
Wind energy production forecasting

Floris Ouwendijk a Henk Koppelaar a Rutger ter Borg b

Thijs van den Berg b

a Delft University of Technology, PO box 5031, 2600 GA Delft, the
Netherlands

b NUON Energy Trade and Wholesale, Spaklerweg 20, Amsterdam,
the Netherlands

Abstract

This paper presents a study to forecast the total production of some wind
parks in The Netherlands. The predictions are based on several forecasts of
the wind speed and wind direction. Two techniques are used: k-nearest
neighbours and Lasso. These techniques are applied to three versions of the
problem. The initial version scales the features. The second version modifies
the wind directions to a more natural data format. The third version incor-
porates lags in the dataset. Each version improves the results somewhat,
with the k-nearest neighbour technique having the lowest errors, and Lasso
the most stable performance.

1 Introduction to the problem

NUON is the biggest wind energy producer in The Netherlands. Approximately
50% of the 600MW installed wind energy in The Netherlands is managed by
NUON. The produced energy is sold 24 hours in advance on the energy mar-
ket. It is therefore important to know the amount of energy that will probably
be produced, for differences between predicted and delivered amounts either cost
money or result in a price that is sub optimal. The cost of power imbalance is
around 6 Euro/MWh. This means that the energy produced by the wind parks is
worth 6 Euro less than that of perfectly predictable energy sources.

For a part of the total wind park, hourly data is available for the last two years.
Predictions are based on predicted wind speeds and wind directions for different
locations in the Netherlands. These weather predictions are also available 24 hours
in advance. Because of the inherent error in these data, it will be impossible to
create a perfect forecast.

This paper presents an attempt to improve the current predictions of the energy
amount produced by the wind parks.

2 Previous work

There are not many articles concerning the application of machine learning tech-
niques to the prediction of complete wind farms.

Li et al. [3] use neural networks for the prediction of the energy output for one
turbine. Their results match the actual performance.
Denison et al. [2] predict the wind energy production on the longer term, based on
historical data, by using a Bayesian multivariate adaptive regression spline model.
Nielsen and Nielsen [4] use statistical models to create production forecasts using
meteorological data for wind farms. This led to the creation of WPPT.
Beyer et al. [1] use the numerical weather prediction model HIRLAM for wind
parks in Germany. Error rates of 12 to 20% are reported.

Unfortunately, because of the lack of articles regarding the same type of prob-
lem, it is hard to compare the results. We have been able to measure the error
on the same dataset using the current model in use at NUON. These results are
described in the section of the current model.

3 Dataset description

The input features are the forecasted wind speed and wind direction of four lo-
cations in the Netherlands (DeKooy, Hoogeveen, Leeuwarden and Schiphol), as
well as an average of the forecasted wind speed and wind direction at fifteen sites.
These values are available 24 hours in advance from the national weather agency.
The dataset consists of 18935 examples of data. This is the data for the period
February 2001 to March 2003. Each example represents one hour of data in that
year. Each example consists of ten input features and one output. The wind
speed is measured in meters per second, discretized to 1 m/s intervals. The wind
direction is measured in degrees. The locations of the forecasts and the locations
of the wind parks are not the same. The output feature is the total energy output
of a set of wind parks in the given hour.

Name Output? min max avg st.dev
Direction NL no 0.00 360.00 188.58 91.83
Direction DeKooy no 0.00 360.00 186.81 95.41
Direction Hoogeveen no 0.00 360.00 184.82 92.07
Direction Leeuwarden no 0.00 360.00 185.79 94.49
Direction Schiphol no 0.00 360.00 184.86 94.60
Speed NL no 0.00 13.00 4.38 1.91
Speed DeKooy no 0.00 15.00 5.73 2.42
Speed Hoogeveen no 0.00 23.00 4.25 1.88
Speed Leeuwarden no 0.00 21.00 4.63 2.01
Speed Schiphol no 0.00 14.00 5.19 2.24
Production yes −72.00 84235.00 18366.91 19524.47

Correlations of the features show that the wind directions as well as speeds are
highly correlated, which was expected, as the Netherlands is not a big country.
The output is highly correlated with the wind speeds, and slightly with the wind
directions.

Plots projecting each of the features against the another, show a seasonal
pattern where the wind speed or energy drops during July and August (figure 1).

The wind speed is highest when the direction is around 230 degrees (figure 2 left).
The plots for ’wind speed vs output’ show that the wind speed is only an upper
bound for the production (figure 2 right). For average wind speeds the production
varies between zero and the upper bound. At high wind speeds the turbines have
to be shut-down to prevent them from being damaged.

Figure 1: Distribution of wind speed and production over 2 years.

Figure 2: Left: wind direction vs wind speed, right: speed vs production

4 Our approach

This research was performed using the ’Workbench for Machine Learning Tech-
niques’ [5]. This is a tool that allows the user to easily create test scripts for testing
machine learning techniques and applying these techniques to problems such as
this wind energy prediction problem. These scripts consist of modules placed in a
stackable architecture.

Each of the modules in the script modifies the dataset. The modified dataset is
passed on to subsequent modules, or used to apply a machine learning algorithm to

a train and test set. The user-interface allows the parameters to the modules and
learning techniques to be varied. The execution of the techniques is distributed
over multiple computer systems. After the execution, different error measures are
available. These measures can be set-off against the parameters using visualization
modules. This allows us to quickly find optimal parameters.

Two machine learning techniques are used. The first is the k-nearest neigh-
bour algorithm for regression problems. The algorithm is initialised with a set of
examples xi and their corresponding output yi. The distance to all examples is
calculated for each new vector:

d(xi, xj) =

√√√√ N∑
m=1

(xim − xjm)2

The examples are ordered according to this distance, and the k examples with the
least distance are selected. The predicted value for the new vector is then either
the average of these points, or a weighed sum where examples with a smaller
distance contribute more to the predicted output.

The second technique is Lasso [6]. Lasso is based on relevence vector machines,
which produce sparse models using kernel functions. It has the advantage that
the error distributions for train set and test set are comparable. Predictions are
calculated by

f(x) = α0 +
n∑

i=1

αiK(xi, x)

in which α is a vector weights for each of the examples, and K is the kernel
function. To obtain α, the problem

minimise ||y − 1α0 −Kα||22
subject to ||α||1 ≤ kappa

is solved. Kappa controls the complexity of the solution. Two kernel functions
were used; the radial basis function (RBF) kernel and the polynomial kernel.

Polynomial K(u, v) = (gamma u · v + coef)d

RBF K(u, v) = e−(u−v)2/σ2

Three approaches are taken to come to improve the predictions that are cur-
rently obtained (section 4.1). The first approach was to use scaled data. The
second modifies the wind directions in the dataset to a more natural system. The
third approach extends the dataset even further by adding lags of the input fea-
tures to the dataset.

The script used in the workbench consists of several modules. The first module
in the script is the ’normalize’ module. This module scales all inputs and the
output to mean 0 and standard deviation 1. The reason to do so is that most
techniques, including k-nearest neighbours and Lasso, work better if these values
are close to zero. After this scaling all values lie between −1 and 3.

The second module is a ’random subset’ module. This module picks a random
set of examples from the dataset. The size of this set was set to 30%. The reason
to do so is that the dataset contains a large number of examples, of which many
are similar. This slows down the training while the results are presumed to be
similar when compared to training on the complete dataset. During the tests, this
presumption will be tested.

The third module is a cross-validation module that creates four folds. This
allows us to see if there are large variations in the results.

The fourth and final module is the machine learning technique. For the first
attempt, this is initially the k-nearest neighbour module, where k can be varied,
and has two weighing modes. Thereafter the Lasso module is used, which allows
kappa to be varied, as well as choosing a kernel function and its parameters.

4.1 Current model

The current model in use at NUON is a second order polynomial. This polynomial
is fit on the complete dataset to obtain the least mean squared error solution.

Using this model, predictions for all examples in the dataset were obtained.
This results in a mean absolute error of 0.44 and a mean squared error of 0.36
between the actual and predicted values.

4.2 Basic approach

The first attempt to improve the current model is by using k-nearest neighbours.
The workbench was given a script that modified the dataset (normalize all features
and output), and to search for the best settings. These were determined to be at
k = 6 with the nearest neighbours being weighted by their distance to the given
example and then summed. The mean squared error for these settings was 0.04
and on the test set 0.29. With these settings fixed, the test was repeated with the
complete dataset. The error dropped to the score given in table 1.

Error measure Average Min Max
MSE train set 0.03 0.03 0.03
MSE test set 0.23 0.22 0.24
MAE train set 0.11 0.11 0.11
MAE test set 0.32 0.31 0.32

Table 1: Error measures for k-nearest
neighbours on scaled dataset

Error measure Average Min Max
MSE train set 0.29 0.29 0.29
MSE test set 0.30 0.29 0.31
MAE train set 0.39 0.38 0.39
MAE test set 0.39 0.39 0.40

Table 2: Error measures for Lasso with
polynomial kernel on scaled dataset

The next tests are performed using Lasso. They are based on the same script in
the workbench, with the k-nearest neighbour module being replaced by the Lasso
module. Two kernels were tried: the RBF and the polynomial kernel.

The RBF kernel was tried for different values of kappa and sigma. In the
Lasso algorithm, kappa is the upper bound for the L1 norm of the active set. For

different values for kappa, there were always some values of sigma that performed
best. The differences between these pairs however are negligible. For both train
and test set, the MSE varied around 0.31.

The polynomial kernel was tried for different degrees, and different values
for gamma and the coefficient, in addition to kappa. The polynomial of the
fourth degree was the most effective. For parameters kappa=0.7, gamma=0.3
and coefficient=3.0 the best results were obtained (table 2).

When the amount of examples that is allowed in the dataset is increased, these
values do not change.

4.3 Modified wind directions

The wind directions varied over 0 to 360 (before scaling them around zero). The
jump from 360 to 0 is quite significant, whereas in reality there is no distinction.
To clear this problem, the directions were all mapped onto a circle. That way, the
values become better comparable. The original wind directions are then removed
from the dataset, and sine and cosine values of the mappings are added.

To measure the results, the polynomial kernel was used, again with degree 4.
The initial results (with all settings kept the same) improved over the previous
test.

Error measure Average Min Max
MSE train set 0.26 0.25 0.28
MSE test set 0.27 0.27 0.27
MAE train set 0.37 0.36 0.38
MAE test set 0.37 0.37 0.38

Table 3: Error measures for Lasso with
polynomial kernel on dataset with modi-
fied wind directions

Error measure Average Min Max
MSE train set 0.25 0.24 0.26
MSE test set 0.29 0.26 0.31
MAE train set 0.36 0.36 0.37
MAE test set 0.39 0.37 0.39

Table 4: Error measures for Lasso with
polynomial kernel on dataset with modi-
fied wind directions and a lag of one time
step

When the number of examples that was used was increased to 70% the numbers
did not change. By varying kappa, gamma and coefficient, it was found that the
parameters were still optimal.

4.4 Adding lags

Because of the discretized wind speed values, we assume that better predictions are
obtained by incorporating lags of previous wind speeds. The script was modified
so that after the mapping of directions onto circles all input features were lagged
for periods 1, 2 and 5 time steps. For lag=5, this resulted in a dataset consisting
of 90 input features (for each of the five locations, the wind speed and the sine
and cosine of the direction are available, and these values are repeated for t-1, t-2,
t-3, t-4 and t-5).

The tests were performed with the same settings as for the previous test. The
results are summarized in tables 4, 5 and 6.

Error measure Average Min Max
MSE train set 0.26 0.26 0.27
MSE test set 0.31 0.29 0.32
MAE train set 0.37 0.36 0.37
MAE test set 0.39 0.38 0.40

Table 5: Error measures for Lasso with
polynomial kernel on dataset with modi-
fied wind directions and a lag of two time
steps

Error measure Average Min Max
MSE train set 0.25 0.24 0.26
MSE test set 0.30 0.28 0.32
MAE train set 0.36 0.36 0.37
MAE test set 0.39 0.38 0.40

Table 6: Error measures for Lasso with
polynomial kernel on dataset with modi-
fied wind directions and a lag of five time
steps

Because of the good initial results with k-nearest neighbours and the varying
results with Lasso, an additional test was performed with the kNN module, with
lag=5 on 30% of the examples. This resulted in the measures in table 7.

Error measure Average Min Max
MSE train set 0.05 0.04 0.05
MSE test set 0.24 0.23 0.24
MAE train set 0.14 0.14 0.14
MAE test set 0.34 0.33 0.34

Table 7: Error measures for kNN on
dataset with modified wind directions
and a lag of five time steps

Error measure Average Min Max
MSE train set 0.03 0.03 0.04
MSE test set 0.20 0.19 0.20
MAE train set 0.12 0.12 0.12
MAE test set 0.29 0.29 0.30

Table 8: Error measures for kNN on
dataset with modified wind directions
and a lag of one time step on the com-
plete dataset

As results for kNN improved as more examples were used for training, the
test is repeated with all examples, and a lag of one time step. These results are
summarized in table 8.

5 Conclusion

Two techniques were applied to the NUON wind speed dataset. These techniques
were k-nearest neighbours and Lasso. Successive improvements were made to the
dataset to obtain better results.

The k-nearest neighbour technique was able to obtain very good results. This
is probably due to the huge amount of examples. Good examples are always near
and the pattern is obviously stable.

Lasso is a sophisticated technique. From the comparison with the kNN tech-
nique, it seems that modelling the results of the predictions on the energy output

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Current model Lasso,
polynomial,

scaled

Lasso,
polynomial,

modified
directions, lag

2

Lasso,
polynomial,

modified
directions

Lasso,
polynomial,

modified
directions, lag

5

Lasso,
polynomial,

modified
directions, lag

1

kNN, modified
directions,

lag=5

kNN, scaled kNN, modified
directions,

lag=1

train MSE

test MSE

train MAE

test MAE

Figure 3: Results of the tests

is hard. The advantage is that the performance is more stable that that of the
kNN technique.

Conversion of the wind directions to a more natural format improved the pre-
dictions. Results for adding lags vary. Apparently the addition adds less infor-
mation to the data than the increase in complexity is able to justify. Adding a
small amount of lag improves the results (minimum average MSE and MAE drop
slightly), but the average errors on the test set increase.

The use of Lasso with a fourth degree polynomial kernel results in average
errors of 9-10%. By using k-nearest neighbours with distance based weighing of
the 6 nearest neighbours the average error is expected to be in the range 3-8%.

References

[1] H.G. Beyer, D. Heinemann, H. Mellinghoff, K. Monnich, and H. Waldl. Fore-
cast of regional power output of wind turbines, 1999.

[2] D.G.T. Denison, P. Dellaportas, and B.K. Mallick. Wind speed prediction in
a complex terrain, 2001.

[3] S. Li, D.C. Wunsch, E.A. O’Hair, and M.G. Giesselmann. Using neural net-
works to estimate wind turbine power generation energy conversion. IEEE
Transaction on energy conversion, 16(3):276–282, September 2001.

[4] H. A. Nielsen and T. S. Nielsen. Using meteorological forecasts in on-line
predictions of wind power. chapter 5: Estimation methods, 1999. ISBN: 87-
90707-18-4.

[5] F.A. Ouwendijk. Workbench for machine learning techniques. Master’s thesis,
Delft University of Technology, june 2003.

[6] V. Roth. Sparse kernel regressors. In Georg Dorffner, Horst Bischof, and
Kurt Hornik, editors, Proceedings of the International Conference Vienna
(ICANN’01), volume 2130 of Lecture Notes in Computer Science, pages 339–
346. Springer-Verlag, 2001.

