly, than how strong the belief may
be that the target is hostile it is identified suspect until the target is visually
identified hostile. In the following Figures 6.13 until 6.17 the Bayesian belief
networks are given for the evaluation process. If the probability of all identities
is almost equal, the status will be set to unknown.
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Figure 6.13: Bayesian belief model for a friendly identification
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Figure 6.14: Bayesian belief model for an assumed friendly identification
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Figure 6.15: Bayesian belief model for a neutral identification
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Figure 6.16: Bayesian belief model for a suspect identification
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Figure 6.17: Bayesian belief model for a hostile identification
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6.3 Uncertainty of the input data

In sections 3.4.2 and 5.2 we have already indicated that in real life we can not
always be completely sure about the data we get from the sensors or about the
information that we derive from sensor data. For each fact that is an input
for a Bayesian belief network we could calculate the probability that the fact
is true and use this probability in calculations that are done by the Bayesian
belief network as described in the formulas for noisy and and noisy or in section
3.4.2. However because we use sensor data that is stored in an XML file for
our prototype we can be sure of the facts that are input for the Bayesian belief
networks and the probability of those facts will always be 1 for our prototype.

Next to the kind of uncertainty that is caused by wrongly deriving or ob-
serving facts we could also take the uncertainty into account that is caused by
information that is not observed at all. This uncertainty could be represented
by introducing a leak in the noisy and and noisy or gates as described in sec-
tion 3.4.2. Initially we would set this leak to 0.95, because this is the standard
confidence interval in Gaussian probability density functions. However in our
simulation the entire situation will be known and therefore no information will
be missed. Because of this we set the leak to 1.0 for all noisy gates.
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Chapter 7

Temporal reasoning

7.1 Introduction

As a result of the previous study an obvious question was, is it possible to reason
about the classification and identification of a target in time? Before we are able
to answer this question, we must be sure about the meaning of reasoning in time.
Reasoning about events that depend on time is called temporal reasoning and
is something humans can do fairly easy. However, it is difficult to formalise
temporal events so that the computer can make temporal inferences. Temporal
reasoning is a variation of the reasoning processes mentioned before. Instead
of one set of facts on one certain timepoint temporal reasoning is meant to
recognise processes and events in time. In this thesis there are a number of
processes which may be reasoned with in time, because a number of observations
is available in time. These processes are for example, the sensor readings, the
decision process and the processes of deriving and combining information. In
this chapter we will make clear in which processes temporal reasoning may be
useful and introduce a number of possible methods to reason in time. A choice
will be made about the method most promising for this situation.

7.2 Reasoning in time

As said before there are a couple of processes in which temporal reasoning may
offer additional information. These processes are:

• Getting sensor data;

• Deriving information;

• Decision making.

We will take a look at these processes and explain the benefits of and prob-
lems with reasoning in time.
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First the sensor information, in a lot of civil situations it is obvious that
sensor information will give information about the target. If we look at an
airport, the incoming planes would like the air traffic controller to know as
exact as possible what kind of plane is coming and in which position the plane
is at the moment. Because there is a limited set of approaches possible to
each landing strip we expect to see a pattern in the sensor readings. While
the plane is coming closer more detailed information can be given and one of
the approaches gets more probable in time. In military situations we expect
a little different situation. In a military environment we expect very limited
information about approaching targets.

Hostile forces will try to give as little as possible information about them-
selves and sometimes try to give false information to mislead their opponents.
Furthermore as long as we do not know what kind of target is approaching there
are no strict rules about how the target will approach for example. So sensor
readings will not be very predictable in time and reasoning in time will not give
much more information.

Second we take a look at the process of deriving and combining information.
As explained in Chapter 5 sensor data can be used to obtain more detailed
information. For example, the heading and speed of a target may be derived
from positions of the target in time. Therefore we have to take a look at each
derived fact and determine if it is possible to use temporal reasoning. The facts
we have to evaluate are:

• air target;

• surface target;

• weapon evidence;

• weapon carrier evidence;

• highdiver evidence;

• seaskimmer evidence;

• TBM evidence;

• patrol evidence;

• helicopter evidence;

• fighter evidence;

• behaviour:

– in airlane;

– according to ACO;

– in military domain;

– in formation;

– manoeuvring;

– in ISR;

– visual;
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– ESM friendly / hostile;

– hostile act / intent;

– performs ID.

Most of these facts are not related in time, but others can’t be evaluated at
one timepoint, an example of a fact which can’t be evaluated without the time
aspect is manoeuvring. It is obvious that we are not able to tell whether a target
is moving according to one position. Other facts like air target are absolutely
not related to time, changes in the altitude of a target over time does not give
us any additional confidence that a target is an air target.

If we evaluate all these facts we see that:

• air target, time related, the longer the target has an altitude the higher
the probability it is an air target;

• surface target, time related, the longer the target has no altitude and a
low velocity the higher the probability it is a surface target;

• weapon carrier evidence, not time related;

• weapon evidence, not time related;

• highdiver evidence, time related, the longer the speed and altitude match
the highdiver pattern, the more likely it is a highdiving missile;

• seaskimmer evidence, time related, the longer the speed and altitude
match the seaskimmer pattern, the more likely it is a seaskimming missile;

• TBM evidence, time related, the longer the speed and altitude match the
TBM pattern, the more likely it is a ballistic missile;

• patrol evidence, time related, the longer the speed and altitude match the
patrol pattern, the more likely it is a patrol plane;

• helicopter evidence, time related, the longer the speed and altitude match
the helicopter pattern, the more likely it is a helicopter;

• fighter evidence, time related, the longer the speed and altitude match the
fighter pattern, the more likely it is a fighter;

• behaviour:

– in airlane, time related, the longer the target stays in the airlane, the
more likely it is an airliner;

– according to ACO, time related, the longer the target follows the
ACO, the more likely it is the expected plane;

– in military domain, time related, the longer the target stays in the
military domain, the more likely it is a military target;

– in formation, time related, the longer the targets stay in formation,
the more likely this is no coincidence;

– manoeuvring, time related, the target has to move a couple of times
within a certain timespan;
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– in ISR, not time related;

– visual, not time related;

– ESM friendly / hostile, not time related;

– hostile act / intent, time related, if it once performed a hostile act it
stays hostile;

– performs ID, time related, the target has to perform a couple of
actions in a preset sequence in time.

There are also some facts which can be derived from other facts in time, like
the heading and speed can be derived from the positions of a target in time,
but which can also be obtained directly from the sensor data. This means that
these facts can also be derived if the sensors are malfunctioning or have been
switched off.

The way a target moves (its behaviour) is the most distinctive feature be-
tween different sorts of targets. From the list above it shows that the behaviour
of a target is time related, thus it may be useful to evaluate the behaviour in
time.

Finally the decision will get more reliable in time because there will be more
information available when the target has been followed for some time or the
target has moved closer. The decision process will take care of the processing
of this information into a proper decision, in which the process could take the
decision at an earlier time point into account. In comparison to the benefits of
temporal reasoning in the evaluation process the benefits in the decision process
will be quite small.
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7.3 Temporal reasoning methods

In time some theories about temporal reasoning have evolved, in this section
we will give a short overview of the main methods with their advantages and
disadvantages. We will explain which method is useful in this situation. More
detailed information about the most commonly used approaches can be found
in the following papers [13] and [31].

7.3.1 Hidden Markov Models

A hidden Markov model is just like a regular Markov model in that it describes
a process that goes through a sequence of states. The difference is that in a
regular Markov model, the output is a sequence of state names, and because
each state has a unique name, the output uniquely determines the path through
the model. In a hidden Markov model, each state has a probability distribution
of possible outputs, and the same output can appear in more than one state.
Hidden Markov models are called hidden models, because the true state of the
model is hidden to the observer. In general, when we see that the output of a
hidden Markov models is a particular symbol, we can not be sure what state
that symbol came from.

To explain the general Hidden Markov basics we use the following notation:

Set of states S = {s1, . . . , sN} = {1, . . . , N},
where N are the number of states;

Output alphabet K = {k1, . . . , kM},
where M is the number of observation
symbols in the alphabet;

Initial state probabilities Π = {πi} , i ∈ S

State transition probabilities A = {aij} , i, j ∈ S

Symbol emission probabilities B = {bijk} , i, j ∈ S, k ∈ K

State sequence X = (X1, . . . , XT+1)
Output sequence O = (o1, . . . , oT )

There are three fundamental questions that we want to know about Hidden
Markov Models:

1. Given a model µ = (A, B, Π), how do we efficiently compute how likely a
certain observation is, that is P (O|µ)?

2. Given the observation sequence O and a model µ, how do we choose a
state sequence (X1, . . . , XT+1) that best explains the observations?

3. Given an observation sequence O, and a space of possible models found
by varying the model parameters µ = (A, B, Π), how do we find the model
that best explains the observed data?

The first question is about which model is the best, the second one lets us guess
what path was probably followed through the Markov chain, and this hidden
path can be used for classification, for instance in applications to part of speech
tagging. The third question can be used to estimate the unknown parameters
in the model.

55



7.3 Temporal reasoning methods Temporal reasoning

Hidden Markov models are useful when one can think of underlying events
probabilistically generating surface events. One widespread use of this is tagging
- assigning parts of speech (or other classifiers) to the words in a text. We think
of there being an underlying Markov chain of parts of speech from which the
actual words of the text are generated.

7.3.2 Kalman filtering

Kalman filtering assumes that each state variable is real-valued and distributed
according to a Gaussian distribution. That each sensor suffers from unbiased
Gaussian noise and each action can be described as a vector of real values, one for
each state variable. That the new state is a linear function of the previous state
and action. These assumptions taken together, allow prediction and estimation
to be implemented by some matrix calculations, even with a large number of
state variables.

A linear system is a process which can be described by the following two
equations:

x(k + 1) = Ax(k) + Bu(k) + w(k) (7.1)

y(k) = Cx(k) + z(k) (7.2)

Here A, B and C are matrices, k is the time index. The state is represented
by x and the input is given in u. The output is given as y. As mentioned above
the Kalman filter assumes that process and measurement suffer white noise,
these are given as w and z, where w is process noise and z is measurement noise.
These equations are called the state-space process equations.

Based on these equations, the problem of finding a minimum variance es-
timate of the quantity xk (the state) is the Kalman filter problem. The state
contains all the information regarding the system at a certain point in time.
This information should be the least amount of data one is required to know
about the past behaviour of a system in order to predict its future behaviour.
The Kalman filter is a computational scheme to reconstruct the state of a given
state-space model in a statistically optimal manner, generally expressed as the
minimum variance of the state reconstruction error conditioned on the acquired
measurements. The conventional Kalman filter as it was originally derived by
Kalman [12] is a recursive method to compute the minimum variance estimate
of the state vector using the state error covariance matrix P (k|k − 1) given by:

P (k|k − 1) = E[(x(k) − x̂(k|k − 1))(x(k) − x̂(k|k − 1))T ] (7.3)

If we work out this equation we find a recursion for P (k|k−1) [30]. In that way
we find the solution to the optimum filter using the Kalman filtering technique is
embedded in a non-linear equation called the Ricatti Equation . This equation
can be solved recursively or iteratively. Utilising this recursive property is one
of the main features of the Kalman filters since only the previous measurement
needs to be stored to update the algorithm. The theoretical foundations used
from statistics are quite complex. There has been a lot of research to provide
simpler derivations and implementations of the same ‘optimal statistical state
observer’.
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7.3.3 Dynamic Bayesian networks

Dynamic Bayesian networks is a term which can be explained in many different
ways.

1 Some say a dynamic Bayesian network is a network which is dynamic in
time [22], so the actual structure of the network may change over time.

2 Others say a dynamic Bayesian network is a regular Bayesian network in
which some nodes have connections to nodes in another timeslice [3] and
[18], as depicted in Figure 7.1.

3 Some state that a dynamic Bayesian network is a regular Bayesian network
where some nodes have a temporal character [19] see Figure 7.2.

altitude > 0

air target

speed > 100
kts

altitude > 0

air target

speed > 100
kts

t = 0 t = 1

Figure 7.1: An example of intertimeslice connections in a DBN

Explanations 2 and 3 can be used in our model, if we take another look at
the first part of this section we learn there are two sorts of behaviour in time we
want to capture in the model. We can give an example of both methods in our
model, the first is if we once measured an altitude of a target we can say that in
the next time slice it is very well possible that the target has approximately the
same altitude again and will still be an air target. On the other hand we have
temporal information like the target is manoeuvring which we want to inject
into a node.

7.4 Conclusion

Both methods described in the previous sections can be implemented as a Dy-
namic Bayesian network, how that can be done will be explained shortly, more
detailed information can be found in [18].

As explained in Section 7.3.1 a hidden Markov model has states which con-
tain a probability distribution for a certain set of outputs possible from that
state. This is very similar to the nodes in a Bayesian network. The possible
transition from one state to the next in a hidden Markov model is given by a
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weapon
carrier

far
manoeuvring

fighter

etc.

fighter target

in formation

t=0

t=1

t=2

t=3 t=5

t=4
t=6

Figure 7.2: An example of temporal input in a DBN

probability, which can be modeled as a conditional probability in the dynamic
Bayesian network.

A Kalman filter is modeled as a current state which can be given as a matrix
with all information of this time point. This matrix can be seen as an overview
of conditional connections between variables in time. In this way all zero’s in the
matrix mean there is no connection and therefore there is no relation between
the two nodes in the dynamic Bayesian network.

Furthermore we saw that the temporal aspects in our model could be rep-
resented in a Dynamic Bayesian network in two ways depending on the kind
of relation. Therefore the choice will be to use Dynamic Bayesian networks to
implement temporal relations in our model.
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Chapter 8

The UML model of the
prototype

8.1 Introduction

After the reasoning process has been described we make the model concrete
using Unified Modeling Language (UML). This method is commonly used to
design Object-Oriented software. The abstraction level of the model will be
slightly higher than the program itself. Because the more detail is added to the
design, the more the model has to change during implementation. For those
people who have never seen an UML model before, a short introduction will
be given in the next section, more information can be found in [24] and [39].
Four useful diagrams for showing the functionality and structure of the model
are introduced in this section. In this chapter we will also show the diagrams
that were created for this project and the way they should be interpreted is
explained shortly.

8.2 UML overview

It is possible to draw several diagrams with UML, that all explain one aspect of
the model. Because this report does not use all possible UML diagrams, not all
diagrams will be worked out in this section. The following diagrams are used in
this report.

Use Case diagram:

A use case diagram is a description of the program from the user’s point of
view. A use case diagram consists of actors, which can both be a real user or
any external process, and use cases. The use case represents tasks, which can
be performed by the actor. An example of a use case is given in Figure 8.1.

Class diagram:

A class diagram shows the classes that are part of the program and the rela-
tionships between those classes. It can show inheritance between classes for
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borrowBook

BookBorrower

returnBook

Figure 8.1: An example of a use case diagram

example. It can also show the methods and the attributes of the classes.

To clarify the meaning of our classes even more we also create some CRC
cards for some of the classes. CRC stands for Class, Responsibilities and Col-
laborations. In a CRC card the functionality (or responsibility) of a class can be
described in natural language and the classes that this class collaborates with to
perform its tasks can be specified. CRC cards are not part of UML but provide
a nice way to explain the functionality of a class. In a class diagram an arrow
from one class to another mean that the class at the end of the arrow is an
attribute of the class at the beginning of the arrow and is used by that class. If
there is an * at the end of the arrow this means that the class at the beginning
of the arrow can contain more than one instance of that class. Inheritance can
also be shown in a class diagram. An arrow with a closed head from the child
class to the parent class shows this. This is illustrated in the Figure 8.2, where
Child is extended from Parent and uses multiple instances of the Helper class.

Parent

HelperChild

**

Figure 8.2: An example of a class diagram
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Collaboration diagram:

Collaboration diagrams are a kind of interaction diagrams. They show the
interaction and communication between instances of classes. The instances are
represented by a rectangle and the messages that are exchanged between Arrows
between those rectangles represent those instances. Collaboration diagrams
provide a good way to get a clear understanding of how the different elements
of a program co-operate to provide the required functionality.

Sequence diagram:

A sequence diagram is another kind of interaction diagram. It contains almost
the same information as a collaboration diagram and it can be argued that
drawing a sequence diagram is not necessary when a collaboration diagram has
already been created. However because the information is presented differently
in a sequence diagram as it is in a collaboration diagram it can still be useful
to create a sequence diagram.

Where a collaboration diagram is very good at showing the relations between
the class instances, a sequence diagram concentrates on the time order of the
communication messages between the instances. In a sequence diagram the class
instances are represented by rectangles, just like in a collaboration diagram.
But where the instances can be placed anywhere in a collaboration diagram in
a sequence diagram they are usually placed in a horizontal line. Every instance
has a lifeline, which is represented by a vertical line that goes down from the
instance rectangle. When one instance calls a method of another instance an
arrow is drawn from the lifeline of the calling instance to the lifeline of the
called instance. If due to this call the called instance calls a method of another
instance (or one of its own methods), another arrow is drawn from lifeline to
lifeline below the previous arrow to indicate that this call has occurred later
than the previous call. An example of a sequence diagram is shown in Figure
8.3
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MainClass Helper1 Helper2

doSomething
getVariable

doSomething

Figure 8.3: An example of a sequence diagram

8.3 The UML Model

The TIC program consists of three packages, which are shown in Figure 8.4. In
the javabayes package all classes for the in- and output to and from Bayesian
belief networks can be found. In the gui package all classes for the graphical
user interface can be found and in the main package all rules for the reasoning
process can be found.

main
gui javabayes

Figure 8.4: Package overview of the entire model
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8.3.1 The use case diagram

StartReasoningProcess

OpenBBNfile

OpenDatafile

ShowDetailedInformation

PauseReasoningProcess

StopReasoningProcess

SaveResults

Operator

Figure 8.5: Use case diagram of the entire model

The use case for this project is quite simple because there is just one actor
in the system, which is the operator. The operator can ask for the following
actions to be performed:

• load a Bayesian belief network file;

• load a situation data file;

• start the reasoning process;

• pause the reasoning process;

• stop the reasoning process;

• show detailed information;

• save reasoning results.

The diagram showing these actions is visualised in Figure 8.5

8.3.2 The class diagram

A full class diagram may be difficult to interpret because it gives a lot of infor-
mation about the contents of the classes from which the functionality of the class
is not directly evident. Therefore we created a class diagram with empty classes.
Also we have created some Class, Responsibility and Collaboration (CRC) cards
that describe the responsibilities of the classes in natural language. We will show
the class diagrams of the gui and the main model first in Figure 8.6 and 8.7,
then the CRC cards in Figure 8.8.

65



8.3 The UML Model The UML model of the prototype

TargetPanel

TargetInfoFrame

TargetChang
edListener

OverviewGraphNode
ClassificationGraphPanel

InferenceGraphNode
(from InferenceGraphs)

ClassificationFrameManagerFrame

Figure 8.6: Class diagram of the gui

The class diagrams of the program are shown in Figure 8.6 and 8.7.
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ExceptionHandler

BayesianBeliefNetwork

ProcessWorker

Classifier Identifier

Manager

SituationParser

FactsProcessor

InferenceGraph
(from InferenceGraphs)

Figure 8.7: Class diagram of the main model

The CRC-cards

Not all classes are explained in a CRC-card, but all classes that are important
to the understanding of the functionality of the program are shown on the next
page.
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Responsibility Collaborators
This class updates all the 
information about the target.

SituationParser 
FactsProcessor     
Classifier                       
Identifier 
BayesianBeliefNetwork 
ProcessWorker 

Manager

Responsibility Collaborators
This class parses all necessary 
values out of an XML file. Values 
that are not available are if possible 
replaced by initial values. 

SituationParser

Responsibility Collaborators
This class derives per target facts 
from the information gathered by 
the SituationParser. 

BayesianBeliefNetwork 
SituationParser

FactsProcessor

Responsibility Collaborators
This class updates all nescessary 
information for the classification 
and indentification of the target.

Classifier                        
Identifier                    
ManagerFrame 
FactsProcessor

ProcessWorker

Responsibility Collaborators
This class adds information to the 
Bayesian belief network and reads 
information out of the bayesian 
belief network.

InferenceGraphNode

BayesianBeliefNetwork

Responsibility Collaborators
This class combines all available 
influencing facts into a conclusion 
about the target's classification.

BayesianBeliefNetwork

Classifier

Responsibility Collaborators
This class combines all available 
influencing facts into a conclusion 
about the target's identification

BayesianBeliefNetwork 
Classifier

Identifier

Responsibility Collaborators
This class manages all possible 
actions in the user interface.

Manager

ManagerFrame

Responsibility Collaborators
This class represents a node in the 
Bayesian belief network

InferenceGraphNode

Responsibility Collaborators
This class handles exceptions

ExceptionHandler

Figure 8.8: The CRC cards
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8.3.3 The collaboration diagram

To get a clear understanding of how the program works we need to know how
the classes communicate with each other. This can be shown in a collaboration
diagram. The collaboration diagrams that were created for our model are shown
in Figures 8.9, 8.10, 8.11, 8.12 and 8.13.

There are a couple of things in the diagrams that need explaining. First of
all the arrow with only half of a head that is shown in Figure 8.11 and goes
from the Manager to the ProcessWorker with the label run. This is not a printer
error, this arrow indicates an asynchronous procedure call. This means that a
new thread is started in which the ProcessWorker starts reasoning so that the
control is given back to the Manager immediately. This enables the Manager
to update the user interface while the ProcessWorker is reasoning. This will be
seen in the sequence diagram as well.

Furthermore some Classes have methods within themselves, these methods
are not shown in these collaboration diagrams. In the Classifier for instance the
combination of all classification probabilities into a decision per target is done.
The same occurs in the Identifier.

 : ManagerFrame

 : Manager  : SituationParser

1: setDataFile( )

2: setDataFile( )

3: parse( )

Figure 8.9: Collaboration diagram of the open data file action

 : ManagerFrame

 : Manager : BayesianBeliefNetwork

 : Classifier  : FactsProcessor
 : Identifier

 : ProcessWorker

1: setBBNFile( )

2: new( )

4: new( )
3: new( )

5: new( )

6: new( )

Figure 8.10: Collaboration diagram of the open BBN file action
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 : ManagerFrame  : Manager

 : ProcessWorker

 : FactsProcessor

 : BayesianBeliefNetwork

 : Identifier : Classifier

1: startManager( )

2: run( )

3: evaluateFacts( )

5: getClassification( )

7: getIdentification( )

9: setClassification( )
10: setIdentification( )

4: addEvidence( )

8: evaluate( )

6: evaluate( )

Figure 8.11: Collaboration diagram of the start reasoning process action

8.3.4 The sequence diagram

Because the Collaboration diagram is not designed to show the order of the
messages between the classes in time, we have also created a sequence diagram.
This diagram is better in showing time relations between the different method
calls. The sequence diagrams are shown in Figures 8.14, 8.15 and 8.16.
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 : ManagerFrame  : Manager

 : ProcessWorker

1: pauseManager( )

2: pause( )

Figure 8.12: Collaboration diagram of the pause reasoning process action

 : ManagerFrame  : Manager

 : ProcessWorker

1: stopManager( )

2: stop( )

Figure 8.13: Collaboration diagram of the stop reasoning process action

 : ManagerFrame  : Manager  : SituationParser

setDataFile( )
setDataFile( )

parse( )

Figure 8.14: Sequence diagram of the open data file action
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 : ManagerFrame  : Manager  : Classifier  : FactsProcessor  : Identifier  : BayesianBeliefNetwork : ProcessWorker

setBBNFile( )

new( )

new( )

new( )

new( )

new( )

Figure 8.15: Sequence diagram of the open BBN file action
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 : M
anagerF

ram
e

 : M
anager

 : P
rocessW

orker
 : F

actsP
rocessor

 : Identifier
 : B

ayesianB
eliefN

etw
ork

 : C
lassifier

startM
anager( )

run( )
evaluateF

acts( )
addE

vidence( )

getC
lassification( )

evaluate( )

getIdentification( )
evaluate( )

setC
lassification( )

setIdentification( )

Figure 8.16: Sequence diagram of the start reasoning process action
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Chapter 9

TIC (Target Identification
and Classification)

9.1 Introduction

When we started implementing the prototype we had to choose the tools we
would use to implement the Bayesian belief networks. We intended to imple-
ment the prototype in JAVA, so we searched for a tool which could help us to
implement Bayesian belief networks in Java. First we thought about GeNIe 1.0
(Graphical Network Interface), which is a software package that can be used
to create decision theoretic models intuitively using a graphical click-and-drop
interface. GeNIe is the graphical interface to SMILE, a robust inference engine
which has been thoroughly tested in the field since 1998. During a series of tests
we experienced some problems creating large Bayesian belief networks. There-
fore we searched for another tool and found a solution in JavaBayes, which is a
set of tools for the creation and manipulation of Bayesian networks. The system
is composed of a graphical editor, a core inference engine and a set of parsers.
The graphical editor allows you to create and modify Bayesian networks in a
friendly user interface. as an extra advantage JavaBayes is an open source pro-
gram to which we could add some new abilities. During the implementation
of our prototype a new version of GeNIe was released which looks promising,
but we did not use it because we already made some implementations using
JavaBayes.

9.2 Prototype

In Figure 9.1 the overall architecture of the system can be seen. The input is an
XML file which contains all available information at different timepoints, these
files look like Figure 9.2. In the TIC program we implemented the Bayesian
belief networks given in Chapter 6 these are ordinary Bayesian belief models
without a temporal aspect. We first wanted to examine the models in a simple
way and if they work the temporal relations can be added afterward. The
program makes a decision for each timepoint independently based on the sensor
data available at that timepoint.
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pre-processing BBN

classification

identification

XML
sensor
input

XML BBN
specification

input pre-processing reasoning process

Figure 9.1: The architecture of the entire system

By looking at the decisions in time we might already see some temporal
relations. In Figure 9.3 a part of the overall Bayesian network can be seen, this
is a combination of all Bayesian networks shown in Chapter 6.

9.3 JavaBayes

The user interface of JavaBayes looks like Figure 9.3, we can see a part of the
Bayesian belief network for this project. In this user interface it is possible to
add new nodes and conditional dependencies. We can change all properties of
a node in an interface like Figure 9.4. In this interface we added the possibility
to combine the node’s parents by using the noisy and or noisy or method. It is
possible to add evidence to the network by making some nodes observed.

A network build in JavaBayes can be saved in several formats which make it
possible to use the network in another environment. We have chosen to save the
network in an XML format. In the TIC program we use parts of the JavaBayes
code to import the XML file and add evidence to the network. The JavaBayes
code can then be used to evaluate certain nodes in the network. This makes us
able to add and extract information to the network in real time.
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<?xml version="1.0"?>

<data>

<environment>

<airlane>

<altitude>

<minimum> 20000 </minimum>

<maximum> 22000 </maximum>

</altitude>

<velocity> 400 </velocity>

<heading> 240 </heading>

<position>

<!-- the start and end positions should be given in the same

format as the position tag of the target -->

<start> </start>

<end> </end>

</position>

</airlane>

<airlane>

...

</airlane>

</environment>

<!-- the time attribute can be given as a numeric of type long -->

<situation time="345435435">

<target number = "1">

<track>

<position>

<x-pos> 104.45 </x-pos>

<y-pos> 75.89 </y-pos>

<!-- altitude is given in meters -->

<altitude> 3000 </altitude>

</position>

<!-- velocity is given in meters/second -->

<velocity> 300 </velocity>

<heading> 350 </heading>

</track>

<iff>

<mode>4</mode>

<!-- The value of the tag correct is either TRUE or FALSE. -->

<correct>TRUE</correct>

</iff>

<esm>

<frequency> 1.0e+010 </frequency>

<prf> 1.0e+004 </prf>

<pulse_length> 1.0e-006 </pulse_length>

</esm>

<!-- The value of the tag link is either TRUE or FALSE. -->

<link>FALSE</link>

</target>

<target>

...

</target>

</situation>

<situation time="343535347">

...

</situation>

</data>

Figure 9.2: An example of the XML file with sensor information about the
environment
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Figure 9.3: The user interface of JavaBayes

Figure 9.4: The user interface of JavaBayes
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Results, conclusions and
recommendations
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Chapter 10

Test scenario’s

10.1 Introduction

In this chapter we will describe the results of the tests that were performed
with the TIC. First we will show some pictures of the user interface of the TIC
program and we will make some remarks about the way in which the tests were
performed.

The system was tested by executing a scenario in which a ship may encounter
all possible targets in a way that has been designed to test the program, to see
if the program produces good results and satisfies the requirements that have
been defined in section 3.2. The scenarios that were used are described in section
10.3, after which the test results are given and explained in section 10.4.

10.2 The user interface

The user interface enables us to view the decisions in an easy way, this can be
seen in Figures 10.1, 10.2 and 10.3. In the user interface we are able to select
the Bayesian belief network and the xml file. If these files are selected, we can
start the reasoning process, pause it and stop it. We can get more detailed
information about a decision as is shown in 10.3.
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Figure 10.1: The user interface of the TIC program

Figure 10.2: The user interface of the TIC program
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Figure 10.3: The user interface of the TIC program
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10.3 The test scenario

The model that was used in this test scenario was developed in the STATOR
project at the Royal Netherlands Naval College. This program gives an XML
file as output in which all information from the ship’s sensors about targets in
the neighbourhood.

Figure 10.4: The test scenario

As can be seen in Figure 10.4 In this scenario a ship sails a certain track in
which some targets may approach the ship. In our scenario the ship first reaches
a missile site which fires four sea skimming missiles, second the ship reaches a
missile site which fires two sea skimming missiles with way points and in the
end an airliner flies across the ship in an airlane. This will be split up in three
separate scenario’s.
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10.4 The test results

scenario 1

The ship reaches the first missile site and encounters four seaskimming missiles.
In Figure 10.5 the probability distribution in time can be seen. Here the first
of four missiles is approaching the ship. In the figure the evolution of evidence
in time can be seen, first the sensors give information about the altitude and
velocity of the target. For the range of altitude and velocity of this target there
are two sorts of targets which are equally likely, namely a seaskimming missile
and a fighter. The decision displayed will be airtarget, because the probability
of weapon and weapon carrier are equally likely too. Some time later, the target
switches its radar on. This new information makes it possible to decide that the
target is probably a seaskimming missile.
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Surface target

TBM
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Highdiver

Figure 10.5: The probability distribution over the possible decisions for missile
site 1
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scenario 2

The ship reaches the second missile site and encounters two seaskimming mis-
siles with waypoints in their track. In Figures 10.6 and 10.7 the probability
distribution in time can be seen. The difference between these two figures is the
database used to determine what platform may use the detected radar. In the
first figure the radar is thought to be of a seaskimming missile, in the second
figure the radar is thought to be of a highdiving missile. In the last case there
is some conflicting evidence, the target is moving with a velocity and in the
altitude range of a seaskimming missile but regarding the radar it could be a
highdiving missile.

In these figures we see first two pop ups before we continuously detect the
target, that is because of the sort of radar which is used. In this scenario we
have a priori knowledge about the position of a missile site along the track. We
expect a threat out of that direction and use a special radar to check for a longer
rage with smaller bundle in that direction ones in a while. So we are able to
detect the missiles before they enter our air surveillance radar range.
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Figure 10.6: The probability distribution over the possible decisions for missile
site 2

86



Test scenario’s 10.4 The test results
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Figure 10.7: The probability distribution over the possible decisions for missile
site 2 with conflicting evidence

scenario 3

The ship encounters an airliner which is flying in an airlane. The classification
of this target can be seen in Figure 10.8. This aircraft transmits an IFF signal
in mode 3, this makes us able to identify the target this can be seen in Figure
10.9. In the first two scenario’s we see no identification figures, because we are
not able to identify a target based on velocity and altitude only.
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Figure 10.8: The probability distribution over the possible classification deci-
sions for the airplane
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Figure 10.9: The probability distribution over the possible identification deci-
sions for the airplane
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10.5 Evaluation of the test results

For all three scenario’s we want to know if the TIC program is able to classify
and identify the targets right. During the execution of the test scenario’s we
realised that the TIC program was able to classify most of the targets correctly
if there was enough information available. First we tested the program using
the velocity, altitude and heading of each target. We saw that the program was
not able to make a correct decision. Because the velocity and altitude domain
of a fighter and a seaskimming missile are almost identical, the probabilities of
both options become equal. The program decides with a maximum likelihood
theorem, and then displays the decision air target, because that is the only
thing that is certain. If the program gets some more specific information like a
radar that switches on during the approach the program becomes able to draw
the right conclusion. The same can be seen in the third scenario, the airliner
has a slightly higher velocity than we would expect of a patrol aircraft so the
probability stays quite low. The decision is made based on the ESM signature
which is obviously a civil one.

For the identification it became clear that more information is necessary than
for the classification to make a good decision. This could be directly deduced
from the Bayesian belief networks in Section 6.2. Therefor we only see a proper
identification in the third scenario. In that case we have an IFF transmission
and we know the target is flying in an airlane and we have an ESM signature of
the target which is obviously a civil one. This leads to a neutral identification,
because the IFF mode 3 we see a lower probability for an assumed friendly
identification.

In the second scenario a number of situations occur where temporal reasoning
could improve the results. We already discussed the first two peaks but if we
add the temporal relation that the belief in the target being an airtarget is
amplified by observing this fact more than once, and keeping the belief if no
new information is received. The figure would look smoother, we expect the
figure to look like Figure 10.10 in stead of Figure 10.11.

89



10.5 Evaluation of the test results Test scenario’s

Classification Missilesite 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

timepoint

p
ro

b
ab

ili
ty


Seaskimmer

Fighter

Surface target

Patrol

TBM

Highdiver

Helicopter

Figure 10.10: The probability distribution over the possible decisions for missile
site 2 with temporal relations
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Figure 10.11: The probability distribution over the possible decisions for missile
site 2 without temporal relations
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Chapter 11

Conclusions and
recommendations

This report shows that it is possible to design and implement a model that is able
to make a decision about the classification of an air target and its identification
based on sensor data in a maritime environment.

To design a true model for the situational awareness based on sensor in-
formation, I first investigated the current models in the combat simulation
SEAROADS II build by TNO. This investigation showed that classification and
identification were not accurately simulated. To improve this simulation, bet-
ter knowledge about the way classification and identification is done on board
combat vessels was necessary; this knowledge was gathered at the OPSCHOOL.

Further information about how to model uncertainty was very important.
After a global study of the most common approaches Dempster-Shafer and
Bayesian Belief Networks were selected as promising possibilities. A deeper
study into these two theorems showed Bayesian Belief Networks best for this
problem. Later a study was done to investigate the possibilities of temporal
reasoning in the model. The most commonly used methods were investigated
and Dynamic Bayesian networks showed to be useful for this model.

To design reliable Bayesian Belief Networks expert knowledge was necessary,
which was again gathered at the OPSCHOOL. Based on this knowledge a model
is designed which can be split into two complementing parts: the classification
and the identification. In the classification the target type is specified, therefore
two possible Bayesian Belief models were designed. In the identification the
model determines whether the target is a friend or a foe.

The Bayesian belief models were implemented using JAVA. In this imple-
mentation the temporal aspect is not taken into account. To test the models
some challenging scenario’s were carried out. These tests show that for a proper
classification of the target more information is needed than the velocity and the
altitude of the target. For the identification of a target even more complex
information is needed about the target’s behaviour. In these tests I saw how
temporal reasoning could smoothen the decisions.
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Conclusions and recommendations

I think it is important to build a prototype which takes the temporal aspects
into account and to perform tests to determine the real benefits of temporal
reasoning.

This model may be used in several applications:

• in a naval combat simulation;

• in a threat evaluation program;

• as a decision support system on board combat vessels.

For this last application some changes have to take place in the situation
on board combat vessels. Most operators do not trust automatic systems. This
model should be used as a support to make the right decision, not to make
decisions on its own. But before the system is ready to be used in such a critical
environment a lot of tests should be done to guarantee the reliability. In some
cases the model might need some fine tuning.
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Appendix A

Terminology

Classification: Classification is the process in which a target is analysed. The
classification will be done in several layers, first we have to determine whether
the target is a surface, subsurface or air target. In this case that part is quite
easy, because the simulation only contains air, and surface targets. Than we try
to analyse what kind of air target we are dealing with; e.g. an airbus, a fighter
or a missile. If we know what type of target it is, it may be possible to be more
specific, like what type of fighter is it? Eventually even the name of the fighter
can be given in ideal circumstances.

Identification: Identification is the evaluation process of the target. We have
to determine whether a target is hostile, friendly or neutral. As long as the
identification of a target is not completely clear pending identities may be used,
these are suspect, assumed friendly and unknown. After the target has been in
track for more than two minutes a real identification has to be assigned.

Rules of Engagement: ROE are directives to military forces (including in-
dividuals) that define the authorisation for, or limits on, the use of force during
military operations. Formulation of ROE is influenced by a variety of factors.
ROE first must be lawful. International law defines the lawful limits for the
use of force during military operations. National law may further limits the use
of force by member states in certain types of military operations or in certain
situations. Within the legal framework, the north Atlantic Council/ Defence
Planning Committee (NAC/DPC) provides political direction for the conduct of
military operations, including authorisations for, and limitations on, the threat
or use ROE do never limit the inherent right of self-defence. ROE are not used
to assign tasks or give tactical instructions. With the exception of self defence,
during peacetime and operations prior to a declaration of counter aggression,
ROE provide the sole authority to NATO or NATO-led forces to use force. Fol-
lowing a declaration of counter aggression, ROE generally limit the otherwise
lawful use of force [34].
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Terminology

Hostile intent: Rule 4211 permits attack against designated forces that demon-
strate hostile intent against NATO or NATO-led forces. The existence of hostile
intent must be judged on the basis of both:

a) The threatening unit’s capability and preparedness to inflict damage; and

b) Evidence, including intelligence, which indicates an intention to attack.

The weight of evidence and intelligence indicating intention to attack must
demonstrate a clear and substantial threat. The military capability and pre-
paredness to inflict damage can be taken to exist when certain tactical events
occur. These may include manoeuvring into weapon launch positions, whether
NATO or NATO-led forces are presently in range or not, the deployment of
remote targeting methods, are the use of shadowers or tattletales to provide
picture compilation. Additionally, evidence may come from non-tactical events
such as increased indications of enemy mobilisation and/or warlike gestures,
revealed in public or gained from intelligence sources; increased movements of
ammunition from stockpiles to airfields, dockyards or army depots; and the
requisitioning of land, air and sea transportation [34].

Hostile act: While self-defence permits the use of force to defend NATO
or NATO-led forces against an imminent or actual attack, rule 4222 permits
attack against designated forces that commit are directly contribute to a hostile
act against NATO or NATO-led forces. The actions outlined below are not
all-inclusive; depending on the circumstances; other actions may, due to their
purpose, be considered hostile acts. Similarly, the examples outlined below do
not, of themselves, constitute hostile acts. The status of the crisis, the political
situation at the time and if indeed a hostile act has occurred. Specific examples
of hostile acts include, but do not limited to:

a) One or more maritime, air or land units conduct mine laying operations
which impose limitations or restrictions upon the movement of NATO or
NATO-led forces;

b) Military aircraft penetrating a NATO secure area and refusing to comply
with interception instructions;

c) Intentionally impeding NATO or NATO-led military operations; and

d) Breaching, or attempting to breach, the security of a NATO or NATO-led
military installation or restricted area [34].

IFF: Identification Friend or Foe is a system which interrogates a transponder
in the target which may or may not answer with the right code. Based on
this answer and the mode the transponder is in information about the target’s
identification can be gained.

Vesta: Vesta is a part of a helicopter guidance system which enlarges the radar
contact of the helicopter on screen to make sure it is not lost in seaclutter. This
system is only used by a few Western European countries.

1see Appendix B
2see Appendix B
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Terminology

Link 11: Link 11 is a data communication system which is used to synchronise
the target information of several allied vessels on screen.

ESM: Electronic Support Measures is a set of passive sensors which give in-
formation about the target’s radar configurations.

Airlane: An airlane is a civil track in which all civil air traffic should fly. An
airlane is bounded by altitude, position, heading and speed.

ACO: Air Co-ordination Order is a flight plan of a civil airplane.

Military domain: The military domain is all air space not known as an
airlane.

ISR: The Identification Safety Range is an area around the ship in which the
identification of each target entering this range has to be known.

Perform identification: A pilot can be asked to perform identification, this
is a sequence of actions the pilot has to perform in the right order. This sequence
may be changed and only friendly forces are informed about it.
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Appendix B

ROE [34]

B.1 Self-defence

Self-defence: It is universally recognised that individuals and units have an
inherent right to defend themselves against attack or an imminent attack. In
exercising this right, individuals and units will act in accordance with national
law. ROE do not limit this right. Self defence is the use of such necessary and
proportional force, including deadly force, by NATO or NATO-led forces to de-
fend themselves against attack or an imminent attack. The following definitions
apply:

a) Necessary means the use of force is indispensable for securing self-defence.

b) Proportional means a response commensurate with the perception of the
level of the threat posed. Any force used must be limited to the degree,
intensity, and duration necessary for self-defence.

c) Imminent means that the need to defend is manifest, instant and over-
whelming.

d) Attack is the use of force against NATO or NATO-led forces and personnel.

Extended self-defence: In keeping with the principles of the alliance, within
the general concept of self-defence, NATO or NATO-led forces also have the right
to use that force which is necessary and proportional to defend other NATO or
NATO-led forces and personnel in the vicinity from attack or imminent attack.
In circumstances during peacetime and operations, prior to a declaration of
counter aggression, and where the use of force is not justified by self-defence,
force may only be exercised within the constraints of and permissions authorised
by ROE. Because national laws differ, there will not always be consistency be-
tween the nations as to where the right to use force in self-defence and extended
self defence ends and the use of force authorised by ROE begins. In cases of
inconsistency, ROE within a given operation shall not be interpreted as limiting
the inherent right of self-defence.
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B.2 Identification of suspected targets ROE [34]

B.2 Identification of suspected targets

230 Positive identification is to be established visually.

231 Identification is to be established visually or by at least two of the follow-
ing means:

• IFF

• Electro-optic

• Electronic warfare support measure

• Track behaviour

• Flight plan correlation

• Thermal imaging

• Acoustic intelligence

• Other secure active/passive systems.

232 Identification is to be established visually or by one or more of the fol-
lowing means:

• IFF

• Electro-optic

• Electronic warfare support measure

• Track behaviour

• Flight plan correlation

• Thermal imaging

• Acoustic intelligence.
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ROE [34] B.3 Other secure active/passive systems

B.3 Other secure active/passive systems

420 Attack on designated force(s) or targets is prohibited.

421 Attack against designated force(s) or designated target(s) demonstrating
hostile intent (not constituting an imminent attack) is authorised.

422 Attack against designated force(s) or designated target(s) which commits
or directly contributes to a hostile act (not constituting an actual attack) is
authorised.

423 Attack against designated force(s) or designated target(s) which have pre-
viously attacked or directly contributed to an attack, is authorised.

424 designated commanders are authorised to judge whether an attack is the
first of a series and, in this event, to attack all units constituting a continuing
threat.

425 Attack on designated military installation(s), facility(ies), equipment, and
unit(s) which are engaged in or support military activity that threatens desig-
nated force(s), person(s) or property is authorised.

426 Attack on designated force(s) or designated target(s) which substantially
contribute to the conduct of hostile military operations against designated force(s),
or persons or property with designated special status is authorised.

427 Attack on designated force(s) in designated circumstances is authorised.
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Appendix C

Standard IDCRITS [36]

This section is classified, but can be obtained separately.
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Appendix D

Dempster-Shafer’s basic
terminology

Dempster-Shafer has its own extensive terminology, partly because Dempster-
Shafer theory contains many new notions, partly because well-known notions
are given a new name. An overview of the most common terms is given:

Frame of discernment:

a sample space Θ is called a frame of dicernment or shortly a frame, we assume
the frames to be finite.

Basic Probability Assignment:

A mass function or basic probability assignment (BPA), over a frame Ω is a
function m : 2Ω → [0, 1] satisfying the following conditions:

m (⊘) = 0 (D.1)
∑

A⊆Ω

m (A) = 1 (D.2)

m (A) ≥ 0 (D.3)

The quantity m(A) is a measure for the belief that is assigned to exactly the
set A. m : 2Ω → [0, 1] means that each subset of the frame is associated with a
number between 0 and 1.

Focal element:

The subset A which is associated with a BPA.
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Dempster-Shafer’s basic terminology

Belief function:

Let m be a mass function over a frame Ω. The belief function Bel induced by
m is defined as follows.

For every A ⊆ Ω,

Bel (A) =
∑

B⊆A

m (B) (D.4)

Plausibility function:

Let m be a mass function over frame Ω. The plausibility function Pl induced
by m is defined as follows:

For every A ⊆ Ω,

Pl (A) =
∑

A∩B 6=⊘

m (B) (D.5)

Pl(A) is a measure of the belief which is not (yet) assigned to propositions
which indicste the falsity of A.
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