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Credit Rating - befinition

Credit Rating = Assessment of risk on credit portfolios

Loss Economic Capital
Total B B i
Outstanding !
Credit .
No |
(Credit Portfolio) Loss |
0% EL 100%
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Credit Rating - Expected Loss per client

Loss per client:

et ?

A 4 A 4

No Loss Loss = EAD ($) x LGD (%)

Expected Loss per client = PD (EAD x LGD)
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Credit Rating - Expected Loss

EL = PD (EAD x LGD)
PD = Probability of Default

EAD = Exposure At Default
LGD = Loss Given Default
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Credit Rating - probability of Default

Probability of Default (PD)

= the probability that a client can not meet its
repayment obligations between now and 1 year
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Credit Rating - pb Model

PD calculation for each client

Client

Variable 1

Variable 2 :> PD

Variable N
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Credit Rating - Modeling steps

Construction of data set:
¢+ Select portfolio information from previous year

¢+ Add default history from last 12 months

Modeling technique: Binary logistic regression

Scoring: 5-fold cross validation
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Credit Rating - Binary Logistic Regression

PD depends on variables (x; .. Xx,) and parameters (4, .. 5,)

oo | = B Bt B

Calculation of (4, .. #,) using maximum likelihood
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Bayesian Networks - befinitions

A Bayesian Network (BN) is a probabilistic model of
variables and their causal relations.

A BN is a directed acyclic graph where:

Causal relations are vertices... \ i
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Bayesian Networks —cpt

Conditional Probability Tables (CPT)

P(A)=0.02 P(B)=0.3

e P(C|AB) =0.95

P(C|A-B)=0.8
P(C|-AB) = 0.1
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Bayesian Networks - inference

¢ Bayes’ Theorem

_ p(bla)p(a)
b) =
p(alb) o(b)

¢+ Expansionrule

p(a) = p(ab) + p(ab) = p(a]b) p(b) + p(a]b) p(b)
p(a) = p(abc) + p(abc) + p(abc) + p(abt)
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Bayesian Networks - Learning

6 = probability of variable X
p(6 = probability distribution of &
= belief about &

Example of p(6
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Bayesian Networks - Belief Updating

Observation: O,

The belief about fis now updated:

c[Bp(8) if O:X=1

PE10,) :{CEM—@) (6 if O:X=0

¢ = nhormalization coefficient
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Bayesian Networks - Belief Updating

Observation O, : X=1

Belief about fis updated
Updated distribution p(81O;) = p(H)-6

p(d10;)
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Bayesian Networks - Beta distribution

Beta distribution with parameters a and S.:

_a+pB) joa1,q g
p(9|aﬁ)—r(a)r(ﬁ)9 (1-6)

a = the number of observations X;=1

L =the number of observations X;=0

Property: after updating again Beta distribution
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Bayesian Networks - structures

Applied network structures in this research:
¢ CPT model

+ Naive Bayes model

¢+ Noisy-MAX model
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Bayesian Networks - cpT model

S, = number of parent states

Size of CPT = (s,)P

P = number of parents

3
TUDelft Samuel Gerssen, March 12 2004 19



Bayesian Networks - Naive Bayes model

Unrealistic assumption:

Predictive variables dependent on effect variable.
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Bayesian Networks - Noisy-MAX model

P(YilX) = ¢
State of D = logical MAX of Y,..Y|
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Assignment

+ Provide validated model for PD estimation for a credit
portfolio. Logistic regression and Bayesian networks
should be applied.

¢+ Explore Bayesian network modeling and improve
parameter learning techniques.
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*

*

Remainder of Presentation

Credit Rating

Bayesian Networks

Assignment

Bayesian Network Learning Research:
- Noisy-MAX learning algorithm

- Prior / Posterior learning

Bayesian Networks in Credit Rating

Conclusions
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Noisy-MAX Learning

Parameter learning based on observations not possible

Y,..Yy unknown
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Noisy-MAX Learning - Approach

¢ Construct noisy-MAX CPT for node D, based on nodes
X;..Xy and parameters c,..cy

¢ Learn normal CPT (not noisy-MAX) for node D, based
on X;..Xy

¢+ Minimize difference between the two CPT’s
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Noisy-MAX Learning - Noisy-MAX CPT

CPT for node Y,

X, =2 X,=1 | X,=0
Yy =2 C122 C121 0
Y= C112 Ci11 0
Y1=0 | 1-Cyp-Cipp | 1-Cp1-Cy 1
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Noisy-MAX Learning - Noisy-MAX CPT

Cumulative CPT for node Y,

X, =2 X,=1 | X,=0
Y1=2 C122 C121 0
Yy = Cia2T Ci20 Ci1aF Ciz 0
Y, =0 1 1 1

pP(Y, =y, | X, =X%)
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Noisy-MAX Learning - Noisy-MAX CPT

Transformation of cumulative into normal:

P, =y, | X, =x)
=p(Y, 2y | X, =x)-p(Y, 2y, +1] X, =X,)
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Noisy-MAX Learning - Noisy-MAX CPT

For MAX gates, the following holds:

P(D2d[ X, =X, Xy =Xy)
=p((,2d] X, =x)0(Y,2d]| X, =x,)0...)
N
=1—|'J1— p(Y 2d ] X; =x)

- Values for cumulative noisy-MAX CPT
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Noisy-MAX Learning - Noisy-MAX CPT

Entries in noisy-MAX CPT defined as:

‘9ij = ﬂ iqprk - ﬂ iqprk

Xp X k=1 XpUIX k=1

where

6; =p(D =d|X=x;)

ik = PCYi= Yl Xi= %)
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Noisy-MAX Learning —Normal CPT

Normal CPT obtained by parameter learning
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Noisy-MAX Learning - bistance

¢ Euclidean Distance

Z Z (HCPT a?oisy—MAx )2

¢ Kullback-Lelbler Distance

QCPT

CPT J
Zzgll In gnmsy MAX
] i
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Noisy-MAX Learning - optimization

Gradient Descent:

r epeat
for each noi sy- MAX paraneter c¢ do
C" = c +/- step
d = Cal cul at eD st ance
If d < d,, then
dm'n :*
C =¢C
end If
end for

until no di stance reduction possible

2
TU Delft Samuel Gerssen, March 12 2004



Noisy-MAX Learning - summary

¢ Algorithm performs well

+ Very fast

¢ Global minimum guaranteed
¢+ EM performs better

¢+ CPT not optimal starting point
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Prior / Posterior — concept

CPT approach..

¢ prior is initial value in CPT

.but

¢ posterior is prior updated by observations
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Prior / Posterior - Motive

CPT model has too many degrees of freedom
-> Rare entries have unreliable values
- Resulting model is not stable

-> Setting priors can reduce instability
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Prior / Posterior - stages

1. Prior assessment
2. Posterior learning

3. Merging
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Prior / Posterior - posterior learning

CPT probabilities:

¢+ Beta distribution (binary variables)

_T@+B) o1, s
p(9|aﬁ)—r(a)r(ﬁ)9 (1-6)

¢ Dirichlet distribution (multinomial variables)

p(fla,.ay) =—

|:1| (@)
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Prior / Posterior - posterior learning

Expectation of Beta distribution:

je Beta(a,B)decHﬁ

Expectation of Dirichlet distribution:

je Dir(a,.ay) d8 = ——

'Za
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Prior / Posterior - posterior learning

CPT entries for variable X with states x;..xy:

o(p;, X;)
eij:p(lepi): N J
0P %)
k=1
of = I-th combination of parent states

o(p;X;) = number of observations (p;,x;) in the data set.
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Prior / Posterior - prior assessment

Goal: Stable priors for every entry in the CPT

Solution:
1. Build naive Bayes model
2. Learn parameters of CPT’s

3. Perform inference to obtain p(d]x;..Xy)
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Prior / Posterior - prior assessment

Inference in naive Bayes:

p(d [ x..xy)
_ P(x.-xy |d) Ep(d)
P(x.-Xy)

[] P(x 1) Ch(d)
]P0
[] P(x 1d) Cp(d)

— |
£ \

" 7 (p0x 1) Tp(d) + p(x 1) Cp(d)
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Prior / Posterior — Merging

Merging of priors and posteriors: weighting

_ (wip, ) +0(p;, ;)
W+ZO(|Oi %

J

weight W= ‘number of observations’ for the prior p;
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Prior / Posterior — Summary

+ Very stable for rare event data
+ Naive Bayes priors guarantee high performance

+ Posterior CPT learning provides flexibility
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BN in Credit Rating - project results

¢+ Construction of data set

¢+ Development of logistic regression model

¢+ BN tests with C++ tool

¢+ Development of BN models

¢ Algorithm for Noisy-MAX

¢+ Design & implementation of prior / posterior learning

¢ Comparison of BN and logistic regression
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BN in Credit Rating - comparison

2
TUDelft

Model GINI score
Logistic Regression 78.3%
BN - CPT 95.6%
BN — Noisy-MAX 75.4%
BN — Naive Bayes 77.5%
BN — Prior / Posterior 77.3%
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BN in Credit Rating - comparison

Logistic regression
¢+ Favored by data selection process

¢+ Optimization technique is by nature bound to yield
good results

¢ Provides the right number of degrees of freedom
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BN in Credit Rating - comparison

Bayesian Networks
+ Expert knowledge could not be incorporated
¢ CPT has too many degrees of freedom

+ Naive Bayes performs well; apparently right number of
degrees of freedom

¢ Logistic regression PD calculation and naive Bayes
Inference show similarities
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Conclusions & Recommendations

BN is a very powerful modeling technique:
+ Expert knowledge combined with statistical data
¢+ High acceptance due to transparency
¢+ Good performance in diagnhosis
(medical, trouble shooting, Microsoft Office Assistant)

.‘+.
.

U

6y

3 Pl
H
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Conclusions & Recommendations

Improvements for BN results:
> Data selection process (stepwise BN)

> High quality expert knowledge

Tax payment @ @ Extra cost

Financial setback

Current Balance @ @
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Conclusions & Recommendations

CPT approximation for Noisy-MAX learning

* Noisy-MAX is very good alternative to CPT for rare
event data

¢ CPT is probably not the best starting point for optimal
parameters
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Conclusions & Recommendations

Prior / Posterior learning
¢ Priors provide very stable networks
¢+ High performance, promising technique

> More testing on data
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