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Abstract 
 
Nowadays as the need for automatic vehicle control grows, more and more researches 
have been done in this field, and different approaches have been adopted to design a 
controller system.  The aim of this project is to design and implement a neural flight 
control system handling the basic flight behaviors of an airplane in a computer simulation 
environment.  
 
The whole system is divided into 3 modules, the Graphic User Interface module, the 
Flight Planning Module and the Neural Controller Module. The GUI module will accept 
the flight order from the user. The Neural Controller Module is used to provide the 
adaptive flight control. The Flight Planning Module is working in the higher level to 
manage the global control in this autopilot system.  
 
The results demonstrate that this neural flight control system is able to control the 
airplane, Cessna 172, to take off, fly up and to fly down, and the airplane under control is 
flying stably. 
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Preface 
 
This is my final project report for the degree of Master of Science. I am doing the final 
project at the Knowledge Based Systems group of the faculty of Electrical Engineering, 
Mathematics and Computer Science at the Delft University of Technology. This goal of 
my project is to build a neural flight control system and investigate the ability of the 
neural network used in the flight control. 
 
This report is divided into 3 parts, the system design part, the system implementation 
part, and the conclusions part. The report starts with an introduction that explains this 
project and its goals. In the following chapter 2, with a brief background introduction to 
the airplane, I give an airplane system model used for this application. Chapter 3 talks 
about the neural network controller, including its background, its principle and its 
topologies. I explain 3 mostly used neural network controller topologies in detail and 
make a comparison between them, which finally results in the topology suitable for my 
application.   
 
Chapter 4 and chapter 5 explain the structures of the neural flight controller system, how 
each module has been divided and the functions for each module. Chapter 6, 7, 8 present 
the implementation process for the 3 system modules. Finally you may find the system 
testing result and the conclusions in chapter 9 and chapter 10. 
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Chapter 1 
 
 
Introduction 
 
 
1.1   Crew Assistance System – Intelligence Cockpit Environment      
 
 
As more functions have been built in the airplane, the workload of the pilot becomes 
more and more heavier. In order to enhance flight safety and mission effectiveness, a 
crew assistance system has been proposed. The crew assistance system can help the pilot 
make a decision and even take part of the flight task. The ICE (Intelligent Cockpit 
Environment) is this sort of crew assistance system [8]. 
 
The ICE project applies artificial intelligence techniques to deal with the flight 
information to help the pilot by offering the crucial information, taking over tasks, or 
prioritizing alerts in case of malfunctions or mistakes. Figure 1.1 shows the global model 
of a Crew Assistance System. For more information about the ICE project, please refer to 
http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/. 
 

 
Figure 1.1 The global model of a Crew Assistance System 
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1.2   The Neural Flight Control System 
 
 
While the Intelligent Cockpit Environment is designed to help the pilot to make decisions 
and to take part of flight task, the Neural Flight Control Autopilot system is developed as 
part of the ICE project, the objective of which is to control some basic flight tasks. 
  
In order to provide the consistent controlling qualities the neural network based approach 
has been selected for the controller module, instead of the expert system or the 
conventional controller. Choosing this could avoid indicating the explicit flight rules or 
avoid looking for the extensive gainscheduling parameters, because the flight rules and 
the parameters may differ in airplanes and flight environment. 
 
There are many neural controller structures available. The control structure I used for this 
application is called the Feed Forward and Inverse Control, which is build by two neural 
networks. One is a pre-trained network and another is an online learning network for 
inverse control. The reasons I choose this structure and the characteristics of this structure 
are explained in chapter 3. 
 
Once built, the neural flight control system could be applied to different aircraft 
applications. The architecture will remain the same. The required work is only to replace 
the pre-trained neural network (identifier) to another suitable one and to indicate the 
desired output of the airplane for each flight procedure.  
 
In this application the evaluation is performed in the Microsoft Flight Simulator 2002, 
and the airplane used to control is the Cessna 172.  
 
 
1.3   The Project Goal 
 
 
The general goal for this project is to develop a neural flight control system handling the 
basic flight behaviors of an airplane, which are taking off, flying up, and flying down, in 
a computer simulation environment. The general goal can be elaborated as the following: 
- Design a flight control system adopting the neural network control technique; 
- Develop a prototype running in a computer simulated environment; 
- Investigate the ability of this neural flight control system. 
 
The requirements for this neural flight control system are: 
- Providing a graphic user interface to accept the order from the user, in which the user 

could set the flight goal and corresponding altitude parameter; 
- The available flight goals are Taking Off, Flying Up, and Flying Down; 
- The system must be able to run with the Microsoft Flight Simulator which is a larger 

CPU time consuming application, and function well; 
- The airplane under control should fly in a stable way; 
- During the running process the user will be informed of the current flight goal and the 

current flight situation; 
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- The program should also provide the evaluation data, which is better in a friendly 
way, in a table format or in visualization; 

- It should not take too much effort to adapt the system to make it work with other 
airplanes other than Cessna 172. 
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Chapter 2 
 
 

Flying Analysis  
 
 
2.1 Aviation Introduction 
 
 
When the plane is in the air, it suffers four forces, which is lift, weight, thrust, and drag. 
Figure 2.1 shows the action of the four forces. All the figures in this chapter and in 
appendix A are from the Rod Machado’s Ground School, which is one of the help 
documents in the Microsoft Flight Simulator. The pilot’s job is to manage the resources 
available in order to balance these forces [4]. 
 

 
Figure 2.1 The Four Forces acting on an airplane in flight 

A - Lift, B – Thrust, C – Weight and D – Drag 
 
Lift is the upward-acting force created when an airplane’s wings move through the air. 
Forward movement produces a slight difference in pressure between the wing’s upper 
and lower surfaces. This difference becomes lift. It is lift that keeps an airplane airborne. 
 
Weight is the downward-acting force. With the exception of fuel burn, the airplane’s 
actual weight is difficult to change in flight.  
 
Thrust is a forward-acting force produced by an engine-spun propeller. Generally, the 
bigger the engine the greater the thrust produced and the faster the airplane can fly up to a 
point. Forward movement always generates an opposite forces called drag. 
 
Thrust causes the airplane to accelerate, but drag determines its final speed. As the 
airplane’s velocity increase, its drag also increases. Eventually, the rearward pull of drag 
equals the engine’s thrust, and a constant speed is attained. 
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There are 3 major flight controls that help the pilot to control an airplane, which are 
aileron, elevator and rudder.   Ailerons are the moveable surfaces on the outer trailing 
edges of the wings. Their purpose is to bank the airplane in the direction the pilot wants 
to turn. Elevator is the moveable horizontal surface at the rear of the airplane. Its purpose 
is to pitch the airplane’s nose up or down. Rudder is the moveable vertical surface located 
at the rear of the airplane. Its purpose is to keep the airplane’s nose pointed in the 
direction of the turn. 
 
For more details about these controls and the primary instruments in an airplane, you may 
refer to the Appendix A. 
 
After this introduction, in the next section I will explain how a real pilot controls the 
airplane to take off, fly up, fly down and keep a level flight. 
 
2.2 Flying Process Analysis 
 
 
To design a system controlling the airplane’s flight, first of all, the designer should know 
how a real pilot flies and which instruments or controls should be paid special attention to 
during one flight procedure. Study of these will help us to design a more reasonable, 
intelligent autopilot system. 
 
Because in this application I only set three flight goals, which is Taking off, Flying up, 
and Flying down, the flight analysis made here is only about the flight procedures which 
will happen to achieve the 3 flight goals. 
 
Level Flights 
Level flight means the airplane does not gain or lose altitude.  The pilot controls the 
elevator to make the changes on the pitch, which will cause the plane’s altitude changing. 
 
To make sure that the airplane is in the level flight, the pilot will refer to the instruments 
like the attitude indicator, the altimeter indicator and the vertical speed indicator. The 
Figure 2.2 shows the responses of those instruments if the pilot pitches the airplane’s 
nose up.  
 

 
Figure 2.2 The Instruments Display 
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The attitude indicator’s miniature airplane points upward toward the sky, while in the 
altimeter, which is located to the right of the attitude indicator, the biggest hand is 
moving clockwise. This means the altitude is increasing. Directly below the altimeter in 
figure 2.2 is the vertical speed indicator. Its needle also deflects upward, showing a rate 
of climb. These are additional indications that the airplane is climbing and not 
maintaining level flight. 
 
Climbs 
To climb the pilot controls the elevator to make the airplanes pitch up. Apparently, with a 
certain engine power the bigger the climb angle the slower the flight speed. To make the 
airplane stay in the air the airspeed should be at least 50 knots per sec, the climb angle is 
an important issue during the climb. Figure 2.3 shows the relationship between the climb 
angle and the airspeed. 
 

 
Figure 2.3 The Power, Climb Angle and Airspeed 

 
Airplanes have a specific climb attitude that offers the best performance while keeping 
the airplane safely above its stall speed. With climb power applied (usually full throttle in 
smaller airplanes), the pitch attitude is adjusted until the airspeed indicates the proper 
climb speed.  For the Cessna 172, the pilots always use a speed of 75 Knots for all climbs. 
When the Cessna 172 climbs at this speed its pitch will maintain at around 11 degree. 
 
Descents 
Airplanes can fly downward without power. Just lower the nose. The pilot can adjust the 
nose-down pitch attitude using the elevator control and the airplane can descend at any 
(reasonable) airspeed as the pilot want. Unlike climbing, we may choose to descend with 
a wide range of airspeeds.  
 
Taking Off 
To take off, the objective is to accelerate the airplane to a sufficient speed where we can 
raise the nose to climb attitude. This is sometimes known as rotating. It is recommended 
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that rotating should be at least 5 knots above the airplane’s no-flap stalling speed (which 
is 50 knots – the beginning of the airspeed indicator’s green arc). When the airspeed 
indicator shows 55 knots, raise the nose to the attitude that results in an 80-knot climb. 
That is the take off. 
 
 
2.3 The Aviation Parameters in Modeling 
 
 
Though there exist 3 major flight controls, to reach the goals I set for this application, 
only one elevator control will be used. According to the analysis in the previous 2 
sections, the pilot could only use throttle control and elevator control to finish those flight 
jobs. The flight parameters that are directly influenced by these two controls are the 
airspeed and the pitch.  
 
Figure 2.4 shows the representation of the airplane model used for my application, which 
has two inputs, elevator control and throttle control, and two outputs, the airspeed and 
pitch. 
 

elevator control                   airspeed 
                  
                         throttle control       pitch  
 
 

 
Figure 2.4 The Flight System Modeling 

 
This dynamical system model can also be represented as Figure 2.5, which is used for the 
input and output analysis. 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 The input – output relationship for this dynamic airplane model 
 

This interconnected dynamic system has 
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21 yd +  produces the output 1y , which means the current elevator input and current 
airspeed value determine the pitch value of the next time.  For the sub-dynamic system 

2∑ the input 12 yd +  produces the output 2y , which means the current throttle input and 

current pitch value determine the airspeed value of the next time. 
 
Besides of the airspeed and pitch, there are also some other parameters influenced by the 
throttle and the elevator, like the altitude and the vertical speed. Compared with the 
airspeed and pitch, those parameters are more like the indirect results of the throttle and 
the elevator control. For example, if the airplane is in air and pitches up, then the altitude 
will increase and the vertical speed will be a positive value, and vice versa. So it is better 
to regarded the altitude value and the vertical speed value as the references, instead of as 
the parameters that should be used in the system modeling. For example, when the user 
sets a flight order for the airplane, besides the flight action he (she) will also be asked to 
set the altitude the airplane should fly to; and during the flight control, the autopilot 
system will always check the altitude value for the flight situation analysis.  
 
Therefore, to model a flight system which is used to finished the 3 goals, I will only use 2 
inputs and 2 outputs. The flight system indicates an airplane only can flight straight. The 
inputs are the throttle control and the elevator control, while the outputs are the airspeed 
value and pitch value.  
 
To control an airplane make a turn I should think about more parameters, e.g. the rudder 
control, the aileron control, the bank degree and etc. As explained in Appendix A.1, the 
ailerons control is used to bank the airplane in the direction one wants to turn, and the 
rudder control is used to keep the nose of the airplane pointing to the direction of turn. 
The airplane model then will be represented as shown in Figure 2.6.  
 

elevator control                   airspeed 
                  
                          throttle control       pitch  
 
                            rudder control               heading direction 
 

             aileron control      bank degree 
 

Figure 2.6 The Flight System Modeling 
 
 
 
 
 
 
 
 
 
 

 
 

Flight System 



 

 12

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 Neural Network in Adaptive Control 

      13

 
 
Chapter 3 
 
 
Neural Network in Adaptive Control 
 
 
In this chapter, I will first introduce the history of the NN controller and how it is 
classified, and then I will elaborate on 3 mostly used NN structures, and make a 
comparison among them in a theoretic way. Finally I will decide on one structure that 
will be used in this neural flight control system, also considering the current application. 
 
 
3.1   Introduction 
 
 
The first NN controller was developed by Widrow and Smith in 1963. Widrow and Smith 
used Adaline to stablilise and control the pole-balancing act. Interest in using NNs for 
control only started at around 1987. Those applications demonstrated that NNs can be 
applied successfully to control unknown nonlinear systems. A number of new NNs 
control structures were also proposed. For examples, feedback error learning, neural 
internal model control, neural predictive control, forward and inverse modeling, 
neurofuzzy, generalized and specialized leanings. The neural network controller can be 
classified in the following way [1]. 
 
Goal and not goal oriented. If the neural network is trained based on the desired plant 
output signal, it is known as goal oriented, otherwise it is not goal oriented.  
 
Closed loop and open loop. Closed loop and open loop are commonly used in the 
conventional control system. In closed loop control the inputs of the controller include 
the error signal, which is normally from the desired plant output and the plant real output, 
and the past errors signal es(k), es(k-1),…, es(k-n+1). In open loop control the inputs of 
controller are the desired plant output and the past states of the plant without the feedback 
error signal. 
 
Feedforward and feedback control. The feedback controller is quite similar with the 
closed loop controller, the inputs of which consist of the error signal. The feedforward 
controller is similar with the open loop controller, the inputs of which are only the desired 
plant output and the past states of the plant.  
 
Reference model and without reference model control. In reference model control, the 
desired output of the plant is specified through a stable reference model. The object of the 
controller system is to make the real plant output )(ky p equal to the reference model 
output, which is 
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ε≤−
∞→

||)()(||lim kyky mpk
 

for some specified constant 0≥ε .  
 
Direct and indirect control. In direct control the controller is trained to reduce the error 
between the plant and the desired output. In indirect adaptive control, it is focused on 
some parameters of the plant, which may not be the output of plant. The controller is 
trained to produce the same value on those parameters as the plant does. 
  
Hybrid and non-hybrid type. In the hybrid controller system the neural networks are 
used as an aid to improve the performance of some conventional controller or the fuzzy 
controller. In the non-hybrid control the controller system is implemented by the neural 
networks only. 
 
Generalized and specialized learning. When the neural network is trained to simulate 
the behavior of the plant in all situations, it is called generalized learning. If the neural 
network is trained to simulate the plant only in a special situation, it is referred to as 
specialized learning. 
  
Inverse and Non-inverse control. When the neural network controller performs as an 
inverse model of the plant, this control is referred to as inverse control. Most neural 
networks used for the control function are the inverse controller.  
 
To have an overview of all possible control structures, people group them into multi-
levels. On the top level it is classified by the hybrid and non-hybrid classification. On the 
second level it is classified by the controller updating signal, which are  

- Control signal 
- Desired output signal 
- Feedback controller output signal 

 
Figure 3.1 shows the multi-level categorization of neural network control strategies [1]. 
 
For this flight controller system, I only adopt the neural network for the controller 
module, and the controller is adapted according to the error between the desired output 
signal and the real output signal. Therefore, this flight controller system belongs to the 
non-hybrid, desired output signal control class. In the following sections I will introduce 
3 main control structures in this class. 
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Figure 3.1 The multi-level categorization of neural network control strategies 
 
 
3.2 The Non-hybrid and Desired Output Signal Control Strategy 
 
 
In this section I will introduce 3 main control structures belonging to the non-hybrid, 
desired output signal control, which are the Direct Inverse Control, the Forward 
Modeling Inverse Control and the Neural Predictive Control. 
 
3.2.1 The Direct Inverse Control 
 
 
       dy                           u             py              u                                               py  
  
           e  
            
           
              
        
 
 

Figure 3.2 The Direct Inverse Control and the Inverse-model’s Training 
 

Plant 

NNc 
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Figure 3.2 shows the representation of the Direct Inverse Control structure and how the 
inverse controller model has been trained.  The controller is placed before the plant with 
the desired signal input to the NN controller. However, the representation does not show 
all the connections among the controller.         
 
Figure 3.3 shows the structure details in the direct inverse control. These are two possible 
structures of the Direct Inverse Control scheme. One is called the Closed Loop Direct 
Inverse Control and another is called the Open Loop Direct Inverse Control.  
 

dy  e   u      py                                  dy                       u                   py  
  
       _ 
                 e      -    
 
                  + 
          

Figure 3.3  The Direct inverse control -  closed loop and open loop 
 
As explained in Section 3.1, for the closed loop structure, the input of the neural network 
controller consists of the error signal and the past errors signal es(k), es(k-1),…,es(k-n+1). 
While in the open loop control the controller does not have these feedback error signals 
as input, its input are only the desired plant output and the past states of the plant. 

 
3.2.2   The Forward Modeling and Inverse Control 
 
In the Forward Modeling and Inverse Control system there are two neural networks. One 
is used as the plant identifier, and another neural network is used as an inverse controller. 
The identifier neural network should be trained off-line, and then it will keep fixed during 
the later processes.  Another neural network will be trained on-line to perform as the 
inverse model of the plant. Figure 3.4 shows the scheme of the Forward Modeling and 
Inverse Control structure. The object of this control system is to minimize the error 
between the desired output and the plant output. 
 
The running steps are as the following: 

1. According to the desired plant output the first NN provides the corresponding 
plant inputs; 

2. The plant inputs run through the plant and the forward plant model; 
3. The error between the desired output and the output of the plant is 

backpropagated through the forward model; 
4. The neural network inverse controller is trained based on the backpropaged error 

from the input layer of the NN model. 
 
During training the weights of the forward model remain unchanged, only the weights of 
the inverse network are adapted.  In this processes it assumes that the backpropagated 
error from the forward model plus controller output is equal to the correct plant input.  
 

PlantNNc NNc Plant
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Figure 3.4 The Forward modeling and inverse controller 

 
 
3.2.3 The Neural Predictive Control 
 
The steps for the Neural Predictive Control are as follows [14]: 

1. Reference Model generates a reference trajectory; 
2. Optimization model calculates a new control input vector that minimizes the cost 

function, with the previous calculated control input vectors and their 
corresponding prediction outputs of the plant model; 

3. Repeat steps 2 and 3 until desired minimization is achieved; 
4. Send the first control input to the plant; 
5. Repeat the whole process for the next step. 

 
The structure of the neural predictive controller is shown in Figure 3.5. Like the forward 
modeling and inverse controller the Neural Predictive Controller also includes a NN 
model, which is used to predict future values of the plant output according to a certain 
sequence of the plant input  ( ),...1(),( +kuku ).  Those predicted values are used to 
calculate the value of a certain cost function.  
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   Figure 3.5 The Neural Predictive Control 

 find such a plant input vector for which the cost function has its 
 then use the first element in that input vector as the input of the plant. 
lant output )1( +ky p is known, the whole procedure is repeated.  

the cost function is shown as following, 

kt =
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Where ry  represents the output of the reference model (i.e. desired output), and my  is 
the output of the NN model. kλ  is the move suppression factor or control weighting 
sequence. It is used to penalize excessive changes of the input signal ( u∆ ). 1N  is the 
minimum counting time step, and 2N  is the maximum counting time step, and uN is the 
control time steps. The predictions of the plant will run from 1N  to 2N  future time steps. 
The bound on the controlling time steps is uN . The first term of the cost function is a 
measure of the distance between the model prediction and the desired future trajectory. 
The second term penalizes the large changes of the input signal ( u∆ ). The third 
summation defines constraints on the control input. The parameters s, r, and b 
characterize the sharpness, range, and offset of the input constraint function respectively. 
 
The Newton-Rhapson algorithm has been widely used for the optimization model to 
determine the best-input vector U. With the Newton-Rhapson algorithm the cost function 
is minimized iteratively to determine the best U.  
 
An iterative process yields intermediate values for J denoted as )(kJ . For each iteration 
of )(kJ  an intermediate control input vector is also generated and is denoted as 
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After numbers of iteration when the value of the cost function )#( +kJ is smaller than a 
certain value, then the first element of the input vector )#( +kU  will be sent to the plant. 
 
3.2.4 Comparison  
 
In the Direct Inverse Controller the structure will force the network to represent the 
inverse of the plant. However, there are drawbacks to this approach: 

- First, if the nonlinear system mapping is not one-one then an incorrect inverse 
can be obtained. 
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- Second, the inversed plant models are often instable, which may lead to the 
instability of the whole control-system. Therefore, in the traditional control-
system design it is usually avoided to adopt. Frequently, the control signal 
calculated by the inverse controller attains high magnitudes, so that it has to 
be limited before applying to the plant.  

 
Compared with the Direct Inverse Control, the Forward Modeling and Inverse Control 
has an additional NN plant model, which is used in the inverse neural network training 
processes. The error signal is propagated back through the forward model and then the 
inverse model, however, only the inverse network model is adapted during this 
procedure.  
 
The error signal for the training algorithm in this case is the difference between the 
training signal and the system output (it may also be the difference between the training 
signal and the forward model output in the case of noisy systems, which is adopted when 
the real system is not viable).  
Jordan and Rumelhar [6] show that using the real system output can produce an exact 
inverse controller even when the forward model is inexact, which will not happen when 
the forward model output is used.  
 
In comparison with Direct Inverse Control the Forward Modeling and Inverse Control 
approach has the following features: 

- In case where the system forward mapping is not one-one a particular inverse 
will still be found [6] 

- Since the controller neural network gets trained assuming the correct plant 
input is equal to the backpropagated error from the forward model plus 
controller output, the training process will be stable. 

 
Therefore, the Forward Modeling and Inverse Control could be regarded as an improved 
version of the direct inverse control.  
 
The Neural Predictive Controller consists of four components, a plant to be controlled, a 
reference model that specifies the desired performance of the plant, a neural network 
modeling the plant, and an optimization model used to produce the plant input vector. 
The object is to have an input vector for which the value of the cost function is lower than 
a defined value. Then the first element of the plant input for current time will be applied 
to the plant. In section 3.2.3 I have given an example of the cost function and the 
Newton-Raphson cost function minimization algorithm. 
 
The disadvantages of the Neural Predictive Control are 

- Numerical minimization algorithms, e.g. Newton-Raphson, are usually very 
time consuming (especially if a minimum of a multivariable function has to be 
found), what may make them unsuitable for certain real time applications. 
When sampling intervals are small, there may be no time to perform minimum 
searching between the sampling times.  



Neural Flight Control Autopilot System 

 20

- The prediction controller asks for a neural network model which could do a 
very good job to simulate the plant, since the result of the whole controller 
system depends on the correct prediction value. However, in some 
applications it could not be realized. 

 
For this neural flight control system it is evaluated in the Microsoft Flight Simulator 
environment. While the Microsoft Flight Simulator is running, it will occupy so much 
CPU time, therefore the time-consuming problem should be taken very seriously here. 
Though there are some other optimal algorithm other than Newton-Raphson which will 
simplify the optimization operation, it cannot ensure that the system will work properly 
associated with another big program like Microsoft Flight Simulator.  
 
Moreover, in the Neural Predictive Control model a precise identifier has been asked. 
That is, we need to train an excellent aircraft neural network model beforehand. The 
problem in this application is that it is too hard to find that sets of training data covering 
all situations to train the aircraft NN model. However, it is not the problem for Forward 
modeling and inverse control. As mentioned above, Jordan and Rumelhart have showed 
that in the Forward Modeling and Inverse Control it can still produce an exact inverse 
controller even when the forward model is inexact if using the real system output to adapt 
the controller. 
 
On these points the Forward Modeling and Inverse Control is more suitable for this 
application.  Therefore, I choose for the Forward Modeling and Inverse Control structure 
to build the control module. 
 
 
3.3 Identifier 
 
 
The identifier is a neural network model of the plant. In this application the identifier is a 
neural network model of the aircraft plant. There are many topologies available to 
construct a neural network. Normally, to model a dynamic system people prefer to 
choose the time delayed topology, or the recurrent topology. In this section I will first 
introduce a neural component, memory PE, which makes the difference between the 
Time Delayed Neural Network and the Recurrent Neural Network.  
 
3.3.1 The Memory PE 
 
Figure 3.6 shows the general structure of a memory PE and how the memory PE feeds an 
M-P PE. The g(.) is a delay function. The memory PE receives in general many 
inputs )(nxi  from the previous layer, and then produces multiple outputs 

[ ]T
D nynyy )(),...,(0= , which are delayed versions of )(0 ny . The right diagram of the 

figure 3.9 shows how the memory PE feeds a normal M-P PE. It is important to 
emphasize that the memory PE is a short-term memory mechanism, while the network 
weights represent the long-term memory of the network [3]. 
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Figure 3.6 The memory PE and How it feeds to a M-P PE 
 
Two kinds of memory PE have been mostly used, which are the delay-line PE and the 
Context PE. In Figure 3.7 the left diagram shows the delay line PE, the upper right 
diagram shows a linear context PE and the lower right diagram shows its representation. 

 
Figure 3.7 The Delay Line PE and the Linear Context PE and Its Representation 

 
When the memory PE is built from a delay line, we call it a delay-line PE, and it 
implements memory by delay. The delay-line PE is the memory structure used in the 
TDNN.   
 
The output of the context PE can be calculated in this way, 
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Normally we represent this PE as in the right lower diagram of Figure 3.7, where the 
delay is not apparent. The neural network that consists of the context PE is called 
recurrent neural network. 
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Because of the two kinds of memory PE, we have the time delayed neural network and 
the recurrent neural network. To model a dynamic system a typical solution is the Time-
Delayed Neural Network. As in recent years the recurrent neural network has been well 
studied, it has been applied to construct the nonlinear identifier as well.  
 
Here I will first explain how to use the Time Delayed Neural Network in the dynamic 
system’s modeling. And then I will introduce two partial recurrent neural networks, 
which is a simplified version of a recurrent neural network. I will make a comparison 
between the TDNN identifier and the Partial Recurrent NN identifier during my 
implementation phase which is mentioned in chapter 5. 
 
3.3.2 TDNN Applications 
 
In system modeling people always adopt the time delay topology to implement  the 
nonlinear moving-average (NMA) modeling, the nonlinear autoregressive (NAR) 
modeling, the nonlinear autoregressive with external input (NARX) modeling, and the 
nonlinear autoregressive moving-average (NARMA) modeling.  
 
Nonlinear Moving-Average Modeling 
In nonlinear moving-average (NMA) modeling, the output of the model is a nonlinear 
function of its input: 

)]1(),...,1(),([)1( +−−=+ knxnxnxfny  

 
Figure 3.8 The Nonlinear Moving-Average  Model and the Nonlinear AutoRegressive Model 

 
Nonlinear AutoRegressive Modeling 
In nonlinear autoregressive (NAR) models the output of the model is given by 

)]1(),...,1(),([)1( +−−=+ knynynyfny  
In this equation the next output is the function of the past output. This type of model is 
used in prediction.  
 
Nonlinear AutoRegressive with eXternal input (NARX) 
In this model the inputs are the past outputs and current input, 
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)](),1(),...,1(),([)1( nxknynynyfny +−−=+  
This model is shown in the left part of Figure 3.9. 
 
Nonlinear AutoRegressive Moving-Average modeling (NARMA) 
The nonlinear autoregressive moving-average (NARMA) is the most general class of 
nonlinear models, and it is a combination of the two previous types: 

)](),1(),(),1(),...,1(),([)1( jnxnxnxknynynyfny −−+−−=+  
 
The next output is the function of the current input, the current output and their delayed 
versions. In the class of the Time-Delayed Neural Network I choose NARMA to model 
the aircraft plant. See the right part of Figure 3.9. 

 
Figure 3.9 The Nonlinear AutoRegressive with eXternal Input Model and the Nonlinear 

AutoRegressive Moving-Average Model 
 
3.3.3 Partial Recurrent Neural Network 
 
Jordan and Elman proposed simple networks based on context PEs and network 
recurrency that are easy to train. Figure 3.10 shows the Jordan and Elman networks.  
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Chapter 4 
 
 
System Design 
 
 
4.1 General System Scheme 
 
 
To design a controlling system achieving automatic flight, a powerful and flexible 
controller is the essential element. Additionally it needs some assistant parts in the whole 
system, which will be used to, for example, estimate the flight process, and produce the 
real-time flight plans, and etc.  
 
According to the different tasks and functions the whole system has been divided into 3 
parts, which are the graphic user interface part, the flight planning part and the neural 
controller part. The functions of each part will be elaborated in the following sections.  
 
 
 
 
                   
                     Goal                                                         
                                                                      Environment Information       
 
 

    Plant Information 
 

 
         Flight Plan 
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                                                                       Controlling Data   
 
 
                                                                           

Plant Output 
 

                                               
 

Figure 4.1 The General Scheme of the NN Controlled Automatic flight system 
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Figure 4.1 shows the general system scheme. From it you may see how the system works 
and see the relationship between the user interface, the flight plan and the neural 
controller parts.  
 
In the beginning, the user set the flight order in the user interface, e.g. Fly Up to 3000 
feet, which includes the flight action and the altitude parameter.  Then user interface 
sends this order to the flight planning system. Here the flight order will be analyzed to 
determine whether it is reasonable or not.  If it is reasonable, the planning system will 
create a flight plan which may consist of several steps. Corresponding to each step the 
planning system will send different data to the controller module.  
 
In this case the data sent from the planning module to the controller module are the 
desired plant output. After receiving these desired plant output data the controller will 
then produce the corresponding controlling data that will finally be applied to the airplane 
plant.  
 
The flight planning system will also keep eye on the whole flight process, update its 
flight records to provide the proper plant output data.   
 
In the following sections I will elaborate these 3 modules in details. 
 
 
4.2 The Graphic User Interface 
 
 
Through the graphic interface the user is able to set the flight order, which includes the 
goal and relative parameters. For example, the user could set the goal as “Taking Off”, 
and then set the altimeter parameters as 3000 feet. 
  
The outlook of the Graphic User Interface is shown in Figure 4.2. There is a combo 
control in the GUI which is used to select the flight action, and the text field under it is 
used to accept the parameter indicating the altitude that the airplane is expected to meet. 
There are also 4 buttons in the interface, done, stop, graphic, and quit.  
 
After the user presses the Done button, the interface module will send the flight goal 
parameter and the altitude parameter to the Flight Planning Module if both parameters are 
exist. The Stop button is used to stop a flight. It will reset all the parameter and reload the 
flight in Microsoft Flight Simulator.  
 
When the user presses the Quit button, the autopilot system will end and all the other sub-
windows will also end. Before it quits from the operation system a credit window will 
show up. After the user click the credit window the whole autopilot system will quit. 
 
The “Graphic” function is used to visualize the evaluation data. The following signals can 
be displayed: 

- Altitude; 
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- Airspeed;  
- Airspeed Error, which is the difference between the real airspeed and the 

desired airspeed value; 
- Pitch; 
- Pitch Error, which indicates the difference between the real pitch value and 

the desired pitch value; 
- Throttle control; 
- Throttle control error, which indicates the backpropagation error at the input 

throttle neuron of the identifier network; 
- Elevator control; 
- Elevator control error, which indicates the backpropagation error at the input 

elevator neuron of the identifier network; 
- Identifier airspeed output; 
- Identifier pitch output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 The Graphic U
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Flight Plan Module 
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- analyzing the reasonability of the current goal; 
- deciding the flight plans; 
- providing the desired data pairs corresponding to each flight plan; 
- checking the current flight situation. 
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Figure 4.3 The Flight Planning System Model 
 
After the user sets the desired goal and the corresponding altitude parameter in the user 
interface, this order will be sent to the flight planning system to analysis its reasonability, 
also considering the current flight situation. For example, if now the aircraft is in the 
taxiing procedure and the current speed is not enough to take off while the user asks to 
fly up immediately, after the analysis the flight planning system will ignore this order and 
send an error message back to let the user know this order is not possible. 
 
When the current goal has been proved reasonable and realizable, the flight plan module 
will then consider how to realize this goal, that is, which strategy should be carried out. 
For example, if the current goal is ‘Taking off’ , then the strategy center will decide to 
use the “Taxiing - Flying up – Default Flying” strategy instead of only the Taxiing or 
only the Flying up strategy.  For each flight procedure the flight plan module will 
produce the corresponding desired plant output data pairs, which will be in the next 
module, the neural network controller module.   
In this application I have set 3 flight goals, which are the ‘Taking Off”, “Flying Up”, and 
“Flying Down”. The 3 flight goals include different flight procedures. For example, for 

Desired Plant Output  



Chapter 4 System Design 

      29

taking off it includes taxiing, flying up, and default flying. The default flying means that 
the airplane will fly on a certain altitude, neither climbing nor descending. 
  
Figure 4.4 shows the relationship between the flight goal and the flight procedures. For 
each flight goal the Flight Planning Module will produce the flight plan according to this 
relationship. In the flight plan the flight procedures will be arranged as shown in the 
Figure 4.4.  
 

Flight Goal 
 
  
 
 
             Taking Off                                    Flying Up                            Flying Down 
 
                                    
Taxiing   Flying Up    Default Flying                                   Flying Down      Default Flying 
     

Flying Up           Default Flying    
  

 
Figure 4.4 The Flight Strategies 

 
Because the neural controller system should be provided with the desired plant output 
value as the input before it will produce the corresponding control value to the plant, the 
output of the Flight Planning Module should be in the format of the desired plant output 
pattern. Therefore, I should define the desired plant output data pattern for each flight 
procedure.   
 
In chapter 2 I have explained what a real pilot will do during these procedures and which 
flight parameters he (she) will be concerned about, and what the desired values for those 
parameters are. According to the analysis there, I defined the desired plant output data 
pattern for each flight procedure. It is shown in the table 4.1. The Flight Planning Module 
will perform referring to this table to produce the desired plant output value for each 
flight procedure.  
 

Tabel4.1 The Flight procedures and the Desired Output Value 
Desired Output Flight 

Procedure Pitch Value Airspeed Value 
Taxiing as current 55 Knots 

Flying Up 11 Degree as current 
Flying Down - 3 Degree 100 Knots 

Default Flying 0 Degree as current 
 
From the table you may see the desired value of the pitch and airspeed keep the same 
during a flight procedure, it is called the regular reference. Actually during the system 
improvement phase I have changed this reference table a bit, which is no more a regular 
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reference. You can find the reason why I made those changes and the final reference table 
in section 9.3. 
 
Besides the functions above, the Flight Planning Module also has the duty of checking 
the current flight situation to follow the flight process. To do this the planning module 
will collect the flight information data from the environment and also from the aircraft in 
real time. 
 
 
4.4 The Neural Network Controller Module 
 
 
After the Flight Planning Module has produced the desired plant output pattern, the 
Neural Controller Module accepts them as the input, and then provides the corresponding 
control data to the plant. So the function of this module is to provide the plant its control 
data. The neural network module is the fundamental part in this autopilot system.   
 
In chapter 3 I have analyzed 3 mostly used neural controller structures and made the 
comparisons among them. Finally I decided to use the Forward Modeling and Inverse 
Control structure in my application.   
 
Figure 4.5 shows the structure of the Forward Modeling Inverse Controller. The Identifier 
indicates a trained neural network used to simulate the plant model, and the Controller is 
another neural network that will be trained in real time to behave as an inverse controller, 
and the Plant here indicate the Microsoft Flight Simulator.  
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Figure 4.5 Process analysis for the Forward Modeling Inverse Controller 
 
Before used in the controller system, the identifier has already been trained and kept 
fixed during the whole procedure. However, another neural network performed as an 
inverse controller will be trained during the controlling time. From the Flight Planning 
Module this Neural Controller Module get the desired plant output values, and it will then 
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produce the corresponding control data. The control data will be sent to the plant to 
control the aircraft and also be sent to the identifier. According to the error between the 
real plant output and the desired plant output value the neural controller will be trained 
then. 
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Chapter 5  
 
 
Module Specifications 
 
 
5.1 Modules and Module Specifications 
 
 
This aircraft automatic control system consists of 3 modules, which are the Graphic User 
Interface Module, the Flight Planning Module, and the Neural Controller Module.  Tabel 
5.1 shows the specifications for each module. 
 
 
5.2 The Interaction Relationship between Modules 
 
Figure 5.1 shows the interaction relationship between the modules.  
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flight plan and continuously provide the desired plant output pairs to the Neural 
Controller Module. The Flight Planning Module will follow the flight process and return 
current flight situation to Graphic User Interface Module. For each desired plant output 
patterns received from the Flight Planning Module the Neural Controller Module will 
produce the control data applied to the plant. 
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5.3 The Server-Client Structure 
 
The interaction diagram only shows the function relationships without explaining how 
they collaborate in time. During the working process, the user can set the goal at any time 
no matter whether or not the Flight Planning Module and the Neural Controller Module is 
working on the current goal, the Flight Planning Module will accept the new goal and 
analyze its reasonability, while in the mean time it may be still providing the Neural 
Controller Module the desired data pairs for the current flight procedure.  
 
If the new goal is reasonable the Flight Planning Module will stop the current control 
process and start another process working on the new goal and set it as the current goal. If 
the new goal is not reasonable the Flight Planning Module will continue current 
controlling process and wait for another goal from the user. 
 
Therefore, the working structure of this system is more like a server-client structure. The 
user and the GUI module represent the client part which sends the requests to the server 
program and the Flight Planning Module represents the server program which accept the 
clients’ request and decide which one will be processed. In one time there is only one 
request that will be accepted and be processed. Figure 5.2 shows this server-client 
structure. 
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System Implementation 
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Chapter 6 
 
 
Neural Controller Module Implementation 
 
 
6.1 Process Analysis and Flow Chart 
 
 
After the analysis and design I will now discuss the implementation. In this chapter first I 
will analysis the modules’ working processes in detail, and then draw a flow char. All the 
programs are written in Visual C++ 6.0 environment and in C language. 
 
Figure 6.1 shows the structure of the Forward Modeling Inverse Controller marked on the 
process steps and the transferring data. Here, the Identifier indicates a neural network 
trained as the plant model, and the Controller is another neural network that will be 
trained in real time, and the Plant here indicates the Microsoft Flight Simulator.  
 
                          Backpropagation Error   8                   7                  Error 
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Figure 6.1 The Process analysis for the Forward Modeling Inverse Controller 
 
During the whole process,  

- Step 1 is to propagate a desired output pattern through the neural controller; 
- Step 2 is to get the control data out of the corresponding neural controller for 

that desired value pattern; 
- Step 3 is to propagate the control data pattern through the neural identifier; 
- Step 4 is to send the control data to the plant; 
- Step 5 is to read out the real output value from the plant; 
- Step 6 is to get the error between the real output values and the desired values; 
- Step 7and 8 is to backpropagate the error through neural identifier, and then 

get the corresponding error at the input layer; 
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- Step 9 is to train the neural controller assuming that the correct output is equal 
to the controller network output plus the backpropagation error from the 
identifier. 

 
To model this process with a computer program, I designed a flow chart as shown in 
Figure 6.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6.2 The Flow Chart of the NN Controller Module 
 
In this implementation, I first trained a neural network to model the airplane plant. The 
neural network simulator program I used to train this NN identifier is named the SNNS. 
Stuttgart Neural Network Simulator is an open source program, which not only provides 
the interface to construct the neural network and simulate its running in it, also it offers a 
variety of kernel functions for the creation and manipulation of networks that could be 
combined in the user’s own program.  In my later work, I have called some kernel 
functions from SNNS to build the controller. I introduce the SNNS in the following 
section. 
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6.2 Stuttgart Neural Network Simulator 
 
 
SNNS (Stuttgart Neural Network Simulator) is a simulator for neural networks developed 
at the University of Stuttgart since 1989. It provides an efficient and flexible simulation 
environment for research and application of neural networks. The users can start with the 
manager panel for their application, and also can directly call for their kernel files in their 
programs. The simulator kernel offers a variety of functions for the creation and 
manipulation of networks. The SNNS is distributed as ‘Free Software’, so the user can 
copy the software and modify it for his (her) own purpose. For more information about 
SNNS, please refer to Appendix B. 
 
 
6.3 Identifier Modeling 
 
During the Neural Controller Module implementation, I have built the identifier neural 
network and trained it, I use SNNS directly from its manager panel, and Figure 6.3 shows 
this manager panel.  
 

 
Figure 6.3 The SNNS manager panel 

 
The identifier is a neural network model for the aircraft plant, which should produce an 
output similar to that of the plant. A typical topology for this nonlinear identifier is the 
Time-Delayed Neural Network (TDNN). As in recent years the recurrent neural network 
has been well studied, it has been applied to construct the nonlinear identifier as well. I 
have introduced these two neural network topologies in section 3.3. Because it is hard to 
compare them in the theoretic way, I did not get the conclusion which topology is better 
to build the airplane identifier in section 3.3, here I will compare them in an experimental 
l way. Therefore, in the implementation I build two models, one in NARMA model and 
another one in Jordan network model and trained them with the same training data. From 
training results I can select the better one as my identifier.  
 
Here I will first describe these 2 neural network topologies briefly, and then show the 
processes of creating and training them in SNNS. At last I will explain why I choose the 
network with Jordan partial recurrent topology as my identifier. 
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 6.3.1 NARMA vs. Jordan Network 
 
The nonlinear autoregressive moving-average (NARMA) is the most general class of 
nonlinear models, which can be represented as following, 

)](),1(),(),1(),...,1(),([)1( jnxnxnxknynynyfny −−+−−=+  
 
That is, we drive TDNN with its past outputs and also with the input and its delayed 
versions. See the left figure in Figure 6.4. 
 
Jordan network is based on context PEs. The feed back parameters µ   are fixed. Its 
topology is shown in the right part of Figure 6.4.  

 
Figure 6.4 The NARMA Model and the Jordan Network Model 

 
6.3.2 Identifiers’ Constructing 
 
Referring to the analysis in chapter 2, for this identifier it only has 4 input-output 
parameters. The input parameters are the elevator control and the throttle control, and the 
output parameters are the pitch value and the airspeed value. Using SNNS I first built two 
neural networks respectively in the NARMA topology and the Jordan network topology. 
 
Based on the preliminary experience, I have already come to the conclusion that for an 
identifier whose input and output relationship is not so complex one hidden layer with 
around 20 neurons is enough. Of course, one can construct a multi hidden layer neural 
network with each hidden layer having around 12 neurons. However, it will not help so 
much, but only waste time in training. Therefore, in this application both in the NARMA 
network and in the Jordan network I set only one hidden layer.  
 
After deciding the neural network’s structure and the layer, I constructed them in SNNS. 
The panel used to construct a time delayed neural network is shown in the left part of 
Figure 6.5, and the panel shown in the right part of the Figure 6.5 is used to construct the 
Jordan network.  
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Figure 6.5 The management panel for TDNN and Jordan Network in SNNS 
 
The time-delayed length for the TDNN is set to 5. Figure 6.6 shows this 5 time-delayed 
NARMA neural network and the Jordan network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6 The 5 time-delayed NARMA neural network and Jordan Network 
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After I finished the constructing of the NARMA neural network and the Jordan network, 
I need to work on some details about the neuron. That is, I should set the activation 
function and the output function for each neuron. I will first explain what the activation 
function and the output function of the neuron first are. Figure 6.7 shows the working 
principle of the neuron.  

 
Figure 6.7 The Working principle of the neuron 

 
The activation function (.)actf  takes the value of the net function, the value of the 
previous activation and its bias as the input. The net function is equal to the sum of the 
output of the preceding units multiplying the corresponding weights linking to current 
units. The following equation shows how to calculate the activation value for unit j at 
time 1+t   

)),(),(()1( θtatnetfta jactj =+  
 
The output value of unit j at time 1+t is calculated as 

))(()( tafto joutj =  
 
Both in TDNN and in Jordan network for each neuron I set its activation function as the 
“Act_TanH”, the function of which is  

                              );()cosh( 2
1 xx eex −+=  

);()sinh( 2
1 xx eex −−=  

)cos(
)sinh()tanh(

x
xx = ; 

Figure 6.8 shows the tanH function plot. 

 
Figure 6.8 The tanH function plot 
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In SNNS it considers the output function and notates it as )(actfout ,  while in most other 
neural network simulators ignore it. In those simulators the output value of the neuron is 
exactly equal to the activation value. In my applications I just set the output function as 
“Out_Identity”. Figure 6.9 gives this function plot. 
 

 
Figure 6.9 The Out_Identiy Function Plot 

 
6.3.3 Data Scaling 
 
Neural networks are best provided with input/output values which lie within certain range. 
In this application, the input and output values of the identifier neural network have been 
scaled to [-1, +1]. That is, all the data in the training set should be scaled to [-1, +1]. And 
the desired plant output value which will be put through the controller neural network 
have also been scaled to [-1, +1].  However, before the control data has been sent to the 
plant, it should be restored to the original value because in the Flight Simulator it uses the 
non-scaled data.  
 
In the data visualization part the airspeed value, pitch value, airspeed error, pitch error, 
and the altitude value have been changed back to the original non-scaled version for the 
easy-understanding purpose.  
 
6.3.4 The Training Set and the Pattern File 
 
The training set consists of the input and output pattern which is used to train the 
identifier neural network.  In SNNS the training set is included in a text file with the *.pat 
extension. This file is called as the pattern file in SNNS.  
 
The input and output pattern used to train the identifier neural work come from the plant. 
In my application, the plant is the Microsoft Flight Simulator. The input parameters are 
the elevator control and throttle control value, and the output parameters are the pitch 
value and the airspeed value. These parameters are read out of the Flight Simulator every 
half a second.   
 
To read these parameters out of the Flight Simulator I use a module named FSUIPC. It is 
a third party module for Microsoft Flight Simulator, which is able to read the data out of 
and writing the data into the Flight Simulator. In Appendix C there is a brief introduction 
to this module. 
 
While reading the input control data and output result data out, I control the airplane 
myself in the Flight Simulator. Because for the training set the more situations it covers 
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the better the training result will be, I try not to make a straight and level flight during the 
process.  
 
To make sure that the frequency in which I read the data out of the Flight Simulator is 
sufficient, I wrote a program to write these input and output pattern data into the Flight 
Simulator through the FSUIPC module in the same frequency. As the flight behavior is 
exactly the same as before I flied, I can make sure the frequency I choose to read the data 
out is sufficient. 
 
To train the neural networks, I have created 2 training sets for each of them. One is used 
in training, and another one is used in the validation. The training sets used for the Jordan 
network include 400 patterns each. The training sets used for TDNN include 396 patterns 
each.  
 
In SNNS the training set is represented in a pattern file. The pattern file has its own 
structure. Figure 6.10 shows an example of the header of the pattern file, which will 
indicate the number of the training patterns and the number of input and output 
parameters. 

 
T
a
w
f

 
 
 
 
 

SNNS pattern definition file V1.4
generated at Fri Nov 07 08:57:27 2003 
 
No. of patterns: 400 
No. of input units: 20 
No. of output units: 2 
Figure 6.10 An Example of the Pattern File with Header 

he contents of the pattern file are the input and output patterns, which are also written in 
 special format. For each pattern, it starts with the input parameter, and then followed 
ith the output parameters. Figure 6.11 shows an example of the contents of the pattern 

ile for the Jordan network. 
# Input pattern 1:
0.000000 0.000000  
# Output pattern 1: 
0.000000 -0.101089 
# Input pattern 2: 
0.000000 0.000000  
# Output pattern 2: 
0.000000 -0.101089 
… … 
 6

Figure 6.11 An Example of the Pattern File with Contents 
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6.3.5 The Identifiers’ Training 
 
I began to train the two neural networks when those pattern files were ready. During the 
training process I should set a proper training cycle to be sure that the neural network will 
be trained well but not over-trained. That is also the reason to use the validation training 
set.  
 
To determine the best training cycles, I started with a large training cycle to observe the 
training process after a long term and then determine the stop point, at which the training 
set and the validation set get their minimum error so far, while after that point the 
validation error starts increasing.  The Graphic function in SNNS is used to study the 
training process, which will plot the training error in black color and the validation error 
in red color in 2D coordinators. Figure 6.12 shows an example of the evaluation graph. 
The X-axis represents the training cycle, while the Y-axis represents the Mean Square 
Error for each cycle.  
 
After analyzing the training processing of the Jordan Network I determined the training 
cycle as 8000. Figure 6.12 shows the training process. Table 6.1 presents some evaluation 
data during the training process. The evaluation data shows, after the 8000 training cycles, 
the MSE of the training set is equal to 0.00142, and the MSE of the validation set is equal 
to 0.00503.  

Figure 6.12 The Training Process of the Jordan Network 
 

Table 6.2 The Training Error and Validation Error 
Cycles Train\Test MSE 

Train 0.01544 1 
Test 0.17651 
Train 0.00158 2400 
Test 0.01038 
Train 0.00926 4000 
Test 0.00155 
Train 0.00153 6400 
Test 0.00841 
Train 0.00149 8000 
Test 0.00772 
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For TDNN I set the training cycle to 800. Figure 6.13 shows this training process. Table 
6.2 presents some evaluation data during the training process. The evaluation data shows, 
after the 800 training cycles, the MSE of the training set is equal to 0.00149, and the 
MSE of the validation set is equal to 0.00534.  

Figure 6.13 The Training Process of the TDNN 
 

Table 6.2 The Training Error and Validation Error 
Cycles Train\Test MSE 

Train 0.02911 1 
Test 0.08965 
Train 0.00207 240 
Test 0.00711 
Train 0.71387 400 
Test 0.00864 
Train 0.00157 620 
Test 0.00790 
Train 0.00149 800 
Test 0.00534 

 
6.3.6 Comparisons 
 
The training result shows that for this Jordan network identifier and this 5-delayed TDNN 
identifier they have the same ability to model the airplane plant, because at last the MSE 
of the training set is around 0.00149. However, the 5-delayed TDNN has much shorter 
training cycles than the Jordan network, which is 8000: 800. When the Jordan network 
has been trained 800 cycles, the MSE of the training set is around 0.00194. The 
advantage of the Jordan network is the simpler structure. Because of this for a single 
training cycle it needs a shorter training time.  
 
In the Feed Forward and Inverse neural network controller, except the pre-trained neural 
network identifier, there is another neural network performed as an inverse controller 
which normally has the same structure as the identifier. This controller neural network 
will be trained in real time. The Jordan network identifier has the same quality as the 
NARMA identifier to model the airplane plant, while the Jordan network has a simpler 
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structure which makes it more suitable for real time training, therefore, I choose the 
Jordan network structure both for the identifier and the inversed neural network 
controller.  
 
 
6.4 The Controller Module Programming 
 
 
After training the aircraft identifier, I continued implementing this controller module. 
Referring to the flow chart I have drawn in section 6.2, I have written the programs for 
each running step, and then combined them together. In this procedure, I also call some 
kernel functions from SNNS kernel files.  In Appendix D I list those programs used for 
each step. 
 
What should be mentioned here is that the controller neural network in this module is 
also built with the Jordan network. It will be trained in real time, while the identifier has 
kept unchanged all the time. 
 

 
6.5 Module Test 
 
 
During the programming, for each step I have performed a test. For example, in step 1 
and step 2, I have to propagate the data pair through the neural network and get the output 
result from network. To test I compared the result from my program with the result from 
the SNNS after loading the same network and the same input.  If they are the same, it 
means my program is correct. 
 
In step 4 and step 5, I have to write the data into the Flight Simulator and read the data 
from the Flight Simulator, since I have already used those functions before (in the getting 
training set process), they should be correct here. 
 
In step 7 and 8, I have to backpropagate the error through the neural identifier, and then 
to get the corresponding error at the input layer. What I have done for the testing was 
repeating the evaluations several times with different error value as the input, and then 
comparing the output of the functions. If those outputs had a reasonable trend, then I 
would presume the function I have written was correct. For example, as the error 
increases the absolute value of the backpropagation error should also increase.  
 
In step 9, I have to train the neural controller based on single data pattern. I used the same 
neural network and the same pattern data both in my program and in the SNNS, and then 
set the same learning parameter, λ , and asked them to learn in the same cycles. After this 
was finished, I propagated the same pattern through the neural network both in my 
program and in SNNS. From the output value of the network I made sure my program 
was correct. 
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After all the steps above have been proved correct, I combined them together and tested 
the whole module using the flight plan “Taxiing”.  During the taxiing the desired pitch 
value has been set to the original value, and the desired airspeed has been set to 55 knots 
per sec, which is the airspeed fast enough for flying.  
 
Because I have not built the user interface at this stage, which includes the function to 
visualize the evaluation data, at current time I only can evaluate the module directly from 
the flight behavior from the Microsoft Flight simulator and a log file which recorded the 
data value of those crucial flight parameters for one flight.  From both I can make sure if 
this module has been built correct.   
 
Running this module with the flight plan “Taxiing”, from the Microsoft Flight Simulator 
I can observe, first, it seemed that nothing happened, but after a few seconds the throttle 
was put to full slowly, consequently the aircraft began taxiing on the ground. The throttle 
kept the full status all the following time. After the airspeed reached 55 knots per sec, I 
ended this running.  From the behavior of the aircraft the controller module seems doing 
its job correctly.  
 
Then, I turned to the log file, which recorded the data value of those important flight 
parameters during the flight. The parameters include the altitude, the airspeed, the 
airspeed error, the pitch, the pitch error, the throttle control, the throttle control error, the 
elevator control, and the elevator control error. For the taxiing, only the throttle control 
and the throttle control error are the most important parameters which should be paid 
more attention to. Please refer to table 6.3 for the evaluation data of throttle control and 
throttle control error during the taxiing procedure. 
 
The throttle control data shows that during the controller’s training process the throttle 
control changes from 0 to 1, which means from zero throttle control to the full throttle 
control. Step by step the throttle error decreases to 0.  
 
The evaluation data also shows that during this process the pitch value keeps its initial 
degree, and the airspeed changes from 0 to round 55 Knots. Because during the taxiing 
the elevator could not affect the pitch value, the pitch value always keeps its initial degree, 
and the pitch error always keeps 0. As the airspeed increases to 55, consequently the 
airspeed error decreases. 
 

Table 6.3 The Evaluation Data During the Taxiing Procedure 
Iteration Throttle Control* Throttle Error 

0 0.443426 0.158360 
15 0.597751 0.063284 
30 0.666610 0.038563 
45 0.709646 0.024557 
60 0.735142 0.014148 
... … … 

105 0.767303 0.001351 
                    *The throttle control data has been normalized to [0,1] 
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From the evaluation above, I can confirm the current controller module works correct and 
I could move to next step, which is to implement the Flight Planning Module. 
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Chapter 7 
 
 
Flight Planning Module Implementation 
 
 
7.1 Process Analysis and Flow Chart 
   
 
In the designing phase I have defined the structures and the functions of the Flight 
Planning Module, and also the flight plans for each flight goal and the desired plant 
output for each flight procedure. Here I will analyze this module from the implementation 
view point, the object of which is to make clear the running process and then to draw a 
flow chart.  
 
As the analysis in section 5.3 shows that the interaction among the controller system is a 
bit like a server-client. It is not that the Flight Planning Module will accept requests from 
the user (actually it is from the GUI module) at any time. If at current time it is analyzing 
a flight order from the user, but the user sets another order requested for processing, the 
Flight Planning Module will deny the later request until current analysis has been 
finished. However, while the Flight Planning Module is working on the new order’s 
analyzing, it will still provide the Neural Controller Module the desired plant output 
pattern for current flight procedure.  Therefore, the Flight Planning Module is working 
via a multi-thread way.   
 
Considering all these aspects, I draw a flow chart to model the working process of the 
Flight Planning Module. See Figure 7.1. 
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         Figure 7.1 The Flow Chart of the Flight Planning Module 
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7.2 Module’s Programming and Testing 
 
 
After have finished the process analysis and drawn the flow chart, I began to program this 
module. What should be specially mentioned here is I apply Win32 API functions to 
implement the multi-thread function of my program.   
 
During the testing I combine the Flight Planning Module and the controller module 
together, which means the output of the planning module will be sent to the controller 
module. From the flight simulator I could observe the behavior of the controlled aircraft. 
If the behavior of the airplane is expected and the data recorded in the log file are 
explainable, then I could say the planning module is correct and the interaction between 
the planning module and the controller module is also correct.  
 
The flight goal I set as the input of the Flight Planning Module is the Taking Off and the 
altitude parameter is set to 3000 feet, which indicates the aircraft will take off and fly to 
3000 feet. Observing from the Microsoft Flight Simulator, first, the throttle was slowly 
put to full and then the aircraft began taxiing on the ground. When the speed reached to 
55 Knots, the aircraft did not fly up immediately, but you may see a trend for that. After a 
few seconds when the airspeed is around 65 Knots the nose of the airplane raised up and 
the aircraft began flying up. And the throttle control kept full. In the beginning of the 
flying up process the pitch shake a lot, as the training continuing the range of the shake 
decreased. At last the pitch value kept around 11 degree which is the desired pitch for the 
flying up, and the airspeed kept around 80 Knots. 
 
The aircraft kept flying up until its altimeter is around 3000, and then the pitch value 
began to drop down and began shaking a lot again, while the throttle still kept full. 
During this flying up procedure, gradually the pitch did not shake so much and trend to 
settle on a certain value. At last the pitch value is around 0 degree, and the airspeed kept 
around 100 Knots. Then the airplane was performing a level flight. As the airplane has 
already finished the goal to take off and fly to 3000 feet, I then stopped this testing. 
 
The evaluation data recorded in the log file also proved that during each flight procedure 
the pitch error decreased as the training went on and the pitch value was approaching the 
desired value. Consequently the elevator error and throttle error were decreasing during 
the training procedure. Please Refer to Table 7.1 for the evaluation data during the flying 
up procedure. 
 
However, during this testing process I did not test the function which is allowed the user 
set another flight order during a control process. I will leave this test to the next stage 
after I finished the GUI module. 
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Table 7.1 The Evaluation Data During the Flying Up Procedure 
Iteration Altitude* 

(.Feet) 
Pitch 

(Degree) 
Pitch Error

(Degree) 
Throttle 

Error 
Elevator 

Error 
0 596.000000 3.468187 -7.531814 0.061148 0.338214 
30 623.000000 12.565063 1.565063 -0.010348 -0.082713 
60 677.000000 9.766780 -1.233221 0.007887 0.060794 
90 734.000000 10.656216 -0.343785 0.002343 0.019228 
… … … … … … 

170 861.000000 11.218511 0.218510 -0.001320 -0.011035 
200 908.000000 10.818810 -0.181191 0.001134 0.008980 
230 953.000000 11.004019 0.004018 -0.000025 -0.000201 
260 997.000000 10.900331 -0.099669 0.000620 0.004942 
290 1045.000000 11.00052 0.000745 -0.000013 -0.000173 

  *The initial altitude is 596 feet. 
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Chapter 8 
 
 
Graphic User Interface Module Implementation 
 
 
8.1 Implementation 
 
 
Based on the design of the graphic user interface shown in section 4.2, I have written the 
programs with the help of Windows API functions. I applied Windows GDI (Graphic 
Device Interface) to implement the visualization function. 
 

 
Figure 8.1 The Graphic User Interface 

 
Figure 8.1 shows this graphic user interface and Figure 8.2 shows the sub-window which 
is used to visualize the evaluation data. This window will appear when the Graph button 
in the main window has been pressed. 
 

 
Figure 8.2 The Graph Window 
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After the user presses the Quit button a credit window will show up before the whole 
program end. Figure 8.3 shows this credit window. 
 

 
Figure 8.3 The Credit Window 

 
 
8.2 Module Test 
 
 
For this Graphic User Interface module I tested its function separately from other 
modules. For the functions that should be tested together with other modules, like Done 
and Stop, I leave them to the whole system tests that will be done later. In this stage I 
only test the functions which seems more independently from other modules or the 
functions which could be tested separately from other modules. For example, after the 
user presses the Graph or the Quit button, a graphic window or a credit window should 
appear. 
 
The Graph window includes an evaluation data selection combo, X-axis scale buttons and 
Y-axis scale buttons, a Grid button and a Close button. To test these functions I preset a 
numeric array and load it into the graphic window. Figure 8.4 shows how the Grid 
function works.  
 

Figure 8.4 The Grid Function 
 
Figure 8.5 shows how the X-axis and Y-axis scale function works. From the Figure 8.5 
you may see the differences in the display when I set the different X-axis scale with the 
Y-axis scale unchanged. Choosing a small X-axis scale will let the visualization focus on 
the beginning procedure, and more detail can be shown. Choosing a large X-axis scale 
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will show more trend information, which is useful in the analysis for the whole running 
procedures.  
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.5 The Visualization of the Test Data with the Different X-axis Scale 
 
And from the Figure 8.6 you may see the difference in the display if I set the different Y-
axis scale with the X-axis scale unchanged. Corresponding to different signal the user 
may set the different Y-axis to get the best signal display. 
 
        
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.6 Visualization of  the Test Data with the Different Y-axis Scale 
 
After finishing this GUI module test, which is the last module in my implementation, I 
was going to test the whole autopilot system, in which I combined all the modules 
together and tested the whole autopilot system. 
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Chapter 9 
 
 
System Testing and Improvement 
 
 
9.1 Using the Neural Flight Controller Program 
 
 
The Neural Flight Control program is running in the Microsoft Windows 2000 or higher 
Microsoft operation system, and the system must have installed the Microsoft Flight 
Simulator 2002 (or 2004), which is the evaluation environment for this neural flight 
control program.  
 
When the neural flight control program initializes and does not finds that an airplane is 
prepared to take off in the Microsoft Flight Simulator, a warning message will appear and 
then the control program will quit itself. So, before the user runs this control program, he 
(she) must make sure the Microsoft Flight Simulator has already been in running and an 
airplane has already been loaded in the Flight Simulator.  
 

 
Figure 9.1 The Graphic User Interface 

 
Figure 9.1 shows the main control panel of this neural flight control program, which will 
show up immediately after the initialization finishes. The control panel allows the user 
access to all the functions offered by the program.  
 
9.1.1 Setting a Flight Order and Start Flying 
 
This neural flight control program supports 3 flight goals, Taxiing, Flying up and Flying 
down. To use this system control the flight, first, the user should select a goal in the flight 
goal combo, and also fill in the altitude parameter in the Parameter text field below. 
Figure 9.2 shows how to set the flight goal for once flying.  
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Figure 9.2 Setting a Flight order 

 
After finishing these two steps above, the user may then press the Done button to start the 
flight controlling. Before really taking action, the user must make sure the airplane does 
not brake at current time as the airplane will be in a braked status after the initialization in 
the Flight Simulator. 
 
As the Done button has been pressed, the flight order will be sent to be analyzed by the 
Flight Planning Module. If the goal is reasonable, the control system will carry out the 
goal, if not, a warning message will appear to inform the user the goal is not reasonable. 
There are two kinds of warning message for the unreasonable goal. If the flight goal is 
not suitable for current situation, a warning message, shown in the left of Figure 9.3, will 
show up. If the flight goal is realizable while the altitude parameter is not set properly, 
another warning message, shown in the right of the Figure 9.3, will show up.  

Figure 9.3 The Warning Message for the Flight Order 
 
For example, in the beginning the airplane is standing still on the ground, if the user set 
the goal to fly up or fly down, the first warning message will appear no matter what 
altitude parameter the user has set; if the user set the goal to take off while the altitude 
parameter is set to a value lower than current altitude, then the second warning message 
will appear. 
 
If the setting has been approved not realizable, the control system will not take any 
further action. It will be waiting for the next flight order from the user. 
 
9.1.2 Change the flight goal 
 
During the flight, the user is allowed to set another flight goal. The steps are the same as 
mentioned in section 9.1.1. The user should first choose a flight goal from the goal 
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combo, and then fill in the altitude parameter. After finishing these two steps, press the 
Done button, then the order is sent to take action.  
 
If this order is reasonable, the controller will stop current work and change to carry out 
this order. From the status bar in the lower part of the control panel you may see the 
current goal has changed to the new one. If this order is not reasonable, a warning 
message will show up and the controller will still continue current work. 
 
9.1.3 Stop once flight controlling 
 
To stop the flight control, the user can just press the STOP button in the control panel. It 
will reset all the flight parameters and also reload the flight in the Microsoft Flight 
Simulator. The flight goal is initialized to the Taking Off.  
 
9.1.4 Visualizing the Flying Data 
 
During the flight, the user may visualize the flying data simultaneously in a Graphic 
window. Press the Graph button in the control panel, and the graphic window will show 
up. Each time there is only one signal that can be displayed. Therefore, the user should 
specify the signal he (she) wants to be displayed from a combo in the upper right part of 
the window.  After selecting the signal, press the Reload button in the graphic window, 
then the signal data from the beginning to current time will be visualized in the graphic 
window. The data will not be visualized automatically, so each time the user wants to 
visualize the data up to now, he (she) should click the Reload button once again. 
 
The user can set the range of the values displayed on the X-axis and Y-axis. The X-axis is 
corresponded to the running times. The Y-axis is corresponded to the signal value. Figure 
9.5 is the visualization of the pitch error signal. 

Figure 9.5 The Visualization for the pitch error signal 
 
9.1.5 Quit 
 
The Quit button in the control panel is used to quit the controller program. Quitting the 
controller program will not affect the running of the Flight Simulator, which is different 
with the Stop function.  
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Before the controller program quits, a credit window will appear. It will vanish after you 
click the left mouse button in it, and then the whole neural flight controller program will 
quit from the operation system. 
 
 
9.2 System Testing  
 
 
During the implementation phase of each module, I have already tested their functions 
separately. Here I combine all the 3 modules together and test the functions of the whole 
neural flight control system. 
  
The objectives of the system testing include: 

- Test the controlling function  for each flight goal, make sure the controller system 
can work properly; 

- Test the function that allows the user changing the flight goal during the flight 
controlling; 

- Test the Stop function, make sure it can reset all the flight parameters and reload a 
flight in Flight Simulator to wait for a new control process; 

- Test the Graph function, make sure it can be used to visualize the evaluation data 
in real-time and all functions under it work properly; 

- Test the Quit function, make sure it is able to end this Neural Flight Control 
program and all the sub windows belonging to this program will quit together; 

- Test and compare the output value from the identifier and the real output value 
from the airplane plant; 

- Evaluate the stability of control; 
 
9.2.1 Testing the Controlling Function 
 
For this testing, first, I set the flight goal to take off to 3000 feet. Observing from the 
Flight Simulation directly, in the taxiing process, as the throttle was put to full slowly the 
aircraft began taxiing on the ground. The status bar in the bottom of the control panel 
indicated current status was Taxiing, as shown in the left of Figure 9.6. When the speed 
reached to 55 Knots, the aircraft did not fly up immediately, however, you could see from 
the Flight Simulator, the airplane had the trend to leave the ground. After a few seconds 
when the airspeed was around 65 knots the pitch raised up and the aircraft began flying 
up.  

Figure 9.6 The Control Panel with the Status Bar 
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From the status bar in the main control panel you might see the airplane has already gone 
to the flying up status, as shown in the right of Figure 9.6. The throttle control still kept 
full. In the beginning of the flying up process the pitch shakes upward and downward a 
lot. As the training continued the range of the shake decreased. At last the pitch value 
kept around 11 degree which is the desired pitch for the flying up, and the airspeed kept 
around 70 knots.  
 
People can always refer to the flight instruments to get the airplane information during 
the flight. Figure 9.7 shows the 6 most important flight instruments. You can ignore the 
lower left two instruments because in this application the airplane only performs the 
straight flight. This figure was captured when the pitch settled on a certain degree during 
the flying up procedure.  
 

Figure 9.7 The Flight Instruments at the final procedure of the Flying up 
 
The airspeed indicator shows that currently the airplane was flying at the speed of 70 
Knots. The attitude indicator shows the pitch value of the airplane is around 12 degree, 
and the altimeter, which is located to the right of the attitude indicator, shows that the 
current altitude is around 2800 feet. The vertical speed indicator proved the airplane was 
flying up, and the vertical speed is around 600 Knots. 
 
50 feet before the airplane reached the desired altitude, its flight behavior changed again. 
From the status bar I could see the flight was going into the default flying, which means 
the level flight. Similar to the procedure of going from taxiing to flying up, in the 
beginning of the default flying the airplane pitched a lot. As the flight (training) went on, 
the pitching magnitude decreased and the pitch value turned to keep on a certain value. 
Observed from the attitude indicator the pitch was exactly kept on 0 degree. However, 
from the altitude indicator the biggest hand (the hundred-foot hand) was moving 
counterclockwise, which means the altitude of the airplane was decreasing. The vertical 
speed indicator has proved this. Figure 9.8 shows what those instruments indicate at this 
moment of the default flying. 
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Figure 9.7 The Flight Instruments at the final procedure of the Default Flying 
 
As the airplane has flown less than 2000 feet now, I entered another flight order letting 
the airplane fly up to 4000 feet. After pressing the Done button, the status bar 
immediately changed its display, the current flight goal changed to flying up and the 
current status also changed to flying up, which means the controller program has 
accepted this new goal and started working on it.  Therefore, the function allowing the 
user to change the flight goal during the flight control works correctly. 
 
This flying up procedure is the same as the previous one, in the beginning the airplane 
pitched a lot, as the training continued the range of the shake decreased. At last the pitch 
value kept around 11 degree which is the desired pitch for flying up, and the airspeed 
kept around 80 knots.  
 
As the airplane approaches to 4000, I set the flight order to fly down to 2000 feet. The 
airplane then pitched down dramatically and the throttle has been pulled down slowly 
until there is no throttle input. During the beginning of flying down the airplane still 
pitched up and down, at some time the attitude of the airplane seems almost vertical. This 
is because the desired pitch value is -3 degree, resulting from the big magnitude shaking 
the pitch value would be some degree much lower than -3 degree, for example -25 
degree,. This made the airplane descended dramatically. 
 
While it got to the desired altitude, the airplane is set to default flight. However, before 
the throttle has been trained to put to full the airplane already hit the ground. Then I had 
to end this test and look for a way to resolve this problem. 
 
9.2.2 Testing the Visualization Function 
 
The evaluation data was visualized to include the altitude, airspeed value, pitch value, 
airspeed error, pitch error, elevator control, elevator error, throttle control, throttle error, 
identifier airspeed output, and identifier pitch output value. All these data are visualized 
in the Graph window.  
 
Figure 9.8 shows the pitch error during the taxiing procedure and the flying up procedure. 
The Y-axis indicates the pitch degree. This figure clearly shows the pitch error goes to 
zero during the training process in the flying up procedure. 
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Figure 9.8 The Pitch Error Visualization during the Taxiing and flying up Procedure 

 
Figure 9.9 shows the pitch error value and the altitude value during the take off procedure, 
which includes the taxiing procedure, flying up procedure and the default flying 
procedure.  

 
Figure 9.9 The Pitch Error and Altitude Value Visualization during the Taking Off 

 
The plotted pitch error shows that, for each flight procedure, as the flight (training) goes 
on, the pitch error decreases. The range of pitch value is decreased from [4, 18] to [10.5 
11.5]. The biggest error magnitude is 7 degree. In the default flying procedure, even 
though the pitch has been trained to the desired degree step by step, at last the pitch was 0 

Default 
Flying 

Flying 
Up 

Taxiing 
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Degree, the airplane has kept descending all the time and in a fast way. During this flight 
the biggest pitch error magnitude is 8 degree. 
 
 
 
 
 
 
 
 
 
 

Altitude                                       Airspeed                                    Airspeed Error 
 
 
 
 
 
 
 
 
 
 
 

Elevator Input                               Elevator Error                                   Pitch  
 
 

 
 
 
 
 
 
 
 
 
 
 
Pitch Error                                  Throttle Input                             Throttle Error 

 
Figure 9.10 The visualization of the evaluation signals during the Taking Off and Flying Up 

 
Besides of the pitch error signal and the altitude signal, I tested the visualization function 
for all the other signals also. Figure 9.10 shows the plots of those signals during the 
taking off to 3000 feet flight procedures. The testing helped me to make sure all the 
functions in the graph window, like the scaling function, Reload function, and etc, are 
working properly.  
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9.2.3 Estimating the Identifier Output 
 
Figure 9.11 and Figure 9.12 shows the comparison between the identifier output and the 
real airplane plant output. The test covers three flight procedures, the taxiing, the flying 
up and the default flying. Figure 9.11 plots the airspeed value and Figure 9.12 plots the 
pitch value.  

Figure 9.11 The Identifier Airspeed Output and the Real Airspeed Value 

Figure 9.12 The Identifier Pitch Output and the Real Pitch Value 
 
Because the taxiing procedure is a relative shorter procedure compared with other flight 
procedures, the data belonging to this taxiing procedure in the whole training set are of 
course a small portion. Moreover, the characteristics of the airplane taxiing on the ground 
are totally different from its characteristics flying in the air, so after the training the 
identifier cannot simulate the plant well in the taxiing procedure.  
 
For other flight procedures, the comparison in Figure 9.11 and Figure 9.12 demonstrates 
the identifier is not well trained on the airspeed, while it works much better on the pitch 
value. We could say that dynamic system 2∑  has a more complex input-output 
relationship than the dynamic system 1∑  does (referred to Figure 2.5). In dynamic 
system 1∑  the airspeed value and the elevator input determine current pitch value; for 
dynamic system  2∑  the pitch value and the throttle input determine current airspeed 
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value. With the same training data the airspeed variable requires more effort to be trained, 
compared with the pitch variable. 
  
The interesting thing is even though there is an inaccuracy in the identifier, the controller 
neural network has not been affected so much, and still been trained more and more 
better to control the flight. 
 
9.2.4 Testing the Miscellaneous Functions 
 
Besides the testing above, I have also tested the Stop function and the Quit function to 
make sure they work correctly.  
 
Stop is used to stop the current flight procedure, reset all the parameters, and let the 
Flight Simulator reload the airplane to wait for another flight control. After pressing the 
Stop button, the flight goal in the control panel has been reset to Taking Off, there is no 
display in the status bar, and the Flight Simulator stops the current flying process and 
begins to reload a flight. After the airplane in the Flight Simulator has been loaded, I 
made the flight order from the control panel to test if the system really has been reset 
properly.  The test results prove the Stop function works correctly. The testing on the 
Quit function, which is used to quit the whole controller program, also shows it is 
working correctly. 
 
 
9.3 Improvements 
 
 
From the testing above, I should do some improvements on the current neural flight 
control system to solve the following problems, 

- The dramatically shakings during in the beginning phase of each flight procedure; 
- From the flying down procedure going to the default flying procedure the 

controller neural network has not enough time to get trained before it hits the 
ground; 

- During the default flying procedure even the pitch has been trained to 0 Degree 
gradually, the airplane has kept descending all the time and in a fast way. See 
Figure 9.9; 

- When the flight is going from the taxiing procedure to the flying up procedure, or 
from the flying up procedure to default flying procedure or to flying down 
procedure, the airplane pitches in a large degree. 

 
Corresponding to these problems, my solutions are, 

- Limit the controller’s output range, because the controller’s output is the input of 
the plant. The limiting on the elevator control value could consequently reduce 
the shaking range of the pitch; 

- From one flight procedure going to another, the controller neural network always 
need some time to be trained properly. Since a general controller neural network 
cannot be trained, it is better use a different controller neural network for different 
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flight procedures.  That is, there will be 4 controller neural networks for the 4 
different flight procedures, taxiing, flying up, flying down, and default flying.  In 
the different flight procedure, the Neural Controller Module will adopt different 
controller network to control the airplane plant; 

- The keep descending problems seem to be the result of the incorrect desired pith 
value, which should not be 0 Degree. Then I change it to a higher degree, e.g. 2 
Degree. 

-  When the flight is going from the taxiing procedure to the flying up procedure, or 
from the flying up procedure to default flying procedure or to flying down 
procedure, the pitch error in the beginning points will be a relative large number, 
which consequently makes the airplane pitch in a large degree to revise the 
current attitude. To solve this problem, I should modify the reference table to 
make the desired pitch output increase or decrease to a desired value gradually. 
Then the reference model for this application is no more a regular reference. 

 
                                 Table 9.1 The Reference Model 

Desired Output Flight 
Procedure Pitch Value Airspeed Value 

Taxiing as current 55 Knots 
Flying Up 11 Degree as current 

Flying Down From Current pitch value 
gradually go to - 3 Degree 

100 Knots 

Default Flying From current pitch value gradually 
go to 2 Degree 

as current 

 
After having improved the controller system according to the first 3 improvement 
solutions, I tested it again. Observing from the Flight Simulator, the airplane did not pitch 
so dramatically in the beginning phase of each flight procedure. During the flying down 
procedure the attitude of the airplane looks much better than before. It does not seem like 
diving to the ground. When going from the flying down procedure to the default flying 
procedure, the airplane flies properly and does not hit the ground again. In the default 
flight, the airplane did not descend so apparently, and almost keep the level flight.  
 
Figure 9.13 shows the pitch error during the taxiing and the flying up procedure. The 
pitch error shown in the right plot is taken from the airplane controlled by the improved 
controller, and the data shown in the left plot is from the airplane controlled by the 
previous controller system. From the comparison, you may see the pitching magnitude 
has decreased quite a lot and has been in the acceptable range. 
 
The experiments I have done here proved my suspicion, that is, the keep descending 
problems during the default flying process is resulted from the incorrect desired pitch 
value, which should not be 0 Degree. Changing the desired pitch value to 2 Degree solves 
this problem. During the default flying there will always be a [1, 2] Degree pitch error 
remaining in the end. However, the error in this range does not affect the altitude of the 
airplane so much, as the altitude plot shown in Figure 9.14. 
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Figure 9.13 The Pitch Error Comparison 
 
From Figure 9.14 you may see in most time of the default flying the airplane keeps level 
flying. However, there is around a 400 feet descend in the beginning of the default flying 
procedure, which is still descending in a large degree. From the pitch error plot you may 
see that in the beginning points the pitch error is a relatively large number, which 
consequently makes the airplane pitch in a large degree to revise the current attitude. As 
the improvement analysis in the beginning I should improve the controller according to 
the fourth improvement solution, which is to change the reference model, to solve this 
problem. 
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altitude settles on a certain value. Compared to the altitude plot in Figure 9.14, it is 
obvious that the non-regular reference model makes the airplane fly more smoothly and 
safely. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.15 The Altitude and Pitch Error Plot During the Taking Off to 2000 procedures 

 
Figure 9.16 shows the altitude value and pitch error during the taking off to 2000 feet and 
then flying up to 4000 feet and then flying down to 2500 feet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.16 The Altitude and Pitch Error During the Taking off, Fly
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value. From the comparison we can see that the neural controller can respond to the 
changes of the desired pitch value immediately. In another words, this neural controller 
has fast reaction ability.   
 
These testing results show the problems existing in the old controller system have been 
solved. Now the current neural flight controller system can achieve controlling the 
airplane to take off, fly up and flying down; the pitching magnitude during this flight 
procedures have been in an acceptable range; during flight the user can change the flight 
goal; the system provides the current flight situation to user and visualize the evaluation 
data in a 2D coordinators in real time. Therefore, all the required functions I defined for 
this controller system in the beginning have been achieved. 
 
 
9.4 Controller Stability Analysis 
 
 
There are several ways to analyze the stability. For example, we may characterize 
stability from an input-output viewpoint, or we can characterize stability by studying the 
asymptotic behavior of the state of the system near steady-state solutions, like 
equilibrium points. Here I prefer to use the steady-state stability analysis. 
 
If this nonlinear aircraft system is represented by the state model, 

)(xfx =&           (9.1) 
where the x  is a 2-dimensional vector, which include the parameters of the elevator 
control and the throttle control, defined in a domain nRD ⊂ . )(xf  is locally Lipschitz 
functions of x . Suppose Dx ∈ is an equilibrium point of equation 9.1. Whenever the 
state of the system starts at x , it will remain at x  for all future time. It is said to be 
asymptotically stable if it is stable and )(tx approaches to x  as t  tends to infinity. Starts 
with any element in a set of x , if the state approaches to x as t  tends to infinity, then this 
set is called region of attraction (also called region of asymptotic stability, domain of 
attraction, or basin). When the region of attraction is the whole space nR , we define that 
the region is globally asymptotically stable. My goal is to study if the current system is 
asymptotic stable and characterize the attraction region.  
 
 
 
 
 
 
 
 
 

 
Figure 9.17 The Elevator Input and the Throttle Input during the Flying Up Procedure 
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Figure 9.17 is the elevator input plot and the throttle input plot during the flying up 
procedure. Figure 9.17 shows in the beginning of the control phase both the elevator 
input and the throttle input starts with arbitrary number. As the process goes on, both of 
them are slowly settling on a certain value to achieve the desired pitch and airspeed 
output. Figure 9.18 includes the corresponding pitch value and the airspeed value taken 
from the elevator control input and the throttle control input. 
 
 
 
 
 
 
 
 
 
 

Figure 9.18 The Corresponding Pitch Output and the Airspeed Output 
 
With a smaller input the output will be smaller also, and the control inputs will finally 
settle on a certain value to achieve a certain desired output; these two characters prove 
this control system is asymptotic stable. It can be assumed that this controller system is 
global asymptotically stable. 
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Chapter 10 
 
 
Conclusions and Discussions 
 
 
10.1 Conclusions 
 
 
In this project I have developed a neural flight control system to control an airplane’s 
flight. The structure of the neural controller is called Feed Forward and Inverse Control, 
in which a pre-trained neural network is used to provide the error of the dynamic control, 
and an online learning neural network is used to compensate for the errors and then 
produce the control input. While the Neural Controller Module is producing the control 
data to the plant, a Flight Planning Module is working on the higher level to manage the 
global control in this autopilot system. The duties of the Flight Planning Module are 
producing the flight plans, building the corresponding reference model, and determining 
current flight situation. Except of these two modules there is another module, the Graphic 
User Interface Module, used to accept the flight order from the user, together with which 
they construct this neural flight control autopilot system. 
 
The results presented in the previous chapter demonstrate that the current neural flight 
controller system can  
- achieve controlling the airplane to take off, fly up and flying down; 
- run companied by the Microsoft Flight Simulator, which is a larger CPU time 

consuming application; 
- control the airplane so that it achieves a stable flight; 
- has the ability to respond to the changes of the desired plant output immediately; 
- provide an graphic user interface to accept the order from the user, in which the user 

could set flight order; 
- let the user set another flight order during flight; 
- provide the current flight situation to the user and visualize the evaluation data in 2D 

coordinates in real time; 
 
The tests results also show that the training of the controller neural network is affected by 
the pre-defined desired plant output quite a lot. Therefore, setting the proper desired plant 
output for each flight procedure is very crucial for this neural flight controller system. 
 
During the improvement I have limited the output range of the elevator control to 
decrease the pitching magnitude, but the pitching phenomena still happens in the 
beginning phase of each flight procedure, which will directly cause the unsmooth flying. 
This pitching will disappear as the training goes on, though. Figure 10.4 shows the 
normalized elevator input, the pitch output during the flying up procedure, and the flying 
track of the airplane during this procedure. 
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           a. The normalized Elevator Input                                                    b. The Pitch Value 
         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  c. The Altitude Value 
 
 
 
 
 

Figure 10.1 The Flight Evaluation For the Flying Up Procedure 
 
Unfortunately, this un-smooth flying problem cannot be avoided for this online training 
neural controller system. This is the inherent drawbacks of the online training neural 
controller system. However, because of its online training ability, the neural controller 
system could adapt itself to any unknown environment.  This makes the neural network 
controller more flexible than the rule-based control technique, like fuzzy control 
technique.  
 
In the fuzzy control system we define those controlling rules beforehand and based on the 
experience of the expert. The advantage of fuzzy control is that for some very complex 
problems we may have an intuitive idea about how to achieve high performance control. 
But the consequent problem is a human expert cannot predict those situations happened 
due to disturbances, noise or plant parameter variations. Moreover, it is hard for the 
expert to effectively incorporate the stability criteria and performance objectives.  
 
For this flight control problem, as the real pilot does, it is not hard to write those rules 
controlling the airplane to take off, to fly up, and to fly down, and the airplane under the 
rule-based control may perform more smoothly. However, the problem is there are so 
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many uncertain factors during flying, like the weather, the airplane itself, and the 
surrounding objects. Even if the expert is able to predict everything and write them into 
rules, finally this rule base will be quite big and complex, and might not balance the 
stability criteria and the performance objectives. 
 
According to the analysis above, we can come to the following conclusion. The control 
system applying the neural control technique will be flexible for the unknown 
environment, because the controller could adapt itself to the new environment. However, 
the system under neural control will not work so smoothly or continuously.  
 
 
10.2 Discussions and Future Work 
 
 
In the designing phase, I only planed to use one general controller neural work for all 
these flight procedures. During the testing I found that, see Figure 10.2, even in the first 
flying up procedure, which belongs to the Taking Off action, the controller neural 
network has been trained well to control the airplane to fly up, however, after the default 
flying, when going to the flying up procedure again, which belongs to the Flying Up 
action, the controller still needs time to adapt itself to the flying up control. Therefore, the 
training for the controller neural network in each flight procedure is a sort of over-
training, which could make it especially good at controlling current flying procedure, 
while not suitable for others.  
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could keep the current pitch for a while, though the pitch will change after the next 
training, the airplane will seem to be flying more smoothly. 
For current neural flight control autopilot system, it only can control the airplane perform 
the straight flight. For future’s work, I hope to add more functions and take more things 
into account, e.g. the oil mixture rate, the weather information, the air transport 
information.  The adding functions could make this neural flight control autopilot system 

- control the airplane to make a turn; 
- control the airplane to land; 
- make the airplane fly more safely and smoothly. 
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Appendix 
 
 
A. Aviation Introduction 
 
 
A.1 Flight Controls – Ailerons, Elevator, and Rudder 
 
 
Figure A.1 shows the three imaginary axes of the airplane. By use of the flight controls, 
the airplane can be made to rotate about one or more of these axes. [4] 
 

 
Figure A.1 The Three Axes for an Airplane, 

A – Vertical Axis (Yaw), B – Longitudinal Axis (Roll), C – Lateral Axis (Pitch) 
 

The longitudinal axis runs through the centerline of the airplane from nose to tail. 
Airplanes roll about their longitudinal axis. The lateral axis runs sideways through the 
airplane from wingtip to wingtip. Airplanes pitch about their lateral axis. The vertical 
axis of the airplane runs up and down from the cockpit to the belly. Airplanes yaw about 
their vertical axis. 
 
Ailerons  
Ailerons are the moveable surfaces on the outer trailing edges of the wings. Their 
purpose is to bank the airplane in the direction you want to turn. When the control wheel 
is turned to the right, as shown in the left of Figure A.2, the ailerons simultaneously move 
in opposite directions. The left wing aileron lowers, increasing the lift on the left wing. 
The right wing aileron raises, decreasing the lift on the right wing. This causes the 
airplane to bank to the right.  The right diagram in figure A.2 shows the situation when 
the control wheel is turned to the left. 
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Figure A.2 Banking to the Right and Banking to the Left 

 
Ailerons allow one wing to develop more lift and the other to develop less. Differential 
lift banks the airplane, which produces the total lifting force in the direction you want to 
turn. 
 
Elevator 
The elevator is the moveable horizontal surface at the rear of the airplane (Figure A.3).  
Its purpose is to pitch the airplane’s nose up or down. 
 

 
Figure A.3 How the Elevator Control Changes the airplane’s pitch 

 
 
The elevator control works on the same aerodynamic principle as the aileron. Applying 
back pressure on the control wheel of the airplane, as shown in the left of the Figure A.3, 
deflects the elevator surface upward. 
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Lower pressure is created on the underside of the tail, which moves it downward, and the 
nose of the airplane pitches up. The airplane in the right of Figure A.3 shows what 
happens when the control wheel is moved forward. That will cause the pitch down. 
 
Rudder 
There’s also a third flight control, the rudder, which controls yaw around the vertical axis. 
The rudder is the moveable vertical surface located at the rear of the airplane. Its purpose 
is to keep the airplane’s nose pointed in the direction of the turn. Rudder simply corrects 
for the forces that want to twist the airplane in a direction other than the direction it wants 
to turn.  
 
Applying the right rudder pedal, as shown by airplane A in Figure A.4, forces the tail 
assembly to swing in the direction of lower pressure. As the tail moves, the airplane 
rotates about its vertical axis. Application of right rudder pedal yaws the nose to the right. 
Applying left rudder pedal, shown by airplane B, yaws the nose to the left. 
 
Adverse yaw is the reason airplanes are equipped with rudders. When banking to the 
right, the aileron on the left wing lowers, causing that wing to lift up. While the lowered 
aileron increases the lift on the left wing, it also causes a slight increase in drag. 
 

 
 

Figure A.4 How the Rudder help in Yaw 
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A.2 Primary Instruments 
 
Figure A.5 shows 6 mostly used flight instruments. Beginning with the first row and from 
left to right, these instruments respectably called the airspeed indicator, attitude indicator, 
altitude indicator, turn coordinator, heading indicator, and vertical speed indicator. 
 

Figure A.5 The 6 Most Important Flight Instruments 
 
The airspeed indicator displays current airspeed going through the airplane. Only the 
airspeed in the green half circle is suitable for the flying.  
 
The attitude indicator is an artificial representation of the real horizon, it displays the 
airplane’s attitude (its upward or downward pitch and the bank the wings). The thin while 
horizontal line in the middle is the artificial horizon line. The attitude indicator’s vertical 
calibration lines are worth five degrees each, so you read them (from bottom to top) as 5, 
10, 15, and 20 degrees of pitch. The attitude indicator shown in the Figure A.5 shows 
current pitch value of the airplane is around 3 Degree.  

Figure A.6 The Attitude Indicator During the Left Banking 
 
Figure A.6 shows what the attitude indicator will indicator when the airplane banks to the 
left, which dips the left wing downward toward the ground. Notice that the miniature 
airplane in the attitude indicator also appears to dip its left wing toward the ground.  
 
Right to the attitude indicator, it is the altitude indicator. It has three hands. The shortest 
hand points to numbers representing the airplane’s height in tens of thousands of feed. 
The medium, thicker hand represents altitude in thousands of feet. The long, thin hand 
represents the airplane’s altitude in hundreds of feet. The altimeter indicator in Figure 
A.5 shows current altitude of the airplane is around 600 feet. 
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The heading indicator is a mechanical compass that shows which way the airplane points. 
Notice the numbers on the face of the heading indicator. Add a single zero to any number 
on the face to get the airplane’s actual heading.   
 
Directly below the altimeter is the vertical speed indicator (VSI). As its name suggests, 
its needle indicate the vertical speed of the airplane showing a rate of climb or descend. 
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B. Stuttgart Neural Network Simulator 
 
 
SNNS (Stuttgart Neural Network Simulator) is a simulator for neural networks developed 
at the University of Stuttgart since 1989. It provides an efficient and flexible simulation 
environment for research and application of neural network. The users can start with the 
manager panel for their application, and also can directly call for their kernel files in their 
programs. The simulator kernel offers a variety of functions for the creation and 
manipulation of networks.  
 
The SNNS simulator consists of four main components that are depicted in figure B.1, 
Simulator kernel, graphical user interface, batch simullator version snnsbat, and network 
compiler snns2c. There was also a fifth part, Nessus, which was used to construct 
networks for SNNS. Nessus, however, has become obsolete since the introduction of 
powerful interactive network creation tools within the graphical user interface and is no 
longer supported. The simulator kernel operates on the internal network data structures of 
the neural nets and performs all operations on them. The graphical user interface XGUI, 
built on top of the kernel, gives a graphical representation of the neural networks and 
controls the kernel during the simulation run. In addition, the user interface can be used 
to directly create, manipulate and visualize neural nets in various ways. Complex 
networks can be created quickly and easily. 
 

 
Figure B.1 The SNNS components 

 
 
SNNS is implemented completely in ANSI-C. 
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SNNS is beginning with a manager panel, which is showed in figure B.2.  The SNNS 
manager allows the user to access all functions offered by the package.  

 
Figure B.2 The SNNS manager panel 

The FILE browser handles all ‘Load’ and ‘Save’ operations of networks, patterns, 
configurations, and the contents of the text window. Configurations include number, 
location and dimension of the displays as well as their setup values and the name of the 
layers.  

In CONTROL panel the user sets the parameters used to train the neural network, 
including the meaning of the learning, update, initialization, and the number of learning 
cycles. 

 The INFO panel displays all data of two units and the link between them. After select a 
certain unit the user can change and display the activation function and the output 
function of the unit. 

In BIGNET Users create their neural networks. SNNS provides ten tools for easy creation 
of large, regular networks, which are general, time delay, art 1, art 2, artmap, kohonen, 
Jordan, elman, Hopfield, auto assoz. 

The DISPLAY serves to display the network topology, the units’ activations and the 
weights of the links. 

The GRAPH is a toll to visualize the error. Graph is only active after calling it. This 
means, the error is only drawn as long as the window is not closed. The advantage of this 
implementation is the simulator is not slowed down as long as graph is closed. The error 
curve of the net is plotted until the net is initialized or a new net is loaded.   

The WEIGHT display window is a separate window specialized for displaying the 
weights of a network. 

The simulator kernel offers a variety of functions for the creation and manipulation of 
networks. These can roughly be grouped into the following categories: 

- functions to manipulate the network 
- functions to determine the structure of the network 
- functions to define and manipulate cell prototypes 
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- functions to propagate the network 
- learning functions 
- functions to manipulate patterns 
- functions to load and save the network and pattern files 
- functions for error treatment, search functions for names, functions to change 

default values etc. 

In programming SNNS has its own way to represent the unit, the network, and the pattern. 
For more details about SNNS, you may refer to their home page,  

http://www-ra.informatik.uni-tuebingen.de/SNNS/. 
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C. FSUIPC Module 
 
 
To generate the training set, I should read the data value out of the Flight Simulator; to 
write the control the airplane, I should write the control data into the Flight Simulator. To 
do these, I use a module named FSUIPC . With its help, I could read or write the values 
of the flight parameters from the Flight Simulator. 
 
The functions used to do these jobs are, 
FSUIPC_Read(DWORD dwOffset, DWORD dwSiza, void *pDest, DWORD 
*pdwResult); 
FSUIPC_Write(DWORD dwOffset, DWORD dwSiza, void *pSrce, DWORD 
*pdwResult); 
 
The first function is used to read the data out of the Flight Simulator, while the second 
function is used to write the data into the Flight Simulator. In both cases I supply an 
offset, identifying the data required or to be written, and a size (in bytes). The pointers 
"pDest" for reads and "pSrce" for writes naturally must point to the area to receive the 
result or (for writes) the area containing the data to be written. These pointers are defined 
as "void *" here so that the user can use whatever component size or structure he (she) 
likes, as appropriate for the data in question. 
 
The DWORD for the result is used to identify the reason for error should the return be 
FALSE. The only possible errors on these calls are an unopened link or a full data area.  
To ask the FSUIPC to process it, just call the function, 
 BOOL FSUIPC_Process(DWORD *pdwResult); 
 
The following tables list the read-write offset addresses for those flight parameters that 
are used in my application.  The third column indicates the size of the parameter. 
 

! Elevator 
Write 0BB4 2 Elevator position indicator  

 
! Throttle 

Write 088C 2 Engine 1 Throttle lever, –4096 to +16384 
 

! Airspeed 
Read 02BC 4 IAS: Indicated Air Speed, as knots * 128 

 
! Pitch 
Read 2F70 8 Attitude indicator pitch value, in degrees.   

 
! Altitude 
Read 07D4 4 Autopilot altitude value, as metres*65536 
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D. Neural Controller Module Implementation Details 
 
The following shows those sub-functions I used for each step to construct the Feed 
Forward and Inverse Controller, 
Step 1, to propagate a desired output pattern through the neural controller 
 - krui_loadNet(char *filename, char **netname); load the net file 

- krui_loadNewPatterns(char *filename, int *set_no); load the pattern file, optional,     
only for the first time loading the desired value patterns 

 - krui_setPatternNo(int pattern_no) ; sets the current pattern 
- krui_showPattern(int mode) ;  according to the mode, krui_showPattern stores   

the current Pattern into the units activation (or output) values. 
- krui_setUpdateFunc(char *update_func) ; changes the current update function,  

because the default one is set to “Serial Order” , while in this application I need 
“Topological_Order” 

- krui_updateNet(float *parameterInArray, int NoOfInParams); Updates  the 
network according to update function 

 
Step 2, to get the control data out of the corresponding neural controller for that 
desired value pattern 
 - krui_getUnitOutput(int UnitNo) ; Returns the output value of the  unit 
 
Step 3, to propagate the control data pattern through the neural identifier 
 - krui_loadNet(char *filename, char **netname); load the net file 

- krui_loadNewPatterns(char *filename, int *set_no); load the pattern file, optional,     
only for the first time loading the desired value patterns 

 - krui_setPatternNo(int pattern_no) ; sets the current pattern 
- krui_showPattern(int mode) ;  according to the mode, krui_showPattern stores   

the current Pattern into the units activation (or output) values. 
- krui_setUpdateFunc(char *update_func) ; changes the current update function,  

because the default one is set to “Serial Order” , while in this application I need 
“Topological_Order” 

- krui_updateNet(float *parameterInArray, int NoOfInParams); Updates  the 
network according to update function 

 
Step 4, to send the control data to the plant 

- FSUIPC_Write(DWORD dwOffset, DWORD dwSize, void *pSrce,   DWORD 
*pdwResult);  Prepare the parameters used to write data to MS FS 

            -  FSUIPC_Process(DWORD *pdwResult); Process the action 
 
Step 5, to read out the real output information from the plant 

- FSUIPC_Read(DWORD dwOffset, DWORD dwSize, void *pDest, DWORD 
*pdwResult) ; Prepare the parameters used to write data to MS FS 

- FSUIPC_Process(DWORD *pdwResult) ; Process the action 
 
Step 6, to get the error between the real output values and the desired values 
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- The error is equal to the desired plant output value minus the real plant output 
value 

 
Step 7and 8, to backpropage the error through neural identifier, and then get the 
corresponding error at the input layer 

- float * Error_Backprop(int pattern_no, float learn_parameter, float delta_max);   
Calculate the Backpropagation Error for the Input units 

 
 
Step 9, to train the neural controller assuming that the correct output is equal to the 
controller network output plusing the backpropagation error from the identifier 
 - krui_setLearnFunc(char *learning_func); hangs the current learning function 
  - krui_DefTrainSubPat(int *insize, int *outsize, int *instep, int *outstep,  
   int *max_n_pos); define how sub patterns should be generated during training 
 - krui_learnSinglePattern(int pattern_no, float *parameterInArray,  

  int NoOfInParams, float **parameterOutArray,    int *NoOfOutParams); learns   
only based on the current pattern pair 
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