
 - 1 -

TABLE OF CONTENTS

CHAPTER 1 RESEARCH TOPIC ONE.. 3
1.1 INTRODUCTION .. 3
1.2 EXPOSITION OF THE MODELS .. 3
 1.2.1 NOTATION.. 3
 1.2.2 MODELING THE DECISION WITH HASH TABLE ... 4
 1.2.3 MODELING WITH UNIGRAMS, BIGRAMS AND TRIGRAMS ... 6
 1.2.4 MARKOV MODEL.. 8
1.3 RESULTS .. 10
 1.3.1 THE HASH TABLE APPROACH.. 10
 1.3.2 N-GRAM APPROACH.. 10
 1.3.3 MARKOV MODEL.. 12
1.4 CONCLUSION.. 12

CHAPTER 2 RESEARCH TOPIC TWO..15
2.1 INTRODUCTION .. 15
2.2 RESEARCH PREPARING ... 15
2.3 PROBLEMS RESOLVING... 16
 2.3.1 GENERATE THE SPECTRA OF THE VOWELS.. 16
 2.3.2 COMPUTER FOR EVERY VOWEL THE FIRST AND SECOND FORMANT .. 18
 2.3.3 MAKE A PLOT OF THE VOWEL IN THE F1 – F2 SPACE .. 22
2.4 FINDINGS AND CONCLUSIONS .. 22

APPENDIX A: REFERENCES ...23

 - 2 -

INDEX OF FIGURES AND TABLES

FIGURE 1: THE TELEPHONE KEYBOARD SHOWING INFORMAL MAPPING BETWEEN THE SET OF DIGITS µ ,........ 4
FIGURE 2: STRUCTURE OF THE TRIE NODE, AND A VIEW AT THE TRIE .. 5
FIGURE 3: AN EXAMPLE MARKOV MODEL... 8
FIGURE 4: ONE SPECTROGRAM EXAMPLE OF VOWEL ‘A’ ... 16
FIGURE 5: ONE SPECTROGRAM EXAMPLE OF VOWEL ‘E’.. 16
FIGURE 6: ONE SPECTROGRAM EXAMPLE OF VOWEL ‘I’ .. 17
FIGURE 7: ONE SPECTROGRAM EXAMPLE OF VOWEL ‘O’ ... 17
FIGURE 8: ONE SPECTROGRAM EXAMPLE OF VOWEL ‘U’ ... 18

TABLE 1: EXAMPLE DECODING SESSION.. 10

 - 3 -

Chapter 1 research topic one

1.1 Introduction

In this research topic, I will focus on following contents. Consider a handheld. Every key
represents more than one letter. Key 2 represents the letters A, B, C. I can agree that
pressing key 2 selects letter a, pressing two times letter b and pressing three times letter c.
But I prefer to press only once. Now the received message is ambiguous. Assume that I
receive the labels of the keys and a bracket for the space between words. Can I decode
the message? If the vocabulary is small, this can be done. Let me assume that our
vocabulary consists of the words of two pages of A4 text. Based on this text I can
compute the frequency of the letters and combination of letters such as bigrams and
trigrams.
There exist three approaches:
a) Hash tables. I can generate a tree/graph with ten branches from every node. At every

node I have a list of possible words. I can order these words by frequency. I can
compute the most probable solution of a message 1 2, , , nk k k" .

b) Uni-, bi-, trigrams. I can also compute a most probable path using unigrams, bigrams
or trigrams.

c) Markov models. I can model the problem as a Markov mode. I can use the Viterbi
algorithm to compute the most probable path.

1.2 Exposition of the models

This section will describe the models I used to write the example programs, and will give
some rationale for their derivation. I will begin the exposition by introducing the notation
used throughout the report. Only the newly introduced denotations are explained, and
other standard ones (see: [1, 2]) are presumed known in advance. The next step is
describing the deterministic approach given with the hash table. Deriving n-gram and
Markov models follow.

1.2.1 Notation

Let χ be the set containing letters of English alphabet: { , , , }A B Zχ = … . I limit ourselves
only to the 26 upper case letters, as the introduction of case distinction adds no value to
the word problem considered. Letµ be the set of digits: {2,3, ,9}µ = … , and a mapping

:π χ µ6 function that gives the mapping from the letter of the alphabet to the digit, as
informally defined by the keyboard model on Table 1.

 - 4 -

Figure 1: The telephone keyboard showing informal mapping between the set of digitsµ ,
And the set of letters of the alphabet χ

I also define the inverse function 1() { | () }m n n mπ π− = = , which for a given digit gives a
set of associated letters. This function, with informal name word2key is given in the class.

The set of all known words are called a language vocabulary and denoted as i

iL χ⊆ ∪ . It
is a subset of all the words that can be formed from a string of characters of alphabet χ . L
is built from a training corpus, i.e. a set of words that are usually taken from a
representative text. It will be seen further in the text how building the word list is
implemented. Let k be the vector of received keystrokes. This means
that 1 2(, , ,)nk k k k= … , where each element is from the list of digitsµ , i.e. for all1 i n≤ ≤
olds that ik µ∈ . Let 1 2(, , ,)mc c c c= … be the vector of characters from χ , i.e. a word from
the language vocabulary L. I also introduce a keyboard vocabulary ()kξ .

For a given vector nk µ∈ , I define: 1

1

() ()
n

j
j

k kξ π −

=

=∏

That is to say, for a given vector k of length n, the function ξ returns a set of all the word
vectors of length n that can be formed using the letters that correspond to appropriate
keys jk . To conclude, I introduce the extracting a sub vector from a given vector. With a
vector 1(, ,)nx x x= … , the sub vector :j ix (where i j<) is defined as: : (, ,)j i i jx x x= … . The
limit case is simply: :j j jx x≡ .

1.2.2 Modeling the decision with hash table

The first decoding technique I present is purely deterministic. It depends on the existence
of a vocabulary L, which is taken from a representative text. This first approach yields a
structure that, once built, is well suited for fast searches of words that match a particular
input sequence k . The class implements a structure used to build the vocabulary L. I use a
trie, a tree-like structure in which the out degree of each node is less or equal to the
number of elements in the digit set (| |µ). Please refer to Figure 2 for an illustration of
the trie structure.

 - 5 -

Figure 2: Structure of the trie node, and a view at the trie

The trie encodes all the words in the vocabulary L. Each node of the trie can store a word
list. The coding is as follows: the links between the nodes of the graph are each weighted
by one (and only one) element of the keystroke alphabetµ . The nodes are stratified into
levels. The path from the root node to a node on level l contains a sequence of
links 1(, ,)lk k… , and corresponds to a sequence of l keypresses. The invariant of the trie is:
every node in a subtrie on level l, corresponding to a list of keypresses 1(, ,)lk k k= … , has
in their word lists the words whose letters map by functionπ to the given vector k . If a
particular part of the subtrie is empty, say because no words correspond to a particular
path, the coding is economized by leaving out the entire subtrie.

The word search is performed as follows. Let there be given an input vector k . The
search is started at the root of the trie, the only node inhabiting level 0. I examine element

1x of the vector and follow the link labeled with the corresponding label to a node on
level 1. I repeat the algorithm with this destination node as root node, with an input
sequence of 1:1nk − . A good recursive definition needs the “bottoming out” rule. Once I get
to an ill-defined subvector 0:1k , I bottom out by returning the word list of the node I got to.
If at any place the search fails, such as is the case when I get to a node that has no
descendants, whereas link following would require me to proceed further, I exit returning
an empty set of matching words.

The upside of the choice is that search is fast, as I only need to traverse a single path
down the trie. It is also easy to obtain all the words matching the given prefix by finding
a node whose path from root encodes the prefix and then getting all the words from the

 - 6 -

word lists of the subtrie induced by that node. Adding a new word into the vocabulary is
also convenient. I first encode the word by mapping it onto a corresponding keypress
vector with functionπ that I previously defined, and then perform an operation similar to
the aforementioned search. In essence I follow the same steps as the search would, but
this time I are free to add the missing nodes and links. The new word is then inserted into
the word list of the node that is the furthest down the search path.

Functions lookup and insert are provided for this purpose. The trie can be stored to a file
and retrieved when necessary. I use the program mkwordlist to build the vocabulary L,
and the program hashlookup to decode. The lookup in hash table retrieves only a list of
the matching words, or an empty set if no words match.

The downside of the approach is that at all times I need to have a reference vocabulary at
hand. This may be a formidable constraint if I are interested in implementing this coding
scheme in a mobile device. Also the encoding is not very efficient, as quite a large
overhead is present at each node that adds to the trie “infrastructure” but also the volume.
The hash table I used for testing had 1510 words and the footprint was as large as 150kB.
Admittedly the encoding was not very efficient, given that the compressed footprint is
only 18kB, but it is a good indicator of the storage space needed to host a trie on a
memory device. The size increment will surely decrease as the trie gets filled with more
and more words, but it is the initial growth that may make it unmanageable on a mobile
device. A very interesting way to get around the requirement of having a vocabulary, thus
reducing overall storave is the n-gram approach of the following section.

1.2.3 Modeling with unigrams, bigrams and trigrams

In the n-gram approach to decoding, I substitute the full vocabulary for a table of a
predetermined fixed size. Instead of memorizing all the words, I only extract and
memorize features. I hope that the features take less memory but still perform fairly well
in decoding the words.

More specifically, I chose to memorize the joint probability distribution of a vector of n
letters. For a given n I have an n-gram: unigram for n = 1, bigram for n = 2, trigram for n
= 3 and so forth. Thus for a given n I need to memorize at most | |nχ values, using a space
that can be considerably less than what is consumed by a trie. The joint probability
distribution for an n gram is given by ()P c , where nc χ∈ . This function is obtained
empirically by analyzing a representative sample text. Note now that I do not operate
with L once the distribution is determined, so I can throw away L and work only
with ()P c .

I now proceed to relate the words in the language to the keypress sequence. Let me first
build a vocabulary model for n-grams, and then specialize for 1,2,3n = . I are interested in
maximizing the a posteriori probability that given k of length l, the word c was typed in.
If I denote *c as the best match according to this criterion, it is given as:

 - 7 -

* arg max (|)

lc x
c P c k

∈
=

This expression requires iteration over the whole l-dimensional space of the input sample
to compute the inverse maximum. However, the search space can be reduced by noting
that I need only examine such c that can be obtained from rolling back from k to c using
the function ()kξ . The last equation is now:

()
* arg max (|)

c k
c P c k

ξ∈
=

But now I note that since I limited the search space to that of ()kξ , the conditional
probability is in fact directly proportional to the marginal: (|) 1/ () (,)P c k P k P c k= ⋅ , and
this holds as long as ()c kξ∈ is true. I can therefore maximize just as good:

()
* arg max ()

c k
c P c

ξ∈
=

The only remaining term is ()P c , and its decomposition depends upon the model I choose:

 1 1() (, ,) ()n
n i iP c P c c P c== = ∏… For unigram model

1
1 2:1 2 1() (, ,) () (|)n

n i i iP c P c c P c P c c−
= += = ∏… For bigram model
2

1 3:1 2 2 1() (, ,) () (| ,)n
n i i i iP c P c c P c P c c c−

= + += = ∏… For trigram model

The terms 2:1()P c and 2:1()P c from the previous equation deserve some attention. They are
clearly a telltale sign of asymmetry in the approach. To have completely symmetric
formulae, I would be required to substitute the above for the appropriate n-1-gram joint
distribution. However, I chose not to proceed that way, in hope that the longer the initial
n-gram is, the better it would determine the starting letter of the word. I chose to go for
the logest available n-gram instead.

Namely, once the choice for the start of the word is made, the choices of other letters are
very much fixed. So in case the initial letters are guessed wrong by, say, choosing a
sequence of unigrams at start, I would have a word that is very likely to start with a
vowel, and there would be no subsequent way to get back on right track, as I would then
be examining only conditional probabilities. Therefore, to play safe, I chose to substitute
the most probable longest available n gram at the beginning of the word.

Now the conditional probabilities of the bigram and trigram models can be expressed in
terms of joint probabilities, which are known a priori:

1,
1

()
(|)

()
i i

i i
i

P c c
P c c

P c
+

+ = And 2 1
2 1

1

(, ,)(| ,)
(,)
i i i

i i i
i i

P c c cP c c c
P c c

+ +
+ +

+

=

 - 8 -

All the unconditional probabilities can be gathered from the frequency data of the
unigrams, bigrams and trigrams. Note also that the computation of n-gram depends on
knowing (n−1)-gram frequencies, and that I readily determine ()iP c , 1(,)i iP c c+ and

2 1(, ,)i i iP c c c+ + by counting within L. Now I can readily maximize over all words
attainable by input k and obtain *c . Since all terms of the products are independent, I can
maximize them individually to obtain the global maximum. The sequence obtained in this
way is the most probable n-gram sequence. Here one needs to handle cases in which prior
probability for a sequence is equal to 0. A prior probability of 0 for an n-gram sequence
means that such a sequence does not appear in the training set. Since I only expect the
words coming from the training set, it is not needed to handle this case in more detail
than to assign a low non-zero probability to it.

1.2.4 Markov model

Modeling the decoding as a Markov model is an elegant way to encode the letter
interdependencies (Figure 3).

Figure 3: An example Markov model

I are now able to express the probability over the entire sequence. I will work our way
towards obtaining the components of the Markov model backwards: starting from the
expression that I wish to maximize. I will point to an efficient algorithm to compute the
required a posteriori maximum probability. The expression to maximize over words is:

()
* arg max (|)

c k
c P c k

ξ∈
=

 - 9 -

Which asks a question: “What is the most likely set of transitions in the Markov model
that could have produced the keyword k ?” The conditional probability expression above
can be unpacked as:

:1 :1 (1):1 (1):1(|) (|) (, | ,)n n n n n nP k c P k c P c c k k− −≡ =

I emphasized the n-th element of both the word and input vectors. The idea underlying
the following few lines are to express this conditional probability in terms of pre-
computable values and a smaller instance of itself; I know that such an expression is
possible according to Viterbi and others. I reshuffle the last equation to eliminate
dependency upon nk , and also drop the conditioning on nk upon (1):1nk − :

(1):1 (1):1
(1):1 (1):1 (1):1 (1):1

(1):1

(, , |) 1(, | ,) (, , |)
(|) ()

n n n n
n n n n n n n n

n n n

P c c k k
P c c k k P c c k k

P k k P k
− −

− − − −
−

= = ⋅

By using chain rule I can decouple dependency from last states:

(1):1 (1):1 (1):1 (1):1 (1):1 (1):1 (1):1 (1):1(, , |) (, |) (|) (|) (|) (|)
() () ()

n n n n n n n n n n n n n n n

n n n

P c c k k P c k c P c k P k c P c c P c k
P k P k P k
− − − − − − − −= =

By noting that:

1 ()

(|) (|)
n

n n n
c k

P k c P c c
π −∈

= ∑ , (1):1 1(|) (|)n n n nP c c P c c− −=

I finally get:

1

1
:1 :1 (1):1 (1):1

()

(|)(|) (|) (|) (|)
()

n

n n
n n n n n

c kn

P c cP k c P k c P c c P c k
P k π −

−
− −

∈

≡ = ⋅ ⋅∑

I see :1 :1(|)n nP k c expressed in terms of (1):1 (1):1(|)n nP c k− − and pre-computable
quantities, 1(|)n nP c c − , which are transition probabilities between the states the Markov
model. I also see that I need to adopt ic χ∈ as the states of the model, with ik µ∈ as
transitions. I “bottom out” on the recursion in the previous expression by setting the a
priori probabilities of states to:

1:1 0:1 1(|) ()c P c c p cπ = =

For each of the possible 1c χ∈ , I see that the transition probabilities can be given in terms
of the bigram values that I already computed in the previous section. To compute *c I
can find the global maximum with an algorithm that exploits the recursion, such as that of
Viterbi.

 - 10 -

1.3 Results

In this section I present the results of the experiments with the programs written as a
supplement to this report. The programming languages used was C++ and Java.

1.3.1 The hash table approach

Table 1 gives an example session with the decoding program, hashlookup. The utility
word2key is a helper which enables the tester to type words in plain English instead of
permanently allocating one eye for seeking the key mapping. The converted values of the
keys are fed into the hashlookup program, which never actually sees the words. Instead it
only sees the converted values and operates only on them. The vocabulary was built from
the hash table whitepaper.hash that is a technical text about 9 pages long.

The testing text was one of the most famous lines in English literature, the notorious
dilemma of the prince of Helsingor. This contrast to the intial technical text was
deliberately chosen in order to show that the intersection of the two vocabularies is quite
a curious set of words bearing general meanings or high utility value. It also emphasizes a
weakness of hash table approach: absolute dependency on a vocabulary.

I can see that the exact matches are easily found by the hash table lookup. The lookup is
also rather fast but, as discussed earlier, at the expense of the increased storage. The
mismatch of the vocabularies is apparent. The text likely to be decoded is only a (small)
subset of common words. This means that although the decoder will give the decoded
words exactly, it is not able to recognize words outside of the prescribed dictionary. This,
together with bulkiness, is a major drawback of the hash table.

1.3.2 n-gram approach

According to the vocabulary file, the program can make the frequency table based on the
whole combination of the uni-letter, bi-letters and tri-letters. Using frequency table,
probability of table 1: example decoding session. The file whitepaper.hash is the hash
table of a technical report of approximately 9 text pages. The lower case letters were
typed in from the console, and the decoding by the program was done word for word,
with the decoded words in the brackets.

Table 1: Example decoding session

To be or not to be, that is the question.
86: (TO)
23: (BE AD)
67: (OR)
668: (NOT)
86: (TO)
23: (BE AD)

 - 11 -

8428: (THAT)
47: (IS)
843: (THE)
78378466: (QUESTION)

Whether tis nobler in the mind to suffer
9438437: (WHETHER)
847: ()
662537: ()
46: (IN GO)
843: (THE)
6463: (MIND)
86: (TO)
783337: ()

The slings and arrows of outrageous fortune...
843: (THE)
754647: ()
263: (AND)
277697: ()
63: (OF)
6887243687: ()
3678863: ()

Letters can be computed. For example, frequency of the letter”A” in example vocabulary
file are 692 and total frequency of the uni-letter are 8897, so the probability of the
letter”A” is 0.077779025. Based on different approach, the same stroked keys queue can
be decoded to different result. (Such as keys queue “43556”, in uni-gram approach is
“IELLN”, in bi-gram approach is “HELLM” and in tri-gram approach is “HELLO”). If
the keys queue can not be recognized, program will print nothing.

The example vocabulary file is some parts of the famous novel. Not like the hash table
approach, search is based on the exact word in the vocabulary. In n-gram approach the
result can be the random combination of the letters, such as “AA”, “ACY”, “YES”,
“HELLO” and so on. Some of them are not the legal words at all. As description in the
former part, n-gram approach use probability of the letter to recognize the stroked keys. I
use the same stroked keys as hash table approach to see the result. Figure 5 shows the
result of the uni, bi and tri-gram approach.

 - 12 -

1.3.3 Markov model

I already showed that I need bigram and unigram data to build the Markov model. I give
a tabular list of transitions and initial probabilities from the model. The probabilities are
obtained from an excerpt from another English literature classic, the novel “Wuthering
Heights”. The given data are enough to construct the full Markov model graph.

The frequency graph is given in a separate file being an attachment to this report, due to
its size. The files are in the directory results/. Unigram probabilities ()iP c are initial state
probabilities of the Markov model. Transitions are given as 1() / ()i i iP c c P c+ .

1.4 Conclusion

In this report I tried to present our answer to the questions of assignment 2, by presenting
both the program code with experiments and the foundations upon which the code was
built. I also analyzed the properties of each of the diverse approaches to de-ambiguation
of the keypress sequence given some knowledge of the structure of the encoded content,
i.e. requirement that decoded messages be valid words of English.

I conclude that the hash table approach will yield accurate decoding as long as the
vocabulary is sufficiently large. The vocabulary size may be formidable for mobile
devices, however. To alleviate this shortcoming, an alternative approach was analyzed,
where the vocabulary is only used to build a fixed size table. Presented results suggest
that it may be possible to provide good decoding that only exploits local dependence of
the characters within a word, but that it depends heavily on the text used for training.

The obvious upside is that no vocabulary is needed and that the storage space is fixed
once the n of the n-gram model is determined, which would probably be at design time. I
did not investigate the decoding error rate dependence upon the richness of training
vocabulary, assuming that the decoding quality would increase with enlarging the
training set. While this may be so, I do not know whether a saturation point exists, past
which no training will yield significant decoding performance boost.

 - 13 -

1) To be or not to be, that is the question
 86 23 67 668 86 23, 8428 47 843 78378466

Stroked Keys Uni-gram Bi-gram Tri-gram
86 TN TO TO
23 AE AD AD
67 NS OR OR
668 NNT NOT NOT
86 TN TO TO
23 AE AD AD

8428 TIAT THAT THAT
47 IS IS IS
843 TIE THE THE

78378466 STESTINN RVEPUIMN STESTION

2) Whether tis nobler in the mind to suffer
 9438437 847 662537 46 843 6463 86 783337

Stroked Keys Uni-gram Bi-gram Tri-gram

9438437 YIETIES WHETIEQ WHETHER
847 TIS TIS THR

662537 NNALES OMALDS OMBLES
46 IN IN IN
843 TIE THE THE

6463 NINE NIND NINE
86 TN TO TO

783337 STEEES RVEEEP STEDER

3) The slings and arrows of outrageous fortune
 843 754647 263 277697 63 6887243687 3678863

Stroked Keys Uni-gram Bi-gram Tri-gram
843 TIE THE THE

754647 SLINIS PLINIS RKINGS
263 ANE AND AND

277697 ASSNYS ARROWS ARROWS
63 NE ND ND

6887243687 NTTSAIENTS NUTRCHENTS OTTRAGENTR
3678863 ENSTTNE ENSUTOF ENSTUND

 - 14 -

 - 15 -

Chapter 2 research topic two

2.1 Introduction

In this research, an automatic speech processing tool – CSLU (Center for Spoken
Language Understanding) and MATLAB are used. The latter software is powerful tool
for analyzing signal characteristics. The detailed task in this research is:
1) Generate the spectra of the vowels;
2) Compute for every vowel the first and second formant (make at least 5 registrations

of every vowel);
3) Make a plot of the vowels in the F1 – F2 space, i.e. take the values of F1 – F2 as

coordinates in a 2-dimensonal Euclidean space;
4) Based on the experimental findings, make a conclusion.

2.2 Research preparing

According to the research requirements, I download and install the CSUL in my
computer, then learn some function about this software. Especially the tools speech view,
by it I can generate the spectral of the vowels easily. The CSUL website provide some
interesting information about signal process. Such as background knowledge about
spectrogram reading. The website is:
http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/spectrogram_reading.html

To make sure pronunciations of the vowels are correct, I use some Text to Speech
software in internet. In this experiment, I use the software developed by AT&T, naming
AT&T Natural Voices Text-to-Speech Engine.
The website is: http://www.naturalvoices.att.com/demos/
The use interface is following:

Using it I got the .wav files about the vowels (a, e, i, o, u).

 - 16 -

2.3 Problems resolving

2.3.1 Generate the spectra of the vowels

With the help of the tool Speech View in CSLU, I can generate the spectra gram of the
vowels. From the spectrogram example of each vowel I may see for each vowel there are
some frequency regions of relatively great intensity, which is also not dependent on time.

Figure 4: One spectrogram example of vowel ‘a’

Figure 5: One spectrogram example of vowel ‘e’

 - 17 -

Figure 6: One spectrogram example of vowel ‘i’

Figure 7: One spectrogram example of vowel ‘o’

 - 18 -

Figure 8: One spectrogram example of vowel ‘u’

2.3.2 Computer for every vowel the first and second formant

I use MATLAB function wavrecord () to record the pronunciation of five vowels, and
then use MATLAB to analyze these vowels spectrogram to learn more detail information.

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
0

500

1000

1500

2000

2500

3000

3500

Frequency(Hz)

FF
TM

ag

Spectra example of vowel ‘A’

 - 19 -

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Frequency(Hz)

FF
TM

ag

Spectra example of vowel ‘E’

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
0

500

1000

1500

2000

2500

3000

3500

4000

Frequency(Hz)

FF
TM

ag

Spectra example of vowel ‘I’

 - 20 -

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
0

500

1000

1500

2000

2500

3000

3500

4000

Frequency(Hz)

FF
TM

ag

Spectra example of vowel ‘O’

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
0

500

1000

1500

2000

2500

3000

Frequency(Hz)

FF
TM

ag

 Spectra example of vowel ‘U’

 - 21 -

According to the analysis of the spectra gram about the vowels, I can define their first
and second formant.

Vowel 1st Formant (Hz) 2nd Formant (Hz)
1504 378
361 1447

1564 391
1515 377
1427 357

A

1474 370
1046 349
385 1153

1034 689
1105 369
1099 369

E

1068 355
402 800
404 786
366 730
362 725
368 734

I

369 740
715 1075
690 1040
736 367
724 1089
750 1126

O

787 1176
365 727
376 79
380 42
390 780
385 57

U

392 784

 - 22 -

400 600 800 1000 1200 1400 1600
0

500

1000

1500

F1(Hz)

F2

2.3.3 Make a plot of the vowel in the F1 – F2 space

(+ ------------- ‘a’ * ------------- ‘e’ ○ ------------- ‘i’
× ------------- ‘o’ □ ------------- ‘u’)

With this scatter plot I may easily draw a classifier to determine the 5 vowel classes
based on the first and second formant.

2.4 Findings and Conclusions

1) A visual representation of vibrations typical of those in human speech is called a
speech waveform. (such as Figure 4 to 8)

2) Speech consists of vibrations produced in the vocal tract. The vibrations themselves
can be represented by speech waveforms. It is not possible to read the phonemes in a
waveform, but if I analyze the waveform into its frequency components, I obtain a
spectrogram which can be deciphered.

3) Each phoneme is distinguished by its own unique pattern in the spectrogram. For
voiced phonemes, the signature involves large concentrations of energy called
formants. Formant values can vary widely from person to person, but the spectrogram
reader learns to recognize patterns which are independent of particular frequencies
and which identify the various phonemes with a high degree of reliability. For
example, the monophthong vowels have strong stable formants; in addition, these
vowels can usually be easily distinguished by the frequency values of the first two or
three formants, which are called F1, F2, and F3. In my practical work, the vowel can
be determined by the formant 1st and 2nd. But for vowel “U”, I’d better use three or
four formants to get more accurate.

 - 23 -

Appendix A: References

[1] S. Russel, P. Norvig: Artificial Intelligence, A Modern Approach, Prentice Hall,
Englewood Cliffs (NJ), 1995.

[2] A. Gersho, R. M. Gray: Vector quantization and signal compression, Kluwer
Academic Publishers,Norwell (MA), 1992.

[3] CLSU Spectrogram Reading;

[4] MATLAB Manual & Demo;

 - 24 -

