
A Natural Human-Computer Interface for

Controlling Wheeled Robotic Vehicles

Frans Flippo

26th August 2003

Abstract

Robots are used increasingly to execute dangerous tasks and military missions.
Autonomous robots are the warriors of the future, executing missions without
requiring continuous supervision.

Multimodal interfaces are the interfaces of the future in which speech, ges-
tures, gaze, and other modalities are combined to provide a natural way for
humans to communicate with machines.

In this thesis I present a multimodal interface that was built to control and
task wheeled robotic vehicles for military missions using spoken language, key-
board, mouse, touch, and gaze inputs, which can be used simultaneously. I
developed a framework for multimodal command and control applications in
which a novel fusion technique is used to combine these inputs. This framework
was used to add multimodal interaction to Flatscape, a military mission plan-
ning and execution tool. With Flatscape and this new multimodal interface,
natural interaction methods can be used to control robots directly or assign
missions for them to execute autonomously.

Acknowledgements

The research work for this thesis was done at the Center for Advanced Infor-
mation Processing at Rutgers University in Piscataway, NJ, USA. I want to
thank Dr. Flanagan for inviting me to spend what has become a challenging
and enriching year at CAIP. Thanks also to my supervisors at CAIP: to Dr.
Marsic, who provided valuable pointers and guidance; and to Allen Krebs, for
his ideas, his help with Flatscape and DISCIPLE, and for being good company.

A special thanks to my supervisor at Delft University, Dr. Leon Rothkrantz,
who provided me with the opportunity to do my thesis work abroad, helped me
arrange funding, and guided me in writing this thesis.

I also want to thank my parents, family, and friends in Holland for their
support and faith in me leaving home to study abroad for a year. To all the
friends I have made in New Jersey: you have made this an unforgettable year, I
love you all. Finally, eternal thanks to my God and Savior, Jesus Christ. I owe
this life to you.

I acknowledge the financial support of the Stichting Universiteitsfonds Delft,
STIR, the Delft University ITS department, and sponsoring from CAIP.

This research at CAIP is supported by US Army CECOM Contract No.
DAAB07-02-C-P301, a grant from the New Jersey Commission on Science and
Technology, and by the Center for Advanced Information Processing (CAIP)
and its corporate affiliates.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Multimodal Interfaces . 1
1.1.2 Robots . 1
1.1.3 Controlling robots through a multimodal interface 2

1.2 Project Description . 2
1.2.1 Background . 2
1.2.2 Problem Description . 3

Non-functional requirements 3
1.2.3 Approach . 4
1.2.4 Overview . 4

2 Dialog systems 5
2.1 Data Flow in a Dialog System . 6
2.2 Speech Recognition . 7

2.2.1 A brief look at the theory 8
2.2.2 Products . 9

2.3 Parsing . 10
2.3.1 Parsers and Multimodal Systems 11
2.3.2 Products . 11

2.4 Dialog Management . 12
2.4.1 Products . 13

2.5 Natural Language Generation . 14
2.5.1 Products . 14

2.6 Speech Synthesis . 15
2.6.1 Speech Markup . 15
2.6.2 Speech Synthesis Techniques 16
2.6.3 Products . 17

2.7 Fusion . 17
2.8 Fission . 18

2.8.1 Products . 18
2.9 Multi-agent Architectures . 18

2.9.1 Galaxy Communicator . 19
2.9.2 Open Agent Architecture (OAA) 21
2.9.3 Adaptive Agent Architecture (AAA) 22
2.9.4 JADE . 22

2.10 Multimodal Systems . 23
2.10.1 Advantages of Multimodal 24

iii

iv

2.10.2 Multimodal Devices . 25
Gaze Tracker . 25
Tactile Glove . 26
Touch Screen . 26
Microphone Array . 26

2.10.3 Current Multimodal Systems 26
2.10.4 From Unimodal to Multimodal 27
2.10.5 Reuse of Programming Code in Multimodal Dialog Systems 28
2.10.6 The Future of Multimodal Interfaces 29

3 Design of the Multimodal Framework 31
3.1 Developing a New Multimodal Interface 31

3.1.1 Rationale . 31
3.1.2 Design Goals . 32
3.1.3 Interaction Style . 32
3.1.4 Development Procedure 32

3.2 Object Oriented Frameworks . 33
3.3 A Multimodal Framework . 34

3.3.1 Design Goals . 34
3.3.2 Approach . 35

3.4 Architecture . 36
3.5 Components . 37

3.5.1 A Common Infrastructure: Communicator 37
Communicator and system robustness 38

3.6 New vs. Off-the-Shelf Components 38
3.7 Off-the-Shelf Components . 39

3.7.1 Speech Recognizer . 39
3.7.2 Parser . 40
3.7.3 Speech Synthesizer . 40

3.8 New Components . 40
3.8.1 Reusability in Components 40
3.8.2 Fusion . 41

The Fusion Process . 41
The Fusion Design . 44
The Fusion Manager . 44
Services Provided by the Fusion Manager 47

3.8.3 Dialog Manager . 48
Dialog Manager Tasks . 48

3.8.4 Dialog Manager Limitations 49
3.8.5 Abstractions and Assumptions 50

Application Abstractions and Assumptions 51
Fusion Abstractions and Assumptions 51
Dialog Management Abstractions and Assumptions 52

3.8.6 Fission . 52
3.8.7 Natural Language Generation 53

CONTENTS v

4 Implementation of the Multimodal Framework 55
4.1 Choice of Language . 55
4.2 Programming with Communicator 56

4.2.1 Configuring the Hub . 56
4.3 Speech Recognizer . 57
4.4 Parser . 60

4.4.1 Phoenix frame representation 60
4.5 Fusion and Dialog Management 61

4.5.1 Fusion Resources . 62
4.6 Fusion Manager . 64

4.6.1 Resolving Contradictory Inputs 65
4.6.2 Fusion Interfaces . 65

Resolver . 66
ContextProvider . 68
ContextData . 69
LocatableObjectStore . 69
CoordinateTransform . 71

4.7 Dialog Manager . 71
4.7.1 Dialog History . 71

4.8 Natural Language Generation . 72

5 Building the Robot Control Application 73
5.1 The Robot . 73
5.2 Design . 73

5.2.1 The Robot Model . 75
5.2.2 Design of the Multimodal Interface 78
5.2.3 Robot Commands . 78
5.2.4 Writing a Grammar . 79
5.2.5 Developing New Resolving Agents 80

DistanceResolver . 81
SpeedResolver . 81

5.2.6 Writing an API Class . 82
5.2.7 Writing the Fusion Manager Configuration File 82
5.2.8 Modifying Robot-Side Code 85

New Commands . 85
New Mission Type . 86
JNI Troubles . 87

5.2.9 Miscellaneous Tasks . 88
Mapping . 88
DISCIPLE V3 . 89
Video Transmission . 89

6 Evaluation 91
6.1 Evaluation of Project Approach 91
6.2 Reusability . 92
6.3 Response Times . 92
6.4 Conclusions . 93
6.5 Future Work . 93

vi

A Publication for the Fifth International Conference on Multi-
modal Interfaces (ICMI-PUI’03) 95

B Glossary 105

C Grammar 107
C.1 Frames . 107
C.2 BNF Grammars . 111

D Fusion and Dialog Manager Configuration 135

E Online Resources 155

Bibliography 156

List of Tables

2.1 Overview of how humans and computer sense and generate sen-
sory information . 24

5.1 The robot data model; the last two columns indicate who “con-
trols” a property. A check in the F column means the Flatscape
client (or another client) sets the property to request a change on
the robot. A check in the R column indicates that the robot will
update that property to synchronize the model with the robot’s
state . 76

5.2 The resolver instances used in the robot interface 83

6.1 Implementation effort for the situation map tool 92

vii

viii

List of Figures

1.1 A bomb disposal robot inspects a potential suicide bomber for
explosives in Israel . 2

2.1 An example of a directed dialog 5
2.2 A mixed initiative dialog . 6
2.3 Data flow in a typical dialog system 6
2.4 An example of a ‘flight’ frame . 13
2.5 An example Galaxy-based system 20
2.6 An example AAA system with a broker team consisting of 3 mem-

bers, and two client agents . 22
2.7 FIPA reference model of an Agent Platform [26] 23

3.1 Data flow in a multimodal system 36
3.2 The layout of the framework’s servers in the Communicator in-

frastructure . 38
3.3 Abstracting away from the speech recognizer implementation . . 39
3.4 Different alignment cases for speech and mouse 42
3.5 The design of the fusion process 44
3.6 An example of how a slot is filled by resolving agents 46
3.7 The ObjectLocator and related classes 47
3.8 Hot spots in the framework for application implementation details 51
3.9 Natural Language Generation . 53

4.1 A class diagram of the galaxy.server-MainServer and galaxy.-
server.Server classes, and their subclasses in the framework 56

4.2 A UML class diagram of the speech recognizer classes 57
4.3 A UML activity diagram showing the steps from parser output

to dialog manager . 62
4.4 A UML Sequence diagram showing how resources are created . . 63
4.5 The Resolver class hierarchy and related classes 66
4.6 An example of a spelling parse tree node 67
4.7 An example of a coordinate parse tree node 67
4.8 The ContextProvider class hierarchy and related classes . . . 68
4.9 A stack of three context providers: eye tracker coordinates are

clustered and buffered in a ContextDataList 69
4.10 The ContextData class hierarchy 70
4.11 An example dialog history . 71
4.12 A UML class diagram of the natural language generation component 72

ix

x

5.1 The Pioneer 2-AT all-terrain robot (pictured here with the grip-
per accessory, which CAIP’s model does not have) 73

5.2 Flatscape with panels for monitoring and controlling the robot . 74
5.3 Overview of the DISCIPLE system architecture (from [39]) . . . 75
5.4 Model of the various modules used in the robot system and how

they interact . 77
5.5 Design of the multimodal robot client 78
5.6 An example of a distance parse tree node 80
5.7 The Number abstract class . 81
5.8 The Conversion class . 81
5.9 An example of a speed parse tree node 82
5.10 Diagram of the robot API class and related classes 83
5.11 A UML Sequence Diagram for a setDistance command 86
5.12 The map used by the robot for localization and path planning . . 88

6.1 Response times for five types of speech acts 93

Listings

2.1 An example of a BNF grammar 10
3.1 A universal framework . 34
4.1 A fragment of the server definitions XML file 58
4.2 The configuration file that is created for the process monitor on

Unix when the code in Listing 4.1 is transformed 59
4.3 The hub script that is generated when 4.1 is transformed 59
4.4 A sample frame declaration . 64
5.1 The frame definition of the move frame 79
5.2 The contextproviders section from the fusion configuration file

for the robot control application 84

xi

xii

Chapter 1

Introduction

This thesis describes the multimodal interface that was created at the Center for
Advanced Information Processing at Rutgers University, New Jersey to control
an all-terrain wheeled robotic vehicle. This chapter gives an overview of the
reasons for implementing this interface, as well as the formal description of the
project and the requirements that were determined. The last sections gives an
overview of the structure of this thesis.

1.1 Motivation

1.1.1 Multimodal Interfaces

Science fiction films and series such as 2001: A Space Odyssey and Star Trek
show computers that can flawlessly understand human speech and answer com-
plex questions with natural language. Research efforts over the past thirty years
have brought this idea closer to reality, but the pictures portrayed in science
fiction movies still remain just that: fiction.

Unreliable speech recognition, especially in noisy environments, and the need
for more natural interaction with computers using not just speech but also other
modes of communication that humans are familiar with, such as pointing, gaze,
facial expressions, and tone of voice, have motivated development of multimodal
systems: systems that combine different modalities to create a more robust and
natural interaction between man and machine. By combining modalities into a
multimodal system, we are able to come much closer to the ideal of the computer
understanding what it is we want it to do.

1.1.2 Robots

Robots have proved to be very helpful tools in many types of work. In industry,
robots relieve humans from dangerous and repetitive tasks. In military applica-
tions, robots can be used to investigate areas that may contain mines or enemy
units without having to risk the life of a human soldier. Figure 1.1 shows how a
robot is used by Israeli security to inspect a potential suicide bomber. In space,
robots can explore planets and moons that humans could not survive on, due
to climate or lack of oxygen. Autonomous robots can also perform these tasks

1

2

without continuous supervision, thereby relieving its operator to do other things
until the robot notifies him/her that it has completed its task.

1.1.3 Controlling robots through a multimodal interface

Figure 1.1: A bomb dis-
posal robot inspects a po-
tential suicide bomber for
explosives in Israel, about 12
miles from Haifa. Source:
http://news.bbc.co.uk/1/hi/
world/middle_east/1976341.stm

Multimodal interfaces provide the tools to
be able to naturally control robots for all
kinds of tasks. The paradigm is that of re-
mote voice-based control, but extended with
visual and tactile communication. The ideal
goal is for a robot to be able to replace a hu-
man in the most transparent way: the robot
understands the commands it is given and
reports back in the way a human would, us-
ing natural language.

The goal of this project was to en-
able communication with a military robot
through a multimodal interface. The robot
is used for a variety of tasks, such as re-
connaissance, securing an area, or fighting.
Any human-computer interface in a military
setting should aim to provide the speed and accuracy human-human commu-
nication would have. For quick development, existing off-the-shelf technology
is to be used as much as possible. For parts of the system where this is not
available, reusable components should be developed so that future development
efforts will have access to off-the-shelf code.

In summary, the motivation for this work is two-fold. First, the desire to have
a natural interface to control a wheeled robotic vehicle for military purposes.
Second, the need for a reusable set of components for developing multimodal
control systems.

1.2 Project Description

1.2.1 Background

The research done for this thesis is part of a project for CECOM, part of the US
Army. The project’s goal is to develop the next generation warfare technology,
involving wireless communication, advanced user interface technology such as
multimodal interfaces, and the use of robotic vehicles.

Robots are an excellent tool for high-risk operations such as mine finding or
reconnaissance in enemy territory; losing a robot is much less severe than losing
a soldier. To be able to use the robots to their full extent, they must possess
some intelligence, or autonomous behavior. Implementing this was the research
topic of another student here at CAIP [27].

An interface paradigm different from the traditional WIMP one is desirable
in a military setting. Replacing mouse-keyboard interfaces with ones that use
other modalities such as speech and gaze is useful for the following reasons:

• Military commanders will need to be able to work hands-free as they will
need their hands for other tasks.

http://news.bbc.co.uk/1/hi/world/middle_east/1976341.stm
http://news.bbc.co.uk/1/hi/world/middle_east/1976341.stm

CHAPTER 1. INTRODUCTION 3

• War situations require quick decisions and quick man-machine commu-
nication; communication in speech-based and multimodal applications is
potentially much quicker than for WIMP interfaces, especially in spatial
tasks such as mission planning.

• Natural interfaces fit better into the military organization. Currently a
human operator accepts commands from a higher ranked officer and dis-
patches them to the computer by typing. Direct communication with a
computer by the higher officer will require little change to the style of
operation, while freeing the computer operator to do other tasks.

1.2.2 Problem Description

The goal of the research described in this paper was to design and implement a
natural interface for controlling wheeled robotic vehicles. These robots can be
tele-operated or work autonomously. In the autonomous mode, a mission is set
up that the robot is to later perform without any other user intervention. In
tele-operated mode, the robot can be directly manipulated. The user interface
used to control the robot should use natural language processing and possibly
other modalities, such as gaze and gesture.

Non-functional requirements

In addition to the functional requirements described before, the following non-
functional requirements were also deemed desirable:

• Use of existing systems: Existing systems, such as Galaxy Communi-
cator, were to be looked into to see if they could be used.

• Reusability:The resulting system should be easily adaptable to other
domains and applications.

• Efficiency: Direct manipulation using multimodal techniques requires
a response time in the order of hundreds of milliseconds. The natural
interface should therefore be fast.

• Modularity: Good software engineering practice prescribes that systems
should be modular, that is, the dependencies between separate parts of
the system should be minimal, making it possible to take one part out
and replace it with another. Modularity generally increases reusability as
well.

• Interface with previously developed robot control software: The
software that is created builds on existing work done at CAIP on robot
control and collaborative mission planning. The DISCIPLE [39] frame-
work is used to communicate between the different team members – both
human and robotic. Flatscape, a collaborative mission planning and situ-
ation map tool is used as the GUI framework in which the robot control
must be integrated. Previous work done with the robot both for tele-
operation and mission planning [27] can be used.

4

1.2.3 Approach

Since it was desirable to use existing technologies and methods as much as possi-
ble, an extensive literature survey was done investigating existing conversational
systems, both unimodal and multimodal. Based on this survey, a selection was
made of existing architectures and components that would be usable in the
multimodal interface that was to be created. Furthermore, designs for new
components were partly based on ideas from the papers found in this survey.

To ensure a proper system design, I decided to first create a generic frame-
work for multimodal interfaces. The specific interface for this project could
then be built on this framework, thereby separating application-specific code
from generic code for multimodal interfaces, improving modularity and exten-
sibility of the resulting interface.

1.2.4 Overview

This thesis will cover the research done for this project and describe the design
and implementation of a multimodal interface for the robot control system.
The next chapter describes the architecture of state-of-the-art dialog systems
followed by a detailed look at each of the components. Based on this survey, I
will describe in Chapter 3 the design of a generic multimodal framework. The
implementation of this framework is described in detail in chapter 4. Chapter 5
will describe the design and implementation of a multimodal interface to control
a robot using CAIP’s mission planning and execution tool Flatscape and the
DISCIPLE collaboration framework. This interface built on the framework
described in the preceding two chapters. An evaluation of the system will be
given in Chapter 6, followed by conclusions and suggestions for future work.

Chapter 2

Dialog systems

Speak: A non−stop
flight from

<depart−loc>
to <arr_loc>.

Speak: A
flight from

<depart−loc>
to <arr_loc>.

Speak: Where are you departing from?

Speak: I’m sorry, I didn’t understand that

Speak: I’m sorry, I didn’t understand that

Speak: Do you want a non−stop flight?

Speak: Where do you want to travel to?

yes no

Input: <arr_loc>

Input: <depart_loc>

Figure 2.1: An example of a directed dialog

Spoken dialog systems are
systems in which spoken lan-
guage is used as the main
form of interaction between
human and computer. Three
types of dialog systems can be
distinguished based on the lo-
cus of control. A dialog sys-
tem that follows a fixed, pre-
defined flow of dialog deter-
mined by the system is called
system-initiative, or system-
led. This is usually im-
plemented with a finite-state
network, and therefore these
systems are also called state-
based or directed systems. An
example is shown in Figure
2.1.

User-initiative systems are
led by the user, who asks
questions to obtain some in-

formation from the computer [44].
In mixed initiative systems, control is not fixed. Rather, the dialog system

tries to fill a ‘frame’ with information given by the user, providing prompts as to
what information is useful, and possibly verifying input that the user has given.
Although the computer can ask questions to obtain the most useful piece of
information at a point in the dialog, the user can choose to provide a different
piece of information, or multiple pieces of information. An example is given
in Figure 2.2. In the first turn of the dialog, the computer asks for a piece of
information (the departure location) and the user provides not just that, but
also the arrival location, which the system also registers. The second dialog
turn shows the user not answering the system’s question but instead providing
another piece of information. Mixed initiative dialogs end when a frame has
been filled. A frame can be filled in different ways: in the previous example,

5

6

Computer: Welcome to the flight booking system. Where are you
flying from?

User: I want to fly from JFK to San Francisco.
C: What time do you want to leave?
U: Uhm, I want to get there at 3 pm.
C: I have a United Flight leaving from JFK at 12:10, a US

Airways flight ...

Figure 2.2: A mixed initiative dialog

Dialog

Management

Parser

Speech
Synthesis

Natural
Language
Generation

Audio
Input

Speech
Recognition

Audio
Output

Application / Database

Figure 2.3: Data flow in a typical dialog system

either an arrival time or a departure time are a sufficient constraint and will
satisfy one of the requirements for the frame being filled.

McTear [45] identifies another type of dialog system: agent-based. These
systems go beyond cooperating with the user to fill a frame and attempt to solve
a problem together with the user. The user and the system exchange knowledge
and reason about their own actions and beliefs, as well as each other’s input.

Smith [70] identifies four mixed-initiative “modes”, depending on the com-
puter’s level of initiative: directive, suggestive, declarative, and passive. Mode
switches can occur in a dialog in response to a user’s request. For example, the
computer may start out passive, but switch to a higher level of initiative when
the user indicates he doesn’t know what to do or even ask next.

2.1 Data Flow in a Dialog System

Typical dialog systems have a data flow as depicted in Figure 2.3. Data starts
at a low level — samples from a digital audio converter obtained through a
microphone or other audio input device — and is transformed to high level
information in several steps — speech recognition and parsing.

The dialog manager takes decisions on what to do next based in this infor-
mation. This may result in one or more actions such as retrieving data from
a database, making a call to an application, and generating a spoken response
or prompt for the user. Output from the dialog manager is then transformed
back to low level data in several steps that mirror those of the incoming data:
natural language generation, speech synthesis. The resulting output is sent to

CHAPTER 2. DIALOG SYSTEMS 7

a digital audio converter which converts it to audible sound that is emitted
through speakers or headphones.

This chapter gives an overview of each of the components in a typical dialog
system as shown in Figure 2.3. Each component’s task within the dialog system
is explained as well as how it relates to the other components. A brief description
is given of the techniques and algorithms used to accomplish that task. A list
of some available implementations concludes each section.

This survey is used to inventorize the available components of a dialog sys-
tem and provide directions for implementing components that are not easily
acquired.

2.2 Speech Recognition

Research on speech recognition can be traced back to Alexander Bell in the
1870’s who wanted to create a machine that could visualize speech, the “pho-
nautograph” [88]. This project failed, although it did lead him to invent the
telephone.

The anecdotal first speech recognizer was a toy dog that, when his name
“Rex” was called, would jump out of his dog house. The “speech recognizer”
in this system was a circuit breaker that responded to frequencies of about 500
Hz (which were generated when someone shouted “Rex”) and would break the
circuit that powered the electromagnet that kept Rex in place.

Serious speech recognition research started in the 1970’s, largely driven by
the U.S. government under its Defense Advanced Research Projects Agency
(DARPA) [52], notably the Speech Understanding Research that provided a
total of $3 million of funding per year from 1971 to 1975 [55]. DARPA has
made continuous small but consistent improvements in accuracy over time, until
funding was all but dropped in the late 90’s, stating that the speech recognition
problem was essentially “solved”.

The “holy grail” of speech recognition is to achieve 100% recognition. Any-
body who has ever worked with a speech recognizer will know that this goal
has not been achieved. 100% accuracy can be accomplished in very constrained
cases. However, such recognizers are only useful in specific small tasks. Whether
a speech recognizer is ‘good’ or ‘bad’ therefore depends on more than the accu-
racy. The following properties together define the quality of a speech recognizer:

1. the size of the vocabulary

2. whether training is needed to use the speech recognizer, that is, whether
the recognizer is speaker-dependent

3. whether the user can speak naturally (continuous speech) or must speak
each word separately (discrete speech)

4. the word error rate, that is, the percentage of words that are not recognized
or are misrecognized

5. whether speech processing is done real time or offline

6. whether recognizer performance is independent of the speaker’s gender
and age

8

Considering all these properties, the ideal speech recognizer is a speaker
independent, large vocabulary, continuous recognizer with a low word error rate.
In practice a tradeoff has to be made. If high accuracy is desired, vocabulary
must be kept small; if both a large vocabulary and high accuracy are desired,
speaker-dependent training is unavoidable. Discrete speech (i.e. “speaking ...
like ... this”) used to be necessary in the early days of speech recognition to allow
the speech recognizer to find word boundaries. Present-day speech recognizers
can recognize continuous speech using vocabularies and statistical models.

2.2.1 A brief look at the theory

Speech recognition consists of a series of processing steps, including noise estima-
tion and reduction, Fourier analysis, and a Viterbi search using hidden Markov
models (HMMs). This results in several possible sequences of phonemes. Usu-
ally a statistical language model is used to determine the most likely sequence of
words for this series of phonemes. In all, four (statistical) models are generally
used: the acoustic model, the pronunciation model, lexical model, and language
model. Mathematically, speech recognition can be represented as optimizing the
following conditional probability:

Ŵ = argmax
W

P (W |A) (2.1)

Where A is an acoustic signal and W is a (sequence of) word(s). Using Bayes’
rule, this can be rewritten as

Ŵ = argmax
W

P (A|W)P (W) (2.2)

which can be split up as

Ŵ = argmax
W

P (A|U)P (U |W)P (W) (2.3)

where

• P (W) is the probability that a sequence of word W is/are spoken (deter-
mined by the language model)

• P (U |W) is the probability that a pronounciation U is given to the word(s)
W (pronounciation and lexical models)

• P (A|U) is the probability that a sequence of phonemes A is observed for
the pronounciation U (acoustic model)

For speaker-independent systems, the acoustic model is trained to general-
ize across a large amount of users, and the same model is used for each user.
Speaker-dependent systems, on the other hand, maintain a separate acoustic
model for each user that is optimized for his or her way of speaking. Pronounci-
ation models are specific to a certain language, as are lexical models. Language
models are also language-specific, but can be optimized for a certain domain
to obtain better recognition in that domain. To accomplish this, a corpus of
representative sentences is used to train the language model.

Early speech recognition used neural networks to match an incoming speech
signal to a number of speech samples the network was previously trained on.

CHAPTER 2. DIALOG SYSTEMS 9

This works reasonable well for recognition of a small set of possible speech
fragments, when they are spoken by the same person in more or less the same
way, for example for recognition of the digits zero through nine, or for voice
dialing on mobile phones.

A popular technique for speech recognition is the use of hidden Markov mod-
els (HMMs), which was introduced by Lenny Baum of Princeton University in
the early 1970’s [55]. A HMM models the probabilities of the user speaking
a certain sound (or phoneme) given the frequency spectrum at a certain seg-
ment in speech and the previous phoneme. To find the most likely sequence of
phonemes, a Viterbi search is used. Some recognizers mix neural networks and
hidden Markov models [16, 93] to use the strengths of each and compensate for
the weaknesses. For example, one weakness of hidden Markov models is the
assumption that the current state transition is independent of the previous or
future ones, for example, is not really valid for speech.

2.2.2 Products

Several commercial speech recognition products are available on the market,
such as IBM ViaVoice, Dragon NaturallySpeaking, and SpeechWorks’ Open-
Speech. These are all speaker-dependent systems, for high accuracy. Open
source speech recognition products include CMU Sphinx, which is a speaker
independent system generally using small vocabularies. Some universities have
their own, internally developed, speech recognition software. Operating systems
are also starting to integrate speech recognition, for example Apple’s Mac OS
X [5].

Besides the quality of the speech recognizer in terms of the word error rate
and vocabulary size, criteria for determining which speech recognizer to use are:

• API — Does the speech recognizer interface well with our application?
Does it support the programming language? Is the interface easy to un-
derstand and use?

• Documentation — Is the product and its API well-documented?

• Price — Is the speech recognizer affordable?

• Setup — Is the speech recognizer easy to set up and train (if needed)?

Sun has developed a cross-platform speech API for Java together with a
group of major players such as Apple, AT&T, Dragon Systems, and IBM [73].
The JavaSpeech API, or JSAPI, provides access to all speech recognizers that
support it, using a single interface. Microsoft has a similar interface in C++ for
Windows called SAPI (Speech API).

From a multimodal point of view, a necessary function of a speech recognizer
(and its API) is to provide word-level timestamps. Most current recognizers are
able to provide the beginning and end time stamps for each word. Since speech
is continuous, words don’t have crisp beginnings and endings; the timestamps
returned by the recognizer are therefore the ones which it has determined to be
the most likely.

JSAPI can return timestamps, but doesn’t require implementations to do
so. IBM ViaVoice currently returns timestamps for each word for the best
recognition result, but not for the N-best list (i.e. “–1” is returned instead).

10

2.3 Parsing

The output of a speech recognizer is a sequence of words, which have little
meaning for a computer. The task of a parser is to organize and assign meaning
to the speech recognizer output. Two types of parsing can be distinguished:
syntactic parsing and semantic parsing. Syntactic parsing aims to determine
the grammatical structure of the sentence, such as what type of sentence it is
— a wh-question (“what...?”, “where...?”, etc.), a command, a yes/no question
— and what its components are — subject, object, etc. No real meaning can be
determined from a syntactic parse by itself. While syntactic parsing is sufficient
for some systems, such as translation systems and systems that just store and
retrieve knowledge without having to know what it means, a real dialog system
needs to understand the meaning of what the user is saying.

Semantic parsing aims to categorize the parts of a sentence and the sentence
as a whole, to thereby determine its meaning. Both types of parsing should
be present in some form. Just categorizing the meaning of the words in the
sentence does not give a complete analysis of its meaning, as the order of the
words can be very relevant. Some parsers contain both elements in a single
parser. [56] argues that a semantic parser that contains syntactic analysis as
well is suboptimal.

Outside of spoken dialog systems, parsing is used in compilation, the process
of converting program code in a higher level programming language into ma-
chine code. In this case, the source language is well-defined, known a priori, and
completely unambiguous. The grammar used for this kind of parser is usually in
BNF (“Backus-Naur Form”) or a similar notation. Natural language parsing is
different: there are many ways of saying the same thing, and the same sentence
can mean different things depending on context. Also, speech recognition errors
can cause parts of a sentence to be altered or dropped. Since some parts of a
sentence don’t contribute significantly to its meaning, humans can still under-
stand what is said even if not every word in the sentence was heard correctly. A

article ::= THE | A;;
toggle ::= TURN | TOGGLE | SWITCH;;
turn on ::= ON | ACTIVATE;;
turn off ::= OFF | DEACTIVATE;;
living room lights ::= LIVING ROOM LIGHTS;;
bathroom lights ::= BATHROOM LIGHTS;;
coffee maker ::= COFFEE MAKER | COFFEE MACHINE;;
thing ::= living room lights | bathroom lights | coffee maker ;;
turn on cmd ::= [toggle] turn on [article] thing

| [toggle] [article] thing turn on ;;
turn off cmd ::= [toggle] turn off [article] thing

| [toggle] [article] thing turn off ;;

Listing 2.1: An example of a BNF grammar

spoken dialog system is expected to do the same. Nonetheless, some simple dia-
log systems do use BNF grammars, such as the one shown in Listing 2.1. These
systems either have a very large number of grammar rules to handle every way

CHAPTER 2. DIALOG SYSTEMS 11

a user might say something, or require the user to say commands in the exact
wording that the system has been designed to recognize. This creates a very
unnatural user interface.

A much better solution is one where the fact that speech may contain disflu-
encies and that the speech recognizer might misrecognize some words is taken
into account. This leads to a parser that uses a more flexible method of parsing
that searches for the important parts in a sentence, known as salient phrases.
The process of parsing given the possibility of recognition errors is called robust
parsing. Robust parsers create a chart of all the grammatical phrases found in
the input and determine the way in which these phrases can optimally cover the
input sentence. For this reason robust parsers are also called chart parsers.

A very trivial, but sometimes functional, way of doing this is word spotting.
With this technique, spoken text isn’t actually parsed. Instead, the system
looks for certain words. For example, a spoken language system for controlling
household appliances might recognize the words and phrases ‘on’, ‘off’, ‘living
room lights’, ‘bathroom lights’, ‘coffee maker’. When the user speaks, the system
will spot these terms and take action accordingly. For example, spotting the
words ‘living room lights’ and ‘on’ would cause the system to turn on the living
room lights. The user could say this in any of the following ways:

• Computer, could you turn on the living room lights?

• Switch the living room lights on, please.

• Living room lights on.

Even though this system is simple, it creates a natural experience for the user,
who does not have to memorize computer commands to use it.

2.3.1 Parsers and Multimodal Systems

Parsers have changed very little in the past five years. Changes are needed to use
current parsers in multimodal systems. Since timing information and confidence
scores are not needed in unimodal applications, most parsers don’t output these,
even if they are provided by the speech recognizer input. Multimodal interfaces,
however, can benefit greatly from this information. Timing information is used
to synchronize speech with other modalities. Confidence scores are used along
with confidence scores from other modalities to disambiguate and find what the
user most likely intended to convey.

2.3.2 Products

Parsers usually have a clear separation between the actual parser code and the
grammar. This makes them very reusable, since no program code needs to be
changed. A new grammar is all that is needed to use the parser in a different
application. The following parsers have been used in spoken language systems
in the Communicator task:

• CU Phoenix — Phoenix [19] is a robust semantic parser that was de-
veloped at Colorado University. It parses text into frames, which consist
of slots. Slots contain actual words or other slots, which results in a tree-
like output. A BNF grammar is associated with each slot, but words can

12

be interjected between slots in the spoken text, which accommodates for
disfluencies and different ways of articulating something. Phoenix is used
in CU’s Communicator system, as well as Carnegie Mellon’s, and is open
source.

• TINA — This is MIT’s parser, used in all of their Galaxy systems [49].
Tina uses a combination of syntactic and semantic parsing, and can be
trained on example sentences to build a probabilistic model that can im-
prove parsing by choosing the most likely analysis. Tina uses strict pars-
ing, but resorts to robust parsing if this fails [45]. Tina has recently been
extended to support time stamps, to use it in MIT’s multimodal systems
[80]. MIT does not freely distribute Tina.

• Gemini — SRI’s parser interleaves syntactic and semantic parsing [25].
Unification is used to match parts of a sentence to a grammar. Gemini
has some advanced robust features such as being able to handle speech
repairs [24].

• JSAPI — JavaSpeech-compliant speech recognizers support loading of
grammars in “Java Speech Grammar Format”, or JSGF [75]. JSGF looks
like a mix of BNF and Java, and is essentially BNF. A developer can
specify ‘tokens’ in the JSGF file that are output whenever a grammar
rule is applied. This provides some abstraction from the actual language
or wording used by a user. Nevertheless, as mentioned, the use of strict
BNF makes it difficult to allow truly natural speech input, and for serious
dialog systems, this can hardly be considered an option. JSAPI is just
an interface, but it is implemented by IBM ViaVoice, the upcoming CMU
Sphinx 4, and possibly other products.

Additionally many parsers are available that were written in interpreted
languages such as Scheme, Lisp, and Prolog. Because they are interpreted,
their performance will inevitably not be as good as that of parsers written in
compiled languages.

2.4 Dialog Management

The dialog manager’s task is keeping track of the dialog, using the user’s input
to update its internal representation of the conversation and generate a new
question or a reply, possibly making queries or calls on a database or application.

As mentioned in the introduction, dialog managers can have a fixed, preset
dialog flow based on a finite state model, or it can be more flexible and use
‘forms’ or ‘frames’ that are filled as the user delivers more information [32].
One could say that the first type of dialogs are ‘procedural’ where the latter
are ’declarative’. Since finite state dialogs are too limited for truly natural
human-computer interaction, we will focus on frame-based dialog managers.

When a dialog manager receives a parse from the parser, it will:

1. Resolve ambiguities in the parse tree and the information into a canonical
form,

2. Combine this information with the current discourse frame,

CHAPTER 2. DIALOG SYSTEMS 13

3. Decide if the current frame has sufficient data,

4. Prompt for user input, get data from a database or application, and/or
give user feedback.

flight
airline

depart-loc JFK
arrive-loc

depart-date 08/25/2003
arrive-date

depart-time
arrive-time

Figure 2.4: An example of a
‘flight’ frame

There are many different ways of ex-
pressing the same piece of information in a
frame. One of the dialog manager’s tasks
is to convert parts of the parse tree into
a canonical form that can be used in a
frame. For example, a date can be ex-
pressed absolutely — “August 25th, 2003”
— or partially — “the 25th” — in which
case the missing pieces of information can
be derived from the context, e.g. the cur-
rent month is August of 2003, or the con-
versation was on dates in July 2004; relative
dates — “in three days”, “next Monday” —
are resolved in a similar way. The same goes for pronouns, for example:

Computer: I have two flights available: a 7:30 United Airlines flight
and a 9 o’clock Delta Airlines flight.

User: Yeah, that one.

The phrase “that one” is ambiguous. But using some semantic rules, we can
determine the user is referring to the 9 o’clock flight.

Some or all of a frame’s slots or can be marked as required. When all required
slots have been filled, the frame is considered complete and action can be taken
by the dialog manager, such as querying a database or making an application
call. Depending on the result of the query or call, user feedback may need to be
given through the natural language generation component, possibly updating
the dialog context (since this is the computer’s turn in the dialog). If required
slots have not yet been filled, the system can prompt the user for one of the
empty, required slots.

Some systems separate parts or all of the context resolution in an au-
tonomous component. For example, the CMU Communicator [15] has a date
resolution component, which resolves phrases like “tomorrow”, or ”next Tues-
day”. MIT’s Galaxy systems have a distinct context tracking server [28, 67].

2.4.1 Products

The dialog manager is the most application-specific part of a dialog system.
Therefore, most dialog managers that are publicly available are yet ill-suited
for use in a new system. MIT uses a separate discourse manager and dialog
manager, both of which do manage to separate application-specific data from
the application-dependent functions. Dialog manager data is stored in the form
of rules [68]. MIT’s dialog manager is, however, not publicly available. The
same goes for the “Discourse” component, a context tracking server which is
described in [28].

Some (graphical) finite-state dialog modeling tools are available, such as
OGI’s CSLU Toolkit, but as mentioned, finite-state dialogs are not powerful

14

enough for real-life applications.

2.5 Natural Language Generation

Natural language generation mirrors parsing. The goal of parsing is to determine
the semantics of a sentence. The goal of natural language generation is to
build a sentence given semantics. The most straightforward way of doing this
is template-filling. With this method, there is a template for each class of
responses the system can give. The template contains blanks that are filled in
to create a specific response. For instance:

〈airline〉 flight 〈flight-no〉 with destination 〈arrive-loc〉 departs at
〈depart-time〉.

Filling in the four fields airline, flight-no, arrive-loc and depart-time
will yield a valid English sentence. The disadvantage of this approach becomes
obvious when many of the same class of sentences are generated. Humans
will try to introduce some variation and leave out information that can be
determined from the context. For example:

United Airlines flight 843 with destination San Francisco departs at
ten thirty. Flight 847 departs at noon.

In this example, information that is the same as in the previous sentence
is not mentioned the second time. Natural language generation using the tem-
plate approach cannot do this, and therefore the output will sound unnatural
in this case. A possibility is to provide multiple templates for the same class
of sentences. This will introduce some variation. However, introducing ellipsis
(omitting words or phrases that are implied by the context) is far more compli-
cated.

More advanced natural language generators use a multi-step process in which
high level communicative goals are consecutively planned and realized as a spo-
ken sentence [64]. This process is more complex as it builds a sentence out of
fragments of generated text, rather than just filling in blanks. The system has
to have knowledge of the grammatical structure of the language being used and
know how to put pieces of text together to create a valid sentence that fulfills
the communicative goals. For example, two sentences “Flight 843 departs at ten
thirty” and “Flight 843 departs from gate 10” might be merged into “Flight 843
departs from gate 10 at ten thirty”. Since there are multiple ways of doing this
— the previous sentence could also have been generated as “Flight 843 departs
at ten thirty from gate 10” — a truly natural system should use some form
of heuristics to create the most “natural” version of the sentence. The system
described in [64] can be trained to learn exactly that.

2.5.1 Products

MIT uses its GENESIS natural language generation component within the
context of its Galaxy architecture. A new version was written in 2000 [7].
GENESIS is used by MIT to convert semantic frames into spoken output, but
also to generate non-natural language such as SQL and HTML.

CHAPTER 2. DIALOG SYSTEMS 15

AT&T’s FERGUS [6] system employs a hybrid syntactic/stochastic ap-
proach. The output quality has been determined to be better than when using
just syntactic or stochastic models singularly [64].

ASTROGEN [22] is a freely available natural language generation sys-
tem written in Prolog, but is still under development. It can do merging and
pronominalization. Customizing ASTROGEN involves creating a Prolog file
with definitions for the nouns and verbs to be used.

KPML [83] is a multilingual natural language generation and grammar
creation tool running in a LISP environment. It is unclear if and how the nat-
ural language generation part can be integrated into an application. Although
KPML is free, it requires a LISP environment that is not free.

2.6 Speech Synthesis

Simply put, speech synthesis, or text-to-speech is the inverse operation of speech
recognition. Because the two are opposites, the types of challenges are very dif-
ferent for each. For speech recognition, the main challenge is to recognize spoken
text in the face of enormous variability — even the same person can pronounce
words in different ways depending on the context, a voice can change under
influence of fatigue or differing air conditions, background noises can influence
what is captured by a microphone, etc. With speech synthesis, however, the
challenge is to create variability. To create natural-sounding speech, a speech
synthesizer must know how to pronounce a word given the context, it should use
the right intonation and pause at certain points in the sentence. Lack of these
features in early speech synthesizers (and even some current ones) has resulted
in the typical “computer voice” or “robot voice“ which people believe to be the
only way computers can talk: monotonously, at a constant speed, occasionally
mispronouncing or misemphasizing words and with a voice that does not re-
semble a human voice at all. While fixing these problems might seem at first
to just be the proverbial “icing on the cake”, natural sounding speech is in fact
essential for humans to be able to understand computers well. Mispronounced
and misemphasized words can cause great confusion and can be fatiguing, just
as listening to a non-native speaker.

2.6.1 Speech Markup

Humans can generally determine prosody from plain text, based on their un-
derstanding of the text and previous experience with reading. However, for
computers it is difficult to do this, which has resulted in introduction of speech
markup languages. These languages add information to plain text to aid the
computer in speaking text. These languages include JSML [76, 77], SSML [78],
and SIML [61]. These language attempt to structure text. It is therefore not
entirely surprising that a number of them use XML, which is a structuring
language. As an example, an SIML-annotated sentence might look like this:

The tags in most speech markup languages are low-level, indicating hints
for volume, speed, and pitch. Providing higher level information, such as which
parts of a text are subsentences, or which parts need emphasis, might be more
desirable. This leaves implementation of how to derive actual speech char-
acteristics from this high-level information to the speech synthesizer. This is

16

<u.pro >Flight < phrase rate=0.8> 8 5 4 </ phrase >
<pause dur =50 durunit =ms> with destination
<phrase rate =0.8 > Los Angeles </ phrase >
departs at ten < pause dur =5 durunit =ms> forty </ pause > </ u.pro >

advantageous because the speech synthesizer can be considered the expert in
generating waveforms from text, and choosing pitch, speech rate, and volume is
part of that task. The natural language generator which generates the speech
synthesizer’s input, however, knows only about sentence structure and mean-
ing, so requiring it to also generate pitch, speed, and volume information would
violate the expert paradigm.

2.6.2 Speech Synthesis Techniques

The most common form of speech synthesis is concatenation. The speech syn-
thesizer seeks out pre-recorded or generated audio samples, or speech units, that,
together, will most closely articulate the desired sentence. Signal processing is
done on the samples to attain the desired pitch and duration for each part.
Finally the processed speech units are concatenated — seamlessly in the ideal
case — and the resulting waveform can be send to the audio hardware.

In an alternate approach, no signal processing is done in the speech units.
Instead, a large number of samples are recorded for each phoneme, with different
prosodic characteristics. Upon synthesis, the system must select the sequence
of phonemes that best approximate the target phoneme string. The possible
phonemes can be considered as a state transition network, where the state oc-
cupancy cost is the difference between the target phoneme and the phoneme in
that state. The optimal sequence can then be chosen with a Viterbi search [34].

In the most compact form, the speech units are used separate phonemes.
That is, there is a sample for each of the 36 possible English phonemes (this
number is debatable, see [8]) that the system can choose from. This output in
this case does not sound very natural, because the transitions between phonemes
will simply be the result of linear interpolation of the audio signals of the two
phonemes. Better is to have a sample for each phoneme in the case of every
phoneme that can follow it. This adds up to a theoretical 36 × 35 = 1260
diphones that would be needed. However, not every combination of phonemes
is used in English, so the number in practice can be smaller. Multiple variations
of each diphone may be available with different characteristics, though; the
number of phonemes will generally be around 2000 [20].

For more natural sounding speech, a more application dependent speech
synthesizer can be used with longer units of prerecorded speech, such as fixed
prerecorded phrases (“New York”) or prompts (“Welcome to the flight reserva-
tion system. How may I help you?”). This approach is called unit selection.
While unit selection yields more natural sounding speech, quality among sam-
ples is often inconsistent and a broad range of samples are needed with different
prosodic characteristics to truly achieve natural sounding speech. Selecting the
speech units with the right prosody characteristics at run time is difficult [20].

CHAPTER 2. DIALOG SYSTEMS 17

2.6.3 Products

Festival [84] is a mature concatenative text-to-speech system that was devel-
oped at the Center for Speech Technology Research at the University of Edin-
burgh. Different voices are available (American and British English, Welsh, and
Spanish) and new ones can easily be added on. Festival is written in C++ but
also has a Scheme interface. Speech markup is done in Sable, an XML-based
language developed by Bell Labs, Sun Microsystems, AT&T and the University
of Edinburgh [10].

IBM ViaVoice supports speech synthesis through its interfaces, including
JSAPI. JSML is not fully supported (yet), so it is not possible to give prosody
hints. Because of this, the generated speech can sound unnatural.

CMU’s Communicator travel planning system uses a modified version of
Festival with prerecorded samples of many of the prompts and phrases used.
Because of this, the speech sounds very natural.

2.7 Fusion

Multimodal systems combine data from multiple modalities. At some point in
the system, the streams of data need to be merged into a single data represen-
tation. This process is referred to as multimodal fusion, or fusion for short.

Fusion can be done at several levels in a multimodal system, and fusion is
labeled accordingly:

• Early fusion — Also called feature-level fusion, because signals are inte-
grated at the feature level. This usually means concatenating the fea-
ture vectors from each modality and using statistical methods such as
hidden Markov models or temporal neural networks [92] to classify the
’super-vector’. Classification is expected to be more accurate with features
from different sources. Feature-level fusion is appropriate for multimodal
streams that are synchronized and correlated [80, 60]. The most familiar
example is fusing acoustic information from speech with images of the
speaker’s mouth, to create more accurate speech recognizers [36, 90, 91,
89]. The ‘phonemes’ generated by speaking and the ‘visemes’ that can be
observed by watching lip movements are highly correlated. Hidden Markov
models and neural networks need to be trained with real data, which can
be a problem. Due of the relative novelty of multimodal interfaces, mul-
timodal data is scarce and expensive [60]. Collection of audio-visual data
for Dutch bimodal speech recognition is described in [91].

• Late fusion — Also called semantic fusion. Fusion is typically done after
all the inputs are received and parsed. It occurs at a higher, semantic level.
Late fusion allows fusion of inputs that are not synchronized, but overlap-
ping or entirely disjoint. In addition, more complex relations are available
because semantic relations between inputs can be used as opposed to the
strictly numerical ones in feature-level fusion. Unimodal recognizers are
used at the input level, which make use of training data that is readily
available [60].

To fuse data from different sources, we need to convert them into a common
meaning representation. Different choices can and have be made for this rep-

18

resentation. [69] uses spoken language. This means fusion can be done at the
parse level. This seems elaborate, however, as language is first generated and
subsequently parsed. [80] uses semantic frames to represent meaning. Fusion
involves merging the slots in those frames. [41] uses a “slot filling” approach,
where text is used as representation. Whether and how this text is structured
in any way is not mentioned.

2.8 Fission

Fission is the opposite of fusion. The reason for using fusion is to create a
more natural experience for the user by allowing him/her to use other methods
of communication than just speech or just mouse, and aid the computer in
understanding what the user wants by providing multiple modality streams
that can disambiguate each other. Fission creates a more natural interface
by distributing data over multiple output channels. Additionally the system’s
output can be better understood by the user, since outputs may be partially
redundant. Cohen [17] shows that a talking face added to speech output can
significantly increase understanding for the human listener when the speech is
noisy.

I first found the term ‘fission’ in [12], but it seems to be becoming more
popular. Another term used specifically for synchronizing an on-screen animated
face with synthesized speech is “multimodal speech synthesis”. This currently
seems to be the most mature form of fission, with research being done at the
Royal Institute of Technology in Stockholm, Sweden [23], and University of
California at Santa Cruz [82].

2.8.1 Products

Baldi is the talking face developed at UCSC and is distributed as part of OGI’s
CSLU Toolkit. Baldi synchronizes synthesized speech output with an image of
a talking face on the screen; the two output modalities are tightly coupled.

2.9 Multi-agent Architectures

Many dialog systems found in literature are built on top of some kind of agent-
based architecture. These architectures supply a hub-and-spoke infrastructure
where various components (or agents) of a dialog system communicate via a
central routing agent or hub. The agents communicate by sending messages via
this central hub. Messages are structured according to some high-level repre-
sentation and are transported using TCP/IP.

The advantages of such an architecture are:

• No programming language lock-in: All dialog components need not
be written in the same programming language, as long as they can com-
municate using the high-level representation agreed upon

• Transparency in distribution and location of components: Resource-
intensive components can be moved to a different machine, distributing

CHAPTER 2. DIALOG SYSTEMS 19

the load and making the application more scalable. Because all commu-
nication is done via the central routing agent, components don’t need to
know the exact location of the receiver of their messages, since this infor-
mation is kept at the routing agent.

• Independence of components: Since components run as separate pro-
cesses, one can be restarted in case of failure or component upgrade with-
out having to bring the entire system down.

Disadvantages with respect to alternatives such as (remote) procedure calls,
DCOM or CORBA are:

• Efficiency: Potentially slower operations because of TCP/IP overhead
and overhead of building and parsing messages

• Provenness: The multi-agent architectures described in the following
sections have been used to build research prototypes, and although the
resulting products have in some cases been distributed to various clients,
the architecture has not been proven in the degree that CORBA or DCOM
have been.

• Ease-of-use: multi-agent based systems require multiple concurrent pro-
cesses to be started for the application to run. Even though, in the single-
machine case, this task is usually taken care of by a ‘process monitor’
which will start all the individual processes, it can never be completely
hidden from the user and therefore might be confusing.

Examples of multi-agent architectures are:

• Galaxy Communicator

• Open Agent Architecture (OAA)

• Adaptive Agent Architecture (AAA)

• Java Development Framework (JADE)

A common mistake is to think these architectures will provide a complete
dialog system or multimodal system, when in fact all they do is provide a trans-
port layer, or infrastructure, on which those types of applications can be built.
Therefore, availability of components is one of they key points to consider when
choosing an architecture.

The three aforementioned architectures will now be described and evaluated.

2.9.1 Galaxy Communicator

MIT’s Galaxy Communicator provides a communication infrastructure set as
the reference architecture for dialog applications by DARPA, and is used by MIT
[67], Carnegie Mellon [15] and Colorado University [21] in their dialog systems.
Galaxy is now being maintained by MITRE. MITRE describes Galaxy as “an
open source distributed, message-based infrastructure optimized for dialogue
system design” [50]. Galaxy is a modular hub-and-spoke architecture that uses
semantic frames as the units of communication between the components, which
are called “servers”. The frames consist of a name that specifies the operation to

20

HUB

Text−to−Speech
Conversion

Audio
Server

Speech
Recognition

Language
Generation

Dialogue
Management

Application
Backend

Context
Tracking

Figure 2.5: An example Galaxy-based system

carry out on a server, and a set of zero or more key-value pairs that parametrize
the operation. Frames have a formatted text representation that looks as follows:

Destination can be omitted, in which case one of the servers that support
the operation is chosen at random.

Communication between servers is done over TCP/IP and all frames are
routed through a central hub. That is, servers don’t communicate directly, but
send messages to the hub, which routes it to the correct server based on the
frame’s name and possibly routing rules defined in the hub. An example system
is shown in Figure 2.5. The hub is configured using a file that describes which
servers that it can connect to, or that will connect to it. This file also lists
the operations each server supports. This means that the number and type of
servers in a Galaxy-based system is static. Routing rules can be specified in the
configuration to reroute frames or changes their names and/or key-value pairs.
This can be used to make two servers work together that use different operation
or key names.

Whenever a message comes into the hub, it first determines whether it has
an explicit destination. If so, the frame is routed to that server. If not, routing
is done based on the operation ? the frame’s name. The hub will first look for a
script with this name. If found it is executed. If not, the hub looks for a server
that is declared to be able to handle the operation the frame states. If one or
more servers are found, one is picked at random. If none is found, the frame is
discarded and a warning message sent to the sender.

For high-bandwith data transfer between two servers, the hub can set up a
connection between the two, and then allow them to communicate outside of
the hub through a back channel. This is called brokering (the hub is the broker
in setting up the connection).

CHAPTER 2. DIALOG SYSTEMS 21

MITRE distributes an open source toolkit based on the Galaxy infrastruc-
ture that is eventually to provide a complete set of dialog system components
and can potentially supply components that are usable in a multimodal system.
However, the toolkit has by far not reached a complete state; the majority of
current components are audio servers and speech recognizer wrappers.

Both Carnegie Mellon and Colorado University have built systems on Galaxy
that are publicly available. Some Galaxy-compliant components, specifically
the speech recognizers CMU’s Sphinx-II and CU’s Sonic and the CU Phoenix
parser used in these systems can be used to build others. A large part of
their systems, such as the dialog manager and natural language generation, is
domain dependent, however, and these components cannot be easily used in
other domains (i.e. other than the travel domain).

Galaxy was written in C, but bindings are available to other languages, such
as Java and Lisp, so that Hub-compliant servers can be written in a variety of
languages, and existing software can easily be made to work within the Galaxy
infrastructure.

In short, pro’s of Galaxy are broad support and proven technology, a con is
the fact that configuration of servers is static.

2.9.2 Open Agent Architecture (OAA)

OAA is SRI International’s distributed software architecture and is used exten-
sively in their own projects, as well as — interestingly — in DARPA’s BioSPICE
project [72]. (This is interesting because Galaxy is DARPA’s reference architec-
ture for dialog systems. BioSPICE, however, is not related to dialog systems).
OAA seems to have broader application — distributed problem solving in gen-
eral — than Galaxy, which is used strictly for dialog applications.

OAA is in many ways very similar to Galaxy. However, the terminology
used is that of the field of artificial intelligence, with emphasis on problem
solving. Each entity — the hub and each of its clients — is called an agent, and
agents work together with the user they to reach a goal. The hub is called the
facilitator, the other agents are called client agents or clients. Communication is
done using a specialized language ICL (Inter-agent Communication Language).

ICL is used to send events to agents. Events have a name and parameters,
much like a function call. One special type of event is the ev post solve
event, which is equivalent to an operation frame in Galaxy. The facilitator uses
unification (from lambda calculus and logical programming languages) to match
an event with an agent’s capability, or solvable. Just as in Galaxy, an explicit
agent can be specified to handle the solvable, but in general this will be left for
the facilitator to decide, reducing hard-coded dependencies between agents [42].

[42] describes the intent to implement direct communication between servers,
similar to brokering support in Galaxy. Since OAA has been improved since [42]
was written, this may already have been implemented at this time.

We can conclude that OAA provides an architecture that supports better
abstraction from agent topology than Galaxy, but is aimed more at agent-based
systems in general and therefore has less publicly available dialog-related com-
ponents.

22

Agent
Distance

Agent
Client

Broker 1

Broker 2 Broker 3

Figure 2.6: An example AAA system with a broker team consisting of 3 members,
and two client agents

2.9.3 Adaptive Agent Architecture (AAA)

A key point of failure in both Galaxy and OAA is the central hub or facilitator.
This is also the bottleneck for communication. The Adaptive Agent Architecture
(AAA) features a team of facilitators, or brokers, instead of just one. The agents
in this broker team have a mutual goal to maintain the broker team, that is, to
ensure that a minimum number of brokers is always present in the team. When
a broker dies, and the number of team members drops below the minimum, the
broker team assumes a joint goal to restore the number of members. Client
agents are capable of spawning brokers at the request of a broker. This is used
to restore a broker team to its original configuration when one of its members
fails. When an agent loses its connection to the broker team, either because it
fails or because its connecting broker fails, the broker teams assumes a goal to
reconnect to the agent.

An example AAA system is shown in Figure 2.6. A broker team consisting
of three facilitators serves two clients.

AAA is backwards compatible with OAA, and therefore any OAA system
should run using the AAA facilitator. Not all AAA-specific features have been
fully implemented yet [58].

An advantage of AAA is greater robustness in the face of facilitator failure.
However, since AAA is not complete, very few AAA-compliant agents are avail-
able, and although AAA is OAA-compatible, OAA dialog components are also
scarce, as stated in the previous section.

2.9.4 JADE

JADE is a software framework that simplifies development of agent applica-
tions that comply with the FIPA specifications for interoperable intelligent
multi-agent systems [26]. FIPA [29] aims to create a complete specification
for multi-agent systems, specifying not just the communication language used
in the messages that are passed between agents, as is done in the agent systems
discussed in the preceding sections, but also the semantics of these messages.
It is a pure interface specification, implementation details are entirely left up to
the implementor. This includes the action transport method used. FIPA only

CHAPTER 2. DIALOG SYSTEMS 23

Agent
Management

System
Directory
Facilitator

Internal Platform Message Transport

ACC

Software

Agent

Agent Platform

Figure 2.7: FIPA reference model of an Agent Platform [26]

dictates that messages are to be transported at plain text. The FIPA reference
model is shown in Figure 2.7.

Agents can use an agent directory service to find out about other agents
in the system, or, on a higher level, use a service directory to find out which
services are available and which agents provide them. The message structure
is written in an agent communication language (ACL), its content is expressed
in a content language. Messages are transported as text, although exceptions
can be made for low-bandwith links, such as wireless links [30]. As OAA and
AAA, FIPA and JADE seems to be a general-purpose agent specification and
architecture. I have not found attempts to use JADE for conversational systems.

2.10 Multimodal Systems

To most people outside of the field of human-computer interfaces, multimodal is
a completely new term. To those in the field, it has become the buzz word that
represents the future of computers and the solution to the gap that has always
existed between man and machine: the enormous differences between commu-
nicating with another human and communicating with a computer. Because of
its buzz, multimodal has been used increasingly both appropriately and inap-
propriately. Therefore it is useful to define what we mean by it. [12] dedicates
more than four pages to defining the term. We use some of that information to
give a slightly shorter summary here and refer the reader to [12] for their full
description of the term.

The word multimodal is built from two words: multi and mode. By mode
we mean a physical sense that is used in communication. The five human senses
are sight, sound, touch, taste, and smell. The latter two are not pervasive in
human-human communication, and completely absent in human-machine com-
munication, with the exception of computer malfunction, where smell may in-
dicate the burning of one of the components. Previous experiments with smell
television (“smell-o-vision”) have been unsuccessful [63] and their application

24

Table 2.1: Overview of how humans and computer sense and generate sensory
information

sense human computer
input output input output

sight – visual eyes hands (gesture);
face (facial expres-
sions)

camera (face
recognition,
gesture recogni-
tion); eye/gaze
tracker

screen/terminal

sound – audi-
tory

ears mouth (speech
and other sounds);
hands, feet (clap-
ping, stomping)

microphone +
sound card (+
speech recog-
nizer)

(speech synthesizer)
+ sound card +
speakers

touch – tactile skin hands and feet touch screen,
pen & tablet,
tactile glove

tactile glove with
force feedback

data / informa-
tion / knowledge

reasoning data ports / net-
work

in computers is even less likely to occur.
This leaves us with three senses. To provide data to the senses we can

generate sound, vision, and touch. Table 2.1 provides an overview of the three
senses and how humans and computer use them and generate output for them.
An extra, abstract sense, ‘data/information/knowledge’, has been added as well.
This represents external knowledge used to solve ambiguity. For a human this
can be a sense of the situation they’re in, knowledge on what ‘makes sense’.
For a computer, contextual information could be data from a GPS to provide
information on where the computer is, or the history of a dialog to determine
what a user means when a word is omitted (ellipsis). This is information humans
derive through reasoning.

Unimodal interfaces accept just a single input modality. For example, tele-
phone-based voice response systems are unimodal, as they use only speech.

A multimodal interface is created when a machine receives input from mul-
tiple senses at once. For this reason, another name for this type of interface is
multisensory. This excludes interfaces using one or more modalities for output
yet using just a single modality for input from being called multimodal, such as
systems that take speech input and generate speech and visual (i.e. on-screen)
output. A true multimodal interface must accept multiple input modes, such
as speech, gaze, pen, etc. and combine them to derive user intention. A system
that generates output in multiple modalities, such as speech and visual, as well
as having multimodal input is called ‘doubly multimodal’ by [12].

The purpose of using a multimodal human-computer interface is to gain a
better insight in what the user’s intention is when interacting with the machine.
Traditional interfaces ignore much of this information, leading to frustration as
the user expects the computer to “know” what he/she wants.

2.10.1 Advantages of Multimodal

The goal of using multiple modalities is twofold. The first is mutual disam-
biguation, the second is naturalness.

Mutual disambiguation is the act of using information from one modality
to fill in or correct missing or ambiguous information in another modality: the
weaknesses of speech are compensated by the use of gesture, and vice versa [9].
For example, in an application for travel planning, the computer might not be

CHAPTER 2. DIALOG SYSTEMS 25

sure as to whether the user said “I want to travel to Boston” or “I want to travel
to Austin”. By using information from another source as well, such as images
of the speaker’s lip movements while speaking or gesture information on where
the user was pointing on the map, the system can be more certain of what the
speaker intended.

The reason multimodal interfaces are more natural than either traditional
WIMP interfaces or even unimodal speech interfaces, is that humans communi-
cate multimodally. Our brain is designed to process multiple streams of infor-
mation to assess the state of the world. This is why we use our hands when we
speak, reflect the semantics of what we are saying in our facial expressions, etc.
This is also why we have a harder time understanding people on the phone, and
tend to pay more attention to someone’s face when talking in noisy situations,
such as in clubs. Similarly, research has shown that people instinctively use the
most appropriate modality or combination of modalities for a task and switch
to another set of modalities when a command is not understood the first time
around [59]. This self-correcting behavior results in better performance and less
frustration compared to a situation in which users are constrained to using a
single modality that may not be optimal for the task at hand.

Additionally, providing multiple input modalities makes computers accessi-
ble to users with disabilities. For instance, users unable to use their hands for
mouse or keyboard input can use speech and/or gaze to control the computer.

Research shows that gaze and gesture are particularly suited for applica-
tions that involve spatial information. Speech, on the other hand, has a great
advantage for non-visible objects, such as off-screen ones [9]; these can be re-
ferred to by speech, but not by a single mouse or gesture movement (the object
can be scrolled onto the screen and then accessed, but this is a relatively time-
consuming process). Combining speech with gaze or gesture is, therefore, a
logical step that combines the strengths of both modalities to provide a more
pleasing user interface.

Oviatt et al. [60] state that multimodal pen-voice interaction can result in
a 10% increase compared to just speech. (An even greater increase can be ex-
pected when using gaze and speech, due to the great speed of eye movements.)
Also, 36% less errors are made, and speech is more fluent due to simpler con-
structions. Users have an overwhelming preference to multimodal interaction.

2.10.2 Multimodal Devices

Multimodal interfaces draw their strength from using devices that convert hu-
man input into data the computer can understand and use. These devices are
often initially designed for unimodal use, but combining them with speech yields
a more powerful and natural interface. We will quickly review some relevant
devices.

Gaze Tracker

The goal of using other modalities besides speech is understanding what the
user’s intent is. A lot can be told about the user’s focus of attention, and
therefore his/her intent, by looking at eye movements. This is what a gaze
tracker tries to capture. Different gaze tracking techniques exist [31]. A popular
one, because it is minimally intrusive and fairly accurate, uses an infrared light

26

source to send a ray of light onto the eye, and an infrared-sensitive camera to
capture the eye. In the image of the eye, the pupil is located (a dark area
surrounded by a light area). The pupil is approximated by a circle, and the
center of this circle is calculated. Then the ‘glint’ — the bright corneal reflection
of the infrared light source — is located. From the location of these two points,
the angle between the user’s gaze direction and the screen’s perpendicular can
be calculated. Given the distance between the user and the screen, the fixation
point on the screen can be determined.

Tactile Glove

Tactile gloves are commonly used in 3D or virtual reality environments. A
tracker attached to the glove determines the direction the user is pointing, as
well as the orientation of the hand. This enables the glove to be used as a
pointing device. Additionally, feedback can be given to the user. A simple
mechanism is vibration. The Rutgers Master II-ND glove [54] uses pneumatic
pistons to provide a feedback force against the fingertips.

Touch Screen

Touch screens have been around for a while and provide access to information
in kiosk-type situations, such as ATMs, ticket machines at train stations, and
catalog information systems in stores. They avoid the need for a keyboard or
mouse, and are more intuitive as the user can directly touch objects on the
screen, instead of through an intermediary device such as a mouse.

PDAs effectively also come with touch screens, although these are usually
operated with a pen or ‘stylus’.

Different types of touch screen technology exist. Analog resistive touch [71] is
relatively inexpensive and accurate. A glass plate with a conductive, transparent
layer is placed over the touch screen. On top of that a plastic plate is placed, with
its conductive side facing the glass plate. In between the plates are thousands
of dots keeping the layers separated. When the screen is touched, the layers
make contact and the position of the touch is calculated.

Microphone Array

Although not a new modality, microphone arrays can be of great aid in creating
a more natural multimodal user interface. Traditional microphones require the
user to stay close to the microphone at all times, which can be constraining.
Head-worn microphones are unnatural as they require taking the microphone
and putting it on before using the system. Microphone arrays create a large area
in which speech can be captured, while keeping out noise and reverberation [41].

2.10.3 Current Multimodal Systems

The first known multimodal interface was built in 1980 by Richard A. Bolt
[11]. It provided an interface in which shapes could be created, moved, copied,
removed, and named using a combination of speech and pointing, for example
“put that to the left of the green triangle”, “copy the green triangle there”,
“copy that there”, “call that the calendar”. Fusion was done at the parse
level. Every time an pronoun or deictic reference was recognized, the system

CHAPTER 2. DIALOG SYSTEMS 27

would immediately see where the user was pointing and resolve the reference.
The system also had an ability to learn new words. When the user said “call
that...”, the system would tell the speech recognizer to switch from recognition
mode to training mode so that the name that the user gave the object would
be learned.

Quickset [18] is a multimodal system developed by the Oregon Graduate
Institute. It features a map-based application that can be controlled using either
or both of speech and pen gestures. Pen gestures can be used to indicate the
target of a deictic reference, such as “show me the hotels in this area”. Pen can
also be used independently. A single command gesture can be given, for example
drawing an X through an object to have it removed. Also, handwriting can be
used in combination with selection gestures, such as drawing a circle around an
area on a city map and writing “restaurants” to find out which restaurants are
in that area.

MIT is developing a multimodal system based on the Galaxy architecture,
which they are extending to support dialog applications with multimodal input.
Their system allows one to build a solar system by creating, modifying, and
naming planets that are placed around a sun [80]. The system currently accepts
speech and mouse input, in addition to having a ‘traditional’ WIMP GUI. A
unique property of this system is that the objects in it are dynamic. The plan-
ets continuously rotate around the sun, and choosing one with pen or gesture
involves tracking it for a short while. During multimodal fusion, the system
must look back at the objects that were at the location the user was pointing
at, at the time he was pointing.

The Future Combat System developed at CAIP features a map on which
military missions can be planned by creating and positioning units, such as
tanks and infantry. The system is hands-free, using gaze tracking for object
and location selection and speech for command input.

Advanced multimodal systems currently only exist as research prototypes
[80]. Speech recognition is making its way to the desktop [53, 5], but the only
true multimodal systems that have been deployed commercially at this point
are kiosk-type systems such those described in [38]. These systems have specific
hardware requirements that a typical home or business user will not be able
to fulfill. Large scale consumer multimodal applications will require the use of
affordable and small hardware. PDAs are a logical choice, since they already
offer a pointing modality (the pen, or stylus) and can easily be equipped with a
microphone for speech recognition. Also, they are already in wide use. Process-
ing power is increasing continually, and is at a point where speech recognition is
feasible, at least for small vocabularies. Microsoft’s MiPad prototype [47] uses
speech and pen to fill in text fields on handhelds. However, it cannot truly be
considered multimodal, since modalities are not used at the same time: pen is
used to select a field, after which speech is used to dictate the contents of the
field. Little natural language processing is present, only to parse items such as
numbers and dates.

2.10.4 From Unimodal to Multimodal

Multimodal interfaces can greatly enhance interaction between a user and a
computer in some types of applications. Therefore it seems like a logical next
step to transform existing unimodal systems into multimodal systems.

28

Speech-only systems have reached a level of maturity that allow them to
be used commercially. Telephone-based dialog systems are replacing traditional
menu based and touch tone controlled customer support systems [33]. Another
popular application for dialog systems is in the travel domain: both Carnegie
Mellon, Colorado University, and SRI have developed systems to plan airplane
travels [14, 65, 15, 21, 87]; Delft University of Technology has developed a
speech application for public transport information in The Netherlands [85]. The
travel domain has favorable properties for dialog systems: dialog flow is fairly
straightforward, and vocabulary and grammar are limited, known a-priori, and
generally nonambiguous. These systems in their current form, however, would
not benefit from other modalities, as the entire system is focused on optimizing
performance using just the speech modality.

Both Carnegie Mellon and Colorado Unversity have produced systems within
the context of DARPA’s Communicator project. MIT’s Galaxy [79, 67] dis-
tributed architecture has been chosen as the basis for work in this task (Galaxy
is now maintained by the MITRE corporation). MITRE defines Galaxy as a
‘distributed, message-based, hub-and-spoke infrastructure optimized for con-
structing spoken dialogue systems’. Until recently, no attempt had been made
to produce a multimodal system using Galaxy. Various changes are needed to
the dialog components, including timestamping incoming modalities to allow
synchronization. MIT has begun an effort to transform its Galaxy servers to
allow multimodal interaction [80].

2.10.5 Reuse of Programming Code in Multimodal Dialog
Systems

In a perfect world, we could take a multi-agent architecture, download dialog
components for it, configure them, and have a working multimodal dialog sys-
tem. In practice, this is not possible. Few universities or project groups are
able or willing to release their dialog components. Sometimes a demo system
is available, but then the components are often very specific to the application,
which means the source code needs to be modified to use the component in an-
other application. This takes away from the advantage of using existing code.
Also, source code is often poorly documented, which makes it hard to make the
needed adjustments.

OGI’s Center for Spoken Language Understanding does make available a
toolkit for rapid development of dialog systems [13]. Although this works well
for quickly prototyping a dialog system, the system features very simple dia-
log management and no parsing, just pattern matching to a set of expected
responses.

MITRE is developing an Open Source Toolkit for dialog systems based on
the Communicator infrastructure but this is still in its infancy, and does not
support multimodal interfaces (yet). The inputs and outputs of the various
components are fairly well documented, which makes it possible to use these
components without having to dig into the source code itself.

CMU’s Communicator system is freely available, including source code, but
contains large domain-specific parts, specifically dialog management and natural
language generation. Additionally, it is a unimodal system, so the components
are not made for use in a multimodal system. Documentation is minimal: a
very high level overview of the components is available, with no implementation

CHAPTER 2. DIALOG SYSTEMS 29

notes, and in-code documentation is virtually non-existent. The speech recog-
nizer, Sphinx, and Parser, Phoenix, used in the system are available as separate
components, though, and are domain independent.

Knowledge representation used in a dialog system is a key issue in reusing
components. Even though components might communicate on a data-transport
level, if the way the knowledge is encoded in the data differs, the two compo-
nents still won’t be able to work together without some sort of conversion com-
ponent in between. CU and CMU work with the knowledge representation used
in Phoenix’s output, which is a text representation of semantic frames. MIT’s
Galaxy systems also use semantic frames, but encoded differently — using Com-
municator’s internal frame representation — and with more complexity. Until
a common meaning representation is decided, re-use of components, even using
a common middleware such as Communicator, will be hard to achieve. MITRE
poses the Communicator hub scripting language as the solution for component
incompatibilities, but the differences in representation between Phoenix-based
systems and MIT systems are far beyond what can be resolved in a hub script.

2.10.6 The Future of Multimodal Interfaces

Conversational interfaces have matured in the past ten years. This is especially
true for speech-only interfaces, which are now being used in phone-based cus-
tomer support systems. Piggy-backing on these developments, multimodal sys-
tems have the opportunity to achieve the same level of maturity. This requires
moving away from computer-imposed restrictions on interfaces and allowing
truly natural input.

The following advances have brought this goal closer to reality:

• Robust parsing: The possible set of commands that Bolt’s system recog-
nized were limited by the grammar used. Some synonyms were provided,
e.g. “move” for “put”, but the grammar had to be strictly adhered to.
Current robust or partial parsers can extract information from spoken
text even when the user does not strictly adhere to the grammar, or when
errors occur in speech recognition [37].

• Multi-turn and mixed initiative dialogs: Bolt’s system provided a
single command-action sequence. If information was missing (e.g. “move
that . . .”), the system would wait until the missing information was
spoken (“. . . there”). Current systems provide mixed initiative in which
the computer can request missing information (“where do you want to
move it?”).

• Support for more complex gestures: Bolt’s system used the “point-
and-speak” paradigm where the only gestures used are pointing gestures.
Current systems support a variety of other gestures such as drawing paths,
indicating multiple objects or an area on the screen by drawing a elliptical
area, handwriting recognition [18], as well as pointing at moving objects
(as opposed to static ones) [80].

• More advanced applications: Although this doesn’t signify a change
on the side of human computer interface technology, creating more ad-
vanced multimodal applications brings multimodal user interfaces from

30

the research and “toy” stage into an area where it is actually used to do
something useful.

Multimodal system development seems to take place in disjoint ‘bubbles’,
with each university or company building their own set of tools, developing
their own meaning representation, etc. This is causing the wheel to be invented
over and over. The following issues can be identified as obstacles to easily
creating new multimodal systems and advancing multimodal technology, despite
the existence of some fine systems.

• Extensibility: Most multimodal system accept a fixed set of modalities,
for example speech and pen. An extensible architecture where modalities
can be added and removed is more desirable. For an efficient and reusable
implementation this requires a separation between the modalities them-
selves and the data they provide, since different modalities can provide
the same type of data. Such a separation would improve code reuse.

• Modularity: Tight integration between the multimodal fusion and the
details of an application make it easier to quickly implement functionality
for a particular domain. However, it makes it harder to reuse the fusion
code in another system. Strict separation of fusion and domain-specific
information makes the system more general-purpose, so that it can be
applied to other domains without having to rewrite parts of the fusion
code.

• Documentation: Although algorithms and ideas are usually published
in papers and magazines, code-level documentation is scarce, if the code
is made public at all. This makes it cumbersome to use existing code and
improve on it.

In short, while the state-of-the-art of multimodal systems is becoming quite
mature, it has not yet advanced to the level of, for example, GUI interfaces, for
which countless toolkits or frameworks are available, such as MFC [46] or QT
[81]. Such toolkits actually make it possible to develop new GUI applications,
without having to implement the low-level tasks like drawing widgets, converting
mouse events into window events, etc. However, the absence of such a toolkit
for multimodal interfaces makes that we have to do exactly that for multimodal
interfaces. We need to implement device handling, parsing of device events,
fusion, etc., while these things are common to all multimodal systems.

A framework for multimodal interfaces could, analogously to GUI frame-
works, provide the tools to quickly implement multimodal systems in all kinds
of domains while abstracting away from low-level details in the framework. A
well-designed framework should have the aforementioned properties of extensi-
bility, modularity, and documentation.

Chapter 3

Design of the Multimodal
Framework

This chapter describes the design of a multimodal framework — an application-
neutral collection of components that are to facilitate rapid development of the
robot control application as described later on in this thesis. The rationale for
developing a framework is discussed, followed by a brief description of object-
oriented frameworks. Finally, the framework architecture design is presented.

3.1 Developing a New Multimodal Interface

To support the requirements of reusability and modularity in the multimodal
system I was to build, the initial research was towards creating a generic frame-
work for multimodal applications. The goal of creating a framework was to
support rapid development of a multimodal application by providing an envi-
ronment tailored towards the use of multiple modalities and deriving meaning
from them, without restricting the type of application that can be developed, in
other words, without making assumptions about how to derive meaning from a
modality, and how to use it to perform a certain function in an application. This
requires a very generic approach, which translates into time savings once this
is implemented, since adding features can then take advantage of the reusable
code that will already be present.

3.1.1 Rationale

The main purpose for creating a generic multimodal framework was to facilitate
building the multimodal interface for the robot control application. Starting
with generic code and building the application-specific interface on top of that
results in a much better design in terms of modularity and abstraction than
if an interface was made just for this application in which application specific
demands were integrated with the fusion and dialog management algorithms.
Modularity and abstraction should also make the resulting code easier to un-
derstand for a new developer, who can look at it one layer at a time, instead of
being overwhelmed by all the details of the multimodal interface at once.

31

32

Additionally, if the application-independent framework is designed properly,
it will provide a basis to build future multimodal interfaces on. Also, if new
features are added to the framework itself, they can be used in previous applica-
tions that were built on the framework as well, as a direct result of the principle
of modularity.

3.1.2 Design Goals

Design goals for the framework were to maintain a clear separation between di-
alog and fusion functionality on the one hand, and application functionality on
the other. Multisensory input can be parsed or filtered by application-neutral
code to form information from data, but actual semantics — what this infor-
mation means within the context of an application — can only be given by the
application itself.

For example, a hand gesture such as a circle or a line can be detected by
the framework from a series of points emitted by the hand tracker, but giving
meaning to this gesture — e.g. that a circle indicates selection of a group of
objects, that a line indicates that the user wants to move an object from the
starting point of the line to its ending point — is a task of the application.
Having said that, the framework should provide as much support for this as
possible without becoming application specific. Since multimodal interfaces
generally deal with spatial information, support for gesture detection related to
object selection and movement is a basic service that a multimodal framework
should provide.

3.1.3 Interaction Style

Since the interface that was to be eventually created is for a command-and-
control application, the framework will inevitably be biased towards this type
of interaction. Characteristics are:

• Commands are generally short and self-contained.

• The language used has a low level of complexity, e.g. anaphora can gen-
erally be resolved by looking within a two-sentence window, there are no
nested dialogs: commands are issued sequentially.

• Dialog is mostly user initiative, with the system taking initiative only when
user input is ambiguous — in which case the system will ask for clarifi-
cation or confirmation — or when something changes in the application
that the user needs to be alerted of.

3.1.4 Development Procedure

A simple test application was made and used during development of the frame-
work to gauge progress and provide some actual measure of the quality of the
framework.

Then, using the framework, a multimodal application used to command and
control the robot could then be rapidly developed using the framework. This is
a real-life application, which would also test and hopefully prove the usefulness
of the framework in creating multimodal applications and possibly bring to

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 33

light some weaknesses of the design that can then be improved upon. This is
described in Chapter 5.

Finally, vocabulary and grammar for the robot domain needed to be for-
mulated. For the initial implementation, a grammar was be made up. For the
future, “Wizard of Oz” experiments using actual people that are to be working
with the system can be used to obtain a more representative vocabulary and
grammar. The design and implementation of the robot control application in-
terface using the framework are discussed in Chapter 5. This chapter will focus
on the framework proper.

3.2 Object Oriented Frameworks

Object oriented frameworks play in important role in modern software develop-
ment [40]. Frameworks support software development in a particular domain1

by providing a core of functionality that applies to the entire domain. In sev-
eral points in this core’s programming code there are calls to code that is not
implemented by the framework itself. The points where this happens are called
“hot spots”. It is the task of the developer using the framework to implement
these hot spots to create a specific working application within the domain of
the framework.

Framework can be characterized by the way in which a new application is
created. In white box frameworks, the implementor must subclass or imple-
ment classes and interfaces in the framework, making calls to the framework’s
libraries. Such an approach is also called architecture-driven. Black box, or
data-driven frameworks, on the other hand, are customized by a configuration
script or wizard which creates the necessary classes. Therefore the developer
doesn’t need to know the framework’s internals. Combinations are also possible,
so-called gray-box frameworks.

The power of frameworks lies in inversion of control, also called “old code
calls new code”. The framework’s core calls functions that are not implemented
by the framework, but instead need to be provided by the developer using the
framework. These are also called “callback functions”, because they are a known
location the framework calls back to when needed. The developer only needs to
comply with the interface the framework dictates for its unimplemented parts;
he/she doesn’t need to know the framework’s details, such as when this code
is called and how often. This is different from use of “traditional” toolkits or
libraries. When using those, a developer must take the effort of “gluing together”
calls to the library or toolkit components, for which he/she must know which
functions are available, the condition in which to call them, etc. In general,
a framework provides a more convenient way to write applications because it
abstracts away from details and allows the developer to focus on just the things
specific to the application.

An important tradeoff in developing a framework is that between flexibil-
ity and genericity on the one hand, and functionality on the other. A very
generic framework can produce a wide variety of applications but requires a
lot of effort from the developer. An extreme is the universal framework given

1Domain is used here in a different sense than in the rest of this thesis. In the context of
frameworks, by domain we mean an application type, such as a GUI application, or a database
application

34

in Listing 3.1. This framework can be extended to implement any determin-
istic solution provider; the developer need only implement the three functions
problemSolved() , solveProblem() , and solution() . Of course, this
framework is useless because it provides hardly any functionality.

while (! problemSolved ()) {
solveProblem ();

}
return solution ();

Listing 3.1: A universal framework

Also, frameworks with many hot spots that need to be implemented place a
burden on the developer, even though such frameworks are very versatile. On
the other hand, a framework in which most of the implementation is already
present limits the possibilities in creating new applications. A common solution
that aims to provide the ‘best of both worlds’ is to have a good amount of hot
spots, but provide default implementations for them. If these default implemen-
tations are used, the framework functions as a specialized framework, enabling
a new application to be created in very little time. However, the default imple-
mentations can be replaced by custom ones, giving the framework the flexibility
of a very generic framework.

This is the approach I have tried to take in building the multimodal frame-
work. A multimodal application can be created very quickly by using readily
available hotspot implementations and implementing the few hotspots that have
no default implementations.

3.3 A Multimodal Framework

Development of a multimodal framework was started due to the absence of freely
available dialog systems that were both multimodal and could easily be applied
to other domains. The resulting framework was to be a valuable tool that could
be used to create a plethora of multimodal applications, providing the sup-
port needed by developers of multimodal software, while remaining sufficiently
generic to be applicable to a wide range of solutions.

The main focus was towards command and control applications, since that is
the type of application that would eventually need to be created for this project.

3.3.1 Design Goals

The goal was a framework with all the characteristics of an object oriented
software framework, as well as having some domain specific requirements (for
the domain of multimodal applications). The following list enumerates all these
requirements:

• Reusable: all domain-dependent information is located in external con-
figuration files that can be easily modified. Domain dependent code, where
needed, is separated from the core code by using well-defined interfaces.
Configuration files serve as the link between the framework and domain-
dependent code.

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 35

• Multimodal: the framework is to fuse information from different modal-
ities to obtain a reliable assessment of the user’s intention. Since the
use of multimodal interfaces implies the presence of spatial information,
the framework provides extensive support for referencing of objects using
spatial and other attributes.

• Minimal impact on existing applications: developers wishing to use
the framework to make their applications multimodal should be able to
easily do so, keeping the original application and the framework as sepa-
rate as as possible. Communication between the framework and the ap-
plication is to be done through a well-defined Application Programmers
Interface (API).

• Multilingual / Language-independent: the framework should have
no language-dependent code. Given the availability of a speech recog-
nizer for a target language, the framework should easily enable developing
multimodal applications in that language.

• Efficient: direct manipulation using multimodal techniques requires a
response time in the order of hundreds of milliseconds. The framework
should be speedy, to avoid user irritation caused by slow response times.

As so often, design goals conflict:

• Reusability and efficiency tend to be enemies. Reusability requires mod-
ularity and levels of indirection, while for efficiency, tight integration of
application components can be advantageous.

• To effectively use multimodal human computer interaction, any existing
WIMP application will need to be redesigned to take advantage of this
style of interaction. Using speech and other modalities to control menus,
windows, and buttons, which would require very little modification to
the application, is not using multimodal interaction to its full potential.
Making an application multimodal will always have some level of impact
on that application.

In developing the framework, a balance will need to be found between con-
flicting goals so that performance criteria are met while maintaining a flexible
and elegant design. We can keep Moore’s Law in mind though, which promises
a doubling of computer processing power every eighteen months [51]. A sub-
optimal system in terms of efficiency will perform better over time thanks to
Moore’s Law; however, an inflexible design will cause problems for a long time.
Therefore I will prefer flexibility over efficiency in most cases.

3.3.2 Approach

I took iterative approach, in which an initial design was created, followed by
an initial prototype implementation, so that a working system could be cre-
ated a soon as possible, even when some components have very trivial initial
implementations. Later on these components could then be refined.

36

text +
markup

semantic
tree (XML)

. . .

frames
parse trees

(XML)

{t, x(t), y(t)} {t, x(t), y(t)}

. . .

frames

XML XML

text

text

Application / Database

Mouse Gaze

Fusion

Dialog

Management

Parser

Fission

Screen Force

Speech
Synthesis

Natural
Language
Generation

Speech
Recognition

Keyboard

Figure 3.1: Data flow in a multimodal system

3.4 Architecture

The architecture used for the framework is similar to that shown in Figure
2.3. However, since we are dealing with multimodal dialog systems, two extra
components need to be added: one to fuse multiple modality streams, before
doing dialog management, and one to split dialog manager output into multiple
output streams for the various output modalities. This is also the approach that
was taken in [12]. A graphical representation is given in Figure 3.1.

As can be seen from the figure, the approach is speech-centric. Perhaps
“language-centric” would be a better term, as text can come from either a
speech recognizer or be typed in with a keyboard. Language is the “main”
modality, and other modalities are used to resolve deictic references, pronouns,
and other anaphora as well as ellipsis in the text. For the type of interface the
framework will be used for — an interface to a command and control application
— most dialog actions will in fact be accompanied by speech, so this is not a
problem. Additionally, a user can always revert to using the application’s GUI
with the mouse, if for some reason this is better for a particular command or
situation. Some tasks are done more easily with the mouse, and one of the
advantages of a multimodal interface is that the user has a choice, especially
when, as in our case, the multimodal interface is combined with a GUI interface.
The limitations of this approach are discussed in Section 3.8.2.

A few things need to be said about this figure. First, the speech recognizer
output is text, and not a word graph. The reason for this is that our current
speech recognizer does not provide word graphs, but provides an N-best list.
However, no confidence scores accompany the alternatives, and time stamps
are only provided for the best alternative. Therefore, only the best alternative
is sent to the parser, as text. The time stamps are encoded in the text, as
described in Section 3.7.1.

The figure shows that spoken or typed text is not only sent to the parser,
but also directly to the fusion component. This has two reasons. One is general
in nature: some applications may need to have access to the complete unparsed
utterance, for whatever reason. For example, there might be words in the orig-

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 37

inal utterance that the parser does not know — possibly because they are not
known a priori — but that the application needs. This is the case if by using
the system new words are introduced into the system, or if arbitrary names are
used for objects or locations in the interface. The other reason is that the parser
we use does not output timestamps. Therefore, we need to link the timestamps
from the speech recognizer output back to the words in the parse tree, for which
we need both the parse tree and the original utterance with timestamps.

Mouse and gaze are shown as two possible modalities. Many other modalities
could be filled in for the ellipsis in the figure. The framework does not make
any assumptions about these modalities. Currently no support is provided for
‘parsing’ them, although this would be a useful addition in the future. For
example, a module for detecting gesture patterns such as lines and circles in
(x,y)-input could be written. This could be used for mouse, touch, and glove
inputs.

The components function individually and are configured separately. Some
components are off-the-shelf, others were written specifically for the framework.
The next section describes which components were chosen and why.

3.5 Components

In designing the framework, an implementation needed to be found for each of
the components a multimodal dialog system is comprised of. Additionally, these
components need to work together in a single system, so they need to be compat-
ible in some way. Since several dialog systems use the Galaxy Communicator ar-
chitecture, there are some good Communicator-compliant (or “hub-compliant”)
components available. Therefore I chose Communicator as the common infras-
tructure for the framework.

Communicator has the additional advantage that it is distributed. This
means the different components can run on different machines if needed. It
also means that in a running system, one component can be restarted while
the remaining components keep running. Restarting a component can be useful
when a configuration file is changed that affects just that component, or when
a component displays erratic behavior.

3.5.1 A Common Infrastructure: Communicator

Communicator was described in Section 2.9. In short, it is a TCP/IP based
infrastructure in which all components communicate with each other through a
central hub, which directs traffic between the components, or servers.

Speed can be a concern using Communicator, since all traffic goes over
TCP/IP, which, even in the local case, does incur some overhead. Also, as
all traffic must pass through the hub, possibilities for parallelizing are limited.
However, using Communicator, I have not witnessed any significant delays. The
number of messages sent between components and the time spent in the hub by
each message is too small to have a big influence on the system as a whole.

The framework is spread out over five communicator components, or servers.
Each of these has a separate connection to the hub. The layout is shown in
Figure 3.2.

38

Phoenix
Speech

Recognizer

Generation
Natural Language

Dialog Management
Fusion &

Speech
Synthesizer

Keyboard
HUB

2

3
4

1

Figure 3.2: The layout of the framework’s servers in the Communicator infras-
tructure

Communicator and system robustness

Some people are concerned with the single point of failure that the hub presents.
While this seems like a reasonable concern at first, one should realize that
splitting a system into multiple components can only reduce the risk of failure.
And if one component does fail, at least the others will continue running. Also,
most Communicator components do not maintain state, so if a process monitor
is present to bring processes back up if they go down, component failure can
go almost unnoticed. Components that do keep state (such as the hub) will
have more effect on the system when they fail, but even then they will only lose
their own data, not that of other components. In a system consisting of a single
process, failure of that process causes the entire system to go down, losing all
of its data.

3.6 New vs. Off-the-Shelf Components

Implementations for components on the left side of Figure 3.1, which are more
low level and application-independent, are much easier to find than the (more
application-dependent) ones on the right. In most conversational systems, fu-
sion, dialog management, and natural language generation are implemented in
a very application-dependent and hardwired way. This means the system it-
self works very well, but it demands a lot of effort to adapt the code of these
components for use in another system. Because of this, the only off-the-shelf
components I was able to use were speech recognizers, parsers, and speech syn-
thesizers. I took it upon myself to develop fusion, dialog management, and
natural language generation components, and in such a way that they would
be flexible and not just usable in the application I was currently developing,
but instead configurable to meet application-specific demands for a range of
applications with the same component.

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 39

Speech
Recognizer

(im
pl

em
en

ts
)

S
p
e
e
c
h
R
e
c
o
g
n
i
z
e
r

W
ra

p
p

er

Sp
ee

ch
 R

ec
og

ni
ze

r

HU
B

Figure 3.3: Abstracting away from the speech recognizer implementation

3.7 Off-the-Shelf Components

3.7.1 Speech Recognizer

Currently, IBM ViaVoice is used for speech recognition. ViaVoice is a com-
mercial speech recognizer, but targets the consumer market, and is therefore
reasonably priced. It supports the JavaSpeech API (JSAPI), and it is very easy
to train: the user just reads a story from the screen for about fifteen to thirty
minutes; ViaVoice then builds an acoustic model for that user. Disadvantages
of using ViaVoice through Java were already named: no confidence scores are
provided and time stamps are only given for the best alternative. However,
many other speech recognizers do not provide time stamps at all, so until other
viable options are built (the upcoming Sphinx-4 looks promising) ViaVoice will
be the best choice.

To avoid locking the framework in to a specific speech recognizer, however,
I created an interface abstracting away from the actual speech recognizer used.
Following the wrapper design paradigm, whenever a new speech recognizer needs
to be used in the application, an implementation of the SpeechRecognizer
interface is implemented that communicates with the actual speech recognizer.
This can be done through function calls, TCP/IP, or whatever method of com-
munication the speech recognizer supports. This is illustrated in figure 3.3.

A logical question to ask is why the speech interface used is not an existing
one, such as JSAPI, which would be a logical choice since the framework is
largely written in Java. The reason is that we only need a subset of the fea-
tures provided by these interfaces. Using JSAPI would require implementing
all of its methods, which requires a lot of effort; effort that would go unused
since the framework only requires a few basic features. A SpeechRecognizer
implementation for JSAPI is provided, so that most JSAPI-compliant speech
recognizers can be used easily.

Output from the speech recognizer is sent to the hub as text, with timing
and confidence information encoded in the text, for example:

MOVE{startTime=66041061|endTime=66041481|confidence=0.5 }
THIS{startTime=66041638|endTime=66042367|confidence=0.5 }
ARMY{startTime=66042419|endTime=66043212|confidence=0.5 }
THERE{startTime=66043497|endTime=66044072|confidence=0.5 }

40

Since JSAPI doesn’t provide confidence scores, the JSAPI implementation
currently uses a fixed value of 0.5.

3.7.2 Parser

Colorado University’s Phoenix parser is a popular parser that has been proven
through its use in several Communicator systems. Phoenix is robust, completely
domain-independent, and hub-compliant. In addition, it can be downloaded at
no charge and is licensed under an open source license, so that the source can
be modified to change the parser.

Because Phoenix is open source I had the opportunity to change it or add
features. Initially I wanted to add functionality for including metadata such
as timestamps and confidence scores in the parse output, but this proved to
be difficult to combine with the way Phoenix was designed: each word in the
grammar is given an index, and parse input is converted into a list of index
numbers, so the identity of words is lost. I did add code to strip incoming text
of the metadata (the text between braces), since otherwise words would not be
recognized.

Linking metadata back to the parse output is now done by Java code in the
fusion component. The method used there could also be used in the parser, but
implementing it in Java in the Fusion component was easier than doing it in
plain C, which is what Phoenix was written in.

3.7.3 Speech Synthesizer

The speech synthesizer is implemented analogous to the speech recognizer. That
is, a uniform interface is provided that is used in the framework, and any speech
synthesizer can be used as long as a wrapper is written for it that conforms to
the interface dictated by the framework. An implementation was made for
JavaSpeech, and IBM’s ViaVoice speech synthesizer was used.

3.8 New Components

Fusion, dialog management, and natural language generation components needed
to be written from scratch, as off-the-shelf implementations were not available.

3.8.1 Reusability in Components

Making components reusable does not only mean designing them to be tech-
nically configurable and usable in different applications, but also limiting their
complexity — e.g. the number of classes that need to be configured or extended
for a new application—, designing comprehensive interfaces, and providing suf-
ficient documentation so that users will find it easy and intuitive to work with
the components.

XML was used extensively in the three new components described in the
following sections — fusion manager, dialog manager, and natural language
generation. XML has some positive aspects that we take advantage of here,
namely structure and self-documentation:

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 41

• XML’s structure — i.e. as a tree — makes it very suitable for repre-
senting natural language parses. XPath provides a way for testing for
the presence of certain words or concepts in the parse tree, or retriev-
ing them. XSLT can be used to flatten structure into text by a natural
language generation module.

• By self-documentation I mean that because XML tags are human-
readable, an XML file usually needs little extra documentation to be
understood. Configuration files for the fusion and dialog management
components are in XML format, which makes it easy and intuitive for a
developer to modify them, without the learning curve imposed by some
other configuration file formats, and without the need for extensive docu-
mentation.

3.8.2 Fusion

The fusion component is the place where modality data comes together to deter-
mine a single unambiguous meaning, or user intention, which is then passed on
to the dialog manager. A modality and application independent fusion manager
was necessary for the multimodal framework. This required a novel approach
to fusion, which is described in this section.

The main goal of the fusion component is not the fusion of sensory informa-
tion itself, since that is only a means. The end is context resolution: taking a
user’s parsed spoken utterance and using context — in whatever form available
— to resolve inclarities and ambiguities in it and convert it into a canonical
form. In unimodal conversational systems, context resolution uses dialog his-
tory, common knowledge, and possibly some form of reasoning. In multimodal
systems, this is enhanced by having access to sensory inputs as an extra source
of information. The fusion manager described in this section takes the task
of traditional discourse managers and generalizes it by allowing all sorts of in-
formation to be used as context, regardless of where it came from. Several
methods for using this information to resolve ambiguity and create a canonical
representation are available, and the framework can easily be extended with
more.

The Fusion Process

The input to the fusion process is a semantic parse tree with time stamps as
generated by the natural language parser component of the speech interface.
This parse tree needs to be transformed into frames that the dialog manager
can use to make calls to the application. To create these frames, the natural
language concepts in the parse tree need to be mapped to application concepts.
In addition, ambiguity needs to be resolved. Ambiguity exists, for example,
when the user uses pronouns or other anaphora, or deictic references, for ex-
ample “remove that ’, or “do reconnaissance here”. Another case of ambiguity
is ellipsis, a linguistic construct in which words that are implied by context are
omitted, such as “rotate this clockwise ... and this too” — the last phrase can
be expanded to “and rotate this clockwise, too”.

Needless to say, this is far from trivial. The fusion algorithm explained below
addresses some forms of ambiguity, but does not (yet) resolve all forms.

42

(a)

(b)

(c)

(d)

(f)

(e)

(g)

mouse

mouse

mouse

mouse

mouse

mouse

mouse

speech

speech

speech

speech

speech

speech

speech

Figure 3.4: Different alignment cases for speech and mouse

In multimodal interaction, input from different modalities can be simultane-
ous, overlap partially, or be completely disjunct. Ideally, a multimodal system
should be able to handle all of these cases. Fusion in the framework is currently
speech-centric. This means that all multimodal actions must contain speech.
While this seems restrictive, it is intuitive for most users to at least use speech
when interacting with a computer through a multimodal interface. From a de-
sign viewpoint, using speech to decide when an interaction starts and stops is
most obvious, as speech signifies a conscious act on the side of the user. Deter-
mining from other modalities, such as gaze, whether the user is consciously doing
something is much more difficult. Additionally, because modalities can overlap,
non-speech-centric multimodal interaction requires the use of time thresholds
to determine how long to wait after input from a modality has stopped before
deciding the user has completed an action. This is the method used in [80], but
it will necessarily impose delays on the system, which can be annoying for the
user. On the other hand, these delays are present as well when using speech:
speech recognizers will wait for a certain duration of silence before assuming the
user is done speaking.

Figure 3.4 shows the different ways in which speech and mouse can be aligned
(mouse can be substituted by other modalities). The frameworks handles these
cases as follows:

(a), (c),
(e), (f)

Speech-only, speech encompasses/follows mouse —
Speech-only interaction is just a specialization of interaction us-
ing speech and other modalities simultaneously. The framework
works very well for this type of alignment. Mouse movements
are stored in a buffer until the user finishes speaking, at which
point they are used for fusion. So mouse movements can start
before speech, but mouse movements done after speech ends are
not used for that speech act. (There is actually a delay between
when the user stops speaking and when the buffered mouse data
is retrieved, so mouse movements made shortly after the user
stops speaking will be registered).

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 43

(b) Mouse only — For the framework to detect a multimodal ac-
tion, it must currently be accompanied by speech. Multimodal
processing is done from speech, and speech determines which
type of frame is instantiated — non-speech modalities can only
influence what the contents of that frame will be. To change
this, a voting mechanism similar to that used for filling the slots
could be used to choose a frame, i.e. based on each modality
a choice could be made, and the majority’s vote (with speech
having a greater weight, for instance) would have the final de-
cision. Also, time thresholds for each modality would dictate
after how much time of inactivity the user can be considered
done with it, and therefore ready for the system to process the
multimodal command. For speech this is already done by the
speech recognizer, which waits for a certain duration of silence
before assuming the user is done speaking. Inter-modality time
thresholds would also need to be set, to allow a user to use
two modalities in succession. This time threshold determines
after what duration of time the user can be expected not to be
using another modality to supplement the command just given
with one modality or combination of modalities. More advanced
methods that time thresholds for determining this intent of the
user would be desirable, as they might avoid delays and help
create better system response times.
Since the framework augments GUI interfaces, a user can also
perform traditional direct manipulation using the mouse or a
device emulating a mouse (such as a touch screen). In this case
the framework is not involved.

(d), (g) Mouse follows speech — As described for the first case,
mouse data is stored until speech is received by the fusion com-
ponent. Therefore, mouse movements done after speech are
not used for that speech act (they accumulate in the buffer
for the next speech act). Therefore the following form of in-
teraction does not work with the framework as it is currently
implemented:
“move along this line. 〈draws line〉”
If the modification in the framework described in the previous
point is done (to allow mouse clicks and drags to drive fusion),
this type of action would be possible (given that the mouse
action follows the speech act before the set time threshold).
An alternative using the current framework is to have a the
speech act (“move along this line” in this example) set a toolbar
button or change state in the application which would cause
the following mouse movement to generate the desired result,
outside of the framework. Again, this would only work with
a mouse or a device emulating a mouse (as traditional GUI
methods are used).

44

Speech
Interface

parse tree

ag
resolving

ent

Dialog
Manager

C

C

o

o

n

n

t

t

e

e

x

x

t

t
p

p

r

r

o

o

v

v

i

i

d

d

e

e

r

r

confidence
votes

confidence
votes

confidence
votes

command frames

Figure 3.5: The design of the fusion process

The Fusion Design

Figure 3.5 shows the conceptual design of the fusion process as it is now imple-
mented. This will be explained in the following section. The fusion manager,
which directs the fusion process, is not shown in this figure, in order to make
the flow of data more apparent. However, it is actually the fusion manager that
takes fragments from the parse tree and passes them to the resolving agents.
It also collects the confidence votes from the agents and combines them to fill
the command frames which it sends to the dialog manager. So, although not
displayed, the fusion manager is involved in every step of the fusion process.

The fusion design bears some resemblance to that used in OGI’s QuickSet
system [18], which employs a Members-Teams-Committee technique, using par-
allel agents to estimate a posteriori probabilities for various possible recognition
results, and weighting them to come to a decision. However, our approach is
more reusable as it separates the data – or feature – acquisition from the recog-
nition. Also, it supports a variety of simultaneous modalities whereas QuickSet
seems to be built solely for pen and speech-based interaction.

The Fusion Manager

The fusion manager directs the fusion process. It has three responsibilities which
it either carries out itself or delegates to subcomponents:

1. Collecting data from modalities connected to the system — The
fusion component is the central locus in which modality data come to-
gether. The data are stored with timestamps, so that they can later be
synchronized. Modality data can be of different types, such as spatial
data (coordinates), semantic data (frames), or symbolic data. The fusion
manager doesn’t need to know the specific type of data, which makes the
system very extensible, i.e. other data types can be added without mod-
ifying the fusion manager. The data is used by resolving agents, which
use it along with the speech input to find out what the user’s intent was.
This process is described in detail in the remainder of this section.

2. Combining this data with speech to come to an unambiguous
meaning — As mentioned, resolving agents are used to process modality

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 45

data. This results in assessments of meaning that are sent back to the
fusion manager. The manager then makes a final decision on what the
user most likely intended, based on the various possibilities proposed by
the resolving agents, and the a posteriori probabilities they provided.

3. Sending the meaning to the dialog manager — Once an unambigu-
ous meaning is derived, a frame can be sent to the dialog manager, which
will update the dialog context, perform some task in the application by
making function calls, and provide user feedback. A frame is also sent to
the dialog manager if an unambiguous meaning can not be determined, in
which case it can prompt the user for more specific information.

Collecting data from modalities A continuously active process is that of
collecting data from the various modalities connected to the system. Classes
that collect this data and provide it to the framework implement the Context-
Provider interface. They are spawned by the fusion manager and generally
run in their own threads, independent of the fusion manager. Through the
getData() method, the fusion manager can obtain data from the Context-
Provider .

Not all ContextProvider s get data directly from a modality. A Context-
Provider can get input from another ContextProvider and use its data.
This can be used to implement modality parsers or filters. For example, the
Clustering class takes coordinate data from an eye tracker or pointing-
modality and finds fixation clusters in the coordinate stream, which it then
outputs.

Modality data is usually buffered so that it can be used when a speech
utterance is completed. The BufferedContextProvider continuously polls
another context provider and stores its data. The frequency with which the
underlying context provider is polled and the size of the buffer are determined by
the developer in the fusion configuration file. Usually a few seconds of buffered
data are sufficient. For example, if a modality is polled every 60 milliseconds,
a buffer of size 100 would be enough to store 6 seconds of data. Since a speech
utterance only lasts a few seconds, this is sufficient. Smaller sizes are better
since they use less memory, and result in less waste of time when the buffered
data is searched by a resolving agent.

The ContextProvider class and related classes will be described in detail
in Chapter 4.

Combining Data with Speech When a parse tree is received by the fusion
manager, it needs to create a semantic frame from it. Through the fusion
configuration file, a developer using the framework can specify exactly how
slots in this frame are filled using the data in the parse tree and the modalities
connected to the system. Because multimodal systems deal with uncertainty,
there is usually no clear answer to what value should be filled in a slot. Instead,
there are several possibilities, generated by what the user has said (which is
reflected in the parse tree), multimodal inputs, and the context, or history, of
the dialog. Some possibilities may be more likely than others.

The fusion manager spawns resolving agents which provide for one fragment
of the parse tree and one modal input, a list of possible values for a slot, along
with confidence scores. Resolving agents implement the Resolver interface,

46

parsing

unit resolver

where

what

move

dialog history resolver

object resolver
[move]

[what]‘‘move’’

[anaphor]

‘‘that’’

[unit]

[unit_size]

[size_B]

‘‘squad’’

Parse Tree Resolvers

‘‘move that squad there’’

Frame

Voting

Fusion Manager:
A/0.3

B/0.7

D/1.0

A/0.25
C/0.25

D/0.25
E/0.25

D

Figure 3.6: An example of how a slot is filled by resolving agents

but, as with the ContextProvider s in the previous section, the fusion man-
ager needs to have no knowledge of how they do their work. All the fusion
manager does is send a fragment of the parse tree, as dictated by the fusion
configuration file, to a resolving agent, and retrieves a list of possible slot values
and corresponding confidence scores.

Because the resolving agents use just a part of the parse tree, and access
just one modality, their design can be kept simple. Since they themselves don’t
fill the slots of the frame that the fusion manager creates, but instead send
possible values to the fusion manager, they don’t need to be concerned with
combining their possible values with those of other agents. Instead, they can
operate locally on their data. This makes the agents parallelizable, which means
they can run at the same time and take advantage of multiprocessor hardware,
if it is available.

A visual example of all this is given in Figure 3.6.
Thus, for each slot the fusion manager obtains a list of possible values for

that slot. Each value is accompanied by a confidence score that the resolving
agent provided. The fusion manager must now use these lists to decide what
to put into the slot. There are many ways to do it, and the currently used
method is very simple and generic. The confidence scores for each value are
multiplied with a weight specific to the resolver the value came from. This
weight is provided by the developer in the configuration file and provides a way
to ‘prefer’ certain agents over others. For example, we might find mouse input
more reliable than eye input, so we allocate a higher weight to the Resolver
using mouse input than to the one using eye input. The resulting scores are
summed per possible value (as in a histogram). Finally, the highest scoring
value is used to fill the slot.

Sending Meaning to the Dialog Manager To avoid lock-in to the Java
language, the fusion and manager communicate using a language-neutral rep-
resentation, encoded in XML. The DomainCodec interface provides methods
for encoding and decoding data between the language-neutral representation

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 47

#store

ObjectLocator

LocatableObject

+findObject(p:Point) : LocatableObject

+findObjects(properties:Map) : Iterator

+findObjects(p:Point, radius:double) : Iterator

+findObjects(p:Point, xradius:double, yradius:double) : Iterator

+getObject(type:String, id:Object) : LocatableObject

+getObject(type:String, id:Object)

+objects() : Iterator

LocatableObjectStore

<<interface>>

+getObject() : Object

+getProperty(name:String) : Object

+getId() : Object

+getType() : String

+getLocation() : Point

+setLocation(location:Point)

+getSize() : Dimension

+setSize(size:Dimension)

Figure 3.7: The ObjectLocator and related classes

and Java. The default implementation provided by the framework — Domain-
CodecImpl — can encode and decode primitive types, String s, Point s,
and on-screen objects. Note that objects are not encoded by (Java-) object
type, but by a higher level indication of type. According to this classification,
the DomainCodecImpl distinguishes object s, location s, literal s, and
value s.

A location (Point), for example, is encoded as:

<location x="473" y="216" />

Services Provided by the Fusion Manager

The Fusion Manager provides services that resolving agents can access when
determining values for a slot in the output frame.

Querying objects Resolvers may query the application for on-screen objects
through an ObjectLocator class that the fusion manager provides. This pro-
vides an application-independent way for finding objects using criteria such as
location, name, or other properties. The GeometricAnaphorResolver that
comes with the framework uses this to find objects in the vicinity of where the
user was pointing or looking. ObjectResolver queries an ObjectLocator
to find objects matching what the user was looking for, e.g. “move the enemy
squad there” would cause ObjectResolver to query the ObjectLocator
for objects whose affiliation property is “hostile” and whose size property is
“squad”. The resolver uses the parse tree and configuration information from
the fusion configuration file to determine what to query on.

As shown in Figure 3.7, ObjectLocator uses an instance of Locatable-
ObjectStore that provides the actual access to the objects in an application.
The objects returned by LocatableObjectStore are instances of Loca-
tableObject , which is a wrapper class that wraps application objects in an
application-independent interface that allows the framework to obtain its loca-
tion, size, and attributes in a uniform way.

48

Application and Session objects The framework uses two objects, Ap-
plication and Session , to provide access to global settings and resources.
An application can register a resource with the framework, which will make
it available through the Application object. In this way, ContextProvi-
der s and Resolver s can have access to parts of the application. For example,
the Mouse ContextProvider needs a Component resource that it captures
mouse events from. Also, Session provides access to the framework’s logging
facilities, allowing ContextProvider s and Resolver s to generate informa-
tional and debugging output that can be used for troubleshooting, or just to
gain insight in what a ContextProvider or Resolver is doing.

The Application and Session objects have other features, but these are
only used by the dialog manager, and will be described in the next section.

3.8.3 Dialog Manager

As described in the preceding section, the dialog manager receives semantic
frames from the fusion component. These frames are fully resolved and unam-
biguous. However, they are not necessarily complete. That is, some slots may
be empty.

The dialog manager is configured through an XML file that declares the
possible frames, and action script code to be executed for each. Currently
the script code has both the responsibility of determining whether the frame is
complete and carrying out the actions for that frame. This is an example action
script:

1 if (frame.glyph) {
2 application.api. deleteGlyph (frame.glyph.glyph);
3 } else {
4 session. speak (’<$missing><frame>delete</frame>’ +
5 ’<slot>glyph</slot></missing>’);
6 }

The code is JavaScript. The first line checks if the frame is complete by
testing if the glyph slot exists. If so, a call to the application is made. If not,
feedback is given through the natural language generation component. This will
generate speech asking the user to specify what he or she wants to delete.

Dialog Manager Tasks

The dialog manager becomes active when a frame is received from the fusion
component. It has three responsibilities:

1. Maintaining dialog context

2. Maintaining dialog history

3. Making application calls

Maintaining dialog context The dialog manager keeps a context frame that
represents the current dialog context. Incoming frames are merged with this
frame until a complete frame is filled. Whether a frame is complete is determined

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 49

but the isComplete() . Currently the default dialog manager implementation
just returns true and to make real use of the context frame, a developer must
subclass the DialogManager class and override the isComplete() method.
However, as described before, currently the action scripts are used to check if a
frame is complete. In a later version of the framework, a more generic method
for checking for frame completeness might be developed, for example based on
rules, which could be implemented in the base DialogManager , alleviating
the need to subclass it for this purpose.

Maintaining dialog history Dialog history is implemented as a separate
class, DialogHistory , that is owned and kept current by the dialog manager.
When a frame is completed and executed, its slots are added to the dialog
history. There is currently room for 7 slots. Since the dialog history is used
to find antecedents that a user refers to in the dialog, there is no need to
store more entities than the user will refer to. As the human mind can only
maintain approximately 7 entities at a time, we do not need to store more than
that number in the dialog history. That said, the number is easily changed by
modifying a constant in the DialogHistory class.

DialogHistory implements the ContextProvider interface and can
therefore be used by resolving agents to resolve anaphors or fill in blanks in
frames based on the dialog history.

Making application calls As described, when a frame is completed, the
action script for that frame is retrieved and executed. Although this script
can do anything the developer wants, in general it will use the application ,
session , and frame objects made available to it to read the values of the
frame’s slots and make calls to the application or send feedback to the user
through the natural language generation component.

3.8.4 Dialog Manager Limitations

Dialog context management is a very complex subject, and the dialog manager
presented here is a very simple implementation. This is in part because many
traditional dialog manager tasks are handled by the fusion manager: choosing
a frame type based on the possible parse trees, “inheriting” slot data from the
dialog history, and resolving various types of partial data such as anaphora and
relative dates.

Another reason for a simple dialog manager is that I’ve made some assump-
tions as to the type of dialog that can be expected: command and control
systems will generally have straightforward and accurate dialog, so advanced
dialog management techniques should not be necessary.

The current dialog has the following limitations:

• Nested dialogs are not recognized. For example, a dialog of the following
style would not be handled correctly with the proposed design:

50

User: Move the infantry army here 〈points〉.
Computer: There are two infantry armies, which one do you

want to move?
U: ‖ Show me both armies.
C: ‖ Scrolls to show both armies and hilights them.
U: OK. Uhm, move that one 〈points〉 then.
C: Moves the army to the requested location

The user starts a dialog, asking the computer to move an army. Because
there is uncertainty as to which army to move, the user starts a subdialog
where he asks the system to show both armies, which the system then
does. At that point the original dialog is resumed and the army is moved.

To handle this simple case would be trivial. The system could detect a
topic change (from “move” to “show”), push the current context frame on
a stack and start a new dialog. Then when the old topic is resumed, it
could pop the frame and continue working on it. This would even work
with multiple nested dialogs.

However, it is very difficult to determine whether a topic change indicates
the start of a subdialog, or whether the user justs wants to change the
topic and has no intent of resuming the original conversation. This could
be solved by implementing a “time-out”, for instance if the user doesn’t re-
turn to the original topic within n sentences, the context frame is dropped
from the stack. However, it is difficult to determine what this n should be.
Further research could show if this approach would work, and what would
be a good value for n. For now, I stayed with a simple dialog manager, to
at least have a working prototype. This means the user’s speech from the
previous dialog would result in the following user-computer dialog with
the current dialog manager:

User: Move the infantry army here 〈points〉.
Computer: There are two infantry armies, which one do you

want to move?
U: Show me both armies.
C: Scrolls to show both armies and hilights them.
U: OK. Move 〈points〉 that one then.
C: Where do you want to move it?

Since the context frame from the first part of the dialog is dropped when
the user changes topics, a new “move ” frame is created in the last part,
but the slot that should contain the destination is now empty, causing the
computer to ask for it.

• The only state information that is maintained is the context frame.
This means that the dialog manager can only make decisions based on the
current frame and the context frame. If more complex behavior is desired,
a developer should extend the dialog manager, or implement this behavior
in the API class that connects the dialog manager with the application.

3.8.5 Abstractions and Assumptions

In order to be applicable for many different applications, the framework makes
several abstractions. Each abstraction results in a “hot-spot”, or interface, as

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 51

A
p

p
lic

at
io

n
O

b
je

ct

Object Collection
Application

Functionality
Application

Dialog Management

Fusion &

Implementation

Interface

Interface

Implementation

Im
pl

em
en

ta
tio

n

In
te

rf
ac

e
L

o
ca

ta
b

le
O

b
je

ct

LocatableObjectStore

API

Figure 3.8: Hot spots in the framework for application implementation details

described in Section 3.2. These hot spots need concrete implementations that
are often specific to the application, the modalities used, or the way in which
modalities are used to resolve ambiguities in speech. Along with abstractions,
assumptions are made. By defining the hot spots, the framework’s core is also
defined, and this embodies assumptions we’ve made about the type of interface
that will be built with the framework.

Application Abstractions and Assumptions

I’ve assumed two things about applications in implementing fusion and dialog
management. This is shown schematically in Figure 3.8. The assumptions, and
their corresponding abstractions, are:

• Since the application is to be made multimodal, it has objects or spots
on the screen that can be referenced in a multimodal fashion, i.e. by
pointing to them or by describing them. This implies that the objects on
screen have a location, represented by an (x,y) coordinate pair, and have
attributes that can be used to describe them, for instance size, color, or
type of object. The LocatableObjectStore interface and the Loca-
tableObject abstract class described previously are the results of this
abstraction.

• An application has a certain functionality that it wishes to expose to
the framework so that it can be accessed by multimodal commands. I’m
assuming all this functionality is provided in a single class, shown as “API”
in Figure 3.8. If an application has multiple classes it wishes to expose,
the API class can be built as a “mediator” class that just provides get
methods for these other classes.

Fusion Abstractions and Assumptions

Abstractions in the fusion manager were made to avoid locking in the fusion
component of the framework to specific modalities or resolution methods. The

52

following abstractions and assumptions were made:

• Speech is the “driving force” for fusion. That is, fusion is started when a
speech utterance is received.

• Late fusion is used. Fusion is done at the slot level on frames that are
instantiated from a parse tree, that is, a slot-filling approach is used.

• Modalities provide data, and it is possible for different modalities to pro-
vide the same type of data. These two abstractions led to the Context-
Provider interface.

• An operation using as input modality data and a fragment from the parse
tree can provide possible values to use in a frame slot as well as a likelihood
of each possibility. This is independent of both the values and probabil-
ities generated from other combinations of modality data and parse tree
fragment as from the values in other slots. This is represented by resolving
agents and the corresponding Resolver interface, as well as the voting
mechanism used in the fusion manager to combine the resolving agents
value-probability lists.

Dialog Management Abstractions and Assumptions

As described in Section 3.8.4, a simple dialog manager design was used, which
implies a significant number of assumptions or abstractions were made. Two of
these were already mentioned in Section 3.8.4.

• There are no subdialogs.

• The dialog manager’s response to a new frame is only dependent on that
frame and the current context frame.

• The action taken for a frame can be expressed as a piece of script code.
This script can call methods and access variables of one object that belongs
to or interfaces with the application.

• Whether a frame is complete, that is whether a sufficient number of slots
has data so that the frame has meaning, is determined by the action script
that the dialog manager runs for that frame.

3.8.6 Fission

There was no time to implement fission. Currently, dialog manager output is
sent directly to the natural language generation module, so that, besides the
screen output provided by the application itself, only speech output is given to
the user. A fission manager would be responsible for distributing output over
multiple modalities, so that a user could be alerted through different sensory
channels.

In symmetry with the way fusion sends frames to the dialog manager, the
dialog manager would send frames to the fission component. A fission man-
ager can then call agents for each output modality which take information from
the parse tree and transform it into a form that can be sent to the respective

CHAPTER 3. DESIGN OF THE MULTIMODAL FRAMEWORK 53

millimeters per second.’’
millimeters at 400

‘‘Moving forward for 1000
Natural Language

Generation

<move>

<direction>

‘‘forward’’

<distance><speed>

‘‘1000’’‘‘400’’

XSL Stylesheet

Figure 3.9: Natural Language Generation

modalities. The fusion manager would need to control where and how redun-
dancy it used. It would also need to orhestrate the modalities so that outputs
are properly synchronized, for example, a unit on the screen is hilighted at the
same time the speech synthesizer says “this unit”.

Designing and implementing this properly would probably take a year by
itself, which is why I have mentioned fission but have not made any specific
design or implementation for it.

3.8.7 Natural Language Generation

I designed and implemented a very simple, but nevertheless powerful natural
language generation component. The component takes advantage of XML and
code that is readily available, notable from the Apache Xerces [4] and Xalan [3]
projects, to perform XML parsing and transformations.

Output from the dialog manager comes in a language-neutral form, in an
XML representation. The canonical way to transform XML into something else,
in this case into text, is through an XSL Transformation (XSLT) [86]. In the
XML stylesheet (XSL), templates are declared that dictate how a particular
type of XML node is converted. The XSLT then traverses the XML tree and
applies the appropriate template for each node.

The natural language generator uses an XSL to convert this into actual text
to be spoken by the speech synthesizer, as depicted in Figure 3.9.

54

Chapter 4

Implementation of the
Multimodal Framework

This chapter describes implementation of the multimodal framework.

4.1 Choice of Language

As shown in the previous chapter, several new components needed to be written
to have working framework, notably the fusion and dialog manager components.
I chose to write these new components in Java. This language has some favorable
properties that are particularly useful when writing a framework. Through
its “Reflection” API, Java allows objects to be instantiated, methods to be
called, and fields to be accessed of classes that were not known at compile
time. This makes it easy to extend the framework with new modalities and
resolution agents, without having to modify or recompile the core framework
code. It is true that there are other programming languages that provide a
similar type of functionality, but these are most often script languages that need
to be interpreted. Interpreted languages are usually slower than their compiled
counterparts. Also, the distinction between fixed code (the framework core) and
configurable code (hotspot implementations) can become blurred when all code
is human readable.

In addition, Java features strong typing, which avoids programming errors
by pointing them out at compile time. Errors due to using a wrong type of
pointer than the code expects can cost significant amounts of time to find and
correct in a language like C, where this is not checked at compile time.

An extensive and well-documented class library are a great time savings by
providing virtually bug-free data structures, utility methods, and much more.

Finally, Java applications can run on different platforms without recom-
piling, which means the framework can be deployed on any Java 1.4 capable
platform.

55

56

Server

 (from galaxy.server)

+Server(mainServer:MainServer, socket:Socket) : Server

+getCurrentEnvironment() : Environment

MainServer

 (from galaxy.server)
#name : String

#serverClassName : String

−port : int

+MainServer(name:String, argv:String[], port:int) : MainServer

+MainServer(name:String, port:int) : MainServer

+MainServer() : MainServer

+getName() : String

+setName(name:String)

+getPort() : int

+setPort(port:int)

+getServerClassName() : String

+setServerClassName(serverClassName:String)

+start()

+init()

+isRunning() : boolean

#mainServer

DialogMainServer

+DialogMainServer(name:String, argv:String[]) : DialogMainServer

+DialogMainServer(name:String, argv:String[], port:int) : DialogMainServer

+getDialogServerClassName() : String

DialogServer

+DialogServer(mainServer:DialogMainServer, socket:java.net.Socket) : DialogServer

+dialog(parse:Parse[], origText:String)

#initSignatures()

+serverOpMain(frame:galaxy.lang.GFrame)

#init(argv:String[])

Application

DialogServerImpl

+DialogServerImpl(mainServer:DialogMainServer, socket:java.net.Socket) : DialogServerImpl

+dialog(parse:Parse[], origText:String)

Session

Figure 4.1: A class diagram of the galaxy.server-MainServer and galaxy.-
server.Server classes, and their subclasses in the framework

4.2 Programming with Communicator

Chapter 3 described that the system is divided into components that communi-
cate using the Communicator middleware. Although Communicator is written
in C, MITRE makes available a Java programming interface as well. To en-
able Java code to work as a server in the Communicator infrastructure, two
classes must be used. An instance of galaxy.server.MainServer listens
for (TCP) connections from the hub. When the hub connects, the MainServer
instantiates a subclass of galaxy.server.Server . Which exact subclass is
instantiated is determined by a previous call to setServerClassName() .
The Server instance then receives frames from the hub and can also send
frames back.

Incoming frames are handled by a dispatch method in the Server subclass.
A dispatch method will generally read the frame’s slots, perform some action,
and possibly return a frame.

4.2.1 Configuring the Hub

The Communicator hub is configured through a hub script. This is a file that
contains the name, address, and port number of each server in the system that
the hub is to contact. It can also include routing instructions, if the default
routing is not adequate.

To simplify configuring the hub, I’ve placed server definitions inside an XML
file. When the framework is compiled, this file is transformed into a hub script
using an XSL Transformation. The XML file also contains information on which
program to run to bring up the server. This is for the process manager. A pro-
cess manager configuration file is created from the same XML file, but using a
different stylesheet. Because most programs have different names under Win-

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 57

SpeechRecognizerMainServer

+SpeechRecognizerMainServer(recognizer:SpeechRecognizer) : SpeechRecognizerMainServer

SpeechRecognizerServer

+SpeechRecognizerServer(mainServer:SpeechRecognizerMainServer, socket:java.net.Socket) : SpeechRecognizerServer

+setSpeechRecognizer(speechRecognizer:SpeechRecognizer)

+receivedResult(result:RecognizerResult)

+receivedUtterance(utterance:String)

#sendFrame(op:String, key:String, value:String)

<<interface>>

SpeechRecognizer

+addListener(listener:RecognizerListener)

+removeListener(listener:RecognizerListener)

+setSuppliesMetaInfo(suppliesMetaInfo:boolean)

+init(props:java.util.Properties)

AbstractSpeechRecognizer

#suppliesMetaInfo : boolean

+listeners() : Iterator

+addListener(listener:RecognizerListener)

+removeListener(listener:RecognizerListener)

+setSuppliesMetaInfo(suppliesMetaInfo:boolean)

<<interface>>

RecognizerListener

+receivedResult(result:RecognizerResult)

+receivedUtterance(utt:String) 0..*

#listeners

JavaSpeechRecognizer

#dicationGrammar : javax.speech.recognition.DictationGrammar

#recognizer : javax.speech.recognition.Recognizer

+init(props:java.util.Properties)

+transformToken(token:Token) : Token

RecognizerResult

+RecognizerResult(tokens:Token[]) : RecognizerResult

+parse(str:String) : RecognizerResult

+getAlternativesCount() : int

+getTokens(index:int) : Token[]

+getAllTokens() : Token[][]

+getConfidence() : double

+getStartTime() : long

+getEndTime() : long

+addAlternativeResult(tokens:Token[])

Token

#word : String

#startTime : long

#endTime : long

−confidence : double

+Token(word:String, startTime:long, endTime:long, confidence:double) : Token

+getWord() : String

+getStartTime() : long

+getEndTime() : long

+getConfidence() : double

+setWord(word:String)

+setStartTime(startTime:long)

+setEndTime(endTime:long)

+setConfidence(confidence:double)

+toSTring() : String

#alternativeTokens

0..*

#listeners

#alternativeTokens

Figure 4.2: A UML class diagram of the speech recognizer classes

dows and Unix (Windows executables end in .exe , whereas Unix ones don’t),
most servers have two definitions, one for Windows and one for Unix.

A fragment of the XML file is shown in Listing 4.1. The resulting hub script
is shown in Listing 4.3. The resulting process monitor file is shown in Listing
4.2.

4.3 Speech Recognizer

A UML class diagram of the speech recognizer server is shown in Figure 4.2.
A speech recognizer server sends a send_to_parse frame to the hub when
a receivedUtterance event is received. The frame contains the utterance
text and meta-information as follows:

send to parse
:parse_input The text that was spoken and is to be parsed

58

1 <server os ="nt" >
2 <name>HUB</name>
3 <dir ><basedir /> \bin \hub</ dir >
4 <path ><basedir /> \bin \hub\hub.exe -verbosity 3 -pgm_file ←↩
5 project.pgm</ path >
6 </ server >
7

8 <server os ="posix" >
9 <name>HUB</name>

10 <dir ><basedir /></ dir >
11 <path ><basedir />/bin/hub/hub -verbosity 3 -pgm_file ←↩
12 bin/hub/project.pgm</ path >
13 </ server >
14

15 <server os ="nt" >
16 <name>Phoenix Parser</ name>
17 <dir ><basedir /> \bin \phoenix \phoenix.config</ dir >
18 <path ><basedir /> \bin \phoenix \phoenix_server.exe -config ←↩
19 default.config</ path >
20 <galaxy name="phoenix" port ="12348" >
21 <operation >reinitialize</ operation >
22 <operation >send_to_parse</ operation >
23 </ galaxy >
24 </ server >
25

26 <server os ="posix" >
27 <name>Phoenix Parser</ name>
28 <dir ><basedir />/bin/phoenix/phoenix.config</ dir >
29 <path ><basedir />/bin/phoenix/run_phoenix</ path >
30 <galaxy name="phoenix" port ="12348" >
31 <operation >reinitialize</ operation >
32 <operation >send_to_parse</ operation >
33 </ galaxy >
34 </ server >
35

36 <server os ="nt" >
37 <name>Natural Language Generator</ name>
38 <dir ><basedir /></ dir >
39 <path ><jredir /> \bin \java -cp class;res;lib/galaxy.jar; ←↩
40 lib/log4j.jar;lib/xml-apis.jar;lib/xercesImpl.jar;lib/xalan.jar ←↩
41 edu.rutgers.caip.communicator.nlg.NaturalLanguageGenerationMainServer ←↩
42 </ path >
43 <galaxy name ="nlg" port ="65427" >
44 <operation >speak</ operation >
45 </ galaxy >
46 </ server >
47

48 <server os ="posix" >
49 <name>Natural Language Generator</ name>
50 <dir ><basedir /></ dir >
51 <path ><jredir />/bin/java -Djava.util.prefs.systemRoot=/tmp -cp ←↩
52 class:res:lib:lib/log4j.jar:lib/galaxy.jar:lib/xml-apis.jar: ←↩
53 lib/xercesImpl.jar:lib/xalan.jar ←↩
54 edu.rutgers.caip.communicator.nlg.NaturalLanguageGenerationMainServer ←↩
55 </ path >
56 <galaxy name ="nlg" port ="65427" >
57 <operation >speak</ operation >
58 </ galaxy >
59 </ server >

Listing 4.1: A fragment of the server definitions XML file

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 59

1 EXPAND: $BASEDIR /home/fflippo/flatscapex.robot
2 EXPAND: $JAVADIR /opt/jdk
3 EXPAND: $TELNET /usr/bin/telnet
4 EXPAND: $ROBOTIP 192.168.100.32
5 EXPAND: $COMMAND /bin/sh
6

7 PROCESS: $BASEDIR/bin/hub/hub -verbosity 3 -pgm_file ←↩
8 bin/hub/project.pgm
9 PROCESS_TITLE: HUB

10 PROCESS_MONITOR_ARGS: --open --start --input_line
11

12 PROCESS: $BASEDIR/bin/phoenix/run_phoenix
13 PROCESS_TITLE: Phoenix Parser
14 PROCESS_MONITOR_ARGS: --open --start --input_line
15

16 PROCESS: $JAVADIR/bin/java -Djava.util.prefs.systemRoot=/tmp -cp ←↩
17 class:res:lib:lib/log4j.jar:lib/galaxy.jar:lib/xml-apis.jar: ←↩
18 lib/xercesImpl.jar:lib/xalan.jar ←↩
19 edu.rutgers.caip.communicator.nlg.NaturalLanguageGenerationMainServer
20 PROCESS_TITLE: Natural Language Generator
21 PROCESS_MONITOR_ARGS: --open --start --input_line

Listing 4.2: The configuration file that is created for the process monitor on
Unix when the code in Listing 4.1 is transformed

1 PGM_SYNTAX: extended
2

3 SERVER: phoenix@localhost:12348
4 OPERATIONS: reinitialize send_to_parse
5

6 SERVER: nlg@localhost:65427
7 OPERATIONS: speak
8

Listing 4.3: The hub script that is generated when 4.1 is transformed

60

If the recognizer hears “go forward two yards”, the resulting frame might
look like this:

{c send_to_parse
:parse_input "go {startTime=66041061|endTime=66041481|confidence=0.5 }

forward {startTime=66041492|endTime=66042104|confidence=0.5 } two {startTi
me=66042213|endTime=66042287|confidence=0.5 } yards {startTime=66042287|e
ndTime=66042563|confidence=0.5 }"
}

4.4 Parser

The input to the Phoenix Communicator server is a send_to_parse frame,
with the following format:

main
:parse_input The spoken (or typed) text that is to be parsed

For typed text the frame will look like this:

{c send_to_parse
:parse_input "go forward two yards"

}

In a frame from the speech recognizer, the parse_input will also contain
meta-information like time stamps and confidence scores. However, these are
lost in the parsing process, so they are not present in the parser output.

The output frame contains all the slots of the input frame, plus a slot
:parse_output containing the possible parses of the input text, for exam-
ple:

{c main
:parse_input "GO {STARTTIME=66041061|ENDTIME=66041481|CONFIDENCE=0.5 }

FORWARD{STARTTIME=66041492|ENDTIME=66042104|CONFIDENCE=0.5 } TWO{STARTTI
ME=66042213|ENDTIME=66042287|CONFIDENCE=0.5 } YARDS{STARTTIME=66042287|E
NDTIME=66042563|CONFIDENCE=0.5 }"

:parse_output "PARSE_0:
move:[move] (GO)
move:[direction] ([forward] (FORWARD))
move:[distance] ([Number] (TWO) [d_unit] ([du_yd] (YARDS)))
END_PARSE

" }

The parse is not transmitted in Communicator’s internal frame represen-
tation (which was actually designed to represent parses and natural language
constructs). Instead, a structured string representation is made and put into a
single slot. This representation is discussed in the next section.

4.4.1 Phoenix frame representation

Phoenix outputs its frames as a string with a strictly defined, line-based struc-
ture. Each parse begins with a line PARSEn: , where n is the parse number,

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 61

starting at 0. Each line of the parse contains a frame name, followed by a colon,
followed by the contents of one slot. The slot name is enclosed in square brack-
ets, followed by its contents enclosed in parens. Slots can be nested, so slots can
contain other slots. In this way a parse tree is formed. The leaves of this tree
are the words from the input text. The words are capitalized: because parsing is
not case sensitive, Phoenix converts the input text to upper case before parsing
it. The end of a parse is marked by the token ENDPARSEon a line by itself.

Since parsing is robust, not all words from the input text need to be present
in a parse. However, only parses with the maximum number of words from the
input text are preferred. That is, if a parse covering n words is possible, no
parses covering less than n words will be returned. Also multiple frame types
can be present in the parse, but Phoenix prefers parses with the least amount of
frames. These two rules limit the number of parses that are be returned, since
only ‘optimal’ solutions are allowed.

4.5 Fusion and Dialog Management

Fusion and dialog management function as a single Communicator server. It
handles frames from the parser, which have the following format:

main
:parse_input The original spoken (or typed) text

:parse_output The possible parses of :parse_input

Figure 4.1 shows the classes in the framework that inherit from galaxy.-
server.MainServer and galaxy.server.Server . DialogMainServer ,
in its constructor, creates an Application object. Application stores
global application state information for the framework, provides logging fa-
cilities, stores a reference to the API object of the application that will be
controlled, and generally maintains state information that is global and not
specific to a dialog session. Application state is valid regardless of whether a
user is currently using the application.

DialogServer extends galaxy.server.Server by declaring a han-
dler method for the main frame. It also provides a constructor that creates
a Session object. Session creates and configures the fusion and dialog man-
ager components, provides access to the scripting engine used for dialog man-
ager action scripts, provides access to the natural language generation module
through the speak() method, and generally maintains state information that
is specific to a dialog session. A session is destroyed when a user disconnects,
while the application keeps running.

DialogServer is an abstract class, with an unimplemented dialog()
method. When a main frame is received, DialogServer converts the parses
to XML DOM trees. The leafs of this tree are the actual words that were spoken.
Using this tree and the original utterance, which has time stamps for every word,
the words from the parse tree are matched to the words in the utterance, and
their timestamps are attached to the parse tree, creating an annotated parse
tree. These timestamps are propagated up the tree, so that not only the leafs
(words) have timestamps, but every node in the parse tree. For a node, the
start time stamp is set to the smallest start time stamp of all its child nodes

62

Extract parses Convert to XML AnnotateParses XML parses

Evaluate XPath expressions

Parse / frame type candidatesChoose parse+frameCreate frameFrame

Fill frame with data
from parse tree

Run resolvers

Run resolvers

for each slot
Slots can be resolved
in parallel

Slot values +
confidence scores

Voting

Fully resolved frame

Find action scriptExecute action script

Server
Dialog

Fusion

Dialog
Management

Figure 4.3: A UML activity diagram showing the steps from parser output to
dialog manager

and leafs. The end time stamps is set to the largest end time stamps of all its
child nodes and leafs.

DialogServer then calls its abstract method dialog () with all the anno-
tated parse trees — each parse tree is an alternate parse of the same utterance. A
default implementation DialogServerImpl is available that implements the
dialog() by sending the parses that are received to the fusion component,
and sending the resulting frames to the dialog manager. The whole process is
depicted in the UML activity diagram in Figure 4.3.

4.5.1 Fusion Resources

One task of the previously mentioned Application object is to maintain a
resource pool. This is simply a hash table of objects that are registered with the
Application under a unique String identifier. The resource pool is used to
reference application objects from the fusion and dialog manager configuration
file, or from action scripts. This works as follows:

1. A DialogMainServer subclass creates the Application object as well
as the actual application that the multimodal interface is to control.

2. For each object that needs to be registered, the DialogMainServer ob-
tains a resource handle from the Application object by calling Appli-
cation .getResource (identifier) , passing the identifier the new
resource is to have. This returns a Resource object, in which the appli-
cation object can be set with a call to setValue .

3. In the fusion configuration file, the resource identifier is used as the value
of a Resolver or ContextProvider parameter of type resource .

These steps are shown schematically in Figure 4.4.

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 63

 : DialogMainServer : Application

 : Resource

 : getResource

 : Create

 : return

 : setValue

 : return

 : return

 : getResource

 : Create

 : return

 : setValue

 : return

 : return

Figure 4.4: A UML Sequence diagram showing how resources are created

64

The Resource class extends Observable . This means that context providers
and resolvers using resources can respond to changes in their values. For ex-
ample, the Mouse context provider has a parameter of type resource that
references the Component that Mouse listens to for mouse events. If a new
value is set for this resource (through a call to setValue , Mouse is notified
and removes itself as a listener from the old Component and attaches itself to
the new one.

4.6 Fusion Manager

It is the fusion manager’s task to take the possible values for a slot from the
resolving agents and choose the one that is optimal, based on the resolving
agents’ probabilities, and a confidence value or weight for each agent. Currently
a very simple voting algorithm is employed, in which the scores for each value
are summed and the one with the highest total sum is selected. However, the
framework can accommodate any algorithm desired, and we are looking into
using fuzzy reasoning and/or Bayesian networks for this purpose, using models
trained on empirical data, to obtain better predictions of the user’s intent.

1 <frame name="delete" test ="delete/delete" >
2 <slot name="glyph" >
3 <source select ="delete/what/anaph" >
4 <resolve resolver ="mouseObjectResolver" weight ="0.5" />
5 <resolve resolver ="eyeObjectResolver" weight ="0.4" />
6 </ source >
7 <source select ="delete/what/unit" >
8 <resolve resolver ="unitResolver" weight ="0.3" />
9 </ source >

10 <source select ="delete" >
11 <resolve resolver ="dialogObjectResolver" weight ="0.1" />
12 </ source >
13 </ slot >
14 <action language ="javascript" >
15 if (frame.glyph) {
16 application.api.deleteGlyph(frame.glyph.glyph);
17 }
18 </ action >
19 </ frame >

Listing 4.4: A sample frame declaration

The fusion manager, resolving agents, and context providers are configured
through an XML file containing declarations for frames, resolvers and context
providers. An example frame declaration is shown in Listing 4.4. The declara-
tion specifies the name of the frame, an XPath test on the parse tree that must
succeed for the frame to be used, and a set of slots with XPath expressions
for each slot specifying their data source and a list of one or more resolvers
(resolving agents) for each source.

The fusion manager uses the XPath test to determine which frame to in-
stantiate. If multiple XPath expressions evaluate to ‘true’, the fusion manager
prefers the frame that was used in the previous utterance, if possible. This en-
sures that multiple-step dialogs continue as intended. If no frame is of the same

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 65

type as the previous one and there are multiple frames to choose from, feedback
can be generated asking the user to be more specific. The actual implementa-
tion of this is left up to the developer, so any message can be generated, but
output on the screen is also possible, for instance.

In the future we may defer choosing of the actual frame until after they are
filled, so as to use the same type of reasoning to choose a frame as is presently
done on the slot level. However, this may lead to a combinatorial explosion, and
since it has not yet been investigated whether doing this would be advantageous,
we use the current algorithm for now, which, for situations we have encountered,
seems to work adequately. Applications with complex dialogs, however, may
require a more sophisticated approach.

4.6.1 Resolving Contradictory Inputs

Contradiction between modalities can arise. For example, a user may say “move
that infantry squad” while pointing to or looking at an infantry army. On the
slot level, speech is treated like any modality, so the results from resolving
“infantry squad” — that is, a list of all infantry squads — will participate
in the voting process along with the result of resolving “that” using a pointing
modality and possibly the dialog history, which will also result in a list of objects
— those in the vicinity of the location the user was pointing. Ultimately, the
developer decides which modality ‘wins’ in this case by the weights that he
or she allocates to each modality. By adjusting the weights appropriately, the
developer can achieve that the pointing modality wins if the object being pointed
at is under the mouse cursor, but if the pointer is a certain threshold away from
any object, the speech modality will win instead. Since the scores from each
resolving agent are summed, the fusion manager may choose an object that is
somewhat close to the pointer and is (in our example) an infantry squad over
an object directly under the pointer.

A better approach in case of unresolvable ambiguity could be, again, to ask
the user for clarification, e.g. “That is an infantry army, not an infantry squad.
What do you want to move?”.

4.6.2 Fusion Interfaces

In the spirit of an object-oriented framework, the framework core is separated
from implementation-specific details by well-defined interfaces. These interfaces,
their purpose, definition, and standard implementations provided, if any, are
discussed in the following sections.

• Resolver

• ContextProvider

• ContextData

• LocatableObjectStore

• CoordinateTransform

66

SpellingResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

ObjectResolver

#fields : Map

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

DialogHistoryResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

CoordinateResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

AnaphorResolver

#xOffset : int

#yOffset : int

#radius : double

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

AbstractResolver

#contextProviders : Map

+AbstractResolver(session:Session) : AbstractResolver

+getContextProvider(input:String) : ContextProvider

+setContextProvider(input:String, provider:ContextProvider)

+resolve(node:org.w3c.dom.Element) : Iterator

<<interface>>

Resolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getContextProvider(input:String)

+setContextProvider(input:String, provider:ContextProvider)

+removeContextProvider(input:String)

+getInputs() : Map

NameResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

DeicticResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

Figure 4.5: The Resolver class hierarchy and related classes

Resolver

All resolving agents implement the Resolver interface. A resolving agent is
initialized by the fusion manager, which passes the initialization parameters as
read from its configuration file to the init() method.

Resolver s will usually be created by subclassing the AbstractResolver
class, which implements the Resolver interface and inherits from Abstract-
SessionObject . The latter class provides common functionality for objects
that operate within a multimodal dialog session and can be dynamically instan-
tiated. The key method of the Resolver interface is the resolve() method,
which takes a DOM Element representing a parse tree fragment and returns
an Iterator containing the agents’ resolutions along with their assessed prob-
abilities.

The standard resolvers provided by the framework are briefly described in
the following sections. For a detailed description of all their parameters and
implementation details, the reader is referred to the framework’s JavaDoc doc-
umentation, which can be found at the address listed in Appendix E.

GeometricAnaphorResolver Resolves a demonstrative pronoun to the on-
screen object it refers to as determined from the input modality. The proba-
bilities that accompany the solutions are proportional to the object’s distance
from the (x, y)-data point that is selected. This resolver does not actually look
at the data in the parse tree fragment, it just uses the time stamps.

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 67

[Number]

‘‘seven’’ ‘‘three’’

[letter]

[letter_a][letter_t]

‘‘tango’’ ‘‘alpha’’

[letter]

[letter_f]

‘‘foxtrot’’

[spelling]

Figure 4.6: An example of a spelling parse tree node

[Number]

‘‘hundred’’ ‘‘fifty’’ ‘‘five’’‘‘one’’

[Number]

‘‘six’’‘‘eighty’’‘‘two’’

[location]

"comma"

Figure 4.7: An example of a coordinate parse tree node

DeicticResolver Resolves a deictic reference to its location on the screen
as determined from the input modality. The probabilities that accompany the
solutions are determined by the frequency of the point in the (x, y) data list.
This resolver does not actually look at the data in the parse tree fragment, it
just uses the time stamps.

ObjectResolver Resolves a set of object attributes to the objects that
match those attributes. For example, when the user is to be able to select
an object using speech only with an expression such as “remove the hostile in-
fantry army”, this resolver is used to return all objects matching the attributes
named: “hostile”, “infantry”, and “army” in the example. This can also be
used to resolve a small set of anaphora and elliptical expressions, for example
“move the friendly one”, or ”remove the hostile army ... and the neutral”.

SpellingResolver Takes a parse tree fragment containing nodes that rep-
resent spelled letters and returns the word they spell out. Spelling can be very
useful when a parser or speech recognizer is used that requires an a priori vo-
cabulary or grammar and cannot learn new words while running. In this way,
out of vocabulary terms, such as names, can be spelled out. Spelling using a
specialized alphabet, such as the NATO alphabet, is also very accurate. This
resolver returns a single String , with a probability of 1.

DialogHistoryResolver Returns the first item in the dialog history for
the slot. This is the most recently used value for the slot. Slots are identified
by name, so this also looks for slots with the same name used in other frames.

CoordinateResolver Resolves a parse node representing a (2D) coordi-
nate, such as shown in Figure 4.7, to a Java Point object. One Point is
returned, with a probability of 1.

NameResolver A trivial resolver that simply returns the name of the parse
tree fragment’s top level node. Some simple transformations can be done on

68

AbstractSessionObject

#name : String

#enabled : boolean

+AbstractSessionObject(session:Session)

+init(params:Properties)

+getName() : String

+setName(name:String)

+isEnabled() : boolean

+setEnabled(enabled:boolean)

<<interface>>

ContextProvider

+getData() : ContextData

+getSourceContextProvider() : ContextProvider

+setSourceContextProvider(source:ContextProvider)

<<interface>>

SessionObject

+getName() : String

+setName(name:String)

+isEnabled() : boolean

+setEnabled(enabled:boolean)

+getParameters() : Parameter[]

+init(params:Properties)

AbstractContextProvider

+AbstractContextProvider(session:Session) : AbstractContextProvider

+getSourceContextProvider() : ContextProvider

+setSourceContextProvider(source:ContextProvider)

+getParameters() : Parameter[]

AbstractCurrentContextProvider

+AbstractCurrentContextProvider(session:Session)

EyeTracker

#bounds : Resource

#cursor : boolean

#eyeData : LinkedList

+eyeBlinked(source:EyeTrackerDevice, time:long)

+eyeDiameterUpdate(source:EyeTrackerDevice, d:int, time:long)

+eyePositionUpdate(source:EyeTrackerDevice, x:int, y:int, time:long)

+getParameters() : Parameter[]

<<interface>>

EyeTrackerDevice

+addEyeListener(listener:EyeListener)

+adjustDown()

+adjustUp()

+adjustLeft()

+adjustRight()

+calibrate()

+cameraDown()

+cameraUp()

+cameraLeft()

+cameraRight()

+next()

+output()

+reset()

+setRange(range:Dimension)

+startRecording()

+stopRecording()

+toggle()

<<interface>>

EyeListener

+eyeBlinked(source:EyeTrackerDevice, time:long)

+eyeDiameterUpdate(source:EyeTrackerDevice, d:int, time:long)

+eyePositionUpdate(source:EyeTrackerDevice, x:int, y:int, time:long)

DialogHistory

#history : LinkedList

+DialogHistory(session:Session) : DialogHistory

+add(type:String, object:Object)

+getData() : ContextData

+getParameters() : Parameter[]

Mouse

#cursor : boolean

#mouseComponent : Component

#scaleX : double

#scaleY : double

#translateX : double

#translateY : double

#window : Resource

#x : int

#y : int

+Mouse(session:Session)

+getData() : ContextData

+mouseMoved(e:MouseEvent)

+mouseDragged(e:MouseEvent)

+getParameters() : Parameter[]

BufferedContextProvider

#buffer : Buffer

#cacheData : ContextData[]

+getData() : ContextData

#getBufferedData() : ContextData[]

#source#source

Figure 4.8: The ContextProvider class hierarchy and related classes

the returned name, including stripping fixed leading and trailing strings, and
applying a translation.

ContextProvider

Classes that provide access to modalities implement the ContextProvider
interface. The key method is getData() , which returns a ContextData
instance that provides the modality’s data along with a timestamp for which
the data is valid.

ContextProviders can be stacked. By doing this, data from a sensor or
modality can be transformed in several atomic steps into something more useful.
To promote reusability, each ContextProvider should only perform a simple
operation. Figure 4.9 shows a stack of ContextProviders in which a clustering
algorithm is applied eye tracker data data; the resulting data are buffered to
create a ContextDataList of points that can be used by a resolving agent
to resolve anaphora or deictic references, by searching this list of points to find

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 69

EyeTracker

Clustering

BufferedContextProvider

PositionContextData

PositionContextData

ContextDataList (PositionContextData)

Figure 4.9: A stack of three context providers: eye tracker coordinates are
clustered and buffered in a ContextDataList

out where the user was looking when he/she uttered the anaphor or deictic
reference.

The base context providers (context providers that don’t stack on other
context providers, but generate their own data) supplied by the framework
are currently EyeTracker , Mouse, and DialogHistory . Secondary con-
text providers are currently Clustering , MouseFilter , and Buffered-
ContextProvider .

ContextData

ContextData implementations represent data from a modality. Three im-
plementations are supplied with the framework: PositionContextData ,
Entity , and ContextDataList . ContextDataList is a container for other
ContextData objects, and is returned by the BufferedContextProvider ,
which polls another context provider and caches its data for the duration of an
utterance, so that multiple resolvers can use the same data through a single
BufferedContextProvider instance. Most resolvers expect a Context-
DataList as input.

LocatableObjectStore

As shown in Figure 4.5, an LocatableObjectStore implementation plugs
unto the framework’s ObjectLocator class to enable it to query the appli-
cation for on-screen objects. This is used in the AnaphorResolver to find
objects in the neighborhood of the point on the screen the user indicated when
speaking a pronoun. It is used by the ObjectResolver to find objects match-
ing a set of attributes. The elements of the LocatableObjectStore are
instances of a concrete subclass of LocatableObject . LocatableObject
uses the “wrapper” design pattern to provide a uniform interface to access an
object’s location, size, and attributes.

70

<<interface>>

ContextData

+getStartTime() : long

+getEndTime() : long

<<interface>>

ContextDataList

+getData() : Iterator

PositionContextData

#startTime : long

#endTime : long

#x : int

#y : int

+getStartTime() : long

+getEndTime() : long

+getX() : int

+getY() : int

Entity

#startTime : long

#endTime : long

#type : String

#object : Object

+getStartTime() : long

+getEndTime() : long

+getType() : String

+getObject() : Object

ContextDataListImpl

#data : ContextData[]

#startTime : long

#endTime : long

+getData() : Iterator

+getStartTime() : long

+getEndTime() : long

Figure 4.10: The ContextData class hierarchy

CHAPTER 4. IMPLEMENTATION OF THE MULTIMODAL FRAMEWORK 71

CoordinateTransform

Rarely are window or screen coordinates used directly in the application. Rather,
these coordinates are transformed into logical coordinates in the application
workspace. This transformation can be dynamic, depending on scroll or pan
position, zoom factor, and other factors. Since resolvers need logical coordinates
to perform their resolution activities, the window or screen coordinates captured
by context providers such as Mouse and EyeTracker need to be transformed
before they can be sent to a resolver. Since this transformation is very much
application- dependent, this is captured in an interface that applications must
provide an implementation for, to be able to use context providers that generate
window or screen coordinates. This interface is CoordinateTransform .

Applications register a CoordinateTransform with the framework through
the resource manager, giving it an identifier. This same identifier is used in the
context provider configuration to determine which CoordinateTransform
to use. Since resources are dynamic, the CoordinateTransform can be
changed at runtime, changing the transformation algorithm used, although this
will rarely be necessary.

4.7 Dialog Manager

Dialog management consists of maintaining dialog context and making applica-
tion calls when frames are completed. The first task is implemented by having
the dialog manager maintain a DialogHistory object, which implements the
ContextProvider interface, so that it can provide data to resolving agents,
notably the DialogHistoryResolver .

Application calls are made by the dialog manager through JavaScript. When
the dialog manager receives a frame, it retrieves the associated script and exe-
cutes it through the Bean Scripting Framework [2], a framework that provides
scripting language support to Java applications. JavaScript provides a flexi-
ble way to interface between the dialog manager and the application. Since
JavaScript is interpreted code, all that is needed to change the behavior of the
multimodal interface is to modify the script and re-run the application; no code
needs to be compiled.

4.7.1 Dialog History

where (500, 950)
what 〈object-015〉
what 〈object-012〉
affiliation “friendly”
unittype “infantry”
unitsize “squad”
where (300, 950)

Figure 4.11: An example dia-
log history

The Dialog Manager also updates the dialog his-
tory. Each slot in the frame is put in the dialog
history. Figure 4.11 shows an example dialog
history as it might look after a few commands.
Note that the history is capped to seven entries,
as it is very unlikely the user will want to ref-
erence anything that was mentioned longer ago
than that.

The dialog history allows for simple refer-
ences to things previously mentioned in the dia-
log, and enables the fusion manager to inherit
slots for elliptical expressions. For example,

“move the infantry army there ... delete it” (anaphor referring to “the infantry

72

NaturalLanguageGenerator

#templates : javax.xml.transform.Templates

#transformer : javax.xml.transform.Transformer

+NaturalLanguageGenerator(xsl:java.io.InputStream) : NaturalLanguageGenerator

+generate(xml:String)

NaturalLanguageGenerationServer

+NaturalLanguageGenerationServer(mainServer:NaturalLanguageGenerationMainServer, socket:java.net.Socket) : NaturalLanguageGenerationServer

+setGenerator(nlg:NaturalLanguageGenerator)

+serverOpSpeak(frame:GFrame) : GFrame

NaturalLanguageGenerationMainServer

+NaturalLanguageGenerationMainServer(nlg:NaturalLanguageGenerator) : NaturalLanguageGenerationMainServer

Figure 4.12: A UML class diagram of the natural language generation component

army” in the previous sentence). Or “drive forward for five yards ... three more
yards” (elliptical expression which expands to “drive forward for three more
yards”).

A limitation of the dialog manager is that fully resolved slots are stored. So
if the last example in the previous sentence were said as “drive forward for five
yards ... three more”, it would not have the intended result. The fact that the
user said “yards” in the previous sentence is not used, as only the canonical
distance value (in millimeters) is stored, and not what the user originally said
(“five yards”). The result would be that the robot would drive forward for three
millimeters, obviously not what was intended.

4.8 Natural Language Generation

The Natural Language generation classes are shown in Figure 4.12. The Na-
turalLanguageGenerator has a single method generate () that is called
by the NaturalLanguageGenerationServer in response to an incoming
speak frame. The frame is expected to have the following form:

speak
:xml The XML to transform to text

:lang The language to generate text in (an ISO language code)

After generation, the following frame is output:

speak
:xml The XML that was transformed to natural language

:lang The language that text was generated in
:text The text that was generated

This frame is sent to the hub which will generally route it to a speech syn-
thesizer to speak the generated text.

Chapter 5

Building the Robot Control
Application

The goal set in Chapter 1 was to create a multimodal interface to control a robot.
The previous two chapters have described a generic multimodal framework. This
chapter will show how this framework was used to quickly create an interface
that enables the robot to be control using voice, mouse, gaze, and possibly other
modalities.

5.1 The Robot

Figure 5.1: The Pioneer 2-AT
all-terrain robot (pictured here
with the gripper accessory, which
CAIP’s model does not have)

The robot used was a Pioneer 2-AT robot
manufactured by ActivMedia Robotics [1].
The model owned by CAIP is powered by
three batteries, has a mounted pan–tilt–
zoom camera, an onboard PC with a 400
MHz processor, a wireless 802.11b card for
wireless networking, and runs GNU/Linux.

5.2 Design

Software for controlling the robot us-
ing a traditional GUI interface was al-
ready in place when I started this project.
CAIP’s Flatscape software was used for this.
Flatscape is a collaborative mission plan-
ning tool developed by CAIP for the U.S.
military. It features a map overlay on the
screen on which military units can be placed;
units are represented by icons with different
color, size, and decorations depending on
affiliation (hostile, friendly, neutral, or un-
known), size (anywhere from unit to army group), and other properties (whether
the unit is tracked, airborne, etc.) — all this is described in [57]. Different situ-

73

74

Figure 5.2: Flatscape with panels for monitoring and controlling the robot

ations can be set up on a time line and a mission can thus be completely planned
ahead. Flatscape’s GUI is very configurable, and new panels and toolbars can
easily be added by creating a new subclass of the panel or toolbar superclass
and including it in Flatscape’s configuration file.

Flatscape runs on DISCIPLE [39], CAIP’s collaborative middleware, which
means that multiple people can participate in the mission planning, using dif-
ferent PC’s or PDA’s. The changes one person makes are reflected on the screen
of the other participants. This is very useful as mission planning is seldom done
alone.

Robot control is provided as two new panels on the Flatscape screen; one
panel consists of four arrow buttons for moving the robot forward and back and
rotating it left and right, as well as two sliders for setting travelling and rotation
speed. The other panel shows camera images as recorded by the pan–tilt–zoom
camera mounted on the robot, and has three sliders to control pan (horizontal
camera movement), tilt (vertical camera movement), and zoom. Additionally,
there is a new icon type for robots on the map, and a properties panel to edit a
robot’s properties (like what mode it is in, and whether images from the camera

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 75

Repository

DI
SC

IP
LE

(c
lie

nt
 s

id
e)

Client
Application

Manifold

Repository

Client
Application

Manifold

Repository

DISCIPLE
(server side)

DISCIPLE
(client side)

Client Client

Server

Figure 5.3: Overview of the DISCIPLE system architecture (from [39])

should be shown on the screen). All this can be seen in Figure 5.2.

5.2.1 The Robot Model

The robot model which contains every aspect of the robot’s state is stored
on the DISCIPLE server in a repository. The model is a DOM (Document
Object Model) tree. Every connected client has a copy of the model in its own
repository, which is updated by node and property change events sent by the
DISCIPLE server in response to changes made by the clients. This is depicted
in Figure 5.3.

The robot model’s structure is shown in Table 5.1. Fields that I added
are marked with an asterisk (*). targetLocation and locationReached were
added to be able to move the robot to any arbitrary location on the map, by
pointing, for instance. With the new distance and angle fields, the robot can
be told to move or rotate a certain distance, where previously seperate “move”
and a “stop” commands were needed to achieve the same effect. This was born
partly out of necessity. As the speech recognizer can exhibit delays of up to a
second, a “stop” command would sometimes not reach the robot until a second
after it was spoken, long after the robot has passed the point at which it was to
stop, causing to even run into walls at times. By telling the robot “Move back
30 centimeters”, for example, this problem is alleviated since no corresponding
“stop” command is needed; the robot will simply stop after having moved the
requested distance.

Fields that Flatscape uses are marked in Table 5.1 with a dagger (†). The
name property is used by Flatscape as a label in the “Overlays” panel, which
shows a tree view of all objects on the map. Each icon, or “glyph”, in Flatscape
terminology, has a transform property which contains position, orientation,
and scaling information for three dimensions. Flatscape uses this to draw the
glyph in the correct location on the screen, and with the correct rotation and
scaling applied. unittype, affiliation, and modifiers are the three properties
of all “unit” glyphs on the map, which are military units. These attributes
are used to determine which icon to use (there is a seperate icon for each legal
combination of these three properties).

76

Table 5.1: The robot data model; the last two columns indicate who “controls” a
property. A check in the F column means the Flatscape client (or another client)
sets the property to request a change on the robot. A check in the R column
indicates that the robot will update that property to synchronize the model with
the robot’s state

property name data type description F R

name † String The robot’s name (initially set on the robot side)
√

forward boolean Whether the robot is to move forward
√

back boolean Whether the robot is to move back
√

right boolean Whether the robot is to turn right
√

left boolean Whether the robot is to turn left
√

transspeed int Desired travelling speed, in in millimeters per sec-
ond (mm/s)

√

rotspeed int Desired rotation speed
√

compassdata String Bearings in degrees as indicated by the compass
(or "0" if there is no compass)

√

poseInterval int Frequency with which updated location and bear-
ings are sent

√

poseDistance int Minimum distance to move before updated loca-
tion and bearings are sent

√

stream boolean Whether to accept and display streaming video
(only used by the Flatscape client; the robot’s
video broadcasting is done outside of DISCIPLE)

√

controlstate boolean Whether the robot is in direct control mode
(true) or autonomous mode (false)

√

unittype † String The robot’s unit type. Initially set to "XXX" on
the robot side

√

affiliation † String The robot’s affiliation. Initially set to "F"
(friendly) on the robot side

√

modifiers † String The robot’s modifiers. Initially set to ""
√

transform † double[] The robot’s position and bearings encoded in a
nine-dimensional double array

√

battery double Battery voltage.
√

batteryInterval int Frequency with which battery voltage updates are
sent

√

pan int Camera pan in degrees; 0 is straight ahead (in the
direction the robot is facing), negative values pan
left, positive pan right

√

tilt int Camera tilt in degrees; 0 is level, negative values
tilt down, positive pan up

√

zoom int Camera zoom.
√

distance ∗ int The distance the robot is to move, in millimeters.
Positive values will move the robot forward, neg-
ative values will move it backward. Is set to zero
when the desired distance has been travelled

√

angle ∗ int The angle the robot is to rotate, in degrees. Posi-
tive values will rotate the robot left, negative val-
ues right. Is set to 0 when the desired angle has
been reached

√

maxtransspeed ∗ int The maximum travelling speed, in in millimeters
per second. This is used when the robot moves
autonomously It will never go faster than this

√

maxrotspeed ∗ int The maximum rotation speed. This is used when
the robot moves autonomously. It will never ro-
tate faster than this

√

targetLocation ∗ int[] A two-dimensional array (x,y) with a point the
robot is to move to

√

locationReached ∗ boolean Set to false when targetLocation is set, and true
when the robot has reached the desired location,
or determined it is unreachable

√ √

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 77

Robot
Interface

Manifold
DISCIPLE

Robot Controller
C++Java JN

I

ARIA

Saphira

P2OS

Manifold

DISCIPLE

DISCIPLE server

Flatscape

Client Robot

Server
Figure 5.4: Model of the various modules used in the robot system and how they
interact

A model of the system is shown in Figure 5.4. The system clearly consists
of two distinct parts: the Flatscape client that is the user’s interface to the
robot’s functions, as described in the previous paragraph, and the robot-side
client that actually communicates with the robot. Both parts communicate
over DISCIPLE’s collaboration bus, emobodied in the DISCIPLE server.

On the robot side, a robot controller, written partly in Java, receives prop-
erty changes made in the Flatscape client over DISCIPLE’s collaboration bus
(the collaboration bus is an abstraction of the network connection between a
DISCIPLE client and the DISCIPLE server). Based on the property change, it
will have to make function calls in the robot’s control software to achieve that
the property change is reflected in the robot’s state.

The robot hardware is directly controlled by its onboard operating system,
P2OS. However, this operating system can be controlled from the onboard PC
over a serial link using a high-level C++ interface called Aria. Aria provides
commands for moving and rotating the robot, both directly as well as through
more abstract “behaviors”. On top of Aria, Saphira provides additional intelli-
gence for gradient path planning and localization, given an a priori map.

Aria and Saphira have C++ interfaces. However, DISCIPLE and the part of
the robot controller that communicates with DISCIPLE were written in Java.
Therefore, JNI (Java Native Interface [74]) is used to be able to call Aria and
Saphira functions from the Java part of the Robot Controller. Part of the robot
controller is written in C++ and provides access to Aria and Saphira’s function-
ality. The JNI layer makes these functions available on the Java side. Most of
this was already implemented previously [27], however I did have to make some
additions and improvements to accomodate the multimodal interface. This will
be described later on.

78

5.2.2 Design of the Multimodal Interface

Adding a multimodal interface to the application described in the previous sec-
tion required doing the following things:

1. Analyzing which commands the interface should recognize and perform.

2. Writing a parser grammar for those commands.

3. Developing new resolving agents specific to this application, to be used by
the fusion manager.

4. Writing an API class that provides an interface to Flatscape and DISCI-
PLE, with methods that can be called from the action scripts in the fusion
configuration file.

5. Configuring the fusion manager by defining which frames are instantiated
as a result of parser output, and which modalities are used to resolve each
frame’s slots.

6. Making changes to the robot-side Java and C++ code to add new features.

The new design of the Flatscape client with the multimodal interface is
shown in Figure 5.5.

5.2.3 Robot Commands

The initial assessment of multimodal commands was based on what what possi-
ble using the GUI interface. This resulted in the following command categories:

• Movement: Moving forward and backward, rotating left and right,
stopping.

• Camera: Panning, tilting, and zooming the camera. Toggling reception
and display of streaming video.

• Missions: Setting mission name, home base, resupply point, and type.
Adding points to visit during missions. Starting, pausing and aborting
missions.

M
u

lt
im

o
d

al

F
ra

m
ew

o
rk

Robot
Interface

A
P

I

grammar

config−
uration

Flatscape

Manifold

DISCIPLE

Figure 5.5: Design of the multimodal robot client

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 79

• Flatscape commands: Logging in, loading a map, positioning and
moving units.

Additional commands were added that were either useful or very natural in
a multimodal interface:

• Moving a predefined distance

• Rotating a predefined distance

• Moving to a specific point on the map

• Returning to the home base

5.2.4 Writing a Grammar

Writing a grammar requires determining in which manner commands can be
articulated by a user. Since we’re using a robust parser, including just the
salient phrases — that is, the words or phrases that actually contain relevant
information — in the grammar should suffice. For instance, there’s a myriad of
ways to tell the robot to move forward, e.g.

“robot, please move forward”

“drive forward”

“move in the forward direction”

Obviously the most important part of these sentences is the word “forward”.
Also, words like “move”, “drive”, or “go” can indicate the user wishes the
robot to move, as opposed to looking forward, or shooting forward. Additional
information can be the speed the robot is to move at, the distance it is to move
for, or a specific point on the map it is to move towards. The frame definition
of move contains these — and just these — properties, or slots, and is shown
in Listing 5.1.

FRAME: move
NETS:

[move]
[direction]
[distance]
[where]
[speed]

;

Listing 5.1: The frame definition of the move frame

Other frames were defined in a similar fashion for the following frames:

• rotate — For rotating the robot

• stop — For stopping the robot

• control — For switching between direct control to autonomous movement

80

[Number]

‘‘twenty’’ ‘‘three’’

[distance]

[d_unit]

[du_cm]

‘‘centimeters’’

Figure 5.6: An example of a distance parse tree node

• camera pan — For panning the mounted camera

• camera tilt — For tilting the mounted camera

• camera zoom — For zooming in and out with the mounted camera

• camera visual — For setting whether camera images are to be displayed

• mission — For setting mission properties (name, type, home base, resup-
ply point)

• mission task — For adding a task to a mission

• mission control — For starting, pausing, continuing and aborting a mis-
sion

• login — For logging in and out of the DISCIPLE server

• connect — For opening a map and establishing a connection with the
robot

• create — For creating a new military unit on the screen

• delete — For deleting an object on the screen

• identify — For identifying an object on the screen

• name — For labelling a location on the screen, so that it can later be
referred to, e.g. “call this tango–five ... move to tango–five”

A complete list of all frames and their grammars is given in Appendix C.

5.2.5 Developing New Resolving Agents

The Robot domain called for some extra resolving agents. I added some of these
to the framework because they seemed sufficiently general to be applicable to
other domains as well. Others are specific to the robot domain and are kept
seperate from the framework.

The new resolvers are discussed in this section.

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 81

Number

#instances : Map

+getInstance(language:String) : Number

+valueOf(number:long) : String

+parseNumber(number:String) : long

Number_en

+valueOf(number:long) : String

+parseNumber(number:String) : long

Figure 5.7: The Number abstract class

Conversion

−Conversion() : Conversion

+convertDistance(value:double, from:String, to:String) : double

+convertTime(value:double, from:String, to:String) : double

#convert(value:double, from:String, to:String, table:Object[]) : double

Figure 5.8: The Conversion class

DistanceResolver

There are many ways to indicate a distance in natural language. Humans often
use fuzzy terms, such as “a little bit”, ”a lot”, etc. For more accurate distance
measurements, we can use a range of distance units, such as meters, yards,
inches, etc. The DistanceResolver was built to derive a canonical distance
representation from a parse tree node. An example distance parse tree node
is shown in Figure 5.6.

To interpret the Number part of the parse tree, I designed an abstract class
Number which uses the “Multiton” pattern. It has a static getInstance()
method that will return a concrete, language-specific implementation, and two
abstract methods to convert a String into a number and vice-versa. Each
concrete implementation implements these two methods. A UML diagram is
shown in Figure 5.7. By putting this in a seperate, abstract class, the framework
maintains its design goal of language-independence, as stated in Section 3.3.1.

Given the distance unit in the parse tree, the DistanceResolver uses a
utility class Conversion (shown in Figure 5.8) to convert the number from
that unit to the canonical unit (the default is millimeters).

SpeedResolver

SpeedResolver works very similarly to the DistanceResolver described

82

[Number]

‘‘hundred’’ ‘‘fifty’’ ‘‘five’’‘‘one’’

[d_unit]

[du_in]

‘‘inches’’

[t_unit]

[tu_min]

‘‘minute’’

[speed]

‘‘per’’

Figure 5.9: An example of a speed parse tree node

in the previous ection, but parses speed values instead of distance values. This
involves two conversions, since speed is expressed in a distance unit per a time
unit, which must be converted to a canonical unit (millimeters per second is the
default). The Conversion class shown in Figure 5.8 is used for this as well.

A sample speed node is shown in Figure 5.9.
Besides converting exact natural language speed indications to millime-

ter per second values, SpeedResolver can also be configured to recognize
some constant terms and assign values to them. In the robot system, the
SpeedResolver recognizes “slow”, “moderately fast”, ”fast”, and ”as fast
as you can” and assigns corresponding values.

5.2.6 Writing an API Class

The action scripts in the fusion/dialog configuration file have access to the
application through a single object, of which a reference is stored in the ap-
plication.api variable that all action scripts have access to. As shown in
Figure 5.10, the API class has references to application objects and provides
getter and setter methods that operate on these objects. This greatly simplifies
the action script since in most cases all they need to do is make a single method
call on the API object.

5.2.7 Writing the Fusion Manager Configuration File

For all the frame types described in Section 5.2.4, declarations were written for
the fusion and dialog managers. Some frames, such as login and stop were
trivial as they are always speech-only and unambiguous. Other frames, such
as move are more complicated since they can contain anaphora, references to
other modalities, etc.

Context providers (modalities) were defined first. The only non-speech
modalities are mouse and gaze, so the configuration file contains two decla-
rations, shown in Listing 5.2.

A total of twenty-four resolvers are defined. These are summarized in Table
5.2. The actual declarations are in Appendix D, so I just summarize them here
briefly

Some resolvers have very trivial functions. homeResolver, for instance
is used to resolve the word “home”, or “home base” to the actual home base
coordinate as set in the application. Others are more complicated, and use
input from another modality to do their work. The resolvers can be categorized
based on their task and complexity:

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 83

MissionController

Flatscape

disciple.core.ElementListener
API

flatscape

Application

missionController

application.apiAction
Script

getActiveRobot: Element

robot: Element
robots: List

API(...): API

setActiveRobot(...)
logon()
logoff()
newDocument(): boolean
openDocument(...): boolean
getController(): Controller
getControlState(): boolean
setControlState(...)
getName(): String
setName(...)
getForward(): boolean
setForward(...)
getBack(): boolean
setBack(...)
getLeft(): boolean
setLeft(...)
getRight(): boolean
setRight(...)
getLeft(): boolean
getTransSpeed(): int
setTransSpeed(...)
getRotSpeed(): int
setRotSpeed(...)
getTilt(): int
setTilt(...)

(. . .)

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

#
#

Figure 5.10: Diagram of the robot API class and related classes

name class context input
eyeObjectResolver AnaphorResolver eyeTracker
mouseObjectResolver AnaphorResolver mouse
eyeLocationResolver DeicticResolver eyeTracker
mouseLocationResolver DeicticResolver mouse
coordinateResolver CoordinateResolver
dialogObjectResolver DialogContextResolver DIALOG
distanceResolver DistanceResolver
panAmountResolver DistanceResolver
tiltAmountResolver DistanceResolver
zoomAmountResolver DistanceResolver
speedResolver SpeedResolver
rotationSpeedResolver SpeedResolver
spellingResolver SpellingResolver
unittypeResolver NameResolver
unitsizeResolver NameResolver
affiliationResolver NameResolver
unitResolver ObjectResolver
unitsizeHistoryResolver DialogContextResolver DIALOG
unittypeHistoryResolver DialogContextResolver DIALOG
affiliationHistoryResolver DialogContextResolver DIALOG
missionTypeResolver NameResolver
taskTypeResolver NameResolver
homeResolver HomeResolver
namedLocationResolver LocationResolver

Table 5.2: The resolver instances used in the robot interface

84

1 <contextproviders >
2 <contextprovider id ="eyeTracker"
3 class ="edu.rutgers.caip.communicator.fusion.BufferedContextProvider" >
4 <param name="poll-interval" value ="0" />
5 <param name="buffer-size" value ="500" />
6 <contextprovider id ="eyeClustering"
7 class ="edu.rutgers.caip.communicator.modalities.Clustering" >
8 <contextprovider id ="eyeTrackerSource"
9 class ="edu.rutgers.caip.communicator.modalities.EyeTracker" >

10 <param name="in-port" value ="COM1" />
11 <param name="out-port" value ="COM2" />
12 <param name="cursor" value ="on" />
13 <param name="emulate" value ="off" />
14 <param name="bounds" value ="bounds" />
15 </ contextprovider >
16 </ contextprovider >
17 </ contextprovider >
18

19 <contextprovider id ="mouse"
20 class ="edu.rutgers.caip.communicator.fusion.BufferedContextProvider" >
21 <param name="poll-interval" value ="100" />
22 <param name="buffer-size" value ="50" />
23 <contextprovider id ="mouseFilter"
24 class ="edu.rutgers.caip.communicator.modalities.MouseFilter" >
25 <param name="inactive-timeout" value ="1000" />
26 <param name="poll-interval" value ="100" />
27 <contextprovider id ="mouseSource"
28 class ="edu.rutgers.caip.communicator.modalities.Mouse" >
29 <param name="window" value ="canvas" />
30 <param name="cursor" value ="on" />
31 <param name="transform" value ="flatscape-transform" />
32 </ contextprovider >
33 </ contextprovider >
34 </ contextprovider >
35 </ contextproviders >

Listing 5.2: The contextproviders section from the fusion configuration file for
the robot control application

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 85

• Simple evaluation — homeResolver , coordinateResolver , mis-
sionTypeResolver , taskTypeResolver , unittypeResolver , u-
nitsizeResolver , affiliationResolver

These resolvers all return a single result, as they perform a trivial evalu-
ation or mapping. homeResolver returns a Point that it obtains from
the application, coordinateResolver reads the x and y coordinates
from a Point , the other resolvers listed merely return the name of the
parse node that the fusion manager passes to it (as directed by the frame
declaration that uses the resolver).

• Evaluation/conversion — distanceResolver , panAmountResol-
ver , tiltAmountResolver , zoomAmountResolver , speedResol-
ver , rotationSpeedResolver , spellingResolver

These are all instances of DistanceResolver or SpeedResolver ,
both of which were described in Section 5.2.5. They convert a parse tree
node containing a distance or speed value into an integer value repre-
senting the speed or distance in the desired unit (which, for the robot, is
millimeters for distance and millimeters per second for speed). The reason
that there are separate instances of this resolver for pan, tilt, and zoom
values, is that the values of the symbolic terms are different. For panning,
“a little” means 30 degrees; for tilting, it means 5 degrees (because the
total tilt range is only 30 degrees).

• Ellipsis resolution — unitResolver

Resolves phrases like “the hostile one”, or “the squad”, using a partial
description of a unit to find the matching units.

• Dialog context — unittypeHistoryResolver , unitsizeHisto-
ryResolver , affiliationHistoryResolver , dialogObjectRe-
solver

These take data from the dialog history to have the current frame “inherit
them”. For example, if the user says “create a hostile infantry army
here”, followed by “and a friendly one there”, these resolvers achieve that
“infantry” and “army” are inherited as unit type and size, respectively.

• Multimodal resolution — eyeObjectResolver , mouseObjectRe-
solver , eyeLocationResolver , mouseLocationResolver

Used in multimodal commands. The object resolvers resolve pronouns to
the geometric objects on the screen that the user was looking at while
uttering the pronoun. The location resolvers do the same, but for points
onthe screen instead of objects.

5.2.8 Modifying Robot-Side Code

New Commands

Since some new commands and one new mission type were added to the client
interface, the code on the robot needed to be extended as well. Several classes
need to be changed to implement a new command. A UML Sequence diagram
for a typical command is shown in Figure 5.11. In RobotCentral , a jump is

86

 : disciple.core.Repository : RobotCBus : RobotCentral

 : robotChange("distance")

 : nodeValueSet("distance", ...)

 : setDistance(distance)

 : Robot

 : move(distance)

 : ArRobot

 : move(distance)

 : return

 : return

 : return

 : return

 : return

 : robotChange("distance")

 : nodeValueSet("distance", ...)

 : setDistance(distance)

 : move(distance)

 : move(distance)

 : return

 : return

 : return

 : return

 : return

Figure 5.11: A UML Sequence Diagram for a setDistance command

made from Java code to C code when the setDistance() method is called.
On the C side, the native implementation uses the Java object pointer to find
the corresponding C object pointer for the Robot class, and then the move()
method is called on that instance.

The three new commands that were added are setDistance , setAngle ,
and setTargetLocation . Besides mapping these commands to method calls
on Aria’s ArRobot class, I also needed to add three so-called “user tasks”.
These are wrappers to functions that are called periodically by the robot soft-
ware. I use them to monitor whether the robot has reached its desired dis-
tance, angle, or target location. A callback is then made to the appropriate
Java method — moveDone() , rotationDone () , or locationReached ()
or locationFailed () , depending on whether the robot could find a path to
the requested target location. The robot model is then updated to reflect this.

New Mission Type

A new mission type — PatrolMission — was also added. The main reason
was to support experiments that others at CAIP were doing with wireless net-
working, and for which the robot could be used (since it has a wireless link).
But it also provided a nice proof of concept: that a new mission type can be
added fairly easily. The mission was based on the existing ReconMission , but
instead of returning home after having visited the desired reconnaissance points,
PatrolMission keeps circling between all the points, like a patrol guard. The
multimodal interface was also changed to recognize this new mission type — a
simple modification.

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 87

JNI Troubles

Programming JNI is not simple, as I found out. Because part of the code is in
C, using JNI means leaving the safe environment of Java where every pointer
reference and every array bound is checked. A bug in the C code could have
very strange results; sometimes the robot client would stop listening, or show
confusing and undeterministic behavior. This usually turned out to be a logic
error in the C code, such as forgetting to dereference a pointer, or using a pointer
that was no longer valid at that point. Because the code is called by Java it
is even harder to debug than a normal C program. However, I eventually got
everything running without problems.

88

Figure 5.12: The map used by the robot for localization and path planning

5.2.9 Miscellaneous Tasks

Some tasks needed to be done that did not directly attribute to the project
goals, but were nevertheless necessary. These are described in this section.

Mapping

The person who worked on this project before I did, set up a map of the floor
we work on containing the hallways and his office. The robot uses this map (or
“world”) for two purposes. Using “Markov Localization”, the robot software can
more accurately estimate the robot’s location. Without a map, and without the
help of a GPS or similar device, the robot can only determine the actual distance
it travels and rotates through dead reckoning: deriving it from the rotation and
diameter of the wheels. Due to slippage of the, wheels, the cumulative error
can quickly become very large. The localization algorithm approximates where
the robot is, based on its last position and the current sonar and/or laser range
finder readings.

The map is also used for path planning. Using the world map, the path
planning algorithm sets up a gradient map that tells the robot in which direction
to travel from any point on the map to get closer to the desired destination.

Since my office was not on the map, I had to add it. Luckily, all offices
at CAIP have more or less the same size, so I could use the measurements of
the office already on the map. The localization algorithm is fairly robust, so
it works even if the map is not 100% accurate. Obstacle avoidance behavior
ensures that the robot will not run into walls or other obstacles when the robot
is following a planned path, even if these obstacles are not on the map, or the
walls are not in exactly the same place in reality as they are on the map.

Flatscape uses a map for display purposes, but since it is in a different

CHAPTER 5. BUILDING THE ROBOT CONTROL APPLICATION 89

format, it is maintained separately from the robot’s world map, so I needed to
modify it as well. For some reason unknown to me, the scale of the map was
also off by a factor 10. For this reason, the map needed to be zoomed out by
a factor of 10, and the robot’s icon then appeared very small. I wrote a small
program to scale the map down, and changed the code so that the reported
position of the robot was also divided by 10.

DISCIPLE V3

The original robot control software was written for DISCIPLE version 2. When I
started on this project, version 3 had been developed. The major change is that
XML is now used as the native data representation, instead of the “UForms”
that were previously used. UForms were flat structures with a unique ID and
a key-value list. XML makes hierarchial data representation much easier since
XML was designed to represent structured data. Formerly, UForms would have
to been linked based on UForm ID, much like in relational databases, to create
hierarchy.

Where 1:n or n:m relations are still needed — for example, a single mis-
sion can involve several robots— XML nodes are referenced by XPath, such as
/flatscape/time/overlay[2]/robot .

Video Transmission

Video is transmitted from the robot to the Flatscape client using RTP (Real-
time Transport Protocol [66]). Vic [43] is used to compress and send the RTP
stream from the robot. The Java Media Framework [48] is used to receive,
decode, and display the video in a Flatscape panel on the client side. The video
stream is multicasted, so multiple clients can receive the video stream at once.

Sending and receiving of video was implemented by two previous students
at CAIP. However, I found all this in a non-working state. I had to install a
driver for the robot’s camera frame grabber, so that video could be transmitted.
However, this proved to be unstable; the robot’s onboard PC would sometimes
freeze when Vic was started up. It was hard to find the cause of this since it did
not happen consistently, i.e. sometimes it just worked. I finally found out that
a new version of the frame grabber driver bttv was available. When I installed
that, it worked flawlessly.

90

Chapter 6

Evaluation

In this chapter I will look back at the project goals stated in Chapter 1 and
evaluate how they were realized. Reusability and performance measurements
are also given.

6.1 Evaluation of Project Approach

The goal was to create a multimodal interface to control a wheeled robotic
vehicle, extending the existing GUI interface that was already in place. One
goal was to investigate existing dialog systems and infrastructures to find out if
existing technology could be used. For this I did an extensive literature study,
which provided me with a lot of information on (multimodal) conversational
interfaces in general, as well as a view of what systems are available and what
the state of the art is. The Communicator architecture appeared to be a good
basis to work on, as several dialog systems used it and some components that
worked with in Communicator infrastructure were freely available, especially a
robust natural language parser, Phoenix.

The literature showed a great lack of generic multimodal dialog systems.
Some components, such as Phoenix, were implemented in a reusable manner,
but the majority of the systems contain large amounts of code in which appli-
cation details are hard-coded, so that this code cannot be easily used in other
systems. Since I did not want to make this same mistake, I decided to begin
by developing a multimodal framework, and build the interface for the robot
control application on that. This way the design would be modular and exten-
sible, as well as possibly providing a starting point for implementation of future
multimodal interfaces.

Based on existing conversational interface models, I set up a model for a mul-
timodal interface, designing a fusion method that works with various modalities
and types of data, so that it would be easy to add new commands and modalities
to the system.

I then built the conversational interface for the robot control application on
CAIP’s Flatscape software using this framework. An initial interface was made
in only a few days, which shows that once the framework was in place, rapid
development of this interface was possible. The initial interface was speech-
only. I later extended this so that mouse and gaze could be used for multimodal

91

92

interaction, so that instead of having to say “go to (330, 900)” or “go forward for
twenty feet”, a user could just say “go there”, and point to the desired location
on the screen. Pointing was enabled by use of a touch screen which emulates a
mouse. So having implemented the mouse modality, I got pointing for free.

The result is a prototype multimodal interface that can be used to directly
control the robot using speech, keyboard, mouse, pointing, and gaze (although
the latter has not been thoroughly tested). The robot can be rotated and moved,
the onboard camera can be panned, tilted, and told to zoom in and out. Video
images can be displayed on screen with a speech command. Also, autonomous
movement is possible by creating missions ahead of time for which points on
the map are set (again, using any combination of modalities) that the robot will
then go to without user intervention.

6.2 Reusability

Table 6.1 shows the implementation effort for the multimodal interface for the
robot control application expressed in kilobytes of code. As can be seen in the
table, 92% of the code is framework code. This indicates that the framework is
a good generalization for this type of application and that much effort is saved
by using the framework.

Table 6.1: Implementation effort for the situation map tool

Application-specific code Size
Grammar 28K
New Java code 46K
Fusion and Dialog Manager configuration
(XML + Javascript)

33K

Natural language generation configuration 6K
Framework code Size
Framework code 1152K
Parser code 148K

Code re-use 92%

6.3 Response Times

Figure 6.1 shows response times for five different types of speech acts, both
speech-only and multimodal. Times were measured on a Pentium 4, 1.7 GHz
with 512MB of RAM. As can be seen in the figure, speech recognizer delays can
be significant; the reason for this is that present-day speech recognizers wait for
a certain period of silence before assuming the user has finished speaking. These
delays, due to their nature, can not be reduced by acquiring faster hardware.

CHAPTER 6. EVALUATION 93

plain speech

misc − multimodal

move to − multimodal

move to − speech only

robot movement − speech only

161ms1181ms521ms 949ms

786ms 1283ms 115ms164ms

1810ms 1142ms 150ms170ms

649ms 1222ms 225ms 134ms

1432ms 1432ms 415ms 144ms

dialog managementspeech act speech processing fusion

Figure 6.1: Response times for five types of speech acts

6.4 Conclusions

Looking back at the initial design goals from Chapter 1, we can state that most
of these have been reached:

• Use of existing systems: Communicator is used as a common infras-
tructure. Phoenix is used as a parser within this infrastructure. IBM
ViaVoice is used for speech recognition and synthesis. Usable implemen-
tations for other components were not found.

• Reusability: The multimodal framework can be used to build other, sim-
ilar systems. For this particular interface, approximately 92% of the code
was framework code. A new interface with similar interaction paradigm
could therefore be very quickly implemented.

• Efficiency: As the measurements in the previous section show, response
times vary from approximately 1500 milliseconds to a little over two sec-
onds. However, most of this is from the speech recognizer waiting for a
certain amount of silence after the user has finished speaking, to set the
speech boundaries. This delay is inevitable with current speech recogni-
tion technology. The other system components have fast response times,
as can be witnessed when keyboard input is used instead of speech.

• Modularity: The system is very modular. It is component-based with
components communicating through the Hub using a well-defined inter-
face. The new components were also written with modularity in mind: it
is easy to add new modalities, resolution methods, command types, etc.

• Interface with previously developed robot control software: The
existing robot code was used as much as possible. Not all the code was
usable because a lot of it was not documented, and it wasn’t clear where
the latest version of the code was located. The current system runs on
Flatscape and DISCIPLE, and uses the part of the robot control system
I was able to get working, which provides streaming video, direct control,
and simple mission planning.

6.5 Future Work

The interface prototype works well, but improvements can be made. Several
assumptions were made about fusion and dialog management. One was that

94

the system was language-centric. The framework could be changed to support
the use of other modalities without speech or keyboard input to give a command.
A use for this would be to do handwriting or gesture recognition for commands,
as in [18].

Fusion is currently done on the slot level. While this works for the type of
interaction in this prototype, supporting fusion on a higher, frame level could
be better, since there is often not only ambiguity concerning the values of the
slots, but also on the frame to instantiate. Currently this is done in a “crisp”
manner, but in analogy to the resolving agents, which return probability scores
for the possibly slot values, we could provide probabilities for which frame to
instantiate, based on the previous frame, the application state, what the user
said, modality inputs, etc.

Sentence structure is currently not taken into account for fusion, even though
it could provide valuable hints to better assess a user’s intent. This would re-
quire a syntactic parse as well as a semantic parse. A more accurate anaphor
and ellipsis resolution could be done than is currently possible. However, imple-
menting this in an application-independent manner could prove to be difficult.

The voting mechanism used in the fusion manager could be replaced by a
more sophisticated approach, if that would prove to give better results. Ideas
on using Bayesian networks have been discussed within CAIP, but designs have
only been presented for low-level fusion. It is unclear whether and how belief
networks could be used for higher level semantic fusion as well.

Dialog management is currently very straightforward. Support for nested
dialogs is currently absent. Also, as explained in Section 4.7.1, a very simple
dialog history of fully resolved slots is stored, which will not be sufficient for
some dialogs. Straightforward dialogs in which the intent is clear from the start
work best. More advanced dialog management could be implemented for a more
natural interface.

Speech recognition performance quickly deteriorates in the presence of noise.
Fusion is currently not really used to solve this, partly due to the fact the the
interface is speech-centric. If a speech act is misrecognized, fusion is useless, as
there is nothing to resolve in that case. Speech recognition could be improved by
combining it with lip-reading. Data from other modalities could be used more
actively to pick a suitable alternative from the N-best list (if all alternatives had
time stamps, which they do not at this time).

The current interface does not have multimodal output, because there is
not fission component yet. Implementing this would make a doubly multimodal
system possible where both system input and output are multimodal. This
would create an even more natural interaction between user and computer, in
which feedback is sent to the user as synchronized streams of spoken text, other
audio, visual feedback, force feedback, and possibly other modalities, such as 3D
output over an augmented reality display. Fission is slowly starting to become a
topic of interest in the multimodal research community, so we can expect systems
using multimodal output to appear in the future, that our system could possibly
borrow from.

Improvements made in the field of speech recognition, fusion, dialog manage-
ment, fission, and conversational systems in general may be used in the future
to replace parts of the system with sophisticated implementations. Of course,
this implies that these implementations are not just internal prototypes, but
that they will be available publicly.

Appendix A

Publication for the Fifth
International Conference on
Multimodal Interfaces
(ICMI-PUI’03)

The following paper was submitted to and accepted for oral presentation at
ICMI-PUI’03.

95

96

A Framework for Rapid Development of Multimodal
Interfaces

Frans Flippo ∗ †

fflippo@caip.rutgers.edu
Allen Krebs ∗

krebs@caip.rutgers.edu
Ivan Marsic ∗

marsic@caip.rutgers.edu
∗ Rutgers University

CAIP Center
Piscataway, NJ 08854-8088

+1 732 445 0542

† Delft University of Technology
Dept. Information Technology and Systems

2628 CD Delft, The Netherlands
+31 15 278 7504

ABSTRACT
Despite the availability of multimodal devices, there are very
few commercial multimodal applications available. One rea-
son for this may be the lack of a framework to support devel-
opment of multimodal applications in reasonable time and
with limited resources. This paper describes a multimodal
framework enabling rapid development of applications using
a variety of modalities and methods for ambiguity resolu-
tion, featuring a novel approach to multimodal fusion. An
example application is studied that was created using the
framework.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
InterfacesInteraction styles, Natural language, Voice I/O;
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems

General Terms
Algorithms, Design, Human Factors

Keywords
Multimodal interfaces, multimodal fusion, application frame-
works, command and control, direct manipulation

1. INTRODUCTION
Multimodal interfaces provide a very natural way for hu-

mans to perform tasks on a computer, using direct manipu-
lation and speech: interaction methods that are used daily
in human-to-human communication. However, despite the
availability of high-accuracy speech recognizers and the ma-
turing of multimodal devices such as gaze trackers, touch
screens, and gesture trackers, very little applications take

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’03, November 5–7, 2003, Vancouver, British Columbia, Canada.
Copyright 2003 ACM 1-58113-621-8/03/0011 ...$5.00.

advantage of these technologies. One reason for this may
be that the cost in time of implementing a multimodal in-
terface is prohibitive. One desiring to equip an application
with such an interface must start from scratch, implement-
ing access to external sensors, developing ambiguity resolu-
tion algorithms, and making calls to the application’s API
based on the determined user intention.

However, when properly implemented, a large part of the
code in a multimodal system can be reused. This aspect was
identified and used to implement a multimodal application
framework. The framework uses a novel and parallelisable
application-independent fusion technique that can be eas-
ily augmented to support application-specific demands as
well as new modalities. The fusion algorithm separates the
three parts of fusion: obtaining data from modalities, fusing
that data to come to an unambiguous meaning, and calling
application code to take an action based on that meaning.
Separation of these three tasks makes the framework appli-
cable to a wide range of applications and modalities.

1.1 Requirements and Constraints
The framework enables existing applications to be equipped

with a multimodal interface. Therefore the design is to be
minimally intrusive on existing application code, but rather
function alongside it, calling application code when data is
needed from or actions need to be performed in the appli-
cation; additionally, the interface accepts callbacks from the
application when changes occur that change the discourse
context or that need to be reported to the user.

To gain user acceptance for a multimodal system, response
times must be reasonably small. If the system takes too long
to process a user’s spoken command, the user will think the
command was not understood and repeat it, resulting in
confusion when the command then gets carried out twice.
All this results in annoyance and should be avoided at all
cost. Ideally, response times should be below a second.

Many multimodal systems are geocentric in nature [6].
Combining speech with gesture, gaze, and mouse serves to
link spoken references to spatial data (i.e. objects and lo-
cations on-screen) with their antecedents as derived from
the aforementioned modalities. Therefore our framework is
optimized for this type of fusion.

Direct manipulation is currently the most popular mode
of interaction. It appeared in the late 1970’s [9]. Its soft-
ware design was described in [12]. It is a proven form of
interaction that should not be replaced, but rather be com-

1

APPENDIX A. PUBLICATION FOR THE FIFTH INTERNATIONAL
CONFERENCE ON MULTIMODAL INTERFACES (ICMI-PUI’03) 97

Input Device

Event
Direct

Manipulation
Interpreter

Toolbox

Method Call

Input Device

Speech
Language

Understanding

Context
Provider

Pointing

Command Frame

Inputs

Command Frames

Input
Interpreters

Context
Providers

Direct
M anipula tion

Conversa tiona l

In teraction

<MethodName>.(<Arg1>, <Arg2>, &)
Rotate(Target, Angle)

RotateName

TargetSlot 1

AngleSlot 2

ActionName

DataS lot 1

DataS lot 2

Context
Provider

Figure 1: A high-level view of software architectures for direct manipulation and conversational interaction.
In direct manipulation, the toolbox (in this figure we show a part of a PowerPoint toolbox) determines the
context of the manipulation and the end result is a method call on the application. Similarly, in conversational
interaction, pointing helps to resolve ambiguities in speech. The architecture on the right hand side shows a
generalisation of these two paradigms.

plemented by conversational interfaces. The key compo-
nents of the software architecture for direct manipulation are
summarized in Figure 1. Primary inputs are mouse click-
ing and dragging and command selection through menus or
toolboxes. On the other hand, recent multimodal interfaces
focus on conversational interaction (also summarized in Fig-
ure 1). Unfortunately, almost none of these interface include
direct manipulation in conversational interaction. Pointing
is used only to resolve deictic references in speech. Our
objective is to provide an architecture which will support
both. This architecture is summarized in Figure 1 on the
right hand side. Creating an architecture which supports
direct manipulation and conversational interaction in paral-
lel combines the strengths of both interaction styles while
compensating for the weaknesses. By maintaining direct
manipulation as a choice of interaction, we are not limiting
user actions to those that are speech-centric. The user can
choose between traditional direct manipulation, speech, or
a combination of both.

Our focus is on single-user multimodal interfaces. Multi-
user interfaces have many more problems, such as having to
recognize multiple voices, determine the source of gestures,
etc. Our system does allow collaboration where users are on
different machines, and the application described at the end
of the paper is an example of this.

We will first discuss some related work. In Section 2 we
describe the conceptual design of the framework, followed
by its implementation in Section 3. We then look at the
multimodal interface that was made for Flatscape, our col-
laborative situation map tool using the framework, followed
by conclusions and ideas for future work.

1.2 Related Work
The first known multimodal interface was built in 1980 by

R. Bolt [1]. It provided an interface in which shapes could be
created, moved, copied, removed, and named using a combi-
nation of speech and pointing, for example “put that to the

left of the green triangle,” “copy that there,” “call that the
calendar,” “move the calendar here”. Fusion was done at
the parse level. Every time an anaphor or deictic reference
was recognized, the system would immediately see where the
user was pointing and resolve the reference. The system also
had an ability to learn new words. When the user said “call
that 〈name〉,” the system would tell the speech recognizer to
switch from recognition mode to training mode so that the
name that the user gave the object would be learned. The
components of the system necessarily had to be tightly inte-
grated because of the way the system was designed. While
performing fusion during speech yields a straightforward im-
plementation of fusion, gestures and speech are in general
not synchronized, that is, gesture precedes or follows a spo-
ken reference, and assuming that they are demands the user
to change his normal behavior to use the system: the system
trains the user. This is not desirable.

Krahnstoever [6] describes a multimodal framework tar-
geted specifically at fusing speech and gesture with output
being done on large screen displays. Several applications
are described that have been implemented using this frame-
work. The fusion process is not described in great detail,
but appears to be optimized for and limited to integration
of speech and gesture, using inputs from cameras that track
a user’s head and hands.

The W3C has set up a multimodal framework specifi-
cally for the web [7]. This does not appear to be something
that has actually been implemented by the W3C. Rather,
it proposes a set of properties and standards — specifically
the Extensible Multimodal Annotation Markup Language
(EMMA) — that a multimodal architecture should adhere
to.

The QuickSet system [4], built by the Oregon Gradu-
ate Institue, integrates pen with speech to create a mul-
timodal system. QuickSet goes beyond simple point-and-
speak commands and recognizes more complex pen gestures,
like arrows and lines to better support direct manipulation.

2

98

Speech
Interface

parse tree

ag
resolving

ent

Context
provider

Dialog
Manager

Context
provider

confidence
votes

confidence
votes

confidence
votes

command frames

Figure 2: The fusion process – from parse tree to
frames

This allows for richer and more natural multimodal inter-
action. The system employs a Members-Teams-Committee
technique very similar to the fusion technique described in
this paper, using parallel agents to estimate a posteriori
probabilities for various possible recognition results, and
weighing them to come to a decision. However, our approach
is more reusable as it separates the data — or feature — ac-
quisition from the recognition. Also, it supports a variety of
simultaneous modalities whereas QuickSet seems to be built
solely for pen and speech-based interaction.

2. FRAMEWORK DESIGN

2.1 An Object-Oriented Framework
The fusion system described in this paper has been im-

plemented as a framework. A framework is a reusable,
“semi-complete” application that can be specialized to pro-
duce custom applications [5]. Developing a framework in-
volves determining what functionality is common to the ap-
plications in the target domain and abstracting away from
application-specific functionality. This common functional-
ity is the framework’s immutable core, while “hot spots” in
the framework are places in which a developer must “plug
in” code to come to a specific, working application [8]. An
important aspect of an application framework is the inver-
sion of control, or “old code calls new code”. In an appli-
cation created with a framework, the framework core (old
code) makes calls to the code that is plugged in to the hot
spots (new code). It is this inversion that makes a framework
an attractive paradigm for application development: the de-
veloper does not need to have knowledge of the framework’s
internals, but only needs to implement the interfaces that
define the hot spots.

Configuration of the implemented framework is largely
declarative: the user specifies (declares) structure, not pro-
cedure. The framework uses the user’s specification to per-
form fusion, but the user needs to have no knowledge of
how the framework does this. The user provides the “what”
knowledge, while the framework contains the “how” knowl-
edge. This makes the framework an ideal tool for non-
experts. It also allows the framework to be changed without
affecting existing applications, since the same declarations
will still apply for another framework implementation.

2.2 Fusion
Our framework features a new approach to fusion that is

reusable across applications and modalities. The process is
depicted in Figure 2. The input to the fusion process is a
semantic parse tree with time stamps as generated by the

natural language parser component of the speech interface.
This parse tree needs to be transformed into frames that the
dialog manager can use to make calls to the application. To
accomplish this, the natural language concepts in the parse
tree need to be mapped to application concepts. In addition,
ambiguity needs to be resolved. Ambiguity exists when the
user uses pronouns or deictic references, for example “re-
move that”, or “do reconnaissance here”. Another case of
ambiguity is ellipsis, a linguistic construct in which words
that are implied by context are omitted, such as “rotate this
clockwise ... and this too”. The last phrase can be expanded
to “and rotate this clockwise, too”.

Resolving agents operate on the parse tree to realize the
aforementioned mapping of concepts and resolution of am-
biguity. The implementation details of resolving agents are
not specified by the framework. All that is expected is that
the agents take a fragment from the parse tree, perform
some transformation on it, and use it to fill a slot in the
semantic frame that is sent to the dialog manager. The
agents can use data from a modality (through an access ob-
ject we call “context provider”) to give them a context in
which to perform their task. Context providers can provide
data from an external sensor, such as a gaze tracker, but
also from more abstract data sources such as dialog history
or application state (e.g. which toolbox button is selected).
An agent performing pronoun resolution might have access
to gaze or gesture input to resolve a pronoun to an object
on the screen that the user pointed or looked at. Any agent
will typically have access just one such input. This keeps
the design of the agents simple, as they do not need to be
concerned with combining data from multiple sources. This
combining is done by the fusion manager. It is possible for
resolving agents to share the same modality, and the frame-
work is designed so that this is possible, even when a device
has an exclusive use policy.

The agents themselves do not actually perform fusion.
Their task is to perform an assessment of what they think
the contents of a slot in the frame should be. Each agent will
provide zero or more possible solutions with corresponding
probability scores. The whole of the solutions provided by
all agents will finally determine what the slot will contain.
This is shown in Figure 3.

To make resolving agents reusable, the resolution pro-
cess is separated from the acquisition of data from modali-
ties. The resolution process is implemented in the resolving
agents, while the acquisition of data is the responsibility
of the context providers. Resolving agents merely specify
the type of data they expect to receive from their context
provider. In this way, an agent that requires (x, y)-data
points to do its work can accept data from any context
provider that provides (x, y)-data, such as a mouse, a gaze
tracker, or a haptic glove. In a system with a mouse and a
gaze tracker, for instance, two copies of the same pronoun
resolution agent might be active, one using data from the
mouse, and another using data from the gaze tracker. Each
will give its resolutions along with corresponding probability
scores, based on the data they have access to.

Thus, resolving agents operate locally with only the infor-
mation they have access to, namely the fragment of the parse
tree they use and the data they receive from their modality,
if any. However, all agents together create a global result
that takes into account all of the parse tree and all of the
available modalities. Because each resolving agent works

3

APPENDIX A. PUBLICATION FOR THE FIFTH INTERNATIONAL
CONFERENCE ON MULTIMODAL INTERFACES (ICMI-PUI’03) 99

Mouse Eye
tracker

D ia log
history

mouseObjectResolver

eyeObjectResolver

unitResolver

dialogObjectResolver

V
o

te
T

a
ll

yi
n

g

confidence
weight

target

de lete

delete
[delete]

REMOVE
[what]

[anaph]
THIS

[unit]
[affiliation]

[affiliation_H]
ENEMY

[unittype]

[unittype_UCI]

confidence
weight

confidence
weight

confidence
weight

Command
Frame

Parse Tree

Context
Providers

Fusion Agents

Figure 3: Combining results from different resolving agents (resolvers) to fill a slot

independently of the others, the agents can work in paral-
lel, taking advantage of multiprocessor hardware to increase
performance.

Context providers provide timestamps along with their
data. These can be used by the resolvers so select data
that are applicable to the parse tree fragment they are han-
dling, using the timestamps that the natural language parser
provides. For instance, the pronoun resolver agent men-
tioned before will look at data points that were generated
around the time that the pronoun was spoken. Timestamps
for speech data and context data ensure that the modality
streams are properly synchronized.

2.2.1 Fusion Manager
The fusion manager controls the fusion process. It is re-

sponsible for:

1. choosing a frame for the parse tree and creating it

2. spawning resolving agents and passing them parse tree
fragments to work with

3. taking the possible values for each slot from the resolv-
ing agents and choosing one, based on the probability
scores provided and the weight assigned to each resolv-
ing agent.

4. merging frames from the conversational interface with
method calls from the application’s GUI, resolving am-
biguities to create a frame with unambiguous meaning

5. handing a completed frame to the dialog manager

Direct manipulation and conversational interaction run in
parallel and may influence each other. Commands uttered
by the user can change the interpretation of mouse events.
Conversely, the state of an application’s GUI elements, such
as a toolbox, can influence the meaning of spoken commands
or gestures. The fusion manager implements the merging of
direct management and conversational input.

If direct manipulation is done by itself, it must be done
with the mouse or a device emulating a mouse. Currently,
multimodal actions and actions using other devices than the
mouse need speech to drive them. Having speech as the
‘primary modality’ in this way avoids delays imposed by
systems that allow other modalities to be used by themselves
and need time thresholds to define the end of a dialog action,
as in [11].

The fusion manager is configured through an XML file
and will be described in more detail in Section 3.

2.3 Dialog Management
The dialog manager receives frames from the fusion man-

ager. First it updates the dialog history with the contents
of the frame’s slots. Then it calls an action script that is
defined for the frame. This script will ultimately make a
call to the application to perform a certain task, but first it
will typically check whether the frame is ‘complete’, that is,
whether all the slots that are required to be filled are indeed
filled. If not, it can send feedback to the user to request him
or her to provide the missing data. In the future we intend
to implement this as part of the dialog manager, so that
specifying which slots are required is all that is needed to
have the dialog manager check for missing slots and report
missing data to the user. However, slot requirements can be
conditional, so implementation is not straightforward. The
current solution is flexible, at the cost of some extra imple-
mentation effort.

As the rest of the framework, the dialog manager contains
no application-specific code. All application-specific data is
in the configuration file, which the dialog manager shares
with the fusion manager.

2.4 Fission
Fission [2] is currently unimplemented in the framework.

However, conceptually it is the inverse of fusion and it will
be implemented as such. Given a semantic frame, the fission
manager will distribute its slots to different fission agents,
which create output to send to a modality as well as placing
corresponding text in the semantic tree that is sent to the
natural language generator. Where resolving agents resolve
ambiguity by using multimodal input, fission agents create
it for a single multimodal output. For instance, an anaphor
generator adds a pronoun to the parse tree while creating a
command for its modality to point to or hilight the object
being referred to on the screen. The various fission agents
will be responsible for sending output at the correct time,
with the fission manager driving the fission agents.

4

100

<frame name="delete" test="delete/delete" uses="delete">
<slot name="glyph">
<source select="delete/what/anaph">
<resolve resolver="mouseObjectResolver" weight="0.5" />
<resolve resolver="eyeObjectResolver" weight="0.4" />

</source>
<source select="delete/what/unit">
<resolve resolver="unitResolver" weight="0.3" />

</source>
<source select="delete">
<resolve resolver="dialogObjectResolver" weight="0.1" />

</source>
</slot>
<action language="javascript">
if (frame.glyph) {
application.api.deleteGlyph(frame.glyph.glyph);

}
</action>

</frame>

Figure 4: A sample frame declaration

3. IMPLEMENTATION
The framework is implemented in Java. Java was chosen

due to its strong typing, extensive class library, dynamic ob-
ject instantiation and object reflection capabilities, and the
fact that Java applications can run on different platforms
without recompiling. The first two aspects result in quicker
development time and less errors, the third gives the frame-
work much of its power, while the last allows applications
created with the framework to be deployed on any Java 1.4
capable platform.

3.1 Fusion Manager
It is the fusion manager’s task to take the possible values

for a slot from the resolving agents and choose the one that
is optimal, based on the resolving agents’ probabilities, and
a confidence value or weight for each agent. Currently a very
simple voting algorithm is employed, in which the scores for
each value are summed and the one with the highest total
sum is selected. However, the framework can accomodate
any algorithm desired, and we are looking into using fuzzy
reasoning and/or Bayesian networks for this purpose, using
models trained on empirical data, to obtain better predic-
tions of the user’s intent.

The fusion manager, resolving agents, and context pro-
viders are configured through an XML file containing dec-
larations for frames, resolvers and context providers. An
example frame declaration is shown in Figure 4. The dec-
laration specifies the name of the frame, an XPath test on
the parse tree that must succeed for the frame to be used,
and a set of slots with XPath expressions for each slot spec-
ifying their data source and a list of one or more resolvers
(resolving agents) for each source.

The fusion manager uses the XPath test to determine
which frame to instantiate. If multiple XPath expressions
evaluate to ‘true’, the fusion manager prefers the frame that
was used in the previous utterance, if possible. This ensures
that multiple-step dialogs continue as intended. If no frame
is of the same type as the previous one and there are multiple
frames to choose from, feedback can be generated asking the
user to be more specific. The actual implementation of this
is left up to the developer, so any message can be generated,
but output on the screen is also possible, for instance.

3.1.1 Resolving Contradictory Inputs
Contradiction between modalities can arise. For example,

a user may say “move that infantry squad” while pointing
to or looking at an infantry army. On the slot level, speech
is treated like any modality, so the results from resolving
“infantry squad” — that is, a list of all infantry squads —
will participate in the voting process along with the result
of resolving “that” using a pointing modality and possibly
the dialog history, which will also result in a list of objects
— those in the vincinity of the location the user was point-
ing. Ultimately, the developer decides which modality ‘wins’
in this case by the weights that he or she allocates to each
modality. By adjusting the weights appropriately, the de-
veloper can achieve that the pointing modality wins if the
object being pointed at is under the mouse cursor, but if
the pointer is a certain threshold away from any object, the
speech modality will win instead. Since the scores from each
resolving agent are summed, the fusion manager may choose
an object that is somewhat close to the pointer and is (in
our example) an infantry squad over an object directly under
the pointer.

A better approach in case of unresolvable ambiguity could
be, again, to ask the user for clarification, e.g. “That is an
infantry army, not an infantry squad. What do you want to
move?”.

3.2 Fusion Interfaces
Four interfaces are crucial to the fusion process:

• Resolver – All resolving agents implement the Resol-
ver interface. A resolving agent is initialized by the
fusion manager, which passes the initalization param-
eters as read from its configuration file to the init()

method.

Resolvers will usually be created by subclassing the
AbstractResolver class, which implements the Re-

solver interface and inherits from AbstractSession-

Object. The latter class provides common functional-
ity for objects that operate within a multimodal dia-
log session and can be dynamically instantiated. The
key method of the Resolver interface is the resolve()
method, which takes a DOM Element representing a
parse tree fragment and returns an Iterator contain-
ing the agents’ resolutions along with their assessed
probabilities.

The following standard resolvers are provided:

– AnaphorResolver — Resolves a pronoun to the
on-screen object it refers to as determined from
the input modality. The probabilities that ac-
company the solutions are proportional to the ob-
ject’s distance from the (x, y)-data point that is
selected. This resolver does not actually look at
the data in the parse tree fragment, it just uses
the time stamps.

– DeicticResolver — Resolves a deictic reference
to its location on the screen as determined from
the input modality. The probabilites that ac-
company the solutions are determined by the fre-
quency of the point in the (x, y) data list. This
resolver does not actually look at the data in the
parse tree fragment, it just uses the time stamps.

5

APPENDIX A. PUBLICATION FOR THE FIFTH INTERNATIONAL
CONFERENCE ON MULTIMODAL INTERFACES (ICMI-PUI’03) 101

<<interface>>

Resolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getContextProvider(input:String)

+setContextProvider(input:String, provider:ContextProvider)

+removeContextProvider(input:String)

+getInputs() : Map

AbstractResolver

#contextProviders : Map

+AbstractResolver(session:Session) : AbstractResolver

+getContextProvider(input:String) : ContextProvider

+setContextProvider(input:String, provider:ContextProvider)

+resolve(node:org.w3c.dom.Element) : Iterator

AnaphorResolver

#xOffset : int

#yOffset : int

#radius : double

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

DeicticResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

DialogHistoryResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

NameResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

ObjectResolver

#fields : Map

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

SpellingResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

CoordinateResolver

+resolve(node:org.w3c.dom.Element) : Iterator

+getParameters() : Parameter[]

ObjectLocator

+findObject(p:Point)

+findObjects(properties:Map) : Iterator

+findObjects(p:Point, radius:double) : Iterator

+findObjects(p:Point, xradius:double, yradius:double) : Iterator

+getObject(type:String, id:Object)

<<interface>>

LocatableObjectStore

+getObject(type:String, id:Object)

+objects() : Iterator

LocatableObject

+getObject() : Object

+getProperty(name:String) : Object

+getId() : Object

+getType() : String

+getLocation() : Point

+setLocation(location:Point)

+getSize() : Dimension

+setSize(size:Dimension)

#store#store

Figure 5: The Resolver class hierarchy and related classes

– ObjectResolver — Resolves a set of object at-
tributes to the objects that match those attributes.
For example, when the user is to be able to se-
lect an object using speech only with an expres-
sion such as “remove the hostile infantry army”,
this resolver is used to return all objects matching
the attributes named: “hostile”, “infantry”, and
“army” in the example.

– SpellingResolver — Takes a parse tree frag-
ment containing nodes that represent spelled let-
ters and returns the word they spell out. Spelling
can be very useful when a parser or speech recog-
nizer is used that requires an a priori vocabulary
or grammar and cannot learn new words while
running. In this way, out of vocabulary terms,
such as names, can be spelled out. Spelling using
a specialized alphabet, such as the NATO alpha-
bet, is also very accurate. This resolver returns a
single String, with a probability of 1.

– DialogHistoryResolver – Returns the first item
in the dialog history for the slot. This is the most
recently used value for the slot. Slots are identi-
fied by name, so this also looks for slots with the
same name used in other frames.

– CoordinateResolver – Resolves a coordinate spec-
ification, such as “five hundred comma two fifty”
to a Java Point object. One Point is returned,
with a probability of 1.

– NameResolver – A trivial resolver that simply re-
turns the name of the parse tree fragment’s top
level node. Some simple transformations can be
done on the returned name, including stripping

fixed leading and trailing strings, and applying a
translation.

• ContextProvider – Classes that provide access to
modalities implement the ContextProvider interface.
The key method is getData(), which returns a Con-

textData instance that provides the modality’s data
along with a timestamp for which the data is valid.
The context providers supplied by the framework are
currently EyeTracker, Mouse, and DialogHistory.

• ContextData – ContextData implementations repre-
sent data from a modality. Three implementations are
supplied with the framework: PositionContextData,
Entity, and ContextDataList. ContextDataList is
a container for other ContextData objects, and is re-
turned by the BufferedContextProvider, which polls
another context provider and caches its data for the
duration of an utterance, so that multiple resolvers can
use the same data through a single BufferedContext-

Provider instance. Most resolvers expect a Context-

DataList as input.

• LocatableObjectStore – As shown in Figure 5, an
LocatableObjectStore implementation plugs unto the
framework’s ObjectLocator class to enable it to query
the application for on-screen objects. This is used in
the AnaphorResolver to find objects in the neighbor-
hood of the point on the screen the user indicated when
speaking a pronoun. It is used by the ObjectResolver

to find objects matching a set of attributes. The ele-
ments of the LocatableObjectStore are instances of
a concrete subclass of LocatableObject. Locatable-

Object uses the “wrapper” design pattern to provide
a uniform interface to access an object’s location, size,
and attributes.

6

102

Figure 6: Flatscape

3.3 Dialog Management
Dialog management consists of maintaining dialog context

and making application calls when frames are completed.
The first task is implemented by having the dialog man-
ager maintain a DialogHistory object, which implements
the ContextProvider interface, so that it can provide data
to resolving agents, notably the DialogHistoryResolver.

Application calls are made by the dialog manager through
JavaScript. When the dialog manager receives a frame, it
retrieves the associated script and executes it through the
Bean Scripting Framework [10], a framework that provides
scripting language support to Java applications. JavaScript
provides a flexible way to interface between the dialog man-
ager and the application. Since JavaScript is interpreted
code, all that is needed to change the behavior of the mul-
timodal interface is to modify the script and re-run the ap-
plication; no code needs to be compiled.

4. CASE STUDY

4.1 Flatscape
Using the framework, a multimodal interface was created

for Flatscape, our collaborative situation map application.
With this application we can plan military missions by plac-
ing and moving icons representing military units on a map
overlay. Additionally, we can track moving robotic vehicles
on the same map and give them direct control commands or
assign them higher level “missions”. Camera feedback from
the robots is available and can be viewed on screen. The
camera can be rotated horizontally (panned) and vertically
(tilted) and has a zoom function. Camera images are also
used by the robot for target recognition.

The system runs on top of our DISCIPLE [3] collabora-
tive middleware. Both Flatscape and the robots function as
clients in this infrastructure, communicating over the col-
laboration bus (cBus) to exchange and synchronize state
information. A change made by the user in Flatscape that
is relevant to a robot will cause this robot to be notified

of it, possibly making it perform some action, as the user
indicated, such as moving to a different location.

The new multimodal interface allows the above things to
be accomplished with multimodal commands:

• Unit creation and manipulation
“create a friendly infantry squad here”
“move this anti armor unit over there”
“delete that”
“move this to five fifty comma two hundred”

• Robot control
“go forward fifty feet”
“turn left”
“back up slowly ... stop”
“camera on ... look left ... zoom in”

• Mission planning
“new recon mission”
“home base is here”
“new reconnaissance task there”
“start mission”

Additionally, we are able to use the direct manipulation
commands already present in the GUI alongside the multi-
modal commands. For each task, users can select whichever
interaction paradigm is most suitable and use both interac-
tion methods interchangably.

4.2 Evaluation

4.2.1 Reusability
Table 1 shows the implementation effort for this new mul-

timodal interface expressed in kilobytes of code. As can be
seen in the table, 92% of the code is framework code. This
indicates that the framework is a good generalization for this
type of application and that much effort is saved by using
the framework.

Table 1: Implementation effort for the situation map
tool

Application-specific code Size
Grammar 28K
New Java code 46K
Fusion and Dialog Manager configuration (XML
+ Javascript)

33K

Natural language generation configuration 6K

Framework code Size
Framework code 1152K
Parser code 148K

Code re-use 92%

4.2.2 Response Times
Figure 7 shows response times for five different types of

speech acts, both speech-only and multimodal. Times were
measured on a Pentium 4, 1.7 GHz with 512MB of RAM.
As can be seen in the figure, speech recognizer delays can be
significant; the reason for this is that present-day speech rec-
ognizers wait for a certain period of silence before assuming
the user has finished speaking. These delays, due to their
nature, can not be reduced by acquiring faster hardware.

7

APPENDIX A. PUBLICATION FOR THE FIFTH INTERNATIONAL
CONFERENCE ON MULTIMODAL INTERFACES (ICMI-PUI’03) 103

plain speech

misc − multimodal

move to − multimodal

move to − speech only

robot movement − speech only

161ms1181ms521ms 949ms

786ms 1283ms 115ms164ms

1810ms 1142ms 150ms170ms

649ms 1222ms 225ms 134ms

1432ms 1432ms 415ms 144ms

dialog managementspeech act speech processing fusion

Figure 7: Response times for five types of speech acts

5. CONCLUSIONS AND FUTURE WORK
We have showed that the framework can be used to imple-

ment a multimodal interface with relatively little effort. The
resulting interface has a reasonable response time, which can
be improved by advances in speech recognition technology.
The system currently uses mouse and gaze input, but other
modalities can be added easily by creating new implemen-
tations of the ContextProvider interface. Direct manipula-
tion and speech are used together to form a user interface
that gives users the freedom to choose and combine interac-
tion methods to create a more efficient and pleasant way of
working.

One of the main thrusts for future work is implementing
more complex direct manipulation examples and integrating
them into the framework. The architecture presented in [12]
gives a generic framework but there are also parts that are
application-specific and will need to be implemented by the
application developer.

We are investigating the use of fuzzy reasoning and Bayesian
networks in fusion. Fuzzy values can be a better represen-
tation of uncertainty in multimodal systems than discrete
probabilities and may enable a more natural way of config-
uring the fusion manager and resolving agents.

Bayesian belief networks trained with data captured from
multimodal dialogs can be used to improve fusion. Statisti-
cal data on the way users use various modalities can be used
to estimate a user’s intent with a multimodal action.

Finally, adding a fission agent as proposed in the text
would make a true multimodal system in which both user
and system can communicate in a multimodal fashion, cre-
ating a more natural experience for the user.

6. ACKNOWLEDGMENTS
The research is supported by US Army CECOM Contract

No. DAAB07-02-C-P301, a grant from New Jersey Com-
mission on Science and Technology, and by the Center for
Advanced Information Processing (CAIP) and its corporate
affiliates.

7. REFERENCES
[1] R. A. Bolt. “Put-that-there”: Voice and gesture at the

graphics interface. Computer Graphics (SIGGRAPH
’80 Proceedings), 14(3):262–270, July 1980.

[2] L. Boves and E. den Os. Multimodal multilingual
information services for small mobile terminals
(MUST). Technical report, Eurescom, 2002.

http://www.eurescom.de/~pub/deliverables/

documents/P1100-series/P1104/p1104-d1.pdf.

[3] CAIP. DISCIPLE - mobile computing and
collaboration.
http://www.caip.rutgers.edu/disciple.

[4] P. Cohen, M. Johnston, D. McGee, S. Oviatt,
J. Pittman, I. Smith, L. Chen, and J. Clow. Quickset:
Multimodal interaction for distributed applications.
ACM International Multimedia Conference, New
York: ACM, pages 31–40, 1997.

[5] M. Fayad and D. C. Schmidt. Object-oriented
application frameworks. Communications of the ACM,
40(10):32–38, 1997.

[6] N. Krahnstoever, S. Kettebekov, M. Yeasin, and
R. Sharma. A real-time framework for natural
multimodal interaction with large screen displays. In
Proc. of Fourth Intl. Conference on Multimodal
Interfaces (ICMI 2002), Pittsburgh, PA, USA,
October 2002.

[7] J. A. Larson and T. V. Raman. W3C multimodal
interaction framework.
http://www.w3.org/TR/mmi-framework, 2 December
2002. W3C Note.

[8] M. E. Markiewicz and C. J. Lucena. Object oriented
framework development. ACM Crossroads, 2001.

[9] B. Shneiderman. The future of interactive systems and
the emergence of direct manipulation. Behaviour and
Information Technology, 1(3):237–256, 1982.

[10] The Apache Jakarta Project. Jakarta BSF – bean
scripting framework.
http://jakarta.apache.org/bsf.

[11] D. Toledano, S. Wang, S. Cyphers, and J. Glass.
Extending the galaxy communicator architecture for
multimodal interaction research. submitted to ACM
Trans. on Human-Computer Interaction, Aug 2002.

[12] J. Vlissides and M. Linton. Unidraw: A framework for
building domain-specific graphical editors. ACM
Transactions on Information Systems, 8(3):237–268,
1990.

8

104

Appendix B

Glossary

Various terms and acronyms used in this document are briefly explained here.

anaphor A word, such as a pronoun, used to avoid repeti-
tion. The referent of an anaphor is determined by
its antecedent [35]. Anaphora include pronouns,
such as he, she, it, they; the word “one”, as in
“the blue one”; and descriptive phrases, for ex-
ample, “I bought a red Cadillac yesterday, and
showed the car to my friends.

BNF Backus Naur Form / Backus Normal Form: a
formal metasyntax used to express context-free
grammars. Developed in the early 1960’s to de-
scribe the ALGOL syntax.

context-free grammar A context-free grammar is a formal grammar
in which every production rule is of the form
V → w where V is a nonterminal symbol and
w is a string consisting of terminals and/or non-
terminals. The term “context-free” comes from
the feature that the variable V can always be re-
placed by w, no matter in what context it occurs.
[62].

ellipsis Omission or suppression of parts of words or sen-
tences. For example, “I like olives, but my friend
doesn’t [like olives]. The elided (omitted) text
here is placed in square brackets.

framework A software architecture that is to support the
rapid development of applications. Although in
itself a framework is not a runnable application,
it enables rapid application developent by includ-
ing commonly used functions and tasks into li-
braries that developers of applications can use.
Frameworks are typically targeted towards a cer-
tain type of application. An examples of a frame-
work is Apache’s Cocoon[4] for server application
development.

105

106

Java VM Java Virtual Machine. This is the simulated
(hence “virtual”) machine on which Java pro-
grams run. The byte code that the Java com-
piler generates is the machine language of this
machine. A VM running on a personal com-
puter translates the byte code commands into
commands that can be executed on the local plat-
form. No physical Java machine exists, so Java
programs will always run in an emulated environ-
ment. This is the reason for portability of Java
programs and relative security, but it also causes
Java programs to run slower than their native
equivalents.

multimodal Indicates the use of different modalities, modes,
or channels of communication. Human commu-
nication is inherently multimodal, since humans
(often unconciously) use speech, looking, point-
ing, and face expressions together when commu-
nicating. To create a natural interface to a com-
puter, the machine must be programmed to in-
terpret these modalities.

VM Virtual Machine. See Java VM for a description
of the Java VM.

WIMP Acronym for Windows, Icons, Mouse, Pointer.
Used to refer to the standard graphical user in-
terface developed over twenty years ago by Xe-
rox and Apple and found today on most personal
computers.

Appendix C

Grammar

The complete Phoenix grammar is shown below. Note that this is still a proto-
type, therefore some parts of the grammar are not used, but rather included for
future purposes. Other parts could be improved by performing Wizard of Oz
experiments on the target users to determine the way in which they normally
articulate their commands.

C.1 Frames

1 # Eye tracker calibration and adjustment
2 FRAME: eyetracker
3 NETS:
4 [eye_reset]
5 [eye_calibrate]
6 [eye_next_point]
7 [eye_output]
8 [eye_adjust]
9 [eye_camera]

10 ;
11

12 # Connect to the robot by creating
13 # a new overlay that the Robot code
14 # will attach its uForm to
15 FRAME: connect
16 NETS:
17 [new_document]
18 [connect]
19 [map_name]
20 ;
21

22 # Log in to or out of the DISCIPLE server
23 FRAME: login
24 NETS:
25 [login]
26 [logout]
27 ;
28

29 FRAME: control

107

108

30 NETS:
31 [direct_control]
32 [autonomous]
33 ;
34

35 FRAME: rotate
36 NETS:
37 # "rotate", "turn"
38 [rotate]
39

40 # "left", "right", "clockwise", "counterclockwise"
41 [rotate_direction]
42

43 # <number> degrees
44 [degrees]
45

46 # rotation speed
47 [speed]
48

49 # currently unused
50 [when]
51 ;
52

53 FRAME: stop
54 NETS:
55 [stop]
56 ;;
57

58 FRAME: move
59 NETS:
60 # possible ’move’ or ’put’ word
61 # this is to avoid having a possible ’move’ parsed as an action
62 # in the task frame
63 [move]
64

65 # These three slots are actually mutually exclusive. The dialog
66 # manager is responsible for removing ambiguities should more
67 # than one slot be filled.
68

69 # e.g. move there
70 [what]
71

72 # e.g. move there
73 [where]
74

75 # e.g. north, south, east, west
76 [direction]
77

78 # e.g. move north 100 miles
79 [distance]
80

81 # e.g. move forward at 20 millimeters per second
82 [speed]
83

APPENDIX C. GRAMMAR 109

84 # An excellent place for language acquisition would be the naming of certain
85 # areas on the map. We would need a catch-all here that would trigger
86 # a question for the user: "Where is <new phrase>" or the like
87 # Requirements: (*) large vocabulary (check: ViaVoice has that)
88 # (*) Adaptive parser (use Sorin’s work, or adapt Phoenix)
89

90 # Go when?
91 [when]
92 ;
93

94 FRAME: task
95 NETS:
96 # destroy, locate, etc.
97 [action]
98

99 # Usually we should have either [unit] or [anaph], not both, e.g.
100 # "kill it the enemy" is not legal english
101 # However, "kill this enemy" is allowed. In that case the postparser
102 # has information it needs to fuse from another modality, such as
103 # gaze or pointing. Enemy can than be used to clear up any ambiguity,
104 # e.g. if there are both enemy and neutral units where the user is
105 # pointing, we know which one to pick
106 [what]
107

108 [when]
109 ;
110

111 FRAME: camera_pan
112 NETS:
113 # "pan", "move" etc.
114 [camera_pan]
115

116 # left, right, middle
117 [pan_direction]
118

119 # pan: how much?
120 [amount]
121

122 # relative? (e.g. (more) to the left)
123 [relative]
124

125 ;
126

127 FRAME: camera_tilt
128 NETS:
129 # "tilt", "look", etc.
130 [camera_tilt]
131

132 # up or down
133 [tilt_direction]
134

135 # tilt: how much?
136 [amount]
137 ;

110

138

139 FRAME: camera_zoom
140 NETS:
141 # "zoom" and co.
142 [camera_zoom]
143

144 # for zoom: in, out
145 [zoom_inout]
146

147 # zoom: how much?
148 [amount]
149 ;
150

151 FRAME: camera_visual
152 NETS:
153 [camera_on]
154 [camera_off]
155 ;
156

157 FRAME: quit
158 NETS:
159 [quit]
160 ;
161

162 FRAME: identify
163 NETS:
164 [identify]
165 [anaph]
166 ;
167

168 FRAME: create
169 NETS:
170 [create]
171 [unit]
172 [where]
173 ;
174

175 FRAME: delete
176 NETS:
177 [delete]
178 [what]
179 ;
180

181 FRAME: mission
182 NETS:
183 [mission_name]
184 [mission_type]
185 [mission_homebase]
186 [mission_resupply]
187 ;
188

189 FRAME: mission_task
190 NETS:
191 [mission_task]

APPENDIX C. GRAMMAR 111

192 [what]
193 [task_type]
194 [where]
195 ;
196

197 FRAME: mission_control
198 NETS:
199 [mission_start]
200 [mission_stop]
201 [mission_pause]
202 [mission_resume]
203 [mission]
204 ;
205

206 FRAME: name
207 NETS:
208 [call]
209 [what]
210 [where]
211 [name]
212 ;
213

214 FRAME: ellipsis
215 NETS:
216 [unit]
217 [what]
218 [where]
219 ;
220

C.2 BNF Grammars

1 [letter]
2 ([letter_a])
3 ([letter_b])
4 ([letter_c])
5 ([letter_d])
6 ([letter_e])
7 ([letter_f])
8 ([letter_g])
9 ([letter_h])

10 ([letter_i])
11 ([letter_j])
12 ([letter_k])
13 ([letter_l])
14 ([letter_m])
15 ([letter_n])
16 ([letter_o])
17 ([letter_p])
18 ([letter_q])
19 ([letter_r])
20 ([letter_s])
21 ([letter_t])

112

22 ([letter_u])
23 ([letter_v])
24 ([letter_w])
25 ([letter_x])
26 ([letter_y])
27 ([letter_z])
28 ([letter_-])
29 ([letter__])
30 ;
31

32 [letter_a]
33 (alpha)
34 ;
35

36 [letter_b]
37 (bravo)
38 ;
39

40 [letter_c]
41 (charlie)
42 ;
43

44 [letter_d]
45 (delta)
46 ;
47

48 [letter_e]
49 (echo)
50 ;
51

52 [letter_f]
53 (foxtrot)
54 ;
55

56 [letter_g]
57 (gulf)
58 ;
59

60 [letter_h]
61 (hotel)
62 ;
63

64 [letter_i]
65 (india)
66 ;
67

68 [letter_j]
69 (juliet)
70 ;
71

72 [letter_k]
73 (kilo)
74 ;
75

APPENDIX C. GRAMMAR 113

76 [letter_l]
77 (lima)
78 ;
79

80 [letter_m]
81 (mike)
82 ;
83

84 [letter_n]
85 (november)
86 ;
87

88 [letter_o]
89 (oscar)
90 ;
91

92 [letter_p]
93 (pappa)
94 ;
95

96 [letter_q]
97 (quebec)
98 ;
99

100 [letter_r]
101 (romeo)
102 ;
103

104 [letter_s]
105 (sierra)
106 ;
107

108 [letter_t]
109 (tango)
110 ;
111

112 [letter_u]
113 (uniform)
114 ;
115

116 [letter_v]
117 (victor)
118 ;
119

120 [letter_w]
121 (whiskey)
122 ;
123

124 [letter_x]
125 (x-ray)
126 (x ray)
127 ;
128

129 [letter_y]

114

130 (yankee)
131 ;
132

133 [letter_z]
134 (zulu)
135 ;
136

137 [letter_-]
138 (dash)
139 (hyphen)
140 (mark)
141 ;
142

143 [letter__]
144 (capital)
145 (upper case)
146 ;
147

148 # Anaphoric expressions
149 # Seperate file, since these are not domain dependent
150

151 [deictic]
152 (*right *about *over here)
153 (*right *about *over there)
154 (*on this spot)
155 (*on this location)
156 (*on this site)
157 (*at this spot)
158 (*at this location)
159 (*at this site)
160 (*to this spot)
161 (*to this location)
162 (*to this site)
163 ;
164

165 # The exact nature of these anaphora and anaphoric expressions
166 # is determined by the postparser, which has language specific
167 # information on anaphora (e.g. gender, number, etc.)
168 [anaph]
169 (this)
170 (this one)
171 (that)
172 (him)
173 (her)
174 (it)
175 (they)
176 (them)
177 (these)
178 (those)
179 ;
180 [camera]
181 ([camera_tilt])
182 ([camera_zoom])
183 ([camera_pan])

APPENDIX C. GRAMMAR 115

184 ;
185

186 [camera_tilt]
187 (*move camera)
188 (tilt *camera)
189 (camera tilt)
190 (look)
191 ;
192

193 [camera_zoom]
194 (zoom *camera)
195 (camera zoom)
196 ;
197

198 [camera_pan]
199 (pan)
200 (move camera)
201 (pan *camera)
202 (move camera)
203 (camera pan)
204 (camera move)
205 (look)
206 (show *me)
207 ;
208

209 [zoom]
210 (zoom)
211 ;
212

213 [zoom_inout]
214 ([zoom_in])
215 ([zoom_out])
216 ;
217

218 [zoom_in]
219 (in)
220 (closer)
221 ;
222

223 [zoom_out]
224 (out)
225 (far)
226 (wide)
227 (wider)
228 (farther)
229 (further)
230 ;
231

232 [amount]
233 ([small_amount])
234 ([medium_amount])
235 ([large_amount])
236 ([Number])
237 ;

116

238

239 [small_amount]
240 (*a little)
241 ;
242

243 [medium_amount]
244 (some)
245 (somewhat)
246 (more)
247 (medium)
248 (moderate)
249 (moderately)
250 ;
251

252 [large_amount]
253 (*a lot)
254 (all the way)
255 ;
256

257 [tilt_direction]
258 ([up])
259 ([down])
260 ;
261

262 [pan_direction]
263 ([left])
264 ([mid])
265 ([right])
266 ;
267

268 [up]
269 (up)
270 (above)
271 ;
272

273 [down]
274 (down)
275 (below)
276 ;
277

278 [mid]
279 (middle)
280 (mid)
281 (center)
282 (straight)
283 (ahead)
284 (forward)
285 (front)
286 ;
287

288 [relative]
289 (more)
290 (further)
291 (little)

APPENDIX C. GRAMMAR 117

292 ;
293

294 [camera_on]
295 (visual)
296 (camera on)
297 (view camera)
298 (*show video *on)
299 (on screen)
300 ;
301

302 [camera_off]
303 (hide visual)
304 (visual off)
305 (hide camera)
306 (camera off)
307 (remove visual)
308 (video off)
309 (hide video)
310 ;
311 [new_document]
312 (new document)
313 (new map)
314 (create document)
315 ;
316

317 [connect]
318 (connect *to *the robot)
319 (connecting *to *the robot)
320 (*establish link *to *the robot)
321 (open *the *map)
322 (load *the *map)
323 (bring up *the *map)
324 ;
325

326 [map_name]
327 (+LETTER_OR_NUMBER)
328 LETTER_OR_NUMBER
329 ([letter])
330 ([Number])
331 ;
332 [direct_control]
333 (enable direct control)
334 (switch to direct control)
335 (direct control *on)
336 (teleoperate)
337 (stop autonomous)
338 (stop wandering)
339 (listen)
340 ;
341

342 [autonomous]
343 (disable direct control)
344 (direct control off)
345 (autonomous)

118

346 (go ahead)
347 (you’re on your own)
348 (wander)
349 (wandering)
350 (mission)
351 ;
352 [eye_reset]
353 (reset eye tracker)
354 (reset calibration)
355 (restart calibration)
356 ;
357

358 [eye_calibrate]
359 (start calibration)
360 (calibrate *eye *tracker)
361 ;
362

363 [eye_next_point]
364 (next *calibration *point)
365 (next one)
366 ;
367

368 [eye_output]
369 (start running)
370 (end calibration)
371 (stop calibration)
372 (calibration complete)
373 (*eye *tracker output)
374 ;
375

376 [eye_adjust]
377 (adjust *calibration [direction])
378 ;
379

380 [eye_camera]
381 (move camera [direction])
382 (adjust camera [direction])
383 ;
384 [where]
385 (*TO [location])
386 ([deictic])
387 (*TO [home])
388 (*TO [named_location])
389 TO
390 (at)
391 (to)
392 ;
393

394 [location]
395 (+[Number] comma +[Number])
396 (+[Number] x +[Number] y)
397 (x *is *equals *equal *to +[Number] y *is *equals *equal *to +[Number])
398 ;
399

APPENDIX C. GRAMMAR 119

400 [home]
401 (*YOUR home)
402 (*YOUR home base)
403 YOUR
404 (the)
405 (your)
406 (our)
407 ;
408

409 [named_location]
410 (+LETTER_OR_NUMBER)
411 LETTER_OR_NUMBER
412 ([letter])
413 ([Number])
414 ;
415 [login]
416 (log in *to *disicple)
417 (login *to *disicple)
418 (*connect *to disciple)
419 ;
420

421 [logout]
422 (log off *from *disciple)
423 (log out *of *disciple)
424 (logout *of *disciple)
425 (disconnect *from disciple)
426 ;
427 [repair]
428 (no)
429 (sorry)
430 (excuse me)
431 ;
432

433 [frame_boundary]
434 (then)
435 (finally)
436 (next)
437 (after that)
438 (done)
439 ;
440 [mission_type]
441 (mission type *is [mission_type_spec])
442 (this *mission *is *a [mission_type_spec])
443 (set mission type *TO [mission_type_spec])
444 (new [mission_type_spec])
445 TO
446 (to)
447 (as)
448 ;
449

450 [mission_name]
451 (mission name *is +LETTER_OR_NUMBER)
452 (mission is called +LETTER_OR_NUMBER)
453 LETTER_OR_NUMBER

120

454 ([letter])
455 ([Number])
456 ;
457

458 [mission_type_spec]
459 ([mission_Reconnaissance])
460 ([mission_Mine_Detection])
461 ([mission_Map_Region])
462 ([mission_Patrol])
463 ;
464

465 [mission_Reconnaissance]
466 (reconnaissance *mission)
467 (recon *mission)
468 ;
469

470 [mission_Patrol]
471 (patrol *mission)
472 (patrolling *mission)
473 ;
474

475 [mission_Map_Region]
476 (*region mapping *mission)
477 (map *region *mission)
478 ;
479

480 [mission_Mine_Detection]
481 (mine *detection *mission)
482 ;
483

484 [mission_homebase]
485 (home *base *is [where])
486 ([where] *is *the home base)
487 ([anaph] *is *the home base)
488 ;
489

490 [mission_resupply]
491 (resupply *point *is [where])
492 ([anaph] *is *the resupply point)
493 ([where] *is *the resupply point)
494 ;
495

496 [mission_task]
497 (mission task)
498 ;
499

500 [task_type]
501 ([task_recon])
502 ([task_map])
503 ([task_destroy])
504 ;
505

506 [task_destroy]
507 (destroy)

APPENDIX C. GRAMMAR 121

508 ;
509

510 [task_map]
511 (map)
512 ;
513

514 [task_recon]
515 (*DO *a reconnaissance *TASK)
516 (*DO *a recon *TASK)
517 (new recon *TASK)
518 (new reconnaissance *TASK)
519 DO
520 (do)
521 (perform)
522 (put)
523 (add)
524 (new)
525 TASK
526 (task)
527 (target)
528 (point)
529 ;
530

531 [mission_start]
532 (start mission)
533 (commence mission)
534 ;
535

536 [mission_stop]
537 (stop mission)
538 (cancel *mission)
539 (abort *mission)
540 (terminate *mission)
541 (halt mission)
542 ;
543

544 [mission_pause]
545 (pause *mission)
546 (suspend *mission)
547 ;
548

549 [mission_resume]
550 (resume)
551 (continue)
552 ;
553

554 [mission]
555 (*the mission)
556 (*a mission)
557 ;
558 [move]
559 (move)
560 (go)
561 (come)

122

562 (drive)
563 (get)
564 (ride)
565 ;
566

567 [direction]
568 ([north])
569 ([south])
570 ([east])
571 ([west])
572 ([northwest])
573 ([northeast])
574 ([southwest])
575 ([southeast])
576 ([forward])
577 ([backward])
578 ;
579

580 [north]
581 (north)
582 (up)
583 ;
584

585 [south]
586 (south)
587 (down)
588 ;
589

590 [east]
591 (east)
592 (right)
593 ;
594

595 [west]
596 (west)
597 (left)
598 ;
599

600 [southwest]
601 (southwest)
602 (south west)
603 (down *and left)
604 (left *and down)
605 ;
606

607 [southeast]
608 (southeast)
609 (south east)
610 (down *and right)
611 (right *and down)
612 ;
613

614 [northwest]
615 (northwest)

APPENDIX C. GRAMMAR 123

616 (north west)
617 (up *and left)
618 (left *and up)
619 ;
620

621 [northeast]
622 (northeast)
623 (north east)
624 (up *and right)
625 (right *and up)
626 ;
627

628 [forward]
629 (forward)
630 (forwards)
631 (front)
632 ;
633

634 [backward]
635 (backward)
636 (backwards)
637 (back)
638 (rear)
639 (backup)
640 ;
641

642 [distance]
643 ([Number] *[d_unit])
644 ([Number] [d_unit] *and [distance])
645 (A *[d_unit])
646 A
647 (a)
648 (an)
649 ;
650

651 [speed]
652 ([Number] [d_unit] *per [t_unit])
653 ([Number] [d_unit] an [t_unit])
654 ([slow_speed])
655 ([medium_speed])
656 ([fast_speed])
657 ([max_speed])
658 ;
659

660 [slow_speed]
661 (*do *take *make *it slow)
662 (*do *take *make *it slowly)
663 (*do *take *make *it carefully)
664 ;
665

666 [medium_speed]
667 (*do *take *make *it medium)
668 (*do *take *make *it moderate)
669 (*do *take *make *it moderately fast)

124

670 (*don’t *not *do *it *too fast)
671 ;
672

673 [fast_speed]
674 (*do *take *make *it fast)
675 ;
676

677 [max_speed]
678 (*do *take *make *it *as fast *as you can *go)
679 (*do *take *make *it *at *your maximum speed)
680 (*do *take *make *it *at *your highest speed)
681 ;
682

683 [d_unit]
684 ([du_in])
685 ([du_cm])
686 ([du_ft])
687 ([du_yd])
688 ([du_m])
689 ([du_mi])
690 ([du_km])
691 ([du_px])
692 ;
693

694 [du_in]
695 (inch)
696 (inches)
697 ;
698 [du_cm]
699 (centimeter)
700 (centimeters)
701 (cm)
702 ;
703 [du_ft]
704 (foot)
705 (feet)
706 (ft)
707 ;
708 [du_m]
709 (meter)
710 (meters)
711 ;
712 [du_mi]
713 (miles)
714 (mile)
715 ;
716 [du_yd]
717 (yard)
718 (yards)
719 (yd)
720 ;
721 [du_km]
722 (kilometer)
723 (kilometers)

APPENDIX C. GRAMMAR 125

724 (km)
725 ;
726

727 [du_px]
728 (pixel)
729 (pixels)
730 (point)
731 (points)
732 (dot)
733 (dots)
734 ;
735

736 [t_unit]
737 ([tu_h])
738 ([tu_min])
739 ([tu_s])
740 ;
741

742 [tu_h]
743 (hour)
744 (hours)
745 ;
746

747 [tu_min]
748 (minute)
749 (minutes)
750 ;
751

752 [tu_s]
753 (second)
754 (seconds)
755 ;
756 [call]
757 (call)
758 (name)
759 ;
760

761 [name]
762 (+LETTER_OR_NUMBER)
763 LETTER_OR_NUMBER
764 ([letter])
765 ([Number])
766 ;
767

768 # Two problems:
769 # 1) Language independence. Clearly this is very specific to English and changing
770 # it to work with another language is far from trivial
771 # 2) ViaVoice outputs numbers formatted, i.e. not as text, so these rules are
772 # not of much use there unless we convert the formatted number back to a
773 # textual representation first
774

775 [Number]
776 (MIL *THOU *HUN *and *BASE)
777 (THOU *HUN *and *BASE)

126

778 (HUN *and *BASE)
779 (BASE)
780 (+DIGIT)
781 A
782 (a)
783 (an)
784 MIL
785 (BASE million)
786 THOU
787 (BASE thousand)
788 (DIGIT hundred *BASE thousand)
789 HUN
790 (*a hundred)
791 (DIGIT hundred)
792 (TEEN hundred)
793 BASE
794 (DIGIT)
795 (TEEN)
796 (DECADE *DIGIT)
797 DIGIT
798 (zero)
799 (one)
800 (two)
801 (three)
802 (four)
803 (five)
804 (six)
805 (seven)
806 (eight)
807 (nine)
808 TEEN
809 (ten)
810 (eleven)
811 (twelve)
812 (thirteen)
813 (fourteen)
814 (fifteen)
815 (sixteen)
816 (seventeen)
817 (eighteen)
818 (nineteen)
819 DECADE
820 (twenty)
821 (thirty)
822 (forty)
823 (fifty)
824 (sixty)
825 (seventy)
826 (eighty)
827 (ninety)
828 ;
829

830 [Ordinal]
831 (ORDINAL_DIGIT)

APPENDIX C. GRAMMAR 127

832 (ORDINAL_TEEN)
833 (ORDINAL_DECADE)
834 ORDINAL_DIGIT
835 (first)
836 (second)
837 (third)
838 (fourth)
839 (fifth)
840 (sixth)
841 (seventh)
842 (eighth)
843 (ninth)
844 ORDINAL_TEEN
845 (tenth)
846 (eleventh)
847 (twelfth)
848 (thirteenth)
849 (fourteenth)
850 (fifteenth)
851 (sixteenth)
852 (seventeenth)
853 (eighteenth)
854 (nineteenth)
855 ORDINAL_DECADE
856 (twentieth)
857 (thirtieth)
858 (fortieth)
859 (fiftieth)
860 (sixtieth)
861 (seventieth)
862 (eightieth)
863 (ninetieth)
864 (*one hundredth)
865 DECADE
866 (twenty)
867 (thirty)
868 (forty)
869 (fifty)
870 (sixty)
871 (seventy)
872 (eighty)
873 (ninety)
874 ;
875

876 [what]
877 (*a *an [unit] *one)
878 # the optional "one" is for ellipses, i.e. "create a hostile one here"
879 ([anaph])
880 ;
881

882 [unit]
883 ([affiliation] *ONE)
884 ([size] *ONE)
885 ([unittype] *ONE)

128

886 # Beyond type it gets a little too complicated, so
887 # either just do that through the GUI, or add commands
888 # later (i.e. "set unit modifier: tracked" or "change to tracked"
889 # or something
890 ONE
891 (one)
892 (unit)
893 ;
894

895 [affiliation]
896 ([affiliation_F])
897 ([affiliation_N])
898 ([affiliation_H])
899 ([affiliation_U])
900 ;
901

902 [affiliation_F]
903 (friendly)
904 ;
905

906 [affiliation_N]
907 (neutral)
908 ;
909

910 [affiliation_H]
911 (hostile)
912 (enemy)
913 (enemies)
914 (bad guy)
915 (bad guys)
916 ;
917

918 [affiliation_U]
919 (unknown)
920 ;
921

922 [size]
923 ([size_A])
924 ([size_B])
925 ([size_C])
926 ([size_D])
927 ([size_E])
928 ([size_F])
929 ([size_G])
930 ([size_H])
931 ([size_I])
932 ([size_J])
933 ([size_K])
934 ([size_L])
935 ([size_M])
936 ;
937

938 [size_A]
939 (team)

APPENDIX C. GRAMMAR 129

940 (teams)
941 ;
942

943 [size_B]
944 (squad)
945 (squads)
946 ;
947

948 [size_C]
949 (section)
950 (sections)
951 ;
952

953 [size_D]
954 (platoon)
955 (platoons)
956 ;
957

958 [size_E]
959 (company)
960 (companies)
961 ;
962

963 [size_F]
964 (battalion)
965 (battalions)
966 ;
967

968 [size_G]
969 (regiment)
970 (regiments)
971 ;
972

973 [size_H]
974 (brigade)
975 (brigades)
976 ;
977

978 [size_I]
979 (division)
980 (divisions)
981 ;
982

983 [size_J]
984 (corps)
985 (corpses)
986 ;
987

988 [size_K]
989 (army)
990 (armies)
991 ;
992

993 [size_L]

130

994 (army group)
995 (army groups)
996 ;
997

998 [size_M]
999 (region)

1000 (regions)
1001 ;
1002

1003 [unittype]
1004 ([unittype_UCA])
1005 ([unittype_UCAA])
1006 ([unittype_UCV])
1007 ([unittype_UCI])
1008 ([unittype_UCE])
1009 ([unittype_UCF])
1010 ([unittype_UCR])
1011 ([unittype_XXX])
1012 ;
1013

1014 [unittype_UCA]
1015 (armor)
1016 (armour)
1017 (armors)
1018 (armours)
1019 ;
1020

1021 [unittype_UCAA]
1022 (anti armor)
1023 (anti-armor)
1024 (anti armour)
1025 (anti-armour)
1026 (anti armors)
1027 (anti-armors)
1028 (anti armours)
1029 (anti-armours)
1030 ;
1031

1032 [unittype_UCV]
1033 (aviation)
1034 (aviations)
1035 ;
1036

1037 [unittype_UCI]
1038 (infantry)
1039 (infantries)
1040 ;
1041

1042 [unittype_UCE]
1043 (engineer)
1044 (engineers)
1045 ;
1046

1047 [unittype_UCF]

APPENDIX C. GRAMMAR 131

1048 (field artillery)
1049 (field artilleries)
1050 ;
1051

1052 [unittype_UCR]
1053 (reconnaissance)
1054 (recon)
1055 (recons)
1056 ;
1057

1058 [unittype_XXX]
1059 (robot)
1060 (robotic)
1061 (robots)
1062 ;
1063 [quit]
1064 (quit)
1065 (exit)
1066 (*good bye)
1067 (close application)
1068 ;
1069 [rotate]
1070 (rotate)
1071 (turn)
1072 ;
1073

1074 [rotate_direction]
1075 ([left])
1076 ([right])
1077 ;
1078

1079 [degrees]
1080 (+[Number] *degrees)
1081 ;
1082

1083 [left]
1084 (counterclockwise)
1085 (left)
1086 ;
1087

1088 [right]
1089 (clockwise)
1090 (right)
1091 ;
1092 [stop]
1093 (stop)
1094 (halt)
1095 (hold)
1096 (wait)
1097 ;
1098 [action]
1099 ([destroy])
1100 ([find])
1101 ;

132

1102 [put]
1103 (put)
1104 (move)
1105 (relocate)
1106 (transport)
1107 ;
1108 [destroy]
1109 (destroy)
1110 (kill)
1111 (nuke)
1112 ;
1113 [find]
1114 (find)
1115 (locate)
1116 (look for)
1117 ;
1118 [scan]
1119 (scan)
1120 (investigate)
1121 (map)
1122 ;
1123

1124 [when]
1125 ([now])
1126 ([snap])
1127 ([queue])
1128 ;
1129

1130 [now]
1131 (*right now)
1132 (immediately)
1133 (straight away)
1134 ;
1135

1136 [snap]
1137 (when i snap my fingers)
1138 ;
1139

1140 [queue]
1141 (when i say now)
1142 ;
1143

1144 [test]
1145 (test)
1146 ;
1147 [identify]
1148 (identify)
1149 (identified)
1150 (id)
1151 (i d)
1152 (information)
1153 (what is)
1154 (what’s)
1155 ;

APPENDIX C. GRAMMAR 133

1156

1157 [create]
1158 (create *A *new)
1159 (make *A *new)
1160 (*place *A new)
1161 (*put *A new)
1162 (put *A)
1163 (place *A)
1164 A
1165 (a)
1166 (an)
1167 ;
1168

1169 [delete]
1170 (delete)
1171 (remove)
1172 (scratch)
1173 (erase)
1174 ;

134

Appendix D

Fusion and Dialog Manager
Configuration

1 <fusion>
2

3 <!-- ** -->
4 <frame name="rotate" test="rotate" uses="rotate">
5 <slot name="direction">
6 <source select="rotate/rotate_direction/*" />
7 </slot>
8 <slot name="angle">
9 <source select="rotate/degrees">

10 <resolve resolver="distanceResolver" />
11 </source>
12 </slot>
13

14 <slot name="speed">
15 <source select="rotate/speed">
16 <resolve resolver="rotationSpeedResolver" />
17 </source>
18 </slot>
19

20 <action language="javascript">
21 var angle = 90;
22 var speed = 400;
23 // If just "turn" is said, assume turn all the way around (180 degrees)
24 if (!frame.direction && !frame.angle) angle = 180;
25 // cancel any movements
26 application.api.transSpeed = 0;
27 if (frame.angle) angle = frame.angle;
28 if (frame.speed) speed = frame.speed;
29 if (frame.direction && frame.direction.toLowerCase().equals("right")) angle = -angle;
30

31 var xml = ’<rotate>’;
32 if (frame.speed) xml += ’<speed>’ + speed + ’</speed>’;
33 xml += ’<direction>’ + (angle > 0 ? "left" : "right") + ’</direction>’;
34 xml += ’<angle>’ + java.lang.Math.abs(angle) + ’</angle>’;
35 xml += ’</rotate>’;

135

136

36 session.speak(xml);
37

38 application.api.rotate(angle, speed);
39 </action>
40 </frame>
41

42 <!-- ** -->
43 <!-- A frame to move a glyph. -->
44 <frame name="move" test="move and ((move/where) or (move/direction) or (move/speed))" uses="move">
45 <slot name="destination" required="true">
46 <source select="move/where/deictic">
47 <!-- The resolver gets as input the tree fragment with
48 top-level node deictic. Its job is to transform
49 it and return the possible tree fragments replacing
50 the "deictic" node, along with confidence scores
51 -->
52 <resolve resolver="eyeLocationResolver" />
53 <resolve resolver="mouseLocationResolver" />
54 </source>
55 <source select="move/where/location">
56 <resolve resolver="coordinateResolver" />
57 </source>
58 <source select="move/where/named_location">
59 <resolve resolver="namedLocationResolver">
60 <element name="name"><values resolver="spellingResolver" select="@value"/></element>
61 </resolve>
62 </source>
63 <source select="move/where/home">
64 <resolve resolver="homeResolver" />
65 </source>
66 </slot>
67 <slot name="glyph">
68 <source select="move/what/anaph">
69 <resolve resolver="mouseObjectResolver" />
70 <resolve resolver="eyeObjectResolver" />
71 <resolve resolver="dialogObjectResolver" weight="0.1"/>
72 </source>
73 <source select="move/what/unit">
74 <resolve resolver="unitResolver" />
75 </source>
76 </slot>
77 <slot name="direction">
78 <source select="move/direction/*" />
79 </slot>
80 <slot name="distance">
81 <source select="move/distance">
82 <resolve resolver="distanceResolver" />
83 </source>
84 </slot>
85 <slot name="speed">
86 <source select="move/speed">
87 <resolve resolver="speedResolver" />
88 </source>
89 </slot>

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 137

90 <slot name="time" required="true">
91 <source select="task/when" />
92 </slot>
93

94 <action language="javascript">
95 var robot;
96 if (frame.glyph) { // move the glyph
97 // What’s the glyph’s type?
98 if (frame.glyph.glyph.model.nodeName.equals(’robot’)) {
99 // special action

100 robot = glyph.glyph.model;
101 } else {
102 if (frame.destination) {
103 java.lang.System.out.println("Moving glyph, robot = " + robot);
104 frame.glyph.location = frame.destination;
105 } else {
106 session.speak(’<missing><frame>move</frame><slot>destination</slot></missing>’);
107 // return "missing";
108 }
109 }
110 } else {
111 robot = application.api.activeRobot;
112 }
113 if (robot) {
114 java.lang.System.out.println("Moving robot " + robot);
115 application.api.activeRobot = robot;
116 // move the active robot
117 // cancel any rotations
118 application.api.rotSpeed = 0;
119 var speed = 200;
120 if (frame.speed) speed = frame.speed;
121 if (frame.distance) {
122 var distance = frame.distance;
123 var direction = frame.direction.toLowerCase();
124 if (frame.direction && direction.equals("backward") || direction.equals("back")) distance = -distance;
125

126 var xml = ’<move>’;
127 xml += ’<speed>’ + speed + ’</speed>’;
128 xml += ’<direction>’ + (distance > 0 ? "forward" : "back") + ’</direction>’;
129 xml += ’<distance>’ + java.lang.Math.abs(distance) + ’</distance>’;
130 xml += ’</move>’;
131 session.speak(xml);
132

133 application.api.travel(distance, speed);
134 } else {
135 application.api.transSpeed = speed;
136 if (frame.destination) {
137 application.api.travelTo(frame.destination);
138 } else if (frame.direction) {
139 var direction = frame.direction.toLowerCase();
140

141 var xml = ’<move>’;
142 xml += ’<speed>’ + speed + ’</speed>’;
143 xml += ’<direction>’ + (direction) + ’</direction>’;

138

144 xml += ’</move>’;
145 session.speak(xml);
146

147 if (direction.equals("forward")) {
148 application.api.back = false;
149 application.api.forward = true;
150 } else
151 if (direction.equals("backward") || direction.equals("back")) {
152 application.api.forward = false;
153 application.api.back = true;
154 }
155 } else {
156 session.speak(’<missing><frame>move</frame><slot>destination</slot></missing>’);
157 // return "missing";
158 }
159 }
160 }
161 </action>
162 </frame>
163

164 <!-- ** -->
165 <!-- A frame to stop the robot. This resets the forward, backward,
166 - left, and right fields to 0
167 -->
168 <frame name="stop" test="stop" uses="stop">
169 <action language="javascript">
170 session.speak(’<stop />’);
171 application.api.forward = false;
172 application.api.back = false;
173 application.api.left = false;
174 application.api.right = false;
175 </action>
176 </frame>
177

178 <!-- ** -->
179 <!-- A frame to identify a unit, or the active robot
180 -->
181 <frame name="identify" test="identify" uses="identify">
182 <slot name="glyph">
183 <source select="identify/anaph" weight="1.0">
184 <resolve resolver="mouseObjectResolver" />
185 <resolve resolver="eyeObjectResolver" />
186 </source>
187 <source select="identify" weight="0.5"> <!-- last resort type thing, in case the anaphor was misrecognized -->
188 <resolve resolver="mouseObjectResolver" />
189 <resolve resolver="eyeObjectResolver" />
190 <resolve resolver="dialogObjectResolver" />
191 </source>
192 </slot>
193 <action language="javascript">
194 java.lang.System.out.println("Unit is " + frame.glyph);
195 var UFormUtils = Packages.flatscape.util.UFormUtils;
196 if (frame.glyph) {
197 var locatable = frame.glyph;

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 139

198 var unit = frame.glyph.glyph;
199

200 var model = unit.model;
201 var loc = locatable.location;
202 // identify a particular unit
203 session.speak(’<identify><unittype>’ + UFormUtils.getProperty(model, ’unittype’, ’’).substring(2) + ’</unittype><unitsize>’ + UFormUtils.getProperty(model, ’size’, ’’) + ’</unitsize><affiliation>’ + UFormUtils.getProperty(model, ’affiliation’, ’’) + ’</affiliation><location><x>’ + loc.x + ’</x><y>’ + loc.y + ’</y></location></identify>’);
204 } else {
205 // identify the currently selected robot
206 if (application.api.name != null)
207 session.speak(’<robot><name>’ + application.api.name + ’</name></robot>’);
208 }
209 </action>
210 </frame>
211

212 <!-- ** -->
213 -->
214 <frame name="create" test="create/unit or create/where" uses="create">
215 <slot name="affiliation">
216 <source select="create/unit/affiliation/*">
217 <resolve resolver="affiliationResolver" />
218 </source>
219 <source select="create" priority="2">
220 <resolve resolver="affiliationHistoryResolver" weight="0.1" />
221 </source>
222 </slot>
223 <slot name="unittype">
224 <source select="create/unit/unittype/*">
225 <resolve resolver="unittypeResolver" />
226 </source>
227 <source select="create" priority="2">
228 <resolve resolver="unittypeHistoryResolver" weight="0.1" />
229 </source>
230 </slot>
231 <slot name="size">
232 <source select="create/unit/size/*">
233 <resolve resolver="unitsizeResolver" />
234 </source>
235 <source select="create" priority="2">
236 <resolve resolver="unitsizeHistoryResolver" weight="0.1" />
237 </source>
238 </slot>
239 <slot name="location">
240 <source select="create/where/deictic" priority="1">
241 <resolve resolver="mouseLocationResolver" />
242 <resolve resolver="eyeLocationResolver" />
243 </source>
244 <source select="create/where/location" priority="1">
245 <resolve resolver="coordinateResolver" />
246 </source>
247 <source select="create" priority="2">
248 <resolve resolver="mouseLocationResolver" weight="0.3" />
249 <resolve resolver="eyeLocationResolver" weight="0.3" />
250 <resolve resolver="locationHistoryResolver" weight="0.6" />
251 </source>

140

252 </slot>
253 <action language="javascript">
254 var text = ’’;
255 var unittype = ’’;
256 var size = ’’;
257 var affiliation = ’’;
258

259 if (frame.unittype) {
260 text += ’<unittype>’ + frame.unittype.substring(2) + ’</unittype>’;
261 unittype = frame.unittype;
262 }
263 if (frame.size) {
264 text += ’<unitsize>’ + frame.size + ’</unitsize>’;
265 size = frame.size;
266 }
267 if (frame.affiliation) {
268 text += ’<affiliation>’ + frame.affiliation + ’</affiliation>’;
269 affiliation = frame.affiliation;
270 }
271 if (!frame.unittype) {
272 session.speak("<missing><frame>create</frame><slot>unittype</slot></missing>");
273 // return "missing";
274 } else {
275 if (!frame.location) {
276 session.speak("<missing><frame>location</frame><slot>location</slot></missing>");
277 // return "missing";
278 }
279 session.speak(’<create>’ + text + ’</create>’);
280 application.api.createUnit(affiliation, unittype, size, frame.location.x, frame.location.y);
281 }
282 </action>
283 </frame>
284

285 <!-- ** -->
286 <!-- A frame to delete a glyph
287 -->
288 <frame name="delete" test="delete/delete" uses="delete">
289 <slot name="glyph">
290 <source select="delete/what/anaph">
291 <resolve resolver="mouseObjectResolver" />
292 <resolve resolver="eyeObjectResolver" />
293 </source>
294 <source select="delete/what/unit">
295 <resolve resolver="unitResolver" />
296 </source>
297 <source select="delete" priority="2">
298 <resolve resolver="dialogObjectResolver" weight="0.1" />
299 </source>
300 </slot>
301 <action language="javascript">
302 if (frame.glyph) {
303 application.api.deleteGlyph(frame.glyph.glyph);
304 } else {
305 session.speak(’<missing><frame>delete</frame><slot>glyph</slot></missing>’);

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 141

306 // return "missing";
307 }
308 </action>
309 </frame>
310 <!-- ** -->
311 <!-- A frame to report battery power
312 -->
313 <frame name="battery" test="battery" uses="battery">
314 <slot name="glyph">
315 <source select="identify/anaph">
316 <resolve resolver="mouseObjectResolver" />
317 <resolve resolver="eyeObjectResolver" />
318 </source>
319 </slot>
320 <action language="javascript">
321 if (frame.unit) {
322 // report for a particular unit
323 } else {
324 // report battery of the currently selected robot
325 session.speak(’<battery><name>’ + application.api.name + "</name><level>" + application.api.battery + "</level></battery>);
326 }
327 </action>
328 </frame>
329

330 <!-- ** -->
331 <frame name="eyetracker" test="eyetracker" uses="eyetracker">
332 <slot name="reset">
333 <source select="eyetracker/eye_reset" />
334 </slot>
335 <slot name="calibrate">
336 <source select="eyetracker/eye_calibrate" />
337 </slot>
338 <slot name="next">
339 <source select="eyetracker/eye_next_point" />
340 </slot>
341 <slot name="output">
342 <source select="eyetracker/eye_output" />
343 </slot>
344 <slot name="camera">
345 <source select="eyetracker/camera" />
346 </slot>
347 <slot name="adjust">
348 <source select="eyetracker/adjust" />
349 </slot>
350

351 <action language="javascript">
352 java.lang.System.out.println("frame == " + frame);
353 java.lang.System.out.println("frame.calibrate == " + frame.calibrate);
354 // This could throw a null pointer exception in a lot of places, but since
355 // we define everything below it should all be good
356 var eyeTracker = session.getContextProviderPool().get("eyeTracker").getSourceContextProvider().getDevice();
357 if (frame.reset) {
358 java.lang.System.out.println("Resetting eye tracker");
359 eyeTracker.reset();

142

360 }
361 if (frame.calibrate) {
362 java.lang.System.out.println("Calibrating eye tracker");
363 eyeTracker.calibrate();
364 }
365 if (frame.next) {
366 java.lang.System.out.println("Jumping to next calibration point");
367 eyeTracker.next();
368 }
369 if (frame.output) {
370 java.lang.System.out.println("Starting eye tracking");
371 eyeTracker.output();
372 }
373 if (frame.toggle) {
374 eyeTracker.toggle();
375 }
376 if (frame.camera) {
377 if (frame.camera.left)
378 eyeTracker.cameraLeft();
379 if (frame.camera.right)
380 eyeTracker.cameraRight();
381 if (frame.camera.up)
382 eyeTracker.cameraUp();
383 if (frame.camera.down)
384 eyeTracker.cameraDown();
385 if (frame.camera.left)
386 eyeTracker.cameraLeft();
387 }
388 if (frame.adjust) {
389 if (frame.adjust.left)
390 eyeTracker.adjustLeft();
391 if (frame.adjust.right)
392 eyeTracker.adjustRight();
393 if (frame.adjust.up)
394 eyeTracker.adjustUp();
395 if (frame.adjust.down)
396 eyeTracker.adjustDown();
397 if (frame.adjust.left)
398 eyeTracker.adjustLeft();
399 }
400 </action>
401 </frame>
402

403 <!-- ** -->
404 <frame name="destroy" test="task/action/destroy" uses="destroy">
405 <slot name="object" required="true">
406 <source select="task/what/anaph" mode="support">
407 <resolve resolver="mouseObjectResolver" weight="0.6" />
408 <resolve resolver="eyeObjectResolver" weight="0.3" />
409 </source>
410 </slot>
411 <slot name="time">
412 <source select="task/when" />
413 </slot>

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 143

414

415 </frame>
416

417

418 <!-- ** -->
419 <frame name="connect" test="connect/connect" uses="connect">
420 <slot name="map">
421 <source select="connect/map_name">
422 <resolve resolver="spellingResolver" />
423 </source>
424 </slot>
425 <action language="javascript">
426 var map = "core7";
427 if (frame.map) map = frame.map;
428 session.speak("<open>" + map + ".xml</open>");
429 application.api.openMap(map + ".xml");
430 </action>
431 </frame>
432

433 <!-- ** -->
434 <frame name="new" test="connect/new_document" uses="connect">
435 <action language="javascript">
436 session.speak("<new></new>");
437 application.api.newMap();
438 </action>
439 </frame>
440

441 <!-- ** -->
442 <frame name="login" test="login" uses="login">
443 <slot name="login">
444 <source select="login/login" />
445 </slot>
446 <slot name="logout">
447 <source select="login/logout" />
448 </slot>
449 <action language="javascript">
450 <!--
451 - Log in or out of Disciple
452 -->
453 if (frame.login) {
454 session.speak(’<login />’);
455 application.api.logon();
456 }
457 if (frame.logout) {
458 session.speak(’<logout />’);
459 application.api.logoff();
460 }
461 </action>
462 </frame>
463

464 <!-- ** -->
465 <frame name="control" test="control" uses="control">
466 <slot name="direct">
467 <source select="control/direct_control" />

144

468 </slot>
469 <slot name="autonomous">
470 <source select="control/autonomous" />
471 </slot>
472 <action language="javascript">
473 if (frame.direct) {
474 if (application.api.controlState) {
475 session.speak(’<direct-control repeat="true" />’);
476 } else {
477 session.speak(’<direct-control />’);
478 }
479 application.api.controlState = true;
480 }
481 if (frame.autonomous) {
482 if (!application.api.controlState) {
483 session.speak(’<autonomous repeat="true" />’);
484 } else {
485 session.speak(’<autonomous />’);
486 }
487 application.api.controlState = false;
488 }
489 </action>
490 </frame>
491

492 <!-- ** -->
493 <!-- it seems that natural language for panning is, unlike
494 that for tilting and zooming, absolute in its "amount"
495 specifications, that is, "look left" means look left absolutely,
496 not left relative to where you are looking now. Testing
497 with real users will show whether this is correct, but for
498 now we assume it
499 -->
500 <frame name="pan" test="camera_pan" uses="camera_pan">
501 <slot name="relative">
502 <source select="camera_pan/relative" />
503 </slot>
504 <slot name="direction">
505 <source select="camera_pan/pan_direction/*" />
506 </slot>
507 <slot name="amount">
508 <source select="camera_pan/amount">
509 <resolve resolver="panAmountResolver" />
510 </source>
511 </slot>
512 <action language="javascript">
513 amount = 90;
514 if (frame.amount) amount = frame.amount;
515 if (frame.relative) {
516 // average between what we have now and
517 // the extreme. Amount determines the
518 // weighing factor
519 if (frame.direction == "left")
520 application.api.pan = (amount * -90 + (90-amount) * application.api.pan)/90;
521 if (frame.direction == "right")

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 145

522 application.api.pan = (amount * 90 + (90-amount) * application.api.pan)/90;
523 if (frame.direction == "mid")
524 application.api.pan = ((90 - amount) * application.api.pan)/90;
525 } else {
526 if (frame.direction == "left")
527 application.api.pan = -amount;
528 if (frame.direction == "right")
529 application.api.pan = amount;
530 if (frame.direction == "mid")
531 application.api.pan = 0;
532 }
533 </action>
534 </frame>
535

536 <!-- ** -->
537 <frame name="tilt" test="camera_tilt" uses="camera_tilt">
538 <slot name="direction">
539 <source select="camera_tilt/tilt_direction/*" />
540 </slot>
541 <slot name="amount">
542 <source select="camera_tilt/amount">
543 <resolve resolver="tiltAmountResolver" />
544 </source>
545 </slot>
546 <action language="javascript">
547 amount = 10;
548 if (frame.amount) amount = frame.amount;
549 if (frame.direction == "up")
550 application.api.tilt = Number(application.api.tilt) + amount;
551 if (frame.direction == "down")
552 application.api.tilt = Number(application.api.tilt) - amount;
553 </action>
554 </frame>
555

556 <!-- ** -->
557 <frame name="zoom" test="camera_zoom/camera_zoom" uses="camera_zoom">
558 <slot name="zoom">
559 <source select="camera_zoom/zoom_inout/*" />
560 </slot>
561 <slot name="amount">
562 <source select="camera_zoom/amount">
563 <resolve resolver="zoomAmountResolver" />
564 </source>
565 </slot>
566 <action language="javascript">
567 amount = 300;
568 if (frame.amount) amount = frame.amount;
569 if (frame.zoom == "zoom_out")
570 application.api.zoom = Number(application.api.zoom) - amount;
571 if (frame.zoom == "zoom_in")
572 application.api.zoom = Number(application.api.zoom) + amount;
573 </action>
574 </frame>
575

146

576 <!-- ** -->
577 <frame name="visual" test="camera_visual" uses="camera_visual">
578 <slot name="on">
579 <source select="camera_visual/camera_on" />
580 </slot>
581 <slot name="off">
582 <source select="camera_visual/camera_off" />
583 </slot>
584 <action language="javascript">
585 if (frame.on) {
586 session.speak(’<video mode="on" />’);
587 application.api.video = true;
588 } else {
589 session.speak(’<video mode="off" />’);
590 application.api.video = false;
591 }
592 </action>
593 </frame>
594

595 <!-- ** -->
596 <frame name="quit" test="quit" uses="quit">
597 <action language="javascript">
598 session.speak(’<quit />’);
599 application.api.quit();
600 </action>
601 </frame>
602

603 <!-- ** -->
604 <frame name="mission" test="mission" uses="mission">
605 <slot name="name">
606 <source select="mission/mission_name">
607 <resolve resolver="spellingResolver" />
608 </source>
609 </slot>
610 <slot name="type">
611 <source select="mission/mission_type/mission_type_spec/*">
612 <resolve resolver="missionTypeResolver" />
613 </source>
614 </slot>
615 <slot name="homebase">
616 <source select="mission/mission_homebase/where/deictic">
617 <resolve resolver="mouseLocationResolver" />
618 <resolve resolver="eyeLocationResolver" />
619 </source>
620 <source select="mission/mission_homebase/anaph">
621 <resolve resolver="mouseLocationResolver" />
622 <resolve resolver="eyeLocationResolver" />
623 </source>
624 <source select="mission/mission_homebase/where/location">
625 <resolve resolver="coordinateResolver" />
626 </source>
627 </slot>
628 <slot name="resupplyPoint">
629 <source select="mission/mission_resupply/where/deictic">

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 147

630 <resolve resolver="mouseLocationResolver" />
631 <resolve resolver="eyeLocationResolver" />
632 </source>
633 <source select="mission/mission_resupply/anaph">
634 <resolve resolver="mouseLocationResolver" />
635 <resolve resolver="eyeLocationResolver" />
636 </source>
637 <source select="mission/mission_resupply/where/location">
638 <resolve resolver="coordinateResolver" />
639 </source>
640 </slot>
641 <action language="javascript">
642 var missionController = application.api.missionController;
643 var nameSet, typeSet, homebaseSet, resupplyPointSet;
644 if (frame.name) {
645 missionController.missionName = frame.name;
646 nameSet = true;
647 }
648 if (frame.type) {
649 missionController.missionType = frame.type;
650 typeSet = true;
651 }
652 if (frame.homebase) {
653 missionController.homeBase = frame.homebase;
654 homebaseSet = true;
655 }
656 if (frame.resupplyPoint) {
657 missionController.resupplyPoint = frame.resupplyPoint;
658 resupplyPointSet = true;
659 }
660 var text = ’<mission-type set="’ + typeSet + ’">’ + missionController.missionType + ’</mission-type>’;
661 text += ’<name set="’ + nameSet + ’">’ + missionController.missionName + ’</name>’;
662 if (homebaseSet) text += ’<homebase><x>’ + missionController.homeBase.x + ’</x><y>’ + missionController.homeBase.y + ’</y></homebase>’;
663 if (resupplyPointSet) text += ’<resupply><x>’ + missionController.resupplyPoint.x + ’</x><y>’ + missionController.resupplyPoint.y + ’</y></resupply>’;
664 session.speak(’<mission>’ + text + ’</mission>’);
665 </action>
666 </frame>
667

668 <!-- ** -->
669 <frame name="mission_control" test="mission_control/mission_start or mission_control/mission_stop or mission_control/mission_pause or mission_control/mission_resume" uses="mission_control">
670 <slot name="start">
671 <source select="mission_control/mission_start" />
672 </slot>
673 <slot name="stop">
674 <source select="mission_control/mission_stop" />
675 </slot>
676 <slot name="pause">
677 <source select="mission_control/mission_pause" />
678 </slot>
679 <slot name="resume">
680 <source select="mission_control/mission_resume" />
681 </slot>
682 <action language="javascript">
683 var missionController = application.api.missionController;

148

684 if (frame.start) {
685 missionController.sendMission();
686 session.speak(’<mission-start><name>’ + missionController.missionName + ’</name><mission-type>’ + missionController.missionType + ’</mission-type></mission-start>’);
687 }
688 if (frame.stop) {
689 missionController.cancelMission();
690 session.speak(’<mission-stop><name>’ + missionController.missionName + ’</name><mission-type>’ + missionController.missionType + ’</mission-type></mission-stop>’);
691 application.api.controlState = true;
692 }
693 if (frame.pause) {
694 application.api.controlState = true;
695 session.speak(’<mission-pause><name>’ + missionController.missionName + ’</name><mission-type>’ + missionController.missionType + ’</mission-type></mission-pause>’);
696 }
697 if (frame.resume) {
698 application.api.controlState = false;
699 session.speak(’<mission-resume><name>’ + missionController.missionName + ’</name><mission-type>’ + missionController.missionType + ’</mission-type></mission-resume>’);
700 }
701 </action>
702 </frame>
703

704 <!-- ** -->
705 <frame name="name" test="(name/call and name/name) or (name/what and name/name) or (name/where and name/name)" uses="name">
706 <slot name="glyph">
707 <source select="name/what/anaph">
708 <resolve resolver="mouseObjectResolver" />
709 <resolve resolver="eyeObjectResolver" />
710 <resolve resolver="dialogObjectResolver" />
711 </source>
712 <source select="name/what/unit">
713 <resolve resolver="unitResolver" />
714 </source>
715 </slot>
716 <slot name="location">
717 <source select="name/where/deictic">
718 <resolve resolver="mouseLocationResolver" />
719 <resolve resolver="eyeLocationResolver" />
720 </source>
721 <source select="name/what/anaph">
722 <resolve resolver="mouseLocationResolver" />
723 <resolve resolver="eyeLocationResolver" />
724 </source>
725 <source select="name/where/location">
726 <resolve resolver="coordinateResolver" />
727 </source>
728 </slot>
729 <slot name="name">
730 <source select="name/name">
731 <resolve resolver="spellingResolver" />
732 </source>
733 </slot>
734 <action language="javascript">
735 if (frame.glyph)
736 application.api.nameGlyph(frame.glyph, frame.name);
737 else if (frame.location)

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 149

738 application.api.nameLocation(frame.location, frame.name);
739 </action>
740 </frame>
741 <!-- ** -->
742 <frame name="mission_task" test="mission_task/task_type" uses="mission_task">
743 <slot name="task">
744 <source select="mission_task/task_type/*">
745 <resolve resolver="taskTypeResolver" />
746 </source>
747 </slot>
748 <slot name="glyph">
749 <source select="mission_task/what/anaph" weight="1.0">
750 <resolve resolver="mouseObjectResolver" />
751 <resolve resolver="eyeObjectResolver" />
752 </source>
753 </slot>
754 <slot name="location">
755 <source select="mission_task/where/deictic">
756 <resolve resolver="mouseLocationResolver" />
757 <resolve resolver="eyeLocationResolver" />
758 </source>
759 <source select="mission_task/where/location">
760 <resolve resolver="coordinateResolver" />
761 </source>
762 </slot>
763 <slot name="priority">
764 <source select="mission_task/priority">
765 </source>
766 </slot>
767 <action language="javascript">
768 var missionController = application.api.missionController;
769 var unit;
770 if (frame.unit) unit = frame.unit.glyph.model;
771 else unit = application.api.activeRobot;
772 var task = new Packages.flatscape.robot.Task();
773 if (frame.task.equals("recon")) task.taskType = task.RECON;
774 if (frame.task.equals("map")) task.taskType = task.MAP;
775 if (frame.task.equals("destroy")) task.taskType = task.DESTROY;
776 java.lang.System.out.println("location = " + frame.location);
777 task.locationX = frame.location.x;
778 task.locationY = frame.location.y;
779 if (frame.priority) task.priority = frame.priority;
780 missionController.addUnitTask(unit, task);
781 </action>
782 </frame>
783

784

785 <!-- *** -->
786 <!-- The anonymous frame is a generic catch-all frame used in
787 case of ambiguity. If more than one frame applies,
788 and no frame can be continued based on the previous
789 frame, this frame is instantiated. Basically,
790 this frame type has preference over the others.
791 Usually the only thing to be done is to send

150

792 output to the natural language generator, possibly
793 based on the contents of the slots.
794 The main thing is that the dialog history is
795 updated with the slots here; otherwise they would
796 be lost.
797 -->
798 <frame name="" test="ellipsis">
799 <slot name="location">
800 <source select="ellipsis/where/deictic">
801 <resolve resolver="mouseLocationResolver" />
802 <resolve resolver="eyeLocationResolver" />
803 </source>
804 <source select="ellipsis/where/location">
805 <resolve resolver="coordinateResolver" />
806 </source>
807 <source select="move/where/named_location">
808 <resolve resolver="namedLocationResolver">
809 <element name="name"><values resolver="spellingResolver" select="@value"/></element>
810 </resolve>
811 </source>
812 </slot>
813 <slot name="glyph">
814 <source select="ellipsis/what/anaph">
815 <resolve resolver="mouseObjectResolver" />
816 <resolve resolver="eyeObjectResolver" />
817 <resolve resolver="dialogObjectResolver" />
818 </source>
819 <source select="ellipsis/what/unit">
820 <resolve resolver="unitResolver" />
821 </source>
822 </slot>
823 <action language="JavaScript">
824 var text = ’’;
825 if (frame.glyph) text += ’<glyph />’;
826 if (frame.location) text += ’<location />’;
827 session.speak(’<ambiguous>’ + text + ’</ambiguous>’);
828 </action>
829 </frame>
830

831 <!-- ** -->
832 <!-- Resolvers are the access to other modalities, dialog context, etc. -->
833 <!-- These are used to resolve certain slots to other slots -->
834 <resolver id="eyeObjectResolver" class="edu.rutgers.caip.communicator.fusion.GeometricAnaphorResolver">
835 <!-- The time-offset paramater is user-dependent, not just application
836 dependent. Therefore, it should be defined in some user profile,
837 which isn’t known until runtime. We need some form of run-time
838 variables. Let’s define:
839 ${expression} - Expression substitution
840 expression will be a JavaScript expression that we evaluate
841 through the Bean Scripting Framework. We might prepend some code
842 to make global variables such as session and application available.
843 -->
844 <param name="interval" value="-400;400" />
845 <param name="x-offset" value="0" />

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 151

846 <param name="y-offset" value="0" />
847 <!--param name="radius" value="1.5cm" /-->
848 <param name="radius" value="20" />
849 <input name="points" contextprovider="eyeTracker" />
850 <param name="locator" value="glyphs" />
851 </resolver>
852

853 <resolver id="mouseObjectResolver" class="edu.rutgers.caip.communicator.fusion.GeometricAnaphorResolver">
854 <param name="interval" value="-400;400" />
855 <param name="x-offset" value="0" />
856 <param name="y-offset" value="0" />
857 <param name="radius" value="1" />
858 <input name="points" contextprovider="mouse" />
859 <param name="locator" value="glyphs" />
860 </resolver>
861

862 <resolver id="eyeLocationResolver" class="edu.rutgers.caip.communicator.fusion.DeicticResolver">
863 <param name="interval" value="-400;400" />
864 <param name="x-offset" value="0" />
865 <param name="y-offset" value="0" />
866 <param name="ignore" value="(0,0)" />
867 <input name="points" contextprovider="eyeTracker" />
868 </resolver>
869

870 <resolver id="mouseLocationResolver" class="edu.rutgers.caip.communicator.fusion.DeicticResolver">
871 <param name="interval" value="-400;400" />
872 <param name="x-offset" value="0" />
873 <param name="y-offset" value="0" />
874 <param name="ignore" value="(-1,-1)" />
875 <input name="points" contextprovider="mouse" />
876 </resolver>
877

878 <resolver id="coordinateResolver" class="edu.rutgers.caip.communicator.fusion.CoordinateResolver">
879 </resolver>
880

881 <resolver id="dialogObjectResolver" class="edu.rutgers.caip.communicator.dialog.DialogContextResolver">
882 <input name="dialog" contextprovider="_DIALOG" />
883 <param name="slot" value="glyph" />
884 <param name="encoding" value="object" />
885 </resolver>
886

887 <resolver id="distanceResolver" class="edu.rutgers.caip.communicator.robot.DistanceResolver">
888 </resolver>
889

890 <resolver id="panAmountResolver" class="edu.rutgers.caip.communicator.robot.DistanceResolver">
891 <param name="constants" value="small_amount => 30; medium_amount => 60; large_amount => 90" />
892 </resolver>
893

894 <resolver id="tiltAmountResolver" class="edu.rutgers.caip.communicator.robot.DistanceResolver">
895 <param name="constants" value="small_amount => 5; medium_amount => 10; large_amount => 20" />
896 </resolver>
897

898 <resolver id="zoomAmountResolver" class="edu.rutgers.caip.communicator.robot.DistanceResolver">
899 <param name="constants" value="small_amount => 300; medium_amount => 600; large_amount => 1000" />

152

900 </resolver>
901

902 <resolver id="speedResolver" class="edu.rutgers.caip.communicator.robot.SpeedResolver">
903 <param name="distance" value="mm" />
904 <param name="time" value="s" />
905 <param name="constants" value="slow_speed => 100; medium_speed => 500; fast_speed => 800; max_speed => 2000" />
906 </resolver>
907

908 <resolver id="rotationSpeedResolver" class="edu.rutgers.caip.communicator.robot.SpeedResolver">
909 <param name="distance" value="deg" />
910 <param name="time" value="s" />
911 <param name="constants" value="slow_speed => 100; medium_speed => 500; fast_speed => 800; max_speed => 1000" />
912 </resolver>
913

914 <resolver id="colorResolver" class="edu.rutgers.caip.communicator.fusion.NameResolver">
915 <param name="encoding" value="color" />
916 </resolver>
917

918 <resolver id="spellingResolver" class="edu.rutgers.caip.communicator.language.SpellingResolver" />
919

920 <resolver id="affiliationResolver" class="edu.rutgers.caip.communicator.fusion.NameResolver">
921 <param name="prefix" value="affiliation_" />
922 </resolver>
923

924 <resolver id="unittypeResolver" class="edu.rutgers.caip.communicator.fusion.NameResolver">
925 <param name="prefix" value="unittype_" />
926 </resolver>
927

928 <resolver id="missionTypeResolver" class="edu.rutgers.caip.communicator.fusion.NameResolver">
929 <param name="prefix" value="mission_" />
930 <param name="translation-table" value="_; " />
931 </resolver>
932

933 <resolver id="taskTypeResolver" class="edu.rutgers.caip.communicator.fusion.NameResolver">
934 <param name="prefix" value="task_" />
935 <param name="translation-table" value="_; " />
936 </resolver>
937

938 <resolver id="unitsizeResolver" class="edu.rutgers.caip.communicator.fusion.NameResolver">
939 <param name="prefix" value="size_" />
940 </resolver>
941

942 <resolver id="unitResolver" class="edu.rutgers.caip.communicator.fusion.ObjectResolver">
943 <param name="locator" value="glyphs" />
944 <param name="fields" value="affiliation/* => affiliation; unittype/* => unittype; size/* => size" />
945 <param name="resolvers" value="affiliation/* => affiliationResolver; unittype/* => unittypeResolver; size/* => unitsizeResolver" />
946 </resolver>
947

948 <resolver id="unitsizeHistoryResolver" class="edu.rutgers.caip.communicator.dialog.DialogContextResolver">
949 <param name="slot" value="size" />
950 <input name="dialog" contextprovider="_DIALOG" />
951 </resolver>
952

953 <resolver id="unittypeHistoryResolver" class="edu.rutgers.caip.communicator.dialog.DialogContextResolver">

APPENDIX D. FUSION AND DIALOG MANAGER CONFIGURATION 153

954 <param name="slot" value="unittype" />
955 <input name="dialog" contextprovider="_DIALOG" />
956 </resolver>
957

958 <resolver id="affiliationHistoryResolver" class="edu.rutgers.caip.communicator.dialog.DialogContextResolver">
959 <param name="slot" value="affiliation" />
960 <input name="dialog" contextprovider="_DIALOG" />
961 </resolver>
962

963 <resolver id="homeResolver" class="edu.rutgers.caip.communicator.robot.HomeResolver">
964 </resolver>
965

966 <resolver id="namedLocationResolver" class="edu.rutgers.caip.communicator.robot.LocationResolver">
967 <param name="locator" value="glyphs" />
968 <param name="fields" value="name/* => name; ’text => " />
969 </resolver>
970

971

972 <contextproviders>
973

974 <contextprovider id="eyeTracker" class="edu.rutgers.caip.communicator.fusion.BufferedContextProvider">
975 <param name="poll-interval" value="0" />
976 <param name="buffer-size" value="500" />
977 <contextprovider id="eyeClustering" class="edu.rutgers.caip.communicator.modalities.Clustering">
978 <contextprovider id="eyeTrackerSource" class="edu.rutgers.caip.communicator.modalities.EyeTracker">
979 <param name="in-port" value="COM1" />
980 <param name="out-port" value="COM2" />
981 <!--param name="in-baud" value="9600" /-->
982 <!--param name="out-baud" value="9600" /-->
983 <param name="cursor" value="on" />
984 <param name="emulate" value="off" /> <!-- "independent" or "mouse", or "off" -->
985 <param name="bounds" value="bounds" />
986 </contextprovider>
987 </contextprovider>
988 </contextprovider>
989

990 <contextprovider id="mouse" class="edu.rutgers.caip.communicator.fusion.BufferedContextProvider">
991 <param name="poll-interval" value="100" />
992 <param name="buffer-size" value="50" />
993 <contextprovider id="mouseFilter" class="edu.rutgers.caip.communicator.modalities.MouseFilter">
994 <param name="inactive-timeout" value="1000" />
995 <param name="poll-interval" value="100" />
996 <contextprovider id="mouseSource" class="edu.rutgers.caip.communicator.modalities.Mouse">
997 <param name="window" value="canvas" />
998 <param name="cursor" value="on" />
999 <param name="transform" value="flatscape-transform" />

1000 </contextprovider>
1001 </contextprovider>
1002 </contextprovider>
1003

1004 </contextproviders>
1005 </fusion>

154

Appendix E

Online Resources

I’ve made the following items available online, since that is a more convenient
way of accessing them than on paper:

• JavaDoc documentation — http://www.caip.rutgers.edu/˜fflippo/
apidoc

• Online Literature — http://www.caip.rutgers.edu/˜fflippo/
docs

155

http://www.caip.rutgers.edu/~fflippo/apidoc
http://www.caip.rutgers.edu/~fflippo/apidoc
http://www.caip.rutgers.edu/~fflippo/docs
http://www.caip.rutgers.edu/~fflippo/docs

156

Bibliography

[1] Activmedia. http://www.activmedia.com , http://robots.
activmedia.com .

[2] The Apache Jakarta Project. Bean Scripting Framework. http://
jakarta.apache.org/bsf/ .

[3] Apache Project. Xalan-java 2. http://xml.apache.org/xalan-j .

[4] Apache Project. Xerces-java. http://xml.apache.org/xerces-j .

[5] Apple. Mac OS - Speech technologies. http://www.apple.com/
macos/speech .

[6] Srinivas Bangalore and Owen Rambow. Exploiting a probabilistic hier-
archical model for generation. In Proceedings of the 18th Conference on
Computational Linguistics (COLING’2000), Saarbrucken, Germany, 2000.

[7] Lauren Baptist and Stephanie Seneff. GENESIS-II: A versatile system for
language generation in conversational system applications. In Proc. 6th
International Conference on Spoken Language Processing, Beijing, China,
Oct 2000.

[8] Steve Bett. On the number of phonemes in the English language. http:
//www.unifon.org/number-of-phonemes.html , 2001.

[9] Mark Billinghurst. Put that where? Voice and gesture at the
graphics interface. ACM SIGGRAPH Computer Graphics, 32(4), Nov
1998. http://www.siggraph.org/publications/newsletter/
v32n4/contributions/billinghurst.html .

[10] Alan W. Black, Paul Taylor, and Richard Caley. The Festival Speech Syn-
thesis System — System documentation, 1.4, for festival version 1.4.0 edi-
tion, Jun 1999.

[11] R. A. Bolt. ”Put-That-There”: Voice and gesture at the graphics inter-
face. Computer Graphics (SIGGRAPH ’80 Proceedings), 14(3):262–270,
Jul 1980.

[12] Lou Boves and Els den Os. Multimodal multilingual information services
for small mobile terminals (MUST). Technical report, EURESCOM, 2001.
EURESCOM published project result.

157

http://www.activmedia.com
http://robots.activmedia.com
http://robots.activmedia.com
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://xml.apache.org/xalan-j
http://xml.apache.org/xerces-j
http://www.apple.com/macos/speech
http://www.apple.com/macos/speech
http://www.unifon.org/number-of-phonemes.html
http://www.unifon.org/number-of-phonemes.html
http://www.siggraph.org/publications/newsletter/v32n4/contributions/billinghurst.html
http://www.siggraph.org/publications/newsletter/v32n4/contributions/billinghurst.html

158

[13] Oregon Graduate Institute Center for Spoken Language Research. Cslu
toolkit. http://cslu.cse.ogi.edu/toolkit/ .

[14] CHCC current and past research. http://www.cse.ogi.edu/CHCC/
Research/main.html .

[15] CMU Communicator. http://www.speech.cs.cmu.edu/
Communicator .

[16] M. Cohen, H. Franco, N. Morgan, D. Rumelhart, V. Abrash, and Y. Konig.
Combining neural networks and hidden Markov models. In Proceedings of
the DARPA Speech and Natural Language Workshop, Harriman, NY, 1992.

[17] M.M. Cohen, D.W. Massaro, and Clark R. Training a talking head. In
Proceedings of IEEE Fourth International Conference on Multimodal In-
terfaces (ICMI’02), Pittsburgh, Pennsylvania, October 2002.

[18] P.R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith,
L. Chen, and J. Clow. Quickset: Multimodal interaction for distributed
applications. ACM International Multimedia Conference, New York: ACM,
pages 31–40, 1997.

[19] Colorado University. Phoenix Parser User Manual. http://
communicator.colorado.edu/phoenix/Phoenix_Manual.pdf .

[20] Alistair Conkie. A robust unit selection system for speech synthesis. Joint
Meeting of ASA/EAA/DAGA, Mar 1999.

[21] The CU Communicator. http://communicator.colorado.edu .

[22] Hercules Dalianis. ASTROGEN - Aggregated deep and Surface naT-
uRal language GENerator. http://www.dsv.su.se/˜hercules/
ASTROGEN/ASTROGEN.html, 2002.

[23] Department of Speech, Music and Hearing, Royal Institute of Technology,
Stockholm, Sweden. Multimodal speech. http://www.speech.kth.
se/multimodal .

[24] J. Dowding, J. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore, , and
D. Moran. Gemini: A natural language system for spoken-language under-
standing. Communications of the ACM, 39(1):51 – 87, 1993.

[25] John Dowding, Robert Moore, Francois Andry, and Doug las Moran. Inter-
leaving syntax and semantics in an efficient bottom-up parser. In Proc. of
the 32nd Annual Meeting of the Association for Computational Linguistics,
pages 110 – 116, New Mexico State University, Las Cruces, New Mexico,
1994.

[26] Giovanni Rimassa Fabio Bellifemine, Agostino Poggi. JADE — a FIPA-
compliant agent framework. Technical report, CSELT, 1998.

[27] Paul Fernandes. Autonomous robots and their software architecture. Mas-
ter’s thesis, Rutgers University, 2002.

http://cslu.cse.ogi.edu/toolkit/
http://www.cse.ogi.edu/CHCC/Research/main.html
http://www.cse.ogi.edu/CHCC/Research/main.html
http://www.speech.cs.cmu.edu/Communicator
http://www.speech.cs.cmu.edu/Communicator
http://communicator.colorado.edu/phoenix/Phoenix_Manual.pdf
http://communicator.colorado.edu/phoenix/Phoenix_Manual.pdf
http://communicator.colorado.edu
http://www.dsv.su.se/~hercules/ASTROGEN/ASTROGEN.html
http://www.dsv.su.se/~hercules/ASTROGEN/ASTROGEN.html
http://www.speech.kth.se/multimodal
http://www.speech.kth.se/multimodal

BIBLIOGRAPHY 159

[28] Edward A. Filisko. A context resolution server for the GALAXY conver-
sational systems. Master’s thesis, Massachusetts Institute of Technology,
2002.

[29] The Foundation for Intelligent Physical Agents. http://www.fipa.org .

[30] FIPA abstract architecture specification. Technical report, FIPA, December
2002.

[31] Arne John Glenstrup and Theo Engell-Nielsen. Eye controlled media:
Present and future state, Jun 1995. Bachelor’s Thesis.

[32] D. Goddeau, H. Meng, J. Polifroni, S. Seneff, and S. Busayapongchai. A
form-based dialogue manager for spoken language applications. In Proc.
ICSLP ’96, volume 2, pages 701–704, Philadelphia, PA, 1996.

[33] Allen L. Gorin, Alicia Abella, Tirso Alonso, Giuseppe Riccardi, and
Jeremy H. Wright. Automated natural spoken dialog. Computer Mag-
azine, Apr 2002. http://www.research.att.com/˜algor/hmihy/
papers/computer_magazine.pdf .

[34] Andrew J. Hunt and Alan W. Black. Unit selection in a concatenative
speech synthesis system using a large speech database. In Proc. ICASSP-
96, Atlanta, GA, May 1996.

[35] Hyperdictionary.

[36] Koji Iwano, Satoshi Tamura, and Sadaoki Furui. Bimodal speech recogni-
tion using lip movement measured by optical-flow analysis. In Proceedings
International Workshop on Hands-Free Speech Communication, pages 187
– 190, Kyoto, Japan, 2001.

[37] E. Kaiser. Robust, finite-state parsing for spoken language understanding.
In Student Session Proceedings of ACL ’99, College Park, Maryland, Jun
1999.

[38] N. Krahnstoever, S. Kettebekov, M. Yeasin, and R. Sharma. A real-time
framework for natural multimodal interaction with large screen displays.
In Proc. of Fourth Intl. Conference on Multimodal Interfaces (ICMI 2002),
Pittsburgh, PA, USA, Oct 2002.

[39] A. Krebs, M. Ionescu, B. Dorohonceanu, and I. Marsic. The DISCIPLE
system for collaboration over the heterogeneous web. In Proceedings of the
36th Hawaiian International Conference on System Sciences (HICSS-36),
Jan 2003. 10 pages/CD-ROM.

[40] Marcus Eduardo Markiewicz and Carlos J.P. Lucena. Object oriented
framework development. ACM Crossroads, 2001.

[41] I. Marsic, A. Medl, and J.L. Flanagan. Natural communication with in-
formation systems (invited paper). Proceedings of the IEEE, 88(8):1354 –
1366, Aug 2000.

http://www.fipa.org
http://www.research.att.com/~algor/hmihy/papers/computer_magazine.pdf
http://www.research.att.com/~algor/hmihy/papers/computer_magazine.pdf

160

[42] D. L. Martin, A. J. Cheyer, and D. B. Moran. The open agent archi-
tecture: A framework for building distributed software systems. Applied
Artificial Intelligence, 13(1-2):91–128, Jan – Mar 1999. http://www.ai.
sri.com/˜cheyer/papers/oaa.pdf .

[43] Steven McCanne and Van Jacobson. vic: A flexible framework for packet
video. In Proceedings of the ACM Multimedia Conference, pages 511–522,
1995.

[44] Michael McTear. Modelling spoken dialogues with state transition dia-
grams: experiences with the cslu toolkit. In Proceedings of the 5th Interna-
tional Conference on Spoken Language Processing (ICSLP-98), pages 1223
– 1226, Sydney, Australia, 1998.

[45] Michael F. McTear. Spoken dialogue technology: enabling the conversa-
tional interface. ACM Computing Surveys, 34(1):90 – 169, Mar 2002.

[46] Microsoft. Microsoft foundation class library. http://msdn.
microsoft.com/library/en-us/vcmfc98/html/mfchm.asp .

[47] Microsoft. Mipad: Speech powered prototype to simplify communication
between users and handheld devices, May 2000. Press release.

[48] Sun Microsystems. Java media framework. http://java.sun.com/
products/java-media/jmf/ .

[49] MIT Spoken Language Systems Laboratory. The MIT TINA system.
http://www.sls.lcs.mit.edu/TINA.html .

[50] MITRE. Galaxy communicator open source toolkit. http:
//communicator.sourceforge.net/sites/MITRE/
distributions/OSTK-20021004 , Oct 2002.

[51] Gordon E. Moore. Cramming more components into integrated circuits.
Electronics, 38(8), Apr 1965.

[52] Nelson Morgan. What’s new in government-sponsored speech recognition
research. Speech Technology Magazine, 2002.

[53] Jeremy Moskowitz. Speech recognition with Windows XP.
http://www.microsoft.com/windowsxp/expertzone/columns/
moskowitz/02september23.asp , Sep 2002.

[54] Mourad Mouzit, George Popescu, Grigore Burdea, and Rares Boian. The
rutgers master ii-nd force feedback glove. In Proceedings of IEEE VR 2002
Haptics Symposium, Orlando, Florida, Mar 2002.

[55] NetByTel.com, Inc. History of speech recognition. http://www.
netbytel.com/literature/e-gram/technical3.htm .

[56] NTNU. Spoken dialog systems for telephone services. http://www.
tele.ntnu.no/projects/spodis/ .

[57] Department of Defense. Common warfighting symbology. Department of
Defense Interface Standard MIL-STD-2525B, Department of Defense, Jan
1999.

http://www.ai.sri.com/~cheyer/papers/oaa.pdf
http://www.ai.sri.com/~cheyer/papers/oaa.pdf
http://msdn.microsoft.com/library/en-us/vcmfc98/html/mfchm.asp
http://msdn.microsoft.com/library/en-us/vcmfc98/html/mfchm.asp
http://java.sun.com/products/java-media/jmf/
http://java.sun.com/products/java-media/jmf/
http://www.sls.lcs.mit.edu/TINA.html
http://communicator.sourceforge.net/sites/ MITRE/distributions/OSTK-20021004
http://communicator.sourceforge.net/sites/ MITRE/distributions/OSTK-20021004
http://communicator.sourceforge.net/sites/ MITRE/distributions/OSTK-20021004
http://www.microsoft.com/ windowsxp/ expertzone/ columns/ moskowitz/ 02september23.asp
http://www.microsoft.com/ windowsxp/ expertzone/ columns/ moskowitz/ 02september23.asp
http://www.netbytel.com/literature/e-gram/technical3.htm
http://www.netbytel.com/literature/e-gram/technical3.htm
http://www.tele.ntnu.no/projects/spodis/
http://www.tele.ntnu.no/projects/spodis/

BIBLIOGRAPHY 161

[58] OGI Center for Human-Computer Communication. The adaptive agent
architecture. http://chef.cse.ogi.edu/AAA .

[59] Oviatt. Designing robust multimodal systems for diverse users and envi-
ronments. In Workshop on universal accessibility of ubiquitous computing:
providing for the elderly, 2001.

[60] S. Oviatt, P. Cohen, L. Wu, J. Vergo, L. Duncan, B. Suhm, J. Bers, T. Holz-
man, T. Winograd, J. Landay, J. Larson, and D. Ferro. Designing the user
interface for multimodal speech and pen-based gesture applications: state-
of-the-art systems and future research directions. HCI2000, 15:263–322,
2000.

[61] Shimei Pan and Kathleen R. McKeown. Integrating language generation
with speech synthesis in a concept to speech system. http://www.ldc.
upenn.edu/acl/W/W97/W97-1204.pdf , 1997.

[62] B. Pellom, W. Ward, J. Hansen, K. Hacioglu, J. Zhang, X. Yu, and S. Prad-
han. University of colorado dialog systems for travel and navigation. In
Proceedings of the Human Language Technology Conference (HLT-2001),
San Diego, Mar 2001.

[63] James Poniewozik. Will smell-o-vision replace television? http://www.
time.com/time/reports/v21/tech/mag_smell.html .

[64] Owen Rambow, Srinivas Bangalore, and Marilyn Walker. Natural language
generation in dialog systems. In Proceedings of the First International Con-
ference on Human Language Technology Research (HLT2001), San Diego,
USA, 2001.

[65] A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Shern, K. Lenzo,
W. Xu, and A.Oh. Creating natural dialogs in the carnegie mellon com-
municator system. Proceedings of Eurospeech, 4:1531–1534, 1999.

[66] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport
protocol for real-time applications. Request for Comments — Standards
Track RFC3550, The Internet Engineering Task Force, July 2003.

[67] Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp Schmid,
and Victor Zue. Galaxy-II: A reference architecture for conversational
system development. In Proceedings of ICSLP ’98, pages 931–934, Nov
1998. http://www.sls.lcs.mit.edu/sls/publications/1998/
icslp98-galaxy.pdf .

[68] Stephanie Seneff and Joseph Polifroni. Dialogue management in the Mer-
cury flight reservation system. Presented at Satellite Dialogue Workshop,
ANLP-NAACL, Apr 2000.

[69] A. Shaikh, S. Juth, A. Medl, I. Marsic, C. Kulikowski, and J. Flanagan.
An architecture for multimodal information fusion. In Proceedings of the
Workshop on Perceptual User Interfaces, pages 91 – 93, Banff, Alberta,
Canada, Oct 1997.

http://chef.cse.ogi.edu/AAA
http://www.ldc.upenn.edu/acl/W/W97/W97-1204.pdf
http://www.ldc.upenn.edu/acl/W/W97/W97-1204.pdf
http://www.time.com/time/reports/v21/tech/mag_smell.html
http://www.time.com/time/reports/v21/tech/mag_smell.html
http://www.sls.lcs.mit.edu/sls/publications/1998/icslp98-galaxy.pdf
http://www.sls.lcs.mit.edu/sls/publications/1998/icslp98-galaxy.pdf

162

[70] Ronnie W. Smith. Practical issues in mixed-initiative natural language
dialog: An experimental perspective. In Proceedings of the 1997 AAAI
Spring Symposium on Computational Models for Mixed Initiative Interac-
tion, pages 158–162, March 1997.

[71] Spire Controls. Touch screen technology. http://www.
spirecontrols.com/touch-screen-technology.htm .

[72] SRI Artifical Intelligence Center. OAA r© news. http://www.ai.sri.
com/˜oaa/news.html .

[73] Sun Microsystems. Java speech API. http://java.sun.com/
products/java-media/speech/ .

[74] Sun Microsystems. JNI — Java Native Interface. http://java.sun.
com/products/jdk/1.2/docs/guide/jni/ .

[75] Sun Microsystems. Java speech grammar format specification.
http://java.sun.com/products/java-media/speech/
forDevelopers/JSGF/ , Oct 1998.

[76] Sun Microsystems. http://java.sun.com/products/java-media/
speech/forDevelopers/JSML , 1999.

[77] Sun Microsystems. http://www.w3.org/TR/jsml , 2000.

[78] Paul Taylor and Amy Isard. Ssml: A speech synthesis markup language.
Speech Communication, 21(1–2):123–133, 1997.

[79] The Darpa Communicator Team. Galaxy communicator 4.0 documenta-
tion. http://fofoca.mitre.org/sites/MITRE/distributions/
GC4point0.pdf , 2002.

[80] D. Toledano, S.B. Wang, S. Cyphers, and J. Glass. Extending the galaxy
communicator architecture for multimodal interaction research. submitted
to ACM Trans. on Human-Computer Interaction, Aug 2002.

[81] Trolltech. Qt 3.1 whitepaper. http://www.trolltech.com/
products/qt/whitepaper/qt-whitepaper.html .

[82] University of california at santa cruz - perceptual science lab. http://
mambo.ucsc.edu .

[83] University of Bremen. KPML. http://www.fb10.uni-bremen.de/
anglistik/langpro/kpml/README.html , 2003.

[84] University of Edinburgh Centre for Speech Technology Research. Festival.
http://www.cstr.ed.ac.uk/projects/festival/ .

[85] R.J. van Vark, J.P.M. de Vreught, and L.J.M. Rothkrantz. An automated
speech processing system for public transport information services. 3rd
International International Congress on Information Engineering, pages
212–221, 1997. ftp://ftp.kbs.twi.tudelft.nl/pub/alparon/
publications/1997/R.J.vanVark-ICIE-97.ps.gz .

http://www.spirecontrols.com/touch-screen-technology.htm
http://www.spirecontrols.com/touch-screen-technology.htm
http://www.ai.sri.com/~oaa/news.html
http://www.ai.sri.com/~oaa/news.html
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/jdk/1.2/docs/guide/jni/
http://java.sun.com/products/jdk/1.2/docs/guide/jni/
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/
http://java.sun.com/products/java-media/speech/forDevelopers/JSML
http://java.sun.com/products/java-media/speech/forDevelopers/JSML
http://www.w3.org/TR/jsml
http://fofoca.mitre.org/sites/MITRE/distributions/GC4point0.pdf
http://fofoca.mitre.org/sites/MITRE/distributions/GC4point0.pdf
http://www.trolltech.com/products/qt/whitepaper/qt-whitepaper.html
http://www.trolltech.com/products/qt/whitepaper/qt-whitepaper.html
http://mambo.ucsc.edu
http://mambo.ucsc.edu
http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html
http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html
http://www.cstr.ed.ac.uk/projects/festival/
ftp://ftp.kbs.twi.tudelft.nl/ pub/ alparon/ publications/ 1997/ R.J.vanVark-ICIE-97.ps.gz
ftp://ftp.kbs.twi.tudelft.nl/ pub/ alparon/ publications/ 1997/ R.J.vanVark-ICIE-97.ps.gz

BIBLIOGRAPHY 163

[86] W3C. XSL transformations. http://www.w3c.org/TR/xslt .

[87] M. Walker, J. Aberdeen, J. Boland, E. Bratt, J. Garofolo, L. Hirschman,
A. Le, S. Lee, S. Narayanan, K. Papineni, B. Pellom, J. Polifroni,
A. Potamianos, P. Prabhu, A. Rudnicky, G. Sanders, S. Seneff, D. Stallard,
and S. Whittaker. Darpa communicator travel planning systems: the June
2000 data collection. In Proceedings from EUROSPEECH, pages 1371–
1374, 2001. http://www.ai.sri.com/˜communic/euro-eval7.
doc .

[88] Tom Weston. Voice recognition technology. http://florin.
stanford.edu/˜t361/Fall2000/TWeston/home.html , Nov 2000.

[89] Jacek C. Wojdel Pascal Wiggers and Leon J.M. Rothkrantz. An audio-
visual corpus for multimodal speech recognition in Dutch language. In
Proceedings of the International Conference on Spoken Language Processing
(ICSLP2002), pages 1917 – 1920, Denver CO, USA, 2002.

[90] Pascal Wiggers and Leon J.M. Rothkrantz. Integration of speech recogni-
tion and automatic lip-reading. In Proceedings of the Fifth International
Conference on Text, Speech and Dialogs (TSD2002), pages 205 – 212, Brno,
Czech Republic, Sep 2002.

[91] Pascal Wiggers, Jacek C. Wojdel, and Leon J.M. Rothkrantz. Medium
vocabulary continuous audio-visual speech recognition. In Proceedings of
the International Conference on Spoken Language Processing (ICSLP2002),
pages 1921 – 1924, Denver CO, USA, Sep 2002.

[92] Lizhong Wu, Sharon L. Oviatt, and Philip R. Cohen. Multimodal integra-
tion — a statistical view. IEEE Transactions on Multimedia, 1(4):334 –3
41, 1999.

[93] Dongsuk Yuk. Robust Speech Recognition using Neural Networks and Hid-
den Markov Models. PhD thesis, Rutgers, The State University of New
Jersey, 1999.

http://www.w3c.org/TR/xslt
http://www.ai.sri.com/~communic/euro-eval7.doc
http://www.ai.sri.com/~communic/euro-eval7.doc
http://florin.stanford.edu/~t361/Fall2000/TWeston/home.html
http://florin.stanford.edu/~t361/Fall2000/TWeston/home.html

	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Multimodal Interfaces
	1.1.2 Robots
	1.1.3 Controlling robots through a multimodal interface

	1.2 Project Description
	1.2.1 Background
	1.2.2 Problem Description
	Non-functional requirements

	1.2.3 Approach
	1.2.4 Overview

	2 Dialog systems
	2.1 Data Flow in a Dialog System
	2.2 Speech Recognition
	2.2.1 A brief look at the theory
	2.2.2 Products

	2.3 Parsing
	2.3.1 Parsers and Multimodal Systems
	2.3.2 Products

	2.4 Dialog Management
	2.4.1 Products

	2.5 Natural Language Generation
	2.5.1 Products

	2.6 Speech Synthesis
	2.6.1 Speech Markup
	2.6.2 Speech Synthesis Techniques
	2.6.3 Products

	2.7 Fusion
	2.8 Fission
	2.8.1 Products

	2.9 Multi-agent Architectures
	2.9.1 Galaxy Communicator
	2.9.2 Open Agent Architecture (OAA)
	2.9.3 Adaptive Agent Architecture (AAA)
	2.9.4 JADE

	2.10 Multimodal Systems
	2.10.1 Advantages of Multimodal
	2.10.2 Multimodal Devices
	Gaze Tracker
	Tactile Glove
	Touch Screen
	Microphone Array

	2.10.3 Current Multimodal Systems
	2.10.4 From Unimodal to Multimodal
	2.10.5 Reuse of Programming Code in Multimodal Dialog Systems
	2.10.6 The Future of Multimodal Interfaces

	3 Design of the Multimodal Framework
	3.1 Developing a New Multimodal Interface
	3.1.1 Rationale
	3.1.2 Design Goals
	3.1.3 Interaction Style
	3.1.4 Development Procedure

	3.2 Object Oriented Frameworks
	3.3 A Multimodal Framework
	3.3.1 Design Goals
	3.3.2 Approach

	3.4 Architecture
	3.5 Components
	3.5.1 A Common Infrastructure: Communicator
	Communicator and system robustness

	3.6 New vs. Off-the-Shelf Components
	3.7 Off-the-Shelf Components
	3.7.1 Speech Recognizer
	3.7.2 Parser
	3.7.3 Speech Synthesizer

	3.8 New Components
	3.8.1 Reusability in Components
	3.8.2 Fusion
	The Fusion Process
	The Fusion Design
	The Fusion Manager
	Services Provided by the Fusion Manager

	3.8.3 Dialog Manager
	Dialog Manager Tasks

	3.8.4 Dialog Manager Limitations
	3.8.5 Abstractions and Assumptions
	Application Abstractions and Assumptions
	Fusion Abstractions and Assumptions
	Dialog Management Abstractions and Assumptions

	3.8.6 Fission
	3.8.7 Natural Language Generation

	4 Implementation of the Multimodal Framework
	4.1 Choice of Language
	4.2 Programming with Communicator
	4.2.1 Configuring the Hub

	4.3 Speech Recognizer
	4.4 Parser
	4.4.1 Phoenix frame representation

	4.5 Fusion and Dialog Management
	4.5.1 Fusion Resources

	4.6 Fusion Manager
	4.6.1 Resolving Contradictory Inputs
	4.6.2 Fusion Interfaces
	Resolver
	ContextProvider
	ContextData
	LocatableObjectStore
	CoordinateTransform

	4.7 Dialog Manager
	4.7.1 Dialog History

	4.8 Natural Language Generation

	5 Building the Robot Control Application
	5.1 The Robot
	5.2 Design
	5.2.1 The Robot Model
	5.2.2 Design of the Multimodal Interface
	5.2.3 Robot Commands
	5.2.4 Writing a Grammar
	5.2.5 Developing New Resolving Agents
	DistanceResolver
	SpeedResolver

	5.2.6 Writing an API Class
	5.2.7 Writing the Fusion Manager Configuration File
	5.2.8 Modifying Robot-Side Code
	New Commands
	New Mission Type
	JNI Troubles

	5.2.9 Miscellaneous Tasks
	Mapping
	DISCIPLE V3
	Video Transmission

	6 Evaluation
	6.1 Evaluation of Project Approach
	6.2 Reusability
	6.3 Response Times
	6.4 Conclusions
	6.5 Future Work

	A Publication for the Fifth International Conference on Multimodal Interfaces (ICMI-PUI'03)
	B Glossary
	C Grammar
	C.1 Frames
	C.2 BNF Grammars

	D Fusion and Dialog Manager Configuration
	E Online Resources
	Bibliography

