Semantic Information Integration Inside and
Across Organizational Boundaries

Master thesis

Jos de Bruijn

Multimedia Databases, Data and Knowledge Systems group,
Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands

Digital Enterprise Research Institute (DERI),
www: hitp://deri.semanticweb.org/

email: jos.de-bruijn@deri.ie

October 2003

Preface

This Master thesis is the final subject of my study of Technical Informatics
at the faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology (TU Delft). This work was supervised from the
side of the TU Delft by Dr. ir. Johan Ter Bekke of the Multimedia Databases
group, part of Data and Knowledge Systems group, headed by Prof. dr. Henk
Koppelaar.

I have written this Master thesis during my work at the Digital Enterprise
Research Institute (DERI), location Innsbruck - Institute for Computer Science,
University of Innsbruck, where I worked in the European Commission funded
research projects COG (Corporate Ontology Grid) and Esperonto. This Master
thesis is partly based on my work in these two projects. DERI is headed by dr.
Dieter Fensel, who also supervised this Master thesis.

First a note about DERI. When I initially started to work on my Master
thesis, DERI did not exist yet and I worked at the Next Web Generation research
group (headed by Prof. Dieter Fensel) at the University of Innsbruck. Not long
before I finished this thesis, the DERI institute was created with a location in
Galway, Ireland and a location (consisting of the Next Web Generation research
group) in Innsbruck, Austria.

What brought me to DERI is its state of the art research in Semantic Web
technologies. Finally, the subject was chosen because of the relationship with
database systems; the subject of this thesis was initially limited to database
integration using Semantic Web technologies, but was later expanded to include
integration of other information sources across the Web.

I would like to thank Dr. Johan ter Bekke and Prof. Dieter Fensel for
supervising this Master thesis and for providing me with useful feedback. I
would like to thank Prof. Dieter Fensel and all members of the Digital Enterprise
Research Institute (and especially the members in Innsbruck) for providing me
with such a stimulating research environment for conducting the work on my
thesis. Finally, I would like to thank Prof. Dieter Fensel for giving me the
opportunity to continue my research at DERI after my Master thesis and work
towards a PhD.

Jos de Bruijn Innsbruck, 31 October 2003

Abstract

Information integration within enterprises is hindered by differences in soft-
ware and hardware platforms and by syntactic and semantic differences in the
schemas of the various heterogeneous data sources. This is a well-known prob-
lem in the area of Enterprise Application Integration (EAI), where many appli-
cations have been developed for the purpose of information integration. Most
current tools, however, only address the problems of (soft- and hardware) plat-
form and syntactic heterogeneity. The problem of semantic heterogeneity (i.e.
the differences in meaning of concepts) is, in current solutions, reduced to syn-
tactic rewriting without explicating the meaning of the data.

When broadening the scope of the information integration problem to cross
organizational border, the problem becomes even more severe, because within
an organization there is a certain amount of control over the applications, while
there typically is no control over the applications used by other organizations or
even organizational units. Standards are arising to mitigate these problems of
inter-operability between organizations, but current approaches are very specific
for certain branches and are typically very rigid in what they require from anyone
using the standard.

We investigate these problems of semantic information integration and their
solutions using ontology technology in the context of two major European re-
search projects.

In the COG (Corporate Ontology Grid) project we try to provide a solution
for the information integration problem within enterprises. We used the Unicorn
Workbench tool to create an Information Model (an ontology) with a well-
defined meaning and used the Workbench to map data schemas taken from the
automotive industry to the Information Model in order to make the meaning of
the concepts in the data schemas explicit.

In the context of the Esperonto project, we take a broader approach and try
to solve the problem of Information Integration between different enterprises.
We do this in the context of the Semantic Web, where we assume the enterprises
are entities on the Semantic Web that have formal explicit models for their data
in the form of ontologies. We introduce a solution to the information integration
problem, through the creation of explicit mappings between ontologies, in a
semi-automatic manner.

Semantic Web technology, and especially ontology technology, enables infor-
mation integration on a semantic level both within and across organizational
boundaries, but there are still many issues to resolve, such as standardization
in languages for the specification of mapping rules and the development of us-
able, industrial-strength tools for the creation and operationalization of these
mappings.

ii

Organization

Supervising Committee

Dr. ir. Johan ter Bekke (Delft University of Technology)
Prof. dr. Dieter Fensel (Digital Enterprise Research Institute)
Prof. dr. Henk Koppelaar (Delft University of Technology)
Dr. ir. Kees van der Meer (Delft University of Technology)

iii

Glossary

Asset

Atom

B

See External Asset.

A generic term referring to a Column, Property, Attribute, etc.
(the atomic data element) in an external asset in the Unicorn Work-
bench.

Business Rule A rule applied to the values of properties of instances of classes

Class

in the Information Model of the Unicorn Workbench, relating the
values of different properties or relating the value of a property to
predefined values.

A class describes a set of entities with common properties, anal-
ogous to the class concept in object-oriented programming. Each
entity in this set is called an instance of the class.

COG Project The Corporate Ontology Grid Project. A European Commis-

Composite

D

Data model

sion funded project that researches the use of ontology technology
for Enterprise Application Integration, and, more specifically, data
source integration.

A generic term referring to a Table, ComplexType, Entity, etc. in
an external asset. A composite aggregates a set of Atoms.

See ‘Data schema’.

Data schema A description of the structure of a set of data, usually residing

in a single data source.

Data source A repository containing data. This data is typically domain- or

application-specific. The structure of the data is described by a
data schema.

iv

GLOSSARY v

Database A database is a collection of facts, usually structured according to
some schema. A database is usually described by a data schema
and stored in a Data Base Management System (DBMS). The
model most commonly used for database schemas is the Rela-
tional Model; other approaches include the Semantic data
model.

DBMS A Data Base Management System (DBMS) stores data in data
bases according to the data schema specified for each specific data
base and performs query processing.

E

Esperonto A European Commission-funded project that aims to bridge the
gap between the current Web and the Semantic Web. The interest
in the project in this thesis is the alignment of (and mapping be-
tween) models (ontologies) used to annotate data on the Semantic
Web.

External Asset A data source, whose data schema is imported into the Unicorn
Workbench.

External Asset Layer The layer in the Unicorn Workbench that contains the
imported data schemas and the mappings between these schemas
and the Information Model.

F

Facet Facets describe properties of slots, such as cardinality (i.e. stating
how many values can be assigned to the property, zero, one, or
more).

Frame A frame is a data structure that is typically used to represent a
single entity and the slots and facets associated with it. A frame
can be either a class or an individual (an instance of a class).

G

Global data schema A data schema describing the data from a collection of
data sources. Such a global schema can be an aggregation of local
schemas or it can be built from scratch.

I

Information Model The central ontology in the Unicorn Workbench, contain-
ing all the packages, classes, properties, and business rules.

Instance A thing (or being) in the real world. An instance is a member of
a class the properties of the instance are sufficiently described by
the class.

GLOSSARY vi

Inverse properties Two properties are inverses of each other if the source of
the first property is equivalent to the type of the second property
and vice versa. For example, the property hasWrittenBook of
class Author would be the inverse of the property writtenBy of
class Book. The inverse relationship is symmetrical.

L

Local data schema A data schema for a specific data souce or a specific user
or agent.

M

Medadata Metadata is data about data. Metadata can say something about
the meaning and/or the structure of data. Another possible inter-
pretation of metadata is information that says something about the
history, the authoring or the classification of the data. Examples
here are the author, revision date, keywords, etc. ...

Model Layer The Model Layer in the Unicorn Workbench consists of the In-
formation Model. It functions as a mediator between the user ap-
plications and the data sources, aggregated in the External Asset
Layer.

o

Ontology An explicit formal specification of a consensual domain theory; an
Information Model created in the Unicorn Workbench is an ontol-
ogy. Ontologies interweave human and machine understanding in
order to enable knowledge sharing and reuse between humans and
computers.

Ontology Alignment Ontology Alignment is the process of relating (syntac-
tically and/or semantically) different ontologies, which have some
semantic overlap (i.e. describe, partly or wholly, the same domain),
to each other through an ontology mapping.

Ontology Mapping Ontology mapping is the declarative specification of a set
of mapping rules, which relate two distinct ontologies to each other.

Ontology Merging Ontology Merging is the process of creating one target
ontology from several distinct, though semantically overlapping,
source ontologies.

P

Property A property of a class represents an attribute shared by a group of
instances.

GLOSSARY vii

R

RDBMS A Relational Data Base Management System (RDBMS) is a Data
Base Management System (DBMS) that uses the Relational
Model as its data model.

Relational Model A data model for database schemas. It represent the
database as a collection of relations.

S

Semantic data model A data model for database schemas. Provides a

much richer formal and real-world semantics than the Relational
Model.

Slot A slot defines a relation between two classes.
Source of a property The class to which the property belongs.

Source schema The data schema for an external asset used as a source
for Information Integration.

Subclass A class that describes a collection of instances that is a subset of
the collection of instances of the superclass. This also means that
all the properties and business rules of the superclass are inherited
by the subclass.

Superclass A class that describes a collection of instances that is a superset
of the collections of instances of all its subclasses.

T

Test Instance A fictive instance created in the Unicorn Workbench in
order to help validate the Information Model.

Type of a property Specifies the range of values that can be assigned to the
property.

U

Unicorn Workbench The semantic data integration tool created by Unicorn.
Also referred to simply as ‘Unicorn’ and ‘Workbench’.

Contents

Preface

Abstract

Organization

Contents

1 Introduction

1.1
1.2

1.3

The Problem of Semantic Information Integration.
Comparing ontologies and (conceptual) database models
1.2.1 Introducing database models
1.2.2 Relational database modelling
1.2.3 Semantic data modelling
1.2.4 Introducing ontologies
1.2.5 The Web Ontology Language OWL
1.2.6 Comparing ontology languages and conceptual database
modelling languages,
Approaches in Semantic Information Integration

2 Semantic Integration in the Enterprise

2.1
2.2
2.3

2.4

2.5
2.6

The Semantic Information Management
The Methodology
The Unicorn Workbench
2.3.1 Building an ontology using Unicorn
2.3.2 Mapping data schemas to the central ontology
Ontology construction and rationalization in the COG project . .
2.4.1 The Information Integration Problem in COG.
2.4.2 Solving the integration problem in COG using the Seman-
tic Information Management
Conclusions
Limitations of the Unicorn Workbench and Future Work

3 Database Querying using Ontologies

3.1

3.2

Querying disparate data sources using the Unicorn Workbench

3.1.1 Queries in the Unicorn Workbench
3.1.2 Transforming conceptual queries into database queries . .
3.1.3 Limitations of the current approach
Querying disparate data source in the COG project

viii

ii

iii

ix

14
17

20
21
24
25
27
29
31
31

33
38
39

CONTENTS

3.2.1 The querying architecture in the COG project
3.2.2 Querying in the COG showcase
3.3 Conclusions e

4 Comparison with other initiatives

4.1 Methods and Tools for Semantic Information Integration
4.1.1 The MOMIS approach
4.1.2 InfoSleuth o
4.1.3 OBSERVER
4.1.4 Ontology mapping in the KRAFT project
4.1.5 PROMPT
4.1.6 Chimeera
4.1.7 ONION
4.2 Comparison of the Methods
4.2.1 Comparison criteria L

4.2.2 Comparing the methodologies for Semantic Schema inte-
gration Lo

5 Semantic Interoperation on the Web

5.1 Ontology Mapping

5.2 Ontology Mapping on the the Semantic Web
5.2.1 The Semantic Web
5.2.2 The Esperonto project and Ontology Mapping

5.3 Problems in Ontology Mapping and Aligning

5.4 Requirements Analysis L oL
5.4.1 Mapping Language Requirements
5.4.2 Possibilities in automating the creation of mappings
5.4.3 User Interface Requirements

5.5 A Solution for Ontology Mapping
5.5.1 Reusing existing methods and tools

5.6 Conclusions and future work

6 Conclusions and Outlook
6.1 Outlook

Bibliography

X

46
48
51

52
52
53
%)
o7
98
60
62
64
66
66

67

71
72
73
74
(0]
(s
78
79
80
80
81
82
86

88
89

90

Chapter 1

Introduction

Continually, new applications are introduced in enterprises, while existing legacy
applications cannot be replaced because of the investments that have been made
in the past. These new applications need to use data residing in the legacy ap-
plications. This data is typically stored in a proprietary format. If a new
application is to reuse the information residing in legacy systems, this informa-
tion needs to be made available in a way that is understandable by the new
application. Not only differences in hard- and software platforms need to be
overcome, but also differences in syntax and semantics.

We are concerned here with the differences in semantics of these existing
data schemas. The syntax is the way the data model has been written down,
whereas the semantics is the intended meaning of the concepts in the data
schema. It is especially hard to overcome these differences in semantics, because
these semantics are often informal; the meaning depends on the name chosen
for the concept. Now, such a name may be interpreted differently by different
people, so that the meaning is ambiguous. This is where ontologies come into
play.

The term ontology originally comes from philosophy, but has been adopted
by several AT (Artificial Intelligence) research communities, originally the knowl-
edge engineering, natural-language processing, and knowledge representation
communities. In the late 1990s the notion of ontologies also became widespread
in fields such as intelligent information integration, information retrieval on the
Internet, and knowledge management [Studer et al., 1998].

In AT an ontology refers to a description of a part of the world in a program.
Ontologies were developed to facilitate knowledge sharing and reuse [Fensel,
2003]. An important definition of ontology, used by many researchers in the
field of ontologies is given by Gruber in [Gruber, 1993]: ” An ontology is a for-
mal explicit specification of a shared conceptualization.” A conceptualization is
an abstract simplified view of the world that we wish to represent for some pur-
pose. The ontology is a specification because it represents the conceptualization
in a concrete form. It is explicit because all concepts and constraints used are
explicitly defined. Formal means the ontology should be machine understand-
able. Shared indicates that the ontology captures consensual knowledge [Studer
et al., 1998].

A reason for the increasing interest in ontologies nowadays comes from the
development of the Semantic Web [Berners-Lee et al., 2001]. Tim Berners-Lee,

CHAPTER 1. INTRODUCTION 2

inventor of the current World Wide Web and director of the World Wide Web
Consortium (W3C), envisions the Semantic Web as the next generation of the
current Web, where the information will be machine-readable and the services
will be automated. According to [Fensel, 2003] “The explicit representation of
the semantics underlying data, programs, pages, and other web resources will
enable a knowledge-based web that provides a qualitatively new level of service.”
Ontologies provide such an explicit representation of semantics.

In the following section, we will introduce the problem of Semantic Infor-
mation Integration within the enterprise as we face it today. Then we will
briefly give an overview of the generic approaches in Information Integration
(and especially Semantic Information Integration).

1.1 The Problem of Semantic Information Inte-
gration

What do we understand by Semantic Information Integration? We distinguish
several levels on which we can do Information Integration, that is the integration
of data models in order to enable inter-operation between applications'; we
distinguish:

e The hardware (platform) level. This encompasses differences in computer
hardware, networks, etc. ..

e The software (platform) level. This encompasses differences in Operating
System (OS), database platform, etc. ..

e The syntactical level. This encompasses the way the data model is written
down. For example, in one data schema there may be a concept ‘EMP#’
and in another schema the concept ‘EmpNr’. If exactly the same thing is
meant by these two concepts (e.g. employee number), then we say that
there is only a syntactical difference; it can be resolved by syntactical
rewriting of the schema.

e The semantic level. This level encompasses the intended meaning of the
concepts in a schema. It is often hard to know what the intended meaning
of a concept is in a “weak” schema language, such as relational algebra.
Here, the meaning of the concepts depends mostly on its name, which can
be interpreted differently by different people. For example, an engineer
might consider a peace of metal at the start of a automobile assembly line
already a car, while the average person would only see an undefined peace
of metal.

By taking on the problem of Semantic Information Integration, we take on
a problem that is not addressed by current solutions for Enterprise Application
Integration (EAI). These solutions still require a human user to define a map-
ping between the message types of any two applications, where the user just

1Note that we focus here on only one aspect of application integration, namely the integra-
tion of data. Other aspects such as the actual exchange of messages between applications and
such things as business process integration are left out, since they are not within the scope of
this thesis.

CHAPTER 1. INTRODUCTION 3

provides rules to rewrite the message. In other words, current EAI solutions
just employ syntactic rewriting on the basis of some predefined rules to enable
inter-operation between applications. The challenge is to find a way to express
the data schemas in such a way that the definition of a term is unambiguous
and expressed in a formal and explicit way, linking human understanding with
machine understanding.

Currently, when an application needs to use data from another application,
a specific transformation script is written to transform the data from one format
to the other. Such a transformation is hard to maintain, because when one of
the formats changes, that change needs to be detected and the transformation
needs to be updated accordingly. This problem gets even harder when many
such transformations exist in an enterprise. We refer to this kind of integration
as ad-hoc information integration.

This type of ad-hoc integration is not scalable, because for each two data
sources that have to be integrated a custom transformation script or program
needs to be built and maintained. The latter is the hardest problem, because
if a data schema is changed, all transformation scripts with this schema as its
source or its target need to be updated, which is a very big maintenance task;
furthermore, it is easy to overlook one or two transformations if there are so
many of them.

When integrating information on the semantic level, an explicit mapping
is created between concepts in the different data models. Furthermore, when
creating a mapping between a concept expressed in a more expressive formal
language and a concept expressed in a less expressive, less formal language, the
latter concept inherits the explicit semantics of the former concept. Thus, by
creating such a mapping, concepts in for example a database schema can be
given a formal meaning by linking them to concepts in an ontology (where, if
the ontology is modelled correctly, the meaning of the concepts is specified in
a formal and explicit way). We see an application of this type of mappings
(between data schemas and ontologies) in the COG project (see chapter 2).

While the mapping between data schemas and ontologies is a solution for
the Semantic Information Integration problem in an enterprise, it does not solve
the problems of integration between organizations. An organization would not
want to share its internal knowledge with other organizations; knowledge is a
very valuable thing and enterprises do not want to share it. Another problem
with information integration based on data schemas between organizations is
the fact that the inter-organization environment is very open; when directly in-
tegrating database schemas, maintenance would become nearly impossible. We
envision the use of ontologies to enable knowledge sharing and exchange between
organizations over the Internet (or rather the Semantic Web). A company can
determine the extent of the knowledge it wants to share, for example to per-
form certain business transactions, such as purchasing or selling goods. We can
imagine that after data schemas in an organization are integrated using ontology
technology, as is done in the COG project, the enterprise will determine a subset
of the ontology that it wants to share with the world or with certain business
partner. When this ontology is now shared with others on the Semantic Web,
mappings need to be made between different ontologies from different organiza-
tions in order to allow inter-operation. In the Esperonto project (chapter 5) we
address this problem of mapping between ontologies. In this project we address
the technology necessary to create these mappings.

CHAPTER 1. INTRODUCTION 4

intra- inter-
organi zational organizational
syntactic @ Current EAI ®EDI
Integration solutions
@ RosettaNet
semantic @ COG Project @ Esperonto

integration)
@ Unicorn System @ Semantic Web

Figure 1.1: Categorization of information integration solutions

Figure 1.1 illustrates the different types of information integration solutions.
We distinguish between syntactic and semantic integration and between intra-
and inter-organizational integration of information. The current syntactic inte-
gration that is being done, consists of the current Enterprise Application Inte-
gration (EAI) tools, which are nowadays used to integrate applications within
organizations. Inter-organizational integration is currently being done on the
basis of agreements of message formats between individual organizations. The
old and costly EDI (Electronic Data Interchange) standard is still heavily in
use, as well as the upcoming XML standard. Both standards only dictate the
way messages are exchanged; not the content of the messages. Several content
standards have arisen, such as RosettaNet (http://www.rosettanet.org). These
standards prescribe the format of messages to be exchanged between organiza-
tions in certain market segments. All companies adhering to this standard can
now participate in the message exchange.

The approaches to information integration presented in this thesis fall in the
categories of semantic intra-organizational and inter-organization integration,
respectively. The COG project, presented in chapter 2, addresses information
integration inside the organization, by mapping application data sources in the
organization to a semantically rich central data model (the ontology). In the
context of the Esperonto project, we address the integration of information
between organizations using ontologies as a basis.

We can distinguish two other dimensions of information integration. We
address here both the design-time and the run-time dimension of the Semantic
Information Integration problem. During the design-time the mapping between
the different data models is created, while during the run-time, actual data are
translated from one data source to another.

1.2 Comparing ontologies and (conceptual)
database models
In this section we compare ontologies with (conceptual) database models.

We will first introduce databases and ontologies, after which we introduce
the specific database modelling languages to be compared, namely the Entity-

CHAPTER 1. INTRODUCTION 5

STUDNAME | ADDRESS EMAIL TYPE
John Smith 23, Foostreet, Bartown | jsmith@foo.bar PhD
Mary Jansen | 4, Foostreet, Bartown | mjansen@foo.bar | Msc
Pete Blah 1, Blahstreet, Bartown | pblah@foo.bar Msc

Table 1.1: Example table ‘Student’

Relationship model, the Relational Model and the Semantic Database model
and the ontology specification language OWL (DL).

1.2.1 Introducing database models

A database is a collection of facts (data), usually structured according to a
certain schema.

Most modern database systems structure the data in tables, where each row
(also called ‘tuple’) represents a single entity and the values in the columns are
the attributes of the entities. An example database table is given in Table 1.1.
In this table, attributes of three students, namely John Smith, Mary Jansen and
Pete Blah are enumerated. The attributes are the student’s name, the student’s
address, the email address and the type of student (Msc or PhD). Each row in
the table must be unique and each row is identified (in the relational model) by
all its attribute values. Because this is not desirable, usually some restrictions
are put on the identification of entities and a primary key is created. A possible
primary key for the table in the example is the column ‘STUDNAME’. If such
a primary key is introduced, the attribute values in the primary key columns
now uniquely identify the entity. So in this case, there could be no two students
with the name ‘John Smith’. Obviously, it can happen in a real-life database
that two students have the same name, so one must be careful in choosing the
primary key. In the subsection on the relational model, we discuss this and
other shortcomings of this way of modelling databases.

In the database community, usually three different types of schemas are
distinguished in the three-schema architecture for database systems. The three-
schema architecture (illustrated in Figure 1.2), also known as the ANSI/SPARC
architecture [Tsichritzis and Klug, 1978], introduces these three layers of
database schemas [Elmasri and Navathe, 2000]:

External schemas The external schemas are application-specific views of the
data model. An external schema is created for a certain user group or a
certain application and captures part of the database, namely that part
that is of interest to a certain user group.

Conceptual schema The conceptual schema describes the structure of the
whole database for a community of users. The conceptual schema hides
the physical storage structures and thus provides a model that is more
understandable to the human user.

Internal schema The internal schema is a translation of the conceptual
schema into a format that conforms with the actual database platform; the
internal schema is directly used for the storage of data and therefore often
contain some optimization that make them less readable for a human.

CHAPTER 1. INTRODUCTION 6

external external external
schema schema schema
external/
conceptual
mapping

conceptual schema

conceptual/internal
mapping

internal schema

Figure 1.2: The Three-schema architecture for databases

The three-schema architecture has been introduced as an aid to achieve data
independence, which is the capacity to change the database schema at one level,
without affecting the schema at the next higher level [Elmasri and Navathe,
2000]. We distinguish two kind of data independence:

Logical data independence When logical data independence is achieved, the
conceptual schema can be changed without having to change the external
schemas. This means that whenever concepts are added to the concep-
tual schema, external schemas should not have to be changed. Whenever
concepts are deleted from the conceptual schema and these concepts are
not mapped to a particular external schema, the external schema does not
have to be changed.

Physical data independence When physical data independence is achieved,
the internal schema can be changed without affecting the conceptual
schema. For example, if the file structure inside the database is changed,
it should not effect the conceptual view of the data.

The three-schema architecture is referenced in many places, but it is not im-
plemented in many commercial database systems today, because the two levels
of mappings create a big overhead and degrade performance in query processing.

We will concern ourselves in the remainder mainly with the conceptual
schema level, because in this area most overlap between database schemas and
ontologies occurs. In fact, a conceptual database schema can be seen as an
ontology and an ontology can be seen as a conceptual database schema.

An example of a data model often used for high-level conceptual schemas
is the Entity-Relationship (ER) model [Chen, 1979] and the Enhanced Entity-
Relationship (EER) model. The ER model is commonly in use, because of the
correspondence with the relational model, which is the most used data model for
database systems, and the known translations from ER Diagrams to Relational
models (cf. [Elmasri and Navathe, 2000]).

CHAPTER 1. INTRODUCTION 7

(',n) (-!n)

Figure 1.3: Example Entity-Relationship Diagram

Database schemas on the conceptual level can be compared with ontologies.
They concern the same level of abstraction; they both aim to model a domain
in a non-application and non-implementation dependent way, even though con-
ceptual database schema are often necessarily application-dependent when one
views the database, or rather the information system for which the database
is created, as an application. However, many current approaches in conceptual
data modelling, such as ER (the Entity Relationship model), lack the expres-
siveness and formal, real-world semantics of ontology languages. We see later on
in this chapter that there are other approaches in conceptual database modelling
with more expressivity and formal and real-world semantics.

An example Entity-Relationship model is given in Figure 1.3. For reasons
of simplicity, we left out the attributes of the entity types and focussed on the
entity types and the relationships. Entity types are depicted by rectangles,
whereas relationships are depicted with diamond shapes.

The model consists of the following entity types: student, class, and room.
There is a relationship ‘attendance’ between the entity types ‘student’ and
‘class’. An arbitrary number? of students and an arbitrary number of classes
can participate in this relationship. This means, a student can attend and ar-
bitrary number of classes and a class can be attended by an arbitrary number
of students. The relationship ’location’ between ‘class’ and ‘room’ depicts the
location where a class is held. A class is held in exactly one room (hence the
(1,1) which means no less and no more than one) and in each room an arbitrary
number of classes is held (i.e. there can be rooms where no classes are held and
rooms where several classes are held).

Even though the ER data model seems relatively simple (in the simple case
just consisting of entities and relations), ER models can become quite complex,
even for relatively simple domains (cf. [ter Bekke, 1997b]).

1.2.2 Relational database modelling

Relational databases are semantically grounded in relational algebra [Ullman,
1988]. Furthermore, relational databases use SQL (Structured Query Language)
for both the data definition and the data manipulation?.

2¢(-,n)’ stands for none, 1, or more

3In the database field, the language that is used for data (schema) definition is called
the DDL (Data Definition Language); the language used for data manipulation is called the
DML (Data Manipulation Language). SQL is both the DDL and DML for current relational
database systems.

CHAPTER 1. INTRODUCTION 8

STUDENT (STUDNAME, ADDRESS, EMAIL, TYPE)
FOLLOWSCLASS (STUDNAME, CLASS#)

COURSE (COURSE#, NAME, STARTDATE, ENDDATE, ROOM#)
ROOM(ROOM#, BUILDING, FLOOR)

Figure 1.4: Example relational schema

In the relational model, the main construct is the relation. A relation has
a number of attributes and the meaning of the relation is entirely defined by
the set of tuples that correspond to this relation. This means the meaning of a
relation is not self-contained. The name of a relation has no formal meaning.

Tuples of a relation are identified by those attributes that have been said to
characterize them.

In the relational model there are no explicit relationships between different
entities. These relationships must be retrieved using queries on the database
and some additional knowledge that is not contained in the relational model.

The Entity-Relationship model is often used for the modelling of Relational
databases. However, in the translation for ER model to relational schema, a lot
of information is lost. In ER modelling, entity types are explicitly specified and
have a meaning, whereas these entity types only survive as meaningless names
in the relational model. Furthermore, the relationships explicitly expressing in
the ER model, are hidden in the relational model. These relationships can only
be recovered using (external) foreign key constraints.

An example relational schema is presented in Figure 1.4. Underlined at-
tributes make up the primary key, while slanted attributes indicate a foreign
key.

In the example in Figure 1.4, we have modelled a student, consisting of a
name (STUDNAME), an address, en email address and a type (e.g. ‘Bachelor’,
‘Master’ or ‘PhD’), a class, consisting of a number (COURSE#), a name, a
start date, an end date and a room number (ROOM#). A room has a room
number (ROOM#), a building and a floor. The FOLLOWSCLASS relation
has been introduced to enable the translation of an n2m relationship between
student and class from the conceptual model to the relational schema. The way
the relationship between STUDENT and COURSE is specified is through the
specification of two attributes that are linked, through foreign key constraints,
with the primary key attributes in the STUDENT and the COURSE relation.

Note that there is no indication of a relationship between the COURSE and
the ROOM relation by just specifying the ROOM# attribute. An additional
foreign key constraint needs to be specified, which states that the values for the
ROOM# attribute in the CLASS relation should correspond to a value of the
ROOM#* attribute in the ROOM relation.

Apparently, there are two ways of specifying relationships between relations
in the relational model. One is through the specification of foreign key con-
straints (denoting a 1-to-m relationship) and the other is through the specifica-
tion of an additional relation and a set of additional foreign key constraints.

4Note here that the similarity in the name of the ROOM# attribute in the CLASS and
ROOM relations is incidental

CHAPTER 1. INTRODUCTION 9

1.2.3 Semantic data modelling

There is, however, a novel approach in database modelling, the semantic data
modelling [ter Bekke, 1992] approach, which does have formal and real-world se-
mantics. This modelling approach has been implemented in the Xplain database
system [ter Bekke, 1992]. It has been shown that this approach solves some of
the problems with SQL [ter Bekke, 1997a; Date, 1984]. The main advantage
of this approach, in our opinion, is the combination of a sound semantic data
model with an efficient implementation, by making a big distinction® between
the conceptual data schema and the internal schema in the Xplain database
management system. Xplain supports performative query execution and data
retrieval, while retaining a sound conceptual model, with real-world semantics.

A data model that can potentially overcome this problem is the semantic
database model [ter Bekke, 1992]. The semantic database model has a modelling
language with powerful constructs, while retaining modelling simplicity. Three
object types are distinguished in semantic data modelling:

Classification The domain® is described by capturing properties of relevant
objects in a process called classification. The meaning of these properties is
not defined by the instances occurring in the database, as in the relational
model. The semantics of these properties is self-contained.

Aggregation An aggregation is the collection of a number of properties in a
type, which is itself again a property.

Generalization When several types share similar attributes, these shared at-
tributes can be combined in a new type, which is now the generalization
for the other (specialized) types. Note here the similarity with generaliza-
tion/specialization in Object-Orientation. The specialized types “inherit”
all attributes from the general type.

These object types can be summarized using the concept of object relativity.
By object relativity is meant, the description of an object in terms of the rela-
tionships with other objects. It is important to realize here that an object can
play different roles in the different relationships. In one relationship it can be
a generalization of a set of other objects, while in another relationship it might
be a specialization of a more general object. An object can also be both a type
and an instance. And also both an aggregation of other types and an attribute,
aggregated in a different type.

An example semantic database model is depicted in Figure 1.5. The corre-
sponding type definitions, which can readily be be used in the Xplain database
management system [ter Bekke, 1992], is depicted in figure 1.6.

Figure 1.5 presents the so-called abstraction hierarchy. In the abstraction
hierarchy, both the aggregation and the generalization relationships are shown.
We see here that ‘room’ is aggregated in ‘class’ and both ‘course’ and ‘student’
are aggregated in ‘attendance’. The generalization relationship shown in the
figure is the generalization of the ‘Msc-student’ and ‘PhD-student’ types into the
more general ‘student’ type. If we compare this diagram with the ER Diagram

5This in contrast with relational database systems, where the distinction between the
conceptual and the internal schema is not very big.
6 Also: relevant part of the real world or universe of discourse

CHAPTER 1. INTRODUCTION 10

attendance

PhD-student

Msc-student

class student

room

Figure 1.5: Example semantic database model

type student = name, address, email.

type Msc-student = [student]

type PhD-student = [student]

type course = name, start_date, end_date, room.
type room = room_number, building, floor.

type attendance = student, class.

Figure 1.6: Example semantic type definitions

in figure 1.3, we see that on the one hand, semantic database modelling is
more expressive, because we expressed the generalization relationship between
‘student’ on the one side and ‘Msc-student’ and ‘PhD-student’ on the other. On
the other hand, the semantic data model is simpler, because relationships do
not need to be considered separately.

This is a drawback, however, of the semantic data model. The type ‘atten-
dance’ in Figure 1.5 represents a relationship between the types ‘student’ and
‘class’. There is unfortunately no other way to express this many-to-many rela-
tionship. This is where the ER model is more expressive, in that it is possible
to express arbitrary cardinalities for relationships.

The type definitions in Figure 1.6 can be readily implemented in the Xplain
database management system. However, we did leave out a number of definitions
to make the figure more readable. Those definitions are the base definitions.
A base definition defines a base type that is constructed from the built-in data
types, such as integer, string, etc... A base type definition could, for example,
state that the base type ‘name’ is a string with a length of 40 and that ‘floor’
is a positive integer.

Because a name uniquely identifies a type and types are self-contained, a
mention of the name of a type in the definition of another type, means a reference
to the other type. When the name of the other type is enclosed in square
brackets, a generalization relationship is depicted. In the example, both ‘Msc-
student’ and ‘PhD-student’ have [student] in their respective definitions, which
means that they are both specializations of ‘student’. The specification of ‘room’
in the ‘course’ type definition depicts the aggregation relationship between the
two types, as shown in Figure 1.5.

In the semantic data model, the concept of convertibility plays an important
role. Convertibility in type definitions means that a type (depicted by its type

CHAPTER 1. INTRODUCTION 11

Professor

Figure 1.7: A simple example ontology

name) can only have one set of attributes and a set of attributes can only belong
to one type. This means it is illegal to have two type definitions for the same
type and it is illegal to have two types that have exactly the same attributes.

The convertibility principle for semantic data modelling is somewhat similar
to the concepts of necessary and sufficient definitions and the way concept
definitions are handled in Description Logics, as can be seen in the next section,
where we introduce the Web Ontology Language OWL.

Just like for Entity-Relationship Diagrams, there exists a translation from
the Semantic Data model to the Relational model (or rather the implementa-
tion language SQL, which is used by virtually all relational database systems)
[de Boer and ter Bekke, 2001], in order to enable benefitting from the expres-
sivity and conceptual simplicity of the conceptual modelling language. It turns
out that the Semantic Data modelling language is easier to use than the Entity-
Relationship model [ter Bekke, 1997b].

1.2.4 Introducing ontologies

Ontologies promise to provide a human and machine understandable model
of a domain, where the domain is that part of the real world with which we
are concerned. Ontologies facilitate knowledge sharing and reuse through their
formal (machine-understandable) and real-world (human-understandable) se-
mantics [Fensel, 2003]. By “semantics” we mean the intended meaning of the
concepts. We illustrate the formal and the real-world semantics using the simple
ontology presented in figure 1.7.

Our example ontology (Figure 1.7) consists of a simple formal taxonomy”
with only is-a relationships between the concepts. A Student is a Person; a
Researcher is a Person; an Msc — Student is a Student, and so on.

The formal semantics in our example consists of strict inheritance. This
strict inheritance means that every instance of the concept Student is also an

7A taxonomy is a hierarchy of concepts [Studer et al., 1998] where more general concepts
are situated higher in the hierarchy.

CHAPTER 1. INTRODUCTION 12

instance of the concept Person; the is-a relationship is formalized.

The real-world semantics in our example consist of the usage of names that
have a meaning for a human. For a computer the name of a particular concept
doesn’t matter, the concepts could be called c1, ¢2, etc. and a computer would
still understand the ontology in the same way. The formal and the real-world se-
mantics are connected in that every concept that has meaning in the real world,
also has a formal, machine-understandable meaning. The concept Student in
Figure 1.7 has a meaning for a human, but also for a computer. This connec-
tion between real-world and formal semantics does not exist in many popular
database models, as we will see in the sections below. Especially the relational
model does not attach any formal meaning to the name of a concept (or rela-
tion); the semantics of the semantic data model, however, are more similar to
the semantics of typical ontology languages, in that here, just as in ontologies,
real-world and formal semantics are interweaved.

If we translate Figure 1.7 to Description Logics [Baader et al., 2003] (de-
scribed in more detail in [de Bruijn, 2003] and the section on OWL below),
which is a popular class of languages for ontologies, we get the following de-
scription:

Student T Person

Researcher C Person

M sc — Student T Student
PhD—Student C StudentResearcher
Postdoc T Researcher

Professor C Researcher

We will see later on what these statements actually mean.

Below, we provide an introduction into the new Web Ontology Language
standard OWL, which is the new ontology language for the Semantic Web (cf.
5).

1.2.5 The Web Ontology Language OWL

The World Wide Web Consortium #(W3C) has set the standard for the ontology
language on the Semantic Web, with the name of OWL [Bechhofer et al., 2003].
OWL has three dialects with the names of OWL Lite, OWL DL and OWL
Full. Each lower (less expressive) dialect is both syntactically and semantically
contained in the higher (more expressive) dialects, where OWL Lite is the least
expressive and OWL Full is the most expressive dialect.

OWL is based on Description Logics (earlier called terminological logics)
[Baader et al., 2003; Baader et al., 1991], which is a class of logic languages
with a history in knowledge representation®. In the 1980s several early Descrip-
tion Logic-based Knowledge Representation systems were developed, such as
CLASSIC [Borgida et al., 1989] and KL-ONE [Brachman and Schmolze, 1985].

In the beginning of the 2000s, the Web ontology language OIL (Ontology
Inference Layer) [Fensel et al., 2001] was created, combining Description Logics,
with its many efficient implementations of reasoners, and frame-based prim-
itives, used to support the development and maintenance of ontologies, with

8http://www.w3.org/

9Note that ontologies come from the Artificial Intelligence research area of Knowledge
Representation. An ontology is used to represent some knowledge which is held by some
group of people.

CHAPTER 1. INTRODUCTION 13

XML and RDF to create an ontology language based on Web standards. In
2001, the DAML+OIL language [Horrocks and van Harmelen, 2001], a combi-
nation of the DAML-ONT [McGuinness et al., 2003] and the mentioned OIL
efforts, was finalized and submitted to the W3C as the basis for the new Web
Ontology Language (i.e. OWL).

Both OIL and DAML+OIL have a translation to the expressive SHZQ De-
scription Logic language, for which efficient reasoning implementations exist (cf.
[Horrocks, 2002]).

Description Logic Basics I will now try to explain Description Logics with-
out going into too much detail.

There are three important concepts in Description Logics. These are con-
cepts, roles and individuals. The major strength of Description Logics is its
ability to classify concepts and individuals using descriptions of individuals and
definitions of concepts. For example, if there exists a concept definition stating:

Student = M sc — Student LI PhD — Student

Which means that the concept Student encompasses all individuals in the
concepts of Msc — Student and PhD — Student. It also means, because of
symmetricalness of the equivalence relationship (=), that all individual for the
concept Student are either contained in the concept Msc — Student or in the
concept PhD — Student or in both!®. We now know for every particular indi-
vidual that is an instance of the concept Msc — Student or an instance of the
concept PhD — Student, that it is also an instance of the concept Student. We
have, however, also excluded the possibility of having other students than Msc
or PhD students. If we were to introduce a concept Bsc — Student, it would
not be possible to group it under Student, unless we change the definition of
Student to incorporate Bsc — Student.

The most important aspect of Description Logics, from a modeler’s point of
view, is that roles are specified independently from concepts. This allows for
automatically determining the class of an individual based on the roles specified
for that individual. This is conceptually a nice feature, but not always very
clear for the human user, because humans tend to think in roles belonging to
concepts and individuals specified directly as belonging to specific concepts.

For a more elaborate introductory example for Description Logics we refer the
interested reader to section 3.2.2 in [de Bruijn, 2003] and for a complete intro-
duction and elaboration of Description Logics we refer the interested reader to
[Baader et al., 2003].

OWL Full combines RDF with the expressive SHZQ(D) (which is SHZQ ex-
tended with datatype support) Description Logic language in order to create
an ontology language for the Semantic Web, which is (both syntactically and
semantically) layered on top of RDF. OWL DL restricts OWL Full to that
part, which is still (theoretically) decidable. OWL DL is equivalent to the
SHOZIN (D) Description Logic. Reasoning in OWL DL is still very hard; en-
tailment (proving that one statement in OWL DL is a logical consequence of
another) has a worst-case complexity of NExpTime (non-deterministic expo-
nential time) [Horrocks et al., 2003].

10 An individual can be both a Msc-Student and a PhD-Student, because we have not stated
explicitly that this is not possible.

CHAPTER 1. INTRODUCTION 14

OWL Lite restricts OWL DL further to a language which has the expressivity
of the SHZF (D) Description Logic. In the SHZF (D) language, satisfiability is
computable in ExpTime (exponential time). And because entailment in OWL
Lite can be reduced to satisfiability in SHZF (D) [Horrocks and Patel-Schneider,
2003], entailment in OWL Lite can be computed in ExpTime.

We will restrict ourselves in the remainder to the OWL DL variant, because,
in the author’s opinion, OWL Lite does not provide sufficient expressiveness for
fully-fledged ontologies and OWL Full is not very useful as an ontology language,
because it is not decidable, which is due to the layering on top of RDF(S).

1.2.6 Comparing ontology languages and conceptual
database modelling languages

Most comparisons between ontology languages and database schemas compare
ontologies with physical database schemas (e.g. [Fensel, 2003]), instead of con-
ceptual database schemas.

[Fensel, 2003] mentions four major differences between database schemas
and ontologies:

e Ontology language are both syntactically and semantically more expres-
sive than common approaches for databases.

e The information that is described by an ontology can consist of semi-
structured natural language texts and is not restricted to tabular data.

e An ontology must be a shared and consensual terminology, because it is
used for information sharing and exchange. This aspect has to do with
the purpose of an ontology and not so much the language that is used for
data modelling. Ontologies are, from the start, created with information
sharing in mind, while database schemas are usually created with a specific
application in mind; information sharing is only secondary.

e An ontology provides a domain theory and not the structure of a data
container.

We can see that not all of these differences hold for a comparison between
ontologies and conceptual database schemas. The structure of a data container
is specified in the internal schema of the database and not the (high-level)
conceptual schema. A conceptual schema also provides a domain theory, which
is, however, still limited to the application for which the database is used.

We will now describe the most important differences between conceptual
database schemas (mostly geared towards the Semantic data model [ter Bekke,
1992]) and ontologies (assuming OWL DL as the ontology language):

Expressivity Ontology languages are more expressive than conceptual
database languages. Classes can be created from existing classes, prop-
erties and individuals using equivalence, subsumption (i.e. subClassOf),
intersections, unions, the oneOf construct and property restrictions. The
Semantic data model uses just two types of relationships, namely aggre-
gation and generalization.

CHAPTER 1. INTRODUCTION 15

Open world vs. Closed world Ontologies operate in an open world where
not all knowledge is local and not all concepts and individuals are known.
For ontologies on the Web the Open World Assumption (as in most logic
languages) holds, which means that if a fact is not explicitly stated and it
can not be derived from all known facts, it does not mean that it is not
true. When the Closed World Assumption (as usual in database systems)
is used, the absence of a fact implicates its negation (i.e. the fact is not
true).

We can illustrate this open world vs. closed world assumption with an
example application. Say, we want to display to the user a list of all
students at a certain university. This is easy in a database system, where
the closed world assumption holds. The application can just enumerate
all values in the ‘Students’ table. Because of the closed world assumption,
there are no students out there that we don’t know about. Also, we know,
for example, that all values in the ‘Employees’ table are not students if
this has not been explicitly stated.

In a system where the open world assumptions holds, it is in fact not
possible to guarantee that all students are enumerated. It is possible that
there are students out there that we don’t know about, but that do study
at our university. Furthermore, members of other concepts, for example
of the concept ‘Employee’, might also be students if the contrary has not
been explicitly stated.

The closed world assumption has advantages in the sense that it is far
easier to reason with. Many more conclusions can be drawn when using
the closed world assumption, namely the negation (the opposite) of all not
explicitly stated facts.

Unique name assumption In the semantic data model, the unique name as-
sumption holds. There can not be two type names, which denote the same
type, where the meaning of the type is defined by its attributes (i.e. re-
lationships with other types). There can not be two individuals with a
different identification that represent the same object in the real-world.

In OWL, the unique name assumption does not hold. The same concept or
individual can be described by different concepts names or different indi-
viduals names, respectively. Equivalence between concepts or individuals
can be inferred from their descriptions.

More specifically, one does not know whether two different names refer
to the same object, or whether they refer to different objects. It is of-
ten possible to infer (conclude) that two names refer to different objects
using the descriptions referred to by the objects or by explicit inequality
statements of the two names.

We can illustrate this with an example. Say, the individuals ‘jane’ and ‘joe’
are instances of the concept ‘Employee’. Now, jane and joe might have
different names, but we do not have enough information to conclude that
they are different; for all we know ‘jane’ and ‘joe’ refer to the same actual
employee in the real world. If we want to be sure that jane and joe are
interpreted to be different, we should explicitly state their non-equivalence

(jane # joe).

CHAPTER 1. INTRODUCTION 16

<rdf :RDF>
<owl:DatatypeProperty rdf:about="#birthdate">
<rdfs:domain>
<owl:Class rdf:about="#student"/>

</rdfs:domain> Ontology (
<rdfs:range rdf:resource="&xsd;date"/>
</owl:DatatypeProperty> Class(a:student)
<owl:DatatypeProperty rdf:about="#name">
<rdfs:domain> DataProperty(a:birthdate
<owl:Class rdf:about="#student"/> domain(a:student)
</rdfs:domain> range (xsd:date))
<rdfs:range rdf:resource="&xsd;string"/> DataProperty(a:email
</owl:DatatypeProperty> domain(a:student)
<owl:DatatypeProperty rdf:about="#type"> range (xsd:string))
<rdfs:domain> DataProperty(a:name
<owl:Class rdf:about="#student"/> domain(a:student)
</rdfs:domain> range (xsd:string))
<rdfs:range rdf:resource="&xsd;string"/> DataProperty(a:type
</owl:DatatypeProperty> domain(a:student)
<owl:DatatypeProperty rdf:about="#email"> range (xsd:string))
<rdfs:domain>)

<owl:Class rdf:about="#student"/>
</rdfs:domain>

<rdfs:range rdf:resource="&xsd;string"/> . 5
</owl:DatatypeProperty> Figure 1.9: Example ab-

</rdf :RDF> stract syntax serialization
of an OWL ontology

Figure 1.8: Example RDF /XML serializa-
tion of an OWL ontology

Intended usage The intended use of conceptual database schemas is to model
single databases for single applications, where ontologies are intended to
be used for the specification of domain theories that are shared by groups
of people or organizations on the Semantic Web.

Simplicity The layering of OWL on top of the other Semantic Web languages
XML and RDF may provide a better exchangeability of OWL ontolo-
gies'!, but this does not make the language very human-readable, because
of the verbose nature of the RDF /XML serialization. There is an abstract
syntax for OWL [Patel-Schneider et al., 2003], which provides a more
human-understandable syntax than the RDF /XML exchange syntax (cf.
Figures 1.8 and 1.9). However, because of the Description Logics basis,
this abstract syntax is still hard to read because of the separation of the
class and the property definitions. Furthermore, OWL does not support
the modeler of the ontology because of the lack of orthogonality in its
modelling constructs. Concepts can be modelled in many different ways
and are often not even explicitly modelled, but inferred by the Description
Logic reasoner, which is not very clear to the modeler. Therefore, mod-
elling constructs in OWL lack orthogonality. The Semantic data model
does provide orthogonality in its modelling constructs [ter Bekke, 1992].

In this comparison we have mainly looked at the Semantic data model for
database modelling and the OWL DL language for the specification of ontolo-
gies. However, these languages are both currently not widely in use, for different

reasonsm .

11 This, however, remains to be seen
12The Relational model is still dominant in the databases area, because of the availability

CHAPTER 1. INTRODUCTION 17

We will now look into ways to consolidate existing data sources and the
schemas describing these sources using ontology technology. We will describe
generic approaches to the information integration problem described above and
in the subsequent chapters we will look into several specific solutions to the
problem both within and between (parts of) enterprises.

1.3 Approaches in Semantic Information Inte-
gration

We identify two major paradigms in information integration: (1) merging data
models into a central model and (2) aligning and mapping models. In the ontol-
ogy engineering community these approaches are known as Ontology Merging
and Ontology Aligning.

[Noy and Musen, 1999] clarify the difference between ontology merging and
ontology aligning. When merging two ontologies, a single coherent ontology is
created that is a merged version of the two original ontologies. When align-
ing two ontologies, the two original ontologies persist, with a number of links
established between them, allowing the aligned ontologies to reuse information
from one another. Therefore, the alignment of ontologies is usually part of the
ontology merging process.

Solutions can be further classified along two dimensions: a run-time and a
design-time dimension. In the run-time, or user-centered, dimension we distin-
guish two approaches: the (1) local model and the (2) global model approach.
The difference between these two approaches is whether, in interactions with
the system, the user can use his/her own local data model, or whether the user
needs to conform to a global model when interacting with the system:

e In the local model, or local ontology, approach the user is represented by
an agent in the system and this agent presents the user with its own local
data model. The agent performs the translation between the user’s local
model and either the global model or other local models in order to allow
interaction with multiple data sources in the system. And example of the
local model approach is the KRAFT project [Preece et al., 2001].

e In the global model, or global ontology, approach the user will view the
system through the global data model using a mediator, which is “a system
that supports an integrated view over multiple information sources” [Hull,
1997]. Note that in the local model approach, a user agent will in most
cases also contact a mediator in order to allow inter-operation with the
system, which contains multiple information sources. An example is the
approach taken in the COG project, which is described in detail in the
next section.

The run-time dimension concerns with the way the user views the data in
the system during operation. The design-time dimension concerns with the way

of many commercial databases management systems implementing this model, impeding the
transition to a better data model. The OWL language is still very new and at the time of
write not even yet an official standard, although this is expected to happen very soon.

CHAPTER 1. INTRODUCTION

18

Figure 1.10: An example of one-to-
one mapping

root ontology

ageg}]g?egdentz agent3 specific
agentl specific agent2 specific

Figure 1.11: An example of ontol-
ogy clustering

the models of the disparate data sources are integrated. We distinguish (1) one-
to-one mapping, (2) using a single-shared ontology and (3) ontology clustering

[Ding and Foo, 2002]:

e One-to-one mapping of ontologies. Mappings are created between pairs of

ontologies. Problem with this approach arise when many such mappings
need to be created, which is often the case in organizations where many
different applications are in use. The complexity of the ontology mapping
for the one-to-one approach is O(n?) where n is the number of ontologies.
An example of the one-to-one approach is OBSERVER, [Mena et al., 2000].
Figure 1.10 illustrates one-to-one mapping of ontologies. There exists
a mapping between every pair of ontologies. In the worst case, these
mappings are only one-way. This means that a single mapping can only
translate from one model to another, not the other way around.

Using a single-shared ontology. Drawbacks of using a single-shared ontol-
ogy are similar to those of using any standard [Visser and Cui, 1998]. For
example, it is hard to reach a consensus on a standard shared by many
people (it is always a lengthy process), who use different terminologies
for the same domain and a standard impedes changes in an organiza-
tion (because evolution of standards suffers from the same problems as
the development of standards). Examples of the single-shared ontology
approach are MOMIS [Bergamaschi et al., 2001] (see also section 4.1.1)
and the Semantic Information Management [Schreiber, 2003], which is the
methodology used in the COG project and is described in detail in chapter
2.

Within the paradigm of single-shared ontology mapping, we distinguish
two forms:

— Removing the old local data models. All applications use the new
global data model. A drawback of this approach is that applications
depending on the local data models will break and have to be adapted
to the now global model. Another drawback is the fact that groups
in the organization can no longer maintain their own terminology;
everybody will have to submit to the new global model [Uschold,
2000].

CHAPTER 1. INTRODUCTION 19

Figure 1.12: An example of ontology mapping using a single-shared ontology

— Keeping the local data models and creating a mapping to the new
global data model. Local models can remain in place; applications
will not break because of the new global model. A drawback of this
approach is that still old (possibly not so good) data models remain
and mappings need to be maintained. They need to be updated with
every update of the local model and with every update of the global
model.

e Ontology clustering based on the similarity of concepts known to different
agents [Visser and Tamma, 1999]. The ontology clusters are organized in
a hierarchical fashion, where the root node is the most general cluster.
A lower level in the hierarchy corresponds to a more agent-specific, less
abstract representation of the domain. An example of ontology clustering
is illustrated in figure 1.11. The agent ontologies are typically mapped to
leaves in the tree.

We will classify the tools and methods presented in this thesis using these
dimensions.

This thesis is organized as follows: in chapter 2 we introduce information in-
tegration inside the enterprise in the context of the COG project and we present
the solutions developed in the project. In chapter 3, we show how the semantic
information integration architecture developed in the COG project can be used
to aid retrieving information from sources throughout the enterprise. Then, in
chapter 4, we provide a comparison of the Semantic Information Integration
solution in the COG project with other state-of-the-art semantic information
integration projects and tools. Chapter 5 broadens the scope of Semantic Infor-
mation Integration to inter-organizational inter-operation on the Semantic Web
and present work done in that area in the Esperonto project. Finally, in chapter
6, we provide conclusions and an outlook.

Chapter 2

Semantic Information
Integration in the
Enterprise

This chapter! is partly based on a White Paper to be published as a part of the COG project
at http://www.cogproject.org/, with the title ‘Semantic Information Integration in the COG
project’ [de Bruijn et al., 2003a].

In the Corporate Ontology Grid (COG) project we have created an information
architecture to support locating and accessing data residing in heterogeneous
databases, and other, less structured data sources, throughout an industrial
organization. In order to realize this architecture we had to integrate the het-
erogeneous data sources and present the user with a unified view of the disparate
data schemas to enable browsing and querying of data located throughout the
organization.

We chose to create a global schema, integrating all source schemas, that acts
as a mediator? between the various data sources. When the mappings between
the source schemas and the global schema have been created, the user can
browse the global schema and in this way discover what information is present
in the organization and where the information is located. The user can also
issue queries to the mediator that are automatically translated to the respective
platforms and schemas of the data sources, where they are then executed. Using
the mappings from the various source schemas to the global schema, it is also
possible to automatically derive transformations of instances between different
schemas.

We used a semantic approach to the integration problem instead of abstract-
ing a global database schema from the source schemas. The meaning of the data
is captured in a central ontology and the data in the sources is given meaning by
creating mappings between the sources and the ontology. The central ontology
is an integrated virtual view (as opposed to a materialized view [Hull, 1997])

1Some materials presented in this chapter are the copyright of Unicorn Solutions, Inc. and
are used with permission.

2For more information about the role of mediators in Information Systems, please refer to
[Wiederhold, 1992] and [Wiederhold and Genesereth, 1997]

20

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 21

of the information present in the enterprise. This means the original platforms
and data schemas remain and are not replaced by the global schemas and the
applications using these data sources do not need to be changed when creating
the central ontology.

In the COG project we use data sources from different platforms and with
different data schemas. The differences in these data schemas imply the neces-
sity of not only creating a simple translation from one platform to another, but
also a semantic mapping, linking the entities in the disparate schemas based
on the correspondence in their meanings. When the central ontology has been
created, it is possible to create mappings between the source schemas and the
ontology, thereby semantically linking the terms in the sources to each other and
providing a meaning for the data residing in each source related to the meaning
of the data residing in other sources.

In the COG project we integrate a number of existing heterogeneous data
sources, using different platforms and (syntactically and semantically) different
data schemas, from the automotive industry by creating a central ontology in-
tegrating these data sources. We created mappings between the source schemas
and the ontology, thereby creating an integrated unified global virtual view
[Hull, 1997] of the information present in the disparate data sources throughout
the enterprise and enabling the querying of the disparate data sources via the
central ontology.

The data sources to be used for the COG project are provided by CRF? (Cen-
tro Ricerche FIAT'). There were several relational (RDBMS) database sources,
XML sources, spreadsheet documents, and PDF documents. All these sources
had to be integrated in the information architecture.

For the implementation of the information architecture, the methodology
described in Unicorn’s* Semantic Information Management (SIM) [Schreiber,
2003] was used together with the Unicorn Workbench® [Unicorn, 2003b] tool,
which supports the SIM Methodology. We first give an introduction into the
Semantic Information Management and the SIM Methodology, then we de-
scribe the Unicorn Workbench, and finally we describe our experiences using
the Semantic Information Management and the Unicorn Workbench in the COG
project.

A summary of all the Unicorn (and other) terminology can be found in the
glossary of this thesis.

2.1 The Semantic Information Management

As pointed out in the introduction to this thesis, there are three main paradigms
in the data source integration problem. The first one is the one-to-one mapping
paradigm (cf. Figure 1.10) where ad-hoc mappings between individual sources
are created; the second main approach is using a single-shared ontology for all
the applications (cf. Figure 1.11); the third approach is ontology clustering (see
figure 1.11 and the description in section 1.3).

[Uschold, 2000] pointed out three possibilities for using a global ontology
together with local ontologies. Either a global ontology does not exist and only

Shttp://www.crf.it/
4http://www.unicorn.com/
5The Unicorn Workbench is part of the Unicorn System tool suite

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 22

local ontologies are used, or a global ontology exists, either with or without
local ontologies. When only local ontologies exist, this corresponds to the one-
to-one paradigm. When only a global ontology exists, this corresponds to the
single-shared ontology paradigm. When a global ontology exists alongside local
ontologies, we have a mix between the one-to-one and the single-shared ontology
paradigms; there is a shared ontology and there is a mapping between the
central ontology and each local ontology®. The approach taken in the Semantic
Information Management (SIM) is the latter”.

The aim of the Semantic Information Management is to provide enterprises
with insight into the information residing in different sources in different formats
with different schemas across the enterprise (this is also known as the Enterprise
Data Problem). The SIM aims to provide a solution to this problem by creating
a central ontology (also called the ‘Information Model’) and mapping the indi-
vidual source schemas to this central ontology, thereby creating a global view
of all data residing in the organization along with an insight into the location
of the data.

The SIM approach to information integration consists of three stages. First,
the metadata of the existing data sources is to be collected. Then, using this
metadata, a central ontology is created capturing the meaning of the data
present in these data sources. Finally, the disparate data schemas are mapped
to the ontology in a process of rationalization, in order to give semantics to the
data residing in the various sources.

The Semantic Information Management is supported by a tool created by
Unicorn, called the “Unicorn Workbench” (hereafter referred to simply as Uni-
corn). Unicorn was created to support all phases in the SIM methodology.

The SIM describes the knowledge model for the ontologies in Unicorn as
consisting of five layers, namely:

1. Organizational layer. The Information Model is divided into a number of
subject areas, called packages. Each package reflects a different part of the
business. The different packages can be viewed as different, interrelated
sub-ontologies. Packages can be organized in a hierarchy, even though this
is conceptually just a way of grouping these packages, which means that
there is no formal relationship between a package and its sub-package.

2. Entity layer. The classes (concepts) are captured in a class-hierarchy.
The classes are derived from the composites present in the various data
sources.

3. Property/attribute layer. In this layer the properties of the classes are cap-
tured. These properties constitute the relationships between the classes,
besides the is-a relationship, already captured in the entity layer. A prop-
erty in Unicorn is a second-class citizen, defined as part of a class, as
in frame-based languages such as F-Logic [Kifer et al., 1995], other than
the class-independent property definitions in description based ontology
languages, such as RDF(S) [Lassila and Swick, 1999; Brickley and Guha,
2003] and OWL [Bechhofer et al., 2003].

6Note that we can use ontology and data model interchangeably here
“In SIM, a central ontology (‘Information Model’ in Unicorn terminology) is created along
with mappings to individual data sources (‘external assets’ in Unicorn terminology)

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 23

4. Business rule layer. Business rules related to the values of the properties
are created. Relations between properties as well as value restrictions for
properties (e.g. using enumerated values and lookup tables) are estab-
lished. The language used for conversions of values in Business Rules is a
subset of Python [Unicorn, 2003b] constrained by a strong typing-system
based on the fundamental data types.

5. Descriptor layer. Besides the formal description of elements in the ontol-
ogy, as is done in the top four layers, there exist informal descriptions of
the concepts in the ontology, in order to enhance human understanding.
Each concept (such as classes, properties, etc...) in the ontology has a
number of (customizable) descriptors that can be used for this purpose.

As pointed out in [Visser and Cui, 1998] and [Uschold, 2000], problems
can arise in maintaining or developing a single-shared ontology. [Visser and
Cui, 1998] identified four drawbacks of using a single-shared (or “standard”)
ontology®:

e A standard ontology is a ‘heavy vehicle’ because it must encompass all
the terminology used in the organization; it must cover every possible
communication need.

e Both defining and maintaining a standard ontology are hard tasks, because
of the need of consensus in a large group of designers, users, managers,
ete. ..

e Using a standard ontology impedes heterogeneity among applications.
Current software applications using their own local schema will have to
be rewritten in order to use the standard.

e Standards hinder changes in the communication in the organization, be-
cause of their inflexibility (i.e. changing a standard requires a considerable
amount of time and effort).

In the Semantic Information Management approach, such a single-shared on-
tology is created to unify the disparate data sources, so one would expect these
problems to occur in solutions based on SIM. However, in the SIM approach,
the single-shared ontology is not used in the traditional sense, where the source
schemas are deleted and the applications are required to use the new global
schema. Instead, the created global schema is virtual (cf. [Hull, 1997]), allow-
ing the existing schemas and application to remain unchanged, with mappings
between the original schemas and the new global schema.

Using a virtual global schema certainly allows heterogeneity among applica-
tions, because local source schemas remain. Also, flexibility is higher, because
local schemas can change independently; the global ontology does not need to
be changed®. However, one must take care in maintaining the mappings be-
tween the local and the global schema when updating the local schema. The

8[Visser and Cui, 1998] identified problems for defining ontology standards for different
communications layers; we have narrowed the drawbacks to the terminology, or ontology,
layer

9Note here that this holds only for minor changes for which the global ontology does not
need to be updated; when, after a change, a local schema can no longer be mapped to the

global schema, problems as mentioned in [Visser and Cui, 1998] will occur

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 24

m Publish/

Deploy
Rationalize E:>

Gather Collect Construct
Requirements E:> Metadata E:> Ontology m(;;%?;(;s) :>

U Utilize

Figure 2.1: The Semantic Information Management Methodology

problems that remain are the size of the standard ontology and the problems
in creating and maintaining global ontologies. We do not see a solution to the
former problem in SIM; however, the latter problem can be partly solved in the
organizational layer.

The organizational layer in SIM consists of packages that are used to group,
amongst other things, classes. Different groups in the organization can be re-
sponsible for the construction and maintenance of different packages, where
each package contains the terminology for the group. It is possible to define
owners and permitted editors for packages in the Unicorn Workbench. In this
way, different organizational units can maintain their own terminologies, which
would require less consensus among different groups and would speed up the
development and maintenance tasks. One should, however, keep in mind that
these different terminologies need to be interrelated within Unicorn and one
should be aware that each added package adds to the complexity of the overall
Information Model.

2.2 The Methodology

In the COG project, we followed the Semantic Information Management (SIM)
Methodology [Schreiber, 2003] for the creation of the ontology and the mapping
of the disparate data sources. The SIM Methodology (see Figure 2.1) consists
of six steps:

1. Gather requirements. Requirements for the information architecture are
collected and the scope of the project is established.

2. Collect Metadata. All data assets relevant to the project are catalogued
and the metadata (i.e. data schemas and existing conceptual models) are
imported into the Unicorn Workbench.

3. Construct Information Model. Using the imported metadata, the ontology
is created through a process of reverse engineering and/or manual identi-
fication of classes, properties, and business rules in the source schemas.

4. Rationalize. In the rationalization phase, the mappings between the data
schemas and the ontology are created. If the model needs to be refined,
there will be an iteration step back to phase three. In general, when creat-
ing mappings from the composites in the external assets to the ontology,

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 25

missing classes, properties, and business rules are discovered, which ne-
cessitates many iterations between the phases three and four to complete
the model and the mappings.

5. Publish/Deploy. The Information Model, along with the mappings, is
published to relevant stakeholders and the information model along with
the transformations between the data sources is deployed to the runtime
architecture.

6. Utilize. Processes need to be created to ensure maintenance of the archi-
tecture. Changes in the data sources need to be reflected in the ontology,
mappings need to be updated according to these changes, etc ...

The implementation of phases two up to and including six of the methodol-
ogy are facilitated by the Unicorn Workbench tool.

This chapter focusses on the third and fourth phase of the methodology, the
support by the Unicorn tool, and our experiences with the methodology and
the tool in the COG project. We first describe the Unicorn Workbench tool and
then our experiences in the COG project.

2.3 The Unicorn Workbench

The Unicorn Workbench is a java-based tool, created by Unicorn, built to sup-
port the Unicorn Semantic Information Management [Schreiber, 2003] and to
enable SIM implementations in enterprises. All phases (except the first) in the
SIM Methodology are to some extent supported by the Unicorn tool.

The Unicorn Workbench is continuously being developed. Even in the course
of the COG project, many new requirements were identified and implemented
in the tool.

The basic concept in Unicorn is the Unicorn Project, which consists of the
Information Model, the schemas belonging to the external assets (the data
sources), the transformations, the queries, and the descriptors for all these con-
cepts.

The architecture of Unicorn consists of two main layers (see figure 2.2),
namely:

e The External Assets layer contains the mappings to all the (disparate)
data sources. All kinds of data schemas can be imported into a Unicorn
project, as long as there is a parser for it. Current supported formats
are relational database schemas, XML schemas, as well as COBOL Copy-
books. New parsers can be written using the Asset API. After importing
the data schema, the user only needs to create the mappings between the
concepts in the data source and the concepts in the ontology in order to
complete the wrapper for the data source.

e The Model Layer contains the ontology (also called Information Model).
The ontology contains all the packages, classes, properties, and business
rules for describing the meaning of the data residing in the external assets.

All concepts in these two layers are documented in human-readable form
using descriptors. For each different concepts (e.g. project, class, transforma-
tion, external asset, etc ...), there is a descriptor prescribing which concept

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 26

Unicorn Workbench
. Transformations / .
Editing ‘ ‘ Queries ‘ Data Discovery
Model Layer
External Asset Layer

mapping | | mapping | | mapping ‘ | mapping

v ¥ ¥ v

[T I L T I
RDBMS XML documents

Figure 2.2: Semantic Information Management

attributes are available for documentation. There are some default descriptor
files distributed with Unicorn, but they can be customized on a per-project
basis. A concept attribute heavily used in the COG project is the ‘synonym’
attribute, used for several concepts (e.g. classes, properties). Italian transla-
tions for English-language terms, which were used in the original data sources
and applications provided by CRF, are stored in these attributes.

The Model layer describes the meaning of the data and the External Asset
layer describes the location of the data. In order to make the ontology active,
the Unicorn Workbench provides three functions for the user. An editing func-
tion, used to create and maintain the ontology and the mappings to the different
data sources. The second function is the data discovery function, which can be
employed by the user to discover the location of data, residing in the disparate
data sources, using the ontological model in Unicorn. Finally, there is a trans-
formation and querying function with which the user can create transformations
of instances between different data sources and issue queries against the ontol-
ogy. The queries are syntactically translated to the query language of the data
source and semantically translated (i.e. the query is automatically rephrased
using terms from the external asset) to be used with the data schema of the
source.

When mappings from two different data sources to the ontological model
are in place, an instance transformation from one schema to the other can
be generated by Unicorn. The transformation is generated in the form of a
so-called Transformation Planner. This Transformation Planner is an XML
document describing which composites and atoms from the source schema are to
be mapped to which composites and atoms from the target schema. This XML
document can be used to develop the actual transformation. In the workbench
there is already support for generating SQL transformation scripts (for relational
databases) and XSLT documents (for the transformation of XML documents).

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE

27

@ & Being

& BaseProjectPlan
@ @ CustormerPerspectiveMode

@ MotorvehicleDevelopment
% % ProjectManagement
@ BaseFrojectPlan

o @ CPMNWithChildren @ Milestone
A CCPLevelRequirement @ OfficialMilestone
A QualityProfileLevelReguire @ Task

A SecondlevelRequirement
@ ToplLevelReguirement

@ @ CPrwWithParent
A CCPLevelReqguirement
@ CPRLevelRequiremeant
A cQualityProfileLevelReguire
£ SecondlevelReguirement

& WelcomHomeProject
@) TestingManagement
@ T TestRequests
A CCPLevelRequirement
@ CPrWithChildren
& CPrWithParent
 CPRLevelReguirament

Figure 2.3: A part of the COG class
hierarchy

Figure 2.4: Classes organized in
packages

Besides these external assets, other Unicorn ontologies and ERWin'® models
can be directly imported into the Model Layer of the project (the ontology). In
this way, existing logical data models and component ontologies can be leveraged
in the project. Using component ontologies decreases the development effort of
the project and allows to leverage proven models.

2.3.1 Building an ontology using Unicorn

In the Unicorn Workbench, an ontology can be created in three ways: by re-
verse engineering the schema of an external data asset, by importing previously
created (off-the-shelf) ontologies, or by building the ontology from scratch. The
main concepts in the ontology are the packages, classes, the properties, and the
business rules. Classes are organized in a class-hierarchy (taxonomy), support-
ing multiple inheritance (which means that a class can have two or more parent
classes). Besides the hierarchical organization, classes can also be organized
in packages, with each package representing a certain subject-area or business
functions (e.g. project management, vehicle development, etc). These packages
can also be organized in a hierarchy, but no inheritance is supported here and
a package can only be grouped under one other package.

Classes in an individual package are required to have unique names, but
across packages uniqueness in class-names is not required (this is done in order
to make packages more independent), so it is possible for different classes to have
identical names. This problem of duplicate names across packages is solved by
prefixing the package name and a ‘.’ to the class name. Furthermore, properties
within a single class are required to have unique names. However, because of
inheritance it is still possible to have two properties with the same name in a
class. These properties are distinguished using to name of the originating class.

In Unicorn, classes can be viewed in two ways. One can view the class hier-
archy (see Figure 2.3 for an example) or view the classes organized in packages
(see Figure 2.4 for an example).

10 An Entity-Relationship Diagram editor, see
http://www3.ca.com/Solutions/Product.asp?ID=260

http://www3.ca.com/Solutions/Product.asp?ID=260

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 28

If some of the source schemas are designed well, it makes sense to use these
as a basis for the ontology, because an existing data schema in an organization
already represents a certain amount of consensus about knowledge in the domain
[Meersman, 2001]. But even when such well-designed schemas are available to
the ontology designer, the domain experts and end-users should still be involved
with the engineering process in order to validate the ontology and to clarify the
source schemas and the knowledge in the enterprise.

Relationships between classes other than the is-a relationship (the sub-class
relationship expressed in the class-hierarchy) are created using properties. The
type of a property can either be a class or a cross-product of two or more
distinct classes in the ontology. Other constraints on the type of a property are
cardinality constraints. The minimum cardinality of a property can be either
0 or 1. The maximum cardinality can either be one (‘1’) or one or more (‘«’).
When the maximum cardinality is set to ‘x’, one can specify whether the values
are ordered and whether the values can repeat.

When setting the maximum cardinality to one or more (‘*’), a complex class
is used as the type of the property. There are four kinds of complex classes,
based on whether the values for the property need to be ordered and whether
the values can repeat. These four kinds are:

e List. The values are ordered and repetition is permitted.

e Bag. The values are not ordered and repetition is permitted.

e Sequence. The values are ordered and repetition is not permitted.
e Set. The values are not ordered and repetition is not permitted.

When the type of a property needs to be of a data type (e.g. integer or
string), the user can use the classes provided in the fundamental and the
fundamental.time packages. These classes representing the fundamental data
types have properties for different representations of the value, as well as an
identity property with the name of the class itself, which stands for an abstract
representation of the data value itself. The Integer class, for example, has
a stringRepresentation property with the class String as range. Inversely,
the String class has an integerRepresentation property for representing the
string value as an integer. This system enables the mapping of properties with
different data types that represent the same concept (e.g. a number could be
represented in one data source by an integer and in another by a string data
type).

The values of properties can be restricted using business rules. There are
six kinds of business rules:

e Conversion (transformation) between properties. Conversion formulae
can be constructed using an expression language based on Python.

e Fquivalence. When two properties are synonyms, this can be expressed
with such an equivalence rule. It is most common to express this syn-
onymity between a direct and an indirect property (i.e. property of a
related class) of a particular class.

e Enumerated values. A complete list of possible values for the property is
specified. An instance cannot have a value for this property that is not
on the list.

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 29

e Lookup table. A lookup table relates the value of a property to the value
of (one or more) other properties.

e Uniqueness. The value for one property or values for a combination of
properties in one class can be said to be unique.

e Type restriction. In a subclass, the type of a property inherited from the
superclass can be restricted to a subclass of the original type.

Business rules can be created for properties originating from superclasses.
It is, however, not possible to edit property definitions of inherited properties,
because they are second-class citizens belonging to a specific class. By defining
business rules independent of properties, it is still possible to enforce constraints
in subclasses that do not need to be enforced in superclasses. Note that business
rules are inherited.

Conversion, enumerated values, and lookup table business rules can only be
specified for properties with a fundamental data type. Equivalence, uniqueness
and type restrictions can be used for properties with an arbitrary type. It
must be noted here, however, that business rules can also be applied to indirect
properties. This means that if a certain direct property has a non-fundamental
type, but that non-fundamental class does have a (in)direct property with a
fundamental type, conversion, enumerated values, and lookup tables business
rules can still be used for that property.

Whenever a user wants to edit or delete an element that other elements
depend on, Unicorn will perform an impact analysis to identify any issues (i.e.
elements that have been rendered invalid by the action) caused by the action and
inform the user what elements will be affected by the action and ask the user
for confirmation. If the user still wants to perform the action, the impacted
elements are marked as invalid and listed in a central location. The user is
not allowed to use invalid elements in, for example, property and business rule
definitions.

2.3.2 Mapping data schemas to the central ontology

During the metadata collection phase, a number of data schemas have been
imported in the Unicorn project. These schemas have been used in the con-
struction phase to aid in constructing the ontology. These source schemas now
have to be mapped to the ontology in order to give meaning to the data resid-
ing in these sources and to enable locating data in the disparate sources and to
enable data transformation between the disparate sources and issuing queries to
the sources. Just like in the construction phase, it is very important to involve
the domain experts in the mapping (rationalization) phase.

During the rationalization phase the user is aided by the Unicorn Workbench
in creating the mappings between the data assets and the ontology. It is possible
to either view the mappings from the viewpoint of the data assets and in this
way determine for each type and property to which class/property it should
be mapped and to create the mapping. Another possibility is to use the Data
Discovery feature to drill down the class hierarchy to find out which mappings
currently exist for the classes in the ontology. If a class is identified that requires
further mapping, the designer can switch back to the view of the desired data
asset and create the mappings.

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 30

If during the mapping phase, the designer discovers missing classes, prop-
erties, or business rules, the designer iterates back to the construction phase
(phase three) to add the necessary concepts to the model. It is our experience
from the COG project that especially missing properties and business rules are
discovered in the rationalization phase and not so much missing classes.

Not necessarily all data schemas have to be mapped manually. If a data
asset has been automatically reverse engineered during the construction phase,
the mappings between the ontology and the external asset have already been
automatically created. Also when a single entity in a source schema is reverse
engineered into a class in the ontology, the mapping will have been created
automatically.

Mappings are created in two stages. First the Coarse Mapping is created,
linking composites in the data sources (e.g. tables, complex types) to classes
in the ontology. Then the Detailed Mapping is created, linking atoms from the
source schemas to the properties in the ontology.

Two different kinds of groups can be created in the mapping process. Subject
groups are used to group composite types in the external asset to facilitate the
mapping process for the user (the user selects a subject group and is shown only
the composite types belonging to that group). The instance mapping groups are
an integral part of the mapping itself. An instance mapping group represents a
group of instances to be mapped to a certain class in the ontology. If only one
instance group is defined for a composite, all instances of that composite will
be mapped to the target class.

Conditions can be specified on the values of the atoms of the composite
in the source schema. This way certain groups of instances can be mapped to
different classes in the ontology. These conditional instance mapping groups are,
however, not required to be mutually exclusive. Conditional mapping can not
only be applied to classes (global conditional mapping), but also to individual
properties (local conditional mapping), as mappings are eventually created on
the property level (see the property layer in 2.1), during the detailed mapping.
The other way around is also possible: different composites can be mapped to
the same class.

The mappings in the detailed mapping stage are usually made between atoms
and direct properties. A direct property is a regular property of the concerning
class. It is however also possible to create mappings to indirect properties. An
indirect property is not a property of the concerning class, but a direct or an
indirect property of a class, which is the type of a direct property of the class
(i.e. an indirect property is a property of a related class). It is therefore possible
to map to an indirect property at an arbitrary depth.

When instances of different composite types in the source schema need to
be mapped to a single class in the ontology, it is possible to create a mapping
view. Such a mapping view can contain joins over different composites within
one external asset. A join can be defined over the composites using an existing
or an (in Unicorn created) “implicit” foreign key.

Foreign keys in the database!! or “implicit” foreign keys are used either

1A note must be made here about these foreign keys and database mapping. Because
not only databases can be mapping to the Information Model, but also XML documents,
Cobol copy books, and others. The database primitives, such as ‘foreign key’, might not be
appropriate for these sources; these difference are distinguished in the Unicorn Workbench.
In section 2.4.2 we see an example of differences between internal representations of databases

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 31

to indicate a simple relationship with another class or to indicate inheritance.
In the former case, the foreign key can be mapped to a property in the class
that references the target class that represents the target composite type of
the foreign key. In the latter case, the foreign key is mapped directly to the
inheritance relationship. This latter case applies when the extension of the
composite (i.e. the set of instances described by the composite) is a subset of
the extension of another composite and this relationship is made explicit in the
database using a foreign key.

When mapping external assets to the central ontology, it is possible to use
so-called subtype mapping. An atom in a composite in the external asset can
be mapped to a subclass of the type of the property in the ontology. This is of
course a valid mapping, because a subclass of the original type is also a valid
type for the property.

2.4 Ontology construction and rationalization in
the COG project

In the COG project we used external assets provided by CRF (Centro Ricerche
Fiat). The source schemas are taken from real-life data sources currently in
use by CRF and sources to be implemented at CRF in the future. The goal
of the project is to implement a single integrated (semantic) information ar-
chitecture for the various information sources provided by CRF in order to
show the applicability of using ontologies for information integration in indus-
try. The sources include relational databases, XML data sources and PDF and
spreadsheet documents. These PDF documents are accessed using the LiveLink
document management system, which in turn has an XML interface. For the
integration of the Excel spreadsheet documents, a special parser was written
using the Asset APL.

In the data assets, two different languages are currently in use, namely Italian
and English. This was an opportunity to show how a central ontology can
help bridge the language gap. The ontology is created using English-language
terms, but it should be usable by people only familiar with the Italian-language
terminology. To overcome this multi-lingual problem, Italian synonyms are
used in the class and property descriptors in the ontology. The use of these
synonym descriptors enables searching for the Italian terms and finding the
related (English named) concepts in the ontology.

Because of the Italian terms used in a number of the source schemas, the
reverse-engineering functionality of Unicorn could not be used. The Information
Model had to be constructed manually on the basis of input from domain experts
and afterwards the Italian-named atoms and composites were mapped to the
(English named) classes and properties in the ontology in order to give them
meaning.

2.4.1 The Information Integration Problem in COG

There are five main data sources (see also the COG Architecture in figure 3.4)
provided by CRF to be integrated in the COG project. These sources consist of

and XML sources.

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 32

Web Portal ‘ Query portal ‘ |Data discover por‘tal‘

[LS
[+ [4

‘ Application Integration solution ‘

Workbench

Transformations /
Querying

‘ Data Discovery ‘

Information Model

mapping H mapping ‘ ‘ mapping ‘ ‘ mapping ‘ ‘ mapping
P I 4 E L
I I ISR oo
<
Welcom e aThet | P
Home ‘ ‘

RDBMS spreadsheets LiveLink XML

documents

Figure 2.5: COG architecture

three relational databases, namely CATnet, PSI, and WelcomHome, one XML
data sources, namely LiveLink, and a collection of Excel spreadsheet documents.

WelcomHome is an application used for project management (it supports
the Microsoft Project application). LiveLink is a knowledge and document
management system. CATnet and PSI are applications developed in-house at
CRF to support the vehicle development and testing process.

CATnet has been developed to support the entire testing process, which is a
major part of the FIAT vehicle (prototype) development process and essential
for ensuring the quality of the products. Test requests that are linked to test
plans are submitted to the CATnet system. These test plans support the plan-
ning of the execution of the tests, which is related to the vehicle development
phase, the test laboratory, etc. ..

The test plans are linked to the so-called “technical memory”, where the
technical procedures for test execution are specified. This technical memory
consists of PDF documents accessible through the LiveLink system. After the
test executions, the test results are stored in the CATnet database for later
retrieval. This retrieval of test results is critical in order to assure quality of the
products. Whenever a customer complaint is received or a defect in a vehicle is
detected, it has to be possible to easily retrieve the results of the tests performed
on the concerning automobile component.

To facilitate this retrieval process, there is a customer perspective (also called
the ‘Voice of Customer’ or VoC) tree for each vehicle model in the PSI system.
The customer perspective trees are used to locate the appropriate tests that
should have been performed on a particular vehicle system. The marketing
manager can drill down the tree to locate the specific tests that have been
performed, after which the test results can be retrieved from the CATnet system.

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 33

Besides these customer perspective trees that can be used for the retrieval
of test results, the PSI system has functionality for creating packages of tests
to be performed on a motor vehicle. These packages can be created by drilling
down the customer perspective tree and selecting the desired standards (i.e.
tests). These standards state what tests are to be executed on a certain vehicle
system to ensure the quality of the product. Besides being maintained in the
PSI system, some information about the standards and the customer perspective
tree is being maintained in Excel spreadsheet documents.

In order to submit these testing packages to the CATnet system and in order
to retrieve the appropriate test results from the CATnet database in the PSI
system, these data sources need to be integrated. Besides the databases, the
PDF documents (technical memory) and spreadsheet documents (concerning
standards and the customer perspective tree) also need to be integrated to
support the testing management.

Besides packets containing tests, there is also the concept of a session con-
taining tests. While a packet can contain tests to be executed in different test
labs, a test session is specific to one test lab and can contain test from different
packages. These session are configured in the CATnet system, while the packets
are configured in the PSI system.

It turns out that certain tests need to be executed in order to reach certain
milestones in a project plan. Therefore, because information about project
management is maintained in the WelcomHome database, this database also
has to be integrated in order to integrate all aspects of the testing process.

2.4.2 Solving the integration problem in COG using the
Semantic Information Management

During the development of the ontology in the COG project, some shortcomings
in the Unicorn tool became apparent. In order to overcome these shortcomings,
these problems were fed into the requirements for the new version of the Unicorn
Workbench. During the COG project, a new version of Unicorn (v2.5) was
released that overcomes most shortcomings in the old version identified during
the development for COG. Examples of features developed especially for the
COG project are the mapping to subtypes, specification of inverse properties,
and mapping of foreign keys to inheritance relationships.

Another important development for the new version of Unicorn that has
proven very useful for the COG project was the Asset API. Using this API
it was possible to develop parsers for the integration of Excel documents and
Microsoft Access databases (i.e. PSI) that can be used for importing data
schemas from these platforms. Without this Asset API and these parsers, these
sources could not have been integrated.

Based on the data sources provided by CRF and the interviews with do-
main experts at CRF, four main subject areas for the Information Model were
identified, namely:

e Motor vehicle development. This area covers the motor vehicles them-
selves, such as automobile parts and vehicle systems.

e Project management. This area covers the project management capabili-
ties present in WelcomHome.

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 34

o Testing Management. This area covers the management of the execution
of the tests. Things like testing guidelines, test plan, testing laboratories,
and so on, are the components of this area.

o Test requests. This area covers the customer perspective tree, standards,
test requests, test results, etc ...

For each of these subject areas a package in the ontology was created, after
which the classes, properties, and business rules were created corresponding to
the composites in the source schemas. Interviews with domain experts were
mostly used as input for the ontology development process, as well as working
with the current applications (mainly PSI and CATnet) in use. This was the
third phase (the construction phase) in the SIM methodology.

The next step (phase four - rationalization) was to map the source schemas
to the ontology. This mapping was done using the mapping functionality of
the Unicorn tool. During this mapping phase, many iterations back to phase
three were necessary. It turned out that the classes in the ontology had been
identified correctly, but still many properties and business rules had to be added
or changed while trying to map the external assets.

During the mapping phase there were problems with the language of the
source schemas. The most important sources were in Italian, but the designers
for the ontology did not speak Italian and the ontology itself has been developed
in English. This made it necessary to talk to the domain experts and especially
the people in the organization knowledgeable about the data schemas.

The CATnet database was mainly mapped to the Test Management package,
whereas the PSI database was mainly mapped to the Test Requests package.
However, both databases are also to a great extent mapped to the other Test
package (i.e. CATnet was also mapped to the Test Requests package and PSI
was also mapped to the Test Management package). Besides this, PSI also
contains some information about the Motor vehicle development.

The WelcomHome database was only mapped to the Project Management
package, as it contains only information about the project management. The
interdependencies with the other data sources are only expressed using the re-
lationships in the ontology itself.

Below we provide some examples of how specific problems in the mapping of
data schemas were solved in the COG project and how the Unicorn Workbench
helped to structure and improve understanding of the data sources.

Mapping different types of data sources Different types of data sources
(e.g. relational database, XML, Excel) have different data models and therefore
not always be imported in a unified was. For example, a relational database has
database tables along with database columns (called composites and atoms in
Unicorn, respectively), where an XML document has elements with attributes,
where elements can be nested in other elements. This nesting of elements can
not be represented in the relational data model and furthermore, it is hard to
express arbitrary relations between different elements (called ‘foreign keys’ in
relational databases) in XML. These differences indicate the need for a different
kind of internal representation (in the Unicorn Workbench) for different kinds
of external assets.

Figure 2.6 shows the typical information for a table in a relational database.
It shows the column names and data types as well as whether the column is

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 35

ROEMS Schema: CATHET BB TAJO24CC

| Elernent Group Semantics rEIEmEntSEmantigs rAgset|

’C—'m ® Taple Info () Foreign Keys) Implicit Foreign Keys

Mie TAJOZEE Mame | Type [Allows NullPrimary K]
EBe TAJO2EN| | |oon noRMA VARCHA..

By TAJOZNG)

Mo TAJOIST, COD_EMTE WARCHA,.

Figure 2.6: Example relational database external asset.

required and whether the column is part of the primary key. From the ‘Ta-
ble Info’ view can be switched to the ‘Foreign Keys’ view in order to see the
relationships between this table and other tables in the database, as well as
the ‘Implicit Foreign Keys’ view, which shows the implicit foreign keys created
within the Unicorn Workbench (see also Figure 2.9).

#ML Schema: LiveLink Reverse Engineerad fram XML instance llnode

| Element Group Sernantics rEIementSemantigs rAgset |

® Schema Snapshot) Source

COG Relevant - ¥ |
@ linode Mame | Type | Min|Max| Use |Va|ue| |
lInodelcategony (non) — AT

linodel/categoryattributeset i
createdhy int

createdbynarstring

Figure 2.7: Example XML external asset.

Figure 2.7 shows the information displayed for a typical XML source. XML
elements are listed on the left side, where 11node is the top element; the element
category is nested within 11node and attributeset on its turn is nested in
category. The right pane in the figure provides a list of attributes along with
the (for XML Schema) typical properties, such as ‘Type’, ‘Min’, ‘Man’, etc. The
other view presented here is the ‘Source’ view, in which the actual XML Schema
can be viewed. However, the XML Schema is not very nice to look at (it’s very
complex and verbose), so we have decided not to show this view here.

Extracting inheritance relationships We can see an example of the appli-
cation of the mapping to inheritance relationships feature in figure 2.8. Instances
from the table MSP_TEXT_FIELDS in the WelcomHome database are mapped to
the class OfficialMileStone in the ontology. There exists a foreign key in this
table, called FK_.Official Milestone_Tasks (this is incidentally an implicit for-
eign key created in the Unicorn Workbench), that points to the MSP_TASKS table.
This relationship maps to the inheritance relationship between the classes Task
and OfficialMilestone, which is a sub-class of Task.

The aforementioned implicit foreign key that was created on the
MSP_TEXT_FIELDS composite is illustrated in figure 2.9. The possibility of creat-
ing implicit foreign keys was very useful for the COG project, as many relation-
ships in the source data schemas were not explicitly described using a foreign
key.

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 36

ROBMS Schema: WelcomHome BB MSP_TEXT_FIELDS

[(Coarse | Detailed | Assets |

FNEIE TR

B TEXT_CATEGORY : MUMBER @ @ OfficialMilestone

= B TEXT_WALUE | VARCHARZ sfn Inhetitance from Task

z [l TEXT_REF_UID {FK) : NUMBER Bl activityCode : [0..7]String
2 F PROJ_ID {FK) : NUMBER © B actualPeriod : [0.1]Time
& g TEXT_FIELD_ID : NUMBER @ B checkpoint: [0..1]vehich
E s FK_Official_Milestone_Tasks : MSP_TAS... Bl description : [0..1]8tring
; & B earliestPeriod ; [0.1]Tirr
5 @ B latestPeriod : [0..1]Time
g @ B plannedPeriod : [0.1]Tir
g = ‘i .

Figure 2.8: Mapping to the inheritance relationship; the generalization is made
visible through mapping to the Information Model.

ROBEMS Schema: WelcomHome B MSP_PROJECTS

Coarse [Detalled | Assets |

(oG Relevant | Table Info () Foreign Keys @ Implicit Foreign Keys
cosRelevant v || ¥ | £3 Ta () Foreign Keys (@ Impl on ey

By MSP_FROJECTS Foreign Key Mame | Points To Target Tahle

e
TRe MBP_TASKS FK_Official_Milestone_Tasks MEP_TASKS =

MSP_TEXT _FIELDS
e MSP TENT | Edit...
Delete

Field Pairs for Selected Faoreign Key.
Source Field | Target Field
TEXT_REF_UID TASK_UID

PROJ_ID PROJ_ID

| & |

Figure 2.9: An Implicit Foreign key; created in the case of a missing foreign key
in the asset schema.

Conditional mapping In figures 2.10 and 2.11 we see an example of the
application of conditional mapping groups in the COG project. Figure 2.10
presents the coarse mapping view for the PSI relational database. Two filters
have been applied to the view. First, the user has selected the ‘COG relevant’
subject group, which contains all composites relevant to the COG project on-
tology, so that only the relevant composites are displayed in the top-left pane.
The second filter that has been applied filters out all mappings except the ones
for the currently selected composite (this has been done by selecting the middle
symbol above the middle pane at the top). A green line indicates the existence
of a mapping from the composite to a certain class, the blue line indicates the
currently selected mapping and the quadrangle symbol in a mapping indicates
a conditional mapping. All the mappings in this particular view are conditional
and an instance group has been created for each condition. In fact, each in-
stance groups corresponds to one mapping. The instance groups are found in
the bottom-left panel of figure 2.10 and the condition for the mapping is found
in the bottom-right panel.

Mapping to indirect properties In figure 2.11 we see the (unfiltered) de-
tailed mapping for one specific instance group (in this case ‘Voice of customer
CCP nodes’). We can see in this figure two examples of indirect mapping. The
selected atom tipo has been mapped to the property name of class Level for

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 37

RODEMS Schema: PSI MH voC

[Coarse [Defailed || Assets |

|cosreent v|| 7 | [5][M[E] | B TS |nw Map 1t

B IndiceMarme @ @ Being
% MormeSperimentazione 9 @ CustomerPerspectiveMode
% Morme_Pa Q@ CPMWithChildren
2 Pacchetti < £J CCPLevelRequirement
e Voo <> £ QualityFrofileLevelRequirement
e cicli_GL < £3 SecondLevelRequirement
R formatin < @ ToplLevelReguirement
B formatio_2 @ @ CPNwithParent
¥ sisterna £ CCPLevelRequirement
T verifica < @ CPRLevelReguirarment
A QualityProfileLeve Reguirament
£ SecondLevelRequirement |
@ Cycle Ed
| &

Instance Groups:

Waoice of Custamer CCF Modes
\oice of Customer CPR Modes |
Voice of Custormer QP Nodes :
Waice of Custamer TLR1 MNodes (=5

nice of Custamer T B2 Modes L

[»

iapped To: COPLevelReguirement=TestReguestss

Join MNone

Conditions: $"tipa"=="CCP"

Figure 2.10: Conditional mapping in COG: on the basis of a condition, groups
of instances in the flat database table are mapped to different classes in the
ontology

property level. Furthermore, the atoms pl and p2 have been mapped to an
indirect property within parent (this is indicated by the dotted line in the right
pane). If we now expand the parent property (figure 2.12) we can see how
atoms p1 and p2 are mapped to the indirect properties TLR1LevelAddress and
TLR2LevelAddress, respectively.

Inverse properties In the expanded view in figure 2.12 we also see
a symbol with the text ‘INV’ to the left of the child property of
SecondLevelRequirement and the child property of TopLevelRequirement.
This symbol indicates that this property is an inverse of, in this case, the parent
properties of CCPLevelRequirement and SecondLevelRequirement, repec-
tively. This means that the parent of instance I3 of SecondLevelRequirement
must have I in its set of children, and vice versa. The same goes for instances
of class SecondLevelRequirement.

Mapping flat structures Figures 2.10 and 2.11 illustrate also how a very flat
structure for a tree in a database can be mapped to a more explicit structure in
an ontology. The instances in the VoC composite (in the PSI database) describe
trees with a fixed number of levels. An identifier is used to indicate on which
level the instance is located. For each level a class was created in the ontology.
All these classes inherit from the class CustomerPerspectiveNode, as can be
seen in the top-right pane in figure 2.10, and from either CPNWithChildren
or CPNWithParent, or both. Using conditional mapping the appropriate class
in the ontology is selected for the instance. In figures 2.11 and 2.12 we can
see how a node in the tree is related to its parents via properties pl and p2.
Remember that the child properties have been defined as inverse properties of

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 38

[(Coarse | Detailed || Agsets |
BRE | mo e -
H normaprovﬁinvamhaf @ @ CCPLevelRequirement
= = ?ar.g.etcurve “rvarchar s Inharitance from CustomerPerspg
2 B idint s Inheritance fram CPNWithParent
§ H sgmaforo srvarchar sen Inheritance from CPNWIthChildre
- B given :nvarchar B CCPLeveladdress [1.1]Integer
g B wpap : nvarchar @ B child : Set[1.*cualitProfileLevelR
; e ?mp : nyarchar B description : [1..1]String
g R idvoc :int © B guideline : [1..1]Guideline
g 2} target: varchar @ B level :[0.1]Level
g B ot int B name: [0..1]5tring
B pdint B walue :[1.1]5tring
B tino nvarchar @ B parent: [0.1]5econdLevelRequire
H p3 cint B pathCade : [1.1)String
g Ef ::I B psiCPModekey: [1.1]integer
e descriziona : nvarchar
B wotosae : nvarchar

Figure 2.11: Detailed mapping

HO l@yEL. vaiLnal

@ B parent: [0.1]3econdLevelReguirement

EE ir: int EIRT child : Setft.]CCPLevelRaguirement

B p4:?nt @ parent : [0_1]TopLevelRequirement

E® tipo : nwarchar B4 child : Setfl *]SecondLevelReguirement
B pg_!m B description : [1..1]String

g Ef : :m © B level (0. 1]Level

B pathCode :[1.1]String
B psiCPNodekey: [1.1]Integer
B TLR1LevelAddress : [1.1]Integer
description : [1 1]5tring
© F level : [0.1]Level
B pathCode : [1..1]5ting
B psiCPModekey: [1.1]Integer
B TLRZLeveladdress : [1.1]Integer

B descrizione : nvarchar
B9 votosae : nvarchar

Figure 2.12: Mapping to indirect properties

parent properties, so that it is not necessary to explicitly map the relationship
to the children.

We use these experiences gained from the COG project to compare the
approach to other approaches in information integration in chapter 4.

2.5 Conclusions

In this chapter we have outlined the problems we faced in information inte-
gration in the COG project. We have described a solution to the integration
problem using the Semantic Information Management Methodology [Schreiber,
2003] and the Unicorn Workbench tool, which we have applied in the COG
project. We have compared this approach with several other approaches that
are in different stages of development.

We have described how the SIM together with the Unicorn Workbench was
used in the COG project and what the role is in the overall COG Architecture.

Many problems in the construction of the Information Model and the map-
ping to the disparate data schemas were caused by the poor understanding of
the source data schemas. The data schemas contained concepts in the Italian
language, while the ontology engineering and mapping was done by non-Italian
speakers. What further complicated the matter was the fact that the users that

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 39

worked with the existing applications were no expert on the database schemas
that were being used, which made the mapping a hard problem. It turned out
that the only possibility for the ontology engineer to construct the ontology was
to have a look at the applications together with the end-users, which was a
tedious job.

These problems indicate the necessity of the usage of a central Information
Architecture, through which the nature of the data residing throughout the
organization can be understood.

Ontologies are very powerful in the sense that they are developed with
the human understanding of the domain in mind, instead of taking a very
application-oriented approach, as is mostly done with database schemas. On-
tologies can help bridge the gap between human understanding and machine
understanding of a domain [Fensel, 2003]. Using a tool such as the Unicorn
Workbench, we can take the legacy database schemas in an organization, map
them to a central Information Model, and in that way enable better under-
standing of this information by the users in the organization. Furthermore,
because of the formal semantics of the Information Model, the Workbench is
able to automatically derive instance transformations between external assets
and to automatically translate queries on the Information Model to queries on
individual data sources.

2.6 Limitations of the Unicorn Workbench and
Future Work

We have identified several limitations of the Unicorn Workbench.

Lack of inter-operability One limitation of the Unicorn Workbench is the
lack of inter-operability with other ontology engineering tools. It is not pos-
sible to import ontologies from existing often-used languages such as RDF(S),
DAML+4OIL and OWL. The export capabilities of the Workbench are also very
limited. Only limited export to RDF(S) and DAML+OIL is possible.

Lack of ontology mapping possibilities Furthermore, it is currently not
possible, in the Unicorn Workbench tool, to map different ontologies to each
other'?. Therefore, it is not possible to maintain several ontologies in an orga-
nization (only one central ontology fits in the architecture) and it is certainly
not possible to cross organizational boundaries'3. In order to enable the lat-
ter, inter-operability is required using standards-based languages, such as OWL,
which is under development at the W3C standards body. It has to be possible
to map the ontology created in the Workbench to other ontologies out there in
order to allow inter-operation with other organizations (or even other organiza-
tional units).

12 Although packages could be used to maintain different terminologies in an organization,
as argued in section 2.1.

131t must be noted here that when an organization is powerful enough, it can impose a
terminology on another organization. In this case ontology mapping is no longer necessary,
because of the existence of a single standard.

CHAPTER 2. SEMANTIC INTEGRATION IN THE ENTERPRISE 40

One model for different types of sources A possible limitation is the fact
that the same internal data model is used for the representation of different
types of information sources in the Ezxternal Assets Layer. This data model
consists of concepts such as atoms, composites and foreign keys. This data
model is clearly based on the relational data modelling practice in most current
database management systems. This is not necessarily the best representation
for XML-based, Excel-based and other kinds of data sources.

Lack of automation in creating the ontology and the mappings An-
other limitation is the very limited automation support in constructing the
Information Model and creating the mappings to the external assets. Several
algorithms and tools have been developed that aid in the construction of a cen-
tral ontology and/or the detection of similarities of concepts in different schemas.
Examples are PROMPT [Noy and Musen, 2000b], Anchor-PROMPT [Noy and
Musen, 2000a], Chimera [McGuinness et al., 2000], FCA-Merge [Stumme and
Maedche, 2001], ARTEMIS [Castano et al., 2001; Bergamaschi et al., 2001] and
SKAT [Mitra et al., 1999; Mitra et al., 2000]. We refer to [Rahm and Bernstein,
2001] for a comparison of matching algorithms.

We have to note here that we do not have any results of extensive tests of
these algorithms and tools. Although most tools have been tested in limited
environments (cf. [McGuinness et al., 2000; Noy and Musen, 2000b; Castano
et al., 2001]), it is yet to be shown how these algorithms perform with large
volumes of real-life database schemas.

In the next chapter we will look into a specific application of the Unicorn
Workbench and the COG architecture. We will show how the Unicorn Work-
bench can be used to create reusable conceptual queries on an ontology and how
this query is automatically translated to the native query language of the target
database platform.

Chapter 3

Database Querying using
Ontology Technology

This chapter! is partly based on a White Paper to be published as a part of the COG project
at http://www.cogproject.org/, with the title ‘Active Ontologies for Data Source Queries’
[de Bruijn and Lausen, 2003].

The aim in the COG project, as described in the previous chapter, was to
create a Semantic Information Management [Schreiber, 2003] in which several
heterogeneous data sources are integrated, using Semantic Web technology, into
one global unified view. This global view enables the user to discover data
residing at different location in the organization, to automatically transform
instance data from one representation to another, and to query instance data
residing in the disparate data sources. This chapter focuses on the latter. We
discuss the querying task, the querying support in the COG Architecture, and
the translation of conceptual queries on the Information Model to queries on
individual database (and other) schemas.

In this chapter, we will first introduce the querying support in the Unicorn
Workbench tool (part of the Unicorn System), thereby enhancing the description
given in the previous chapter, in section 3.1. Then, we will show how this
querying support was leveraged in the architecture of the COG project and we
will show the extensions of this querying capability that were required for the
COG project, in section 3.2. Finally, we provide some conclusions in section
3.3.

3.1 Querying disparate data sources using the
Unicorn Workbench

In this section, we present the support in the Unicorn Workbench tool for the
conceptual querying of an ontology (the Information Model) and the subsequent
translation to asset queries. With asset queries we mean queries that can actu-

1Some materials presented in this chapter are the copyright of Unicorn Solutions, Inc. and
are used with permission.

41

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 42

ally be executed on the native platforms of the external assets that have been
mapped to the central ontology in the Unicorn Workbench.

The Unicorn Workbench has a facility to create SQL-like queries on the
ontology. In the query, a number of properties are selected from a certain class
using a boolean condition (specified in the ‘where’ clause). The condition can
be created using the Unicorn conversion language [Unicorn, 2003a], which is
also used for the specification of business rules? in the Unicorn Workbench (see
section 2.3). The Unicorn conversion language is based on the Python language
and enables transformation of data values and basic boolean operations (e.g.
equality, greater-then, etc.).

These queries are issued against a single relational database and are trans-
lated automatically by Unicorn into a correct SQL statement. This SQL state-
ment can be automatically retrieved (via the operational API) by the (custom)
run-time architecture or can be manually executed in the source database sys-
tem. The COG architecture, presented in section 3.2.1, contains such a run-time
engine, which retrieves parameterized queries from the Unicorn Workbench.

We distinguish two main Use Cases for creating queries in the Workbench:

e During design-time the ontology can be manually evaluated by creating
queries on the ontology, translating them to SQL queries for the source
database platforms and execute them to verify that the expected results
are returned.

e During run-time, when an information architecture is set up, using the
Information Model in the Unicorn Workbench, queries can be created on
the Information Model, where the Unicorn Workbench would translate
them into the native SQL format used in the databases. The middle-ware
would then take care of executing the query in the database platform and
retrieving the results for the front-end application.

In this section we first introduce the querying capabilities presented by the
Unicorn Workbench, after which we show the translation of conceptual queries
into actual SQL queries, which can be executed on the native database platform.
We finish with discussing some limitations of the querying functionality in the
Workbench.

3.1.1 Queries in the Unicorn Workbench

Unicorn has developed a conceptual query language for querying ontologies in
the Unicorn Workbench. With this query language, the user can specify concep-
tual queries on classes in the ontology (Information Model). These conceptual
queries are, with the use of mappings to database schemas, automatically trans-
lated into instance queries that can be executed on the database platform of the
data source. Queries created in the Unicorn Workbench are instance queries;
only queries on instances can be created. It is as yet not possible to query the
ontology itself.
The query itself consists of the following five parts:

e A name, identifying the query.

2Business rules restrict the values of properties by specifying a relation between properties
or by restricting the value of the property to a limited set of possible value.

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 43

A select clause, which specifies which (indirect) properties to retrieve.
These properties can only be of fundamental data types and can be con-
verted using the Python-based Unicorn Conversion Language [Unicorn,
2003b)].

e A from clause, which specifies which class in the ontology is queried.

e A where clause, which specifies which additional conditions the instances
need to satisfy to be selected. Here also the Unicorn Conversion Language
can be used for transforming values.

e An on database clause, which specifies which database to query.

,[_ Edit Query RequestsForSession ll
Mew Guerny ﬁ
Guery Mame: |RequestsForSessmn
Select requests. catnetRequestEey, requests. conpletionftatus. description, requests. sta
B ndard. code
From |Bessinn=TeisEquests> |
Wihere: |catnet,:’5&ssiun](ey==410 |
On Database: | CATHET -
r Propery Selectar r Dperatar Selector
= Session :|requ95ts.catnetRequestKey | |+ |
= WS TS [0 T e -
@ B reguestedPeriod : [1..1]TimePeriod * == and
@ B requestor: [0.1]User = average
@ B reguests : Set[l. *|Request ~ = capitalize
@ B actualPeriod : [1_1]TimePeriod i] ceiling
© B actualPrototypel)sage : [0..1]Instant % False choice :
B catnetRequestkey: [1.1]Realtumber E - True currentdatetime [
1 [o] = Unknown datetime
[Z] Display Representations B 2| ’ ¥

Insertinto Formula Insertinto Formula

Cancel

Figure 3.1: Example query in the Unicorn Workbench

An example query is shown in Figure 3.1. At the top of the figure we see the
query name, which is RequestsForSession. Below that we see the properties
to be selected, under the heading ‘Select’. One of the selected properties is
highlighted, namely the property requests.catnetRequestKey. Note that this
same property is selected in the property selector at the bottom left of the
figure. We must also note here that only properties that refer to classes in the
“fundamental” package® (see [de Bruijn et al., 2003a]) can be selected here. This
is because the query is translated to a SQL query, where only built-in data types
can be selected. Note that because of the mechanism of indirect properties, it is
possible to select properties that belong to properties of the class on which the
query is performed, as indeed is done here with the catnetRequestKey property

3The fundamental package is shipped with the Unicorn Workbench and contains funda-
mental data types such as integer, string, date, etc. ..

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 44

of the Request class, which is the type of the requests property in the Session
class, on which we perform the query.

The next caption, ‘From’, is fixed to Session (the ‘Session’ concept will be
explained in more detail in section 3.2) in the example, because in the Work-
bench a query is performed on one class. In our example, the “Where’ clause
specifies the condition that the value of the catnetSessionKey property is ‘420°.
The last part, ‘On Database’, contains the database on which we want to per-
form the query. A query can only be translated to the native SQL format of
one database, so the database on which the query is to be executed, must be
selected. In our case we chose to query the database CATNET.

The panel at the bottom left of the query editing window is the Property
Selector, which can be used to conveniently select properties from the class
(and related classes) to be used in the query, thereby saving lookup time and
preventing typing mistakes. The panel at the bottom right is the Operator
Selector, where boolean, string, and integer operators can be selected, which
can be used in the ‘Select” and the ‘Where’ clauses. In fact, in Figure 3.1 we
already see the boolean equality operator put to use in the ‘Where’ clause to
check the equality of the catnetSessionKey property and the number 420.

In order to enable reuse of queries in different settings, the queries allow for
parameterization. An arbitrary number of parameters can be used in a query;
these parameters are replaced with actual values when the queries are extracted
during run-time. For example, we can replace the value ‘420’ in Figure 3.1
with a generic parameter, allowing us to reuse the query for different sessions
(a session is uniquely identified by the catnetSessionKey). In section 3.2.1 we
show how this parameterization works in practice.

3.1.2 Transforming conceptual queries into database
queries

There is no query execution engine in Unicorn; instead, the query is translated
into a SQL query, which can be manually executed in an external database
system. The fact that the query can currently only be translated to a SQL
database query is a limitation. The wrappers currently used for the Asset API
do not support the translation of queries to the native platform. This translation
is currently done by a separate component, which limits generality of the query.

There are, however, efforts under way to generate Query Planners, in the
same way Transformation Planners* work for transformations.

Queries that are created are stored in the Unicorn project along with the
SQL translation and possibly some descriptor information provided by the user.
The queries can be updated when the ontology or the mappings to the data
assets are updated. Unicorn will warn the user when a query has possibly
become invalid.

In figure 3.2 we see the SQL translation of the ontology query shown in
figure 3.1. We see here that the SQL query has been annotated with comments
that specify the parts in the query that correspond to the properties that were
specified in the ontology query.

4 A Transformation Planner is an XML document describing which composites and atoms
from the source schema are to be mapped to which composites and atoms from the target
schema. This XML document can be used to develop the actual transformation.

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 45

SELECT
CATNETREQUESTKEY AS BR /* BR is business rule
requests.catnetRequestKey */,
DESCRIPTION AS BR1 /* BR1 is business rule
requests.completionStatus.description */,
CODE AS BR2 /* BR2 is business rule requests.standard.code */

FROM
(
SELECT
A.AK_7RCH AS CATNETREQUESTKEY /* CATNETREQUESTKEY is property
requests.catnetRequestKey */,
B.DESCRIZIONE AS DESCRIPTION /* DESCRIPTION is property
requests.completionStatus.description */,
A.COD_NORMA AS CODE /* CODE is property requests.standard.code */,
C.AK_7SEL AS CATNETSESSIONKEY /* CATNETSESSIONKEY is property
catnetSessionKey */
FROM

COG.TAJO7RCH A,
COG.TAJO2STA B,
COG.TAJO7SEL C
WHERE
C.AK_7RCH = A.AK_7RCH AND
A.COD_STATO_RICHIESTA = B.COD_STATO_RICHIESTA AND
B.COD_STATO_RICHIESTA = A.COD_STATO_RICHIESTA
) SESSION /* SESSION is class Session in package TestRequests */
WHERE
CATNETSESSIONKEY=410

Figure 3.2: Example SQL translation of an ontology query

Let’s try and reconstruct the SQL as is presented in Figure 3.2. We see a
nested SELECT statement, where the inner statement is used to reconstruct, using
a join operation®, the ontology class Session, including the required indirect
properties, from the tables in the database that have been mapped to the class.

In the outer SELECT statement the requested properties are selected from
the inner statement using the ‘Where’ condition specified in the ontology query
and translated to the database platform (Oracle in this case). Note that only
the atoms necessary in the outer SELECT statement are selected.

3.1.3 Limitations of the current approach

A disadvantage of the query support in the Unicorn Workbench is that only
fundamental data types (i.e. integer, string, etc...) can eventually be queried.
This means that the user usually has to drill down the indirect properties in
order to find the required data type to be retrieved from the database. When
that specific data value happens to be residing in a different database, it is not
possible to retrieve it in the same query. The user needs to create a new query
in order to retrieve the value from the other database.

With the current version (2.6.1) of the Unicorn Workbench it is not pos-
sible to use a single query for multiple databases. In fact, only relational
databases can be queried with the Unicorn tool at the moment. To query
multiple databases, it is necessary to create the same conceptual query several
times, where each query differs only in the data source to which it refers. This
creates maintenance problems.

5Notice that the last two clauses in the ‘WHERE’ clause of the inner SELECT statement
are actually equivalent and thus redundant. This is apparently a bug in the current version
of the software; this bug will not cause many problems because any optimizer will filter out
such redundancies before query execution.

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 46

Another drawback of the current version of the Unicorn tool is that it is not
possible to automatically retrieve the results of a query from a data source. In
this scenario it also doesn’t make any sense to query multiple databases at the
same time. This only makes sense if multiple sources are automatically queried
and if the results are integrated into a unified view for the user. In the querying
scenario as envisioned by Unicorn, the run-time architecture will take care of
the querying of the databases and the integration of the results into a unified
view for the user. In this case, the run-time architecture can use the Unicorn
Query API to specialize the queries for the different databases from which the
query results need to be integrated.

We have presented above the query support in the Unicorn Workbench tool.
We have presented the conceptual querying language, used to issue queries on a
class of the ontology. Then we have looked into the way the conceptual query was
translated into an actual SQL query that can be executed on a native database
platform. Finally, we have looked into some limitations in the querying support
of the Unicorn Workbench. In the next section we will look into the way the
query support in the Workbench was used in the COG project and how the
COG architecture overcomes some of the limitations of the Workbench.

3.2 Querying disparate data source in the COG
project

One of the goals of the COG project was to create a platform-independent
semantic querying tool to query the disparate data sources through the central
ontology. The ontology has been implemented using the Unicorn Workbench,
a tool supporting the Semantic Information Management ([Schreiber, 2003]).
Unicorn provides basic ontology querying support, which was described in detail
in the previous section. The querying support is further expanded in the COG
run-time architecture.

3.2.1 The querying architecture in the COG project

In the COG project, a web client was created as a front-end application for the
Unicorn semantic layer. The web client integrates the various disparate sources
using the semantic back-bone provided by the Unicorn run-time API. Figure 3.3
shows the disparate data sources in the COG project that are integrated using
the central ontology in the Unicorn Workbench.

One of the goals in the COG project is to provide support for semantic
platform-independent querying of the disparate data sources through the central
ontological model.

In the overall COG architecture (figure 3.4), within the application inte-
gration layer, there is the Query Manager, which interacts with the Unicorn
Workbench and with the individual data sources in order to automatically exe-
cute queries, created using the Information Model, on the disparate databases.
There are two active components in the query execution process. The Query
Manager communicates with the Unicorn tool to retrieve the Query object for a
specific query. This Query object translates the conceptual query from the Uni-

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES

Web Front End

Query, metadata
exploration, display

and reporting.
LiveLink Excel
WelcomHome PSI
MS-Project CATNET

Figure 3.3: COG logical architecture

Web Client

. . 4 M Object
Application Integration solution | Que"Y Manager [—{_Query object |

__Workbench _____________ A \
|

i |
} Editing ‘ Transformgﬂons/ ‘ Data Discovery | !
| Querying !
|
1 |
| Information Model !
|
L777\77A777777T7‘777777}*Aw777777777L77777777\77‘777J

IR N
S S
Welcom oatnet | psi
Home = =
RDBMS spreadsheets LivelLink XML

Figure 3.4: COG Querying architecture

47

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 48

1 2 7 External
— Web Client Query Manager | ,|Database
5 6
3 4l Query Object
Unicorn
Operational API

Figure 3.5: The querying process in the COG architecture

corn Workbench into the query language that is understood by the individual
data source.

The querying process is depicted in figure 3.5. The web client sends a re-
quest to the Query Manager, which in turn retrieves the corresponding SQL
query from the Unicorn Operational API, after which the Database System is
contacted and the query is executed. The query results are then propagated
back to the web client.

The following steps are involved in the querying process:

1. The user selects the query to be executed along with its parameter values
in the Web Client.

2. The Web Client identifies the query and sends the query name along with
the parameter value to the Query Manager.

3. The Query Manager will use the Unicorn API to request the query.

4. The Unicorn API returns a Query Object, which represents the conceptual
query.

5. The Query Manager sends the parameter values to the Query Object.

6. The Query Object returns the platform-native translation (typically SQL)

of the conceptual query after having performed the parameter-value sub-
stitutions.

7. The query is sent to the database system, where it is execute. The results
are returned, translated to a suitable format by the Query Manager, and
ultimately displayed to the user by the Web Client.

We have shown in this section how the querying of databases works and
what the role is of the Unicorn Workbench in the querying process. In the next
section we clarify the querying architecture using some examples from the user’s
point of view.

3.2.2 Querying in the COG showcase

In figure 3.7 we see a screen-shot® from the COG showcase where the user can
select an item at a certain level in the Voice of Customer (VoC) tree for a specific

6Note that the screen-shots shown here are taken from an HTML prototype of the showcase,
since the real showcase was not finished at the time of writing.

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 49

Standard (Test) Listing

Selected tests for model 843- Nuova ¥
= VOC Node =TLR2: Ergonomics fSreactrumiing!)

Test Test Test Test Test

Description: o

Number: Code: Plan: Detail: Results: - -

R 7 blababbhbababs B B 5] Voice of Customer Based Test Selection
4050 bla blabla bla bla

1058 7- bla bla blabla bla blabla VOC selection for model 843- Nuova Y

T2305 bla blabla bla blabla bla
bla

Glevel 1(1LR1): [Extemal] Testist |
Blevel 2(TLR2): [SystemEfficency =] | Testlit |
CCP Level [Unselected =] TestList |
o iealE Packef for Tests QP Level [Unselected =] Test st |
EICPR Level [Unsslected =] TestList |

gE o
oo o
oo o

Figure 3.6: VoC node listing exam-
ple Figure 3.7: VoC selection example

prototype model (in this case ‘model 843- Nuova y’). The user selects an item
from one of the drop down lists and presses the ‘Test List’ button. The web
portal now contacts the application server to execute a query with a specific
name with (a) specific parameter(s). The Query Manager component (figure
3.4) now contacts the Unicorn Workbench API in order to retrieve the query.
After the query has been retrieved, it is executed on the target database.

In figure 3.6 we see a list of tests corresponding to a particular node in
the VoC tree (in this case a Level 2 node called ‘Ergonomics’). The ontology
query used to retrieve the list is shown in figure 3.8. The list contains of some
information about the test (the test number, code and description) and also links
to more detailed information. This detailed information, consisting of the test
plan, test details, and test results, is retrieved using consecutive querying. For
each of these actions a parameterized query has been created in the Unicorn
Workbench. The application server retrieves the query from the Workbench,
fills in the parameter, and issues the query on the database system.

MNew Query || Query |

QuergMame: [CCPModesForTLRINDGE |

Select |EEPLevElAddress,pat.hEnde |
Fram: CCPLevelReguirement=TestRequests=

Where: |pax:ent.path€ude=="1.2" |
OnDatabase: | PSI -

Figure 3.8: Level 2 node selection query

The retrieval of test details using the Voice of Customer tree is usually done
for the retrieval of test results, when defects in the prototype have surfaced or
when customer complaints reach the marketing manager.

During the creation of test plans and the execution of tests, two views are
very important. First, there is the packet view (figure 3.9), which is used to
create packages of tests to be performed on a model. This view is used by the
prototype manager to select a set of tests based on customer requirements. The
second view is the session view (figure 3.10), which is used by the testing man-
ager, who configures testing sessions to be performed by specific testing labora-
tories. To summarize, a package is a set of tests from the customer requirement

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 50

Manage Packets
Select a Packet to see the tests included

Packet Number Creation Date Requestor Request Department
« 142 01/04/2003 Lattanzio Theodoro -

143 02042003 John Smith -

Edit| Delete | [Onclick - launch sirilar window to packet specification

page]

Tests Included in Packet Number: 142

Test Number Standard Code
1 F-C4050
2 8-1D234

Figure 3.9: Example packets in the package management section of the COG
showcase

Session Management

Select a Session. You can view releated requests below, or click "view Details' to
go to the session details page.

Sesson status reaion - CostConter Reaeting erforning
569 Being Edited 09/12/2002 32.144.1/4.143 (R9999 AP1840
547 Suspended 22f11/2002 45.243.2/5.432 AJ2510 £12710
546 Executed 11/11/2002 56.465.4/6.546 BI4400 Bl4700
v 522 In Execution 22f10/2002 76.576.5/7.657 AJ2630 CR9999
{7 515 Officislized 15/10f2002 15.151.3/5.135 (CR9999 CR9999

View Session Details |

Details of Session Number: 522

Request

Number Status Standard Description
112 In Execution 7-TO013 Test of likelhood of doors to fal off
148 2-1D834 7-C4050 A test of air pressure of the tires

Figure 3.10: Example sessions in the session management section of the COG
showcase

CHAPTER 3. DATABASE QUERYING USING ONTOLOGIES 51

Session Details
Session Number: 410 Session Status: In Execution Cost Center Code: 15.564.5/5.565
Phase Prototype Zeto Phase ol
Requested Starting Date |01/0z2/2003 Requested Testing Finish Date |3ufu4,izut|3
Planned Start 154022003 Planned Finish ISDJDMZDDS
Actual Start 25/02/2003 Actual Finish I
Session Creation Date 15/01/2003 Session Sent Date 17/01/2003
Laboratory ENTE CRF DI FROVA Laborotory Manager |G\0vann\ Garafano ¥
Request Number Status Standard Description
" 112 It Execution 7-T0013 Test of lkehood of doars to fall off
i 148 Suspended 7-C4050 A test of air pressure in the tires
Save Session I Request Details |

Figure 3.11: Testing Session details

point-of-view and a session is a set of tests (figure 3.11) to be performed by a
specific laboratory, not specifically related to customer requirements.

We have shown above how conceptual queries, created in the Unicorn Work-
bench, are used in an actual application. We presented the COG architecture,
which support retrieving SQL queries, based on conceptual queries, from the
Workbench, executing them on the native database platforms, and retrieving
the query results for the front-end application.

3.3 Conclusions

In this chapter, we have evaluated the ontology querying capabilities in the
Unicorn Workbench, as well as the possibilities of generating SQL queries on
physical database schemas that have been mapped to the Information Model.

We have furthermore analyzed how this querying functionality is used in
the COG architecture. We have seen how conceptual queries originating from
the web front-end application are translated by the Unicorn Workbench into
queries that are ready to be executed on the native database platforms; how
these queries are executed by the Query Component and how the results are
returned to the front-end, which displays them to the user.

Using the Unicorn Workbench to retrieve the queries prevents problems that
usually arise when data schemas are updated. The applications using these data
schemas will usually break and be rendered useless. By storing the queries in
the Workbench, queries are maintained with the ontology and the mappings
to the database schemas. When the Information Model and the mappings to
the external assets are maintained within the Workbench, the maintainer will be
warned when invalidating existing queries and will be inclined to (automatically)
update these queries to reflect the changes in the Information Model and the
external assets.

In the next chapter we conduct a survey of existing methods and tools in
the area of semantic information integration and ontology mapping and compare
these with the information integration solution provided in the COG project.

Chapter 4

Comparison with other
initiatives

In this chapter we evaluate several approaches to semantic information integra-
tion and compare them with the approach we used in the COG project.

The approaches used for the comparison consist mainly of research projects
in the semantic (mostly ontology) integration area. Many of these approaches
specifically integrate ontologies and provide translations of database schemas to
ontologies in order to integrate them. Examples of this approach are MOMIS
[Bergamaschi et al., 2001] and ONION [Mitra et al., 2000].

Two tools included in the comparison, PROMPT [Noy and Musen, 2000b]
and Chimera [McGuinness et al., 2000], are specialized in ontology merging
and do not provide an architecture for run-time translation or transformation
of database schemas to ontologies. However, these tools have been developed
some time ago and have evolved to incorporate a lot of research done in the
ontology integration area in the last few years.

This chapter is organized as follows: section 4.1 provides a survey of se-
lected methods and tools for Semantic Information Integration and section 4.2
compares the approaches in the survey and the approach in the COG project,
described in chapter 2.

4.1 Methods and Tools for Semantic Informa-
tion Integration

In this section we will describe several approaches to semantic information in-
tegration using ontologies, as well as the tools available for these approaches.
We will classify each approach using the classification scheme outlined in
the introduction. We make the distinction between merging and aligning, the
distinction between local model and global model and the distinction between
one-to-one mapping, using a central ontology and ontology clustering.
Furthermore, we will make a distinction in the degree of automation sup-
ported by the tool. We distinguish manual, semi-automatic, and automatic
schema integration. With manual integration, the user will have to discover all
merging candidates in the source schemas that need to be mapped or merged in

52

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 53

to the global schema. When semi-automatic integration is supported, the user
is typically provided with suggestions for integration. There are currently no
algorithms or tools that support automatic integration.

We do not expect to see automatic integration tools appear, because of the
grave differences, both on a syntactic and a semantic level, between different
data schemas (and ontologies) that have been developed and will be developed.
Schemas and ontologies are created by different people with different views on
the domain. These different views cannot be automatically integrated and will
very likely require negotiations between stakeholders who have these different
views.

We restrict this survey to methods and tools for schema integration. We will
not evaluate general methodologies for ontology engineering, because these are
outside the scope of this thesis. We refer the interested reader to [Ferndndez-
Lépez, 1999] and [Ferndndez-Lépez et al., 2002]. For a survey on ontology
development tools, we refer the reader to [Gémez-Pérez et al., 2002].

In this section we will give a short description of each of the methods, de-
scribe the tool support and give a short summary. We have included the tool
support in order to show the reader how the user is supported in the integration
task in the presented methodology.

A selection of these methodologies has been used for a comparison with the
methodology employed in the COG project.

4.1.1 The MOMIS approach

An approach to the integration of heterogeneous data sources is the MOMIS
(Mediator envirOnment for Multiple Information Sources) approach [Bergam-
aschi et al., 1999; Bergamaschi et al., 2001].

The goal of MOMIS is to give the user a global virtual view of the informa-
tion coming from heterogeneous information sources. MOMIS creates a global
mediation schema (ontology) for the structured and semi-structured heteroge-
neous data sources, in order to provide to the user a uniform query interface.

The first step to the creation of the global mediation schema is the creation
of the Common Thesaurus from the disparate data sources. To do this, first a
wrapper is created for each data source in the ODLjs [Bergamaschi et al., 2001]
language. ODLjs is an object-oriented language with an underlying Description
Logic [Baader et al., 2003] language OLCD [Bergamaschi et al., 2001], which
enables making inferences (e.g. subsumption) about the classes expressed in
that language.

Using the disparate schemas, a Common Thesaurus is created, which de-
scribes intra- and inter-schema knowledge about ODL;s classes and attributes
of source schemas. The Common Thesaurus is built in an incremental process
in which relationships (between classes) are added based on the structure of
the source schemas, lexical properties of the source classes and attributes (e.g.
WordNet [Fellbaum, 1999] can be used to identify synonyms), relationships sup-
plied by the designer, and relationships inferred by the inference engine.

Once the Common Thesaurus has been created, a tree of affinity clusters is
created, in which concepts are clustered based on their (name and structural)
affinity. The name affinity coefficient is calculated based on the terminological
relationships between two classes. The structural affinity coefficient between two
classes is calculated based on the level of matching of attribute relationships in

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 54

the Common Thesaurus. The sum of these two coefficients is the global affinity
coeflicient, which is used to construct the affinity tree, in which concepts with

a high affinity are clustered together.
For each cluster in the affinity tree, a global class is (interactively) created.

For each global class a mapping is maintained to all the source classes.
A number of components are used to enable the MOMIS architecture. These

components are (see Figure 4.1, taken from [Bergamaschi et al., 2001]):

e A wrapper performs the translation of the individual data source into the
ODL;s language (and translates the queries back).

e The mediator consists of the query manager (QM) and the global schema
builder (GSB). The QM component breaks up global ODL;s queries into
sub-queries for the different data sources.

e The ARTEMIS tool environment performs the classification (affinity and
synthesis) of classes for the synthesis of the global classes.

e The ODB-tools engine performs schema validation and inferences for the
generation of the Common Thesaurus.

Integration [Leg
Designer
ARTEMIS
User Global Schema
Application

METADATA REPOSITORY

\ 4

[SI-Designer <+—» WordNet

N— Y ODB-Tools
y / Service level
[QueryManager J
k ‘ - MOMIS mediator

A O

=/{ Query agents

Wrapper
agent

legenda
P Uscr interaction
<> CORBA interaction BT
G CORBA Object
i GUI
I: User
Commmmm Software tools

Wrapper
agent

agent

Wrapper
agent

Data level

Figure 4.1: Architecture of the MOMIS system

Tool support The architecture in figure 4.1 (taken from [Bergamaschi et al.,
2001]) shows the main tools used to support the overall architecture. A disad-
vantage is that there is no integrated tool environment.

Summary The MOMIS approach is a semi-automatic approach to schema
integration, developed at the university of Modena, Italy. The approach has not
been used in any major industrial project and is mainly an academic research

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 55

Ontology 1 Ontology n

@....“..@
.

'1.

iy /
N 7, N
® Subscribe ® ()molng_\-f ® Advertise [@
m Reque m Agent m m >
User cquest Broker blish [Resource
) ent @ . Agent
Agent Ag““‘ﬁ Multiresource @ £en Structured
Respoirse! m Query n Cquest Databases

A®

m Agent ®
- ubseripti
2= Subscription
Pss) m Avent ® Resource
Applet " Agent

Text. Images.

Video
m
Resource &
Value [——""3] Agent
Mapping /4’ Information
Mobile Agent Services

Figure 4.2: The InfoSleuth architecture

activity. Any data source can be connected to the architecture, as long as an
ODLjs wrapper is created. MOMIS has a single mediator, which provides a
global data schema and query interface to the user.

4.1.2 InfoSleuth

InfoSleuth [Fowler et al., 1999] is an agent-based system, which supports con-
struction of complex ontologies from smaller component ontologies so that tools
tailored for one component ontology can be used in many application domains.
Examples of reused ontologies include units of measure, chemistry knowledge,
geographic metadata, and so on. Mapping is explicitly specified among these
ontologies as relationships between terms in one ontology and related terms in
other ontologies.

All mappings between ontologies are maintained by a special class of agents
known as resource agents. A resource agent encapsulates a set of information
about the ontology mapping rules, and presents that information to the agent-
based system in terms of one or more ontologies (called reference ontologies). All
mapping is encapsulated within the resource agents. Ontologies are represented
in OKBC (Open Knowledge Base Connectivity) [Chaudhri et al., 1998] format
and stored in an OKBC server by a special class of agents called ontology agents,
which provide ontology specifications to users (for request formulation) and to
resource agents (for mapping).

The InfoSleuth architecture [Nodine et al., 2000] (figure 4.2) consists of a
number of different types of agents:

e The user agents act on behalf of the user and maintain the users state.
They provide a system interface that enables users to communicate with
the system.

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 56

e The resource agents wrap and activate databases and other repositories
of information. They translate queries and data stored in external repos-
itories between their local forms and their InfoSleuth forms. There are
resource agents for different types of data sources, including relational
databases, flat files, and images.

e Service agents provide internal information to the operation of the agent
system. Service agents include Broker agents, which collectively maintain
the information the agents advertise about themselves, Ontology agents,
which maintain a knowledge base of the different ontologies used for spec-
ifying requests, and Monitor agents, which monitor the operation of the
system.

e Query and analysis agents fuse and/or analyze information from one or
more resources into single (one-time) results. Query and analysis agents
include Multi-resource query agents, that process queries that span multi-
ple data sources, Deviation detection agents, that monitor streams of data
to detect deviations, and other data mining agents.

e Planning and temporal agents guide the request through some processing
which may take place over a period of time, such as a long-term plan,
a workflow, or the detection of complex events. Planning and temporal
agents include Subscription agents, that monitor how a set of information
(in a data source) changes over time, Task planning and execution agents
plan the processing of user requests in the system, and Sentinel agents
monitor the information and event stream for complex events.

e Value mapping agents provide value mapping among equivalent represen-
tations of the same information.

Tool support There are Java templates available to make the development
of new agents easier. To create a resource agent using such a template, it is in
general sufficient to just supply a configuration and a mapping file to complete
the agent [Nodine et al., 2000]. It is possible to use different ontologies in an
InfoSleuth system. Each OKBC-compliant [Chaudhri et al., 1998] Knowledge
Base can be used in InfoSleuth by wrapping it using an ontology agent [Nodine
et al., 2000].

Summary InfoSleuth is a multi-agent system for semantic inter-operability
in heterogeneous data sources. Agents are used for query and instance transfor-
mations between data schemas. An agent is aware of its own ontology and the
mapping between that ontology and the data schema, it is aware of the shared
ontologies and it can map its ontology to those of other agents. InfoSleuth uses
several shared ontologies, made available through the ontology agents. Individ-
ual data sources have (through the resource agents) a mapping to these shared
ontologies. The shared ontologies are linked together through one-to-one on-
tology mapping. Note that the user agents use the shared ontologies as their
vocabulary and local ontologies are only maintained by the resource agents.

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 57

4.1.3 OBSERVER

OBSERVER (Ontology Based System Enhanced with Relationships for Vocab-
ulary hEtereogenity Resolution) [Mena et al., 2000] combines intensional and
extensional analysis to calculate lower and upper bounds for the precision and
recall of queries that are translated across ontologies on the basis of manually
identified subsumption relations. The system uses a component-based approach
to ontology mapping. It provides brokering capabilities across domain ontolo-
gies to enhance distributed ontology querying, thus avoiding the need to have a
global schema or collection of concepts.

OBSERVER uses multiple pre-existing ontologies to access heterogeneous,
distributed and independently developed data repositories. Each repository is
described by means of one or more ontology expressed in Description Logics
(DL). The information requested to OBSERVER is expressed according to the
user’s domain ontology, also expressed using DL. DL allows matching the query
with the available relevant data repositories, as well as translating it to the
languages used in the local repositories.

The system contains a number of component nodes, one of which is the user
node. Each node has an ontology server that provides definitions for the terms
in the ontology and retrieves data underlying the ontology in the component
node. If the user wants to expand its query over different ontology servers, the
original query needs to be translated from the vocabulary of the user’s ontology
into the vocabulary of another’s component ontology. Such translation can not
always be exact, since not all the abstractions represented in the user ontology
may appear in the component ontology. If this is the case the user can define
a limit in the amount of Loss of Information. Anyhow, the user can always set
this parameter to 0, thereby specifying no loss at all.

An Inter-ontology Relationship Manager (IRM) provides the translations
between the terms among the different component ontologies. The IRM effec-
tively contains a one-to-one mapping between any two component nodes. This
module is able to deal with Synonym, Hyponym, Hypernymy, Overlap, Disjoint
and Covering inter-ontology relationships.

The user submits a query to the query processor in its own component node
(in fact, each component node has a query processor). The query processor
uses the IRM to translate the query into terms used by the other component
ontologies and retrieves the results from the ontology servers.

Tool support The OBSERVER architecture, depicted in figure 4.3 (taken
from [Mena et al., 2000]), consists of a number of component nodes and the
IRM node. A component node contains an Ontology Server that provides for
the interaction with the ontologies and the data sources. It uses a repository
of mappings to relate the ontologies and the data sources and to be able to
translate queries on the ontology to queries on the underlying data sources. The
architecture contains one Inter-Ontology Relationship Manager (IRM), which
enables semantic inter-operation between component nodes by maintaining the
relationships between the ontologies.

Summary OBSERVER is an architecture consisting of component nodes,
each of which has its own ontology, and the Inter-ontology Relationship Man-
ager (IRM), which maintains mappings between the ontologies at the different

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 58

(o —_

N2 Y

o O
Interontologies \ -
@ Terminological @ User Query | o/ o

Relationships

User Node
IRM node
Component Node Component Node
AN NN =
0ooo
@ 000 @ @ coo @
Data Repositories Data Repositories

Figure 4.3: The general OBSERVER architecture

component nodes. Besides the ontology, each component node contains a num-
ber of data repositories along with mappings to the ontology, to enable semantic
querying of data residing in these repositories. When other components need to
be queried, the IRM provides mappings to ontologies of other component nodes
in order to enable querying. The user views the data in the system through it’s
own local ontology, located at the user’s component node.

4.1.4 Ontology mapping in the KRAFT project

The KRAFT! architecture is an agent-middleware architecture that proposes a
set of techniques to map ontologies:

Class mapping Maps a source ontology class name to a target ontology class
name.

Attribute mapping Maps the set of values of a source ontology attribute to
a set of values of a target ontology attribute; or maps a source ontology
attribute name to a target ontology attribute name.

Relation mapping Maps a source ontology relation name to a target ontology
relation name.

Compound mapping Maps compound source ontology expressions to com-
pound target ontology expressions.

The KRAFT architecture (Figure 4.4, taken from [Preece et al., 2001]) has
three types of agents:

Thttp://www.csd.abdn.ac.uk/~apreece/Research/KRAFT.html

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 59

R UA Non-KRAFT components

R UA User

UA @ Agent
@ @ R Resource

e O
PO

UA

KRAFT facilities

Wrapper

Facilitator

Mediator

OO

Figure 4.4: Conceptual view of the KRAFT architecture

o Wrappers translate the heterogeneous protocols, schemas and ontologies
into the KRAFT application internal ‘standards’. A wrapper agent effec-
tively contains a one-to-one mapping between the source schema and the
internal ontology.

e Fucilitators look up services (provided by mediators and wrappers) re-
quested by other agents.

e Mediators are the KRAFT-internal problem-solvers. They provide the
querying, reasoning, and information gathering from the available re-
sources. Mediators contain the mappings between the different ontologies
present at the wrappers and they perform the translations between them.

The mediation between two agents in terms of matching service requesters
with service providers is realized by a facilitator. It will recommend an agent
that appears to provide that service. The facilitator provides a routing service
by trying to match the requested service to the advertised knowledge-processing
capabilities of agents with which it is acquainted. When a match is located, the
facilitator informs the service-requesting agent of the identity, network loca-
tion, and advertised knowledge-processing capabilities of the service provider.
The service-requesting agent and service-providing agent can now communicate
directly.

KRAFT defines a shared ontology in order to overcome the problem of se-
mantic heterogeneity, among service requesters and providers. A shared on-
tology formally defines the terminology of the problem domain. Messages ex-
changed among agents in a KRAFT network must be expressed using terms
that are defined in the shared ontology. Each knowledge source defines a local
ontology. Then, a number of semantic mismatches will occur (homonyms and
synonyms) between the local ontology and the shared ontology. To overcome
these mismatches, an ontology mapping is defined for each knowledge source.
An ontology mapping is a partial function that specifies mappings between terms
and expressions defined in a source ontology to terms and expressions defined

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 60

in a target ontology. To enable bidirectional translation between a KRAFT
network and a knowledge source, two such ontology mappings must be defined.

[Visser and Tamma, 1999] suggest using the concept of “ontology clustering”
(see figure 1.11) instead of a single-shared ontology to provide heterogeneous
resources integration. Ontology clusters are based on the similarities between
the concepts known to different agents. The ontology clusters are organized
in a hierarchical fashion, with the application ontology as the root node. The
application ontology is used to describe the specific domain, which means that
it is not reusable. It contains a relevant subset of WordNet concepts.

Every agent has a mapping of its local ontology to a cluster in the hierarchy.
When some agents share concepts that are not shared by other agents, these
new concepts are defined by creating a new ontology cluster. A new ontology
cluster is a child ontology that defines certain new concepts using the concepts
already contained in its parent ontology. Concepts are described in terms of
attributes and inheritance relations, and are hierarchically organized.

Tool support The three different types of agents have been implemented in a
prototype in the network data services area together with an industrial partner
[Preece et al., 2001]. Besides this big project, several other (small) prototypes
have been implemented.

Summary The KRAFT project takes an agent-based approach to informa-
tion integration, where users typically have their own local ontology that is
mapped to the central ontology. Three types of agents work together to provide
services to the user. Wrappers provide access to data sources, mediators provide
query interfaces and reasoning services, and facilitators enable the look-up of
the former types of wrappers.

Originally, KRAFT used a single-shared ontology in order to enable integra-
tion of local ontologies in the overall architecture. Later on, [Visser and Tamma,
1999] suggested the use of ontology clustering for this purpose. The advantage
of the use of ontology clustering is the distinction of more refined and more
abstract ontologies, enabling organizing the ontology mappings in a hierarchical
structure.

4.1.5 PROMPT

Noy and Musen [Noy and Musen, 1999] developed SMART which is an algorithm
that provides a semi-automatic approach to ontology merging and alignment.
SMART assists the ontology engineer by prompting to-do lists as well as per-
form consistency checking. SMART forms the basis for PROMPT [Noy and
Musen, 2000b], which is an algorithm for ontology merging and alignment that
is able to handle ontologies specified in OKBC [Chaudhri et al., 1998] compat-
ible format. It starts with the identification of matching class names. Based
on this initial step an iterative approach is carried out for performing auto-
matic updates, finding resulting conflicts, and making suggestions to remove
these conflicts. PROMPT is implemented as an extension to the Protégé-20002
knowledge acquisition tool and offers a collection of operations for merging two
classes and related slots.

2http:/ /protege.semanticweb.org/

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 61

[Fimerged Protégé-2000 [D:\Prompt\EXAMPLE Simerged. ppril

Project Edit Window Help Prompt

ol - /[BE

Prompt [(C}[Ti0 Classes & Instances n:ﬂ] Forms rM Queries |

m‘m : fResun classes rResun slots rResun instam:es|

To Do list Ve[=] 5] |{merged v][#]s]
Name\ Argl | Arg2 | Params 4 © THINGA

merge@Onmlugy—Reﬂnerupml ©0nto\ogyFrame MDang = i B’©'EYETEM'CLASSA

merge@PSM uprol @FSMFrame MDLang NE

merge@PSM uprnl @FSM_HstMDLang

merge @ Ontology Wwomi @ OntalogyFrame MDLang

merge@PSM—leraw upim @FSM_HstMDLang

Copy @Bmdge upind params = {subs}

copy @Cumpelence uprmi params = {subs}

copy @CumpleerSM upmi
copy @Custrexpressluﬂ upmi
copy @DUmaln—Mude\ upmi
copy @Furmula wpmi

copy @MCL—PrUgram womi i
copy @ Operational-Description 4, L2

Reason for selected suggestion

tarme names are synonyms: @ Ontalogy wpmd and @ OntalogyFrame MDLang

= 5

Figure 4.5: An example of Ontology Merging in PROMPT

The PROMPT algorithm consists of a number of steps. First, it identifies
potential merging candidates based on class-name similarities and presents this
list to the user. Then, the user picks an action from the list. The system
performs the requested action and automatically executes additional changes
derived from the action. It then makes a new list of suggested actions for the
user based on the new structure of the ontology, determines conflicts introduced
by the last action, finds possible solutions to these conflicts and displays these
to the user. Figure 4.5 shows an initial to do list with merge operations. The
user has selected one of the operations and PROMPT provides the reason for
the suggestion (’frame names are synonyms’).

PROMPT uses a measure of linguistic similarity among concept names to
solve terms matching. In the first implementation of the algorithm linguistic-
similarity matches were used for the initial comparison, now they concentrate
on finding clues based on the structure of the ontology and user’s actions.

PROMPT identifies a set of knowledge-base operations (merge classes, merge
slots, merge bindings between a slot and a class, etc) for ontology merging or
alignment, for each operation in this set, PROMPT defines (1) changes per-
formed automatically, (2) new suggestions presented to the user, and (3) con-
flicts that the operation may introduce and that the user needs to resolve. When
the user invokes an operation, PROMPT creates members of these three sets
based on the arguments to the specific invocation of the operation. Among
the conflicts that may appear in the merged ontology as the result of these
operations are counted:

e name conflicts (more than one frame with the same name),
e dangling references (a frame refers to another frame that does not exist),

e redundancy in the class hierarchy (more than one path from a class to a
parent other than root),

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 62

e slot-value restrictions that violate class inheritance.

Both the list of operations and conflicts grow as more experience is gained.

The creators of PROMPT have created an algorithm, called Anchor-
PROMPT [Noy and Musen, 2000a], that enhances the detection of match-
ing terms using non-local context. Whereas PROMPT takes only local struc-
tural similarities between terms into account, Anchor-PROMPT uses paths of
a greater length in order to determine similarities. The input of the algorithm
consists of a number of anchors, which are pairs of matching terms in the source
ontologies. Anchor-PROMPT now takes these anchors to produce a new set of
semantically close terms. It does this by comparing paths between the anchors
in both ontologies. A graph is constructed with the classes as nodes and the
slots as edges and a path consists of a number of edges in a graph. The Anchor-
PROMPT algorithm can be used in the context of any ontology merging or
aligning method and is not specific to PROMPT.

[Noy and Musen, 2003] suggest that several strategies developed for the
comparison of ontology versions can also be used for finding similarities across
different ontologies. While ontology versioning is concerned with finding dif-
ferences between versions of an ontology, ontology aligning is concerned with
its complement, namely finding similarities between different ontologies. This
leads to the possibility of reuse of several matchers developed for PromptDiff
[Noy and Musen, 2003] in the area of ontology merging and aligning.

Tool support The PROMPT algorithm has been implemented as an exten-
sion to the Protégé-2000 tool and as such can take advantage of all the ontology
engineering capabilities of the tool. The tool supports import and export of
the ontology in several ontology languages as well as database schemas using
the appropriate JDBC connection, and therefore allows merging of both on-
tologies and data schemas. The plug-in architecture allows for the inclusion of
different other schemas sources. Examples of plug-ins available for storage are
DAML+OIL support, XML Schemas, and RDF(S).

Summary PROMPT provides a solution for ontology merging, not specif-
ically data schema integration. In the ontology merging in PROMPT it is
assumed that the original ontologies no longer exist after the merged ontology
has been created. Therefore, there are no mappings between the original and
the merged ontologies, as there are in most data schema integration solutions.

PROMPT uses a semi-automatic approach to the merge process. It uses
linguistic similarities to determine possible candidates for merging and presents
these choices to the user. Conflicts arising during merging (e.g. merged con-
cepts that refer to concepts in one of the original ontologies) are detected and
presented to the user along with possible solutions to the problem. During tests
done with PROMPT it turned out that in the merging of ontologies about 74%
of all operations executed had been proposed by the system [Noy and Musen,
2000D).

4.1.6 Chimeera

Chimeera [McGuinness et al., 2000] is an ontology merging and diagnostic tool
developed by the Stanford University Knowledge Systems Laboratory (KSL).

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 63

Help abways
Mena of Bl agenda items available

showing current sgunds item
\ \

Move to next — L .
R e Class: [2 awe sammands \ =] 3,
Decotpasition: [N activs commanes \ .
Fibe: |0 actine cammm ands - '-,\
Delete this Tamamomy; [active commanss) =l
nda \
b b S oy [19 2ctvs commarar Y] [Famare s <]
T ¥ B T
s Hame: \ Pretty name; feamaiin
LW | o Mames ta sl [Presty ramees e very imilar Manmaiis, Wammal -]
- o | &

Move to previous /’
apeada item

Unselected class

Class “closed”
trimngle .

e

[a] { e
S
\ \ Saurce KBs
Selected class

Examing this frame

Figure 4.6: The Chimeara tool in name resolution list mode

[McGuinness et al., 2000] distinguish two major tasks in the merging of on-
tologies, namely (1) to coalesce equivalent terms from the source ontologies so
that they are referred to by the same name in the target ontology and (2) to
identify related terms in the source ontologies and identify the type of rela-
tionship (e.g. subsumption and disjointness). Chimaera support the merging
task by generating two resolution lists, a name resolution list and a taxonomy
resolution list.

The name resolution list (Figure 4.6) contains terms from different ontologies
that are candidates to be merged or that have taxonomic relationships that
have not yet been identified. Chimsera finds these suggestions based on the
names of the terms, the presentation names, the definition of terms, etc The
taxonomy resolution list suggests areas in the taxonomy that are candidates for
reorganization. It finds such edit points by looking for classes that have direct
subclasses from more than one ontology.

The name and taxonomy resolution lists correspond to two modes of opera-
tion in the Chimeera tool . In the name mode similar classes are presented that
are candidates for merging. In the taxonomy mode areas of the merged tax-
onomy are presented that might contain conflict, such as subclasses that came
from different source ontologies. Besides these two modes, there is also the slot
traversal mode that guides you through the classes that have slots that came
from multiple different source ontologies and might need editing.

Besides the merging of ontologies, Chimaera also supports a number of diag-
nostic tasks, like completeness checking, syntactic analysis, taxonomic analysis,
and semantic evaluation.

Tool support The Chimara tool has been implemented as a web application,
that is available at Chimaera’s web site®. The tool has been built on top of
the OntoLingua® distributed collaborative ontology engineering environment,
although ontologies developed in any OKBC-compliant [Chaudhri et al., 1998]
application could be used in Chimeera. The editing functionality in Chimeaera is

3http://www.ksl.stanford.edu/software/chimaera/
4http://www.ksl.stanford.edu/software/ontolingua,/

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 64

restricted. Currently, editing and merging support is only available for classes
and slots, but there are plans to include support for the merging of facets,
relations, functions, individuals, and arbitrary axioms.

Summary Chimara [McGuinness et al., 2000] is a browser-based editing,
merging, and diagnosis tool. For the merging of ontologies, the system employs
similarity matching between names of classes and properties in the original on-
tologies. Based on these similarities, the system presents a name resolution
list suggesting terms that are candidates to be merged. Chimaera also employs
heuristics to identify areas in the taxonomy that are candidates for reorganiza-
tion.

4.1.7 ONION

ONION (ONtology compositION) [Mitra et al., 2000; Mitra and Wiederhold,
2001] is an architecture based on a sound formalism to support a scalable frame-
work for ontology integration that uses a graph-oriented model for the represen-
tation of the ontologies.The special feature of this system is that it separated
the logical inference engine from the representation model (the graph represen-
tation) of the ontologies as much as possible. This allowed the accommodation
of different inference engines in the architecture.

In ONION there are two types of ontologies, individual ontologies, referred
to as source ontologies and articulation ontologies, which contain the terms and
relationships expressed as articulation rules (rules that provide links across do-
mains). Articulation rules are established to enable knowledge inter-operability,
and to bridge the semantic gap between heterogeneous sources. They indicate
which terms individually or in conjunction, are related in the source ontology
[Mitra et al., 2000]. SKAT (the Semantic Knowledge Articulation Tool) [Mitra
et al., 1999] uses the structure of these graphs together with term-matching and
other rules to propose articulation rules for the articulation ontologies. The
source ontologies are reflected in the system by the usage of wrappers.

The mapping between ontologies is executed by ontology algebra [Wieder-
hold, 1994; Mitra and Wiederhold, 2001]. Such algebra consists of three op-
erations, namely, intersection, union and difference. The objective of ontology
algebra is to provide the capability for interrogating many largely semantically
disjoint knowledge resources, given the ontology algebra as input. The descrip-
tion of the algebra operators is as follows:

e The intersection produces an ontology graph, which is the intersection of
the two source ontologies with respect to a set of articulation rules, gener-
ated by an articulation generator function. The nodes in the intersection
ontology are those that appear in the articulation rules. The edges are
those edges between nodes in the intersection ontology that appear in the
source ontologies or have been established as an articulation rule. The
intersection determines the portions of knowledge bases that deal with
similar concepts.

e The union operator generates a unified ontology graph comprising of the
two original ontology graphs connected by the articulation. The union
presents a coherent, connected and semantically sound unified ontology.

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 65

Th) E End-
esaurus xpert User
GUI Tool
A
Articulation Generator Query Engine

Figure 4.7: The components of the ONION system

e The difference operator, to distinguish the difference of two ontologies
(O1—05) is defined as the terms and relationships of the first ontology that
have not been determined to exist in the second. This operation allows a
local ontology maintainer to determine the extent of one’s ontology that
remains independent of the articulation with other domain ontologies so
that it can be independently manipulated without having to update any
articulation.

ONION tries to separate as much as possible the logical inference engine
from the representation model of the ontologies, allowing the accommodation
of different inference engines. It also uses articulations of ontologies to inter-
operate among ontologies. These articulation ontologies can be organized in
a hierarchical fashion. For example, an articulation ontology can be created
for two other articulation ontologies that unify different source ontologies. The
ontology mapping is based on the graph mapping, and at the same time, domain
experts can define a variety of fuzzy matching.

Tool support The ONION architecture [Mitra et al., 2000; Mitra and
Wiederhold, 2001] (figure 4.7, taken from [Mitra and Wiederhold, 2001]) consists
of four components:

e The ONION data layer. This layer contains the wrappers for the external
sources and the articulation ontologies that form the semantic bridges
between the sources.

e The ONION wviewer. This is the user interface component of the system.
The viewer visualizes both the source and the articulation ontologies.

e The ONION query system. The query system translates queries formu-
lated in term of an articulation ontology into a query execution plan and
executes the query.

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 66

e The Articulation Engine. The articulation generator takes articulation
rules proposed by SKAT [Mitra et al., 1999], the Semantic Knowledge
Articulation Tool, and generates sets of articulation rules, which are for-
warded to the expert for confirmation.

Summary ONION takes a centralized, hierarchical approach to ontology
mapping, where the user views the (global) articulation ontologies. The source
ontologies are mapped to each other via articulation ontologies that are in turn
used by the user to express queries. The articulation ontologies are organized in
a tree structure. An articulation ontology used for the mapping of two source
ontologies can in turn be one of the sources for another articulation ontology
(e.g. in figure 4.7 Artio is one of the sources of Artiss). The creation of a
hierarchy can be seen as a form of ontology clustering. But while [Visser and
Tamma, 1999] take a top-down approach (first the root application ontology
is specified, then child ontologies are created as is necessary), ONION takes a
bottom-up approach in the creation of the articulation ontologies; furthermore,
there is no defined root ontology for the cluster.

4.2 Comparison of the Methods

In this section, we will provide a comparison of all the methods and tools pre-
sented in the previous section and the method and tool used in the COG project.
First, we will outline the criteria used for comparison of the methods and tools,
then we will provide the comparison according to these criteria.

4.2.1 Comparison criteria

Some methods and tools have not been made especially for data schema inte-
gration, so the applicability to this area will be one of the criteria.

Another criterium is the maturity of the tool(s). Some tools are just aca-
demic prototypes, other tools have reached industrial strength. This is very
relevant, because the heterogeneity of data schemas is a very real problem in
industry today.

e Integration paradigm: merging or aligning or a combination (i.e. central
ontology while retaining the source ontologies and mappings between the
sources and the central ontology).

e Mapping pattern (1-to-1, single-shared, or ontology clustering). Does the
methodology support one-to-one ontology mapping, single-shared ontol-
ogy or ontology clustering?

e User model: local or global. In the case of a local model, the user views
the system through his/her own local data model. In the case of a global
model, every user sees the system through the global model that has been
defined to encompass all data sources in the system. This corresponds to
the run-time dimension identified in 1.3.

o Mapping support. Types of mappings that are supported. We distinguish
the following types here:

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 67

— Class mappings

— Property (i.e. relation) mappings

— Instances

— Axioms / rules / constraints

— Value transformations (for properties)

— Conditional mapping

e Degree of automation. Is the mapping process manual, semi-automatic
(i.e. interactive) or automatic?

e Information sources used for discovering concepts/similarities. It is as-
sumed that always the source models (i.e. data schemas and/or ontolo-
gies) are used as a source of information and that it is always possible to
get information from the domain expert. Possible additional information
sources are existing lexicons, such as WordNet.

o Inter-operability with other tools. This concerns mainly the import and
export languages supported by the tool.

e Visualization support. In what way are the ontolog(y)(ies) (and the map-
pings) visualized?

e Fwaluating ontology. In what way is the resulting ontology and/or map-
ping evaluated?

o Version and maturity of the tool. There is in general a difference in
maturity (and thus quality) of tools that have been in use in industry
for some time and academic prototypes. The version listed is the version
available to the author at the time of writing.

e FExperience using the tool in different projects. The experiences gained
with a tool can tell us a lot about the usability and the usefulness of a
tool.

We compare the methodologies using these criteria in the next section.

4.2.2 Comparing the methodologies for Semantic Schema
integration

Table 4.1 shows us the comparison of the tools and methods mentioned in section
4.1 and the method employed in the COG project (as described in chapter 2).

The integration paradigm for an approach influences the possible mapping
patterns. For example, a pure ontology merging tool cannot be classified using
any mapping paradigm, because the source ontologies do not remain after the
merge process and thus no mappings are created. In the case of a pure align-
ing solution (e.g. OBSERVER), only a one-to-one mapping between ontologies
is possible. The approaches that have been classified as using the combination
between merging and aligning either use the single-shared ontology or the ontol-
ogy clustering mapping pattern. Note that the single-shared ontology approach
mentioned here is never the pure single-shared ontology approach (which would
mean that just the shared ontology remains and all applications must use it);

68

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES

a3ed 3xou UO poNUIIUOD

TIO+TINVA
Jo 110dxo
OO ynm (poyruy)
¢
ensurjoiu() 0803014 Aq croddeim uorjerodo ‘stoddeim
Aq o -Io9ut wo9)sno
pojroddns wo)sno sroddeim . B sroddeim . Ayiqeaado
e/u pojroddns . 219 ‘9x99 yooqAdo)
a8engue| feuIaydg wo)snd . wo9)sno -199u]
ogenguel fuy TNX YTC odgdar 103 10900
Auy ' soyerduay ‘emeldg
eael :produrr TINX
‘SINIaY
jo yrodut
uory
d1pRUIOIN® drpRUIOIN® S1pRUIOIN® o1pRIIOIN® enue orpRIIOIN® orpRIIOIN® enuem -MSTOUE.M
-TuIes -Tues -TuIes -TuIos [-TUIos -TuIos [0 00180
Surddewr Surddew
seouR)SUI [eUOI}IPUOD [eUOI}IPUOD
Kyrodoad {SUTRIISUO0D {SUOIYRULIO] mwc_famqu {SUOIYRULIO] jaoddns
. - - S : ®/u ‘{fyredoad :
‘ssero ‘Kyrodoad -suelI) onjea ‘suTo -SueI) onfea Surdden
‘ssero {Ly10doxd S5 {Kyprodoxd
‘ssefo ‘ssefo
apowt
reqors - - 1e00] 1e00] 1eqors 1eqors 1eqor8 I .MmD
B _ o 9U0-01-9U0 29 A3o103u0 A3o103u0 uioyjyed
Butaogsnyo Sutegsn ouo-03-ou0 pareys-o[3uls | pareys-o[3uls | pareys-o[3urs Surdden
uorjeu uorjeu uoryeu uoryeu uoryeu wspeed
¥ Surgrowt Surgrewt ¥ Surugire ¥ ¥ ¥ uorn}
-IquIod : : -1quIod S -1quIod -1quIoD -IquIoD :
-ea8ajuy
HHA u.rooruf)
NOINO elEwWyH LdINOYd LAVYA gASTO yns[s-ojuy SINOIN / ®0D

S[009 UOT)RISIUT RWSYDS BIRP JIJURWLS Jo uosLredwio)) :1°F 9[qr],

69

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES

uoetod sy09(oxd syoafoad
-suel) pue N syooloxd N
159) [RISADS SOJIAISS BJeD elep spoaload jo11d [eI0AGS spoafoad ur
Suungoejn oofoxd Auew Iomjou oyder3orqr Nadad S9) MIJ ® oefoxd aouarradx
-uew opIEA 7y 991 ur pordde 1M q q1q 1593 mof 7y 199! ! o
od£y0301d dMdH DO0D
ad£y0q01d . . adAy0q01d adAy0q01d adAy0q01d adAy0q01d . OIS IO
oTuwopeoR Er'To 702 oTweperoR oTweperOR oTweprOR orweproR rae ISIOA
41501 sorronb
oysouserp m.m@ﬂ%hﬁﬁ A3o[0juo
e /u Sursn [enuewr ®/u ®/u ®/u [enuewt P 103
SryeTo)NE SoouR)SUL Suryenjeay
' s 1893 Sursn
: [enuew
9891014 jxoddns
e/u e/u Sursn e/u - - - sgurddewt uorjez
: pue £3o[0ju0 g
ASo103u0 -renst A
s92anos
- - - PONPIOM - - PNPIOM - rome
-Iojuy
[euonippv
NOINO elEwiyH LdINOYd LAVYM HEA yns[s-ojuy SINOIN srorn
-HASIO / D00

o3ed snorrerd woay ponurjuod

CHAPTER 4. COMPARISON WITH OTHER INITIATIVES 70

instead, in each of the approaches that has been classified as a single-shared
ontology approach, the source ontologies remain along with a mapping to the
shared ontology.

PROMPT and Chimeera could not be classified along the run-time dimen-
sion, because both are just merging tools. They produce a merged ontology
built from the source ontologies, but they have no run-time architecture.

A note must be made on the degree of automation classification. Every
method/tool has been classified as either manual or semi-automatic. There is,
however, between the semi-automatic integration approaches much difference
in the amount of automation. Please review the corresponding descriptions in
section 4.1 if more information about the automation is needed.

The inter-operability with other tools is measured in the supported input
and output platforms/languages. Note that there is a difference in import for
data schema integration and ontology integration tools. The former usually
require mappings to the database platform, while the latter usually only requires
support for the import of several ontology languages. Most approaches support
the development of custom wrappers for data schemas or custom import and
export functionalities for ontology languages.

It is especially important to evaluate the maturity of a tool if the tool is to
be used in an industrial setting, as was the case with COG. The tool used in the
COG project, the Unicorn Workbench, is still under heavy development, but
has reached a certain maturity. Of the other approaches we have evaluated here,
only PROMPT can claim a maturity that exceeds the phase of academic proto-
type. Measures for the maturity of a tools are the version and the experiences
with the tool in projects.

In the next chapter, we will bring the information integration problem to a
new level, where the information integration problem is expanded to an inter-
organizational level. We will introduce the vision of the Semantic Web and the
problem of ontology mapping on the Semantic Web.

Chapter 5

Enabling Semantic
Interoperation on the
Semantic Web

This chapter is partly based on deliverable D14 v1.0 of the Esperonto project!, with the title
‘Ontology Alignment Solution’ [de Bruijn et al., 2003b].

In chapter 2 we have seen how, in the context of the COG project, data residing
in different databases and other data sources, such as XML and Excel, can be
semantically integrated using ontology technology. In chapter 3 we showed a
possible application of such an integrated architecture by showing how the user
can, through the semantic middle-ware, issue queries on the actual databases
while retaining a global view, only having to deal with the conceptual view
provided by the global ontology.

Now, the problem gets harder when different organizations want to inter-
operate. In a single organization it is to some extent possible to “force” people
to use a single conceptual data model, or ontology. When a single terminology
is to be used by different organizations, it is very hard to agree on this single
terminology, and extra translations need to be created from the internal data
representation of a single organization and the external representation.

When organizations have already described their data in a formal explicit
way, using ontologies, this problem is reduced in complexity. Because the mean-
ing of an ontology is entirely captured in its structure and formal semantics, it is
easier for a different entity to understand this ontology and, more importantly
from an automation point-of-view, for a machine to understand it.

Unfortunately, if there is no formal relationship between the external ontol-
ogy and the internal conceptual model, an agent still can not “understand” the
ontology. There needs to be a formal relationship between the two ontologies,
so that the agent can relate the concepts in the external ontology with known
concepts in the internal ontology.

In this chapter we describe the ontology mapping problem we encounter in
the Esperonto project and propose a solution to ontology mapping.

Lhttp://esperonto.semanticweb.org/

71

http://esperonto.semanticweb.org/

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 72

This chapter is organized as follows: in the next section we describe the
generic ontology mapping problem through an example, after which we intro-
duce the Esperonto project and the context of the ontology mapping problem
in the project. We identify problems that arise in relating ontologies in section
5.3 and perform a requirements analysis on the solution in section 5.4. We then
propose a solutions for the ontology mapping problem in the Esperonto project
in section 5.5, taking into account existing algorithms and tools, and conclude
with some limitations of the proposed approach and identify future work in
section 5.6.

5.1 Ontology Mapping

A way to specify the relationships between two different ontologies is to create
an explicit ontology mapping. Such an ontology mapping consists of a set of
mapping rules, which relate the concepts in the different ontologies with each
other. Such a mapping is illustrated in Figure 5.1.

Oy O,

FacultyMember

Employee
PhD-Student

PhD-Student

3

Figure 5.1: Example ontology mapping (1)

In the example, all thin lines represent is-a relations. This means, in ontology
01 a Student is a Person, a Researcher is a Person, etc ...

To begin with, the ontologies are unrelated. @We specify an explicit
mapping, m; between the concept Person in ontology O; and the concept
FacultyMember in ontology Os. Thereby, we explicitly specify a relationship
between the ontologies. If mapping rule m; states equivalence of the concepts
Person and FacultyMember, this means that every human according to O, is
also a faculty member according to Os, and vice versa.

Now that we have created this one mapping rule, mi, we can deduce ad-
ditional facts from m; combined with the relationships already present in the
ontologies 01 and O,. For example, since every Student is a Person and ev-
ery person is a FacultyMember, we can deduce that every Student must be a
FacultyMember.

We shall from now on write the name of the ontology in front of the name
of the concept. So, the concept Student in Op is from now on identified as
O;.5tudent and Student in Oy becomes Oy.Student.

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 73

We can say that every instance of Os.Student is an instance of O;.Person.
Note that we do not know anything about the relation between O;.Student
and Oy.Student. All we now is that they are both subconcepts of O;.Person
and Oy.FacultyMember (because of the equivalence relation mq). It might be
possible that there exists no instance of O;.Student that is also an instance of
Os.Student or it might be possible that every instance of O;.Student is also
an instance of Oy.Student. Note that we cannot rule out the latter option,
because there might be additional facts that are currently not known, which
would make these concepts equivalent. There might be a relation somewhere on
the web that somehow relates these two concepts. We can illustrate this with
the mapping rule ms in Figure 5.2.

Oy O,

FacultyMember

Employee
PhD-Student

|
PhD-Student 3

Figure 5.2: Example ontology mapping (2)

Mapping rule mq states equivalence between the concepts O1.M sc— Student
and Os.Student. We now know more than in the situation of Figure 5.1. We
know that the concepts mi.Msc — Student and mo.Student are equivalent.
Note that now actually Os.Student is a subconcept of O;.Student. This means
that the set of instances of O5.Student is a subset of the set of instances of
O.Student. If we now want to map the concept O;.Student to a concept in
O3, we have a problem. In generality, O;.Student falls somewhere between
Os. FacultyM ember and Os.Student, but there is no concept we have directly
mapped it to, as illustrated by mg in Figure 5.2.

We have introduced ontology mapping through the use of an example. We
will now describe the context of the ontology mapping problem in the Esperonto
project and, more generally, the Semantic Web.

5.2 Ontology Mapping on the the Semantic Web

In this section, we first present the general view on the Semantic Web, after
which we describe the role of the Esperonto project in the Semantic Web, and
position the Ontology Mapping problem in the Esperonto project.

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 74

Ontology 1 = j¢-=—======T-===3c----= Ontology 3

% _,} Intelligent Agent 1‘ { Intelligent Agent 2 ‘4— %

user

user

Figure 5.3: Simple depiction of the Semantic Web

5.2.1 The Semantic Web

Tim Berners-Lee, known as the inventor of the World Wide Web (WWW), has a
vision for the future of the World Wide Web, which he calls “The Semantic Web”
[Berners-Lee et al., 2001]. In this Semantic Web, information will be presented
in machine readable form. Right now most information present on the WWW is
presented in natural language, only understandable to humans. And although
there have been some advancements in the field of text-recognition, there are
still a lot of issues to be resolved before natural language can be understood by
computers [Fensel, 2003].

This means, a new way of recording the information has to be found in
order to make the information on the Web understandable by machines. A
way to formally specify knowledge is to use ontologies, as described above. An
information source on the Web would contain a reference to an ontology or some
sort of annotation (which also uses some ontology), which contains the definition
of the knowledge present in the information source. Intelligent agents can now
gather information from different sources and combine the information, because
of the formal relationships in the ontologies. Two related data sources can
either use the same ontology, in which case it is straightforward for an agent
to combine the information, or they can use two different ontologies, which
have been related to each other using formal mappings. These mappings enable
the intelligent agent to combine data in different related sources to fulfill the
information requests by the user.

Figure 5.3 shows the relations between the users, the intelligent agents, the
data sources and the ontologies on the Semantic Web. The data sources, the
content on the Web, can vary from HTML and XML documents to multimedia
content, such as pictures or movies. We furthermore also see databases as part
of the Semantic Web. Currently, information in company-internal databases is
only partly shared on the Web by publishing to HTML and XML documents.
We envision standardized access mechanisms to be developed, which provide
access to the underlying data sources on the basis of ontology annotations.
The most interesting documents are, as we shall see, the documents that are
exchanged between applications and between organizations. In the next section

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 75

we discuss the most important application areas of Semantic Web technologies,
in the sense of impact of the area.

5.2.2 The Esperonto project and Ontology Mapping

The Esperonto project is an EU funded project (under contract number IST-
2001-34373) in the Information Society Technologies (IST) Program for Re-
search, Technology Development and Demonstration under the 5th Framework
Program of the European Commission. The project runs from 2002 to 2005.

The main goal of the Esperonto project is to bring content on the current
World Wide Web (WWW) to the Semantic Web [Berners-Lee et al., 2001],
thereby bridging the gap between the current Web and the Semantic Web.
To achieve this goal, two main objectives were formulated. The first is to
“construct a service that provides content providers with tools and
techniques to publish their (existing and new) content on the SW, in-
dependently of their native language”, the second is “providing added
value knowledge-based services on top of the constructed Semantic
Web.”

The first objective is concerned with adding annotation to existing docu-
ments on the Semantic Web; both textual and multimedia documents. Besides
that, also data residing in databases is to be lifted to the Semantic Web, by
mapping these schemas to ontologies. We have sufficiently covered this area in
chapter 2 in this thesis, so we will not go into this aspect here.

We are concerned here with the second objective, “providing added value
knowledge-based services on top of the constructed Semantic Web”, and espe-
cially with services enabling inter-operation between different entities on the
Semantic Web.

An entity on the Semantic Web can be any organization, group of people, or
even single person on the Semantic Web. Such an entity on the Semantic Web is
typically represented by an agent that performs tasks on the Semantic Web on
behalf of the entity. This view on the Semantic Web, consisting of documents
with their annotations, ontologies and agents representing entities is illustrated
in Figure 5.4.

The following layers (starting from the bottom) are distinguished in this
view on the Semantic Web:

Instance layer In this layer, we have the actual data residing on the Web. Ex-
amples of data formats are video, pictures, natural language texts in html
documents, semi-structured XML documents and structured databases.

Annotation layer Annotations link instance data with ontologies. Annota-
tion add formal semantics to the instances, making the instance data ma-
chine processable. Note than an annotation can link an instance with
more than one ontology (as is the case with the second left and the right
annotation in Figure 5.4).

Ontology layer This layer consists of the ontologies on the Semantic Web and
their formal relationships, expressed through explicit mappings. Because
of these explicit mappings, an agent, which knows about one ontology,
can process instance data annotated with another ontology if there exists
a mapping.

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 76

2 %

| |
043 layer

b
\ : ontology

layer

6,
@

; L N tati
CO (D O O D lya

instance

<xml> <html>
</xml> </htmi> layer

Figure 5.4: Instance, annotation, ontology and agent view of the Semantic Web

Agent layer The agent layer consists of the agents that actually operate on
the Semantic Web. Agents perform user tasks on the Semantic Web. They
use instance data, together with ontologies, to solve complex problems for
the user. Furthermore, agents can communicate with other agents in order
to solve these tasks. We will not describe the latter case here, but we do
discuss upcoming technologies around Semantic Web Services [Mcllraith
et al., 2001; Fensel and Bussler, 2002; Lara et al., 2003] in the outlook in
chapter 6.

The Esperonto project is mainly concerned with the annotation layer and the
ontology layer. For this purpose, a software prototype is being developed in the
project, called the Semantic Annotation Service Provider (SemASP). SemASP
provides annotation using ontologies of content residing on the Web and in
databases. There is, however, also an ontology management module, which
takes care of ontology engineering (creating ontologies), ontology maintenance
and ontology mapping.

We concern ourselves here with the aspect of ontology mapping (cf. the
wide dashed double arrows in Figure 5.4) as it is to be applied in the SemASP

prototype system.

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 7

5.3 Problems in Ontology Mapping and Align-
ing

[Klein, 2001] identifies two levels of mismatches between ontologies. The first
level is the ontology language or meta-model level. These mismatches include
syntactic mismatches, differences in the meaning of primitives in the different
languages, and expressivity of the languages. We assume that the Ontology
Management module of SemASP, through its import and export functionalities,
will handle these differences and present the ontologies to the alignment module
in OKBC format. We therefore do not have to worry about mismatches at the
language level.

The second level of mismatches is the ontology or model level. Where mis-
matches on the language level include differences in encoding and meaning of
language constructs, mismatches at the ontology level include mismatches in the
meaning or encoding of concepts in different ontologies. These mismatches are
exactly the problems we are facing for the ontology alignment solution. [Klein,
2001] follows the basic types of ontology mismatches identified in [Visser et al.,
1997]:

o Conceptualization mismatches are mismatches between different concep-
tualizations of the same domain.

o FEzxplication mismatches are mismatches in the way a conceptualization is
specified.

Klein distinguishes two different conceptualization mismatches:

e Scope mismatch. Two classes have some overlap in the extension (the set
of instances), but the extensions are not exactly the same. [Visser et al.,
1997] call this a class mismatch and work it out further for classes and
relations.

e Model coverage and granularity. This mismatch is a difference in the part
of the domain that is covered by both ontologies or the level of detail with
which the model is covered.

Klein furthermore distinguishes different types of explication mismatches.
First, there are two mismatches in the style of modelling:

e Paradigm. These mismatches occur when different paradigms are used
for the explication of the same concept. For example, one ontology might
represent time using intervals, while another ontology might use points to
represent time.

e Concept description. Mismatches in the way a concept is described. For
example, differences in the way the is-a hierarchy is built or when in one
ontology several sub-concepts are defined for groups of instances, while in
the other ontology subclasses are created for these different groups.

Then there are the terminological mismatches:

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 78

o Synonym terms. Two terms are equivalent when they are semantically
equivalent, but are represented by different names. It is possible to use
dictionaries or thesauri to resolve this problem, but one should be aware of
possible scope differences (see the first conceptualization mismatch above).

e Homonym terms. This problem occurs when semantically different con-
cepts have the same name.

Finally, the last type of difference:

e FEncoding. Values in different ontologies might be encoded in a different
way. For example, one ontology might define distance in kilometers, while
another uses miles.

[Mena et al., 2000] have identified different types of inter-ontology relation-
ships (based on relationships identified in [Hammer and McLeod, 1993]) that
should be taken into account by ontology mapping and alignment systems:

Synonym Two terms in different ontologies have the same semantics. This
corresponds to the synonym terms mismatch mentioned above.

Hyponym A term is less general than another term in a different ontology.
This is a special kind of scope mismatch and can also be seen as a concept
description mismatch.

Hypernym A term is more general than another term in a different ontology.
This is a special kind of scope mismatch and can also be seen as a concept
description mismatch.

Overlap There is an intersection in the abstraction represented by two terms.
This corresponds to the scope mismatch.

Disjoint There is no intersection in the abstraction represented by two terms.

Covering The abstraction represented by a term in one ontology is the same
as the abstraction represented by the union of other given abstractions
which are subsumed individually by the term. This corresponds to the
granularity mismatch identified by Klein.

In the next section, we will use these problems identified by [Klein, 2001] and
[Mena et al., 2000] in order to identify requirements on the ontology alignment
solution.

5.4 Requirements Analysis

We identify requirements for an ontology alignment solution along two dimen-
sions. First, we identify different types of mappings that should be supported by
the tool with regard to the problems defined above and possible automation in
finding these mappings. Then, we identify user requirements and requirements
for the User Interface for the ontology alignment functionality in SemASP.

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 79

5.4.1 Mapping Language Requirements

Using the problems in inter-ontology relationships identified by [Klein, 2001]
and [Mena et al., 2000] and mentioned in the previous section, and our own
experience with ontology mapping, we have identified types of mappings that
need to be provided by an ontology mapping and aligning tool, in order to deal
with these problems:

e FEquivalence between terms (concepts and properties). When two concepts
in different ontologies are conceptually the same, an equivalence relation-
ship should be established. This solves the problem of synonym terms.

e Sub- and superclass relationships. We need to be able to specify that a
concept in one ontology is more or less general than a concept in another
ontology. These relationships can be used to resolve the hyponym and
hypernym problems. Actually, these sub- and superclass relationships are
special kinds of partial mappings.

e Partial mappings. When there is overlap between terms in different on-
tologies, but this overlap is incomplete (i.e. the terms are not equivalent),
a partial mapping needs to be created stating which parts of the extensions
of the concepts is equal. This can be done by describing the intersection
of the concepts using rules. This covers the problem of scope mismatch
and a part of the concept description mismatch and granularity mismatch.
Note that for certain types of mismatches the intersection encompasses the
entire extension of one of the concepts, in which case the partial mapping
could be interpreted as a subclass relationship, even though this is not
always the case (e.g. for homonym terms); when the intersection encom-
passes the entire extension of both concepts, this mapping is simply the
equivalence relationship.

o Value transformations. A weight might be represented in kilograms in one
ontology and in grams in the other. When mapping these weight concepts,
we need a transformation function, which transforms kilograms into grams
and vice versa. These functions can be used to solve encoding mismatches.

e Union. In order to solve the problem of covering terms and mismatches in
granularity, it is necessary to be able to specify that a term in an ontology
is the union of several terms in another ontology.

e Finally, we need to be able to specify Disjointness of terms in order to
mitigate the problem of disjoint terms, i.e. when the intersection of the
extensions of the terms is empty.

We still want to retain the equivalence and subclass relationships, even
though these are special cases of partial mappings, because these relationships
are better understandable to the human user and their discovery is easier to
automate than general partial mappings. Equivalence and subclass relation-
ships can in general be discovered using a thesaurus, such as EuroWordNet?,
which contains synonym, hypernym, and hyponym relationships for words in
different languages, or by using structural analysis, as done for example in

2http://www.illc.uva.nl/EuroWordNet /

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 80

Anchor-PROMPT [Noy and Musen, 2000a]. Note that it is not possible to
completely automate the creation of equivalence and subclass relationships, be-
cause of a possible scope mismatch, as was noted in the previous section; some
user interaction is still required.

5.4.2 Possibilities in automating the creation of mappings

At this point in time the automatic mapping of ontologies seems more science
fiction than reality. Therefore, we focus on semi-automatic mapping, where the
system will suggest mappings between concepts in the source ontologies and the
user will either discard or follow these suggestions.

5.4.3 User Interface Requirements

Because the mapping process cannot be completely automated, we need a User
Interface to allow user interaction with the alignment module. We assume for
now that the user is presented with suggestions for possible mappings that have
been found by the system. The user can choose to either follow or discard the
suggestions, on a per suggestion basis (i.e. after the user chooses to follow a
suggestion, the list of suggestions is revised by the system). For this we need
mechanisms for the display of the suggestions to the user and for the user to
provide feedback on these suggestions.

We will furthermore assume that the system will not be able to find all re-
quired mapping rules. The user has to be able to manually specify a mapping
rule. We need an advanced User Interface for this, where it is possible for the
user to select a certain mapping type and to select concepts from the ontologies
that are to be mapped using this mapping rule. Furthermore, the user needs
to be able to specify certain parameters for the mapping rules, which is nec-
essary for the partial mappings and the value transformations. For the value
transformations we need an expression language that is able to perform trans-
formations on string and numeric values, which can also be used by the user
as a parameter for this mapping rule. For the partial mappings the user needs
to be able to create arbitrary formulas using the concepts in the ontologies in
order to describe the intersection of the concepts to be mapped.

The following functions will be offered to the user:

Choose two ontologies to align Before the ontology alignment process can
start, the user needs to select two ontologies O; and O in the ontology
management module and give the command to start the alignment.

Choose an existing alignment to edit The user needs to be able to mod-
ify existing alignment in the case of faulty or missing mappings between
concepts.

Provide feedback on generated suggestions When the alignment process
has started, the system will try to find suggestions for mappings between
concepts in O and Oy and present these to the user. The user can now
choose to either follow or discard these suggestions (on a per-suggestion
basis).

Create a mapping rule When a user identifies a mapping rule to be applied
that is not on the list of suggestions provided by the system, the user will

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 81

be able to select the type of mapping rule to be defined, the concepts in
O; and O; to apply the rule to, and, if necessary, some parameters (i.e.
for the partial mapping and the value transformation mapping rules).

Store mapping Once the user has decided that all necessary mapping rules
are in place, the user will tell the system to store the defined mapping for
later use.

These User Interface requirements provide an overview of the functionality
to be offered to the user. The solution defined in section 5.5 accommodates these
user requirements, as well as the mapping language requirements put forward
above.

5.5 A Solution for Ontology Mapping

In this section we define our ontology alignment solution following the main
principles outlined in the introduction to this chapter and the problems iden-
tified in section 5.3, taking into account the experiences gained with existing
tools, as described in the previous section.

We have identified four main principles on which the solution should be based
(we provide with each principle the argumentation to support our choice):

One-to-one mapping For each ontology a set of translating functions is pro-
vided to allow the communication with another ontology without using an
intermediate ontology.

Because of the distributed nature of the Web, the management of ontolo-
gies can not be centralized. Individual groups need to be able to update
their own local data models, in order to enable flexibility. Because we
want to make sure that a group on the Semantic Web is responsible for
its own ontology, we propose to use one-to-one mapping of ontologies. In
the case of single-shared ontologies or ontology clustering, groups would
have to hand over the responsibility for their own ontology to some central
organization, which is undesirable for such an inherently distributed and
heterogeneous group as the entities on the Web.

Drawback of one-to-one mapping is that potentially many mappings need
to be created between all the different local ontologies. This could result in
O(n) mappings for n ontologies. When, however, mappings are specified
in a declarative, symmetric (a two-way mapping instead of a one-way map-
ping) way using a standardized mapping language, the mappings could be
used transitively®. Now, ideally, only (n — 1) mappings are required to
map all ontologies in the given domain to each other (as in Figure 5.4).
However, a mapping between two different ontologies only provides the
intersection of the two ontologies, because two ontologies typically do not
cover exactly the same domain and often do not have the same granularity.

Certain standard ontologies could arise for the domain, to which all on-
tologies in a certain field are mapped using a one-to-one mapping between

3As an illustration: in Figure 5.4, agent UA1 can understand ontology Qs because of the
existence of the mappings between O5 and O; and the mapping between O and O

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 82

each local ontology and the standard ontology, which would also reduce
the complexity of the mapping problem.

Semi-automatic mapping The mapping task should be performed semi-
auto-matically. The system should provide mapping candidates to the
user; the user will then either use these suggestions or discard them. There
should also be support for manually creating mappings that have not been
identified by the system.

It is desirable to have automation support in the creation of ontology
mappings. It was seen, however, in the survey conducted in chapter 2,
that complete automation in creating ontology mappings is not possible.
Therefore, we will restrict ourselves to semi-automatic mapping.

Integration in the SemASP Ontology Management module The on-
tology alignment solution is to be implemented as a module in the
SemASP Ontology Management module. The ontologies to be aligned are
to be provided to the module by the Ontology Management module, and
the created mapping is returned to the Ontology Management module,
so that the mappings can be put into operation. This integration also
guarantees language independence of the ontology alignment process.
The import from and export to specific languages will be handled by the
management module.

OKBC Compliant The internal workings of the solution should be based on
the knowledge model of OKBC [Chaudhri et al., 1998] in order to ensure
inter-operability with other knowledge-based applications. The principle
of OKBC compliance does not contradict the language independence prin-
ciple, since the language independence principle is related to the import
and export capabilities of the ontology engineering environment, while the
OKBC compliance refers to the internal workings of the module.

Communication with the Ontology Management module will be done using
the OKBC standard for knowledge exchange. Furthermore, the OKBC
knowledge model has proven itself in several ontology matching algorithms
(e.g. the matching algorithms in PROMPT [Noy and Musen, 2000b] and
Chimra [McGuinness et al., 2000]).Therefore, the internal workings should
be based on the OKBC knowledge model.

We propose a solution for the ontology alignment problem in the Esperonto
project following the principles stated above, taking into account the require-
ments stated in the previous sections and taking into account existing tools and
algorithms, as stated above. We will first look into the reuse of existing tools
and then describe the ontology mapping algorithm and the way the algorithm
is to be integrated into the SemASP platform.

5.5.1 Reusing existing methods and tools

A lot of effort has already been put in the development of tools supporting on-
tology mapping and aligning. In section 4.1 we have analyzed existing methods
and tools currently available for ontology mapping and aligning. In this section
we will try to identify possible candidates for reuse in Esperonto among these
methods and tools.

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 83

Since the ontology alignment component in SemASP only needs to support
the alignment task (only the creation of the mapping) and does not need to
support an operational information architecture, we will focus on the support
for ontology alignment in the methods and tools analyzed in section 4.1.

Two algorithms that have a clear tool support and a clear algorithm for
identifying mapping candidates are Chimaera [McGuinness et al., 2000] and
PROMPT [Noy and Musen, 2000b]. Both tools work with the principle of to-do
lists (called the name and taxonomy resolution lists in Chimaera) for the user,
on which identified merging candidates are listed. The user can now tell the
tool to perform actions from the to-do list, discard them, or perform custom
(manual) merging actions.

A possible problem for reuse of these tools in SemASP is the fact that they
are both ontology merging tools and not aligning tools. In other words, the result
of the usage of these tools is an ontology unifying the concepts from the source
ontologies and not a mapping between the two source ontologies. However,
for the merging of ontologies it is, just like in ontology mapping and aligning,
necessary to identify relationships between concepts in the source ontologies.
The identification of these relationships is the same for both the merging and
the aligning tasks. Therefore, it would be possible to reuse and extend the
algorithms used for the identification of these relationships.

PROMPT and Chimera seem to provide the same functionality when it
comes to the identification of relationships between ontologies. However, ac-
cording to [Noy and Musen, 2000b], PROMPT provides more correct sugges-
tions than Chimaera and the suggestions provided by Chimera are in general
less specific. 'We have not conducted any tests to verify this claim and the
author are not aware of any other comparative test of both tools.

Lets now review PROMPT and Chimsaera in the light of the main principles
for our solution we have identified in the introduction to this chapter:

One-to-one mapping The algorithms provided by both PROMPT and
Chimeara can be used for one-to-one mapping. In fact, both tools assume
two source ontologies as input and one target ontology as output. We
could replace this target ontology with a list of mapping functions (which
is in fact in combination with the source ontologies, a virtual merged on-
tology), and we would have a tool for one-to-one ontology mapping and
aligning.

Semi-automatic mapping Both approaches use automatically generated to-
do lists that suggest mappings of terms. Chimara provides the name and
taxonomy resolution lists and PROMPT provides a to-do and a conflicts
list (containing conflicts that have arisen during the process of merging).
The user uses these lists to interactively create the merged ontology. The
lists contain merge candidates in the source ontologies. However, we could
use these lists to identify relationships between concepts and deduce map-
ping rules, which can be suggested to the user.

Integration in the SemASP Ontology Management module In the
original implementations, both tools are integrated in an ontology
engineering environment, as PROMPT is integrated in Protg-2000 and
Chimeera is based on OntoLingua. If either of these tools is to be reused,

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 84

they have to be decoupled from the original hosting environment and
ported to SemASP.

OKBC Compliant Both solutions are OKBC compliant.

Now, we will look into the implementations and the possibility of reuse of
these implementations. Chimaera has been implemented as a Web Application
on top of OntoLingua. Chimeera is in fact only available as a Web Application
running on the KSL Stanford web site and therefore not suitable for integra-
tion in our SemASP architecture, since we need full control over the module.
PROMPT has been implemented as a plug-in for the Protg-2000 ontology en-
gineering environment. These facts make it hard to reuse the existing imple-
mentations of PROMPT and Chimera. Therefore we propose to implement the
module from scratch, reusing principles from other tools and algorithms.

We can, however, reuse principles presented in PROMPT and Chimeera in or-
der to create a solution taking into account the experience gained with previously
developed tools. Also the algorithms used in both tools can be reused, along
with new developments, such as Anchor-PROMPT [Noy and Musen, 2000a).

In the next section a solution for the ontology alignment problem reusing
the principle of maintaining action lists for the user, as is done in PROMPT
and Chimeera.

The ontology mapping algorithm

We propose to use a mixture of linguistic and structural analysis for identifying
mapping candidates in the concepts of the source ontologies. The tool will
maintain a mapping candidates (to-do) list as defined in PROMPT [Noy and
Musen, 2000b]. The mapping candidates list will contain the possible mappings
the system has found in the ontologies. The possible mapping rules correspond
to the types of mapping rules identified in section 5.4.1.

The system will use class-name and slot-name similarities for detecting equiv-
alence in classes and slots and will distinguish more- and less-general terms for
detecting subsumption. Furthermore, EuroWordNet will be used for detecting
synonyms (for equivalence) and hypo- and hypernyms (for subsumption).

Concepts with similar slot-names or similar relations (i.e. structural simi-
larities) will also be proposed as candidates for mapping. Once a mapping has
been created, more can be derived about all classes with relations to the mapped
classes. Such related classes could also be candidates for mapping when more
similarities are found. If, for example, class C; in ontology O; is mapped to
class Cs in ontology O and Cj is a class in ontology O1, which is more general
than Cy (Cy is-a C3) and Cy is a class in ontology Oz, which is more general
than Cy (Cy is-a C4), then C3 and C4 are candidates for mapping. The example
is illustrated in figure 5.5. Note that if the is-a relations would be relations with
an arbitrary name, the same deductions about the relationship between classes
C5 and C4 can be made.

The user is presented with the list of suggested mappings. The user can now
indicate which suggestions to follow and which ones to discard. Besides this,
the user can use the editing environment to manually specify mappings between
concepts in the two source ontologies.

The flow of the ontology alignment process as we have identified (based on
PROMPT) consists of (see Figure 5.6):

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 85

C;

A

Figure 5.5: If M; has been specified, it is likely that there exists a link between
C3 and (4, expressed in Mo

Select suggestion or
create —>
custom mapping rule

Compile list
of suggestions

Perform | | Update list
updates of suggestions

Figure 5.6: Flow of the aligning algorithm. Gray boxes indicate action by the
system; the white box indicates the user action

1. Compile list of suggestions. Based on linguistic analysis, the system com-
piles an initial list of suggestions for mapping rules.

2. Select suggestion or create custom mapping rule. The user either selects
an entry from the list of mapping rule suggestions or creates a custom
mapping rule.

3. Perform updates. The selected or created mapping rule is added to the
mapping.

4. Update list of suggestions. Additional (structural) analysis is executed
taking into account the mapping rule(s) created by the user. If a sugges-
tion was followed, it is taken from the list. Additional suggestions found
by the system are added to the list. After this step, there is an iteration
step back to the second step, where the user is presented with the updated
list and can make a choice.

Integration of the Ontology Alignment module in SemASP

The Ontology Alignment module will be integrated in the Ontology Manage-
ment module in SemASP. The alignment task will be initiated from the man-
agement module. The ontologies to be aligned will be input to the alignment
module in OKBC-compatible format.

It should be investigated whether it is possible to integrate the front-end
functionality of the alignment module with the ontology editor in Sem ASP. This
front-end functionality could be implemented as an extension to the ontology
editing functionality. Further required user interaction is the presentation of
the to-do lists to the user and the user feedback to these lists. The author
suggests that this functionality be also integrated in the editing environment,

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 86

S0 as to separate the automatic steps in the algorithm from the steps requiring
user interaction.

Once the ontology mapping has been completely created, the alignment mod-
ule will return the mapping to the ontology management module, where it will
be stored for later use.

5.6 Conclusions and future work

In this chapter, we have looked into several existing methods and tools for
ontology aligning and ontology mapping. We have identified some requirements
on an ontology mapping application and the types of mappings necessary for
ontology alignment.

We have defined a solution for the ontology alignment problem in the Es-
peronto project. We have identified some main principles to be followed by
the solution, the main problems in ontology mapping and requirements on the
mappings to mitigate these problems.

We have looked into the possibilities of reusing existing tools. It turned out
that there was no tool that we could completely reuse. We could, however, reuse
some concepts from existing algorithms, mainly PROMPT [Noy and Musen,
2000Db], in our solution.

An area for further attention in a future version is conflict resolution as it is
used in PROMPT. In PROMPT, a conflict list is maintained, besides the to-do
list, which contains conflicts that have arisen during the merging process and
possible ways to solve the conflict. In future versions of our algorithm it might
be useful to identify conflicts that might arise during the alignment process.

The is-a relationships in figure 5.5 could be seen as paths of length one (i.e.
edges) in a graph where the nodes represent classes and the edges represent
slots. Anchor-PROMPT [Noy and Musen, 2000a] uses paths of greater length
to detect similarities and by using multiple paths through a node to detect
similarities between classes, similarity in slot names is no longer required. The
Anchor-PROMPT algorithm is constructed in such a way that it can be used
with any ontology merging or aligning method, so that it would be possible to
plug it into this Ontology Alignment module in a future version.

Another possibility for future improvement is the use of instances of the
source ontologies for detecting the mapping candidates, as is done in [Stumme
and Maedche, 2001]. When evaluating instances for the purpose of detecting
similarities in two different ontologies, one has to be aware of the possible limita-
tions. In the case where many instances will have to be evaluated by the system,
performance could drop significantly, which would make the mapping process
too slow for frequent use. Furthermore, there might not be enough instances
available to detect similarities, which could lead to detection of non-existent
similarities and the failure of detection of existing similarities.

As was pointed out in [Noy and Musen, 2003], ontology alignment is one
of the tasks in ontology management. Two other tasks they have identified in
ontology management are ontology versioning and specifying transforma-
tion rules between versions of the same ontology. These two tasks are
handled by the Ontology Evolution module in SemASP. As Noy and Musen have
identified, the tasks of ontology alignment and ontology evolution are closely
interrelated, because while ontology alignment is concerned with finding the

CHAPTER 5. SEMANTIC INTEROPERATION ON THE WEB 87

similarities in two ontologies, ontology evolution is concerned with finding the
differences in two different versions of an ontology. These two tasks are comple-
mentary and it turns out that different functionalities from the area of ontology
evolution can also be used for finding similarities across different ontologies
[Noy and Musen, 2003]. Because of this close relationship, it would be useful to
align the efforts in ontology alignment and ontology evolution in the Esperonto
project in a next version.

Chapter 6

Conclusions and Outlook

We have introduced the problem of Information Integration and, more specifi-
cally, Information Integration at a Semantic level. Within enterprises, most in-
formation to be integrated is located in different disparate databases and other
data sources. We have compared several classic, as well as novel, approaches
to data modelling with ontologies and ontology modelling. It turns out that
ontologies have a function in an open, environment, where databases operate in
closed environments. Therefore, ontologies and (conceptual) database schemas
have different characteristics.

Novel approaches to information integration, and, more specifically, seman-
tic information integration, use ontology technology for the explication of the
information in the enterprise and the annotation of the data sources (using
explicit mappings to a central ontology) located throughout the enterprise.

In this context, we have introduced the COG project, where we faced the
problems of Semantic Information Integration within an enterprise. We had to
integrate disparate data sources, where the concepts in the data sources often
had incomprehensible names, into a global unified Semantic Information Model
(ontology). This global ontology, together with the mappings to the individual
source schemas, enabled us to locate data in the organization, to query data
located throughout the enterprise using a unified view and to translate instance
data between disparate sources in the enterprise.

We have provided a comparison of the COG method and tool with other
existing methodologies for Semantic Information Integration.

Taking the information integration one step further, we have looked into in-
formation integration between different organizations, or organizational units.
The Semantic Web provides a platform for semantic information integration on
an inter-organizational and even a global scale. We have introduced the Esper-
onto project, where the aim is to build an architecture, the SemASP (Semantic
Annotation Service Provider), which enables annotation on the Semantic Web.
In this project, we focussed on the inter-operation between ontologies on the
Semantic Web, using a process of Ontology Alignment. We distinguished some
problems in the area of ontology mapping and using these problems we have
identified some requirements on such an Ontology Alignment solution.

The approaches in the COG project and in the Esperonto project have in
common that they both use ontologies to model the domain of discourse and they
both use Semantic Information Integration to enable inter-operation between

88

CHAPTER 6. CONCLUSIONS AND OUTLOOK 89

applications, and in the case of the Esperonto project, between organizations
and organizational units.

6.1 Outlook

The development of a rule language (cf. RuleML, http://www.ruleml.org/) for
the Semantic Web will enable specifying ontology mappings in a standardized
way.

Database schemas currently in use will still need translation to a standard-
ized (ontology) format in order to allow for mapping between database schemas
and ontologies. Unfortunately, database schemas are often not so nicely made as
they should have been. They often deviate from conceptual models and use ob-
scure naming conventions. Furthermore, they lack formal and real-world seman-
tics. As we have seen, semantic database schemas, as introduced by Ter Bekke
[ter Bekke, 1992], do provide formal and real-world semantics. The database
schema is specified here at a (high) conceptual level with a direct implemen-
tation; therefore, there is no loss of information that usually results from the
translation from a conceptual schema to an internal schema. This provides for
easier translation to an ontology language, because the concepts in the seman-
tic data modelling language are close to the concepts generally used in ontology
languages.

Nonetheless, the semantic database paradigm does not seem to be accepted
by the database community and the major database vendors, such as IBM and
Oracle. Some problems in relational databases are being solved by the SQL3
(discussed in [Elmasri and Navathe, 2000], section 13.4) in the class of the so-
called Object-Relational Data Base Management Systems (ORDBMS). Major
database management systems such as Oracle and PostgreSQL are embracing
the Object-Relational model. It remains to be seen how database modelling will
change with the rise of ORDBMS.

The view of the Semantic Web put forward in chapter 5 is still the view
of a static Web, where agents combine knowledge in an intelligent way, but
cannot initiate changes in this knowledge. Semantically annotated content can
be retrieved and combined, but it is not possible to perform actions on the
Semantic Web, that is, to initiate changes in the available knowledge.

Currently, there is a lot of interest in the research community in the area
of Semantic Web Services [Mcllraith et al., 2001]. Semantic Web Services add
formal, explicit semantics to the description of Web Services, based on Semantic
Web technologies, such as ontologies. An important aspect in the inter-operation
of Semantic Web Services is data mediation (cf. [Fensel and Bussler, 2002]). As
the data produced by Semantic Web Services in annotated with ontologies, there
is an ontology mapping task at hand here.

Furthermore, during the invocation of Web Services, the data needs to be
actually translated from one format to another. An explicit declarative mapping
between ontologies can be used for such a purpose. The Unicorn Workbench,
which we described in chapter 2, could be used for deriving such automatic
translations. Currently, only database schemas can be mapped, but it might
also be possible in the future to map arbitrary ontologies and provide translation
rules for instances of the ontologies. The translation rules can be effectuated by
a data mediation agent.

Bibliography

[Baader et al., 1991] Baader, F., Biirckert, H.-J., Heinsohn, J., Mller, J., Hol-
lunder, B., Nebel, B., Nutt, W., and Profitlich, H.-J. (1991). Terminological
knowledge representation: A proposal for a terminological logic. In Proc.
International Workshop on Terminological Logics, 1991.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schuneider, P. F., editors (2003). The Description Logic Handbook.
Cambridge University Press.

[Bechhofer et al., 2003] Bechhofer, S., van Harmelen, F., Hendler, J., Hor-
rocks, I., McGuinness, D. L., Patel-Schneider, P. F., and Stein, L. A. (2003).
Owl web ontology language reference. Candidate Recommendation 18 August
2003, W3C.

[Bergamaschi et al., 2001] Bergamaschi, S., Castano, S., Beneventano, D.,
and Vincini, M. (2001). Semantic integration of heterogeneous information
sources. Special Issue on Intelligent Information Integration, Data € Knowl-
edge Engineering, 36(1):215-249.

[Bergamaschi et al., 1999] Bergamaschi, S., Castano, S., and Vincini, M.
(1999). Semantic integration of semistructured and structured data sources.
SIGMOD Record Special Issua on Semantic Interoperability in Global Infor-
mation, 28(1).

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001).
The semantic web. Scientific American, 284(5):34-43.
http://www.sciam.com/article.cfm?articlelD=00048144-10D2-1C70-
84A9809ECH88EF21&ref=sciam.

[Borgida et al., 1989] Borgida, A., Brachman, R. J., McGuinness, D. L., and
Resnick, L. A. (1989). Classic: A structural data model for objects. In
Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, pages 59—67.

[Brachman and Schmolze, 1985] Brachman, R. and Schmolze, J. (1985). An
overview of the kl-one knowledge representation system. Cognitive Science,
9(2):171-216.

[Brickley and Guha, 2003] Brickley, D. and Guha, R. V. (2003). Rdf vo-
cabulary description language 1.0: Rdf schema. Working draft, W3C.
http://www.w3.org/TR/2003/WD-rdf-schema-20030123/ .

90

BIBLIOGRAPHY 91

[Castano et al., 2001] Castano, S., Antonellis, V. D., and di Vimercati, S. D. C.
(2001). Global viewing of heterogeneous data sources. IEEE Transactions on
Knowledge and Data Engineering, 13(2):277-297.

[Chaudhri et al., 1998] Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D.,
and Rice, J. P. (1998). Okbec: A programmatic foundation for knowledge
base interoperability. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), pages 600-607, Madison, Wisconsin, USA.
MIT Press.

[Chen, 1979] Chen, P. (1979). The entity relationship model - toward a unified
view of data. ACM Transactions on Database Systems, 1(1):9-36.

[Date, 1984] Date, C. (1984). A critique of the sql database language. ACM
SIGMOD Record, 14(3):8-52.

[de Boer and ter Bekke, 2001] de Boer, B. and ter Bekke, J. H. (2001). Ap-
plying semantic database principles in a relational environment. In Hamza,
M. H., editor, Proceedings of the IASTED International Symposia Applied
Informatics (AI2001), pages 400405, Innsbruck, Austria. IASTED/ACTA
Press, Anaheim - Calgary - Zurich.

[de Bruijn, 2003] de Bruijn, J. (2003). Using ontologies. Study of literature,
TU Delft. Available from
http://homepage.uibk.ac.at/~c703239/publications.html.

[de Bruijn et al., 2003a] de Bruijn, J., Ding, Y., and Arroyo, S. (2003a). Se-
mantic information integration in the cog project. COG Project White Paper.
To be published on http://www.cogproject.org/.

[de Bruijn et al., 2003b] de Bruijn, J., Ding, Y., Arroyo, S., and Lausen, H.
(2003b). Ontology alignment solution. Internal Deliverable D1.4 v1.0, Esper-
onto Project IST-2001-34373.

[de Bruijn and Lausen, 2003] de Bruijn, J. and Lausen, H. (2003). Active on-
tologies for data source queries. COG Project White Paper. To be published
on http://www.cogproject.org/.

[Ding and Foo, 2002] Ding, Y. and Foo, S. (2002). Ontology research and
development, part 2 - a review of ontology mapping and evolving. Journal of
Information Science, 28(5):375-388.

[Elmasri and Navathe, 2000] Elmasri, R. and Navathe, S. B. (2000). Funda-
mentals of Database Systems, 3rd ed. Addison Wesley.

[Fellbaum, 1999] Fellbaum, C., editor (1999). WordNet: An Electronic Lexical
Database. MIT Press.

[Fensel, 2003] Fensel, D. (2003). Ontologies: Silver Bullet for Knowledge Man-
agement and Electronic Commerce, 2nd edition. Springer-Verlag, Berlin.

[Fensel and Bussler, 2002] Fensel, D. and Bussler, C. (2002). The web service
modeling framework wsmf. Electronic Commerce Research and Applications,
1(2):113-137.

BIBLIOGRAPHY 92

[Fensel et al., 2001] Fensel, D., van Harmelen amd I. Horrocks amd
D. L. McGuinness, F., and Patel-Schneider, P. (2001). Oil: An ontology
infrastructure for the semantic web. IEEE Intelligent Systems, 16(2).

[Ferndndez-Lépez, 1999] Ferndndez-Lépez, M. (1999). Overview of methodolo-
gies for building ontologies. In Workshop on Ontologies and Problem-Solving
Methods: Lessons Learned and Future Trends (IJCAI99), pages 4-1 — 4-13.

[Ferndndez-Lopez et al., 2002] Ferndndez-Lépez, M., Gémez-Pérez, A., et al.
(2002). A survey on methodologies for developing, maintaining, eval-
uating and reengineering ontologies. Deliverable 1.4, OntoWeb project
(http://www.ontoweb.org/).

[Fowler et al., 1999] Fowler, J., Nodine, M., Perry, B., and Bargmeyer, B.
(1999). Agent-based semantic interoperability in infosleuth. SIGMOD Record,
28(1).

[Gémez-Pérez et al., 2002] Goémez-Pérez, A. et al. (2002). A survey on ontol-
ogy tools. Deliverable 1.3, OntoWeb project (http://www.ontoweb.org/).

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable on-
tology specification. Knowledge Acquisition, 5(2):199-220.

[Hammer and McLeod, 1993] Hammer, J. and McLeod, D. (1993). An ap-
proach to resolving semantic heterogeneity in a federation of autonomous,
heterogeneous, database systems. International Journal on Intelligent and
Cooperative Information Systems, 2(1):51-83.

[Horrocks, 2002] Horrocks, I. (2002). DAML+OIL: a reason-able web ontology
language. In Proc. of EDBT 2002, number 2287 in Lecture Notes in Computer
Science, pages 2-13. Springer.

[Horrocks and Patel-Schneider, 2003] Horrocks, I. and Patel-Schneider, P. F.
(2003). Reducing OWL entailment to description logic satisfiability. In Proc.
of the 2003 International Semantic Web Conference (ISWC 2003), Sanibel
Island, Florida.

[Horrocks et al., 2003] Horrocks, I., Patel-Schneider, P. F., and van Harmelen,
F. (2003). From SHIQ and RDF to OWL: The making of a web ontology
language. Journal of Web Semantics. To appear.

[Horrocks and van Harmelen, 2001] Horrocks, I. and van Harme-
len, F. (2001). Reference description of the daml4oil (march
2001) ontology markup language. Technical report, DAML.

http://www.daml.org/2001/03 /reference.html.

[Hull, 1997] Hull, R. (1997). Managing semantic heterogeneity in databases:
A theoretical perspective. In ACM Symposium on Principles of Database
Systems, pages 51-61, Tuscon, Arizona, USA.

[Kifer et al., 1995] Kifer, M., Lausen, G., and Wu, J. (1995). Logical founda-
tions of object-oriented and frame-based languages. JACM, 42(4):741-843.

BIBLIOGRAPHY 93

[Klein, 2001] Klein, M. (2001). Combining and relating ontologies: an analy-
sis of problems and solutions. In Gomez-Perez, A., Gruninger, M., Stucken-
schmidt, H., and Uschold, M., editors, Workshop on Ontologies and Informa-
tion Sharing, IJCAI’01, Seattle, USA.

[Lara et al., 2003] Lara, R., Lausen, H., Arroyo, S., de Bruijn, J., and Fensel,
D. (2003). Semantic web services: description requirements and current tech-
nologies. In Semantic Web Services for Enterprise Application Integration and
e-Commerce workshop (SWSEE03), in conjunction with ICEC 2003, Pitts-
burgh, PA, USA.

[Lassila and Swick, 1999] Lassila, O. and Swick, R. R. (1999). Resource de-
scription framework (rdf) model and syntax specification. W3c recommenda-
tion, W3C. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

[McGuinness et al., 2000] McGuinness, D., Fikes, R., Rice, J., and Wilder, S.
(2000). An environment for merging and testing large ontologies. In Proc.
7th Intl. Conf. On Principles of Knowledge Representation and Reasoning
(KR2000), Colorado, USA.

[McGuinness et al., 2003] McGuinness, D. L., Fikes, R., Stein, L. A., and
Hendler, J. (2003). DAML-ONT: An ontology language for the semantic web.
In Fensel, D., Hendler, J., Lieberman, H., and Wahlster, W., editors, Spin-
ning the Semantic Web: Bringing the World Wide Web to Its Full Potential,
chapter 3, pages 65-93. MIT Press.

[McIlraith et al., 2001] Mecllraith, S., Son, T., and Zeng, H. (2001). Semantic
web services. IEEE Intelligent Systems, Special Issue on the Semantic Web,
16(2):46-53.

[Meersman, 2001] Meersman, R. (2001). Ontologies and databases: More than
a fleeting resemblance. In Rome OES/SEO Workshop.

[Mena et al., 2000] Mena, E., Illarramendi, A., Kashyap, V., and Sheth, A. P.
(2000). Observer: An approach for query processing in global information
systems based on interoperation across pre-existing ontologies. Distributed
and Parallel Databases, 8(2):223-271.

[Mitra and Wiederhold, 2001] Mitra, P. and Wiederhold, G. (2001). An alge-
bra for semantic interoperability of information sources. In IFEE Interna-
tional Conference on Bioinformatics and Biomedical Egineering, pages 174—
182.

[Mitra et al., 1999] Mitra, P., Wiederhold, G., and Jannink, J. (1999). Semi-
automatic integration of knowledge sources. In Proceedings of Fusion 99,
Sunnydale, California, USA.

[Mitra et al., 2000] Mitra, P., Wiederhold, G., and Kersten, M. (2000). A
graph-oriented model for articulation of ontology interdependencies. In Pro-
ceedings of Conference on FEaxtending Database Technology (EDBT 2000),
Konstanz, Germany.

BIBLIOGRAPHY 94

[Nodine et al., 2000] Nodine, M. H., Fowler, J., Ksiezyk, T., Perry, B., Tay-
lor, M., and Unruh, A. (2000). Active information gathering in infosleuth.
International Journal of Cooperative Information Systems, 9(1-2):3-28.

[Noy and Musen, 1999] Noy, N. F. and Musen, M. A. (1999). Smart: Auto-
mated support for ontology merging and alignment. Technical Report SMI-
1999-0813, Stanford Medical Informatics.

[Noy and Musen, 2000a] Noy, N. F. and Musen, M. A. (2000a). Anchor-
prompt: Using non-local context for semantic matching. In Proceedings of
the Workshop on Ontologies and Information Sharing at the Seventeenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-2001), Seattle,
WA, USA.

[Noy and Musen, 2000b] Noy, N. F. and Musen, M. A. (2000b). Prompt: Al-
gorithm and tool for automated ontology merging and alignment. In Proc.
17th Natl. Conf. On Artificial Intelligence (AAAI2000), Austin, Texas, USA.

[Noy and Musen, 2003] Noy, N. F. and Musen, M. A. (2003). Ontology ver-
sioning as an element of an ontology-management framework. To be published
in IEEE Intelligent Systems.

[Patel-Schneider et al., 2003] Patel-Schneider, P. F., Hayes, P., and Horrocks,
I. (2003). Owl web ontology language semantics and abstract syntax. Candi-
date Recommendation 18 August 2003, W3C.

[Preece et al., 2001] Preece, A. D., Hui, K.-Y., Gray, W. A., Marti, P., Bench-
Capon, T. J. M., Cui, Z., and Jones, D. (2001). Kraft: An agent architecture
for knowledge fusion. International Journal of Cooperative Information Sys-
tems, 10(1-2):171-195.

[Rahm and Bernstein, 2001] Rahm, E. and Bernstein, P. A. (2001). A survey
of approaches to automatic schema matching. VLDB Journal: Very Large
Data Bases, 10(4):334-350.

[Schreiber, 2003] Schreiber, Z. (2003). Semantic information manage-
ment: Solving the enterprise data problem. To be found on the
http://www.unicorn.com/ website.

[Studer et al., 1998] Studer, R., Benjamins, V. R., and Fensel, D. (1998).
Knowledge engineering: Principles and methods. Data and Knowledge en-
gineering (DKE), 25(1-2):161-197.

[Stumme and Maedche, 2001] Stumme, G. and Maedche, A. (2001). Fca-
merge: Bottom-up merging of ontologies. In 7th Intl. Conf. on Artificial
Intelligence (IJCAI ’01), pages 225-230, Seattle, WA, USA.

[ter Bekke, 1992] ter Bekke, J. H. (1992). Semantic data modeling. Prentice
Hall, Hemel Hempstead.

[ter Bekke, 1997a] ter Bekke, J. H. (1997a). Can we rely on sql? In Wagner,
R., editor, Proceedings 8th international DEXA workshop, pages 378-383,
Toulouse. IEEE Computer Society.

BIBLIOGRAPHY 95

[ter Bekke, 1997b] ter Bekke, J. H. (1997b). Comparative study of four data
modeling approaches. In Siau, K., Wand, Y., and Parsons, J., editors, Pro-
ceedings 2nd international EMMSAD workshop, pages B1-B12, Barcelona.

[Tsichritzis and Klug, 1978] Tsichritzis, D. and Klug, A., editors (1978). The
ANSI/X3/SPARC DBMS Framework. AFIPS Press.

[Ullman, 1988] Ullman, J. D. (1988). Principles of Database and Knowledge-
Base Systems, Volume I. Computer Science Press.

[Unicorn, 2003a] Unicorn (2003a). Unicorn v2.5 Modeling Guide. Unicorn.

[Unicorn, 2003b] Unicorn (2003b). Unicorn™ Workbench v2.5 User Manual.
Unicorn.

[Uschold, 2000] Uschold, M. (2000). Creating, integration, and maintaining
local and global ontologies. In Proceedings of the First Workshop on Ontology
Learning (OL-2000) in conjunction with the 14th European Conference on
Artificial Intelligence (ECAI-2000), Berlin, Germany.

[Visser and Cui, 1998] Visser, P. and Cui, Z. (1998). On accepting het-
erogeneous ontologies in distributed architectures. In Proceedings of the

ECAI98 workshop on applications of ontologies and problem-solving methods,
Brighton, UK.

[Visser and Tamma, 1999] Visser, P. and Tamma, V. (1999). An experience
with ontology clustering for information integration. In Proceedings of the
1JCAI-99 Workshop on Intelligent Information Integration in conjunction
with the Sixteenth International Joint Conference on Artificial Intelligence,
Stockholm, Sweden.

[Visser et al., 1997] Visser, P. R. S., Jones, D. M., Bench-Capon, T. J. M., and
Shave, M. J. R. (1997). An analysis of ontological mismatches: Heterogene-
ity versus interoperability. In AAAI 1997 Spring Symposium on Ontological
Engineering, Stanford, USA.

[Wiederhold, 1992] Wiederhold, G. (1992). Mediators in the architecture of
future information systems. IEEE Computer, 25(3):38-49.

[Wiederhold, 1994] Wiederhold, G. (1994). An algebra for ontology composi-
tion. In Proceedings of 1994 Monterey Workshop on formal Methods, pages
56-61, U.S. Naval Postgraduate School, Monterey CA.

[Wiederhold and Genesereth, 1997] Wiederhold, G. and Genesereth, M. R.
(1997). The conceptual basis for mediation services. IEEE Ezpert, 12(5):38-
47.

	Preface
	Abstract
	Organization
	Contents
	Introduction
	The Problem of Semantic Information Integration
	Comparing ontologies and (conceptual) database models
	Introducing database models
	Relational database modelling
	Semantic data modelling
	Introducing ontologies
	The Web Ontology Language OWL
	Comparing ontology languages and conceptual database modelling languages

	Approaches in Semantic Information Integration

	Semantic Integration in the Enterprise
	The Semantic Information Management
	The Methodology
	The Unicorn Workbench
	Building an ontology using Unicorn
	Mapping data schemas to the central ontology

	Ontology construction and rationalization in the COG project
	The Information Integration Problem in COG
	Solving the integration problem in COG using the Semantic Information Management

	Conclusions
	Limitations of the Unicorn Workbench and Future Work

	Database Querying using Ontologies
	Querying disparate data sources using the Unicorn Workbench
	Queries in the Unicorn Workbench
	Transforming conceptual queries into database queries
	Limitations of the current approach

	Querying disparate data source in the COG project
	The querying architecture in the COG project
	Querying in the COG showcase

	Conclusions

	Comparison with other initiatives
	Methods and Tools for Semantic Information Integration
	The MOMIS approach
	InfoSleuth
	OBSERVER
	Ontology mapping in the KRAFT project
	PROMPT
	Chimæra
	ONION

	Comparison of the Methods
	Comparison criteria
	Comparing the methodologies for Semantic Schema integration

	Semantic Interoperation on the Web
	Ontology Mapping
	Ontology Mapping on the the Semantic Web
	The Semantic Web
	The Esperonto project and Ontology Mapping

	Problems in Ontology Mapping and Aligning
	Requirements Analysis
	Mapping Language Requirements
	Possibilities in automating the creation of mappings
	User Interface Requirements

	A Solution for Ontology Mapping
	Reusing existing methods and tools

	Conclusions and future work

	Conclusions and Outlook
	Outlook

	Bibliography

