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Abstract

Nowadays as the need for automatic vehicle control grows, more and more researches
have been done in thisfield, and different approaches have been adopted to design a
controller system. The aim of this project isto design and implement a neural flight
control system handling the basic flight behaviors of an airplane in a computer ssmulation
environment.

The whole system is divided into 3 modules, the Graphic User Interface module, the
Flight Planning Module and the Neural Controller Module. The GUI module will accept
the flight order from the user. The Neural Controller Module is used to provide the
adaptive flight control. The Flight Planning Module is working in the higher level to
manage the global control in this autopilot system.

The results demonstrate that this neural flight control system is able to control the
airplane, Cessna 172, to take off, fly up and to fly down, and the airplane under control is
flying stably.
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Chapter 1 Introduction

Chapter 1

| ntr oduction

1.1 Crew Assistance System — Intelligence Cockpit Environment

As more functions have been built in the airplane, the workload of the pilot becomes
more and more heavier. In order to enhance flight safety and mission effectiveness, a
crew assistance system has been proposed. The crew assistance system can help the pilot
make a decision and even take part of the flight task. The ICE (Intelligent Cockpit
Environment) is this sort of crew assistance system [§].

The ICE project applies artificial intelligence techniques to deal with the flight
information to help the pilot by offering the crucial information, taking over tasks, or
prioritizing aertsin case of malfunctions or mistakes. Figure 1.1 shows the globa model
of a Crew Assistance System. For more information about the ICE project, please refer to
http://www.kbs.twi.tudelft.nl/Research/Projects/| CE/.
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Figure 1.1 The global model of a Crew Assistance System
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1.2 TheNeural Flight Control System

While the Intelligent Cockpit Environment is designed to help the pilot to make decisions
and to take part of flight task, the Neural Flight Control Autopilot system is developed as
part of the ICE project, the objective of which isto control some basic flight tasks.

In order to provide the consistent controlling qualities the neural network based approach
has been selected for the controller module, instead of the expert system or the
conventional controller. Choosing this could avoid indicating the explicit flight rules or
avoid looking for the extensive gainscheduling parameters, because the flight rules and
the parameters may differ in airplanes and flight environment.

There are many neural controller structures available. The control structure | used for this
application is called the Feed Forward and Inverse Control, which is build by two neural
networks. Oneis a pre-trained network and another is an online learning network for
inverse control. The reasons | choose this structure and the characteristics of this structure
are explained in chapter 3.

Once built, the neura flight control system could be applied to different aircraft
applications. The architecture will remain the same. The required work is only to replace
the pre-trained neural network (identifier) to another suitable one and to indicate the
desired output of the airplane for each flight procedure.

In this application the evaluation is performed in the Microsoft Flight Simulator 2002,
and the airplane used to control isthe Cessna 172.

1.3 TheProject Goal

The general goal for this project isto develop aneura flight control system handling the
basic flight behaviors of an airplane, which are taking off, flying up, and flying down, in
a computer simulation environment. The general goa can be elaborated as the following:
- Design aflight control system adopting the neural network control technique;

- Develop aprototype running in a computer simulated environment;

- Investigate the ability of this neura flight control system.

The requirements for this neural flight control system are:

- Providing a graphic user interface to accept the order from the user, in which the user
could set the flight goal and corresponding altitude parameter;

- Theavailable flight goals are Taking Off, Flying Up, and Flying Down;

- The system must be able to run with the Microsoft Flight Simulator which is alarger
CPU time consuming application, and function well;

- Theairplane under control should fly in a stable way;

- During the running process the user will be informed of the current flight goal and the
current flight situation;
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- The program should aso provide the evaluation data, which is better in afriendly
way, in atable format or in visualization;

- It should not take too much effort to adapt the system to make it work with other
airplanes other than Cessna 172.
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Chapter 2 Flying Analysis

Chapter 2
Flying Analysis

2.1 Aviation Introduction

When the planeisintheair, it suffersfour forces, which islift, weight, thrust, and drag.
Figure 2.1 shows the action of the four forces. All the figures in this chapter and in
appendix A are from the Rod Machado’ s Ground School, which is one of the help
documents in the Microsoft Flight Simulator. The pilot’sjob is to manage the resources
available in order to balance these forces [4].

0

_~
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Aggpted from Bog Mschasos Prégs Aot Handboak

Figure 2.1 The Four Forcesacting on an airplanein flight
A - Lift, B—Thrust, C—Weight and D —Drag

Lift isthe upward-acting force created when an airplane’ s wings move through the air.
Forward movement produces a dlight difference in pressure between the wing's upper
and lower surfaces. This difference becomeslift. It islift that keeps an airplane airborne.

Weight is the downward-acting force. With the exception of fuel burn, the airplane’s
actual weight is difficult to changein flight.

Thrust is aforward-acting force produced by an engine-spun propeller. Generally, the
bigger the engine the greater the thrust produced and the faster the airplane can fly up to a
point. Forward movement always generates an opposite forces called drag.

Thrust causes the airplane to accelerate, but drag determinesits final speed. Asthe
airplane s velocity increase, its drag also increases. Eventually, the rearward pull of drag
egual s the engine’ s thrust, and a constant speed is attained.
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There are 3 major flight controls that help the pilot to control an airplane, which are
aileron, elevator and rudder. Ailerons are the moveable surfaces on the outer trailing
edges of the wings. Their purpose is to bank the airplane in the direction the pilot wants
to turn. Elevator is the moveable horizontal surface at the rear of the airplane. Its purpose
isto pitch the airplane’ s nose up or down. Rudder is the moveable vertical surface located
at the rear of the airplane. Its purpose isto keep the airplane’ s nose pointed in the
direction of the turn.

For more details about these controls and the primary instruments in an airplane, you may
refer to the Appendix A.

After thisintroduction, in the next section | will explain how areal pilot controls the
airplaneto take off, fly up, fly down and keep alevel flight.

2.2 Flying Process Analysis

To design a system controlling the airplane’ sflight, first of al, the designer should know
how area pilot flies and which instruments or controls should be paid specia attention to
during one flight procedure. Study of these will help usto design a more reasonable,
intelligent autopilot system.

Because in this application | only set three flight goals, which is Taking off, Flying up,
and Flying down, the flight analysis made here is only about the flight procedures which
will happen to achieve the 3 flight goals.

Leve Flights
Level flight means the airplane does not gain or lose altitude. The pilot controls the
elevator to make the changes on the pitch, which will cause the plane’ s altitude changing.

To make sure that the airplane isin the level flight, the pilot will refer to the instruments
like the attitude indicator, the atimeter indicator and the vertical speed indicator. The
Figure 2.2 shows the responses of those instruments if the pilot pitches the airplane’ s
nose up.

Figure 2.2 The Instruments Display
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The attitude indicator’ s miniature airplane points upward toward the sky, whilein the
altimeter, which islocated to the right of the attitude indicator, the biggest hand is
moving clockwise. This means the atitude isincreasing. Directly below the altimeter in
figure 2.2 isthe vertical speed indicator. Its needle also deflects upward, showing arate
of climb. These are additional indications that the airplane is climbing and not
maintaining level flight.

Climbs

To climb the pilot controls the elevator to make the airplanes pitch up. Apparently, with a
certain engine power the bigger the climb angle the slower the flight speed. To make the
airplane stay in the air the airspeed should be at least 50 knots per sec, the climb angleis
an important issue during the climb. Figure 2.3 shows the relationship between the climb
angle and the airspeed.

F|i| Possweer
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Figure 2.3 The Power, Climb Angle and Airspeed

Airplanes have a specific climb attitude that offers the best performance while keeping
the airplane safely above its stall speed. With climb power applied (usualy full throttlein
smaller airplanes), the pitch attitude is adjusted until the airspeed indicates the proper
climb speed. For the Cessna 172, the pilots always use a speed of 75 Knots for all climbs.
When the Cessna 172 climbs at this speed its pitch will maintain at around 11 degree.

Descents

Airplanes can fly downward without power. Just lower the nose. The pilot can adjust the
nose-down pitch attitude using the elevator control and the airplane can descend at any
(reasonable) airspeed as the pilot want. Unlike climbing, we may choose to descend with
awide range of airspeeds.

Taking Off
To take off, the objective is to accel erate the airplane to a sufficient speed where we can
raise the nose to climb attitude. Thisis sometimes known as rotating. It is recommended
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that rotating should be at least 5 knots above the airplane’ s no-flap stalling speed (which
is 50 knots — the beginning of the airspeed indicator’ s green arc). When the airspeed
indicator shows 55 knots, raise the nose to the attitude that results in an 80-knot climb.
That is the take off.

2.3 The Aviation Parametersin M odeling

Though there exist 3 mgjor flight controls, to reach the goals | set for this application,
only one elevator control will be used. According to the analysisin the previous 2
sections, the pilot could only use throttle control and el evator control to finish those flight
jobs. The flight parameters that are directly influenced by these two controls are the
airspeed and the pitch.

Figure 2.4 shows the representation of the airplane model used for my application, which
has two inputs, elevator control and throttle control, and two outputs, the airspeed and
pitch.

elevator control airspeed

throttle control Flight System pitch

Figure 2.4 The Flight System M odeling

This dynamical system model can also be represented as Figure 2.5, which is used for the
input and output analysis.

d, + Yi
{3
+
+ d2
Vs
Zz < NPA
+

Figure 2.5 Theinput —output relationship for this dynamic air plane model

d
This interconnected dynamic system has (dl] asthe input and (;/lj asthe output, in
2 2
which d, denotes the elevator input, d, denotes the throttle input, y, denotes the pitch

output and y, denotes the airspeed output. For the sub-dynamic system >, the input

10
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d, +y, producesthe output y,, which means the current elevator input and current
airspeed value determine the pitch value of the next time. For the sub-dynamic system
2. ,theinput d, +y, producesthe output y,, which means the current throttle input and

current pitch value determine the airspeed value of the next time.

Besides of the airspeed and pitch, there are also some other parameters influenced by the
throttle and the elevator, like the atitude and the vertical speed. Compared with the
airspeed and pitch, those parameters are more like the indirect results of the throttle and
the elevator control. For example, if the airplaneisin air and pitches up, then the atitude
will increase and the vertical speed will be a positive value, and vice versa. So it is better
to regarded the altitude value and the vertical speed value as the references, instead of as
the parameters that should be used in the system modeling. For example, when the user
sets aflight order for the airplane, besides the flight action he (she) will also be asked to
set the altitude the airplane should fly to; and during the flight control, the autopilot
system will always check the altitude value for the flight situation analysis.

Therefore, to model aflight system which is used to finished the 3 goals, | will only use 2
inputs and 2 outputs. The flight system indicates an airplane only can flight straight. The
inputs are the throttle control and the elevator control, while the outputs are the airspeed
value and pitch value.

To control an airplane make aturn | should think about more parameters, e.g. the rudder
control, the aileron control, the bank degree and etc. As explained in Appendix A.1, the
ailerons control is used to bank the airplane in the direction one wants to turn, and the
rudder control is used to keep the nose of the airplane pointing to the direction of turn.
The airplane model then will be represented as shown in Figure 2.6.

elevator control airspeed
throttlecw> pitch

rudder control Flight System heading direction
aileron control bank degree

Figure 2.6 The Flight §ystem M odeling

11
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Chapter 3

Neural Network in Adaptive Control

In this chapter, | will first introduce the history of the NN controller and how it is
classified, and then | will elaborate on 3 mostly used NN structures, and make a
comparison among them in atheoretic way. Finally | will decide on one structure that
will be used in this neural flight control system, also considering the current application.

3.1 Introduction

Thefirst NN controller was developed by Widrow and Smith in 1963. Widrow and Smith
used Adalineto stablilise and control the pole-balancing act. Interest in using NNs for
control only started at around 1987. Those applications demonstrated that NNs can be
applied successfully to control unknown nonlinear systems. A number of new NNs
control structures were aso proposed. For examples, feedback error learning, neural
internal model control, neural predictive control, forward and inverse modeling,
neurofuzzy, generalized and specialized leanings. The neural network controller can be
classified in the following way [1].

Goal and not goal oriented. If the neural network istrained based on the desired plant
output signal, it is known as goal oriented, otherwise it is not goal oriented.

Closed loop and open loop. Closed loop and open loop are commonly used in the
conventional control system. In closed loop control the inputs of the controller include
the error signal, which is normally from the desired plant output and the plant real output,
and the past errors signal ey(k), es(k-1),..., e{k-n+1). In open loop control the inputs of
controller are the desired plant output and the past states of the plant without the feedback
error signal.

Feedforward and feedback control. The feedback controller is quite similar with the
closed loop controller, the inputs of which consist of the error signal. The feedforward
controller is similar with the open loop controller, the inputs of which are only the desired
plant output and the past states of the plant.

Reference model and without reference model control. In reference model control, the
desired output of the plant is specified through a stable reference model. The object of the
controller system isto make the real plant output y (k) equal to the reference model

output, whichis

13
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lim [y, (k) =y (k) i< &
for some specified constant £ > 0.

Direct and indirect control. In direct control the controller is trained to reduce the error
between the plant and the desired output. In indirect adaptive control, it isfocused on
some parameters of the plant, which may not be the output of plant. The controller is
trained to produce the same value on those parameters as the plant does.

Hybrid and non-hybrid type. In the hybrid controller system the neural networks are

used as an aid to improve the performance of some conventional controller or the fuzzy
controller. In the non-hybrid control the controller system isimplemented by the neural
networks only.

Generalized and specialized lear ning. When the neural network istrained to ssmulate
the behavior of the plant in all situations, it is called generalized learning. If the neural
network is trained to simulate the plant only in a specia situation, it isreferred to as
specialized learning.

I nver se and Non-inver se control. When the neural network controller performs as an
inverse model of the plant, this control is referred to asinverse control. Most neural
networks used for the control function are the inverse controller.

To have an overview of all possible control structures, people group them into multi-
levels. On thetop level it is classified by the hybrid and non-hybrid classification. On the
second level it is classified by the controller updating signal, which are

- Control signal

- Desired output signal

- Feedback controller output signal

Figure 3.1 shows the multi-level categorization of neural network control strategies[1].

For thisflight controller system, | only adopt the neural network for the controller
module, and the controller is adapted according to the error between the desired output
signal and the real output signal. Therefore, this flight controller system belongsto the
non-hybrid, desired output signal control class. In the following sections | will introduce
3 main control structuresin this class.

14
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Neural Network Control

Hybrid Non-hybrid
Control Signal Desired Output Signal Feedback Controller
Sianal
Mimic Expert Direct Inverse J
Control Feedback error
Learnina

Mimic Conventional
Controller

Indirect Learning
Architecture

Forward Modeling
Inverse Control

Neural Predictive
Control

Figure 3.1 The multi-level categorization of neural network control strategies

3.2 The Non-hybrid and Desired Output Signal Control Strategy

In this section | will introduce 3 main control structures belonging to the non-hybrid,
desired output signal control, which are the Direct Inverse Control, the Forward
Modeling Inverse Control and the Neural Predictive Control.

3.2.1 TheDirect | nverse Control

Yol NNc

Plant > _

> Plant

» NNC

Figure 3.2 The Direct Inverse Control and the Inverse-model’s Training

15
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Figure 3.2 shows the representation of the Direct Inverse Control structure and how the
inverse controller model has been trained. The controller is placed before the plant with
the desired signal input to the NN controller. However, the representation does not show
all the connections among the controller.

Figure 3.3 shows the structure details in the direct inverse control. These are two possible
structures of the Direct Inverse Control scheme. Oneis called the Closed Loop Direct
Inverse Control and another is called the Open Loop Direct Inverse Control.

Yo © lf Y, ‘% u Yo

— NNc [ Plant > __’WC —>»| Plant

| X

Figure 3.3 TheDirect inversecontrol - closed loop and open loop

Asexplained in Section 3.1, for the closed loop structure, the input of the neural network
controller consists of the error signal and the past errors signal es(k), es(k-1),...,e(k-n+1).
While in the open loop control the controller does not have these feedback error signals
asinput, itsinput are only the desired plant output and the past states of the plant.

3.2.2 TheForward Modeling and I nverse Control

In the Forward Modeling and Inverse Control system there are two neural networks. One
isused as the plant identifier, and another neural network is used as an inverse controller.
The identifier neural network should be trained off-line, and then it will keep fixed during
the later processes. Another neura network will be trained on-line to perform as the
inverse model of the plant. Figure 3.4 shows the scheme of the Forward Modeling and
Inverse Control structure. The object of this control system isto minimize the error
between the desired output and the plant output.

The running steps are as the following:

1. According to the desired plant output the first NN provides the corresponding
plant inputs;

2. The plant inputs run through the plant and the forward plant model;

3. Theerror between the desired output and the output of the plant is
backpropagated through the forward model;

4. The neura network inverse controller istrained based on the backpropaged error
from the input layer of the NN model.

During training the weights of the forward model remain unchanged, only the weights of

the inverse network are adapted. In this processes it assumes that the backpropagated
error from the forward model plus controller output is equal to the correct plant input.

16
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o 2

Yoo ——> NNc > Plant >

Figure 3.4 The Forward modeling and inver se controller

3.2.3The Neural Predictive Control

The steps for the Neural Predictive Control are as follows [14]:

1. Reference Model generates areference trgjectory;

2. Optimization model calculates anew control input vector that minimizes the cost
function, with the previous calculated control input vectors and their
corresponding prediction outputs of the plant model;

3. Repeat steps 2 and 3 until desired minimization is achieved;

4. Send thefirst control input to the plant;

5. Repeat the whole process for the next step.

The structure of the neural predictive controller is shown in Figure 3.5. Like the forward
modeling and inverse controller the Neural Predictive Controller also includesaNN
model, which is used to predict future values of the plant output according to a certain
sequence of the plant input (u(k),u(k +1),...). Those predicted values are used to

caculate the value of acertain cost function.

Y, (k) : ¢ : u'(k) x’“(k)
—» Optimization » NNmM
Reference
Model u(k) Y, (K)
» Plant —»

‘ t=k

Figure 3.5 The Neural Predictive Control

The object isto find such a plant input vector for which the cost function hasits
minimum. And then use the first element in that input vector as the input of the plant.
After the next plant output y, (k +1)is known, the whole procedure is repeated.

An example of the cost function is shown as following,

17
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W m 2 N 2 i S S 4
J= Y1y (K) =y ()] + D A (bu(k)® + S— 4
K=N1 k=L j=1 u(n+j)+§—b E+b_u(n+ )

Where y" represents the output of the reference model (i.e. desired output), and y™ is
the output of the NN model. A, isthe move suppression factor or control weighting
sequence. It is used to penalize excessive changes of theinput signal (Au). N, isthe
minimum counting time step, and N, is the maximum counting time step, and N, isthe
control time steps. The predictions of the plant will run from N, to N, futuretime steps.
The bound on the controlling time stepsis N, . Thefirst term of the cost function isa

measure of the distance between the model prediction and the desired future trgectory.
The second term penalizes the large changes of the input signal (Au ). The third
summation defines constraints on the control input. The parameterss, r, and b
characterize the sharpness, range, and offset of the input constraint function respectively.

The Newton-Rhapson algorithm has been widely used for the optimization model to
determine the best-input vector U. With the Newton-Rhapson a gorithm the cost function
isminimized iteratively to determine the best U.

An iterative process yields intermediate values for J denoted as J(K) . For each iteration
of J(k) anintermediate control input vector is also generated and is denoted as
u(n+1

u(n+2)

U(k) = , k=1, ..., #iterations.

u(n+N,)
Using the Newton-Raphson update rule U (k +1) is

923 . )" ag
aUZ(k)j w(k),

U(k+1):u(k)—(

After numbers of iteration when the value of the cost function J(k+#)issmaller than a
certain value, then the first element of the input vector U (k+#) will be sent to the plant.

3.2.4 Comparison

In the Direct Inverse Controller the structure will force the network to represent the
inverse of the plant. However, there are drawbacks to this approach:
- Firgt, if the nonlinear system mapping is not one-one then an incorrect inverse
can be obtained.
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- Second, the inversed plant models are often instable, which may lead to the
instability of the whole control-system. Therefore, in the traditional control-
system design it is usually avoided to adopt. Frequently, the control signal
calculated by the inverse controller attains high magnitudes, so that it hasto
be limited before applying to the plant.

Compared with the Direct Inverse Control, the Forward Modeling and Inverse Control
has an additional NN plant model, which is used in the inverse neural network training
processes. The error signal is propagated back through the forward model and then the
inverse model, however, only the inverse network model is adapted during this
procedure.

The error signal for the training algorithm in this case is the difference between the
training signal and the system output (it may also be the difference between the training
signal and the forward model output in the case of noisy systems, which is adopted when
the real system is not viable).

Jordan and Rumelhar [6] show that using the real system output can produce an exact
inverse controller even when the forward model is inexact, which will not happen when
the forward model output is used.

In comparison with Direct Inverse Control the Forward Modeling and Inverse Control
approach has the following features:
- In case where the system forward mapping is not one-one a particular inverse
will still be found [6]
- Since the controller neural network gets trained assuming the correct plant
input is equal to the backpropagated error from the forward model plus
controller output, the training process will be stable.

Therefore, the Forward Modeling and Inverse Control could be regarded as an improved
version of the direct inverse control.

The Neural Predictive Controller consists of four components, a plant to be controlled, a
reference model that specifies the desired performance of the plant, a neural network
modeling the plant, and an optimization model used to produce the plant input vector.
The object is to have an input vector for which the value of the cost function islower than
adefined value. Then the first element of the plant input for current time will be applied
to the plant. In section 3.2.3 | have given an example of the cost function and the
Newton-Raphson cost function minimization algorithm.

The disadvantages of the Neural Predictive Control are
- Numerical minimization algorithms, e.g. Newton-Raphson, are usually very
time consuming (especially if aminimum of a multivariable function has to be
found), what may make them unsuitable for certain real time applications.
When sampling intervals are small, there may be no time to perform minimum
searching between the sampling times.
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- The prediction controller asks for a neural network model which could do a
very good job to simulate the plant, since the result of the whole controller
system depends on the correct prediction value. However, in some
applicationsit could not be realized.

For this neura flight control system it is evaluated in the Microsoft Flight Simulator
environment. While the Microsoft Flight Simulator is running, it will occupy so much
CPU time, therefore the time-consuming problem should be taken very seriously here.
Though there are some other optimal algorithm other than Newton-Raphson which will
simplify the optimization operation, it cannot ensure that the system will work properly
associated with another big program like Microsoft Flight Simulator.

Moreover, in the Neural Predictive Control model a precise identifier has been asked.
That is, we need to train an excellent aircraft neural network model beforehand. The
problem in this application isthat it istoo hard to find that sets of training data covering
all situationsto train the aircraft NN model. However, it is not the problem for Forward
modeling and inverse control. As mentioned above, Jordan and Rumelhart have showed
that in the Forward Modeling and Inverse Control it can still produce an exact inverse
controller even when the forward model isinexact if using the real system output to adapt
the controller.

On these points the Forward Modeling and Inverse Control is more suitable for this
application. Therefore, | choose for the Forward Modeling and Inverse Control structure
to build the control module.

3.3 ldentifier

The identifier isaneura network model of the plant. In this application the identifier isa
neural network model of the aircraft plant. There are many topologies available to
construct a neural network. Normally, to model a dynamic system people prefer to
choose the time delayed topology, or the recurrent topology. In this section | will first
introduce a neural component, memory PE, which makes the difference between the
Time Delayed Neural Network and the Recurrent Neural Network.

331 TheMemory PE

Figure 3.6 shows the general structure of amemory PE and how the memory PE feeds an
M-P PE. The g(.) isadelay function. The memory PE receivesin general many
inputsx, (n) from the previous layer, and then produces multiple outputs

y= [yo(n),..., Yo (n)]T , Which are delayed versions of y,(n) . The right diagram of the

figure 3.9 shows how the memory PE feeds a normal M-P PE. It isimportant to
emphasi ze that the memory PE is a short-term memory mechanism, while the network
weights represent the long-term memory of the network [3].
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Figure 3.6 The memory PE and How it feedsto a M-P PE

Two kinds of memory PE have been mostly used, which are the delay-line PE and the
Context PE. In Figure 3.7 the left diagram shows the delay line PE, the upper right

diagram shows alinear context PE and the lower right diagram shows its representation.

\ \ > - 42»1 >
| 7

> > y
Z»l
> |1
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' > >
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Figure 3.7 The Delay Line PE and the Linear Context PE and Its Representation

When the memory PE is built from adelay line, we call it adelay-line PE, and it
implements memory by delay. The delay-line PE is the memory structure used in the
TDNN.

The output of the context PE can be calculated in thisway,
p
y(n) =@A-p)y(n-1) +,u(z X, (n)j +h i# ]

i=1
Normally we represent this PE asin the right lower diagram of Figure 3.7, where the
delay is not apparent. The neural network that consists of the context PE is called
recurrent neural network.
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Because of the two kinds of memory PE, we have the time delayed neural network and
the recurrent neural network. To model a dynamic system atypical solution isthe Time-
Delayed Neura Network. Asin recent years the recurrent neural network has been well
studied, it has been applied to construct the nonlinear identifier as well.

Here | will first explain how to use the Time Delayed Neural Network in the dynamic
system’s modeling. And then | will introduce two partial recurrent neural networks,
which isasimplified version of arecurrent neural network. | will make a comparison
between the TDNN identifier and the Partial Recurrent NN identifier during my
implementation phase which is mentioned in chapter 5.

3.3.2 TDNN Applications

In system modeling people always adopt the time delay topology to implement the
nonlinear moving-average (NMA) modeling, the nonlinear autoregressive (NAR)
modeling, the nonlinear autoregressive with external input (NARX) modeling, and the
nonlinear autoregressive moving-average (NARMA) modeling.

Nonlinear Moving-Average Modeling
In nonlinear moving-average (NMA) modeling, the output of the model is anonlinear
function of itsinput:

y(n+1) = f[x(n),x(n-1),...,.x(n—k +1)]

ﬁ y(n)
x(n) > ] >
Z_l n Neural
Neural v z* Network
% Networ k R | 5
2
— z

Figure 3.8 The Nonlinear Moving-Average Model and the Nonlinear AutoRegressive M odel

Nonlinear AutoRegressive Modeling
In nonlinear autoregressive (NAR) models the output of the model is given by
y(n+1) = f[y(n),y(n-1)...., y(n-k +1)]
In this equation the next output is the function of the past output. Thistype of model is
used in prediction.

Nonlinear AutoRegressive with eXternal input (NARX)
In this model the inputs are the past outputs and current input,
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y(n+1) = f[y(n), y(n=1),..., y(n =k +1),x(n)]
This model is shown in the left part of Figure 3.9.

Nonlinear AutoRegressive Moving-Average modeling (NARMA)

The nonlinear autoregressive moving-average (NARMA) is the most general class of

nonlinear models, and it is a combination of the two previous types:

y(n+1) = fly(n), y(n=1),..., y(n=k+1),x(n), x(n - 1), x(n - j)]

The next output is the function of the current input, the current output and their delayed
versions. In the class of the Time-Delayed Neural Network | choose NARMA to model
the aircraft plant. See the right part of Figure 3.9.

— Neur al
Z Networ k

y(n)

X(N) ——F—»
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Network

y(n)

Z-l

A

>

Figure 3.9 The Nonlinear AutoRegressive with eXternal Input Mode and the Nonlinear

AutoRegr essive M oving-Aver age M odel

3.3.3 Partial Recurrent Neural Network

Jordan and Elman proposed simple networks based on context PEs and network

recurrency that are easy to train. Figure 3.10 shows the Jordan and Elman networks.
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1

Q

Both the Jordan and Elman nets have fixed the feedback parameters 1 and we could

regard the output of the context layer as external inputs so that there is no recurrency in
the input-output path. The special architecture of the Jordan and EIman network
simplifies the training process. They can be approximately trained with straight
backpropagation. Elman’ s context layer receives input from the hidden layer, while
Jordan’ s context layer receives input from the output.

Figure 3.10 The Jordan and Elman network

3.4.3 The Comparison

Both TDNN and Jordan network are designed to remember the past, and both of them are
used in the nonlinear dynamic system modeling. It is hard to decide which oneto usein a
theoretical way. | plan to compare them in the practical way. Therefore, in the
implementation | have built two identifiers, oneis atime delayed neural network
implementing the NARMA model and another one is a Jordan network. From their
training result, finally | decide the one used in my application. | describe this processin
chapter 5.
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Chapter 4
System Design
4.1 General System Scheme

To design a controlling system achieving automatic flight, a powerful and flexible
controller isthe essential element. Additionally it needs some assistant parts in the whole
system, which will be used to, for example, estimate the flight process, and produce the
real-time flight plans, and etc.

According to the different tasks and functions the whole system has been divided into 3
parts, which are the graphic user interface part, the flight planning part and the neural
controller part. The functions of each part will be elaborated in the following sections.

Graphic User
Interface

Environment Information

Environment

Flight Plan M odule :
Plant Information

Flight Plan
(Desired Values)

Neural Controller M oduéel

Plant i

Figure 4.1 The General Scheme of the NN Controlled Automatic flight system
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Figure 4.1 shows the general system scheme. From it you may see how the system works
and see the relationship between the user interface, the flight plan and the neural
controller parts.

In the beginning, the user set the flight order in the user interface, e.g. Fly Up to 3000
feet, which includes the flight action and the altitude parameter. Then user interface
sends this order to the flight planning system. Here the flight order will be analyzed to
determine whether it is reasonable or not. If it is reasonable, the planning system will
create aflight plan which may consist of several steps. Corresponding to each step the
planning system will send different data to the controller module.

In this case the data sent from the planning module to the controller module are the
desired plant output. After receiving these desired plant output data the controller will
then produce the corresponding controlling data that will finally be applied to the airplane
plant.

The flight planning system will also keep eye on the whole flight process, update its
flight records to provide the proper plant output data.

In the following sections | will elaborate these 3 modules in details.

4.2 The Graphic User Interface

Through the graphic interface the user is able to set the flight order, which includes the
goal and relative parameters. For example, the user could set the goal as “Taking Off”,
and then set the altimeter parameters as 3000 feet.

The outlook of the Graphic User Interface is shown in Figure 4.2. There is a combo
control in the GUI which is used to select the flight action, and the text field under it is
used to accept the parameter indicating the atitude that the airplane is expected to meet.
There are aso 4 buttons in the interface, done, stop, graphic, and quit.

After the user presses the Done button, the interface module will send the flight goal
parameter and the altitude parameter to the Flight Planning Module if both parameters are
exist. The Stop button is used to stop aflight. It will reset all the parameter and reload the
flight in Microsoft Flight Simulator.

When the user presses the Quit button, the autopilot system will end and all the other sub-
windows will also end. Before it quits from the operation system a credit window will
show up. After the user click the credit window the whole autopilot system will quit.

The “Graphic” function is used to visualize the evaluation data. The following signals can

be displayed:
- Altitude;
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- Airspeed;

- Airspeed Error, which is the difference between the real airspeed and the
desired airspeed value,

- Pitch;

- Pitch Error, which indicates the difference between the real pitch value and
the desired pitch value;

- Throttle control;

- Throttle control error, which indicates the backpropagation error at the input
throttle neuron of the identifier network;

- Elevator control;

- Elevator control error, which indicates the backpropagation error at the input
elevator neuron of the identifier network;

- Identifier airspeed output;

- Identifier pitch output.

AutoPilot System - [ X

Goal: v

Parameters:

Done Stop Eraphic Quit
\
Current Status: \<
Taking OFF
Flying Up
Flying Down

Figure 4.2 The Graphic User Interface Outlook Design

These signals could be displayed simultaneously as the autopilot system’s running, while
each time only one signal can be displayed. Therefore, the user would be able to specify
the signal he (she) wantsto be displayed. The user can set the range of the values
displayed on the X-axis and Y -axis. The X-axis corresponds to the running time. The Y -
axis corresponds to the signal value.

4.3 The Flight Planning Module

In this neural flight control system, the flight planning system isacrucial part, whichisin
charge to analyze the reasonability of the flight goal, to produce the flight plan, and to
recognize the flight situation. Figure 4.3 shows a scheme of the flight planning system.

It has the following functions

27



Neural Flight Control Autopilot System

- analyzing the reasonability of the current goal;

- deciding the flight plans;

- providing the desired data pairs corresponding to each flight plan;
- checking the current flight situation.

Environment

Current
God

Environment Plant Information
Information ‘

Flight Plan Module v v

Situation Recognition

Current
Situation ——==e=es

> Flight Plan Strategy

=

Desired Plant Output

Figure 4.3 The Flight Planning System M odel

After the user setsthe desired goal and the corresponding altitude parameter in the user
interface, this order will be sent to the flight planning system to analysis its reasonability,
also considering the current flight situation. For example, if now the aircraft isin the
taxiing procedure and the current speed is not enough to take off while the user asksto
fly up immediately, after the analysis the flight planning system will ignore this order and
send an error message back to let the user know this order is not possible.

When the current goal has been proved reasonable and realizable, the flight plan module
will then consider how to realize this goal, that is, which strategy should be carried out.
For example, if the current goal is* Taking off’ , then the strategy center will decide to
use the “Taxiing - Flying up — Default Flying” strategy instead of only the Taxiing or
only the Flying up strategy. For each flight procedure the flight plan module will
produce the corresponding desired plant output data pairs, which will be in the next
module, the neural network controller module.

In this application | have set 3 flight goals, which are the ‘ Taking Off”, “Flying Up”, and
“Fying Down”. The 3 flight goals include different flight procedures. For example, for
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taking off it includes taxiing, flying up, and default flying. The default flying means that
the airplane will fly on a certain atitude, neither climbing nor descending.

Figure 4.4 shows the relationship between the flight goal and the flight procedures. For
each flight goal the Flight Planning Module will produce the flight plan according to this
relationship. In the flight plan the flight procedures will be arranged as shown in the
Figure 4.4.

Flight Goal

/\

Taking Off Flying Up Flying Down

Taxiing FlyingUp Default Flying Flying Down  Default Flying

/Qt Flying

Flying Up

Figure 4.4 The Flight Strategies

Because the neural controller system should be provided with the desired plant output
value as the input before it will produce the corresponding control value to the plant, the
output of the Flight Planning Module should be in the format of the desired plant output
pattern. Therefore, | should define the desired plant output data pattern for each flight
procedure.

In chapter 2 | have explained what areal pilot will do during these procedures and which
flight parameters he (she) will be concerned about, and what the desired values for those
parameters are. According to the analysis there, | defined the desired plant output data
pattern for each flight procedure. It is shown in the table 4.1. The Flight Planning Module
will perform referring to this table to produce the desired plant output value for each
flight procedure.

Tabel4.1 The Flight procedures and the Desired Output Value

Flight Desired Output
Procedure Pitch Value Airspeed Value
Taxiing as current 55 Knots
Flying Up 11 Degree as current
Flying Down - 3 Degree 100 Knots
Default Flying 0 Degree as current

From the table you may see the desired value of the pitch and airspeed keep the same
during aflight procedure, it is called the regular reference. Actualy during the system
improvement phase | have changed this reference table a bit, which is no more aregular
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reference. Y ou can find the reason why | made those changes and the final reference table
in section 9.3.

Besides the functions above, the Flight Planning Module also has the duty of checking
the current flight situation to follow the flight process. To do this the planning module
will collect the flight information data from the environment and also from the aircraft in
real time.

4.4 The Neural Network Controller Module

After the Flight Planning Module has produced the desired plant output pattern, the
Neural Controller Module accepts them as the input, and then provides the corresponding
control data to the plant. So the function of this module is to provide the plant its control
data. The neural network module is the fundamental part in this autopilot system.

In chapter 3 | have analyzed 3 mostly used neural controller structures and made the
comparisons among them. Finally | decided to use the Forward Modeling and Inverse
Control structure in my application.

Figure 4.5 shows the structure of the Forward Modeling Inverse Controller. The Identifier
indicates atrained neural network used to simulate the plant model, and the Controller is
another neural network that will betrained in real time to behave as an inverse controller,
and the Plant here indicate the Microsoft Flight Simulator.

Backpropagation Error Y Error
fdentifier
—P
Desired
Data Control Data Plant Output

Conirolie Plant

Figure 4.5 Process analysisfor the Forward Modeling Inverse Controller

Before used in the controller system, the identifier has already been trained and kept
fixed during the whole procedure. However, another neural network performed as an
inverse controller will be trained during the controlling time. From the Flight Planning
Module this Neural Controller Module get the desired plant output values, and it will then
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produce the corresponding control data. The control datawill be sent to the plant to
control the aircraft and also be sent to the identifier. According to the error between the
real plant output and the desired plant output value the neural controller will be trained
then.
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Chapter 5

M odule Specifications

5.1 Modules and Module Specifications

This aircraft automatic control system consists of 3 modules, which are the Graphic User
Interface Module, the Flight Planning Module, and the Neural Controller Module. Tabel

5.1 shows the specifications for each module.

5.2 TheInteraction Relationship between M odules

Figure 5.1 shows the interaction rel ationship between the modules.

User

l (god, parameters)

Graphic User Interface
Module

(goal, parameters) l %flight situations)

Flight Planning M odule

-
desired

datapairs

Neural Controller
Module

(flight information)

(control data)l

Plant

Figure5.1 The Interaction Relationship between M odules

First, the user sets the flight order through the Graphic User Interface Module; and then
the Graphic User Interface Module will pass those parameters to the Flight Planning
Module; if the desired godl is reasonable, the Flight Planning Module will decide on a
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M odule Name

GUI

Flight Planning

Neural Controller

-providing the interface for
usersto set the flight order,
which includes the flight
action and associate altitude

- checking the current flight situation,
- analyzing the reasonability of the
current goa,

- deciding theflight plans,

- providing the control data
to Plant

Function - ; .
Descriptions parameters - providi ng the des ﬂmn data pairs
corresponding to each flight plan
- Goal from User - Goal from GUI Module - Desired Data pair from
Input Data - Associate atitude - Associate Parameters from GUI Flight Planning Module
& parameters from User Module
Input From - Theflight datafrom Plant

Output Data
&
Output To

- Goal To Flight Planning
Module

- Associate Parameter To
Flight Planning Module

- Desired data pair to Neural Controller
Module

- Flight Situation to Graphic User
Interface

- Control Datato Plant

current flight situation to Graphic User Interface Module. For each desired plant output
patterns received from the Flight Planning Modul e the Neural Controller Module will

Controller Module. The Flight Planning Module will follow the flight process and return
produce the control data applied to the plant.

flight plan and continuously provide the desired plant output pairs to the Neural

Neural Flight Control Autopilot System

Table 5.1 the Modules Specifications
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5.3 The Server-Client Structure

The interaction diagram only shows the function relationships without explaining how
they collaborate in time. During the working process, the user can set the goa at any time
no matter whether or not the Flight Planning Module and the Neural Controller Moduleis
working on the current goal, the Flight Planning Module will accept the new goa and
analyze its reasonability, while in the mean time it may be still providing the Neural
Controller Module the desired data pairs for the current flight procedure.

If the new goal is reasonable the Flight Planning Module will stop the current control
process and start another process working on the new goal and set it as the current godl. If
the new goal is not reasonabl e the Flight Planning Module will continue current
controlling process and wait for another goal from the user.

Therefore, the working structure of this system is more like a server-client structure. The
user and the GUI module represent the client part which sends the requests to the server
program and the Flight Planning Modul e represents the server program which accept the
clients' request and decide which one will be processed. In one time thereis only one
request that will be accepted and be processed. Figure 5.2 shows this server-client
structure.

User
| |
| l |
_ \ 4 \ 4
Client GUI Module
_________________ A PP
| |
| |
Server | |
\ 4 A 4

Flight Planning M odule

l

NN Controller
Module —p

Plant

Figure5.2 The server-client structure analysis
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Chapter 6

Neural Controller Module Implementation

6.1 Process Analysisand Flow Chart

After the analysis and design | will now discuss the implementation. In this chapter first |
will analysis the modules’ working processes in detail, and then draw aflow char. All the
programs are written in Visual C++ 6.0 environment and in C language.

Figure 6.1 shows the structure of the Forward Modeling Inverse Controller marked on the
process steps and the transferring data. Here, the Identifier indicates a neural network
trained as the plant model, and the Controller is another neural network that will be
trained in real time, and the Plant here indicates the Microsoft Flight Simulator.

Backpropagation Error 8 Error
3
Desired 9
Data Control Data Plant Output
4 5 6
Conirolia Plant
A

Figure 6.1 The Process analysistor the Forward Modeling I nver se Controller

During the whole process,

- Step 1 isto propagate a desired output pattern through the neural controller;

- Step 2 isto get the control data out of the corresponding neural controller for
that desired value pattern;

- Step 3 isto propagate the control data pattern through the neural identifier;

- Step 4 isto send the control datato the plant;

- Step 5 isto read out the real output value from the plant;

- Step 6 isto get the error between the real output values and the desired values;

- Step 7and 8 isto backpropagate the error through neural identifier, and then
get the corresponding error at the input layer;
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- Step 9 isto train the neural controller assuming that the correct output is equal
to the controller network output plus the backpropagation error from the
identifier.

To model this process with a computer program, | designed aflow chart as shownin
Figure 6.2.

Desired output pattern

'

Propagate the pattern through the neural
controller

'

Get the output from the NN

controller i

Propagate the control data

Send the control datatothe pattern through the neural
plant identifier

l

Calculatetheerror between thereal
output values and the desired values

'

Backpropagate the error through
neural identifier

:

Train the NN controller

Figure 6.2 The Flow Chart of the NN Controller Module

In thisimplementation, | first trained a neural network to model the airplane plant. The
neural network simulator program | used to train this NN identifier is named the SNNS.
Stuttgart Neural Network Simulator is an open source program, which not only provides
the interface to construct the neural network and simulate itsrunning in it, also it offersa
variety of kernel functions for the creation and manipulation of networks that could be
combined in the user’s own program. In my later work, | have called some kernel
functions from SNINS to build the controller. | introduce the SNNS in the following
section.
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6.2 Stuttgart Neural Network Simulator

SNNS (Stuttgart Neural Network Simulator) isasimulator for neural networks devel oped
at the University of Stuttgart since 1989. It provides an efficient and flexible ssimulation
environment for research and application of neural networks. The users can start with the
manager panel for their application, and also can directly call for their kernel filesin their
programs. The simulator kernel offers a variety of functions for the creation and
manipulation of networks. The SNNS is distributed as ‘ Free Software’, so the user can
copy the software and modify it for his (her) own purpose. For more information about
SNNS, please refer to Appendix B.

6.3 Identifier Modeling

During the Neural Controller Module implementation, | have built the identifier neural
network and trained it, | use SNNS directly from its manager panel, and Figure 6.3 shows
this manager panel.

= [
| FELE || coun¥eal | [ IsmFo || BiSPLAy | (30 D1SPUE ] | BRAPH | | BIEHET |
| FEukInG || cascADE | | komowEr | | welswTs | FROJECTION | RHALYZER | | IMUERSION |
[ FRINT [ HELF || [ CLASSEE | [ auT
SHMS 4,2 (ck 1990-38 SHES-hroup at TPVR and HST
. 3 - -

Figure 6.3 The SNNS manager panel

The identifier isaneural network model for the aircraft plant, which should produce an
output similar to that of the plant. A typical topology for this nonlinear identifier isthe
Time-Delayed Neural Network (TDNN). Asin recent years the recurrent neural network
has been well studied, it has been applied to construct the nonlinear identifier aswell. |
have introduced these two neural network topologiesin section 3.3. Becauseit is hard to
compare them in the theoretic way, | did not get the conclusion which topology is better
to build the airplane identifier in section 3.3, here | will compare them in an experimental
| way. Therefore, in the implementation | build two models, onein NARMA model and
another one in Jordan network model and trained them with the same training data. From
training results | can select the better one as my identifier.

Here | will first describe these 2 neural network topologies briefly, and then show the

processes of creating and training them in SNNS. At last | will explain why | choose the
network with Jordan partial recurrent topology as my identifier.
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6.3.1 NARMA vs. Jordan Network

The nonlinear autoregressive moving-average (NARMA) is the most general class of
nonlinear models, which can be represented as following,

y(n+1) = fly(n), y(n=1),..., y(n =k +1),x(n), x(n - 1), x(n = j)]

That is, we drive TDNN with its past outputs and also with the input and its delayed
versions. See the left figure in Figure 6.4.

Jordan network is based on context PEs. The feed back parameters i arefixed. Its
topology is shown in the right part of Figure 6.4.

v(n)
»

x(n)

Neur al 1

Network

3 S

Figure 6.4 The NARMA Model and the Jordan Network M odel

6.3.2 Identifiers Constructing

Referring to the analysis in chapter 2, for thisidentifier it only has 4 input-output
parameters. The input parameters are the elevator control and the throttle control, and the
output parameters are the pitch value and the airspeed value. Using SNNS | first built two
neural networks respectively in the NARMA topology and the Jordan network topol ogy.

Based on the preliminary experience, | have already come to the conclusion that for an
identifier whose input and output relationship is not so complex one hidden layer with
around 20 neurons is enough. Of course, one can construct a multi hidden layer neural
network with each hidden layer having around 12 neurons. However, it will not help so
much, but only waste time in training. Therefore, in this application both in the NARMA
network and in the Jordan network | set only one hidden layer.

After deciding the neural network’ s structure and the layer, | constructed them in SNNS.
The panel used to construct atime delayed neural network is shown in the left part of
Figure 6.5, and the panel shown in the right part of the Figure 6.5 is used to construct the
Jordan network.
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Figure 6.5 The management panel for TDNN and Jordan Network in SNNS

The time-delayed length for the TDNN is set to 5. Figure 6.6 shows this 5 time-delayed

NARMA neura network and the Jordan network.
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Figure 6.6 The 5 time-delayed NARM A neural network and Jordan Network
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After | finished the constructing of the NARMA neural network and the Jordan network,
| need to work on some details about the neuron. That is, | should set the activation
function and the output function for each neuron. | will first explain what the activation
function and the output function of the neuron first are. Figure 6.7 shows the working
principle of the neuron.

Figure 6.7 The Working principle of the neuron

The activation function f_, (.) takesthe value of the net function, the value of the

previous activation and its bias as the input. The net function is equal to the sum of the
output of the preceding units multiplying the corresponding weights linking to current
units. The following equation shows how to calcul ate the activation value for unit j at
timet +1

a, (t+1) = f,, (net; (t),a(t),0)

The output value of unit j at timet +1is calculated as

0; (1) = fo, (&, (1))

Both in TDNN and in Jordan network for each neuron | set its activation function as the
“Act_TanH", the function of whichis

cosh(x) =3 (e* +e™);
snh(x) =%(e*-e™);
sinh(x) .

tanh(x) = cos(x) '

Figure 6.8 shows the tanH function plot.

Figure 6.8 The tanH function plot
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In SNNS it considers the output function and notatesit as f, (act), whilein most other
neural network simulatorsignore it. In those simulators the output value of the neuronis
exactly equal to the activation value. In my applications | just set the output function as

“Out_ldentity”. Figure 6.9 gives this function plot.

Figure 6.9 The Out_ldentiy Function Plot
6.3.3 Data Scaling

Neural networks are best provided with input/output values which lie within certain range.
In this application, the input and output values of the identifier neural network have been
scaled to [-1, +1]. That is, al the datain the training set should be scaled to [-1, +1]. And
the desired plant output value which will be put through the controller neural network
have also been scaled to [-1, +1]. However, before the control data has been sent to the
plant, it should be restored to the original value because in the Flight Simulator it uses the
non-scaled data.

In the data visualization part the airspeed value, pitch value, airspeed error, pitch error,
and the altitude value have been changed back to the original non-scaled version for the
easy-understanding purpose.

6.3.4 The Training Set and the Pattern File

The training set consists of the input and output pattern which is used to train the
identifier neural network. In SNNSthetraining set isincluded in atext file with the * .pat
extension. Thisfileis caled as the pattern filein SNNS.

The input and output pattern used to train the identifier neural work come from the plant.
In my application, the plant is the Microsoft Flight Simulator. The input parameters are
the elevator control and throttle control value, and the output parameters are the pitch
value and the airspeed value. These parameters are read out of the Flight Simulator every
half a second.

To read these parameters out of the Flight Simulator | use a module named FSUIPC. It is
athird party module for Microsoft Flight Simulator, which is able to read the data out of
and writing the data into the Flight Simulator. In Appendix C thereis abrief introduction
to thismodule.

While reading the input control data and output result data out, | control the airplane
myself in the Flight Simulator. Because for the training set the more situations it covers
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the better the training result will be, | try not to make a straight and level flight during the
process.

To make sure that the frequency in which | read the data out of the Flight Simulator is
sufficient, | wrote a program to write these input and output pattern data into the Flight
Simulator through the FSUIPC module in the same frequency. Asthe flight behavior is
exactly the same as before | flied, | can make sure the frequency | choose to read the data
out is sufficient.

To train the neural networks, | have created 2 training sets for each of them. Oneis used
in training, and another one is used in the validation. The training sets used for the Jordan
network include 400 patterns each. The training sets used for TDNN include 396 patterns
each.

In SNNS the training set is represented in a pattern file. The pattern file hasits own
structure. Figure 6.10 shows an example of the header of the pattern file, which will
indicate the number of the training patterns and the number of input and output
parameters.

SNNS pattern definition file V1.4
generated at Fri Nov 07 08:57:27 2003

No. of patterns: 400
No. of input units: 20
No. of output units: 2

Figure 6.10 An Example of the Pattern File with Header

The contents of the pattern file are the input and output patterns, which are also written in
aspecial format. For each pattern, it starts with the input parameter, and then followed
with the output parameters. Figure 6.11 shows an example of the contents of the pattern
file for the Jordan network.

# Input pattern 1:
0.000000 0.000000
# Output pattern 1:
0.000000 -0.101089
# Input pattern 2:
0.000000 0.000000
# Output pattern 2:
0.000000 -0.101089

Figure 6.11 An Example of the Pattern File with Contents
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6.3.5 The ldentifiers Training

| began to train the two neural networks when those pattern files were ready. During the
training process | should set a proper training cycle to be sure that the neural network will
be trained well but not over-trained. That is also the reason to use the validation training
Set.

To determine the best training cycles, | started with alarge training cycle to observe the
training process after along term and then determine the stop point, at which the training
set and the validation set get their minimum error so far, while after that point the
validation error startsincreasing. The Graphic function in SNNSis used to study the
training process, which will plot the training error in black color and the validation error
inred color in 2D coordinators. Figure 6.12 shows an example of the evaluation graph.
The X-axis represents the training cycle, while the Y -axis represents the Mean Square
Error for each cycle.

After analyzing the training processing of the Jordan Network | determined the training
cycle as 8000. Figure 6.12 shows the training process. Table 6.1 presents some evaluation
data during the training process. The evaluation data shows, after the 8000 training cycles,
the MSE of the training set is equal to 0.00142, and the M SE of the validation set is equal
to 0.00503.
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Figure 6.12 The Training Process of the Jordan Networ k

Table 6.2 The Training Error and Validation Error

Cycles Train\Test M SE

1 Train 0.01544
Test 0.17651

2400 Tran 0.00158
Test 0.01038

4000 Train 0.00926
Test 0.00155

6400 Tran 0.00153
Test 0.00841

8000 Train 0.00149
Test 0.00772
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For TDNN | set the training cycle to 800. Figure 6.13 shows this training process. Table
6.2 presents some evaluation data during the training process. The evaluation data shows,
after the 800 training cycles, the MSE of the training set is equal to 0.00149, and the
MSE of the validation set is equal to 0.00534.
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Figure 6.13 The Training Process of the TDNN

Table 6.2 The Training Error and Validation Error

Cycles Train\Test MSE

1 Tran 0.02911
Test 0.08965

240 Train 0.00207
Test 0.00711

400 Tran 0.71387
Test 0.00864

620 Train 0.00157
Test 0.00790

800 Tran 0.00149
Test 0.00534

6.3.6 Comparisons

The training result shows that for this Jordan network identifier and this 5-delayed TDNN
identifier they have the same ability to model the airplane plant, because at last the M SE
of thetraining set is around 0.00149. However, the 5-delayed TDNN has much shorter
training cycles than the Jordan network, which is 8000: 800. When the Jordan network
has been trained 800 cycles, the MSE of the training set is around 0.00194. The
advantage of the Jordan network is the simpler structure. Because of thisfor asingle
training cycle it needs a shorter training time.

In the Feed Forward and Inverse neural network controller, except the pre-trained neural
network identifier, there is another neural network performed as an inverse controller
which normally has the same structure as the identifier. This controller neural network
will betrained in real time. The Jordan network identifier has the same quality as the
NARMA identifier to model the airplane plant, while the Jordan network has a simpler

48



Chapter 6 Neural Controller Module Implementation

structure which makes it more suitable for real time training, therefore, | choose the
Jordan network structure both for the identifier and the inversed neural network
controller.

6.4 The Controller Module Programming

After training the aircraft identifier, | continued implementing this controller module.
Referring to the flow chart | have drawn in section 6.2, | have written the programs for
each running step, and then combined them together. In this procedure, | aso call some
kernel functions from SNNS kernel files. In Appendix D I list those programs used for
each step.

What should be mentioned here is that the controller neural network in this module is
also built with the Jordan network. It will be trained in real time, while the identifier has
kept unchanged all the time.

6.5 Module Test

During the programming, for each step | have performed atest. For example, in step 1
and step 2, | have to propagate the data pair through the neural network and get the output
result from network. To test | compared the result from my program with the result from
the SNNS after loading the same network and the same input. If they are the same, it
means my program is correct.

In step 4 and step 5, | have to write the data into the Flight Simulator and read the data
from the Flight Simulator, since | have already used those functions before (in the getting
training set process), they should be correct here.

In step 7 and 8, | have to backpropagate the error through the neural identifier, and then
to get the corresponding error at the input layer. What | have done for the testing was
repeating the evaluations several times with different error value as the input, and then
comparing the output of the functions. If those outputs had a reasonable trend, then |
would presume the function | have written was correct. For example, as the error
increases the absol ute value of the backpropagation error should also increase.

Instep 9, | have to train the neural controller based on single data pattern. | used the same
neural network and the same pattern data both in my program and in the SNNS, and then
set the same learning parameter, A, and asked them to learn in the same cycles. After this
was finished, | propagated the same pattern through the neural network both in my
program and in SNNS. From the output value of the network | made sure my program
was correct.
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After al the steps above have been proved correct, | combined them together and tested
the whole module using the flight plan “Taxiing”. During the taxiing the desired pitch
value has been set to the original value, and the desired airspeed has been set to 55 knots
per sec, which is the airspeed fast enough for flying.

Because | have not built the user interface at this stage, which includes the function to
visualize the evaluation data, at current time | only can evaluate the module directly from
the flight behavior from the Microsoft Flight simulator and alog file which recorded the
datavalue of those crucial flight parameters for one flight. From both | can make sure if
this module has been built correct.

Running this module with the flight plan “ Taxiing”, from the Microsoft Flight Simulator

| can observe, first, it seemed that nothing happened, but after afew seconds the throttle
was put to full slowly, consequently the aircraft began taxiing on the ground. The throttle
kept the full status all the following time. After the airspeed reached 55 knots per sec, |
ended this running. From the behavior of the aircraft the controller module seems doing
itsjob correctly.

Then, | turned to the log file, which recorded the data value of those important flight
parameters during the flight. The parameters include the altitude, the airspeed, the
airspeed error, the pitch, the pitch error, the throttle control, the throttle control error, the
elevator control, and the elevator control error. For the taxiing, only the throttle control
and the throttle control error are the most important parameters which should be paid
more attention to. Please refer to table 6.3 for the evaluation data of throttle control and
throttle control error during the taxiing procedure.

The throttle control data shows that during the controller’s training process the throttle
control changes from 0 to 1, which means from zero throttle control to the full throttle
control. Step by step the throttle error decreasesto O.

The evaluation data also shows that during this process the pitch value keepsits initial
degree, and the airspeed changes from 0 to round 55 Knots. Because during the taxiing
the elevator could not affect the pitch value, the pitch value always keepsitsinitial degree,
and the pitch error always keeps 0. As the airspeed increases to 55, consequently the
airspeed error decreases.

Table 6.3 The Evaluation Data During the Taxiing Procedur e

Iteration Throttle Control* Throttle Error
0 0.443426 0.158360
15 0.597751 0.063284
30 0.666610 0.038563
45 0.709646 0.024557
60 0.735142 0.014148
105 0.767303 0.001351

*Thethrottle control data has been normalized to [0,1]
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From the evaluation above, | can confirm the current controller module works correct and
| could move to next step, which isto implement the Flight Planning Module.
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Chapter 7

Flight Planning M odule | mplementation

7.1 Process Analysisand Flow Chart

In the designing phase | have defined the structures and the functions of the Flight
Planning Module, and also the flight plans for each flight goal and the desired plant
output for each flight procedure. Here | will analyze this module from the implementation
view point, the object of which isto make clear the running process and then to draw a
flow chart.

Asthe analysisin section 5.3 shows that the interaction among the controller systemisa
bit like a server-client. It is not that the Flight Planning Module will accept requests from
the user (actually it isfrom the GUI module) at any time. If at current time it is analyzing
aflight order from the user, but the user sets another order requested for processing, the
Flight Planning Module will deny the later request until current analysis has been
finished. However, while the Flight Planning Module is working on the new order’s
analyzing, it will still provide the Neural Controller Module the desired plant output
pattern for current flight procedure. Therefore, the Flight Planning Module is working
viaamulti-thread way.

Considering all these aspects, | draw aflow chart to model the working process of the
Flight Planning Module. See Figure 7.1.
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Figure 7.1 The Flow Chart of the Flight Planning M odule
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7.2 Modul€' s Programming and Testing

After have finished the process analysis and drawn the flow chart, | began to program this
module. What should be specially mentioned hereis | apply Win32 API functions to
implement the multi-thread function of my program.

During the testing | combine the Flight Planning Module and the controller module
together, which means the output of the planning module will be sent to the controller
module. From the flight ssmulator | could observe the behavior of the controlled aircraft.
If the behavior of the airplane is expected and the data recorded in the log file are
explainable, then | could say the planning module is correct and the interaction between
the planning module and the controller module is aso correct.

Theflight goal | set as the input of the Flight Planning Module is the Taking Off and the
altitude parameter is set to 3000 feet, which indicates the aircraft will take off and fly to
3000 feet. Observing from the Microsoft Flight Simulator, first, the throttle was slowly
put to full and then the aircraft began taxiing on the ground. When the speed reached to
55 Knots, the aircraft did not fly up immediately, but you may see atrend for that. After a
few seconds when the airspeed is around 65 Knots the nose of the airplane raised up and
the aircraft began flying up. And the throttle control kept full. In the beginning of the
flying up process the pitch shake alot, as the training continuing the range of the shake
decreased. At last the pitch value kept around 11 degree which is the desired pitch for the
flying up, and the airspeed kept around 80 Knots.

The aircraft kept flying up until its altimeter is around 3000, and then the pitch value
began to drop down and began shaking alot again, while the throttle still kept full.
During this flying up procedure, gradually the pitch did not shake so much and trend to
settle on a certain value. At last the pitch value is around O degree, and the airspeed kept
around 100 Knots. Then the airplane was performing alevel flight. Asthe airplane has
aready finished the goal to take off and fly to 3000 feet, | then stopped this testing.

The evaluation data recorded in the log file a'so proved that during each flight procedure
the pitch error decreased as the training went on and the pitch value was approaching the
desired value. Consequently the elevator error and throttle error were decreasing during
the training procedure. Please Refer to Table 7.1 for the evaluation data during the flying
up procedure.

However, during thistesting process | did not test the function which is allowed the user

set another flight order during a control process. | will leave this test to the next stage
after | finished the GUI module.
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Table 7.1 The Evaluation Data During the Flying Up Procedure

[teration Altitude* Pitch Pitch Error | Throttle Elevator
(.Feet) (Degr ee) (Degr ee) Error Error

0 596.000000 | 3.468187 | -7.531814 | 0.061148 0.338214
30 623.000000 | 12.565063 | 1.565063 | -0.010348 | -0.082713
60 677.000000 | 9.766780 | -1.233221 | 0.007887 0.060794
90 734.000000 | 10.656216 | -0.343785 | 0.002343 0.019228
170 861.000000 | 11.218511 | 0.218510 | -0.001320 | -0.011035
200 908.000000 | 10.818810| -0.181191 | 0.001134 | 0.008980
230 953.000000 | 11.004019 | 0.004018 | -0.000025 | -0.000201
260 997.000000 | 10.900331 | -0.099669 | 0.000620 0.004942
290 1045.000000 | 11.00052 0.000745 | -0.000013 | -0.000173

*Theinitial altitude is 596 feet.
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Chapter 8

Graphic User Interface M odule | mplementation
8.1 Implementation

Based on the design of the graphic user interface shown in section 4.2, | have written the
programs with the help of Windows API functions. | applied Windows GDI (Graphic
Device Interface) to implement the visualization function.

x
Goal:
| =
FParameters: IE
| Dane | | Stop | | Graph | | [ it
Current Goal:

Figure 8.1 The Graphic User Interface

Figure 8.1 shows this graphic user interface and Figure 8.2 shows the sub-window which
is used to visualize the evaluation data. This window will appear when the Graph button
in the main window has been pressed.
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Figure 8.2 The Graph Window
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After the user presses the Quit button a credit window will show up before the whole
program end. Figure 8.3 shows this credit window.

— About
The Meural Controller Application

AutoPilot Control Spgtem
+1.0

[iuxia Liang
2003-2004, DES Technical Urniversity of Delft

Figure 8.3 The Credit Window

8.2 Module Test

For this Graphic User Interface module | tested its function separately from other
modules. For the functions that should be tested together with other modules, like Done
and Stop, | leave them to the whole system tests that will be done later. In this stage |
only test the functions which seems more independently from other modules or the
functions which could be tested separately from other modules. For example, after the
user presses the Graph or the Quit button, a graphic window or a credit window should

appear.

The Graph window includes an eval uation data sel ection combo, X-axis scale buttons and
Y -axis scale buttons, a Grid button and a Close button. To test these functions | preset a
numeric array and load it into the graphic window. Figure 8.4 shows how the Grid
function works.

P ) SN

Figure 8.4 The Grid Function

Figure 8.5 shows how the X-axis and Y -axis scale function works. From the Figure 8.5
you may see the differencesin the display when | set the different X-axis scale with the
Y -axis scale unchanged. Choosing asmall X-axis scale will let the visualization focus on
the beginning procedure, and more detail can be shown. Choosing alarge X-axis scale
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will show more trend information, which is useful in the analysis for the whole running

procedures.
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Figure 8.5 The Visualization of the Test Data with the Different X-axis Scale
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And from the Figure 8.6 you may see the difference in the display if | set the different Y -

axis scale with the X-axis scale unchanged. Corresponding to different signal the user

may set the different Y -axis to get the best signal display.
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Figure 8.6 Visualization of the Test Data with the Different Y-axis Scale

After finishing this GUI module test, which is the last module in my implementation, |

was going to test the whole autopilot system, in which | combined all the modules
together and tested the whol e autopilot system.
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Chapter 9

System Testing and I mprovement

9.1 Using the Neural Flight Controller Program

The Neural Flight Control program is running in the Microsoft Windows 2000 or higher
Microsoft operation system, and the system must have installed the Microsoft Flight
Simulator 2002 (or 2004), which is the evaluation environment for this neural flight
control program.

When the neural flight control program initializes and does not finds that an airplaneis
prepared to take off in the Microsoft Flight Simulator, a warning message will appear and
then the control program will quit itself. So, before the user runs this control program, he
(she) must make sure the Microsoft Flight Simulator has already been in running and an
airplane has aready been loaded in the Flight Simulator.

x
loal:
| =
Parameters: IE
| Dione | | Stop || Graph | | Cluit
Curent Goal:

Figure 9.1 The Graphic User Interface

Figure 9.1 shows the main control panel of this neural flight control program, which will
show up immediately after the initialization finishes. The control panel allows the user
access to al the functions offered by the program.

9.1.1 Setting a Flight Order and Start Flying
This neural flight control program supports 3 flight goals, Taxiing, Flying up and Flying
down. To use this system control the flight, first, the user should select a goal in the flight

goa combo, and also fill in the atitude parameter in the Parameter text field below.
Figure 9.2 shows how to set the flight goal for once flying.
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£
Goal
[Take o =] |
Parameters: |3000 feet.
[ Dore || Stop |[ Graph ]| Quit |
Cunent Goal

Figure 9.2 Setting a Flight order

After finishing these two steps above, the user may then press the Done button to start the
flight controlling. Before really taking action, the user must make sure the airplane does
not brake at current time as the airplane will be in abraked status after theinitiaization in
the Flight Simulator.

As the Done button has been pressed, the flight order will be sent to be analyzed by the
Flight Planning Module. If the goal is reasonable, the control system will carry out the
godl, if not, awarning message will appear to inform the user the goal is not reasonable.
There are two kinds of warning message for the unreasonable goal. If the flight goa is
not suitable for current situation, a warning message, shown in the left of Figure 9.3, will
show up. If the flight goal is realizable while the altitude parameter is not set properly,
another warning message, shown in the right of the Figure 9.3, will show up.

Nillie x| SRR -
@ The B {\il-} The paramatar and tha goal pau set didn'k: rmabch
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Figure 9.3 The Warning M essage for the Flight Order

For example, in the beginning the airplane is standing still on the ground, if the user set
the god to fly up or fly down, the first warning message will appear no matter what
altitude parameter the user has set; if the user set the goal to take off while the altitude
parameter is set to a value lower than current altitude, then the second warning message
will appear.

If the setting has been approved not realizable, the control system will not take any
further action. It will be waiting for the next flight order from the user.

9.1.2 Change theflight goal

During the flight, the user is allowed to set another flight goal. The steps are the same as
mentioned in section 9.1.1. The user should first choose a flight goal from the goal
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combo, and then fill in the altitude parameter. After finishing these two steps, press the
Done button, then the order is sent to take action.

If this order is reasonable, the controller will stop current work and change to carry out
this order. From the status bar in the lower part of the control panel you may see the
current goal has changed to the new one. If this order is not reasonable, awarning
message will show up and the controller will still continue current work.

9.1.3 Stop onceflight controlling

To stop the flight control, the user can just press the STOP button in the control panel. It
will reset al the flight parameters and aso reload the flight in the Microsoft Flight
Simulator. Theflight goal isinitialized to the Taking Off.

9.1.4 Visualizing the Flying Data

During the flight, the user may visualize the flying data simultaneously in a Graphic
window. Press the Graph button in the control panel, and the graphic window will show
up. Each time there is only one signal that can be displayed. Therefore, the user should
specify the signal he (she) wants to be displayed from a combo in the upper right part of
the window. After selecting the signal, press the Reload button in the graphic window,
then the signal data from the beginning to current time will be visualized in the graphic
window. The data will not be visualized automatically, so each time the user wants to
visualize the data up to now, he (she) should click the Reload button once again.

The user can set the range of the values displayed on the X-axisand Y -axis. The X-axisis
corresponded to the running times. The Y -axisis corresponded to the signal value. Figure
9.5 isthe visualization of the pitch error signal.

e i =
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Figure 9.5 The Visualization for the pitch error signal
9.1.5 Quit
The Quit button in the control panel is used to quit the controller program. Quitting the

controller program will not affect the running of the Flight Simulator, which is different
with the Stop function.
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Before the controller program quits, a credit window will appear. It will vanish after you
click the left mouse button in it, and then the whole neural flight controller program will
quit from the operation system.

9.2 System Testing

During the implementation phase of each module, | have already tested their functions
separately. Here | combine all the 3 modules together and test the functions of the whole
neural flight control system.

The objectives of the system testing include:
- Test the controlling function for each flight goal, make sure the controller system
can work properly;

- Test the function that allows the user changing the flight goal during the flight
controlling;

- Test the Stop function, make sure it can reset al the flight parameters and reload a
flight in Flight Simulator to wait for anew control process;

- Test the Graph function, make sure it can be used to visualize the evaluation data
in real-time and al functions under it work properly;

- Test the Quit function, make sureit is able to end this Neural Flight Control
program and all the sub windows belonging to this program will quit together;

- Test and compare the output value from the identifier and the real output value
from the airplane plant;

- Evauate the stahility of control;

9.2.1 Testing the Controlling Function

For thistesting, first, | set the flight goal to take off to 3000 feet. Observing from the
Flight Simulation directly, in the taxiing process, as the throttle was put to full slowly the
aircraft began taxiing on the ground. The status bar in the bottom of the control panel
indicated current status was Taxiing, as shown in the left of Figure 9.6. When the speed
reached to 55 Knots, the aircraft did not fly up immediately, however, you could see from
the Flight Simulator, the airplane had the trend to leave the ground. After afew seconds
when the airspeed was around 65 knots the pitch raised up and the aircraft began flying

up.
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Figure 9.6 The Control Panel with the Status Bar
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From the status bar in the main control panel you might see the airplane has already gone
to the flying up status, as shown in the right of Figure 9.6. The throttle control still kept
full. In the beginning of the flying up process the pitch shakes upward and downward a
lot. Asthe training continued the range of the shake decreased. At last the pitch value
kept around 11 degree which is the desired pitch for the flying up, and the airspeed kept
around 70 knots.

People can aways refer to the flight instruments to get the airplane information during
the flight. Figure 9.7 shows the 6 most important flight instruments. Y ou can ignore the
lower left two instruments because in this application the airplane only performs the
straight flight. This figure was captured when the pitch settled on a certain degree during
the flying up procedure.

Figure 9.7 The Flight Instruments at the final procedur f the Flying up

The airspeed indicator shows that currently the airplane was flying at the speed of 70
Knots. The attitude indicator shows the pitch value of the airplane is around 12 degree,
and the altimeter, which is located to the right of the attitude indicator, shows that the
current atitude is around 2800 feet. The vertical speed indicator proved the airplane was
flying up, and the vertical speed is around 600 Knots.

50 feet before the airplane reached the desired altitude, its flight behavior changed again.
From the status bar | could see the flight was going into the default flying, which means
the level flight. Similar to the procedure of going from taxiing to flying up, in the
beginning of the default flying the airplane pitched alot. Asthe flight (training) went on,
the pitching magnitude decreased and the pitch value turned to keep on a certain value.
Observed from the attitude indicator the pitch was exactly kept on O degree. However,
from the altitude indicator the biggest hand (the hundred-foot hand) was moving
counterclockwise, which means the altitude of the airplane was decreasing. The vertical
speed indicator has proved this. Figure 9.8 shows what those instruments indicate at this
moment of the default flying.
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Figure 9.7 The Flight Instruments at the final procedure of the Default Flying

Asthe airplane has flown less than 2000 feet now, | entered another flight order letting
the airplane fly up to 4000 feet. After pressing the Done button, the status bar
immediately changed its display, the current flight goal changed to flying up and the
current status also changed to flying up, which means the controller program has
accepted this new goal and started working on it. Therefore, the function allowing the
user to change the flight goal during the flight control works correctly.

Thisflying up procedure is the same as the previous one, in the beginning the airplane
pitched alot, as the training continued the range of the shake decreased. At last the pitch
value kept around 11 degree which is the desired pitch for flying up, and the airspeed
kept around 80 knots.

As the airplane approaches to 4000, | set the flight order to fly down to 2000 feet. The
airplane then pitched down dramatically and the throttle has been pulled down slowly
until there is no throttle input. During the beginning of flying down the airplane till
pitched up and down, at some time the attitude of the airplane seems almost vertical. This
is because the desired pitch value is -3 degree, resulting from the big magnitude shaking
the pitch value would be some degree much lower than -3 degree, for example -25
degree,. This made the airplane descended dramatically.

Whileit got to the desired dtitude, the airplane is set to default flight. However, before
the throttle has been trained to put to full the airplane already hit the ground. Then | had
to end this test and look for away to resolve this problem.

9.2.2 Testing the Visualization Function

The evaluation data was visualized to include the altitude, airspeed value, pitch value,
airspeed error, pitch error, elevator control, elevator error, throttle control, throttle error,
identifier airspeed output, and identifier pitch output value. All these data are visualized
in the Graph window.

Figure 9.8 shows the pitch error during the taxiing procedure and the flying up procedure.

The Y -axisindicates the pitch degree. This figure clearly shows the pitch error goesto
zero during the training processin the flying up procedure.
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Figure 9.8 The Pitch Error Visualization during the Taxiing and flying up Procedure

Figure 9.9 shows the pitch error value and the altitude value during the take off procedure,
which includes the taxiing procedure, flying up procedure and the default flying
procedure.
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Figure 9.9 The Pitch Error and Altitude Value Visualization during the Taking Off

The plotted pitch error shows that, for each flight procedure, as the flight (training) goes
on, the pitch error decreases. The range of pitch value is decreased from [4, 18] to [10.5
11.5]. The biggest error magnitude is 7 degree. In the default flying procedure, even
though the pitch has been trained to the desired degree step by step, at last the pitch was 0
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Degree, the airplane has kept descending all the time and in afast way. During this flight
the biggest pitch error magnitude is 8 degree.
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Figure 9.10 Thevisualization of the evaluation signals during the Taking Off and Flying Up

Besides of the pitch error signal and the altitude signal, | tested the visualization function
for all the other signals also. Figure 9.10 shows the plots of those signals during the
taking off to 3000 feet flight procedures. The testing helped me to make sure all the
functionsin the graph window, like the scaling function, Reload function, and etc, are

working properly.
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9.2.3 Estimating the I dentifier Output

Figure 9.11 and Figure 9.12 shows the comparison between the identifier output and the
real airplane plant output. The test covers three flight procedures, the taxiing, the flying
up and the default flying. Figure 9.11 plots the airspeed value and Figure 9.12 plots the
pitch value.
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Figure 9.11 The I dentifier Airspeed Output and the Real Airspeed Value
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Figure 9.12 The I dentifier Pitch Output and the Real Pitch Value

Because the taxiing procedure is arelative shorter procedure compared with other flight
procedures, the data belonging to this taxiing procedure in the whole training set are of
course asmall portion. Moreover, the characteristics of the airplane taxiing on the ground
aretotally different from its characteristics flying in the air, so after the training the
identifier cannot simulate the plant well in the taxiing procedure.

For other flight procedures, the comparison in Figure 9.11 and Figure 9.12 demonstrates
the identifier isnot well trained on the airspeed, while it works much better on the pitch

value. We could say that dynamic system 2., has a more complex input-output
relationship than the dynamic system >, does (referred to Figure 2.5). In dynamic
system >, the airspeed value and the elevator input determine current pitch value; for
dynamic system 2., the pitch value and the throttle input determine current airspeed
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value. With the same training data the airspeed variable requires more effort to be trained,
compared with the pitch variable.

The interesting thing is even though there is an inaccuracy in the identifier, the controller
neural network has not been affected so much, and still been trained more and more
better to control the flight.

9.2.4 Testing the Miscellaneous Functions

Besides the testing above, | have a so tested the Stop function and the Quit function to
make sure they work correctly.

Stop is used to stop the current flight procedure, reset al the parameters, and let the
Flight Simulator reload the airplane to wait for another flight control. After pressing the
Stop button, the flight goal in the control panel has been reset to Taking Off, thereisno
display in the status bar, and the Flight Simulator stops the current flying process and
beginsto reload aflight. After the airplane in the Flight Simulator has been loaded, |
made the flight order from the control panel to test if the system really has been reset
properly. Thetest results prove the Stop function works correctly. The testing on the
Quit function, which is used to quit the whole controller program, also showsit is
working correctly.

9.3 Improvements

From the testing above, | should do some improvements on the current neural flight
control system to solve the following problems,
- Thedramatically shakings during in the beginning phase of each flight procedure;
- From the flying down procedure going to the default flying procedure the
controller neural network has not enough time to get trained before it hits the
ground;
- During the default flying procedure even the pitch has been trained to O Degree
gradually, the airplane has kept descending all the time and in afast way. See
Figure 9.9;
- When theflight is going from the taxiing procedure to the flying up procedure, or
from the flying up procedure to default flying procedure or to flying down
procedure, the airplane pitchesin alarge degree.

Corresponding to these problems, my solutions are,

- Limit the controller’s output range, because the controller’s output is the input of
the plant. The limiting on the elevator control value could consequently reduce
the shaking range of the pitch;

- From one flight procedure going to another, the controller neural network always
need some time to be trained properly. Since a general controller neural network
cannot betrained, it is better use a different controller neural network for different
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flight procedures. That is, there will be 4 controller neural networks for the 4
different flight procedures, taxiing, flying up, flying down, and default flying. In
the different flight procedure, the Neural Controller Module will adopt different
controller network to control the airplane plant;

- The keep descending problems seem to be the result of the incorrect desired pith
value, which should not be 0 Degree. Then | change it to a higher degree, e.g. 2
Degree.

- When the flight is going from the taxiing procedure to the flying up procedure, or
from the flying up procedure to default flying procedure or to flying down
procedure, the pitch error in the beginning points will be arelative large number,
which consequently makes the airplane pitch in alarge degree to revise the
current attitude. To solve this problem, | should modify the reference table to
make the desired pitch output increase or decrease to a desired value gradually.
Then the reference model for this application is no more aregular reference.

Table 9.1 The Reference M odel

Flight Desired Output
Procedure Pitch Value Airspeed Value
Taxiing as current 55 Knots
Flying Up 11 Degree as current
Flying Down From Current pitch value 100 Knots
gradually go to - 3 Degree
Default Flying | From current pitch value gradually as current
go to 2 Degree

After having improved the controller system according to the first 3 improvement
solutions, | tested it again. Observing from the Flight Simulator, the airplane did not pitch
so dramatically in the beginning phase of each flight procedure. During the flying down
procedure the attitude of the airplane looks much better than before. It does not seem like
diving to the ground. When going from the flying down procedure to the default flying
procedure, the airplane flies properly and does not hit the ground again. In the default
flight, the airplane did not descend so apparently, and almost keep the level flight.

Figure 9.13 shows the pitch error during the taxiing and the flying up procedure. The
pitch error shown in the right plot is taken from the airplane controlled by the improved
controller, and the data shown in the left plot is from the airplane controlled by the
previous controller system. From the comparison, you may see the pitching magnitude
has decreased quite alot and has been in the acceptable range.

The experiments | have done here proved my suspicion, that is, the keep descending
problems during the default flying process is resulted from the incorrect desired pitch
value, which should not be 0 Degree. Changing the desired pitch value to 2 Degree solves
this problem. During the default flying there will alwaysbe a[1, 2] Degree pitch error
remaining in the end. However, the error in this range does not affect the altitude of the
airplane so much, asthe altitude plot shown in Figure 9.14.
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Figure 9.13 The Pitch Error Comparison

From Figure 9.14 you may see in most time of the default flying the airplane keeps level
flying. However, thereis around a 400 feet descend in the beginning of the default flying
procedure, which is still descending in alarge degree. From the pitch error plot you may
see that in the beginning points the pitch error is arelatively large number, which
consequently makes the airplane pitch in alarge degree to revise the current attitude. As
the improvement analysis in the beginning | should improve the controller according to
the fourth improvement solution, which isto change the reference model, to solve this
problem.

teAE!
AT

A

|

|

|

|

e |
1ERES F |
' |
|

|

|

|

h

K

T} 1 1 i T + T v
n LT) 1] Tl L& 1] SAEs S B 4 ) el N el i UMl s k1] HEE

vard
£ o _Il _'II.'.'T'"I"'"'\'“"'""'—'——
v oI
L
Bl
v =G0 000 Vo

Flying Up > Default Flying —p

Figure 9.14 The Altitude and Pitch Error Plot During the Taking Off

After finishing this improvement, | tested this controller system again. Figure 9.15 isthe
atitude signal and the pitch signal visualization during the taking off to 2000 feet
procedures. From the pitch signal visualization, which isthe lower plot in Figure 9.15,
you may see during the beginning phase of the default flying, the pitch is descending
gradually, which makes the increase of the altitude more and more slower and at last the

74



Chapter 9 System Testing and Improvement

altitude settles on a certain value. Compared to the atitude plot in Figure 9.14, it is
obvious that the non-regular reference model makes the airplane fly more smoothly and

safely.
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Figure 9.15 The Altitude and Pitch Error Plot During the Taking Off to 2000 procedures

Figure 9.16 shows the atitude value and pitch error during the taking off to 2000 feet and
then flying up to 4000 feet and then flying down to 2500 feet.
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Figure 9.16 The Altitude and Pitch Error During the Taking off, Flying up and Flying Down

In the pitch evaluation plot of Figure 9.16, the red color ink is used to visualize the real
pitch output value while the blue color ink is used to visualize the desired pitch output
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value. From the comparison we can see that the neural controller can respond to the
changes of the desired pitch value immediately. In another words, this neural controller
has fast reaction ability.

These testing results show the problems existing in the old controller system have been
solved. Now the current neural flight controller system can achieve controlling the
airplaneto take off, fly up and flying down; the pitching magnitude during this flight
procedures have been in an acceptabl e range; during flight the user can change the flight
goal; the system provides the current flight situation to user and visualize the evaluation
datain a 2D coordinatorsin real time. Therefore, all the required functions | defined for
this controller system in the beginning have been achieved.

9.4 Controller Stability Analysis

There are several ways to analyze the stability. For example, we may characterize
stability from an input-output viewpoint, or we can characterize stability by studying the
asymptotic behavior of the state of the system near steady-state solutions, like
equilibrium points. Here | prefer to use the steady-state stability analysis.

If this nonlinear aircraft system is represented by the state model,

x=f(x) (9.2)
wherethe x isa2-dimensional vector, which include the parameters of the elevator
control and the throttle control, defined inadomain D O R". f(x) islocally Lipschitz
functions of x. Suppose X [1 D isan equilibrium point of equation 9.1. Whenever the
state of the system startsat X , it will remainat X for all futuretime. It is said to be
asymptotically stableif it is stable and x(t) approachesto X ast tendsto infinity. Starts
with any element in aset of x, if the state approachesto X as t tendsto infinity, then this
set is called region of attraction (also called region of asymptotic stability, domain of
attraction, or basin). When the region of attraction is the whole space R", we define that
the region is globally asymptotically stable. My goal isto study if the current system is
asymptotic stable and characterize the attraction region.
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Figure 9.17 The Elevator Input and the Throttle Input during the Flying Up Procedure
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Figure 9.17 isthe elevator input plot and the throttle input plot during the flying up
procedure. Figure 9.17 shows in the beginning of the control phase both the elevator
input and the throttle input starts with arbitrary number. As the process goes on, both of
them are slowly settling on a certain value to achieve the desired pitch and airspeed
output. Figure 9.18 includes the corresponding pitch value and the airspeed value taken
from the elevator control input and the throttle control input.
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Figure 9.18 The Corresponding Pitch Output and the Airspeed Output

With asmaller input the output will be smaller aso, and the control inputs will finally
settle on a certain value to achieve a certain desired output; these two characters prove
this control system is asymptotic stable. It can be assumed that this controller systemis
global asymptotically stable.
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Chapter 10

Conclusions and Discussions

10.1 Conclusions

In this project | have developed a neural flight control system to control an airplane’s
flight. The structure of the neural controller is called Feed Forward and Inverse Control,
in which a pre-trained neural network is used to provide the error of the dynamic control,
and an online learning neural network is used to compensate for the errors and then
produce the control input. While the Neural Controller Module is producing the control
datato the plant, a Flight Planning Module is working on the higher level to manage the
global control in this autopilot system. The duties of the Flight Planning Module are
producing the flight plans, building the corresponding reference model, and determining
current flight situation. Except of these two modules there is another module, the Graphic
User Interface Module, used to accept the flight order from the user, together with which
they construct this neura flight control autopilot system.

The results presented in the previous chapter demonstrate that the current neural flight

controller system can

- achieve controlling the airplane to take off, fly up and flying down;

- run companied by the Microsoft Flight Simulator, which isalarger CPU time
consuming application;

- control the airplane so that it achieves a stable flight;

- hasthe ability to respond to the changes of the desired plant output immediately;

- provide an graphic user interface to accept the order from the user, in which the user
could set flight order;

- let the user set another flight order during flight;

- providethe current flight situation to the user and visualize the evaluation datain 2D
coordinatesin real time;

The tests results a'so show that the training of the controller neural network is affected by
the pre-defined desired plant output quite alot. Therefore, setting the proper desired plant
output for each flight procedure is very crucia for this neural flight controller system.

During the improvement | have limited the output range of the elevator control to
decrease the pitching magnitude, but the pitching phenomena still happensin the
beginning phase of each flight procedure, which will directly cause the unsmooth flying.
This pitching will disappear as the training goes on, though. Figure 10.4 shows the
normalized elevator input, the pitch output during the flying up procedure, and the flying
track of the airplane during this procedure.
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Figure 10.1 The Flight Evaluation For the Flying Up Procedure

Unfortunately, this un-smooth flying problem cannot be avoided for this online training
neural controller system. Thisisthe inherent drawbacks of the online training neural
controller system. However, because of its online training ability, the neural controller
system could adapt itself to any unknown environment. This makes the neural network
controller more flexible than the rule-based control technique, like fuzzy control
technique.

In the fuzzy control system we define those controlling rules beforehand and based on the
experience of the expert. The advantage of fuzzy control is that for some very complex
problems we may have an intuitive idea about how to achieve high performance control.
But the conseguent problem is a human expert cannot predict those situations happened
due to disturbances, noise or plant parameter variations. Moreover, it is hard for the
expert to effectively incorporate the stability criteria and performance objectives.

For this flight control problem, as the real pilot does, it is not hard to write those rules

controlling the airplane to take off, to fly up, and to fly down, and the airplane under the
rule-based control may perform more smoothly. However, the problem is there are so
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many uncertain factors during flying, like the weather, the airplane itself, and the
surrounding objects. Even if the expert is able to predict everything and write them into
rules, finally this rule base will be quite big and complex, and might not balance the
stability criteria and the performance objectives.

According to the analysis above, we can come to the following conclusion. The control
system applying the neura control technique will be flexible for the unknown
environment, because the controller could adapt itself to the new environment. However,
the system under neural control will not work so smoothly or continuously.

10.2 Discussions and Future Work

In the designing phase, | only planed to use one general controller neural work for all
these flight procedures. During the testing | found that, see Figure 10.2, even in the first
flying up procedure, which belongsto the Taking Off action, the controller neural
network has been trained well to control the airplane to fly up, however, after the default
flying, when going to the flying up procedure again, which belongsto the Flying Up
action, the controller still needs time to adapt itself to the flying up control. Therefore, the
training for the controller neural network in each flight procedure is a sort of over-
training, which could make it especially good at controlling current flying procedure,
while not suitable for others.
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Figure 10.2 The Pitch and Altitude Value during the Taking Off and Flying Up

Therefore, during the improvement phase | adopt different controller neural network to
control. Figure 10.3 shows the altitude of the airplane during the taking off to 3000 feet
and then flying up to 4000 feet procedures.
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Figure 10.3 The Altitude and Pitch Error Plot during the Taking Off and Flying Up

According to the pitch error data in the flying up procedures belonging to the Taking Off
and the Flying Up respectively, you could see the problem has not been solved. Even if
the same controller neural network is applied to the Flying Up procedure, after it has been

trained well in the Taking Off, when it is used again the controller neural network still
needs time for the training.

One reason could be used to explain this situation. The proper elevator control to make
the pitch equal to the desire value is depended on a current airspeed, see Figure 10.4, the
faster the airspeed, the more pressure the rear of airplane will have, so asmaller change
on the elevator control could get alarger change on the pitch value. For the flying up
procedure and the default flying procedure, the airspeed in the beginning phaseis
different from the airspeed in the ending phase. That iswhy even if the controller has
been trained well in the last time, when used again it still gets the time to be trained well.
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Figure 10.4 How the Elevator Control Changesthe airplane's pitch

Asdiscussed in the last section, the neural control system will make the airplane fly not
smoothly. Though this un-smooth flying problem cannot be avoided, there are solutions
to constrain it. To make the airplane fly more smoothly under the neural controller, my
solution isthe following. For current neural network controller it getstrained at each time
thereis atraining pattern available, which will make the controller quite “sensitive”.
Therefore, not training the controller every time when one training pattern is available, it
could be trained when, for example, 10 training patterns available. Then the airplane
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could keep the current pitch for awhile, though the pitch will change after the next
training, the airplane will seem to be flying more smoothly.
For current neural flight control autopilot system, it only can control the airplane perform
the straight flight. For future’ swork, | hope to add more functions and take more things
into account, e.g. the oil mixture rate, the weather information, the air transport
information. The adding functions could make this neural flight control autopilot system

- control the airplane to make aturn;

- control the airplane to land;

- make the airplane fly more safely and smoothly.
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Appendix
A. Aviation Introduction

A.1 Flight Controls— Ailerons, Elevator, and Rudder

Figure A.1 shows the three imaginary axes of the airplane. By use of the flight controls,
the airplane can be made to rotate about one or more of these axes. [4]

Agaptad fram Rog MMschasas Prkste oL Hangoook

Figure A.1 The Three Axesfor an Airplane,
A —Vertical Axis(Yaw), B —Longitudinal Axis (Roall), C —Lateral Axis (Pitch)

The longitudinal axis runs through the centerline of the airplane from nose to tail.
Airplanesroll about their longitudinal axis. The lateral axis runs sideways through the
airplane from wingtip to wingtip. Airplanes pitch about their lateral axis. The vertical
axis of the airplane runs up and down from the cockpit to the belly. Airplanes yaw about
their vertical axis.

Ailerons

Ailerons are the moveabl e surfaces on the outer trailing edges of the wings. Their
purpose isto bank the airplane in the direction you want to turn. When the control wheel
isturned to the right, as shown in the left of Figure A.2, the aillerons simultaneously move
in opposite directions. The left wing aileron lowers, increasing the lift on the left wing.
The right wing aileron raises, decreasing the lift on the right wing. This causes the
airplaneto bank to the right. The right diagram in figure A.2 shows the situation when
the control wheel isturned to the | eft.
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K
GE ]| O

Whesl turned left Whesl trned right

ATSpEEG oM Fog Mamans Avate FROC Hanonook Agspted from Fod Mashady's Fryde ABE Hsnibaok
Figure A.2 Banking to the Right and Banking to the L eft

Ailerons alow one wing to develop more lift and the other to develop less. Differential

lift banks the airplane, which produces the total lifting force in the direction you want to
turn.

Elevator

The elevator is the moveable horizontal surface at the rear of the airplane (Figure A.3).
Its purpose is to pitch the airplane’ s nose up or down.

Pulling back on the control wheel deflects the Pushing forward on the control whesl deflects the
elevator upward which forees the tail dowrwvard. elevator downward which forces the tail upward.
This in turn, causes the nose to pitch up. This in turn, causes the nose o pitch down.

Aggtad fom Aot Mashass Friksts Rint Hengbag
Agaptss fam Aog MSShegs Frivats PROL Hangbook aepted B

Figure A.3 How the Elevator Control Changesthe airplane’s pitch

The elevator control works on the same aerodynamic principle as the aileron. Applying

back pressure on the control wheel of the airplane, as shown in the left of the Figure A.3,
deflects the elevator surface upward.
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Lower pressure is created on the underside of the tail, which moves it downward, and the
nose of the airplane pitches up. The airplane in the right of Figure A.3 shows what
happens when the control wheel is moved forward. That will cause the pitch down.

Rudder

There’' s also athird flight control, the rudder, which controls yaw around the vertical axis.
The rudder is the moveable vertical surface located at the rear of the airplane. Its purpose
isto keep the airplane’ s nose pointed in the direction of the turn. Rudder ssmply corrects
for the forces that want to twist the airplane in a direction other than the direction it wants
to turn.

Applying the right rudder pedal, as shown by airplane A in Figure A .4, forces the tall
assembly to swing in the direction of lower pressure. As the tail moves, the airplane
rotates about its vertical axis. Application of right rudder pedal yaws the nose to the right.
Applying left rudder pedal, shown by airplane B, yaws the nose to the | eft.

Adverse yaw is the reason airplanes are equipped with rudders. When banking to the
right, the aileron on the left wing lowers, causing that wing to lift up. While the lowered
aileron increases the lift on the left wing, it also causes adlight increase in drag.

@ Mose Yaws MNose Yaws 0

to the Right to the Left
Tail Moves Left Tail Moves Right

sDy 80133,

Liner Lo
F'ressur::\ | E ! Pressure
High High

dm  Tail Mavernent Pressure  Pressure o) Movement -

Hightﬁ'udder_/l L Left Rudder

Applied Applied

Agapted fnom Rog Machasy's PrvEs Aol Handooak

Figure A.4 How the Rudder help in Yaw
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A.2 Primary Instruments

Figure A.5 shows 6 mostly used flight instruments. Beginning with the first row and from
left to right, these instruments respectably called the airspeed indicator, attitude indicator,
altitude indicator, turn coordinator, heading indicator, and vertical speed indicator.

Figure A.5 The 6 Most Important Flight Instruments

The airspeed indicator displays current airspeed going through the airplane. Only the
airspeed in the green half circleis suitable for the flying.

The attitude indicator is an artificial representation of the real horizon, it displays the
airplane's attitude (its upward or downward pitch and the bank the wings). The thin while
horizontal line in the middle isthe artificia horizon line. The attitude indicator’ s vertical
calibration lines are worth five degrees each, so you read them (from bottom to top) as 5,
10, 15, and 20 degrees of pitch. The attitude indicator shown in the Figure A.5 shows
current pitch value of the airplane is around 3 Degree.

Figure A.6 The Attitude Indicator During the L eft Banking

Figure A.6 shows what the attitude indicator will indicator when the airplane banks to the
left, which dips the left wing downward toward the ground. Notice that the miniature
airplane in the attitude indicator also appearsto dip its left wing toward the ground.

Right to the attitude indicator, it is the altitude indicator. It has three hands. The shortest
hand points to numbers representing the airplane’ s height in tens of thousands of feed.
The medium, thicker hand represents altitude in thousands of feet. The long, thin hand
represents the airplane’ s atitude in hundreds of feet. The altimeter indicator in Figure
A.5 shows current altitude of the airplane is around 600 feet.
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The heading indicator is a mechanical compass that shows which way the airplane points.
Notice the numbers on the face of the heading indicator. Add a single zero to any number
on the face to get the airplane’ s actual heading.

Directly below the atimeter isthe vertical speed indicator (VSl). Asits name suggests,
its needle indicate the vertical speed of the airplane showing arate of climb or descend.
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B. Stuttgart Neural Network Simulator

SNNS (Stuttgart Neural Network Simulator) is a simulator for neural networks devel oped
at the University of Stuttgart since 1989. It provides an efficient and flexible ssimulation
environment for research and application of neural network. The users can start with the
manager panel for their application, and also can directly call for their kernel filesin their
programs. The simulator kernel offers a variety of functions for the creation and
manipulation of networks.

The SNNS simulator consists of four main components that are depicted in figure B.1,
Simulator kernel, graphical user interface, batch simullator version snnsbat, and network
compiler snns2c. There was aso afifth part, Nessus, which was used to construct
networks for SNNS. Nessus, however, has become obsolete since the introduction of
powerful interactive network creation tools within the graphical user interface and is no
longer supported. The ssimulator kernel operates on the internal network data structures of
the neura nets and performs all operations on them. The graphical user interface XGUI,
built on top of the kernel, gives a graphical representation of the neural networks and
controls the kernel during the simulation run. In addition, the user interface can be used
to directly create, manipulate and visualize neural netsin various ways. Complex
networks can be created quickly and easily.

barch exscution
mainad ciip
network file X-Windows
as C source coda graphical r—
user interface —
XGUI rm—
—
sraphical nemwork '
TEPTESENTATION
remwork editor !
simmlation comirol
BATCHMAN
ASCII nemwork
descriprion file
(intermadiate
form)
nser dafined
activation
functions

|
SNNS ; b |:| r intarazl
b | network modification fnctions perwork
i 1
|

simulator
lermel
written in C

TEpTesanration

Ty memory managemsant

Figure B.1 The SNNS components

SNNS isimplemented completely in ANSI-C.
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SNNS s beginning with a manager panel, which is showed in figure B.2. The SNNS
manager allows the user to access all functions offered by the package.

=TT
| FILE || coWTmdi || IsFd || DiSPuAy | |30 DISPLA ) | BRAPH | | BIGHET |
| PRukIMG || cAscADE | | kowosElr || uEIGHTS | PROJECTION] | AHALYZER | | IMUERSIOH |
[ FRIWNT [ HELF || [ CLASSEE | [T
SHMS 4.7 (o) 1990-30 SHES-hroup at TPVR and HST
. [ » -

Figure B.2 The SNNS manager panel

The FILE browser handles al ‘Load’ and ‘ Save' operations of networks, patterns,
configurations, and the contents of the text window. Configurations include number,
location and dimension of the displays as well as their setup values and the name of the
layers.

In CONTROL panel the user sets the parameters used to train the neural network,
including the meaning of the learning, update, initialization, and the number of learning
cycles.

The INFO panel displays all dataof two units and the link between them. After select a
certain unit the user can change and display the activation function and the output
function of the unit.

In BIGNET Users create their neural networks. SNNS provides ten tools for easy creation
of large, regular networks, which are general, time delay, art 1, art 2, artmap, kohonen,
Jordan, elman, Hopfield, auto assoz.

The DISPLAY servesto display the network topology, the units' activations and the
weights of the links.

The GRAPH isatoll to visualize the error. Graph isonly active after calling it. This
means, the error is only drawn as long as the window is not closed. The advantage of this
implementation is the simulator is not slowed down as long as graph is closed. The error
curve of the net is plotted until the net isinitialized or anew net isloaded.

The WEIGHT display window is a separate window specialized for displaying the
weights of a network.

The simulator kernel offers avariety of functions for the creation and manipulation of
networks. These can roughly be grouped into the following categories:

- functions to manipulate the network

- functions to determine the structure of the network
- functions to define and manipulate cell prototypes
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- functions to propagate the network

- learning functions

- functions to manipul ate patterns

- functions to load and save the network and pattern files

- functions for error treatment, search functions for names, functions to change
default values etc.

In programming SNNS has its own way to represent the unit, the network, and the pattern.
For more details about SNNS, you may refer to their home page,

http://www-ra.informatik.uni-tuebingen.de/SNNS/.
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C. FSUIPC Module

To generate the training set, | should read the data value out of the Flight Simulator; to
write the control the airplane, | should write the control datainto the Flight Simulator. To
do these, | use a module named FSUIPC . With its help, | could read or write the values
of the flight parameters from the Flight Simulator.

The functions used to do these jobs are,

FSUIPC_Read(DWORD dwOffset, DWORD dwSiza, void * pDest, DWORD
* pdwResult);

FSUIPC_Write(DWORD dwOffset, DWORD dwSiza, void * pSrce, DWORD
* pdwResult);

The first function is used to read the data out of the Flight Simulator, while the second
function is used to write the data into the Flight Simulator. In both cases | supply an
offset, identifying the data required or to be written, and a size (in bytes). The pointers
"pDest" for reads and "pSrce” for writes naturally must point to the areato receive the
result or (for writes) the area containing the data to be written. These pointers are defined
as"void *" here so that the user can use whatever component size or structure he (she)
likes, as appropriate for the datain question.

The DWORD for the result is used to identify the reason for error should the return be
FALSE. The only possible errors on these calls are an unopened link or afull data area.
To ask the FSUIPC to processit, just call the function,

BOOL FSUIPC_Process(DWORD * pdwResult);

The following tables list the read-write offset addresses for those flight parameters that
are used in my application. The third column indicates the size of the parameter.

o Elevator
| Write | 0BB4 | 2 | Elevator position indicator |

o Throttle
| Write | 088C | 2 | Engine1 Throttle lever, 4096 to +16384 |

o Airspeed
| Read | 02BC| 4 |IAS: Indicated Air Speed, asknots* 128 |

o Pitch
| Read | 2F70 | 8 | Attitudeindicator pitch value, in degrees. |

o Altitude
| Read | 07D4 | 4 | Autopilot dtitude value, as metres* 65536 |
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D. Neural Controller Module I mplementation Details

The following shows those sub-functions | used for each step to construct the Feed
Forward and Inverse Controller,
Step 1, to propagate a desired output pattern through the neural controller

- krui_loadNet(char *filename, char ** netname); load the net file

- krui_loadNewPatterns(char *filename, int *set_no); load the pattern file, optional,
only for thefirst time loading the desired value patterns

- krui_setPatternNo(int pattern_no) ; sets the current pattern

- krui_showPattern(int mode) ; according to the mode, krui_showPattern stores
the current Pattern into the units activation (or output) values.

- krui_setUpdateFunc(char *update_func) ; changes the current update function,
because the default oneis set to “ Serial Order” , while in this application | need
“Topological_Order”

- krui_updateNet(float * parameterinArray, int NoOflnParams); Updates the
network according to update function

Step 2, to get the control data out of the corresponding neural controller for that
desired value pattern
- krui_getUnitOutput(int UnitNo) ; Returns the output value of the unit

Step 3, to propagate the control data pattern through the neural identifier

- krui_loadNet(char *filename, char ** netname); load the net file

- krui_loadNewPatterns(char *filename, int *set_no); load the pattern file, optional,
only for thefirst time loading the desired value patterns

- krui_setPatternNo(int pattern_no) ; sets the current pattern

- krui_showPeattern(int mode) ; according to the mode, krui_showPattern stores
the current Pattern into the units activation (or output) values.

- krui_setUpdateFunc(char *update_func) ; changes the current update function,
because the default oneis set to “ Serial Order” , while in this application | need
“Topologica _Order”

- krui_updateNet(float * parameterInArray, int NoOflnParams); Updates the
network according to update function

Step 4, to send the control data to the plant
- FSUIPC_Write(DWORD dwOffset, DWORD dwSize, void *pSrce, DWORD
*pdwResult); Prepare the parameters used to write datato MS FS
- FSUIPC_Process(DWORD * pdwResult); Process the action

Step 5, to read out thereal output information from the plant
- FSUIPC_Read(DWORD dwOffset, DWORD dwSize, void * pDest, DWORD
*pdwResult) ; Prepare the parameters used to write datato MS FS
- FSUIPC_Process(DWORD * pdwResult) ; Process the action

Step 6, to get the error between thereal output values and the desired values
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- The error is equal to the desired plant output value minus the real plant output
value

Step 7and 8, to backpropage the error through neural identifier, and then get the
corresponding error at theinput layer
- float * Error_Backprop(int pattern_no, float learn_parameter, float delta_max);
Calculate the Backpropagation Error for the Input units

Step 9, totrain the neural controller assuming that the correct output isequal to the
controller network output plusing the backpropagation error from theidentifier
- krui_setL earnFunc(char *learning_func); hangs the current learning function
- krui_DefTrainSubPet(int *insize, int * outsize, int *instep, int * outstep,
int *max_n_pos); define how sub patterns should be generated during training
- krui_learnSinglePattern(int pattern_no, float * parameterinArray,
int NoOfInParams, float ** parameterOutArray, int *NoOfOutParams); learns
only based on the current pattern pair
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