Neural Flight Control Autopilot System

Qiuxia Liang

Supervisor: dr. drs. Leon. J. M. Rothkrantz ir. Patrick. A. M. Ehlert

Delft University of Technology

- Introduction
- System Design
- Implementation
- Testing and Improvements
- Conclusions

- Introduction Neural Flight Control Autopilot System
 - Aviation Knowledge
 - Neural Network Control Technique
 - Intelligent Cockpit Environment ICE
- Neural Flight Control Autopilot System
- Project Goal
 - Design a Neural Flight Control Autopilot System
 - This system is able to control the airplane to take off, fly up and fly down
 - Develop a prototype running in a computer simulated environment
 - Investigate the ability of the Neural Flight Control System

Introduction • Aviation Knowledge

Introduction Neural Network Control Technique

Neural Network Control

•Classification

Introduction • Neural Network Control Technique

Topology Comparisons

- Direct Inverse Control Vs. Forward Modeling and Inverse Control
- Neural Predictive Control Vs. Forward Modeling and Inverse Control
- Conclusion

Adopt Forward Modeling and Inverse Control Topology

Conclusion

Introduction • Neural Network Control Technique

• Forward Modeling and Inverse Control

• Working Principle

Introduction • Neural Network Control Technique

• Forward Modeling and Inverse Control

• Identifier

Airplane System Input-Output Modeling

Design

Implementation

Testing

Conclusion

System Design General System Scheme • **Modules Module Specification Graphic User** Interface Goal Environment Information Environment Flight Plan Module Plant Information Flight Plan (Desired Values) Controlling Data Plant Neural Controller Module Plant Output

System Design • Modules

• Graphic User Interface Module

Graphic User	ŝ
Interface	ŝ
	8

- Flight Planning Module
 - Flight Plan Module
- 6
- The Neural Network Controller Module

Neural Controller Module

System Design • Modules Specifications

System Implementation

- Programming Environments
- Module Implementation
 - Neural Controller Module
 - Flight Planning Module
 - Graphic User Interface Module

System Implementation Module Implementation

- Neural Controller Module
 - Controller Module Programming
 - Modules' Testing

System . Module Implementation

• Flight Planning Module

- Module's Programming
- Module's Testing

Iteration	Altitude* (.Feet)	Pitch (Degree)	Pitch Error (Degree)	Throttle Error	Elevator Error
0	596.000000	3.468187	-7.531814	0.061148	0.338214
30	623.000000	12.565063	1.565063	-0.010348	-0.082713
60	677.000000	9.766780	-1.233221	0.007887	0.060794
90	734.000000	10.656216	-0.343785	0.002343	0.019228
			•••		
170	861.000000	11.218511	0.218510	-0.001320	-0.011035
200	908.000000	10.818810	-0.181191	0.001134	0.008980
230	953.000000	11.004019	0.004018	-0.000025	-0.000201
260	997.000000	10.900331	-0.099669	0.000620	0.004942
290	1045.000000	11.00052	0.000745	-0.000013	-0.000173

System . Module Implementation

- Graphic User Interface Module
 - Module's Programming
 - Module's Testing

• System Testing

- Test the functions provided by this system
- Evaluate the stability of control

Design

Implementation

Testing

Conclusion

System Testing and Improvement

• Problems and Improvements

- Airplane shook a lot during the beginning phase of each flight procedure
- Airplane kept descending in a fast way during the default flying procedure
- Airplane changed its behavior dramatically when going from one flight procedure to another

• Problems and Improvements

- Airplane shook a lot during the beginning phase of each flight procedure
 - Limit the controller's output range
- Airplane kept descending in a fast way during the default flying procedure
 - Change the desired pitch value for the default flying procedure
- Airplane changed its behavior dramatically when going from one flight procedure to another

• Modify the reference table to make the desired pitch output increase or decrease to a desired value gradually

Design

Implementation

Testing

Conclusion

System Testing and Improvement

• Improvement Results

• Airplane shook a lot during the beginning phase of each flight procedure

• Improvement Results

- Airplane kept descending in a fast way during the default flying procedure
- Airplane changed its behavior dramatically when going from one flight procedure to another

• Improvement Results

Testing Conclusion

Design

Implementation

•The control system is globally asymptotically stable

Design

Conclusions

- Conclusions
 - Successfully develop a Neural Flight Control Autopilot System
 - to control the airplane to take off, fly up and fly down
 - to achieve stable control
 - to respond to the flight order immediately

Conclusions

• Conclusions

Conclusions

• Conclusions

• The Advantages and Disadvantages of Neural Flight Control System

Future Works

- To control the airplane to make a turn
- To control the airplane to land
- To make the airplane fly more safely and smoothly

Design

Design

Implementation

Testing

Conclusion

Demonstration

Reference Table			
	Flight		
	Procedure		

Flight	Desired Output		
Procedure	Pitch Value	Airspeed Value	
Taxiing	as current	55 Knots	
Flying Up	11 Degree	as current	
Flying Down	-3 Degree	100 Knots	
Default Flying	0 Degree	as current	

Flight	Desired Output		
Procedure	Pitch Value	Airspeed Value	
Taxiing	as current	55 Knots	
Flying Up	11 Degree	as current	
Flying Down	From Current pitch value gradually go to -3 Degree	100 Knots	
Default Flying	From current pitch value gradually go to 3 Degree	as current	

Testing

System Design • Flight Planning Module

• Flight Plans

• Reference Table

Flight	Desired Output		
Procedure	Pitch Value	Airspeed Value	
Taxiing	as current	55 Knots	
Flying Up	11 Degree	as current	
Flying Down	- 3 Degree	100 Knots	
Default Flying	0 Degree	as current	