

Università degli Studi di Napoli Federico II

Facoltà di Ingegneria

Dipartimento di Informatica e Sistemistica

Delft University of Technology

Knowledge Based Systems Department

TUDelft

TESI DI LAUREA

AGV IN DYNAMIC ENVIRONMENT: A PROPOSAL
FOR AN INTELLIGENT PARKING LOT

RELATORE
Prof. Mario Vento

CANDIDATO
Luca Porzio
Matr. 45/4033

CORRELATORE
Prof. L.J.M. Rothkrantz

ANNO ACCADEMICO 2002/2003

Dedicated to my Grandfather Gennaro

Index

Acknowledgements __2

Chapter 1: Overview __4
1.1 Abstract ___ 5
1.2 Introduction __ 6
1.3 Problem settings___ 8
1.4 Lego simulation ___ 9
1.5 History of AGV __ 11

1.5.1 Automated Highway System __ 12
1.5.2 FROG__ 14
1.5.3 Researches in progress___ 15

Chapter 2: Path Finding __17
2.1 Introduction ___ 18
2.2 Some definition __ 18
2.3 Best first algorithm ___ 20
2.4 Dijkstra�s algorithm __ 22
2.5 A* Algorithm __ 24
2.6 Extended Dijkstra�s algorithm __ 27
2.7 The optimum __ 30

Chapter 3: The Garage ___33
3.1 Introduction ___ 34
3.2 AGV Movement __ 34

3.2.1 Holonomic vehicle __ 34
3.2.2 In practice __ 37

3.3 Requirements __ 38
3.4 Local or global computation__ 39
3.5 The Lego robot___ 41
3.6 What�s on RCX�s mind __ 42

Chapter 4: The Environment __44
4.1 AGV positioning system ___ 45

4.1.1 Guidelines __ 45
4.1.2 Landmark positioning system ___ 45

4.1.3 Dead Reckoning system__ 46
4.1.4 Global Positioning System (GPS) __ 46
4.1.5 Local network positioning system __ 47

4.2 Car detection sensors__ 48
4.3 The simulated environment __ 50

4.3.1 Sensor in simulated environment___ 50
4.4 Considerations ___ 51

Chapter 5: Implementation __52
5.1 Programming environment___ 53
5.2 Requirements __ 54
5.3 Visual part __ 55

5.3.1 Visual component extensibility __ 57
5.4 The Graph class __ 58
5.5 Interfacing with the robot__ 60

5.5.1 Synchronization __ 60
5.6 Finally __ 63

Chapter 6: Conclusion ___65
6.1 Results__ 66
6.2 Problems and Further improvements ____________________________________ 69
6.3 Conclusion __ 71

Bibliography __72

•••• About Lego Mindstorm __ 73
•••• About path planning algorithms and implementations ________________________ 73
•••• About AGVs ___ 75
•••• About image manipulation routines and other car sensors _____________________ 79

Appendixes ___80

•••• Appendix A: Beyond the Subject __ 81
Brief introduction to Lego ___ 81
The brain: RCX Brick __ 82
The body: Sensors and actuators __ 82
The communication: Infrared TX/RX __ 83

•••• Appendix B: Tutorial__ 84
The Robot__ 84
The Environment __ 85
The Application ___ 86
Section 1: Download ___ 87

Section 2: Sensors Calibration __ 88
Section 3: Choose the parameters for the local sensors _____________________________________ 88
Section 4: Path finding simulation ___ 90

•••• Appendix C: The Source Code __ 92

Acknowledgements

AGV in dynamic environment: a proposal for an intelligent parking lot Acknowledgements

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 3

Firstly I would like to thank Prof. Leon Rothkrantz; he is the one who accepted me into his

team and let me take part to this wonderful experience; his guidance and company has been

a great experience both in a professional way and for personal life.

Secondly I would like to remember all the people in the KBS department who were kind,

helpful and tolerated my presence for so long. Between all, Priam and Guillaume with

whom I used to spend a lot of time.

Then I would like to thank all the people who made possible my journey that is Prof.

Niccolò Rinaldi for his help and the staff of the International Exchange Office of both

universities who were helpful and kind.

A special mention to my friend Biagio since he introduced me to the possibility of this

thesis and also because if I didn�t, I will lose one of my best friend.

I would like to thank my love Sabina for being next to me in any situation and supporting

me during my studies; also I thank my brother Marco and my friend Giovanni for their

moral support during my stay in the Netherlands.

Let me reserve some space for my parents which were the main sponsor of my work and

for all the great love they have showed me so far.

Last but not least I would like to thank Prof. Mario Vento for hosting me at my home

university and for his guidance over the last phases of my work.

Thank you all.

Chapter 1: Overview

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 5

1.1 Abstract

The main purpose of this project is trying to understand where current technology could

lead us both in metaphorical and literal way. The subject of this thesis is to build up an

Automatic Guided Vehicle (AGV from now on) and define its usability in real life

environment and, obviously, its limits.

According to this, we chose to implement an AGV which we could simulate real

environment with. Great care was paid in choosing the environment for it should be enough

simple to be handled by the robot and at the same time enough complex to resemble real

life. For our purpose we decided to simulate a dynamic maze, much similar to what a big

parking lot is.

Actually the idea is to construct an AGV which is able to pick up drivers who just parked

their car and bring them to a near big facility which could be an airport or a station. We will

show later in this paper that the idea is not completely new; the Schipol airport near

Amsterdam has an AGV called FROG which is able to do what we explained before;

however this FROG AGV simply follow pre-established paths therefore it does not take

into account any dynamic information and the main consequence of its routing algorithm is

that it will blindly go in a congested road contributing itself to the jam in the parking lot.

Our goal in this research is to study and finally make a reliable proposal of an AGV which

will move through the parking lot �reasonably�, avoiding jam or blocked road and safely

transporting people to their goal maybe playing music meanwhile.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 6

1.2 Introduction

The century we just passed few years ago has shown us what kind of wonderful miracle

(and abominable things) humanity is capable of. One thing we want to point out now is the

astonishing technical progress which characterized last century: we started the century with

the light of an electric lamp and we finished it by exploring Mars surface.

Progress helps mankind to overcome many limits imposed by nature.

However sometimes progress is slowed down by many factors independent by the technical

capabilities itself. It is for example the case of train guidance: although is technically

possible to build automated driven trains, still we have human drivers because it is a

general assumption that being driven by �Machines� is somewhat unreliable and

discomforting. The field we study in this report is related to this problem: Automated

Guided Vehicles (or AGV from now on).

As microprocessors and sensors continue to shrink in size and cost, the deployment of

vehicle control systems has become technically and economically feasible. Vehicle

automation programs around the world have demonstrated remarkable capabilities, such as

cars that drive themselves along highways, based on such inputs as video images from on-

board cameras and satellite-based positioning data. Despite of all these technical advances,

many people still refuse the idea to be led by computers.

Lately we are beginning to see some changes in people attitude, handheld smart route

computers, which suggest to the driver the best path, are quite common also some luxury

class cars (e.g. BMW 700 series) mount a device called Adaptive Cruise Control which

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 7

behaves like a normal cruise control but is also capable of keeping safety distance between

the vehicle and the one ahead.

Since we don�t want these to be isolated episodes, in this report we propose a new AGV

which is a step ahead into the purpose of bringing

people near to AGVs. Our proposal is an Intelligent

park where people can park their car and an AGV will

come, pick them up and bring them to a near facility

like an Airport or train station.

We observe that such an agent would have to face many

problems: traffic situations and traffic jam avoidance, pedestrians and other cars safety

between all; we observe also that these situations have been thoroughly studied in literature

and mostly resemble metropolitan environment even if on a smaller scale. With this in

mind this report aim at studying current technology and propose a real simulation of such

an AGV.

Due to economical and time constraints our simulation has been conducted in a lab where

we built a robot which is going to simulate our AGV and an adequate environment.

It is important to underline that we don�t want to build the ultimate AGV, we just want to

show that building an AGV for real life purposes is a feasible project and show a way to

build it, so to finally have people who open their cars, seat and say �bring me to the nearest

Italian restaurant�.

Figure: an aerial view of a
parking lot in India

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 8

1.3 Problem settings

The main objective of an AGV capable of moving through real environment condition is

finding a path to the goal. We have many examples in literature about path finding

algorithm. This report itself is mainly concerned about the path finding algorithm. Indeed,

what we can find in literature are many examples about static path finding but the

environment in which the AGV will drive through is not static. While our AGV is moving,

many roads are being occupied by cars and many others are being left free. Even the robot

itself will change the �state� of a road simply passing on it.

For this purpose, the algorithm to be used should satisfy the following criteria:

1. Finding a good way to the goal (optimum would be welcome but not necessary)

2. Being able to handle dynamic changes

3. Real-time algorithm (i.e. low computational complexity)

4. Robustness

These constraints interfere with each other. An optimal solution is difficult to realize in

real-time. This means that we must find a trade-off between optimum solution and

computational time.

Furthermore, this AGV should be able to handle unexpected real life situation like lack of

information (communication losses, broken sensors, etc.) or real time problems

(unexpected objects on path, mechanical problems, etc.). A partial solution about some of

these problems, together with a possible method to implement the control system for the

AGV, will be shown throughout this report.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 9

We must observe that the problem of AGVs is a well-known problem in literature and still

mainly unresolved. On the other hand as stated before, the goal of this research is not to

build the �ultimate� AGV: our AGV is not going to travel in everyday-life situation but in a

controlled environment such as a parking lot could be. This yields to the idea of building an

�intelligent� environment� that could help our AGV in its basic actions. For this reason we

can make some assumptions that will simplify our work: we will assume that our AGV will

drive through a �friendly� environment, i.e. the environment will be able to sense its own

state and translate it into information our AGV (or a server in constant communication with

it) will be able to handle and use to compute its path.

According to the previous assumption we must decide what kind of information we need to

examine. Due to the variety of pathfinding algorithms available, the information needed

could change from algorithm to algorithm. In this paper we will show many candidates for

our pathfinding algorithm and by time in time we will analyze the type of information our

environment should be able to examine.

1.4 Lego simulation

Engineer has a practical mind. No engineering project could really be considered finished if

it is not tested under real world condition. For this purpose during this research a small

robot and an environment has been built so to let us test our AGV under real conditions.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 10

The materials used to assemble the robot are the

famous Lego bricks, more precisely the �Robotics

Invention Kit� and �Vision command kit� from Lego

were used to build and program the robot.

In the Appendix section of this report, you can find a

more detailed description about the components used

to build the robot.

The Lego kit shows some interesting features. The controller on board is a Hitachi H8

microcontroller which supports multitask programming, the communication with the

computer is wireless and uses an Infrared transceiver with a

copyrighted protocol for exchanging data; the Controller can receive

up to three sensor inputs and can control till three different actuators.

Available sensors shipped together with the Robotics Invention Kit

are touch sensors and light sensors; other sensors are available on

Lego shop such as Temperature sensors, torque sensor and pressure

sensor; more sophisticated sensors can be built and some third party brands produce,

between other, proximity IR sensor. Available actuators include two torque Engines; by

shopping you can find lamps and other kind of Actuators.

If we want to find a drawback into this kit it is certainly its limited numbers of sensors

input and limited number of actuators that the controller can handle at the same time. On

Figure: Robotics Invention
Kit

Figure: Vision
Command Kit

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 11

the other hand the best characteristic of this Kit is its modularity and ease of use: change

any part of your robot is as easy as putting Lego pieces together!

1.5 History of AGV

The use of automated transport systems goes back to the 1950s. The very first Automated

Guided Vehicle was a converted tractor that followed a guide wire on the ceiling of a

factory. By the spreading of this technology, the wire guide went from the ceiling to the

floor so that it could easily be integrated in any environment. The technology on which this

system was based is that these wires generate an electromagnetic field that can be measured

by the vehicles. Magnetic field sensors and a servo control system ensure that the vehicle is

capable of following the wire.

The second generation of unmanned vehicles also followed the induction wire along the

straight sections, but was able to navigate freely around the bends. This capability meant

that a great many difficulties could be overcome. The flexibility of the vehicles and the

system increased as a result.

Nowadays many different systems have been developed to let AGVs drive through any

environment and some of these systems are analyzed further in this report; let us show now

some example and commercial solutions currently available.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 12

1.5.1 Automated Highway System

An Automated Highway System (AHS) or Smart Roads, is an advanced Intelligent

transportation system technology designed to provide for driverless cars on specific rights-

of-way.

The AHS system places computers in cars. They read a passive roadway, and use radar and

inter-car communications to make the cars organize themselves without the intervention of

drivers. The principle is based on two structures which need to be changed respect to

normal environment: roadway and car.

The roadway must have magnetized stainless-steel spikes driven one meter apart in its

center; the car senses the spikes to measure its speed and locate the center of the lane.

Further the spikes can have either magnetic north or magnetic south facing up. The

roadway thus has small amounts of digital data describing interchanges, recommended

speeds, etc.

The cars have power steering, and automatic speed controls and these are controlled by the

on-board computer. Moreover the cars organize themselves into platoons of eight to

twenty-five cars. The platoons drive themselves a meter apart, so that air resistance is

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 13

minimized. The distance between platoons is the conventional braking distance. If anything

goes wrong, the maximum number of harmed cars should be one platoon.

The feasibility of such a project was demonstrated onto the Interstate 5 automated highway

prototype located in San Diego, California.

Although on a larger scale, the AHS is based on the same idea which guides us through this

report: the construction of an AGV in a friendly environment. The cars are instructed to

follow guidelines dug into the floor and the basic actions the AGV can perform on its own

are �keeping the center of the lane� (i.e. follow the guidelines) and �keeping a minimum

safety distance between the vehicle ahead and itself�.

When the vehicle reaches the destination set by the driver, it will return the control to the

driver.

We point out that no path planning is done (the vehicle keep going forward as long as the

destination has been reached) and that the AHS are not suitable for mixed traffic (man

driven cars are not allowed into AHS lanes).

Also the AHS suffers, commercially speaking, of the chicken-and-egg problem: no one will

buy an AHS for his car if there are no highways supporting them and no highway will build

an expensive AHS lane unless there are sufficient number of AHS vehicles supporting it.

Although the technical feasibility has been demonstrated, commercial applications of AHS

are slowed down by many factors and as a matter of fact the project is still on its

development stage.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 14

With our project we aim at a prototype with path planning capabilities and mixed traffic

capability. We will try to find a solution to the problems highlighted by the AHS.

1.5.2 FROG

The Schipol Airport near Amsterdam presents a

nice solution for its long-term clients: the

ParkShuttle by FROG company. The ParkShuttle

is an AGV which is much similar to what is

described into this report; it is a bus which drives

through a parking lot where drivers can park their

cars for long term travels. The ParkShuttle has stops where the driver can wait for it to

come and then it will accompany them to a bus stop outside the parking where another bus

(man driven) will carry them to the

airport.

The ParkShuttle uses image sensors to

recognize images on the floor by the

mean of which it is able to recognize

its position in the parking lot; it also

uses odometers to compute the position

with an increased precision. Although

The FROG ParkShuttle

The ParkShuttle�s Route in Schipol Airport
parking lot

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 15

the Frog ParkShuttle is substantially much similar to our work, it presents some problems

which we are trying to overcome with our proposal.

At first the ParkShuttle has very limited movements; its movement are preestablished, it

follows always the same route and no effort is done to avoid obstacles. Secondly

Parkshuttle lanes are forbidden to human driven cars yielding to expensive additional lanes

for the FROG AGV. However the FROG ParkShuttle is a good attempt and first trial to

make everyday AGVs come true and so it should be welcomed. The FROG company has

also proposed the European Combined Terminal in Rotterdam that uses 54 automatic

stocking cranes and 120 AGVs to automatically transport containers to and from ships

which is also a remarkable result but always limited by the problems shown above.

1.5.3 Researches in progress

Other researches are still in progress. Mainly they aim at creating fully autonomous

vehicles independent by the environment. We would like to mention the ALVINN project

which trains a Neural Network with images coming from a camera and tries to mimic the

behavior of a human driver (from large highways to off-road environment). Also another

important research in progress is the "System for effective Assessment of the driver state

and Vehicle control in Emergency situations" (SAVE) that is a program which aims at

substituting the driver only in emergency situation (but no attempt is done for long term

driving).

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 1: Overview

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 16

So far no standard has been reached and although the results are remarkable, it is our

opinion that autonomous guidance is still far to be reliable and suitable for a large scale use

or commercial purposes, therefore we are going to focus our attention on a currently

feasible project.

Chapter 2: Path Finding

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 18

2.1 Introduction

A large variety of path finding algorithms can be found in literature and most of them have

their own advantages and disadvantages.

One of the most important algorithm is the Dijkstra�s algorithm. Edsger W. Dijkstra was

one of the first to really make his mark in the field of path finding, by formalizing the

problem and proposing his initial solution in 1959. This set the premise for a great number

of successors, all of which improved the original performance. Some of these variations

will be presented in this report. Here we just want to point out that the Dijkstra�s algorithm

aim at optimize one static parameter, which is distance in our case; no dynamic information

is computed since the Dijkstra�s algorithm does not care about time.

An improvement of Dijkstra�s algorithm known as �extended Dijkstra�s algorithm� is

shown later in this section which is able to use dynamic information to calculate an

optimum path; there is however a major drawback: we need dynamic information about the

maze i.e. for a real time problem we need a way to collect data and translate these into a

likely future state of our maze. But we don�t want to anticipate how things will going on.

2.2 Some definition

Before we can talk about pathfinding algorithms, we first define some basic terminology

about graphs.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 19

A graph G is a pair (V, E), where V is a finite set and E is a binary relation over V. The set

V is the set of nodes in the graph, while the set E is the set of edges in the graph. In an

undirected graph, the edge set E consists of unordered pairs. In a directed graph, the edge

set E consists of ordered pairs. Edges in a graph may be associated with weights, which can

represent anything from physical distance between nodes to the carrying capacity of the

edges.

A path p is a sequence of nodes <v1, v2, v3, v4 �>, where (vi, vi + 1) ∈ E. If the edges are

associated with weights, then the shortest path from vi to vj is the path where the sum of all

the edge weights in the sequence is the lowest of all possible paths from vi to vj (There may

be multiple shortest paths between two nodes).

We notice here that pathfinding is a combinatorial problem, therefore the time needed to

compute a solution increase exponentially according to the cardinality of the V and E sets.

To decrease the time complexity of a graph spanning, we could help ourselves by using a

function called a �Heuristic function�.

A Heuristic function H(v1, v2) is a function able to estimate the distance (or any other

measurable parameter) between the node v1 and the node v2 onto our graph. An admissible

heuristic is a Heuristic function which never overestimates the distance between v1 and v2

where v1 and v2 belong to the V set; an inadmissible heuristic is a Heuristic function

which overestimates the distance between v1 and v2 for at least one couple (v1, v2) of nodes

in the V set.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 20

In the following paragraphs we will introduce some of the most well-known pathfinding

algorithm and try to show their main advantages and disadvantages.

2.3 Best first algorithm

Let�s assume we are in Paris. If we are not too far from the historical centre, we can admire

the beauty of the Eiffel tower hanging over all the buildings around. What if we want to

reach it? We have two options: we can buy a map and plan a path to the tower or we can

simply aim at �what we see� and try to find a way.

This second method is known in literature as the Best first algorithm.

By formalizing it better, we assume we have a function H(vcurrent, vgoal) which is able to

estimate the distance between our current position and the goal: this is the Heuristic.

Table 1: Best first algorithm pseudo code
Best first Algorithm Pseudo code

Set a node as goal, vgoal

Set a node as start, vstart

Set the cost of vstart equal to H(vstart, vgoal)

Set the cost of any other node to infinite

Create an Empty list called CLOSE

Set vstart as vcurrent

While CLOSE doesn�t contain the whole graph

{

 If vcurrent is the same as vgoal we have found the solution; break from the while loop

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 21

 Generate a list of each vsuccessor connected to vcurrent

 For each vsuccessor of vcurrent

 {

 Set the cost of vsuccessor to H(vsuccessor, vgoal)

 If vsuccessor is in the list CLOSE but the node in the list is better, discard this successor

and continue

 Remove occurrences of vsuccessor from CLOSE

 Set the parent of vsuccessor to vcurrent

 Add vsuccessor to the list OPEN

 }

 Add vcurrent to the list CLOSE

}

By using the heuristic as shown in the table we can find (If existing) a path to the goal. In

our search for the Eiffel tower, the Heuristic covers the role of �What we see� and usually,

for pathfinding problem, this Heuristic represents the distance between our current position

and the goal.

The path found by using this method is much intuitive (in most cases is what animals and

humans do to find their way) and as a matter of fact is one of the fastest and easy algorithm

known in literature; it presents however a major drawback: the path found is not guaranteed

to be the optimum path, not even we can know whether it is near the optimum or not.

This algorithm is usually pretty fast compared to the other pathfinding algorithms and it is

sometimes used as a lower bound term of comparison for time needed to find a path.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 22

2.4 Dijkstra�s algorithm

The Dijkstra�s algorithm is as simple as powerful.

The Dijkstra�s algorithm can find the shortest path from a starting node vstart to a goal

node vgoal. In the table below, we can find a description of how this action is performed.

Table 2: Dijkstra�s algorithm pseudo code
Dijkstra�s Algorithm Pseudo code

Set a node as goal, vgoal

Set a node as start, vstart

Set the cost of vstart equal to 0

Set the cost of any other node to infinite

Create an empty list called OPEN

Create an Empty list called CLOSE

While the list OPEN is not empty

{

 Get the node off the open list with the lowest cost and call it Vcurrent

 If vcurrent is the same as vgoal we have found the solution; break from the while loop

 Generate a list of each vsuccessor connected to vcurrent

 For each vsuccessor of vcurrent

 {

 Set the cost of vsuccessor to the cost of vcurrent plus the cost to get from vcurrent to vsuccessor

 If vsuccessor is in the list OPEN but the node in the list is better, discard this successor and continue

 If vsuccessor is in the list CLOSE but the node in the list is better, discard this successor and continue

 Remove occurrences of vsuccessor from OPEN and CLOSE

 Set the parent of vsuccessor to vcurrent

 Add vsuccessor to the list OPEN

 }

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 23

 Add vcurrent to the list CLOSE

}

The Dijkstra�s algorithm time complexity is O (V2) where V is the number of nodes in the

graph but it can be reduced to O ((E + V) logV) where E is the number of edges and V is

the number of nodes in the graph, if we use a heap to maintain the Open and Closed list

instead of simple linked list.

Dijkstra�s algorithm is one of the most studied pathfinding algorithm; in the following lines

we will briefly show main advantages and disadvantages of using this algorithm.

It can be proven that no other algorithm can find a path better than the path found by the

Dijkstra�s algorithm therefore we can say that the Dijkstra�s algorithm is the starting point

for pathfinding.

The major drawback of the Dijkstra�s algorithm is that it needs to span most (if not all) the

graph before serving us with the solution we are asking for. This last statement implies the

utilization of a large quantity of resources at our disposal: the time needed to span most of

the graph plus the memory needed to store all the information generated by the algorithm.

Many studies are currently working on improving original Dijkstra�s proposal. Mainly their

concerns are to improve Dijkstra�s performance by trading off resources for the �goodness�

of the path or to trade off the demand for one resource with the other: for example,

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 24

�Iterative Deepening� algorithms aim at exchange memory resource for time needed to

compute the path. Usually the solutions found are proven to be good for particular cases,

but still Dijkstra�s algorithm performances on the generic case are quite difficult to reach.

2.5 A* Algorithm

The problem of all Pathfinding algorithms (Dijkstra�s included) is the enormous amount of

resources (in memory needed and time complexity) they require. For example in the

implementation chosen for this report the Dijkstra�s algorithm tends to expand nearly any

node and have a time complexity of O((E + V) logV) where E is the number of edges in our

graph and V the number of nodes.

In some cases, we don�t have enough time available or maybe we just want to keep the

memory needed to a minimum level since we are low in resources: this yields to the

conclusion that we must find a way to limit the global resource request.

The A* algorithm works much like the Dijkstra�s algorithm only it values the node costs in

a different way. Each node�s cost is the sum of the actual cost to that node from the start

plus the heuristic estimate of the remaining cost from the node to the goal. In this way, it

combines the tracking of previous length from Dijkstra�s algorithm with the heuristic

estimate of the remaining path.

The A* algorithm is guaranteed to find the shortest path as long as the heuristic estimate is

admissible (we remember that an admissible heuristic is one that never overestimates the

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 25

cost to get to the goal). We point out that if the heuristic is inadmissible then the A*

algorithms is not guaranteed to find the shortest path, but in most cases it will find a path

faster and using less memory. The way normal cost and heuristic cost are mixed together

usually is expressed by the formula:

Node Cost = Cost to get there from start node + weight * Heuristic Cost

In literature, we have a variety of heuristic functions. The heuristic function must be

chosen according to the environment. We notice that a parking lot is very similar to a

orthogonal maze: rows and columns are roads and the islands between them is the space for

parking car; such an environment requires for best result a heuristic function called

Manhattan heuristic.

The Manhattan heuristic formula is:

H (xg, yg, xp, yp) = |xg - xp| + | yg - yp |

Where xg, yg are the coordinates of the goal node and xp, yp are the coordinates of the point

on which we are computing the cost. We remark that this heuristic never overestimates the

distance as long as the weight used to compute the node cost is 1.

If the Heuristic function returned always zero, than the A* algorithm becomes the

Dijkstra�s algorithm, from this we understand that the A* algorithm could be seen as a

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 26

different version of the Dijkstra�s algorithm. The Dijkstra�s algorithm tends to expand any

node which has the same weight: it is a Breadth-First algorithm. The A*, on the contrary,

by using the heuristic tends to expand first the most promising nodes according to the

Heuristic estimate of what �promising� is: it is a Depth-First algorithm.

Even if it is not strictly possible to demonstrate which one of the two is better, it is reported

by many studies that under the same circumstances (same data structures, same problems,

same implementation) the A* outperforms most of the times the Dijkstra�s algorithm.

This ability of the A* of focusing onto the goal more than the Dijkstra�s algorithm, let us

prefer it instead of the simple Dijkstra�s algorithm. As a matter of fact, what we need is to

minimize the demand for resources and the A* from this point of view is a big win since

finding the solution in minor time means also a less demand for resources.

However the similarity with the Dijkstra�s algorithm carries also its main drawbacks: high

resources demand, high time complexity (even if complexity is less than Dijkstra�s

algorithm, the A* complexity is however high) and the lack of handling any dynamic

changes onto the graph.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 27

Table 3 : Comparative table. The colored squares are all the nodes expanded from each algorithm; in
the left image, we see the Dijkstra�s algorithm that expands many nodes more than A* algorithm
before finding the solution.

Figure: Dijkstra�s algorithm

Figure: A* algorithm

2.6 Extended Dijkstra�s algorithm

We exposed in previous paragraphs the main problem of using the Dijkstra�s algorithm (or

A*): the dynamic constraint.

From this point of view an improvement of Original Dijkstra�s algorithm could be found in

literature; this new algorithm is known as Extended Dijkstra�s Algorithm (EDA).

The basic idea of this new algorithm is the answer to the following question: �What does

the time affect into the Dijkstra�s algorithm?�

Here we define a dynamic graph GD as a pair (V, E) where V is a finite set representing the

nodes in the graph and constant with time. E is a binary relation over V that represents the

edges of our graph; E = E(t) is a function of time now.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 28

This modification of graph definition leads to a slightly different algorithm, which we can

see in the table.

Table 4: Extended Dijkstra�s algorithm pseudo code
Dijkstra Algorithm Pseudo code

Set a node as goal, vgoal

Set a node as start, vstart

Set the time we pass by vstart equal to 0

Set the time we pass by any other node to infinite

Create an empty list called OPEN

Create an Empty list called CLOSE

While the list OPEN is not empty

{

 Get the node off the open list with the lowest time and call it vcurrent

 If vcurrent is the same as vgoal we have found the solution; break from the while loop

 Generate a list of each vsuccessor connected to vcurrent at the time set by vcurrent

 For each vsuccessor of vcurrent

 {

 Set the time we pass by vsuccessor to the time we passed by vcurrent plus the time needed to get from vcurrent

to vsuccessor at the time set by vcurrent

 If vsuccessor is in the list OPEN but the node in the list is better, discard this successor and continue

 If vsuccessor is in the list CLOSE but the node in the list is better, discard this successor and continue

 Remove occurrences of vsuccessor from OPEN and CLOSE

 Set the parent of vsuccessor to vcurrent

 Add vsuccessor to the list OPEN

 }

 Add vcurrent to the list CLOSE

}

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 29

The EDA is a Dijkstra�s algorithm which handle time changes onto the graph, both

morphological changes (unavailable edges or new available edges at particular moments of

our graph spanning) or simply weight changes (changes onto the weights of the graph

edges), so it inherits all the results and problems of the Dijkstra�s algorithm: high time and

memory complexities. Beside there is a new problem which concerns this algorithm: the

dynamic information. We observe however that dynamic information are usually available,

for example in literature we have a good example on how to handle dynamic changes under

metropolitan traffic situation to compute the best path and avoid traffic jams.

If we want a more intuitive explanation about what the EDA does, we could imagine this:

let�s imagine that we have many versions of our graph, each one of them represents the

graph in a particular instant: the

dynamic changes onto our graph

could be represented by new edges

between two nodes which are

accessible at given instants i.e. for

given graphs. By creating these new

graphs we translated a 2D dynamic

graph in a 3D static graph where the

new dimension is the time.

The ability to handle dynamic changes

Figure: Example of how the EDA works. It creates
many version of the static graph, everyone for any
instant we are going to examine it.

X

Y

t

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 30

let this algorithm be a good algorithm which is feasible under dynamic circumstances,

provided that we have the dynamic information we need.

We observe that nothing denies us from combining an Heuristic with the EDA so that we

have what we could call an Extended A* algorithm, in this case however we observe that

an heuristic estimate of the remaining path is quite difficult and far from being reliable in

most cases due to the dynamic changes which could occur to our graph.

2.7 The optimum

The first question we had to face during this research was the choice of the optimal path

finding algorithm.

Dijkstra�s algorithm is proved to be one of the most efficient algorithm. Its time complexity

is O (V2) in the worst case and few other algorithms can provide this complexity and at the

same time grant you the optimum path. Moreover we can find many different versions of

this algorithm in literature and all of them add a speed more to the algorithm in various

practical cases.

Dijkstra�s algorithm is part of those algorithms referred to in literature as �greedy

algorithm�. A greedy algorithm is every algorithm that requires a complete spanning of the

structures used to be performed in its best way; a greedy algorithm is a kind of resource-

eater. In literature many changes about Dijkstra�s algorithm aim at the minimum necessary

spanning of the graph. Indeed, what is done is a trade off between the optimal solution and

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 31

resource usage: a good path is found (not necessarily the best one) but not every possibility

is checked so to save memory and computational time resources.

A trial in this way is the above explained A* algorithm that combines the Dijkstra�s

algorithm with the use of a heuristic function trying to forecast the nodes to expand first. As

stated before, the heuristic function must be admissible. The problem is that if the Heuristic

is inadmissible the algorithm doesn�t guarantee us to find the optimum path (but it finds

however another one). It is possible to demonstrate that no other algorithm that uses the

same heuristic will expand less nodes than A* and at the same time it will guarantee you

the optimum path in any graph.

What happens if we change the weight with which the heuristic function is weighted for

computing the node cost? If we put the weight to 0 we return back to the Dijkstra�s

algorithm for which all the cases has been thoroughly studied in literature. If we set the

weight of the Heuristic function to a value more than 1 we have transformed an admissible

heuristic, such as the Manhattan heuristic used in our case, in an inadmissible heuristic

function. The Manhattan heuristic is a function that is able to tell us the minimum distance

to cover from our position to the goal in the case that our orthogonal maze is completely

free. According to this, changing the weight used in the node cost formula, means that we

are aiming at the goal more than trying to find an optimum path. This property is

particularly useful.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 2: Path Finding

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 32

During the testing of the pathfinding algorithm, it turned out that choosing a value greater

than 1 leads the algorithm to find a good path much faster than normal. The path found was

usually not the optimum one but it was found usually faster and expanding fewer nodes.

We tried to use this characteristic to our advantage. In our application we maintain a

counter of the numbers of edges that are obstructed and we compute a weight according to

this number. The weight range is between 1 and 2 and has proved to give worthwhile

results. A typical example of this is shown on the table below. In this table we can see that

the algorithm using the inadmissible heuristic focused on finding the goal more than trying

to expand nodes and find the optimum path. The result is that it expands much less node

than its counterpart and that the path found even if not optimal is not too bad.

Table 5: Comparative table. We can see here the A* algorithm with an inadmissible heuristic found a
non-optimal path but expanding less nodes than the A* algorithm with an admissible heuristic saving
time and resources.

Figure: A* algorithm with admissible heuristic Figure: A* algorithm with inadmissible heuristic

Chapter 3: The Garage

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 34

3.1 Introduction

In this section we would like to show a feasible project for our AGV. We will try to follow

as much as we can, the guidelines shown below:

1. Safety: the AGV must satisfy safety criteria for the passengers on board, for the

other vehicles and eventual obstacles (persons, animals, etc.), for the environment.

2. Robustness: the AGV must undergo real circumstances and in many cases it could

possibly happen that such goals are unreachable or that we have deadlock situations.

3. Reliability: the AGV should not require external assistance unless strictly needed.

Safety is a top priority requirement since safety of people possibly involved into the AGV

surrounding is a must both by law and ethic.

3.2 AGV Movement

3.2.1 Holonomic vehicle

Let�s suppose we have two points in a space A and B and no obstacles obstruct the way

from A to B.

A Holonomic vehicle is able to go from A to B irrespective of any internal state; on the

other hand a Non-Holonomic vehicle is a robot which can�t go freely from A to B for some

of its internal state.

An example of Holonomic vehicle is a shopping cart: since its wheels are capable of 360°

degrees turn, it can go in any direction anytime despite of the current direction of the

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 35

wheels. The most common example of Non-Holonomic vehicle is a Car: it can�t move on

its side (think what you have to do when you ought to park a car).

Beside these two categories we could define a third one which we could name Nearly-

holonomic vehicle that are those vehicles which belong to the Non-holonomic class but

with some very easy fixed passages they can reach any point as if they were holonomic.

The tank, for example, belongs to this class: it can�t move on its side so it is a Non-

Holonomic vehicle but since it has the ability to turn on itself it could turn by 90° degrees

move forward and turn again by -90°, as if it has moved on its size.

Table 6: Holonomic. equations governing the movement of a generic Holonomic vehicle in a 2D space

tvyy
tvxx

Yoldnew

Xoldnew

∆+=
∆+=

(xnew, ynew) : coordinates of vehicle�s new

position

(xold, yold) : coordinates of vehicle�s old

position

 = (vX, vY): Velocity vector

∆t : time

Y

X

y

x O

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 36

Table 7: Non-Holonomic. Equations and Movements of a car-like vehicle (two steering wheels and two
fixed wheels)

Htv
tvyy
tvxx

oldnew

oldoldnew

oldoldnew

/)sin(
)cos()sin(
)cos()cos(

αθθ
αθ
αθ

∆+=
∆+=
∆+=

(xnew, ynew) : coordinates of vehicle�s new

position of the middle point of the rear axis

(xold, yold) : coordinates of vehicle�s old

position of the middle point of the rear axis

θold, θnew : old and new angles respect to the

X axis (counter-clockwise)

α : steering angle

H : distance between axises

R : rear axis middle point

v : wheel velocity

∆t : time

Table 8: Nearly-Holonomic. Equations and movements of a tank-like vehicle

oldnew

oldoldnew

oldoldnew

tvyy
tvxx

θθ
θ
θ

=
∆+=
∆+=

sin
cos

(xnew, ynew) : coordinates of vehicle�s new

position

(xold, yold) : coordinates of vehicle�s old

position

v : Velocity

θold, θnew : old and new angles respect to the

X axis (counter-clockwise)

∆t : time

X

y

x

Y

θ
v

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 37

3.2.2 In practice

Computing the movements for Non-Holonomic vehicle is quite difficult. Many studies are

currently working on it especially for car-like vehicles; also all the proposals we studied

although technically feasible are not 100% reliable and, as we pointed before, reliability is

one of the most important requirements of our application: as a matter of fact we must find

a way to make it easy.

We observe that in our environment the movements are restricted to the following

categories:

• Turning on crosses : when our AGV turns on a cross or when it reaches a curve

• Going forward : when our AGV is on a generic road and need to go on

• Stopping by drivers to pick them up : when our AGV needs to pick up a driver

and must come near to him, stop, wait for him to get on and start again

• Inversion of direction : occasionally when a road is blocked or jammed, our AGV

could require 180° degrees turning

Even if a car-like vehicle is a common choice for these kind of AGVs, we observe that the

maneuver required by our AGV would be accomplished also by a holonomic or nearly-

holonomic vehicle: in this way we do not need special additional computation power to

compute the necessary action a non-holonomic vehicle must perform, so that the

movements are simplified to some basic action pretty easy to compute, implement and

perform.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 38

According to this, we chose to implement a tank-like vehicle which leads to a much simpler

equation for the movements, shown above in the previous paragraph.

3.3 Requirements

Now that we have chosen which kind of movements our AGV is capable of, we have to

decide which kind of other requirements our AGV must undergo.

At first, we notice that the AGV is expected to carry some basic sensors on it like distance

sensors, communication sensors and global positioning sensors: these sensors are needed

for the simple movements of the AGV. These sensors on our AGV are a critical

requirement.

Secondly, our AGV must be able to handle all these kinds of information therefore it is

expected to carry also a processing unit enough powerful to handle these signals. In theory,

this computational power is not a strict requirement. We can think, for example, to

implement just a simple radio transmitter that sends all information to a main station and

receives raw commands for engines, lights and so on. In a real environment this is not a

suitable choice: for security reason the AGV must be able to decide really fast in some

critical situation (like for example the sudden presence of persons on the road) and a radio

transmitter is not reliable in these situations. Therefore a minimal computation power on

our AGV is a critical requirement.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 39

Thirdly, our AGV must carry additional calculation power to handle the path finding

algorithm, that, we remember here, it is extremely consuming either for computation

complexity or for memory usage. This is not a strict requirement.

In this chapter we will examine in detail how these requirements are met.

3.4 Local or global computation

We examine now the main advantages and disadvantages of letting our robot carry

additional calculation power for path finding.

Path finding is a resource-consuming problem. The complexity is, even in better case, more

than linear this means that we need much computation power. Moreover, we know that

mounting extra equipment on a moving robot will be much more expensive than having a

fixed server that communicates the results to the robot: we must decide whether equipping

the AGV with a powerful computer is worth.

In case we do, our AGV will be able to calculate its own way always, under normal

condition and, more important, also under non- normal condition as for example lack in

radio communication with environment sensors.

In this case the signals to exchange with the environment would be the entire state of the

parking lot: the on-board computer will have to translate them in knowledge about the state

of the parking lot and then compute the best way.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 40

The other option is to install a powerful server that will handle the information coming

from the environment, translate them in knowledge about the state of the graph, compute

the best path and then send it to the AGV.

At a first look, the on-board choice could look better, but sometimes a centralized

knowledge better suits some kind of problems like for example the presence of more than

one AGV in the environment and problems like optimizing more than one path. This kind

of investigation is left for further improvements.

In this report due to limitation imposed by the Lego hardware at our disposal, we used a

centralized approach with a server that translates the knowledge coming from environment

sensors into an optimum path.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 41

3.5 The Lego robot

We talked about the necessity of providing our robot with sensors. Since this simulation

should resemble as much as possible reality problem, in building our robot we tried to stick

as good as we can reality situation.

The minimum requirements for a moving robot are: knowing its

position, capability of understanding bumping situation and

communication with a server.

Communication with a server could be easily accomplished thanks

to the built-in IR transceiver of the RCX.

To make sure the robot get stick to its path, we used two light

sensors. One of these sensors is used to know whether the robot is

Figure: The Lego robot used in our lab
simulation

Figure: Light
sensors

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 42

on a track, the other sensor is used to decide if the robot has arrived on a cross. For better

explanation of tracks and crosses, we suggest you go to the environment section. Both

sensors were positioned in front of the robot. These sensors are used to simulate the local

position knowledge (i.e. how far the robot is from its �ideal path�).

 To resemble distance sensors we used a touch sensor. This

sensor switches on when the robot touches something: a �zero

distance� sensor. A real robot should use some more

sophisticated distance sensor especially for security reason: we

want the robot to react to a crash before it crashes! Actually, this

sensor let us have a robot independent from environment

sensors: if the robot bumps into something then that road is obstructed and so we need to

find another path.

Two motors accomplish the movements; the movement is accomplished in a tank-style way

i.e. the turning is accomplished by using different direction or velocities of the two engines.

3.6 What�s on RCX�s mind

As stated before the limited capabilities of the RCX led us towards a centralized approach.

During the research, we uploaded onto the RCX only the code needed for navigation and

state generation code.

Figure: Touch sensor

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 3: The Garage

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 43

Our objective was that the server would tell the robot only the way for it to follow when

arrived at a cross. This objective was

accomplished.

The program uploaded onto the RCX is able to

handle the information coming from sensors and

translate them in knowledge about the current state

of the robot; in this way the robot is able to

accomplish tasks like following a line drawn on

the floor, deciding if it has reached a cross and

turn on a cross according to the server indication. The server role is covered by a computer.

For The RCX program used in this research, a diagram has been provided.

Moreover, the robot is also able to sense an obstacle on its way, through the bumping

sensor, and then it asks back to the server for help on what to do.

Timer

State of
the robot

Decision system

SensorsOld
state

Figure: Diagram of the program
running onto the RCX

Chapter 4: The Environment

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 4: The Environment

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 45

4.1 AGV positioning system

The environment must be known. We supposed throughout our research that server has to

know the environment in which it is moving and its current position.

Despite of what it could look like, this requirement is not difficult to implement. Nowadays

we have at our disposal many way by the mean of which an AGV will be able to know its

position on a map.

4.1.1 Guidelines

On small areas, especially in factories or automated environments, there is a special

positioning system which relies on preestablished paths. This system requires the AGV to

carry some (simple) sensors which are used to �know� where the path is. Usually the path

is drawn onto the floor as a black line but lately a new technology is spreading which is

much reliable and as cheap as the black lines, this technology is the inductive loop: it

consists of iron wires buried into the floor which react as inductance to the sensor placed

onto the AGV.

This positioning system has many advantages: it is very cheap compared to others, requires

very little effort to be implemented and maintained and it is reliable; however it presents a

drawback: if an AGV looses its path, then it is lost and must require for external help.

4.1.2 Landmark positioning system

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 4: The Environment

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 46

The cheapest positioning system is the landmark system.

It consists of special symbols drawn on the ground over

the path the robot is going to explore. These symbols

could be read by light sensors or other kind of sensors

positioned on the bottom of the robot: every time the

robot passes on one of these symbols, its position is

updated. The accuracy of this system depends on the

distance between two symbols. This system is subjected to destruction by environmental

factors so it requires time periodic work for maintenance.

4.1.3 Dead Reckoning system

Another possible positioning system is the so-called dead reckoning. The idea is that if you

know your starting position, you can keep track of your direction and the distance covered

so you know exactly your relative position respect to the starting point. This system suffers

of the problem that the error accumulates. Sometimes a hybrid system of Dead Reckoning

and Landmark is used, dead reckoning for relative position and landmark to correct the

error accumulated.

4.1.4 Global Positioning System (GPS)

The most known way to know an absolute position on a map is the GPS system. GPS has in

its best case an accuracy of 22 meters that is not enough for our purposes. We observe that

Figure: The popular Goose
Game is an example of
Landmark positioning system:
the number of the box in which
we are represents our position
on the map

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 4: The Environment

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 47

the resolution of GPS can be improved up to few cm, if we have a reference point on

ground surface, a special tracking system and the object we are tracking is within 10 km

from the reference point. This system is known as Differential GPS (or dGPS) and is used

in applications where an exact position is a strict requirement such as airports and large

harbors.

4.1.5 Local network positioning system

 Another kind of positioning system could be a radio

network by the mean of which our AGV will be able to

calculate its position.

The basic idea of these networks is the triangulation

model: if we want to determine the position on a 2D map,

we have three radio beacon and we know their exact

position on the map; by analyzing the phase difference

between three beacon signals it is possible to compute the

absolute position of an object on the map. The dGPS uses

this principle to increase the precision of a simple GPS system.

Usually these kinds of networks cover only a small area and need repeater to be installed all

over the area on which we need the signal.

Beacon

Beacon

Beacon

AGV

Figure: The triangulation
method; notice that two
beacon will identify 2 points,
we need at least 3 bacon to
identify a unique point

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 4: The Environment

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 48

These alternatives are the most common used choices for positioning systems in small areas

on terrain, the choice between which one is the best, must be done according to economical

and environmental parameters; a larger variety can be found in literature and we remand to

other sources to those who are interested into this field.

4.2 Car detection sensors

One of the key points of this work is the knowledge about the parking lot. We have a must:

we must gather information about the state of a road, this means that we must know if there

is a car occupying a particular road or not.

Many different sensors can be found that cover our needs, different sensors have different

advantages and disadvantages. A comparative table with the most common sensors and

their prices has been provided. Nearly all sensors used for car detection are extremely

weather dependant. Under bad weather conditions, only microwave and ultrasound sensors

Figure: Sideway sensor placement

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 4: The Environment

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 49

can provide good results. In the table below we can see also other two parameters that

represents the accuracy in computing the presence and the velocity of a moving object

passing through the zone scanned by the sensor. The overhead and sideway accuracy refers

respectively to a sensor positioned in front of a moving object or on the side of a moving

object. All these sensors are used to get feedback about traffic condition. This comparative

table has been stilled by the Texas Traffic Institute.

Table 9: Comparative table for different car detecting sensors
OVERHEAD
ACCURACY

(% of Success)

SIDEWAY
ACCURACY

(% of Success)
TECHNOLOGY/

PRODUCT COST/ROAD

Count Speed Count Speed
Inductive Loops $746 98 96 N/A N/A
Active Infrared $1,293 97 90 N/A N/A

Passive Infrared $443 97 N/A 97 N/A
Radar $314 99 98 94 92

Doppler Microwave $659 92 98 N/A N/A
Passive Acoustic $486 90 55 N/A N/A
Pulse Ultrasonic $644 98 N/A 98 N/A

VIDS $751 95 87 90 82

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 4: The Environment

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 50

4.3 The simulated environment

For simulation purposes, a guideline positioning system has

been used. The robot is able to recognize it arrived on a

cross, this ability has been also used to synchronize robot

predicted position with its real position.

The simulated environment consists of a tile maze: we have

black rows and columns on a white background. This choice was motivated after the

sensors used for the robot, with black lines over a white background the robot was able to

follow the line drawn till destination.

As stated before, this environment represents (apart for its dimensions) a parking lot: the

white squares between rows and columns represent the space where to park the cars.

4.3.1 Sensor in simulated environment

For the simulated environment, we used a Video Image

Detection System (VIDS). The camera was included in

the �Vision Command� kit by Lego. The camera has been

placed on the top of the maze. It was connected to the pc

via an USB cable.

 A program is running on the PC that captures the frames coming from the webcam and

processes the image. The image processing capabilities let us know the state of any path of

the maze. Obstacles are provided for simulating the presence of objects on the path.

Figure: Lego webcam in 'Vision
Command' Kit put on the roof

Figure: the maze used
during our simulation

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 4: The Environment

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 51

4.4 Considerations

We want to point out in this paragraph what we wanted to simulate.

Considering the hardware at our disposal, we decided to use the Video detection system

since, under lab condition, it resulted both cheap and reliable.

Moreover we had to choose what kind of �obstacles� we were to simulate. In a real

environment we would have had many cars moving on our map, this kind of environment

would have set the premises to gather time dependant information with which improved the

performances of our AGV: the problem is that having many agents in a lab environment

would have been too much expensive and also too much difficult to handle.

For this reason we decided to take into account only a first approximation of a real parking

lot where first approximation states the ability of our detection system to �sense� the state

of a road only as �occupied� or �free�.

The approach described until now however presented some problems.

The information about the maze state are limited, this means that every solution we

compute is the optimum assuming that the situation will not change in the future. This is

because we compute an optimum solution only for that moment. We didn�t try to forecast

the future state of the labyrinth and so we did not take into account any predicted

obstructed position. This problem made us discard any dynamic algorithm such as the EDA

since we could not gather any dynamic information and we could not forecast any future

state.

Chapter 5: Implementation

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 53

5.1 Programming environment

Since this is a first approach to the problem of building an AGV, the main directive during

programming was to provide an interface for further improvements and modifications. The

best way to follow this directive is to use object-oriented languages that provide

programmers with concepts like heritage and polymorphism useful to maintain code.

The language chosen was C++. The C++ has also another important characteristic, which

has proved to be worth the choice: velocity. Since our AGV is going to move in real

environment with real time problem, the velocity has turned out to be a fundamental

requirement for our application.

Between the various C++ compilers the Builder C++ compiler from Borland has been

chosen to implement our application. The choice is motivated from two factors: Spirit OCX

component and ease of use.

The Spirit OCX is an ActiveX control provided by Lego to let the programmer interface the

RCX Brick. An ActiveX control is a software component that integrates into and extends

the functionality of any host application that supports it. ActiveX controls implement a

particular set of interfaces that allow this integration. To use ActiveX controls, we need a

programming environment able to recognize the ActiveX interface and integrate its

functionality in user�s source code. The C++ Builder provides many wizards that help the

programmer in integrating the ActiveX controls in his source code.

Moreover the C++ Builder provides the user with many automatic routines for generating

code to handle windows messages and basic actions; since the limited time at our disposal

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 54

this has been an important parameter that let us time for concentrating over the visual

control and the path finding algorithm. Overall the C++ Builder has shown important

characteristics to support programmer�s work between them we would like to underline the

ease of use, reliability and clean code provided by the compiler and portability (as strict

ANSI C++ compiler).

The next paragraphs will describe in detail the techniques used to implement the program

interface and the main class called Graph encapsulating the graph storing functions and

pathfinding algorithm. We remand to the appendix for source code.

5.2 Requirements

One of the most important requirements in programming is portability and modularity.

According to these directives much of the source code is organized in completely

autonomous classes. The communication between classes is accomplished by using an

external class that has the task of handling the messages coming from the various part of

the program and send them to the appropriate receiver; this approach has been chosen for

portability reason: building a platform dependent message exchanging system would have

let our program depend on specific operating systems. Also wherever it was possible strict

ANSI C++ source code has been provided.

The second most important requirement is velocity. The bottle neck of our application is

the visual component. During our first period of building the component we were building

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 55

a component which used some edge recognition and other image recognition techniques to

sense the state of our maze. We chose not to go further into this field when we realized that

every image needed many seconds to be analyzed. We decided to simplify as much as we

could this component to let us concentrate onto the pathfinding problem and reserve more

time on computing the best path, we discuss the details in next paragraph. Another part of

our application which required some effort to be implemented was the optimum choice of

the structures needed to implement our graph-like which would encapsulate our maze, we

dedicated to this subject a paragraph later in this section.

Third important requirement was reliability: a reliable AGV is much important for it must

go through real time problems. Considering the enormous variety of problem that could

occur to such an AGV, this was maybe the most difficult requirement to satisfy and many

times this requirement was in contrast with the previous two. An example of such problems

could be lack in communication with our server which will cause our AGV to stand on a

cross waiting for data, or a mechanical failure such as a broken engine or fault in batteries

which are much more difficult to handle than previous case. We tried to present a solution

to these problems later in this section.

5.3 Visual part

The first component built has been the component that is in charge of handling the signals

coming from the global environment sensors. In this case this sensor is a webcam

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 56

positioned on the top of the maze. The objective of this component is to provide the state of

every road present in the maze. Particular attention has been put into the creation of a

reliable and fast component.

Using image-processing techniques it took more

than 2 seconds to elaborate a simple image (352

x 288 pixels) when no other process was

running on our pc. Two seconds in real-time

problems makes a lot of difference. A lot of

effort has been put in trying to keep the time

necessary to elaborate a frame to the minimum

possible.

The basic idea is that we don�t need the whole image to be processed but only the paths.

For this purpose some �local sensors� has been created. A �local sensor� is a particular

sensitive zone able to recognize whether in that zone there is a path or not.

The position of the path is assumed to be known this means that the user must put the �local

sensor� onto the edge of the maze and then the �sensor� looks if at that position an edge is

effectively existing. In figure, we can see these sensors: the boxes over the edges.

With all this improvements we were able to process a frame coming from the camera in less

than 0.20 seconds that is much more acceptable for real-time purposes.

The purpose of keeping the elaboration time to the minimum possible was that in a real

parking lot the cameras used could be more than one. If we think for example of a parking

Figure: The result of the Visual Processing
algorithm

Local sensor

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 57

lot with 10 cameras, the time for elaborating the entire parking lot has been improved from

20 seconds to 2 seconds.

The work of the �local sensor� is simple: they compute the black percentage (number of

black pixels divided by number of all the pixels) in a rectangular region.

Below we exhibit a demonstration of the capabilities of the local sensor. We can see on the

right the image shown to the webcam and on the left the internal reconstruction of the

labyrinth.

Table 10: Image acquired from camera compared with internal representation of the state of the
labyrinth.

Figure: Image acquired from the camera Figure: Internal representation of the labyrinth

5.3.1 Visual component extensibility

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 58

The visual component makes extensive use of Graphic Driver Interface (or GDI) provided

by the Windows operating system. This functions are required if you want to build a

graphic device, such as images, interface with data acquiring scanners or cameras under

windows operating system. For this purpose we split into two parts this component: the first

part that acquires the frames form the camera and translates them into platform independent

bitmaps, a second part that is the implementation of the local sensors�. The first part is

heavily dependent on GDI and so not easily portable, the other is all included in a function

named EdgeRecognition of ANSI C++ and for this very portable.

5.4 The Graph class

We gathered all the structures and functions needed to maintain a graph and to solve the

path finding problem in a single ANSI C++ class. This class is called �Graph�.

Local sensor
positioned from User

Path recognition and
communication with
the Graph class

GDI
interface

Platform Independent Bitmap
C
A
M
E
R
A

G
R
A
P
H

Figure: Visual component

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 59

An intuitive interface is provided by the Graph class to take actions on the graph. The

structure used to maintain the nodes of our graph is a Heap. This structure is needed to

reduce the time complexity of our graph spanning functions and pathfinding routines from

O(V2) to O((E + V) logV).

We observe that in literature many studies aim at finding best Data structures to be used in

Dijkstra�s like algorithms. Many studies have pointed out that the best time complexities

are achieved by the mean of a data structure called Fibonacci Heap. This assumption is

generated from the observation that a Fibonacci Heap has the time complexities shown in

the table. By this assumption we could have reduced the time complexity of the Dijkstra�s

algorithm from O(V2) to O(E + VlogV) using a Fibonacci heap.

Table 11: Comparative time complexity table between a simple Binary Heap and a Fibonacci Heap

Operations
Binary

Heap

Fibonacci

Heap

Insertion O(logN) O(1)

Extract Min element O(logN) O(logN)

Decrease Key (change and

repositioning of a node)
O(logN) O(1)

We observe however that what we are looking for is not merely an asymptotic performance

but a good performance for our algorithm; from this point of view we must notice that

Fibonacci heaps, although they show great asymptotic performances, suffer of slow

implementations, therefore many studies have highlighted the question that Fibonacci heaps

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 60

are proven to subclass normal binary heap only when the number of elements held into the

data structure is more than 10,000 nodes. Let us observe that 10,000 nodes leads to a

squared parking lot with approximately 100 nodes per side, 19,800 roads available for

parking and, assuming at least 10 car parking spaces per road, at least 198,000 available

parking spaces: Can we imagine what kind of facility would require such �hugeness�?

According to the previous observation we decided to use a simple binary heap as the main

data structure since it shows the best trade off between real and asymptotic performance.

5.5 Interfacing with the robot

The interface with the robot is provided by a class called LegoForm. This class is the only

class able to communicate with the robot, since it uses the Spirit ActiveX component.

The robot itself is not able to send messages to the Spirit control but the Spirit can poll the

value of any variable of the RCX brick. A variable on the RCX has been especially

reserved for communication purposes. This variable is set to a particular value when the

RCX is ready to receive the next communication. The only messages that the robot

exchanges with the program are just the direction the robot has to take to the next cross.

5.5.1 Synchronization

Since the positioning system used to know the position of the robot is a guidelines

positioning system, we need some synchronization between the robot and the application:

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 61

anytime the robot is on a cross, it must communicate to the application its position so it can

be updated.

Synchronization between the robot and the application is done using a simple message

exchange. When the robot arrives at a cross he sets the communication variable on so to let

the computer know that it is waiting for data to come. At this point, the LegoForm asks to

the graph class (using an intermediate class called LabyrinthForm) the next direction. This

system has proved to be very reliable but has a drawback: when there is a lack in

communication the robot stands on a cross waiting for data. This problem shows us the

main drawback of our original choice of having a centralized approach.

These messages are translated in a more understandable way by the main application and

are shown on video during the running of a test. Here we show a table with all the messages

exchanged between the robot and the application during a normal test.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 62

Table 12: typical messages exchanged between the robot and the main application during a test
Robot: Engine on, ready to start

Navigator: Easy right!

Robot: I'm turning right now

Robot: I'm following the line

Robot: I'm on a cross, What should I do?

Navigator: Easy right!

Robot: I'm turning right now

Robot: I'm following the line

Robot: Shit! I bumped into something! What are you looking at?

Navigator: Sorry. I will try to find another way

Navigator: Get back!

Robot: I'm going back

Robot: I'm following the line

Robot: I'm on a cross, What should I do?

Navigator: Easy right!

Robot: I'm turning right now

Robot: I'm following the line

Robot: I'm on a cross, What should I do?

Navigator: Speed up!

Robot: I keep on going

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 63

Robot: I'm following the line

Robot: I'm on a cross, What should I do?

Navigator: You're done

Robot: That's the goal!

5.6 Finally

The rest of the application is just a collection of functions and routines needed to handle

Window�s messages and provide the user with a user-friendly interface.

We notice that apart from window�s messages all the internal messages are handled by the

class LegoForm: it is the intermediate class that handles all the messages and forwards

them to the right receiver.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 5: Implementation

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 64

Let us have a last observation: for the graphical user interface and lego robot interface we

have used Windows operating system routines that means that for these two aspects of our

application we have not satisfied the portability criterion, however since Lego Mindstorm

Kit does not provide the end-user with a multi platform interface our choice was restricted

to this sole option. In figure we can see the main form of our application.

Figure: The main form of the application

Chapter 6: Conclusion

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 66

6.1 Results

At first we discussed about the structure of such an AGV; we showed the various

possibility that current technology can afford, we showed the main difference between

having a holonomic, non-holonomic or nearly holonomic vehicle and we opted for a

nearly-holonomic vehicle as the best choice: as a matter of fact an automated driver of a

car-like vehicle although technically feasible is still not 100% reliable mostly due to the

huge complexity of the related equations especially in non-normal condition (think for

example all the maneuver you must perform with a car when you have to �simply� turn it by

180° degrees).

These easier equations let our robot perform more movements since they were more easy

to compute. Our robot is now able to go forward by any distance (limited only by the IR

transceiver needed to communicate with the computer) and turning on itself by any angle.

These ability led our robot to perform all the actions we asked it to perform i.e. it is now

able to go from a cross to another, turning right or left on a cross, going back on a cross and

turning back if a road is obstructed: not bad for a handful of Lego bricks!

We discussed the requirements of our robot and we stated the importance of having a safe

robot according to the environment in which it should drive. After the observation that most

of the dangerous situations of a parking lot would occur when there are obstacles on the

road (i.e. people who could cross the road, car accidents, �unusual� drivers who drive in a

possibly dangerous manner, etc.), we decided to mount a bumping sensor on the front side

of the robot. By mounting this sensor we obtained the double advantage of improving the

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 67

safety of our AGV and at the same time letting it be more independent by the environment

sensors: as a matter of fact even if the environment sensors do not work, our robot was able

on its own to understand when a road was blocked and communicate the state of the road to

the computer so that it could compute another way: this led to a more reliable system. We

induced this behavior in our lab by blackening the camera, in this way the pathfinding

algorithm has no other information than the ones provided by the robot itself; during this

experiment the robot had some trouble in finding its way to the goal (it had to test all

possible paths it wanted to take) but finally it got to the goal without any previous

information about the state of the road.

Another interesting part of our work was the environment sensors. We chose to implement

the sensors responsible for the computation of the state of the various road of our maze as

much simple as we could and, as simplest, we opted for a color checking and a XOR

combination with the background. By choosing a simpler way to implement the local

sensors responsible for the roads of our maze we managed to improve the global

performance of the application leaving the main time of the execution for the

communication/synchronization with the robot and the pathfinding problem. We point out

that this way of proceeding is not much different from what a commercial VIDS system

does: the XOR combination between the current image and a previous background image is

de facto a standard procedure in the field of image recognition against a background.

During our experimentation the time needed to implement an image was a small percentage

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 68

of the total application time under many hardware configurations; in the table below we can

find the average execution time of the image routines of our application.

Table 13: Comparison of the time needed to analyze one frame by the image routines of the application
CPUs tested Time needed

(millisec)

AMD K6-III 450Mhz .45

Intel Pentium III 800Mhz .22

AMD Athlon XP 2200+ .081

The last but not least part of the application was the pathfinding algorithm. The study for a

good choice led towards a good algorithm according to the dynamic constraints we talked

about in the related section.

The algorithm we used, as described into the related section, is the A* algorithm. This

algorithm is fast and it can be proven that it computes the best path according to the

information it has been given. As we described before in this report, the information are

static, that means that the solution computed is the best available path, assuming that the

state of the maze will not change in the future: the motivation for such a choice is due

mainly to the unavailability of dynamic information i.e. we did not try to forecast any

future state and so we do not have any information that a dynamic algorithm (such as the

EDA) could find useful (we remember here that if we lack in dynamic information, the

EDA is equal to the Dijkstra�s algorithm).

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 69

This choice however led to a faster computation of the path since no additional information

had to be considered during the computation of the path; we used this characteristic to our

advantage: the path computation time was very limited (far less than the time needed by the

robot for going from a node to another), in this way we could compute a new path any time

the robot has engaged a road (i.e. when it does not require any communication unless

extraordinary situations) without modifying the global application behavior and

synchronization problems with the internal state of the robot.

The extreme velocity of the path finding routines were also used to compute a new path

anytime the state of the maze changes and so interferes with the old computed path. In this

way our AGV is able to react to external stimuli and choose a different path anytime the old

path has been obstructed by an external cause.

6.2 Problems and Further improvements

This project has been organized as a first approach to the problem of having an AGV

driving in a controlled environment and according to this statement there is plenty of space

for improvements.

We will talk now of some problem presented by our application. We want to analyze the

pathfinding algorithm chosen for our application. Since the path computation is triggered

by any notable change into the state of the maze, the problem arises when we have a stable

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 70

state oscillation of our maze i.e. when the state of our maze oscillates between two states

which are notable so that this oscillation triggers the computation of an alternative path.

When we have the above situation there is the possibility that the AGV will never reach its

goal (notice that the goal is reachable in any moment but the AGV has not enough time

available to reach the goal before the state change occurs); in this case we will have the

AGV hang around in the maze without any precise path or better trying to follow two paths

at the same time without really following any.

These circumstances were not studied and so the AGV still presents this problem; we

observe however that this problem in a real parking lot is unlikely to happen: it is extremely

unlikely that the state of a parking lot could oscillate indefinitely between two states

without reaching an equilibrium (car drivers do not simply hang around into the parking lot,

they have precise goal and strategies to achieve them).

The following step into this field should be the study of a way to eliminate this problem.

According to these criteria, the EDA algorithm has been proposed as a next step which will

mostly eliminate this problem and propose better paths. However the EDA algorithm and

any other solution which would be adapted to the problem would require a time dependant

environment sensor system (it must recognize oscillating situation or possibly forecast

them), therefore this improvement would require first the study of a time dependant sensor

system which will be able to gather time dependant information and transform them into

the information needed by the algorithm.

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 71

6.3 Conclusion

The way to build an automatic AGV is still far. The problem of driving in a hostile

environment, with no information about it, is still mainly unresolved. On the other hand it�s

our opinion that the time has come for building an AGV able to move in a suitable

environment. The result of this first approach to the field is quite satisfactory. The AGV

turned out to be much reliable in our lab simulation providing us with a handful of hopes

for a successful commercial implementation.

We can imagine that in a few years when we will park our car, a robot will come and offer

us a lift to our destination. The question is: will we accept it?

Bibliography

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 73

• About Lego Mindstorm

Lego Mindstorms (2000) - Original mindostorm webpage - http://mindstorms.lego.com

MIT - Creator of the RCX Intelligent brick -

http://fredm.www.media.mit.edu/people/fredm/mindstorms/index.html

B. Erwin - Creative Projects with LEGO® Mindstorms� - April 2001.

J. Knudsen - The Unofficial Guide to LEGO MINDSTORMS Robots - October 1999.

D. Baum - Dave Baum's Definitive Guide to LEGO MINDSTORMS - November 1999.

About RCX Internals - http://graphics.stanford.edu/~kekoa/rcx/

Lego Mindostorm Internals - http://www.crynwr.com/lego-robotics/

• About path planning algorithms and implementations

Dijkstra E (1959) - A Note on Two Problems in Connection with Graphs - Numerische

Mathematik 1, pp. 269-271.

http://mindstorms.lego.com/
http://fredm.www.media.mit.edu/people/fredm/mindstorms/index.html
http://graphics.stanford.edu/~kekoa/rcx/
http://www.crynwr.com/lego-robotics/

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 74

G. Eggenkamp (2001) - Dynamic multi modal route planning: an artificial intelligence

approach - Delft University of Technology.

ftp://ftp.kbs.twi.tudelft.nl/pub/docs/MSc/all/Eggenkamp_Gerritjan/thesis.pdf

J. H. Kingston (1990) - Algorithms and data structures: design, correctness, analysis� -

Addison-Wesley, University of Sydney, Australia.

L. Nada - An optimal pathfinder for vehicles in real-world digital terrain maps -

http://www.student.nada.kth.se/~f93-maj/pathfinder/contents.html

M.T. Saborido (1992) - An introduction to expert system development. In Application of

Artificial Intelligence in process control - L. Boullart, A. Krijgsman en R.A. Vingerhoeds,

Pergamon Press, Oxford, UK.

J.W.C. van Lint - Robust and adaptive travel time prediction with neural networks. In

Proceedings of TRAIL 6th annual congress, December 12th 2000. The

Hague/Scheveningen, The Neterlands.

R. Kroon (2001) - Dynamic vehicle routing using ant based control - Delft University of

Technology. http://www.kbs.twi.tudelft.nl/Publications/MSc/2002-Kroon-MSc.html

ftp://ftp.kbs.twi.tudelft.nl/pub/docs/MSc/all/Eggenkamp_Gerritjan/thesis.pdf
http://www.kbs.twi.tudelft.nl/Publications/MSc/2002-Kroon-MSc.html

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 75

Implementation Notes on pathfinding algorithms -

http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html

B. Cherkassky, A. Goldberg, T. Radzik - Shortest Paths algorithms: theory and

experimental reults - 1993

Fredman, M. and Tarjan, R. - Fibonacci Heaps and Their Uses in Improved Network

Optimization Algorithms - Journal of the Association for Computing Machinery, vol. 34,

no. 3, July 1987

S. Russel and P. Norvig - Artificial Intelligence a modern approach - Prentice Hall Series

M. Ginsberg, M. L. Ginsberg - Essentials of Artificial Intelligence - April 1993

Cormen, T., C. Leiserson, and R. Rivest - Introduction to Algorithms - Cambridge, MA:

MIT Press, 1990.

L. Killough - Priority Queues - http://www.leekillough.com/heaps/

• About AGVs

FROG (2000) - http://www.frog.nl

http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html
http://www.leekillough.com/heaps/
http://www.frog.nl/

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 76

Ioannou, P.A. (1997) - Automated Highway Systems - Plenum Press, New York.

SAVE project (2000) - http://www.iao.fhg.de/Projects/SAVE/save/saveinit.htm

TRAIL (1999) Automation of car driving: exploring societal impacts and conditions -

Heijden, van der, R.E.C.M., Wiethoff, M. editors, December 1999, TRAIL studies in

transportation science, S99/4, Delft University Press, The Netherlands.

A. Bicchi, L. Pallotino - Optimal planning for coordinated vehicles with bounded curvature

- Technical Report.

PARKIR (2000), report on parking possibilties near trainstations, OVR.

Franklin, S. and Graesser, A. (1996) - Is it an agent, or just a program?: a taxonomy for

autonomous agents - In Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages, Intelligent Agents III, Springer-Verlag New York,

pages 21-35. Also http://www.msci.memphis.edu/~franklin/AgentProg.html

http://www.iao.fhg.de/Projects/SAVE/save/saveinit.htm
http://www.msci.memphis.edu/~franklin/AgentProg.html

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 77

Ehlert, P.A.M. (2000) - Intelligent driving agents: the agent approach to tactical driving in

autonomous vehicles and traffic simulation - Delft University of Technology.

ftp://ftp.kbs.twi.tudelft.nl/pub/docs/MSc/all/Ehlert_Patrick/thesis.pdf

Ehlert, P.A.M. (1999) - The use of artificial intelligence in autonomous mobile robots -

Research report, Delft University of Technology.

http://elektron.its.tudelft.nl/~s218303/docs/OTreport_ps.zip

Hoedemaeker, M. (1999) - Driving with intelligent vehicles: driving behaviour with

adaptive cruise control and the acceptance by individual drivers - Trail thesis series T99/6,

November 1999, Delft University Press, The Netherlands.

Minderhoud, M.M. (1999) - Supported driving: impacts on motorway traffic flow - Trail

thesis series T99/4, TRAIL Research school, Delft University Press, The Netherlands.

C. Wang, C. Thorpe, and S. Thrun - Online Simultaneous Localization and Mapping with

Detection and Tracking of Moving Objects: Theory and Results from a Ground Vehicle in

Crowded Urban Areas - IEEE International Conference on Robotics and Automation, May,

2003.

ftp://ftp.kbs.twi.tudelft.nl/pub/docs/MSc/all/Ehlert_Patrick/thesis.pdf
http://elektron.its.tudelft.nl/~s218303/docs/OTreport_ps.zip

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 78

Smiley, A. and Brookhuis, K.A. (1987) Alcohol, drugs and traffic safety. In Road users and

traffic safety, Rothengatter, J.A. and De Bruin, R.A. editors, Assen: Van Gorcum, pages

83-105.

Pomerleau, D. (1993) - Neural network perception for mobile robot guidance - Kluwer

Academic Publishers, Boston.

G. Capuano, S. Dilillo - Reproduction of the Trout - In Proceedings of reproduction

theroies, January 1993 - Mercalli Liceum press, pages 34-52, See Indice Analtico

C. Thorpe, R. Aufrere, J.D. Carlson, D. Duggins, T.W. Fong, J. Gowdy, J. Kozar, R.

MacLachlan, C. McCabe, C. Mertz, A. Suppe, C. Wang, and T. Yata - Safe Robot Driving -

Proceedings of the International Conference on Machine Automation (ICMA 2002),

September, 2002.

C. Thorpe, D. Duggins, J. Gowdy, R. MacLachlan, C. Mertz, M. Siegel, A. Suppe, C.

Wang, and T. Yata - Driving in Traffic: Short-Range Sensing for Urban Collision

Avoidance - Proceedings of SPIE: Unmanned Ground Vehicle Technology IV, Vol. 4715,

April, 2002.

Robocup (2000) http://www.robocup.org

http://www.robocup.org/

AGV in dynamic environment: a proposal for an intelligent parking lot Chapter 6: Conclusion

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 79

• About image manipulation routines and other car sensors

Microsoft Software Developer Network - http:\\www.msdn.microsoft.com

S. McNeil, D. Duggins, C. Mertz, A. Suppe, and C. Thorpe - A Performance Specification

for Transit Bus Side Collision Warning System - ITS2002, proceedings of 9th World

Congress on Intelligent Transport Systems, October, 2002.

R. Aufrere, C. Mertz, and C. Thorpe - Multiple Sensor Fusion for Detecting Location of

Curbs, Walls, and Barriers - Proceedings of the IEEE Intelligent Vehicles Symposium

(IV2003), June, 2003.

C. Wang, C. Thorpe, and A. Suppe - Ladar-Based Detection and Tracking of Moving

Objects from a Ground Vehicle at High Speeds - IEEE Intelligent Vehicles Symposium

(IV2003), June, 2003.

Owlnet research - Laplacian Edge Detection -

http://www.owlnet.rice.edu/~elec539/Projects97/morphjrks/laplacian.html

http://www.msdn.microsoft.com/
http://www.owlnet.rice.edu/~elec539/Projects97/morphjrks/laplacian.html

Appendixes

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix A

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 81

• Appendix A: Beyond the Subject

Brief introduction to Lego

Lego bricks are one of the most famous toys all over the world.

Mainly they are composed by a technology called �Stud-and-

Tube� that let all the bricks stick together and build any kind of

construction.

The idea comes from Mr. Ole Kirk Christiansen and his son Godtfred Kirk that in 1932

invented the first Lego bricks and founded a carpentry business in the village of Billund.

From there on till nowadays Lego bricks spread all over the world so that now they are

considered toy of the century. The name Lego comes from the Danish words "LEg GOdt"

meaning "play well". A funny thing is that in Latin Lego means "I study" or "I put

together".

Lego Company is now a great company whose main concern are toys. Everyday they

produce new toys which only purpose is to let children (and not only) develop their skills.

The success of Lego Company is due also to the continuous researches in child satisfaction

and technical collaboration with many universities.

Figure: Lego brick

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix A

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 82

The brain: RCX Brick

The RCX is a LEGO microcomputer used to create

robot. It can control up to 3 engines and can receive the

input from 3 different sensors. It can be programmed so

to react to external stimuli. The firmware, uploaded

onto, presents some nice features like subroutine

handling and multitask programming. It comes shipped with visual software and an

ActiveX component called Spirit that takes care of interfacing the programmer with the

RCX.

 The body: Sensors and actuators
For assembling robots we can choose between a variety of

sensors to use. Two kinds of sensors has been used for our

purposes:

o Light sensors: these sensors are able to sense the

color (in grayscale) of the object they are aiming to.

Two sensors of this kind were used in the project.

o Touch sensors: these sensors are normal switch used as a bump sensor.

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix A

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 83

For the movement of the robot two motor bricks have been used. These motors need a 9

Volts power supply provided by the RCX and cover the role of actuators in the robot built

using the Mindstorm kit. It is provided with gears so it can change velocity (from 0 to 7)

and switch direction.

The communication: Infrared TX/RX

The RCX communicates with the PC via an Infrared (IR)

Transmitter. This transmitter is attached to the serial port of

the computer.

An interface between IR sensor and programming language is

provided by Lego by the mean of an ActiveX control that is called Spirit. The Spirit

ActiveX control is able to compile code which will be uploaded onto the RCX for a

completely automous execution or send direct commands to it through the IR sensor.

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 84

• Appendix B: Tutorial
In this section we provided a brief tutorial to build and run the experiment.

The Robot

What you need is:

! An RCX brick

! 2 light sensor

! 1 touch sensor

! 2 engines

! all the bricks necessary to connect these pieces together

First, You must position the light sensors in front of the RCX. They must aim to the

ground. The Light sensor on the left must be connected to the input number 1 and the Light

sensor on the right must be connected to the input number 3.

Then mount a bump sensor so that it switches on when the robot bump into something on

its front. You can find some example onto the Constructopedia by Lego. Be careful: the

sensor must be switched on (i.e. pushed) when the robot bump into something on its front.

No other configurations of the sensors are supported.

Finally you must mount the two engines so that one controls the wheels on the right of the

RCX and the other controls the wheels on its right. The engine that controls the right

wheels must be connected to the input C, the other to the input B.

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 85

The Environment

To build the environment you need a

really black tape (in the lab has been

used the black DUCK tape and it

resulted to be really good) and a huge

white sheet (as much �whiter� as you

can!).

Cut the tape so

that its width is

larger twice a

light sensor (if you have the DUCK tape just cut it in the middle

and it will be really good). Put the cut tape onto the sheet of paper as

shown in figure. Pay attention to the fact that the distance between a node and another

must be at least twice the maximum length of the robot or more.

Put the camera on the top of the labyrinth so that it can look at the whole labyrinth. In our

lab, we have put the camera on the roof.

Twice the length
of the robot

Robot

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 86

The Application

If you think that you�re ready with the robot and the environment then it�s time to test it.

Before starting remember to check the batteries of the Tower and the RCX. Then make sure

that the tower is connected to the PC. If it is the first time that you run the application you

should follow these paragraphs. If you already downloaded the program onto the RCX and

already calibrated the sensors you can skip these two sections and go directly to the

simulation part.

Figure: The main form of the application

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 87

Section 1: Download

Take the following steps to download the programs onto the RCX:

1 put the RCX in front of the IR Tower and turn it on

2 run the application

3 Push onto the LEGO button and the Lego form will appear

4 Push the button download and wait for all the download to finish

Figure: Lego form

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 88

Section 2: Sensors Calibration

To calibrate the sensors:

1 Put robot on the middle of an edge like shown in figure and turn it

on

2 Run the application

3 Onto the main form push the Lego button and the Lego form will

appear

4 Push the button calibrate and wait for the robot to finish the calibration

Section 3: Choose the parameters for the local sensors

Usually the default parameters are ok for the most of the environments. However the

Threshold parameter sets which is the edge for a pixel to be recognized as black or as white

Robot

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 89

and the Black percentage sets how much a sensor must be filled of black to be set on. The

last parameter should be changed to find an optimum parameter for your environment. The

steps to follow are these ones:

1 Connect the webcam to the pc

2 Run the application

3 Run the LucaWebCamControl application

4 Free the whole maze

5 Choose the Black Percentage value that lets all the local sensors to be green

6 Now put white obstacles onto the whole maze

7 Choose the Black percentage value that lets all the local sensors to be transparent

8 Repeat from step 4 till a good value of Black percentage is found

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 90

Section 4: Path finding simulation

Figure: The Labyrinth Form

Follow the following step:

1 Put the robot onto the maze on a cross with both of the sensors over a line as shown

in figure and turn it on

2 Connect the camera

3 run the application

4 run the LucaWebCamControl application

5 Push the Labyrinth button on the main form and the Labyrinth form will appear

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix B

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 91

6 With the Left mouse button choose the starting point on our maze (i.e. where the

robot has been positioned

7 With the right mouse button choose the goal point

8 Push the Arrow button (the button on the right of the info button) till it reaches the

direction towards which the robot is aiming

9 In the main form push the button �Go for the Goal� and watch the robot move (don�t

forget to turn on your speakers!)

10 While the robot is moving you can put some white obstacles on the track so that the

robot must change its way

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix C

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 92

• Appendix C: The Source Code
In these appendix we provide the source code built for our purposes. To compile and run

this source code you need:

! Borland C++ Builder 5.01 or superior compiler supporting the VCL classes

! Spirit ActiveX control by Lego installed and registered on your computer

! The robot

! The webcam contained in the vision kit by Lego

Since this application makes extensive use of image processing functions, a good computer

will improve the velocity of the application but it is not essential. We notice that we need an

external application that loads the windows� clipboard with the frames coming from the

Lego Webcam. Such an application can be found in the software provided together with this

documentation and it is called LucaWebCamControl.

Classes provided:

TFormPathfinder: main form. Provide a user-friendly interface with the application.

Handle the image coming from the clipboard and the positioning of local sensor. It provides

also the local sensors run and black recognizing. The class is able to store in a file the

configuration of the local sensors: anytime the application is started, the configuration is

loaded and anytime the application is closed, the configuration is saved. The configuration

file is called: pathfinder.dat

AGV in dynamic environment: a proposal for an intelligent parking lot Appendix C

Università degli studi di Napoli � Federico II
Delft University of Technology � TUDelft Page 93

TFormLego: interface with the robot. This class uses the Spirit ActiveX control. This class

handle the communication from and to the robot and provides synchronization to the

TFormLabyrinth Class for the position of the robot. This class also provide some debug,

calibration and download functions.

TFormLabyrinth:GUI interface to show the internal representation of the labyrinth. This

class is used to set the starting and goal positions and eventually to �artificially� obstruct

some edges of the maze. The Info button calls the TFormHelpLabyrinth that explains how

to use this window.

TFormHelpLabyrinth: Form used to help the user understanding the usage of the

labyrinth window.

TDialogFreeDrive:This form when called by the Lego Form let the user have a direct

control over the robot by using the numeric pad.

TFormParameter:This form sets the sensibility of the local sensors.

TFormCredit: generic credit form

Graph: this class encapsulates the graph storing interface and the pathfinding functions.

IDNode: this class generates a unique ID number for each node.

CostStruct: class used to compare the cost of a node.

Node: this class contains all node info. It contains also a list of linked nodes

NodeList: class implementing the Node Heap.

	Acknowledgements
	Overview
	Abstract
	Introduction
	Problem settings
	Lego simulation
	History of AGV
	Automated Highway System
	FROG
	Researches in progress

	Path Finding
	Introduction
	Some definition
	Best first algorithm
	Dijkstra’s algorithm
	A* Algorithm
	Extended Dijkstra’s algorithm
	The optimum

	The Garage
	Introduction
	AGV Movement
	Holonomic vehicle
	In practice

	Requirements
	Local or global computation
	The Lego robot
	What’s on RCX’s mind

	The Environment
	AGV positioning system
	Guidelines
	Landmark positioning system
	Dead Reckoning system
	Global Positioning System (GPS)
	Local network positioning system

	Car detection sensors
	The simulated environment
	Sensor in simulated environment

	Considerations

	Implementation
	Programming environment
	Requirements
	Visual part
	Visual component extensibility

	The Graph class
	Interfacing with the robot
	Synchronization

	Finally

	Conclusion
	Results
	Problems and Further improvements
	Conclusion

	Bibliography
	Appendixes

