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Credit Rating - Definition

Credit Rating = Assessment of risk on credit portfolios
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Credit Rating – Expected Loss per client

Loss per client:

Expected Loss per client = PD (EAD x LGD)

Default ?

Loss = EAD ($) x LGD (%)No Loss

N Y
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Credit Rating – Expected Loss

EL = PD (EAD x LGD)

PD = Probability of Default

EAD = Exposure At Default

LGD = Loss Given Default
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Credit Rating – Probability of Default

Probability of Default (PD) 

=  the probability that a client can not meet its    
repayment obligations between now and 1 year
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Credit Rating – PD Model

PD calculation for each client 

PD

...

Variable N

Variable 2

Variable 1

Client
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Credit Rating – Modeling steps

Construction of data set:

! Select portfolio information from previous year

! Add default history from last 12 months

Modeling technique: Binary logistic regression

Scoring: 5-fold cross validation
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Credit Rating - Binary Logistic Regression

PD depends on variables (x1 .. xn) and parameters (ββββ0 .. ββββn)

Calculation of (ββββ0 .. ββββn ) using maximum likelihood
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Bayesian Networks - Definitions

A Bayesian Network (BN) is a probabilistic model  of 
variables and their causal relations.

A BN is a directed acyclic graph where:

Variables are nodes..

Causal relations are vertices...

X1 X2 Xn
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Bayesian Networks – CPT

C

A B

Conditional Probability Tables (CPT)

P(C|AB) = 0.95
P(C|A¬¬¬¬B) = 0.8
P(C|¬¬¬¬ AB) = 0.1
P(C|¬¬¬¬ A¬¬¬¬B) = 0.01

P(B)=0.3P(A)=0.02
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Bayesian Networks – Inference

! Bayes’ Theorem

! Expansionrule
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Bayesian Networks - Learning

θ = probability of variable X

p(θ) = probability distribution of θ

= belief about θ

Example of p(θ)

0 1
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Bayesian Networks – Belief Updating

Observation: Oi

The belief about θ is now updated:

c = normalization coefficient
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Bayesian Networks – Belief Updating

0 1

p(θ|Oi)

Observation Oi : X=1

Belief about θ is updated

Updated distribution p(θ|Oi) = p(θ)·θ
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Bayesian Networks – Beta distribution

Beta distribution with parameters α and β :

α = the number of observations Xi = 1

β = the number of observations Xi = 0

Property: after updating again Beta distribution

11 1 −− −
ΓΓ
+Γ= βα θθ

βα
βααβθ )(
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Bayesian Networks - Structures

Applied network structures in this research:

! CPT model

! Naive Bayes model

! Noisy-MAX model
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Bayesian Networks – CPT model

Size of CPT = (sp)p

sp = number of parent states

p = number of parents

D

X1 XNX2 . . .
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Bayesian Networks – Naive Bayes model

Unrealistic assumption: 

Predictive variables dependent on effect variable.

D

X1 XNX2 . . .
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Bayesian Networks – Noisy-MAX model

P(Yi|Xi) = ci

State of D =  logical MAX of Y1..YN

D

X1 XNX2 . . .

Y1 YNY2 . . .
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Assignment

! Provide validated model for PD estimation for a credit 
portfolio. Logistic regression and Bayesian networks 
should be applied.

! Explore Bayesian network modeling and improve 
parameter learning techniques.
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Remainder of Presentation

! Credit Rating

! Bayesian Networks

! Assignment

! Bayesian Network Learning Research:

- Noisy-MAX learning algorithm

- Prior / Posterior learning

! Bayesian Networks in Credit Rating

! Conclusions
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Noisy-MAX Learning

Parameter learning based on observations not possible

Y1..YN unknown
D

X1 XNX2 . . .

Y1 YNY2 . . .
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Noisy-MAX Learning - Approach

! Construct noisy-MAX CPT for node D, based on nodes 
X1..XN and parameters c1..cN

! Learn normal CPT (not noisy-MAX) for node D, based 
on X1..XN

! Minimize difference between the two CPT’s



26Samuel Gerssen, March 12 2004

Noisy-MAX Learning – Noisy-MAX CPT

1 - c112 - c122

c112

c122

X1 = 2

0c121Y1 = 2

0c111Y1 = 1

11 - c111 - c121Y1 = 0

X1 = 0X1 = 1

CPT for node Y1
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Noisy-MAX Learning – Noisy-MAX CPT

1

c112 + c122

c122

X1 = 2

0c121Y1 = 2

0c111 + c121Y1 = 1

11Y1 = 0

X1 = 0X1 = 1

Cumulative CPT for node Y1
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Noisy-MAX Learning – Noisy-MAX CPT

Transformation of cumulative into normal:
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Noisy-MAX Learning – Noisy-MAX CPT

For MAX gates, the following holds:

"""" Values for cumulative noisy-MAX CPT
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Noisy-MAX Learning – Noisy-MAX CPT

Entries in noisy-MAX CPT defined as:

where

θij = p(D = dj|X = xi)

qijk = p(Yi = yk|Xi = xj)
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Noisy-MAX Learning – Normal CPT

Normal CPT obtained by parameter learning

D

X1 XNX2 . . .
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Noisy-MAX Learning – Distance

! Euclidean Distance

! Kullback-Leibler Distance
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Noisy-MAX Learning – Optimization

Gradient Descent:

repeat

for each noisy-MAX parameter c do
c* = c +/- step
d = CalculateDistance
if d < dmin then

dmin = d 
c = c*

end if
end for

until no distance reduction possible
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Noisy-MAX Learning – Summary

! Algorithm performs well

! Very fast

! Global minimum guaranteed

! EM performs better

! CPT not optimal starting point
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Prior / Posterior – Concept

CPT approach..

..but 

! prior is initial value in CPT

! posterior is prior updated by observations

D

X1 XNX2 . . .
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Prior / Posterior - Motive

CPT model has too many degrees of freedom

"""" Rare entries have unreliable values

"""" Resulting model is not stable

"""" Setting priors can reduce instability 
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Prior / Posterior - Stages

1. Prior assessment

2. Posterior learning

3. Merging
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Prior / Posterior – Posterior learning

CPT probabilities: 

! Beta distribution (binary variables)

! Dirichlet distribution (multinomial variables)
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Prior / Posterior – Posterior learning

Expectation of Beta distribution:

Expectation of Dirichlet distribution:
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Prior / Posterior – Posterior learning

CPT entries for variable X with states x1..xN :

pi = i-th combination of parent states

o(pi,xj) = number of observations (pi,xj) in the data set. 
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Prior / Posterior – Prior assessment

Goal: Stable priors for every entry in the CPT

Solution: 

1. Build naive Bayes model

2. Learn parameters of CPT’s

3. Perform inference to obtain p(d|x1..xN)
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Prior / Posterior – Prior assessment

Inference in naive Bayes:
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Prior / Posterior – Merging

Merging of priors and posteriors: weighting

weight     = ‘number of observations’ for the prior pijw
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Prior / Posterior – Summary

+ Very stable for rare event data

+ Naive Bayes priors guarantee high performance

+ Posterior CPT learning provides flexibility
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BN in Credit Rating – Project results

! Construction of data set 

! Development of logistic regression model

! BN tests with C++ tool

! Development of BN models 

! Algorithm for Noisy-MAX

! Design & implementation of prior / posterior learning

! Comparison of BN and logistic regression
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BN in Credit Rating - Comparison

77.5%BN – Naive Bayes

77.3%BN – Prior / Posterior

75.4%BN – Noisy-MAX

55.6%BN – CPT

78.3%Logistic Regression

GINI scoreModel
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BN in Credit Rating - Comparison

Logistic regression

! Favored by data selection process

! Optimization technique is by nature bound to yield 
good results

! Provides the right number of degrees of freedom
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BN in Credit Rating - Comparison

Bayesian Networks

! Expert knowledge could not be incorporated

! CPT has too many degrees of freedom

! Naive Bayes performs well; apparently right number of 
degrees of freedom

! Logistic regression PD calculation and naive Bayes
inference show similarities
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Conclusions & Recommendations

BN is a very powerful modeling technique:

! Expert knowledge combined with statistical data

! High acceptance due to transparency

! Good performance in diagnosis 

(medical, trouble shooting, Microsoft Office Assistant)
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Conclusions & Recommendations

Improvements for BN results:

" Data selection process (stepwise BN)

" High quality expert knowledge

Financial setback Adverse market

PD

C3 C4

C2C1

X1
Current Balance

Tax payment Extra cost

X2
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Conclusions & Recommendations

CPT approximation for Noisy-MAX learning

! Noisy-MAX is very good alternative to CPT for rare 
event data

! CPT is probably not the best starting point for optimal 
parameters
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Conclusions & Recommendations

Prior / Posterior learning

! Priors provide very stable networks

! High performance, promising technique

" More testing on data
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