

Agent Technology
for

Personalised Unified Messaging

An agent-based unified messaging system with intelligent user support

Tryllian B.V.
Amsterdam, The Netherlands

Delft University of Technology
Delft, The Netherlands

Master’s thesis project

Remco Schaar

June, 2002

Graduation Committee:

Drs. dr. L. J. M. Rothkrantz
Prof. dr. ir. E. J. H. Kerckhoffs
Drs. M. V. Jonkers (Tryllian B.V., Amsterdam, The Netherlands)
Prof. dr. H. Koppelaar (chairman)

Schaar, Remco M. (remco@ch.tudelft.nl)

Master’s thesis, June 2002
“Agent Technology for Personalised Unified Messaging
An agent-based unified messaging system with intelligent user support”

Delft University of Technology, The Netherlands
Faculty of Information Technology and Systems
Department of Mediamatics
Knowledge Based Systems Group

Keywords: Agent technology, unified messaging, user profiling, mobile agents,
multi-agent system, intelligent agents, communication overload,
cross-media profiling, Tryllian ADK

Copyright c© 2002 Tryllian Holding N.V. All rights reserved. No part of this document shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with the respect to the use of the information
contained herein. Although every precaution has been taken in the preparation of this document, the publisher and
author assume no responsibility for errors or omissions. Neither is any liability assumed or damages resulting from the
use of the information contained herein.
All product names referenced are trademarked by their respective companies.

mailto:remco@ch.tudelft.nl

Preface

The last requirement for the completion of the study Computer Science at
Delft University of Technology, is to conduct a research project. I chose
to fulfil this project at the Knowledge Based Systems group, headed by
Prof. dr. H. Koppelaar. After gathering the necessary motivation to commit
myself for nearly a year, I had to choose a location and topic. I ended up to
look for a place where I could combine network- and agent-technology with
knowledge based systems. This led me to ask Tryllian whether they had an
opening for a graduation internship. A few meetings later, we agreed I would
start my internship at Tryllian half October 2001.

About Tryllian Tryllian is a Dutch high-tech company focusing on mo-
bile agent technology. It was founded in March 1998 by Christine Karman,
supported with venture capital. The first product, Gossip, was an appli-
cation of mobile agents to search the Internet and share with other users.
Further development led to the Agent Development Kit (ADK), an indus-
trial strength software development kit for the construction of mobile agent
application. Focus areas are remote management, embedded systems and
especially business integration. In 2001, Tryllian was awarded as ICT com-
pany of the year by several leading Dutch ICT organisations. At the moment,
Tryllian employs about 40 people, forming a young and dynamic company.

Project The project indeed became a combination of network-, knowledge-
and agent-technology. As a person often annoyed by mobile phones and lack
of access to e-mail, the subject of unified messaging came up. Hence, the
project was formulated to combine unified messaging with user profiling.
Important element was the role (mobile) agent technology can play herein.
After some study in related literature, a design was developed and described
in detail. Together with the implementation and evaluation of a prototype,
the project became a complete challenge. The results of this work are de-
scribed in this report.

iii

PREFACE

Acknowledgements First of all, I would like to thank all the people at
Tryllian for granting me an internship with the company. It is a great thing
that a company supports research and students, even in times when the
economy is less favourable. I am convinced mobile agent technology is the
next step forward in computer science. The Tryllian ADK is a very good
product, I can recommend it to everybody who needs anything beyond a
simple desktop application.

Furthermore, I specially want to thank Mark Lassche, Menno Jonkers
and Leon Rothkrantz for their support and time. Without their feedback,
comments, advices and criticism, I probably never achieved a coherent and
finished thesis. Mark, for taking the ungrateful job of forcing me to make a
planning once in a while. Menno, for his enthusiasm at each new pile of paper
to review. Leon, for reminding me on the academic nature of my research.
All three are thanked as well for coauthoring my paper.

Of course I am very thankful to everybody at Tryllian; for their support
with my struggles with Java and Swing, the seminars and drinks, the LAN-
party and carting, even accepting (some of) my music, throwing penguins
to me and . . .Mark, Menno, Wiebe, Norbert, Mark, Otto, Peter, Anthony,
Simon, Hes, Yigal, Boudewijn, Mimi, Bram, Eduard, René, A3aan, Serge,
Justin and all the others. . . Thanks!

There are many more people who helped me forward as well and I want
to thank them therefore. Both professor Koppelaar and professor Kerckhoffs
for their efforts as member of the graduation committee. Ralph, Google and
Citeseer for finding lots of decent literature and Taco for proof-reading my
paper. All those not mentioned here as well and last, but certainly not least,
my family and friends for their support throughout my study.

Remco Schaar
Delft, June 2002

iv

Abstract

Now that telecommunications and Internet are merging to one global commu-
nication network, new possibilities and their related problems arise. Unified
messaging as used in practise nowadays only provides for the exchange of
data. It is much more complicated if one wishes to receive the information
rather than the data. More and more people start to complain about the
large amounts of e-mail they receive every day. User profiling has often been
applied to e-mail as text, but with unified messaging one uses various media.
The combination of unified messaging and user profiling with agent technol-
ogy is a last element of this study. Backgrounds for these areas are provided
in this document.

To handle this problem, an architecture has been developed. This ar-
chitecture is based on multi- and mobile agent technology. Intelligent user
profiling is directly incorporated in the design. Due to the separation of
profiling in two phases, it can be achieved across different media. This is ac-
complished by using meta-data to describe a message, rather than using its
content directly. The usage of agents supports a high level of personalisation
of the system.

The proposed architecture has been implemented in a prototype version.
This prototype was used for an evaluation of the concept. This evaluation
shows that agents are great facilitators for personalised unified messaging.
Overcoming a communication overload is handled by an intelligent agent
that is capable of learning an user profile. This learning problem is clearly
defined, and a possible solution is found in the k-nearest-neighbour algorithm.
Further benefits of the usage of agents are shown as well. The system is
dynamically extensible and highly adaptable, with robustness in a distributed
environment.

v

Contents

Preface iii

Abstract v

Contents vii

1 Introduction 1

I Project Definition 3

2 Background 5

3 Problem 7

3.1 Unified messaging . 8

3.2 Communication overload . 9

3.3 Agent technology . 11

4 Goals 13

4.1 Research . 14

4.2 Design . 14

4.3 Prototype . 15

4.4 Deliverables . 16

5 Scope 19

5.1 Issues . 19

5.2 Included . 23

5.3 Excluded . 25

vii

CONTENTS

II Backgrounds 27

6 Unified Messaging 29
6.1 Research . 29

6.1.1 Unified messaging . 29
6.1.2 Media processing . 31
6.1.3 Standards . 32
6.1.4 Related . 33

6.2 Practise . 33
6.3 Developments . 34

7 User Profiling 37
7.1 Motivation . 37
7.2 Information filtering . 38

7.2.1 Global technique . 38
7.2.2 E-mail filtering . 39

7.3 Machine learning . 40
7.3.1 Nearest neighbour . 41
7.3.2 Decision tree . 41
7.3.3 Rule-based generated by clustering 42
7.3.4 Bayesian learning . 42

8 Agents 43
8.1 Perspective . 43

8.1.1 Properties . 43
8.1.2 Classification . 44
8.1.3 Agency . 46
8.1.4 Practise . 46

8.2 Agent communication . 47
8.2.1 Languages . 47
8.2.2 Architectures . 48

8.3 In telecommunication . 49
8.3.1 UMTS/VHE . 49
8.3.2 Intelligent Network . 50
8.3.3 IMPAX . 50

8.4 Alternative technologies . 51

III Concept 53

9 Requirements 55

viii

CONTENTS

9.1 Must have . 55
9.2 Should have . 56
9.3 Could have . 57
9.4 Assumptions . 57

10 Func. Design 59
10.1 Offered functionality . 59
10.2 Use cases . 61
10.3 Internal functions . 62

11 Selection 65
11.1 Multi-agent . 65

11.1.1 Why? . 65
11.1.2 Compartment . 66

11.2 Peripherals . 67
11.2.1 Motivation . 67
11.2.2 Input . 69
11.2.3 User Interface . 69
11.2.4 Storage . 70
11.2.5 Transformation . 70

11.3 Routing . 71
11.4 Profiling . 73
11.5 Miscellaneous . 75

12 Architecture 79
12.1 Overview . 80
12.2 Roles . 81
12.3 Agents . 82

12.3.1 Message Factory Agent 83
12.3.2 Router Agent . 84
12.3.3 Extractor Agent . 86
12.3.4 Profile Agent . 87
12.3.5 Transformer Agent . 89
12.3.6 UI Agent . 90
12.3.7 Storage Agent . 92

12.4 Communication . 92
12.5 Other components . 93
12.6 Work- and dataflow . 95

12.6.1 Important new message 96
12.6.2 Unimportant new message 98
12.6.3 User situation change 100

ix

CONTENTS

12.6.4 User feedback . 102
12.6.5 Store message . 104
12.6.6 Request message . 106
12.6.7 Present message . 108

13 Anticipations 111
13.1 Profile learning . 111

13.1.1 Learning problem . 111
13.1.2 Examples . 113

13.2 Extension . 115
13.2.1 Automated translations 115
13.2.2 Sending messages . 115
13.2.3 Synchronous communication 116
13.2.4 Enhanced dynamic extensibility 117
13.2.5 Other agents from the user 117

IV Prototype 119

14 Technical Design 121
14.1 Task model . 121

14.1.1 Factory Agent . 122
14.1.2 Router Agent . 122
14.1.3 Extractor Agent . 126
14.1.4 Profile Agent . 127
14.1.5 Transformer Agent . 128
14.1.6 UI Agent . 129
14.1.7 Storage Agent . 130

14.2 Object model . 133
14.2.1 Router Agent . 133

15 Implementation 135
15.1 Environment . 135
15.2 Messages . 135

15.2.1 Envelope . 135
15.2.2 Content . 137

15.3 Agent interaction . 137
15.4 Factory Agent . 137

15.4.1 E-mail Factory . 137
15.4.2 RSS Factory . 138
15.4.3 SMS Factory . 138

x

CONTENTS

15.5 Router Agent . 139
15.5.1 Task model . 139
15.5.2 Locating Service Agents 139

15.6 Extractor Agent . 139
15.7 Profile Agent . 141

15.7.1 Dummy Profile . 141
15.7.2 Random Profile . 141
15.7.3 Rule-based Profile . 141
15.7.4 KNN Profile . 143

15.8 Transformer Agent . 144
15.9 UI Agent . 145

15.9.1 Swing UI . 145
15.9.2 Phone UI . 146

15.10Storage Agent . 146
15.11Runtime examples . 146

15.11.1Example: important 146
15.11.2Example: unimportant 150

15.12Deviations . 151

V Evaluation 153

16 Functional Tests 155
16.1 Objectives . 155
16.2 Approach . 158
16.3 Experiments . 161

16.3.1 Extensibility . 161
16.3.2 Adaptability . 163
16.3.3 Personalisation . 165
16.3.4 Cross-media profiling 166
16.3.5 Robustness . 167
16.3.6 Queueing . 170
16.3.7 Learning . 171
16.3.8 Mixed . 175

17 Interpretation 177
17.1 Tests . 177

17.1.1 Extensibility . 178
17.1.2 Adaptability . 179
17.1.3 Personalisation . 179
17.1.4 Cross-media . 180

xi

CONTENTS

17.1.5 Robustness . 180
17.1.6 Queueing . 181
17.1.7 Learning . 182

17.2 Prototype . 182
17.3 Design . 184

VI Conclusions & Recommendations 189

18 Overview 191
18.1 Backgrounds . 191
18.2 Design . 192
18.3 Prototype . 194
18.4 Evaluation . 195

19 Discussion 197
19.1 Non-mobile Router . 197
19.2 Overhead . 198
19.3 Scalability . 199
19.4 Communication overload . 200
19.5 Commercial realisation . 200
19.6 Agent negotiation . 201
19.7 Out of scope . 202

20 Conclusions 205
20.1 Unified messaging . 205
20.2 Communication overload . 206
20.3 Agent technology . 206

21 Future Work 209
21.1 User profiling . 209
21.2 Security . 210
21.3 Performance . 210
21.4 Virtual secretary . 210
21.5 Related work . 211
21.6 Tryllian ADK . 212

Bibliography 215

List of Figures 223

List of Tables 225

xii

CONTENTS

VII Appendices 227

A Tryllian ADK 229
A.1 Architecture . 229
A.2 API highlights . 230
A.3 More . 231

B Diagram Legend 233
B.1 Workflow . 233
B.2 Dataflow . 234
B.3 Task hierarchy . 235
B.4 Task-state transition . 235

C Abbreviations 237

D Paper 239

xiii

Chapter 1

Introduction

“You have thirteen new e-mails, six new SMS-messages, three
people tried to ICQ with you, there are four new news-items,
seventeen new Usenet-discussions in your favourite groups and
you have two faxes and one voice-mail.”

With the forthcoming merger of telephone-networks and Internet, it be-
comes possible to create an integrated communication-portal for users. This
will allow users to receive all their messages using a single application. In-
cluded are all kinds of message-based communications, from e-mail to voice-
mail and CNN-headlines to Usenet-discussions. But would it not be more
usable if the above was stated as follows:

“You have seven new messages that are currently important.”

The last statement is more informative for the user, a lot more compre-
hensible and shorter as additional gain. An user would have a great benefit
if it received the information rather than the raw messages. In this era of
telecommunication one receives more and more messages, and the challenge
becomes selecting the real information in this endless stream. An user has
specific interests for these messages, and thus prefers to receive certain mes-
sages as important. Users can be in various situations and each situation will
have related interests. Not many people wish to be interrupted at home by
a customer, while this customer would receive immediate attention at work.
The most interesting messages should thus be selected based on the user’s
situation.

Although users could explicitly express their interests, this is not always
that simple. Creating computable rules for their interests even complicates
this task. The best solution would thus be a system that can automatically

1

CHAPTER 1. INTRODUCTION

deduce these interests. An intelligent computer system can help the user to
selected the interesting new messages.

A last important aspect is the fact the interests of the user are personal.
Everybody has his or her own preferences for certain information. How
this information is received can also be bound to the person receiving it.
An automated solution will therefore have to be personal and possible even
further adaptable for the user.

The idea induced from the above is to create a personal assistant, that can
help the user to select new important messages. In combination with modern
telecommunication, this assistant would travel with the user wherever it goes.
This not necessarily means the user has to carry a device for this assistant
everywhere, it should follow in any way.

A possible solution can be found with agents. Intelligent agents can help
solve complex problems, and personal agents have represented people before.
Other agents can move around networks and operate all over their virtually
world. Agents thus seem a viable approach to create an intelligent assistant
that helps the user everywhere. Today’s technology is expected to be able to
form an assistant as suggested.

A study to establish how this can be achieved has been performed. Part
of this study was a proof-of-concept implementation to verify whether it can
be realised. This report describes both the study and the prototype in detail.

This document is divided in six parts. The first describes the problem
that is investigated and defines the project. Part II gives some background
information of related areas of research and concepts. The next part in-
troduces the developed architecture. On page 121 and further the created
implementation is explained, including the technical design. Further, part
V has some tests that were performed on the prototype. Last follows a
discussion and the conclusions and recommendations, in part VI.

2

Part I

Project Definition

This is a full description of the project. It includes a description of the
background and the problem to be dealt with (respectively chapter 2 and 3).
Chapter 4 will define the goals of the project. Further, it states all issues
involved and a determination of the scope and direction of the project in its
last chapter, number 5.

3

Chapter 2

Background

Always, everywhere, anyhow and certainly lots of it. . . that seems to be the
future of telecommunications. People will be able to communicate wherever
they are, whenever they want and how they want to. When you are at work
you can read on your desktop the voice-mail just received, while driving
home you can listen to your e-mail and when arriving home you have a
summary of today’s news of your interest among your e-mail. The future of
telecommunication looks very promising. People will be able to communicate
in such large amounts, it even becomes a burden.

In the last decade, the usage of telecommunication has grown beyond
many expectations. The mass acceptation of second generation mobile tele-
phone systems (GSM) and the Internet have led to an enormous growth in
electronic communication. Recent introduction of i-mode and GPRS pro-
vide improved data-rates and allow one to be continuously on-line. With
the announcement of the third generation (3G) of mobile telecommunication
(UMTS), reachability of people improves further. Along with acceptance of
broadband, ADSL and similar high-bandwidth Internet connections, avail-
able means of communication grow even further. More and more people start
complaining they cannot keep up with the rapid growth of these new means
of communication. This counts for not being able to access new messages
whenever the user finds it suitable, and receiving loads of (unimportant)
messages.

With the integration of phone- and data-networks (like Internet), new
opportunities become available. Electronic messages1 are no longer limited
to a single electronic network. Connections between, or the merger of, both
networks allow us to send a voice-mail to an e-mail account, or send an e-mail
to a fax. This concept is often referred to as unified messaging [79].

1E.g. fax, e-mail, SMS, voice-mail and instant messages.

5

CHAPTER 2. BACKGROUND

In the age of dot-com, several companies stood up that started with (free)
public available unified messaging. They allow you to receive your fax and
voice-mail through your e-mail, or forward your e-mail to your fax (e.g. [86]).
Since access to e-mail is now available through mobile Internet connections
and WAP and the nearby introduction of better bandwidth-enabled UMTS,
all kind of messages can be available always and everywhere.

But from the use of e-mail we already know communication can be a
burden as well. Many people who open their e-mail inbox after their vacation,
often first notice the large amount of new mail messages. More and more
people even experience this every day. You would not be the first to find
dozens of new messages first thing in the morning, and even more throughout
the day. Estimates and forecasts up to four hours a day for handling e-mail
alone have been made [13].

The problem of spending lots of time for handling all mail is a known
problem. In community and literature this has been identified as e-mail
overload [17, 44, 82]. This refers to e-mail alone however. With unified
messaging, one deals with more media, and this applies to a broader spectrum
of communication. One could say we face a communication overload.

6

Chapter 3

Problem

The future of telecommunication allows us to receive new messages anywhere,
anytime1. Due to mobile telecommunication equipment, people can commu-
nicate everywhere. With the next generation of mobile networks (UMTS)
better mobile data-connections will become available [77]. People will there-
fore be able to be continuously reachable for all kinds of communication.
Several issues have to be expected however, which are addressed in their
respective sections:

1. When continuous reachable, one prefers the use of only a single de-
vice at one time. A problem is a way to deal with the large variety
of interconnected devices of many people. On the lowest level, most
modern communication equipment can be connected with each other.
These devices can exchange data this way, but it remains to be seen
whether both devices can deal with the information contained in the
data [56]. It is not realistic to ask a recipient to acquire a similar device
when a sender acquires a new type. The sender’s new device might lack
full potential however, when it has to be backward compatible with all
equipment of the sender’s contacts. Connecting these devices to ex-
change the information rather than the raw data, seems a more logical
gain for new devices, but is not fully met yet. Most important herein
is the idea to exchange semantics, a thought, rather than a message.
Throughout the used media, these semantics should be maintained.

2. Although most people prefer receiving their messages rather now than
later, this might lead to less productivity due to constant interruption.

1Although this can be accomplished with known technology, this is economically and
practically not realistic.

7

CHAPTER 3. PROBLEM 3.1. UNIFIED MESSAGING

Another, maybe even more important, effect could be overlooking im-
portant information faded in the flood of less important communica-
tion. With the volume of electronic messages send nowadays, every-
body faces a vast amount of messages. Published predictions commonly
show even further increase of these numbers [13, 30]. Dealing with all
messages in time, without losing too much time for other activities
becomes a challenge.

3. Third element is the relation with (mobile) agent technology. Quite
a few designs are proposed for the application of agent technology in
these communication systems (e.g. [22, 37]). Most of these system are
not known as (commercial) usable systems, or as systems with many
users. Most projects appear to stop after a design [20, 37] or a prototype
[12, 36]. Although agent technology has many promises [35], evaluation
of agents applied to (personal) communication has not received much
attention. Further research for the opportunities and drawbacks in this
context seems appropriate.

3.1 Unified messaging

Many people will recognise the following scenario: You have an electronic
article, which you want to send to a colleague today. You know however,
that he will only be reachable on his cellular phone since he is out of the
office. Using a fax is not an option, since he has no laptop connected to his
phone. Sending by SMS (Short Message Service) will not do either, the article
is too long, even for a dozen of messages. Using your colleague’s voice-mail
has the same limitation. The only solution left is reading the entire article
to your colleague directly.

People can communicate all over the world at the speed of light nowa-
days2. We even have a broad choice of media we can use. The essence of
communication remains the same for all forms. Whether it is an e-mail, a fax
or a voice-mail, they are all used for the exchange of thoughts. The end-users
express their thoughts through some media, be it speech, text or image. Nor-
mally they choose whatever they find convenient, since the medium3 is not
what they want to communicate. Lacking telepathic capabilities, humans

2Almost literally in the case of optic fiber.
3 Medium, media-types and format will be used as equivalent in this document. They

are used for both the used medium (i.e. image, audio, text) as well as specific document
formats. One can best compare these with a MIME-type [19], consisting of a major and
a minor type (e.g. text/plain).

8

CHAPTER 3. PROBLEM 3.2. COMMUNICATION OVERLOAD

have to exchange their ideas through some medium. The medium functions
as an intermediate carrier between the communicating parties.

Until recently, the sending party commonly choose the medium to be
used, thereby forcing the receiving end to use the same medium. When this
poses a problem (e.g. a letter for illiterate or blind people), it is often up
to the recipient to solve this, for example by using an intermediate person.
The sender also determined the location where the other would receive the
message. This implied restrictions to the receiver as well.

The choice of communication channels seems to have grown on a regular
basis. New devices and technologies allow a broader choice of media. Every
new medium has to be integrated with existing systems, or require new ones
on the receiving side as well. Many people cannot keep up with all new
possibilities, and a general solution is needed.

With modern communication equipment, it becomes possible to have a
broader choice of media to use. As a result of this progress, the sender can
have even more influence on the receiver. But modern technology also en-
ables the receiving side to have a choice. With electronic communication,
automated transformation becomes possible. This allows the receiver the
choice of medium as well. Receiving a (electronic) letter nowadays no longer
forces you to read the letter, but you can listen to it with text-to-speech soft-
ware. Since the medium is only an intermediate, the communicated thought
is still delivered.

The idea to have your incoming communication anyway and everywhere
you want it, is referred to as unified messaging [79]. With unified messaging,
the receiver determines where and how his incoming messages are delivered.
This allows you to have a choice rather independent from the sender. Receive
your messages where, when and how you want them is the ultimate goal of
unified messaging.

Most current commercial solutions offer only a limited range of possibili-
ties (e.g. [27, 71, 78, 86]). A complete integration of all devices and sources
into one acceptable channel for the user is not achieved. Adding new devices
to these systems is limited to whatever these providers integrate in their sys-
tems. A more generic solution to integrate devices and media for the user is
desired.

3.2 Communication overload

“You have 84 new messages”, is the announcement of the e-mail client. This
is an actual number from the authors inbox for only 1 mailing-list over a three
day period. The number of regular users of e-mail is still increasing, as well

9

CHAPTER 3. PROBLEM 3.2. COMMUNICATION OVERLOAD

as the amount of messages send per day [30]. With the more recent growth
in popularity of SMS [21] more piles of messages rise. People communicate
more and more since the first electronic message.

Although people themselves choose to communicate more, it has its draw-
backs as well. People spend increasingly more time handling all their phone
calls, e-mail and SMS. Besides, normal work is interrupted more often. With
the introduction of e-mail notification programs, people often read their e-
mail right after arrival. This causes interruption of the work in progress,
requiring task changes and loss of concentration. Since people can respond
faster to new messages than ever before, even more communication is the
result.

Aside from this interruption lies the fact that electronic communication
costs money. In the case of SMS, each message is charged to the sender4. If
one reads ones e-mail, you often have to pay for the amount of transferred
data (either for the required time of connection, or the size of the infor-
mation). Specifically when using mobile data-connections, these costs can
increase rapidly when large or unwanted messages are received [81]. Listen-
ing to ones voice-mail is a billed service at several providers as well.

The advantage of being able to respond immediately is the ability to
take timely action. The disadvantage is the interruption of current activities
with communication for other tasks as well. Context switches are needed
continuously in this setting, causing the same tasks to require more time.
Further, changing ones current thoughts, can lead to more errors in work.
One can conclude that timely notification of arriving messages is wanted,
but should be limited to messages that are either important or related to the
receiver’s current tasks.

Previous research brought up the name e-mail overload [82, 89]. This is
the phenomenon of receiving e-mail in such large amounts, the availability of
e-mail becomes a burden instead of a blessing. Already numbers have been
estimated and predicted accounting for up to 4 hours a day for handling
e-mail [13]. This can become a real problem; when people start spending
more time on communication, they lack time for other activities. With more
means of communication tied together, this can increase even further. This
problem might even be a broader communication overload [26].

An ideal solution would be to only receive all wanted incoming commu-
nication immediately. Of course a secretary can fulfil this function, but not
everybody can afford one. An automated system could solve the problem for
many people. Such a system should be a perfect assistant, showing exactly
those messages that are relevant or important to its user at that moment.

4Some requested information services are charged upon the requester, thus the recipient.

10

CHAPTER 3. PROBLEM 3.3. AGENT TECHNOLOGY

Since the interests of a typical user changes on both short and long term, the
system will have to consider this [42, 62]. It should track the user’s interests,
and evaluate the activities the user employs at that moment. A decision to
notify the user of the arrival of new communication should then occur when
the user really wants to receive the incoming communication. In this way,
interruption can be minimised, while timely delivery of important messages
can be relied on.

Previous work mainly targets the problem of e-mail overload. Several
solutions for automated e-mail filtering have been proposed (e.g. [10, 62]).
These solution commonly take advantage of the fact that these messages
consist of text. In an unified messaging system this cannot be assumed. A
way to build a cross-media filtering mechanism, preferably a self-learning
one, is needed.

3.3 Agent technology

Agent technology has been applied in many areas, among which telecommu-
nication. Many efforts however, have been directed to telecommunication
network management [24], which is of little visible value to end-users. Per-
sonal assistant agents for e-mail-handling have also gotten a lot of attention.
Usage of (mobile) agent technology on the application level of telecommuni-
cation have been proposed [22]. Operational prototypes or implementations
are less known however.

What is to be examined is the feasibility of using agent technology to solve
the problems found in unified messaging and communication overload. Ap-
plication of (mobile) agent technology has proven to be beneficial in several
areas. Agents have been used for handling e-mail, as intelligent assistants.
Other agents have been used to help tackle the problem of information over-
load [39]. Application of agent technology to the problem at hand seems
possible, since it has been applied to several subproblems.

Remains another couple of questions. It is likely that agent technology
can be applied, but what will be the benefits. Application of agent technology
should be compared to regular techniques and other alternatives. Second,
the question is how to construct such a system, in a way that maximises the
benefits. Several possibilities (e.g. mobile, multi- or interface agents) can be
utilised, but which combination will maximise the benefits.

11

Chapter 4

Goals

The goals of the project are defined here. Research, design and a prototype
implementation are part of it. A full (commercial) deployable system is not
a target however. The entire project will be approached from an engineering
point of view, rather than as proving a hypothesis. An important remark is
that receiving ones messages has the main emphasis throughout this study,
for sending existing channels will be utilised.

Overall purpose is a system that enables unified messaging, while pre-
venting the communication overload for the user. Unified messaging is fully
universal in this context, allowing users everywhere and anyhow access to
their communication. The prevention of communication overload is to be
dealt with specifically per user, and should not be generalised1. A fully au-
tomated solution is preferred, relieving the user of the management of the
prevention system as well. As a last target, this has to be a solution based on
(mobile) agent technology. Reality poses its limits on the proposed however,
and has to be considered at any time. More detailed requirements needed to
achieve these goals can be found in Chapter 9. To summarise along the lines
of the defined problems, the goals include:

1. A unified messaging system, allowing any device, anywhere, anytime.

2. Prevent user from communication overload by means of

(a) Having a filtering system across different types of media.

(b) Deploying machine learning in this filtering to improve its accu-
racy over time.

3. Investigation of the applicability and benefits of agent technology herein.

1Although collaborative (spam-)filtering and similar techniques should not be excluded.

13

CHAPTER 4. GOALS 4.1. RESEARCH

4.1 Research

A research of literature on related topics has to be performed. This should
form a foundation for the design, and prevent pitfalls already encountered by
others. Incorporation of similar projects might also uncover other issues or
opportunities. Last but not least, the benefits of applying agent technology
to the particular problems have to be shown.

Architecture for unified messaging Architectures used for unified mes-
saging in research and commerce can be utilised as a basis for the system at
hand. Their coverage and maturity should be examined, in order to profit
from previous research.

Benefits of agent technology Agent technology has been proven to be
beneficial for several other problems. The benefits of the application of agent-
based technology to the problem at hand has to be proven.

Algorithms for user profiling Quite an amount of research projects
aimed for user profiling, many with handling information overload as goal.
This led to quite some algorithms and systems, which can be useful here for
automated — per user — solutions. An investigation of algorithms that can
be used in this case is needed.

4.2 Design

Since systems of this size are rarely successful build from scratch, a proper de-
sign should be made first. This design should be based on agent-technology,
and be generic. Being generic includes the possibility to apply future oppor-
tunities and means of communication. The design should thus be modular
and extensible.

Agent-based architecture An agent-based architecture that enables uni-
fied messaging has to be designed. One important component of this design
should be the capability to provide per user prevention of communication
overload. This component should contemplate the user’s situation and the
priority new communication has towards that situation. Extension with new
devices and media shall be another major component of the architecture.
The incorporation of these new media and devices should not pose a prob-
lem for the prioritiser. Provision of data for the prioritiser shall therefore be
taken into consideration throughout the architecture.

14

CHAPTER 4. GOALS 4.3. PROTOTYPE

User profiling To accomplish the prioritiser mentioned with the previous
item, a profile or preferences of the user have to be established. A proper
algorithm or system to enable this functionality has to be included in the
design. An important consideration for this profiler shall be the handling of
unknown data. The prioritiser needs to operate under conditions unknown in
advance, allowing new media and devices to be added transparently. Ideally,
this profile should learn the profile from the user’s interests itself. At least
the learning problem needs to be defined, and possible algorithms should be
investigated.

4.3 Prototype

Finally, a prototype based on the designed system should be implemented.
The purpose of this prototype is to verify and evaluated the design and prove
its feasibility. To limit the requirements for human-resources, a full imple-
mentation shall not be made. Some elements should be included however.

Architecture The overall architecture has to be prototyped for verifica-
tion and evaluation. This does not state that the entire system should be
implemented. Some of the elements can be simulated, or could be realised
offering only partial functionality. This prototype has to account for several
media and a couple of devices at least. Implementation of highly specialised
software for certain media shall be avoided, but some non-trivial systems
have a preference as well.

Underlying tools Some of the underlying tools should be implemented,
to have a realistic meaning for evaluation. In order to prevent a similar
evaluation to a theoretical one, the prototype should have some real life
functionalities implemented. At least several media types and a couple of
different devices should be usable, thus tools therefore will be needed.

User profiling The prototype should involve user profiling, since this is a
likely candidate to attack one of the main problems. Implementation how-
ever can be proof-of-concept, rather than fully deployable. An algorithm
has to be found that allows for heterogeneous data, that will not always be
known in advance. This is required to allow new media and devices to be
added without adapting the prioritiser. Unless easy applicable systems can
be found, implementation, comparison and evaluation of several systems is
estimated to be too time-consuming. Optimisation is left for further research
and development for the same reason.

15

CHAPTER 4. GOALS 4.4. DELIVERABLES

Use cases Examples of use cases that are likely to be covered:

• A fax will be send to the recipient’s e-mail inbox when the recipient is
in a meeting.

• An ICQ message ends up on SMS of an user while travelling.

• An attachment of an e-mail in an unusual format (e.g. a vendor-specific
type) is converted to a format that is available on a PDA, and displayed
on this PDA when applicable.

Due to practical issues, not all examples can be realised. Examples of
scenarios not likely to be implemented:

• A voice-mail will not be send to a fax, due to unavailability of speaker-
independent continuous speech recognition.

• An attached movie will not be displayed on a PDA, since these have
currently only limited capacities, combined with high costs when used
with a mobile data-connection.

4.4 Deliverables

The end result of the project will consist of two products. A report of the
full project has to be delivered. Second, an implementation of a prototype
is set as target.

Report First of all, a total report will be presented. This report will con-
tain all results from the performed research, design and evaluation. Included
will be:

• Research, whether agents are appropriate and a description of their
(dis)advantages.

• Research, which user profiling method can be best applied for priori-
tising, or at least clearly delimited requirements have to be defined.

• Backgrounds, on related topics and decisions made throughout the
project.

• Design, an agent-based architecture for handling unified messaging,
including per user prioritising.

• Evaluation, of design and implementation.

16

CHAPTER 4. GOALS 4.4. DELIVERABLES

• And of course discussion, conclusions and recommendations.

Excerpts of this document can be delivered when appropriate.

Implementation A prototype will be implemented, using Java and the
Tryllian ADK as main foundations. This prototype will exist of an opera-
tional system, existing of usable components. It shall not be deployable for
a large market of end-users, but usable nonetheless. Although it will be op-
erational, it is not to be expected to be a full implementation of the design.
It will contain most of the main elements at least, like the main components
of the architecture and the (user profiling based) prioritiser. Functionali-
ties with too heavy requirements will be left out or are simulated, to assure
overall practicability. The entire prototype should be extensible, and the
components can be reusable by themselves as well.

17

Chapter 5

Scope

From a practical point of view, it is not realistic to examine all of the issues
that could be involved. A limitation of the scope of this project is necessary,
and is made in this chapter. Not all choices can be made here however, since
they might be unavoidably met during the project after all when excluded.
Therefore, not all issues will be considered, but those that are likely to be
usefully included in this limitation will be. Sending messages is left out of
scope, since the emphasis is on receiving messages, as stated under “goals”
before.

First, the issues will be briefly described in section 5.1. All issues that are
explicitly included in the research are stated next. Last follow all issues that
are explicitly not dealt with, in section 5.3. All issues which are mentioned,
but not covered in the inclusion or exclusion, are implicit. These implicit
issues are briefly discussed when encountered, or more thoroughly examined
when needed for issues within the scope. Note that issues that are excluded
still might be addressed when appropriate.

5.1 Issues

This section describes the elements that could be an issue in the system.
The list is not exhaustive, but covers many of the main issues involved. It
is intended to serve as a basis to determine the scope of the project. Below
follows a brief list of issues that arise, afterwards some further explanation:

• Types of input.

• Meta-data.

• Interconnectivity.

19

CHAPTER 5. SCOPE 5.1. ISSUES

• Retrieval.

• Media transformation.

• Centralised versus distributed.

• Prioritising.

• Situation tracking.

• Preference learning.

• Platforms and devices.

• User interface.

• Agents.

• Extensibility.

• Security.

• Billing.

• Relations with other projects / systems.

• Performance and scalability.

• Testing and verification.

Types of input Media are either synchronous or asynchronous, meaning
direct (like telephone) respectively buffered (messages, like e-mail). Which
of these types and their instances can be handled.

Meta-data Meta-data are descriptive data of a document or item. It
should be closely related to the semantics and the value of a message with re-
gard to the recipient. They do not represent the content itself, but give some
characteristics. Examples are the sender’s address, the size, a time-stamp,
etc. . . Other examples include less obvious items, such as keywords, context
or urgency.

This issue includes the way these meta-data should be gained and the
relevance to the system. Some are easily acquirable (the sender has an e-
mail-address or telephone number1). Others require some processing (e.g.
voice stress analysis to determine the urgency of a voice-mail).

1available through CLID; Calling Line IDentification.

20

CHAPTER 5. SCOPE 5.1. ISSUES

Interconnectivity Many devices can be interconnected, but in practise
this causes some problems however. Not each device can be connected to any
device, so there can be limitations to a certain group. Interaction between
groups can be possible, but might be bounded by commercial policies.

Retrieval Some messages can automatically be forwarded to other sys-
tems, but some have to be retrieved. An example of active retrieval is the
fetching of ones voice-mail by interaction. Passive retrieval happens for in-
stance when e-mail is automatically forwarded to other addresses.

Media transformation Devices and media often have a close relation.
Certain devices can therefore not display all media, and a transformation
is thus required. Conversion can also have benefits for further automated
processing. On the other hand can transformation mean a loss of informa-
tiveness (e.g. loss of non-verbal communication with speech-recognition of
speech to text). When using automated transformation one should closely
watch to maintain the same semantics of the message.

Centralised versus distributed A centralised system has a fixed point
of connection and access. The system depends entirely on this central com-
ponent. A distributed system might provide better availability, but requires
synchronisation [64]. This can be a functional (from the user’s experience) re-
quirement, or a technical issue (on the level of implementation). Specifically
the former could have implications on the latter.

Prioritising Messages are to be prioritised depending on the user’s current
situation, considering his or her preferences. For each message an appropri-
ated action should be assigned [42]. These could include:

• Forward immediately to the user’s current location.

• Inform the user about the arrival of the message.

• Store the message.

• Delay the message till a change in situation occurs.

• Summarise a collection of new messages.

21

CHAPTER 5. SCOPE 5.1. ISSUES

Situation tracking In order to support the user with notification of mes-
sages that are important to the user’s situation, this situation must be known.
This situation could be provided for by the user itself, or automatically de-
termined, e.g. by determining the location with GPS [40] and deriving the
situation.

Preference learning Ideally, the prioritiser should be obtained by an au-
tomated adaptive profile of the user. In this way, the distributor should adapt
to changing and unknown preferences of the user. An appropriate algorithm
is required in order to automate a learning process. Greatest impact will
have the data in this case, since messages can have great variety in content.

Platforms and devices What platforms and devices could be utilised.
This indicates telephone, desktop, PDA, laptop, etc. . . Since certain systems
have only limit resources, this results in boundaries for the system. Bound-
aries include limitation on available computational capacity and available
media types.

User interface What kind of user interface(s) should be used. These are
tied to the used platforms and devices. Different media might require differ-
ent functionalities of the interface as well. The interface should incorporate
all actions, but has to maintain its user-friendliness.

Agents The first question is whether agent-technology is applicable at all.
Secondly, is a single agent the best solution, or is a collective of agents a
better solution. One heavy-weight agent could have too big a footprint for
proper mobility or light-weighted devices. Collaborative agents might solve
this problem. Another choice is the usage of mobility. Mobile agents can
offer great benefits, but can also form a unnecessary nicety. Advantages and
disadvantages have to be weighted.

Extensibility Can the system be extensible, adapt for future possibilities
and changing environments. The design should reasonable be adaptive to new
emerging technologies and possibilities. Transformation between different
media might be cumbersome and lacking nowadays, future research could
enable several new opportunities. Advances in technology could offer several
new ways of messaging and communication. A robust design can incorporate
such advances in a fast and simple way. It would be preferable if these can be
added dynamically, without interruption or modifications to existing parts

22

CHAPTER 5. SCOPE 5.2. INCLUDED

of the system. This will certainly be a requirement for a system with many
users.

Security What are the consequences for security. When one receives all
or nearly all communication through one channel, this forms an increased
vulnerability. Legal issues may require some guarantees for the protection of
privacy [5].

Billing What issues are involved on the commercial side, such as billing
related to network- and computer-usage.

Relations with other projects / systems What other systems might
profit from or interfere with this project. Other systems could be incorpo-
rated, or interoperability can be maintained.

Performance and scalability This includes computational as well as
functional performance. The footprint of the system should be considered re-
garding mobility and resource-limited devices. Deploying a system for many
users requires scalability [54, 56].

Testing and verification How to test the system on a functional level.
This can involve some need for training and training data as well when the
system has learning capabilities. A fully implemented and operational system
can verify a proper design, but requires a lot of efforts beforehand.

5.2 Included

The items below are those that are explicitly part of the project. On com-
pletion, these items have to be evaluated or contained in the design.

Architecture and everything that is somehow related. The architecture
is one of the most important elements of this project. It forms the basis in
which to operate. This is a somewhat broad issue, since it involves many
other sub problems, among which:

• Single versus multi-agent.

• Static versus mobile agent.

• Extensibility.

23

CHAPTER 5. SCOPE 5.2. INCLUDED

• Interconnectivity.

• Multiple source / provider.

• Media transformation.

Prioritising This is a major element given the problem of communica-
tion overload. Only those messages that are timely (high priority) should
be presented to the user immediately. Therefore this component has to be
embedded in the architecture. Prioritising should form the intelligent core of
the system, allowing each user to have his or her own adaptive preferences.
Therefore, the prioritiser is very likely to be realised with user profiling.

User profiling Given the requirement that prioritising has to be done per
user, user profiling can certainly have a large impact, and should be investi-
gated. At least the problem should be clearly defined, and an algorithm has
to be found which can deal with heterogeneous data when possible. A way
to initialise and improve this profile based on data is needed to be able to
adapt to changing user’s interest.

Agents The system has — in principle — to be agent-based. It is not
a hype-founded requirement, but an item of research. Their benefits and
drawbacks have to be shown, which can be best evaluated through their
usage in the first place. In the architecture a choice for single, multi- or
mobile agents has to be made.

Meta-data The usage of meta-data is considered important, since it is un-
likely to deal generically with full message content. Handling full content
is likely to disable the possibility for a generic prioritiser. Extracting meta-
data in advance allows the prioritiser to handle a more generic type of data.
Dealing with meta-data is therefore the preferred basis for adaptive prioritis-
ing. Extraction of these descriptive data should be implemented only when
available, since they should not be required per se. Creating extractions
themselves is not a goal of the project.

Platform device implementation Some media and devices shall be im-
plemented to prove the extensibility of the design. Note that specific soft-
ware for devices is avoided when possible, but feasible implementations shall
be made. Since Java is the preferred language for implementation, devices
supporting the Java Virtual Machine are likely candidates. Connected and
controllable equipment can be utilise as well when available.

24

CHAPTER 5. SCOPE 5.3. EXCLUDED

5.3 Excluded

All items below are considered out of scope. They are either to strong related
to the level of implementation, off topic or too time-consuming given their
influence.

User interface Designing an user interface for an application of this size,
could be a project on itself. The (necessary) interaction with the user is
important however, given the fact this project is aimed at supporting the
user.

User location tracking/situation determination Fully automated de-
termination of an user’s situation is a hard task, likely to require specific
hardware sensors [60]. Since this project focuses on an user application, such
hardware is avoided where possible. The user’s situation will be used in the
prioritiser, so has to be provided by the user explicitly.

Synchronous communication Direct communications (i.e. telephone) are
left out of scope. The reason to do so is that they might impose real-time re-
straints. This unnecessary complicates the system, given the fact that many
heavy processing (e.g. speech recognition) can be involved.

Billing Billing is a complex issue, since it involves many parties and sys-
tems. Since a commercial system is not a target, commercial aspects will not
be addressed.

Security No special arrangements for security will be made. Where possi-
ble, underlying security mechanisms can be utilised.

Performance Although resource limited mobile devices have to be consid-
ered, no special tuning or performance measurements will be made. Optimi-
sation of code is left for commercial deployment.

Scalability Since a state of full operational deployment is currently not
assumed, scalability for deployment with many users will not be tested.

25

Part II

Backgrounds

A survey of related literature has been conducted. Three areas are covered
in three chapters. The first will describe unified messaging. Chapter 7 will
describe user profiling. Last, chapter 8 describes agent technology.

27

Chapter 6

Unified Messaging

The concept of unified messaging is relative simple. As stated on the website
of UnifiedMessaging.com [79]:

Access voice, fax, and e-mail from anywhere, using any device,
at any time.

Unified messaging is a common denominator for the combination of message
based communications. These are often seen as fax, voice- and e-mail, but in
this document any kind of message will be used. Thus news, Usenet, stock
quotes, SMS, instant messaging and many others are included as well. A
description of research, practise and developments in related topics will be
given in this chapter.

6.1 Research

Since unified messaging is mainly a practical application, not many research
efforts directly target it. Some projects exist however, and quite a few related
areas that do have lots of active academical interest exist. A few related
research projects and areas of interest will briefly be addressed in this section.

6.1.1 Unified messaging

Although research in unified messaging is scarce, a few (related) publications
are available. Five of these will be briefly discussed:

Universal inbox As part of the ICEBERG-project at Berkeley University,
the universal inbox was developed [56]. This project mainly had three goals;
separate functionalities, allow any device on any network and give the callee

29

UnifiedMessaging.com

CHAPTER 6. UNIFIED MESSAGING 6.1. RESEARCH

control. Included to enable this are any-to-any data transformations, user
preferences and name mapping for any device. The data transformation are
created by combining smaller conversions using what is called automatic path
creation. User preferences are created through a simple rule-based system,
where the rules are assembled with a graphical user interface. The naming
service is hierarchical and closely related to DNS [49].

Mobile People Architecture Another project aimed to develop personal
reachability. At Stanford University the Mobile People Architecture [58] was
developed, to make people reachable, rather than devices. Important alter-
nate target was to maintain the user’s privacy, by not revealing its location.
The proposed solution is an extra layer with an addressing scheme on top
of existing network models. Each user gets its own address, which can be
translated by the system to device-addresses. A personal proxy tracks the
user’s current device, and connects the incoming communication to the ac-
tual device. Conversions of media and a rule-based system are included in
this design as well.

Active Messenger Marti [41] has studied the use of multiple devices to
maintain reachability. Basis of the design is measuring the user’s reaction.
The device used by the user’s last interaction is registered. If new e-mail ar-
rives for the user, the user is notified on the most recent used device. A per-
sonal schedule can be incorporated, for more specific treatment of messages.
Included in this schedule can be alternative devices, that are automatically
used if the user does not respond within a certain interval.

Universal Messaging Agent Lauff et al. [36] describe another system.
Their architecture includes device specific protocols, to formulate requests for
information. This is mainly used by the user to actively request information.
Users can include in their request how they want to receive this information
(e-mail, phone, fax, . . .).

UniMail Last, Yeo et al. [87] describe a system for unified messaging. In
this design, each device has its own handling module. Aside from text-to-
speech, there are no conversions described in the design. They provide a
quantitative comparison with some commercial alternatives as well.

30

CHAPTER 6. UNIFIED MESSAGING 6.1. RESEARCH

6.1.2 Media processing

Other areas of research that are related to unified messaging are those used
for media-processing. Some of the related are:

• Speech recognition.

• Speech synthesis.

• Optical character recognition (OCR).

• Human expression recognition.

Below they will be described, including the reason why they are of interest.

Speech recognition Recording speech and digitising it allows computers
to process it. Although speech is a very natural way of communication for
humans, it is a complex task for computers. Most speech recognition aims to
recognise commands or the actual text. Several problems still exist, which
are actively researched [28].

• Speaker independent. Creating speech recognition that can be used for
any user is a hard task. Different people have different pronunciations,
complicating recognition.

• Language and dialect. Many languages and even more variants thereof,
dialects, exist. Each has its own characteristics, requiring adaptation
or even entirely different methods.

• Continuous recognition. Recognition of normal speech includes an enor-
mous possible dictionary. This is also known as free speech, recognition
not bound to a certain vocabulary or scenario. If this is to be used in-
teractively with the speaker, real-time problems become involved as
well.

• Noise and disturbances. Environmental sounds, static in recordings
and other people speaking in the background can further complicate
recognition.

Speech recognition is relevant for unified messaging, because it can allow
users to read a spoken message (e.g. voice-mail). Partial speech recognition
can also be used, for example to determine important keywords.

31

CHAPTER 6. UNIFIED MESSAGING 6.1. RESEARCH

Speech synthesis Also known as text-to-speech (TTS), speech synthesis
is commonly the reverse of speech recognition [28]. For various languages,
computers can rather believable pronounce texts. Several different speakers
(“voices”) are available as well for most of these languages [3]. Speech syn-
thesis is important for unified messaging, because it can allow users to listen
to typed (or written) messages.

Optical character recognition OCR is the process used the distill text
out of images. It is commonly used after a document has been scanned.
Another application is often found in a Personal Digital Assistant (PDA,
also known as handheld). PDA’s equipped with a touch sensitive display or
special pen can be written on. The commands or text entered this way are
recognised. OCR can allow images, such as from a fax, to be transformed to
text, usable for non-graphical devices, such as SMS.

Human expression recognition Another technique still subjected to re-
search is recognition of human expressions. This is applied to video, mainly
for facial expression recognition [53]. It can also be applied to audio, based
on differences in speech. Although not directly related to unified messaging,
it will become clear later how this can be useful.

6.1.3 Standards

There is no standard way to achieve unified messaging. Neither are there any
standards how a unified message is to be represented. There are some stan-
dards that are often used for unified messaging in practise. Several standards
that are often used1 in relation with unified messaging will be described. Note
that their is work in progress, but at the time of writing many of these efforts
are not yet completed or have hardly any implementation [31].

SMTP Although e-mail itself is not a standard, there is very common
standard to facilitate the concept of e-mail. This is the Simple Mail Transfer
Protocol (SMTP) [55]. It is a client-server system based on a separation
of the application for the user, and a network of servers for delivery and
routing of messages (often called user-agent and mail-transport-agent resp.).
Exchanged messages are normally of the format defined by [11].

1Aside from protocol specific standards, such as those used for the telephone-networks,
fax and SMS.

32

CHAPTER 6. UNIFIED MESSAGING 6.2. PRACTISE

MIME The Multipurpose Internet Messaging Extension (MIME) [18, 19]
is an extension to the old type messages [11]. The main limitation of these
initial type of messages was their strong orientation towards plain text only.
One of the main goals of the extensions is therefore to allow other type
of messages (e.g. image, audio) to be send as well. Several media can be
combined as well, the resulting parts of a message are commonly named
attachments.

Specialisations Further specialised variants exist of the above, for various
means. The Internet Fax is a file format for the exchange of faxes through
e-mail. It is mostly a variant of the TIFF format [43]. VPIM [80] is a restric-
tion of MIME, specialised for the exchange of voice-mail messages between
different voice-mail systems. Particular the Voice Profile for Internet Mail is
still work in progress and quite experimental however.

6.1.4 Related

Some other areas than those mentioned earlier in this section have a relation
with unified messaging. How, will be explained below.

Ubiquitous computing Research for ubiquitous computing aims to pro-
vide continuous access to computing facilities. This is mainly achieved by
creating networks of small points of access, in many places. Another approach
is that of wearable computing, where computer elements are interwoven with
clothes or are wearable as artifact [60].

Natural language processing Another one — perhaps the holy grail of
artificial intelligence — is natural language processing (NLP). This is the area
of interest to create computer programs that can process, or even understand,
human language. It is highly complicated for computers, since humans often
use a lot of implicit context. Natural language is very ambiguous as another
complication.

6.2 Practise

Most implementations of unified messaging can be found in practise nowa-
days. In the era of dot-coms, several companies started to offer free unified
messaging. After the collapse of everything freely available on the Internet,
the dot-bomb, most of these services have to be paid for (e.g. [86]). Other ser-
vices are specific to a certain provider, and are combined with a subscription.

33

CHAPTER 6. UNIFIED MESSAGING 6.3. DEVELOPMENTS

Another trend that has been identified is the offering of unified messaging as
a service to companies, rather than individual customers [32].

Most of the companies that provide unified messaging, only limit these
to specific media (e.g. [27, 86]). Commonly used are at least the first three
items, the latter are more rare.

• Fax.

• Voice-mail.

• E-mail.

• SMS.

• Instant messaging.

• Paging.

One can access these mostly by:

• Receiving them as e-mail.

• Receiving them as fax.

• Using a website.

Note however, that not all combinations of the above are supported. Many
providers only offer restricted possibilities, not full interconnectivity (e.g.
[46]).

Other companies provide only elements of the required infrastructure.
Companies like Cisco, Siemens, Alcatel, Ericsson, Lucent and many other
large and small companies are involved [79]. They often provide infrastruc-
ture ranging from network equipment to establish the required connections
to complete applications.

6.3 Developments

Aside from developments in academic research, several developments take
place in practical areas as well. Some important developments, as they are
related to this research, shall be listed below.

34

CHAPTER 6. UNIFIED MESSAGING 6.3. DEVELOPMENTS

Networking technologies Two important developments can be found in
networking technology. Both mobile and fixed access to Internet become
faster, and can be continuously connected without additional costs. Another
item is wireless networks, were speeds start to approximate those of fixed
in-house networks.

In the field of mobile networks, both i-mode and GPRS are available
nowadays. I-mode is an improvement to the mobile phone, allowing multi-
media content from specially adapted websites. General Packet Radio Service
(GPRS) is an improvement of GSM, improving to “always-on” networking
at circa 5 times the data-rate of the original GSM-standard. Both are (be-
coming) available in production level provider networks. Operators of mobile
networks are implementing UMTS-networks, the third generation (3G) mo-
bile communication.

For continuous broadband Internet access, the consumer-market has shown
progress as well. Cable operators provide 24-hours a day access over the
same cable used for television. Telecom-operators offer Digital Subscriber
Lines (DSL)2, also for continuous access. Both can not only operate around
the clock, but also at speeds significantly faster than traditional dial-in con-
nections.

A last development is found in the wireless networking market. New
standards, like the IEEE 802.11 specification, allow wireless networking be-
tween computers. Speeds approaching those of fixed in-house networks are
available without the use of any cable. These allow full multi-media access
around your house or company. Wireless networks should not be mistaken
for mobile networks. A mobile network is provided by a public operator,
normally in a large area. Wireless networks are used in private networks,
using a base-station and normally limited to an operational area of a few
hundred meters.

Communication devices Not only network connections have shown im-
provements lately. The devices — particular the mobile and wireless ones —
people use to communicate have shown a lot of progress as well.

First of all, mobile phones are available on the market nowadays with an
integrated digital camera (e.g. Nokia 7650 [51]). This allows people to send
images directly to be published on the Internet or to other users.

Another development can be found for the Personal Digital Assistant
(PDA). These handheld devices now come with mobile data access integrated.
GPRS capabilities (e.g. Siemens SX45 [63]) are integrated, allowing one to

2Asymmetric Digital Subscribe Line (ADSL) is currently the most used. Improved
versions like Symmetric DSL (SDSL) are still under development.

35

CHAPTER 6. UNIFIED MESSAGING 6.3. DEVELOPMENTS

read e-mail and browse the web.
A last item described here, is the availability of phones with an integrated

Java Virtual Machine. These devices are equipped with Java, so new func-
tionalities can be added. Mobile phones and other small mobile devices can
thus be extended with nearly any (small) application.

36

Chapter 7

User Profiling

User profiling is the attempt to create a profile of an user. This profile can be
used to select information that can be of interest, or withhold information an
user wishes not to receive. These fields are known as respectively information
retrieval and information filtering (IR and IF). In this section a motivation
for and an explanation of user profiling is given. Some related areas will be
discussed as well.

7.1 Motivation

Most people who have searched for information on the Internet have a shared
experience. When using one of the search-engines available on the web, you
can type a few keywords and all kinds of related websites and -pages are
listed. With the increasing popularity of Internet, the number of available
pages grew as well, resulting nowadays in enormous amounts of hits for any
query with a few common keywords. This problem is called an information
overload. As earlier stated, receiving lots of e-mail and other messages can
lead to a communication overload [26].

Nowadays there are many research efforts in the field of Information Re-
trieval and Information Filtering (IR & IF) [23] to attack the information
overload. The first is used to find relevant information in a vast amount
of information, such as a collection of documents or a database. The lat-
ter is used to reduce a stream of information (like a news service or e-mail)
to relevant items, or classify these into related groups. Another important
difference is that with retrieval an user applies a specific query to a relative
fixed database, while filtering is based on a long-term profile of the user and
used on more dynamic information. More commonalities and differences are
described by Hanani et al. [23].

37

CHAPTER 7. USER PROFILING 7.2. INFORMATION FILTERING

Particular interest in this study goes to information filtering. In order
to prevent an user from being overwhelmed with messages, messages either
have to be removed or classified whether they are important. Messages that
are not important can either be stored without disturbing the user or just
deleted1. Since ones (personal) communication is a long-term issue, creating
an user profile does not seem an obstacle. The fact that e-mail is often used
as example confirms this assumption.

7.2 Information filtering

Information filtering is often applied to classify e-mail. Another well-known
application is to filter web-pages, after a simple search resulted in a large
amount of results. This section will emphasise the former, for obvious rea-
sons.

7.2.1 Global technique

The generic idea behind information filtering and user profiling is a relative
simple one. All it takes is some documents already classified by the user
to compare new data against. As described by Hanani et al. [23] in their
overview, a generic system to accomplish information filtering contains a few
components:

• Data analyser.

• User model.

• Filter.

• Learning component.

The data analyser creates the items to be filtered, and ensures it is in a
normalised, processable format. A user model is the actual profile of the user,
representing the user’s interests. The filter compares a new item against the
model and classifies the information. At last, the learning component is used
to improve the user’s profile, based on feedback provided by the user. This
has to deal with changing interests of users over time as well.

How all these components are actually filled in depends on the appli-
cation. Some data analysers are created for a particular domain, and can
thus include some preliminary knowledge. Other systems have a more open

1Which is essentially the same as storing them separately, and never look back to them.

38

CHAPTER 7. USER PROFILING 7.2. INFORMATION FILTERING

area of application, and need more generic data analysis. The same applies
for the learning component. Aside from various inputs (the data), it can
have different required results and expressiveness of feedback. The latter can
for instance be a simple wrong or right, or can include the exactly defined
preferred result.

7.2.2 E-mail filtering

Communication overload is effectively a generalisation of a well-known prob-
lem, e-mail overload [82]. An application of information filtering that has
received a lot of attention over the last few years, is e-mail filtering. People
receive so much mail, directly from other people, mailing-lists, unsolicited
(also known as spam or junk-mail) and viruses as well. This poses two main
problems:

• Important messages get lost in the flood of less important ones, quickly
reading ones e-mail becomes impossible [70].

• Organising ones mail for later usage (archiving) takes a lot of time [62].

Both of these problems have been addressed by several people. Not sur-
prisingly, these problems are often handled in a very similar, if not equal,
way. The main task to fulfil is after all classifying messages. An important
difference is commonly the result; message are important or unimportant, or
message belong to a certain subject (and the related mail-folder). A few of
the regular manners are discussed below, although it is emphasised nearly
all of these only consider (plain) text e-mail. Very common words in normal
natural language are frequently removed, to avoid classifying non-informative
words (common words like the, an, is, . . .) that are mainly used for linguistic
purposes.

Static rules One of the first and, at least in production-level programs,
most wide-spread solutions is not all that fancy. It simply consists of a set of
rules, that determine the faith of the message. The user just creates a rule
that needs to match certain criteria (e.g. from mailinglist@company.com),
and a target (e.g. delete, save in a folder named work or forward to another
e-mail address). A classical example is procmail, where an user has precise
control by writing rules according a specified syntax [2]. E-mail applications
with rule creation tools, integrated in the graphical user interface, exist as
well.

39

CHAPTER 7. USER PROFILING 7.3. MACHINE LEARNING

TF-IDF Another, in literature often encountered, solution is a self-learning
one [4, 62]. Term-Frequency Inverse-Document-Frequency (TF-IDF) and its
many variations are based on the usage of keywords. A new document is com-
pared to existing categories of documents, classified by the user (commonly
existing e-mail folders). It can be summarised as follows:

1. Select the most frequent used words in the document to be classified.

2. For each of these words, the relative frequency is determined.

3. Each target category has its own characteristic series of keywords and
corresponding frequencies.

4. Now select the category with the keywords that match best, this is the
resulting category.

Bayesian approach Other learning mail-classifiers are based on a statis-
tical principle founded by Bayes [38, 57, 70]. This is based on the probability
that a word appears in a text. Existing categories have such a probability
for frequently used words. Now these probabilities are combined using Bayes
law, under the assumption the words are used independent of each other.

Others Other algorithms are used as well. Rule learning systems have been
developed, based on rule-learning algorithms [10]. Another approach was
used to automatically create rules as well. CLUES attempts to create rules
from ones calender, reply-headers in e-mail, area codes of telephone-numbers
and domain-names [42]. The well-known nearest-neighbour algorithm has
also been applied [48].

A last project worth mentioning is the application of Takkinen and Shah-
mehri [70]. Although mentioned before as a Bayesian system, this is just
one of the possible algorithms. The application actually has three modes
(busy, cool and curious), all using a different algorithm. Depending on the
user’s state, another algorithm is applied. The actual filtering mechanism
thus depends on the user’s state of mind.

7.3 Machine learning

Ideally, an user profiling system is self-learning. Therefore, some basic algo-
rithms used for machine learning will be briefly described. This should give
an impression of their working and properties. Note that this summary is
not exhaustive, but an introduction to algorithms that can be useful for the

40

CHAPTER 7. USER PROFILING 7.3. MACHINE LEARNING

problem discussed in 13.1. Many other algorithms exist, but they are either
too advanced for this section, or are considered inapplicable for the problem.

The essence of a learning problem normally is the classification of an ob-
ject based on its attributes. Previous instances or user classified objects form
a set of known samples. The learning algorithm determines the classification
of an object based on a direct or indirect comparison with these known sam-
ples. A strong relation of machine learning exists with statistics and pattern
recognition.

7.3.1 Nearest neighbour

A very well-known algorithm is the nearest neighbour method. In a standard
nearest neighbour method, some way to measure a distance between objects
is required. Now, the distance between the object under evaluation and
all available examples is calculated. In this setting, the k nearest objects
are chosen. The classifications of those samples determine the applicable
classification for the current object. In case these classifications are not
unanimous, the most dominant classification is used.

Many other variations of this algorithm exist or can be made and are used
for various purposes. A further description can be found in [47, chapter 8].

7.3.2 Decision tree

A decision tree is a classification based on a hierarchy of the attributes of the
objects. Each node in the tree can have branches, for all objects that have
a certain value for the attribute. The leaves contain the classification of the
objects that have all attributes along the established path.

Decision trees are often used to model human knowledge. One of the
advances is that decision are established hierarchical. This allows a strict
distinct behaviour between different values of a specific field. Another ad-
vantage is that the most distinctive fields can be evaluated first. It also allows
for easy explanation of a decision afterwards. The downside of these algo-
rithms is the possibility of enormous trees that are hardly readable anymore.

Algorithms like ID3 and C4.5 establish this kind of learning [47, chapter
3]. These algorithms normally work based on statistic grounds. They try to
establish a decision tree top-down. Therefore, they determine the attribute
with the highest information gain, that is the one that creates the best sep-
aration within the set. This attribute forms the top node of the tree. For all
branches, this is repeated on the resulting subset. Now iterate over the set
of samples until the tree covers the entire set.

41

CHAPTER 7. USER PROFILING 7.3. MACHINE LEARNING

7.3.3 Rule-based generated by clustering

A rule-based system is based on a sequence of rules. A rule consists of
one or more specific attribute-value combinations. Classification happens by
trying rules, the first one to match determines the result. Although this is
closely related to decision trees, there are a few differences. Most important
is increased expressiveness, and deduction of new rules [47].

RIPPER is an example of a rule-learning algorithm [10]. More and vari-
ous algorithms exist, that operate based on various approaches. A broader
description can be found in for instance [47, chapter 10].

7.3.4 Bayesian learning

A last approach discussed here is the one based on mathematical proba-
bilities. In the simplest variant, it creates a probability for each attribute.
When a new object has to be classified, all its attributes are examined. The
result consists of a probability for each possible classification based solely
on that attribute. These probabilities are combined over all attributes ac-
cording statistical principles. The result is a probability for each possible
classification.

Normally the most probable result is used as classification. Variants exist
that result in multiple classifications, each with a probability. Another type
are the Bayesian belief networks. These networks include a representation
of prior knowledge in the calculation, instead of assuming that all attributes
are independent of each other. Further descriptions of all of the above can
be found in [47, chapter 6] and various others.

42

Chapter 8

Agent Technology

One of the first questions many people ask, will be what an agent is. In this
section a brief introduction in some aspects of agents will be given. It mainly
presents an overview of literature and practise. Included are some examples
of agents as they are applied to, or suggested for, (tele-)communication.

8.1 Perspective

The question “What is an agent?” does not have a simple answer. There is
no generally accepted definition, and among different groups, different ideas
exist. As Nwana [52] said, agreeing to a definition for agent is as impossible
as reaching one for artificial intelligence. Bradshaw [6] points out that almost
all views of agents at least imply the use of the term agent as a metaphor.
This is the personification of agents.

Several people have proposed different classifications as well, for the dif-
ferent types of agents. Some of these will be discussed below, and used as a
basis for the perspective used throughout this document. Make clear how-
ever, that an agent as discussed here is a software agent. Explicitly not
mentioned are agents as they are used in chemistry, biology, human society
or any other discipline.

8.1.1 Properties

Several researchers have proposed to delimit what can be called agents, and
how different types of agents can be distinguished. A few distinctive features
are commonly used in these classifications. The classifications themselves are
discussed in 8.1.2. Among the characteristics of agents are:

43

CHAPTER 8. AGENTS 8.1. PERSPECTIVE

Intelligence Agents can have a certain degree of intelligence. Most com-
monly this is directly related to techniques from artificial intelligence (AI).
Included are elements like expert systems and machine learning [59].

Autonomy Another important characteristic is the autonomy of an agent.
Agents have autonomy if they can act without external guidance of an user
or operator. They do have to act on their experience and perceptions [59].
Another aspect of autonomy is their ability for self-regulation. Where an
object is commanded to perform an action, an agent is requested an may
refuse, so it has control over its own state [83].

Reactive An agent can react to its environment and other agents. An
agent therefore needs to perceive its environment. This can be done through
physical sensors or a software equivalent if the agent has no direct physical
representation. Reactive behaviour is often combined with the sense-reason-
act loop [73].

Multiplicity An agent does not have to be alone, systems with multiple
agents exist as well. These agents then form the entire application.

Cooperative and social When multiple agents are used, they can op-
erate in a collaborative manner. In this way all agents can work together
to reach a common goal [52]. The opposite would be for instance a game,
where agents work against each other. Closely related, but not necessarily
compulsory, to the above, is the ability to communicate with other agents.
Aside from manipulating and perceiving its environment, agents can be able
to communicate with each other [84].

Mobility A software agent is not necessarily tied to a single computer
system. When an agent is capable of transportation to another system —
this transport includes code, data as well as its current state — the agent is
called mobile [35].

8.1.2 Classification

Different classification schemes of agents exist. Most are based on one or
more of the previous declared properties. A few of the most important are
given below.

44

CHAPTER 8. AGENTS 8.1. PERSPECTIVE

Multi-Agent Systems Systems with multiple agents that cooperate and
communicate, form multi-agent systems (MAS). In these systems, multiple
agents exist, all with their own role in the system [85]. Based on these
role(s), an agent has permissions and responsibilities. These define what its
behaviour needs to be.

Mobile Agent Technology Another important field is that of mobile
agent technology (MAT). Mobile agents are agents that are capable of mi-
grating themselves [35]. They can move including their data, program and
current state. This allows mobile agents to be independent of the hosting
system, but can be anywhere “in the network”. There are several reasons
to use mobile agents [9, 35], some of which will be interesting during the
research at hand:

• They reduce network load. Mobile agents can interact at the remote
location, they only travel once with the complete results.

• They are robust. They can recover from errors to find alternatives
when and where they are needed.

• They encapsulate protocols.

• They are heterogeneous. They can be run throughout the network,
independent of the hosting platform.

• They execute autonomously and asynchronously.

• They can operate when their initial host is off-line.

• They can introduce and use new code on a system1.

Although there is an alternative solution for almost each benefit, it is the
combination of benefits that is unique for mobile agents [9]. Mobile agents
can have various other agent properties as well.

Multi-dimensional typologies Other classifications go further than one
specific property. Bradshaw [6] describes two typologies both based on three
properties of the previous list. The first is by Gilbert et al. who see agents
characterised in three dimensions:

• Mobility, from static to mobile object.

1It is said this is done by computer viruses as well, these can be seen as malicious
mobile agents, and systems can be protected against these.

45

CHAPTER 8. AGENTS 8.1. PERSPECTIVE

• Intelligence, from preferences to learning.

• Interactivity towards its environment, from asynchrony (non-interactive)
to service interactivity.

The second is given by Nwana [52] and uses different characteristics. The
(main) properties used here are:

• Cooperation.

• Learning.

• Autonomous.

Various types of agents combine several of these characteristics.

8.1.3 Agency

In this document a description of agent similar to those used by the multi-
dimensional classifications will be used. Rather than using a single definition,
the term agency is applied (partially after [6, 84]). Software with a combi-
nation of the listed properties is said to be agent-based. The agent or agents
herein have a certain “degree of agency”. More or stronger presence of prop-
erties increase this degree2.

8.1.4 Practise

A last note in this section will be with regard to agents in practise. Not
only various applications and systems have been created as based on agents.
Several academic as well as commercial implementations for agent platforms
are available. These can be used for the development of agent based appli-
cations. They provide developers with some or most of the basic elements
needed to build agent-based systems.

Most of the existing platforms emphasise on one or more specific agent
characteristics. The Agent Development Kit (ADK) offered by Tryllian is
one of the commercial platforms. The Tryllian ADK emphasises on mobile
agents, but supports communication for cooperative multi-agents as well. A
further description can be found in appendix A or on http://www.tryllian.

com/.

2“All agents are equal, but some agents are more equal than others.”

46

http://www.tryllian.com/
http://www.tryllian.com/

CHAPTER 8. AGENTS 8.2. AGENT COMMUNICATION

8.2 Agent communication

Agents in a multi-agent system that have social capabilities can commu-
nicate with each other. There are several ways agents can communicate.
Communication principles consist of two major components: language and
architecture.

8.2.1 Languages

The language is a definition of the way agents communicate (what they
“say”). Two languages will be discussed:

• KQML.

• FIPA ACL.

KQML From the ARPA Knowledge Sharing Effort (KSE) came forth the
Knowledge Query and Manipulation Language (KQML). To enable agents
to exchange their knowledge and intends, KQML was designed [14]. The
communication of agents is strongly based on the communication of humans.
Derived from human conversation are performatives, the actions an agent can
attempt in communicating. KQML messages are carriers of the content, they
do not represent any knowledge themselves. Other definitions are needed to
define the contents of the message.

KQML has evolved from a language to exchange information to an agent
communication language. It was developed from a theoretical approach in
which an agent was just an entity, not a technological concept as used nowa-
days. The definition of KQML lacks a clearly defined semantics, since it its
was initially developed as syntactic sugar [34].

FIPA ACL The Foundation for Physical and Intelligent Agents (FIPA)
has developed the FIPA Agent Communication Language (ACL) [16]. FIPA
started from the agent technology point of view, rather than that of knowl-
edge. One of the main goals is to create standards for agent technology.
These standards are much broader than the communication alone, ACL is
one of them. FIPA ACL uses some of the basic ideas of KQML, but has
better defined semantics to overcome differences in interpretation.

The syntax of KQML and FIPA ACL are almost identical. Their dif-
ferences can mainly be found in the semantics. An extensive comparison of
both can be found in [34]. FIPA emphasises a more pragmatic ACL, in com-
bination with various other standards. These include for instance standards
for agent management as well.

47

CHAPTER 8. AGENTS 8.2. AGENT COMMUNICATION

(request

:sender MyAgent

:receiver ServiceAgent

:content

(process, headers, message)

:language simple-request

:reply-with processed

)

Figure 8.1: Sample FIPA message (fictive)

8.2.2 Architectures

An architecture defines the method agents exchanges their messages (the
means they use). Two mainstream architectures will be described here:

• Blackboard.

• Messaging.

Blackboard In a blackboard system, agents communicate through a shared
medium where they can deposit there message, a so called blackboard [25].
Each agent can place a message on this blackboard, and read the messages
placed by others3. Blackboard systems are particular useful if agents need
to maintain a shared state. Every agent can read or update this state when
it needs to. There are no restrictions on the shared information and central
control is required [29].

Messaging Another approach for agent communication is the use of mes-
saging [25]. In these architectures agents send messages to each other in an
asynchronous fashion. A message has to be addressed by the sending agents
to the recipient agent. If the agent expects an answer, it has to include its
own address as well. An infrastructure to support messaging is needed of
course.

Messaging is asynchronous, so an agent is not blocked by communica-
tion. After a message is send, it can continue with other jobs it has to do.
Receiving agents are reactive to the incoming message. Agents can set up
a conversation, if they intend to reply to each other. Variations exist where
groups of agents communicate, or agent can broadcast a message. The mes-
sages are most commonly based on either FIPA or KQML.

3Unless some form of specific access control has been added.

48

CHAPTER 8. AGENTS 8.3. IN TELECOMMUNICATION

8.3 Agents in (tele)communication

Agents have been applied, or suggested, to problems in telecommunication
[24]. Various types of agents are included in these applications. Many (mo-
bile) agent solutions are applied for network-management and -monitoring.
These will not be described, since they are not of interest in the current
project. A few applications will be described briefly:

8.3.1 UMTS/VHE

The development of mobile telecommunication has received a lot of attention
during the last decade. One of the recent developments is that of Universal
Mobile Telecommunications System (UMTS) [77]. An important element of
this third generation of mobile telecommunication is the Virtual Home En-
vironment (VHE). With such a Virtual Home Environment, users will be
able to access their mobile communication on any device, always receiving
(almost) the same services and look-and-feel. This VHE should be customis-
able by the user in all aspects. Several researchers have proposals for using
agent technology to accomplish this VHE.

Mobile agent One solution encountered to solve some of the problems
involved in the VHE-concept is based on mobile agents. Important reasons
to use mobile agents are to allow off-line operations and dynamic use of new
software [12]. Some of these solutions basically come down to a collection of
agents [12, 22]:

Terminal Agent A terminal agent represents the capabilities of a device.
It also provides initial access to the system for the user.

Service Agent Services available in the network are offered by service agents.

Provider Agent A provider agent forms the centralised coordinator. It
offers and combines the different available services.

VHE Agent The mobile agent in these settings is the VHE agent. This
agent represents the user, and migrates to the device upon request. It
adapts to the terminal agents capabilities, and communicates with the
provider agent.

Multi-agent Another solution is mainly based on (negotiating) multi-
agent systems. Lloyd et al. [37] propose an architecture where the VHE is
represented by a set of agents. A controller agent has central command over

49

CHAPTER 8. AGENTS 8.3. IN TELECOMMUNICATION

other agents providing services, routing and emulation (for look-and-feel).
Network and terminal agents encapsulate devices and network.

Fujino et al. [20] describe a multi-agent system where agents are used to
separate communication and personalisation. A personal agent is used for
customisation towards the user. Each location can have a clone of such an
agent, which are to be synchronised with a central instance. A network agent
is provided to create transparent access to the network.

8.3.2 Intelligent Network

Agents are also proposed to support Intelligent Network services [33]. Kerr
et al. describe a system called PANI, to handle intelligent networks based
on agents. An intelligent network allows users to use services, rather than
network operations. In PANI, three main types of agents are used.

Event agents Event agents are providers of events, pieces of new informa-
tion, that are available in the network. Their prototype includes news,
stock quote and e-mail.

Action agents PANI’s action agents form the outlets for this information.
They deliver the information to the user by e.g. e-mail, telephone, -fax
or SMS.

Personal rule agents The third type of agent is the one connecting the
former. A rule agent combines events with actions, possible with extra
conditions. One of their examples is informing the user by SMS, when
a specific stock quote exceeds a predefined limit.

8.3.3 IMPAX

A last application that will be mentioned, is IMPAX. IMPAX stands for
Intelligent MEssaging with Personal Agents and XML. It is described by
Meech et al. in [45].

IMPAX is a multi-agent based approach to handle unified messaging. It
is based on XML and KQML. It consists of a central controller agent, along
with several others:

Service Adapters Specific forms of telecommunication, available through
gateways, are handled by what are called service adapters. These act
as two-way gateway, feeding messages to the system and as delivery
channel as well.

50

CHAPTER 8. AGENTS 8.4. ALTERNATIVE TECHNOLOGIES

Converter Agent A converter agent provides conversion of content from
one format into another.

Personal Communications Agent The personal communications agent
represents the user. It coordinates with the central messaging manager
the capabilities of the user’s devices, and preferences through rules.

8.4 Alternative technologies

Agent technology is not the only approach to the problem at hand. Several
other popular approaches exist as well. A few alternatives are proposed and
discussed below.

Client-Server A wide-spread practise nowadays is that of client-server.
In this concept a client system connects to a central server system, using
a specific, predefined, way of communication. The functionality required
in this case can be implemented using conventional client-server. Although
client-server is well-known, it has a couple of disadvantage however:

• Centralised. Client-server is in general a centralised approach. This
makes a client-server setup vulnerable for network failure, dependant
on continuous connections and repeated transmission of the same data.
Further details on these subjects can be found in section 11.3.

• Less personalised. Using centralised servers shared among multiple
users, it is much harder to let these behave differently per user. Al-
though servers can easily be adjusted to differentiate between users,
behaving very differently for separate users is a hard task. Either many
servers are required, or very heavy server-applications need to be used.

• Less extensible. When dynamically extending the system across mul-
tiple networks, client-server requires a direct connection. This can be
resolved by using intermediate servers (proxies), but this requires spe-
cialised intermediates for each application at each connection between
networks.

• Less adaptable. The process in a client-server setting is very restricted
to that offered by the server. Supporting various alternatives requires
all servers to be altered, and is thus very unpractical.

All these arguments are generic for comparing client-server with (mobile)
agents, but they apply to the particular case at hand as well. One should

51

CHAPTER 8. AGENTS 8.4. ALTERNATIVE TECHNOLOGIES

keep in mind that agents are a concept, that can be implemented using some
technology. Client-server on the other hand, is more a technical architecture.
Many additional measures upon this initial client-server concept have been
developed. Agents can be implemented upon a client-server system, thereby
creating a large set of such additions itself. Evolution of these concepts and
technologies cause the existence of vague boundaries. As with the term agent
itself, a clear distinction is thus often hard to make.

Web based Although it is a specialisation of client-server, many interest
goes to “web-enable” existing applications nowadays. Using standard web-
browsers and related products seems a reasonable approach at first. It suffers
from the same disadvantages as a client-server based system, and:

• Media dependant. Although web browsers support all kinds of media,
most web based applications are very graphical oriented.

• Continuous requests. Web based systems are primarily designed to be
user initiated. A communication application should thus continuously
reload a web-page to check for new messages.

52

Part III

Concept

In this part, a description of the developed concept is given. It starts with
stating the requirements in chapter 9. Next, chapter 10 describes a functional
design. Based on these, chapter 11 motivates the selections and choices
made. This selection leads to the architectural design of the proposed system,
in chapter 12. Last chapter of this part (13), includes some anticipations
towards implementation and future developments.

53

Chapter 9

Requirements

Before a design can be made, the domain of the design should be given
by requirements. Those functional requirements will be described below.
They are divided in three categories, representing whether the requirement
must, should or could be present in the resulting system. Last follow a few
assumptions that were used for the design.

9.1 Must have

Some issues need to be present in the system. These are the elements that
must be included. Below are given those that cannot be neglected:

Media transformations An unavoidable feature for a system with unified
messaging is of course transformation of different media. For many users this
will be quite useless if it cannot be done automatically.

Message prioritising In order to prevent an user from an overload of
communication, incoming messages need to be prioritised. This should be
done in accordance with the user’s current situation. Implied hereby is that
this situation is known, so this should be tracked in some manner.

Distributed / mobile The promise to be reachable anywhere, anytime,
can only be accomplished if users can connect from many places. What
follows is the implication that users must be able to use mobile devices, and
/ or can use multiple points of access. Therefore the system must have a
distributed nature, or at least appear so to the user.

55

CHAPTER 9. REQUIREMENTS 9.2. SHOULD HAVE

Multiple device To be able to provide unified messaging, all sorts of de-
vices must be enabled and connected. These devices can be found at both
sides of the system. Input devices provide messages for the system, like re-
ceiving a fax or e-mail. On the other side, a device such as a desktop or
phone provides access for the user to ones messages. Multiple instances of
both, and of several types, have to be possible.

9.2 Should have

While the previous issues cannot be loosened at all, the following require-
ments are less hard. These items should be confined in the system, with a
high preference to indeed do so. When unavoidable, a compromise between
some of the following might be needed:

Storage and retrieval Similar to traditional e-mail and other systems,
the system should be able to store messages for the user. These should be
accessible later, both as an archive or e.g. to mark follow-ups on the message.

Preference learning All messages must be prioritised for the user, based
on its interests. Although the user could formulate these interests itself, it
would be very beneficial if the system automatically can deduct these.

Robustness Because communication networks are relative open and unre-
liable, unpredictable input can occur (e.g. due to malfunctions or malicious
use) or connections may fail. Therefore, a robust system which can cope with
many types of incidents will have strong benefits.

Multi-user Although each single user can be equipped with its own sys-
tem, a system for multiple users can save useless redundancy. Sharing parts
of the system becomes a possibility as well, reducing hardware-requirements
and allowing to use other people’s devices. This particularly applies for me-
dia that are very often shared already (e.g. a facsimile device). Furthermore,
it will save many users from involved maintenance and upgrades.

Cross-media All of the requirements made apply across all included me-
dia. Wherever possible, all features need to be independent of the used
medium. Of course this is impossible and illogical for the media-specific
input- and output-devices, but applies to all other components.

56

CHAPTER 9. REQUIREMENTS 9.3. COULD HAVE

9.3 Could have

A last category of requirements are those that are optional. These require-
ments are not essential for the targeted functionality, but are very welcome
nonetheless.

Platform independent The more portable a system is, the easier it is
to develop and use. This means that new devices require less efforts to be
embedded in the system, and appear more similar towards the user. With
platform both the hardware and the software are mentioned.

Adaptable For more advanced usage of the system, additional measures
can be taken to allow easy modification. Parts of the system could be altered,
without a complete renewal of the other existing parts. When a multi-user
system is created, different users could even alter a specific part to their own
needs in this way.

Secure Since communication can be confidential, and should therefore not
be exposed to others than the involved parties. Another specific implication
arises from the law, specially in a multi-user system, towards the privacy of
the user [5].

9.4 Assumptions

Of course a system cannot be only limited by must haves and should do’s.
A couple of assumptions are made here, to allow some degree of freedom.
Another goal of these assumptions is to give a reasonable basis for the design.

Network The first assumption made is the presence of an interconnected
network. Note that this not necessarily means one common network, only
the presence of access to a network, that is somehow connected with the rest.
Parts of the entire network may be heterogeneous, and a decent backbone
(no noteworthy delay or bandwidth limitations) is expected. Devices are
connected to this network as endpoints, but these may be so through limited
connections.

57

CHAPTER 9. REQUIREMENTS 9.4. ASSUMPTIONS

User A second assumption applies to the user. This user is assumed to be
willing to cooperate1, for its own benefit (avoiding communication overload
with availability of communication). The user is thus assumed to be willing
to provide some necessary information.

Capacity The last assumption is made on the capacity of devices. They are
assumed to have a reasonable capacity available, thus avoiding the presence
of very hard constraints on available resources. It does not state the absence
of limitations, light-weighted devices do exist. For a task that requires more
resources, a proper machine should be available, thus the end-device should
avoid possible heavy tasks.

1This implies another requirement; the user must be able to cooperate, through e.g.
interaction.

58

Chapter 10

Functional Design

This section will describe the functions needed in the system, to fulfil the
requirements. Included are the functionalities offered to the user in section
10.1. Based on these, some use cases are formulated, which are given from
page 61 on. Section 10.3 describes the functionality that is needed within the
system, derived from the above and the requirements. The last is a listing of
all the actual, although abstract, elements that are needed in the system to
fulfil the functionality and requirements.

10.1 Offered functionality

Some things have to be offered to the user, so he or she can use it. These
are the functionalities that can be observed and controlled by the user. An
inventory of these features follows:

User interface First of all, the user will need a way to interact with the
system. This normally works in both directions, information from the system
to the user as well as commands from the user for the system. Although many
people will first identify a desktop-GUI as an user interface, many other
variants exist. For example one can use the remote control of a television,
interactive voice response (IVR) systems for telephone services, etc. . .

Messaging Probably the most important element of the system for the
user will be the possibility to receive1 all types of messages. These should be
possible in any way the user wants (either as speech, text, image and so on),
but also from any source available to the system (fax, e-mail, news, etc. . .).

1 Sending messages can be included, although “traditional” means can be used as well.
This project emphasises on receiving ones messages.

59

CHAPTER 10. FUNC. DESIGN 10.1. OFFERED FUNCTIONALITY

Most critical hereof is that the previous stated user interface supports a way
to let the user perceive the message. The media supported by the used device
should not imply any restriction. Message received in another medium should
appear in an available medium, but certain formats may have preference
above others, based on the actual message.

Ubiquitous From the user’s point of view, the system should be accessi-
ble in any place. This could be solved by an approximation of ubiquitous
computing, by supporting the usage of mobile devices. Access from available
non-mobile devices should be included, when the device can be connected to
the network.

Persistency Messages that have been received by the user, should option-
ally be archived. This means they can, even when the entire system has been
shut down in the meanwhile, be requested at a later time. Three implications
are derived hereof:

• The user needs a way to retrieve the messages. Stored messages must
be retrievable, to allow the user access to the message.

• The user must be able to view and manipulate the archive. This in-
cludes receiving a list of the messages present, deleting messages and
others like moving.

• The user should be able to organise or structure the archive, i.e. by
the usage of a folder-concept. Great resemblance can be found in most
e-mail applications, as well as in physical archives. Logically, this in-
creases the number of available operations as given under the previous
item.

Message prioritising Although this will not necessarily be an explicit
feature for the user, it is an important one though. New messages for the
user are only send directly to the user whenever it confirms to the current
interests2 of the user. Ideally, the user will not have to configure or state its
interests, but the system will derive these automatically. This might force
the user to (explicitly) provide feedback, in order for the system to perform
better. Since the system has to consider the user’s current interests, the
user’s situation must be known.

2Although this might actually be the system’s representation thereof.

60

CHAPTER 10. FUNC. DESIGN 10.2. USE CASES

Personal For the user the system is personal, and should be adaptable for
the user3. Not only does this apply to the messages received, but also the
system’s behaviour. The prioritising mentioned before should happen on a
per user basis. In a more advanced setting, the user can replace each separate
part of the system to fulfil its specific needs even better.

10.2 Use cases

Below are the most important scenarios the system has to fulfil. These form
the most basic behaviour the architecture should be able to handle. Scenarios
not mentioned here are no target of the system, but many other scenarios
can possibly be handled or integrated. Most of these come from regular
practise in usage of e-mail and related system. Although these use cases
are still quite abstract, filling them in with applicable devices, messages and
situations should not be too hard.

Incoming important message A new message arrives, which is impor-
tant to the user in its current situation. The message should therefore be
forwarded to the user’s device immediately. A notification or presentation of
the newly arrived message should be done in the best (from the user’s point
of view) available format. A notification will only alert the user of the arrival
of the message, while a presentation will let the user perceive4 the message.

Currently unimportant message Another new message arrives, which
will not require the user’s attention at the moment. It should be hold back
until a more suitable moment comes forth.

User situation change The user’s current situation changes, and (s)he
updates this at the system5. All messages that were not relevant in the
previous situation, but are relevant for this new situation, have to be shown
now. The user’s situation comprises two elements:

• The user’s current interests.

• The user’s device and user interface.

3What is not meant here is the customisation of colours and sounds.
4Perceiving a message depends on the effective medium on the device: a text is read,

an image is viewed, sound is heard, etc.
5Although this implies a deliberate action, this might be automated (see for instance

[60]).

61

CHAPTER 10. FUNC. DESIGN 10.3. INTERNAL FUNCTIONS

The latter may include an entirely new device. In this case it should be
incorporated into the rest of the system automatically. Both of them have
to be considered, since they can influence each other. This for two reasons:

1. When the message cannot be viewed at all (e.g. video to SMS), one
might not want to see the message at all, while others do want a no-
tification so they can switch devices to receive the message. This may
apply to the network connection as well. When using a (expensive)
mobile connection, one may wish to receive a short notification, while
on a dedicated connection, one wishes to receive the entire message.

2. One may wish to view the same message in different ways on the same
device in different situations. For example one wishes to receive a
message as text (SMS) during a meeting, but as audio while driving,
both using the same mobile phone.

User feedback on message An user has received and read a message,
and provides feedback6 on the decision made for this message. The system
should learn from such feedback, to improve classification accuracy for future
messages. An (re-)evaluation of already arrived, but yet unread messages,
may (optionally) be triggered hereby. Feedback can be provided on the de-
cision regarding importance of the message and the format it is presented
in.

User stores message After an user receives a message, (s)he may want
to store the message. In this way, messages are filed for later access.

User requests (stored) message The user should have the possibility to
access a stored message. Other manipulations on archived messages should
be possible as well. Note that to make a request, a list of stored messages is
needed first. This list can be a request itself, for a list of available messages.

10.3 Internal functions

Derived from the previous stated requirements (chapter 9), and the previous
sections (10.1 and 10.2), a list of needed functions internally in the system
is compiled. This list will briefly highlight those elements that are needed in
the system, in order to achieve the above.

6Either explicitly, or measured by the system.

62

CHAPTER 10. FUNC. DESIGN 10.3. INTERNAL FUNCTIONS

User interface For an usable system, several elements have to be sup-
ported. These are listed below, and are either E ssential, Important or
Optional (which are derived from the requirements). Although they are
all to be supported, certain functions are hard to realise for certain devices.

E Alert for a newly arrived message.

E Perceiving a message.

E Setting the current situation7.

I Providing feedback7.

I Storing a message.

O Retrieving stored messages8.

O Listing stored messages.

O Manipulating the storage.

Input device handling Since messages are to appear from (physical) de-
vices, these devices need to communicate with the system. As important is
the fact the system needs to be able to receive and package the messages for
the system.

Automated transformation In order to receive messages in the preferred
format rather than the send format, automated transformations between
different media formats are needed in the system.

Discovery and locating Using and adding any device transparently to
the system requires a mechanism to automatically advertise, find and identify
devices.

Persistency Storing messages for later access requires some form of back-
ground storage. This background storage needs the capabilities to store, list,
remove and retrieve messages. Creating and controlling further structures
within this storage is preferred.

7The user interface might automate this.
8Storing needs to be handled directly after perceiving the message on a device, but

retrieving can be handled on other devices as well.

63

CHAPTER 10. FUNC. DESIGN 10.3. INTERNAL FUNCTIONS

Priority decision Message have to be judged for their relevance to the
user’s current situation. Maintaining this state is a necessary feature there-
fore.

Format decision Besides establishing the priority of a message, the format
to use for the user to perceive the message has to be decided. This decision
depends on the user’s situation as well (as discussed in 10.2).

Situation tracking The situation of the user needs to be known, as stated
at the previous two items. A way to keep this state of the user up-to-date is
therefore required.

Feedback When the system is required to improve its accuracy of judge-
ment, the system needs feedback from the user.

Personalisation When the system is multi-user, a way to differentiate
between the users is needed. This applies to the judgement of a message in
respect to the user’s interest, as well as the locating mechanism described
above and other personal features.

Recovery To fulfil the requirement to be robust, the system needs to han-
dle unpredicted behaviour. Additional scenarios to handle these exceptional
cases need to be embedded.

Media independence Handling different media in the same way needs
extra care. Since creating a single unified format is considered unachievable,
an extra level of abstraction is needed. This layer of meta-data will describe
the actual content in a more unified manner.

Flexibility As a last item, adaptability is an optional feature. This re-
quires flexibility in the design, in order to allow variations in performed
operations.

64

Chapter 11

Selection

This is an evaluation of the choices made based on literature and reason. It
should only contain high-level choices, with impact on architecture, which is
described on page 79 and further. Items specific to implementation should
be avoided, and left open till the start of the prototype.

One of the main thoughts used is the reduction of central components
where possible. This in order to achieve a highly distributed but reliable
system. The main aspect in this design is functionality. Issues directly
related to machines and implementations are left out as much as possible.

11.1 Multi-agent

The most important choice made, was the one in favour of a multi-agent
system. Below is an explanation why this decision was made in the first
place. Next is a brief overview of the functions that have to be divided over
these agents.

11.1.1 Why?

Although many agent-based applications that function as “software secre-
taries” are composed of a single agent (from [83] with regard to [39]), chosen
was to use a multi-agent basis. The following advantages of multi-agent over
a single agent can be identified:

Size Although the total size of a multi-agent system is likely to be larger, a
single agent can become too large for small devices.

Modification Each modification in a single agent system requires the entire

65

CHAPTER 11. SELECTION 11.1. MULTI-AGENT

system to be replaced1. In a multi-agent system, a certain agent can be
replaced transparently by another agent with altered functionalities.

Connectivity A single agent system is normally restricted to one machine
at a time, limiting the system in its capacity to simultaneously span
multiple devices, providers, sources and networks.

Data traffic A single agent also requires all messages to be transfered to the
user’s device, causing large amounts of data traffic to end-devices one
wishes to avoid, or a continuous connection between the user’s device
and the agent.

Modular Using separate agents for distinct functionality creates a modular
system. Although this is common practise in software engineering,
using agents allows for more autonomy, providing more flexibility [83].

Personalisation A single agent requires the agent to be generic, so it is
harder to personalise. Otherwise it is personal and therefore will omit
public improvements made to a particular part of the system without
updating the user’s system. With multiple agents, partial personalised
behaviour can be achieved more easily.

For the communication between these agents, asynchronous messaging is
the best candidate. A blackboard system will introduce a central component,
implying a single point of failure in a networked system. As will become clear,
there is no need for data shared among all agents. Besides, a blackboard
architecture implies that all agents need to check the blackboard for messages.
This requires continuously active requests from the user’s device, something
wished to be avoided in the first place. Asynchronous messaging triggers
another agent to react, effectively causing push-technology.

11.1.2 Compartment

Since the previous choice was to have a multi-agent system, the next choice
is how to divide these agents. This separation is based on the needed func-
tionalities as given in section 10.3. Following these functionalities, the next
functions are identified:

• Input.

• User interface.

1This may ignore the fact that dynamic loading of code is possible, but this is considered
to have less capabilities.

66

CHAPTER 11. SELECTION 11.2. PERIPHERALS

• Storage.

• Transformation.

• Routing.

• Extraction.

• Priority profiling.

• Format profiling.

The motivations for this particular partitioning are given next. Most of
these are based on a survey of relevant literature [61]. Several iterations
were made over the design choices and related literature. Due to these iter-
ations, most choices cannot be pinpointed to specific sources. The resulting
reasoning is therefore included as motivation.

Furthermore, details of other specific characteristics are discussed. The
first four items are grouped together and will be described in 11.2. Routing is
explained on page 71 and further. The last three are handled in section 11.4.
Reasons to have this grouping will become clear in the respective sections.

Please note that the actual agents are defined in chapter 12. A detailed
description of each agent can be found there. On page 80 you can find an
overview of these agents (Figure 12.1).

11.2 Peripherals

The first group of agents to be discussed is quite obvious. These are easily
derived from most common e-mail applications, along with the first items2 on
the list of included functions (see page 62). Covered by these four elements
are almost all the functionalities needed for an unified messaging system.
They are split up according the presented functionalities. Aside from the
transformation, these simply cover the peripherals found in a most elemen-
tary (e-mail) system. Note that user interaction and output are combined.

11.2.1 Motivation

The separation of the control of peripheral devices is not without reason.
Each of the parts is motivated:

2Actually the first five items without the fourth (the item on discovery and locating).

67

CHAPTER 11. SELECTION 11.2. PERIPHERALS

Input Due to the fact that different input devices must be added easily to
the system, they are separated as well. Note that this input only refers to
new messages that are to be used in the system. The user’s input will be
handled by the user interface.

Output and User Interface On the other side is the output. The choice
was made to integrate the functionality of the user interface with this out-
put. Motive to do so is the general necessity for the output to have an user
interface itself. One could think of scrolling functionalities in case of text,
zooming for images or forward and rewind for audio. Since these need to
be supported anyway, some additional features should be possible. An ad-
ditional advantage is the fact that specialised libraries for hardware can be
shared when needed3.

Storage Reasons to have a separate storage are trivial. Since storage has
no direct relation with receiving, viewing or transforming a message, their is
no need to integrate this functionality together. When an entirely different
method of storage (in the implementation) is changed, this should have no
impact on the other elements. Therefore, the storage is separated.

Transformation A separate step of transformation is used. This is done
in order to avoid an universal media-format. One format is considered im-
possible, without huge loss of information4 and an unneeded overhead of
conversions.

Aiming for transparently cross-connecting “any” device, all inputs and
user interfaces will need to be connected5. When each of these device must be
able to process messages for or from the other, this leads to a full-connected
network. Drawback hereof follows from graph-theory. Full connected net-
works require each node to have a connection with all the others. When
connecting all inputs with all user interfaces, this means that each new input
device will need to support all output devices. Even worse is probably the
fact that adding a new output device (user interface) could require a modifi-
cation to all inputs. Since this strokes heavily with the requirement of easy
and dynamically extending the system, another solution is needed.

This leads to the following solution: Instead of having each device con-
necting to all others, use a single point of connection. This single connector
will than need to take care of all connections, but this can be handled in

3Although this might be valid for input as well, the reasons to separate are stronger.
4How can one express a video in simple text?
5Connected with regard to information exchange, rather than data.

68

CHAPTER 11. SELECTION 11.2. PERIPHERALS

another way. How this can be solved is shown later, when the transformer is
described in more detail (page 70).

11.2.2 Input

Input devices will be encapsulated by an agent that creates input for the
system. Such an agent needs to be connected with the device that forms
the source of the message for the system. A logical choice for these is on a
computer directly connected with the device. A device not always directly
resembles a physical device in this context however. E-mail for the user for
instance, can arrive on a remote system as well. In this case, the agent will
have to connect over the network to fetch this e-mail like any other user-
application can do. The term input device is thus used as an abstraction for
the source of a message, rather than the underlying piece of equipment.

The encapsulation of the input device by an agent is useful to shield the
system from specific and proprietary handling. It saves other parts from
handling or accessing any specific characteristics of the device (such as the
format on the wire). On the other side it does not create messages in a
universal format. It merely packages the messages in its specific format in
a way the system can handle it. What can be done is some minor prepa-
ration of the format. Formats that apply only to very specific devices can
be changed to more common standards. An image from a fax can be con-
verted to the more generic TIFF format for instance. Another example is
re-sampling audio-messages, to use a frequency applied in common practise.
The agent that handles input is described in 12.3.1, and examples are shown
on the far left of Figure 12.1.

11.2.3 User Interface

Similar to the input, the user interface will wrap an (interactive) output
device. As with the input devices, the device is an abstraction. The output
hides the implementation details from the rest of the system. Towards the
system, it represents a generic output, accepting standardised packages. The
contents of these packages has to be in a format that can be handled by the
output device. The user interface should thus advertise these capabilities.

The output and interaction can be handled in many ways. This should
all be handled by the agent handling this output. If multiple physical devices
are needed, the agent should handle these, e.g. a phone combined with a fax,
using the phone as a control channel, while messages can be printed using the

69

CHAPTER 11. SELECTION 11.2. PERIPHERALS

fax6. The user interaction has to account for any state the device requires as
well. When a message requires specific handling, the agent should do this.
For example when using SMS, the agent could send longer message in several
pieces. Agents that fulfil this are described in 12.3.6, and can be found on
the right side of Figure 12.1.

11.2.4 Storage

A storage agent is provided as transparent storage for messages. Although
storage can be pretty straightforward, a separation is provided to split the
implementation from other parts of the system. This allows to replace the
storage with a completely different type of persistent background storage.
The storage needs to implement the capabilities listed earlier in section 10.1
under “persistency”.

11.2.5 Transformation

As was stated before, having many different kinds of devices connecting to
each other is not realistic. It was motivated before to have a single point of
connection. On first sight this might look like moving the problem. When
all connectivity is confined in one place, alternative ways of reaching a trans-
formation are possible. Instead of having all possible combinations of trans-
formation (full connected), one can build chains of transformations. This
can decrease the number of required connections dramatically. Although one
could argue this can be used for the separate inputs and outputs as well, this
still involves all these nodes. Removing one node may have severe impact on
the entire system.

Plain text PNG image
text−extractor renderer

HTML text

Word document

recoder

WAV audio GSM audio

sa
ve

−
as

H
T

M
L

sp
ee

ch
sy

nt
he

si
s

Figure 11.1: Chains of transformations

6Most modern faxes do have phone-capabilities embedded.

70

CHAPTER 11. SELECTION 11.3. ROUTING

The idea behind the chains of transformations is quite simple. Instead
of converting one format to another, one uses several steps to achieve the
transformation. This idea is very similar to the “automatic path creation”
used in the universal inbox [56]. An illustration is given in Figure 11.1.
This example shows how an established transformation chain from HTML-text
to GSM-audio can be extended to accept Word-documents. As alternative,
it can be adapted to create PNG-images as well. A transformation in this
context is a conversion from one media or application format to another, not
a transportation bridge (like FTP to HTTP).

Advantage of this approach is the reduction of required conversions, to-
gether with the easy addition of new devices. When this new device produces
(input) or accepts (user interface) a known format, this can be automatically
supported. A disadvantage occurs when a new device is added that does not
work with a known format. A modification to the transformation is then re-
quired as well. The quality of the transformations has to be closely guarded,
to assure no information is lost unnoticed during a conversion.

11.3 Routing

Although all elements from the preceding group can be used to create an
unified messaging system, no explanation of them connecting together is
given yet. For this connection, a routing facility is used. This routing is a
separated functionality that handles transportation and controls the flow of
a message through the system.

The main advantage of using a separate router, is that only one (type
of) node has to have knowledge of routing. The flow of a message through
the different phases of the system and parts of the network can therefore
be adapted by only updating the routers. Other nodes should be able to
continue without noticing any difference. Effectively, the router is the only
node that does the entire job, it only transfers all of its work to several other
nodes.

A central router may pose limits to the capabilities to span a network,
connecting many devices. Furthermore it requires passing large amounts
of data through the same network connection multiple times. Therefore,
multiple routers are chosen. These routers are (in principle) mobile, thus
carry the message through the network, although they can alternatively be
(partial) static and hand over messages as if they were moving. Conceptually,
one message is handled by one router. In this way a router handles the
different states of a message very naturally.

Using multiple of these separated routers has advantages:

71

CHAPTER 11. SELECTION 11.3. ROUTING

Connectivity Connections between different networks can be supported,
even through other network-systems (when appropriate interfaces are
available).

Diversification Possibility for different routing capabilities per message
(personalised / message-dependant routing), or different per location
(when using routers that are static and pass messages).

Minimise network-traffic Avoid double traffic of a central router by using
routers that are distributed in a network. A central agent would have
to use remote communication several times, before the results can be
passed to the next step. A mobile router only has to make one move,
communicate locally, and move to the next phase. Consider Figure
11.2, where each arrow represents communication (or a move) over the
network, and each circle a node in the process.

Centralised Distributed

Figure 11.2: Centralised versus distributed routing over network

As a drawback, new steps in the processing cannot be introduced without
adjusting the router agents. One does not only have to write the new func-
tionality for a new step, but adjust the routers to use it as well. Such a
modification is necessary for most (distributed) solutions however.

Except for this router, each node only needs limited knowledge of mes-
sages. Therefore, additional functions can be added, without interfering with
existing elements of the system. Note that routers do not form just a trans-
portation “backbone”, but are functional routers. They decide which action
to take next, in the process of steps a message has to go through.

Why move the data to the calculation, opposite to regular practise in
mobile agent technology of moving the computation to the data:

• First of all, several parts of the code of the intended are expected to
be larger than many of the pieces of data, while the use of many and
widespread sources requires large amounts of movement. Several types

72

CHAPTER 11. SELECTION 11.4. PROFILING

of messages are expected to be rather short (Short (SMS) and instant
messages (ICQ / AIM / MSM), a share of e-mail, voice-mail, news-
ticker service). A storage with all previous data cannot seriously be
considered to be (fully) mobile.

• The data has to be moved anyway (from the source to the user).

• Next, the profile7 requires continuous reachability and adaptability
(learning from feedback), if (ideally) updated instantly after feedback.
When moving a single profile around, a delay in communication or
movement will hold up all new messages. A distributed approach,
using a profile agent per message, will require synchronisation and a
distributed user-profile, or will suffer from bad (profiling) performance
when updated less often. This can apply to the extractor7 as well when
it needs data of previous and send messages.

• A message has to go through several operations. Moving the message
around to these operations is still some sort of code along with the
data. Only the operations are delegated to other nodes. Transitions
between several of these operations, the different phases, are transitions
between different states as well. While data does not naturally keep a
state of its own, agents do, therefore wrapping a message in an agent
upgrades the message to a state-keeping one.

• As a last added benefit is the improved flexibility. When each message
is enhanced with its own code, the processing of each message can be
varied. Each message can theoretically8 have be processed in another
way. This variation can be based on the origin of the message, as well
as the addressee, type of message or other criteria.

11.4 Profiling

All the elements discussed in the previous sections only relate to the ability
to receive ones messages in a unified way. None of these parts considers the
interest the user might have in the particular message. It is an important
part of the project however, to save the user from a communication overload.
For this reason three additional elements were identified in 11.1:

• Extraction.

7Profile and extractor are both introduced in the next section.
8Performance reasons will likely restrict the degree of freedom to a set of more generic

possibilities.

73

CHAPTER 11. SELECTION 11.4. PROFILING

• Priority profiling.

• Format profiling.

Since we are dealing with messages of any kind of medium, many solu-
tions previously used cannot easily be applied. Many approaches have been
proposed to deal with the e-mail overload. Most of these are based on the
fact that most e-mail consist of plain text. In an environment where many
other formats can be encountered, this will be rendered rather useless. As a
solution a decision can be reached in two steps, first a phase where meta-data
will be extracted and afterwards a decision based on this meta-data.

Two steps Separating a phase of extraction before the actual decision is
based on previous research in e-mail filtering, where extraction is a step
made before profiling (e.g. [4]). One could compare with data analysis found
in information filtering as well [23]. The first step is extracting meta-data,
descriptive information, from the actual message. Meta-data can be seen as
information about other data, describing important characteristics, i.e. the
author, the size, the topic, urgency, etc. . . The second step is the effective
decision made based on these meta-data. This separation is made for several
reasons that are beneficial:

• Profile is independent of the used formats, adding new formats without
modification. The profiler can manage to judge new formats without
an addition to the user profile. A first occurrence of a format can then
be handled based on the extracted meta-data, compared to similar
meta-data of messages in other formats.

• Additional extractions can offer possible improvements without adap-
tion of the profiler. When new technology provides new or better ways
to evaluate certain media formats, they can be added without revising
the profiler.

• Cross-media profiling is possible. Using uniform ways to express meta-
data, independent of the type of media used, similar decisions for dif-
ferent media can be made. This allows for knowledge gained with a
certain media-type to be applied transparently to another media-type.

Splitted decision The second decision was to split the profiling based
on this extracted meta-data. First of all, a decision whether the message is
important needs to be made. When a message needs to be shown to the user,
the format to present it has to be decided as well. These are two separate

74

CHAPTER 11. SELECTION 11.5. MISCELLANEOUS

steps, since this not only applies to messages that arrive as new ones, but
also for the messages that are requested by the user from the storage. These
last need to be adjusted to the user’s current device as well. Therefore, both
a step to apply a priority profile and one for the format profiling are needed.

Priority: piles The main task of the priority profile is to assign applicable
situations to each message. The user defines those situations itself, allowing
the user to have as much variation as needed. A simple example would be a
request from a customer, which will be shown only at work, when working at
home or travelling to work, but not when at home, travelling home or during
a meeting.

Multiple situations can be assigned to each message. One can regard this
as putting documents on piles, where each pile represents a situation. Note
that due to the use of virtual documents (electronic messages), removing a
message from one pile implies removing the message from another pile as well.
This concept can be realised simply by maintaining references in these piles,
instead of copies of the entire document. The use of electronic documents
ensures fast and easy access to the actual documents. Assigning a situation
to messages can thus be seen as putting a message on a virtual pile.

11.5 Miscellaneous

Now that all elements that are needed have been identified, only a few minor
items are left. A few other things must be exchanged between the different
agents. This is required for storage manipulation and the user needs to be
able to set a situation. In a similar way (s)he needs to be able to provide
feedback for the learning profile.

Control as messages Except for the messages themselves, there are a
few more internal required communications. Requests and notifications are
special instances of a message, in order to utilise the router and simplify the
system.

• Requests (to retrieve a stored message) are special messages. They
start at a different phase, but are largely equal.

• Requesting lists or multiple messages can be done with special requests,
requests marked with slightly different content (requests with wildcard
id or selection and a headers-only field for example). The same can
apply for other storage operations, like delete or operations on folders.

75

CHAPTER 11. SELECTION 11.5. MISCELLANEOUS

• A notification is an internal message, send from the user interface to
the profile. Notifications form the carrier of feedback and situation
changes. A notification will thus require special treatment from the
router.

Feedback A necessity for the system to learn the user’s interest, is knowl-
edge thereof through feedback. Feedback can be either explicit or implicit.
Explicit feedback is active participation of the user, while an implicit method
measures user responses to establish feedback. Chosen is to use explicit feed-
back as primary choice in this design for the following reasons:

More reliable When measuring the user’s responses, a certain amount of
uncertainty is introduced. One cannot measure the reason of (e.g.) the
reaction time of a user.

More expressive Except for providing positive or negative feedback, one
can add additional possibilities to provide a reason or other adjust-
ments. In this way more detailed feedback can be gathered, allowing
for more directed learning capabilities.

Easier to realise Adding a few buttons (or other “commands”, depend-
ing the type of user interface), is easier than building and tuning a
measurement system.

This does require explicit user action. Although this places a slight burden
on the user, this is regarded a lighter one than the communication overload.

Since explicit feedback allows more expressive feedback, a brief discussion
of this feedback is appropriate. Although the exact feedback depends on the
possible situations, the capabilities of the profile and even the user interface,
one should think along the following lines: Feedback for learning algorithms
normally exists of positive or negative feedback. In this way a decision could
only have been either good or bad. However, at least two decisions are made.
Next, a decision could not only have been good or bad, with explicit feedback
an alternate decision can be provided. In this way, one does not only provide
a negative example for the decision that was made, but a positive example
as well for the decision that should have been made. The result looks like
the following examples:

• Thanks (positive for situation and format).

• Wait till home (negative given situation, positive other situation).

76

CHAPTER 11. SELECTION 11.5. MISCELLANEOUS

• Rather as SMS (positive given situation, negative given format, posi-
tive other format).

• Do not bother me (negative situation).

77

Chapter 12

Architecture

After having all the required functions identified, these still need to be com-
bined together to form the system. In this section a description of the archi-
tecture as designed will be presented. The form in which the architecture is
presented is based on the Tryllian method SmartAgent [72].

Methodology As identified by Tveit [76], several methodologies exist for
designing agent-based systems. The Gaia [85] methodology emphasises the
relation between agents, defining their roles, responsibilities and permissions.
It further incorporates assigning instances of agents, aiming to be directly
implementable. This method is not used, as it is considered too broad, but
the methodology matches best with the Tryllian SmartAgent methodology
of those discussed by Tveit. Other methodologies discussed by Wooldridge
and Ciancarini [83] do not seem applicable either. Those methodologies are
either similar, or have other target areas like belief-desire-intention, which
are suited for single agent systems and not the case at hand.

Description The used methodology works top-down. First all roles that
have to be fulfilled are identified. Next, the total system is described, defining
the different agents and their relations to each other. The communication
between agents themselves is given as well. Later in this chapter follow
other, non-agent, components encountered in the architecture. Note that
further details are included in the method, but these are given as part of the
description of the prototype. One can find these parts in chapter 14 starting
on page 121.

But before all definitions and other formal representations, an overview
of the system will be given. This will give the reader a first impression of
the architecture, and can be used as a guideline throughout the remainder
of this chapter.

79

CHAPTER 12. ARCHITECTURE 12.1. OVERVIEW

12.1 Overview

First a brief description of what a message1 is within the system. A message
within the system actually exists of two parts. The first part is, naturally,
the message itself. The other part is the information that guides the message
through the system, the meta-data. This is data that describes the message.
It can include the elements as size, sender and addressee2 which normally
exist in messaging systems as well. Furthermore it contains additional infor-
mation generated within the system. These are the meta-data extracted by
the system from the contents.

 Network

Msg.
FactoryE-mail

Msg.
FactorySMS

Msg.
FactoryFax

UI
Agent PDA

UI
Agent Phone

Pers.
Extract

Pers.
Profile

Pers.
Storage

Public
Transf.

UI
Agent PC

UI
Agent Web

User

Figure 12.1: Overview of the architecture

One can compare a message with a letter, similar to the metaphor often
used for e-mail [11]: The message is the letter, contained in an envelope. On
the envelope is the address and (sometimes) the sender. Now this applies
to the messages used within this system as well, where the letter is certain
data (be it an e-mail, or a recorded voice-mail, etc. . .). This data is packed
within the envelope, which has the meta-data written on it. Furthermore,

1This is the “unified” message send from user to user, not messages as used internal in
the system, those used between different agents.

2This is not always equal, compare your home and work e-mail-address, phone-number
or mailing-lists you are subscribed to.

80

CHAPTER 12. ARCHITECTURE 12.2. ROLES

the system can make additional notes, like you would write or stick a post-it
on the envelope, which contain the meta-data generated in the system.

The Message Factory Agent packs the data in the envelope, addresses
it and start a Router Agent with the package. An Extractor will take out
the data, and attach extra notes to the envelope, which further describe
the message (urgency, user’s interest topics, user’s relation to sender, etc.).
Next, a Profile Agent will decide whether / when this message is important,
based on the information found on the envelope. The same Profile Agent
will attach an extra note with the (preferred) format in which the message
is to be presented. A Transformer Agent will examine the contents of the
envelope, and convert it into the desired format. Finally, a User Interface
Agent will show this to the user. As a bonus, there is a Storage Agent to
archive messages.

12.2 Roles

Before we can establish all required agents, their functions need to be known.
For this purpose, roles are defined. A role is a function an agent can fulfil,
similar to roles humans can have in society. Agents and roles are not one-on-
one connected to each other. An agent can have multiple roles, and a role
can be fulfilled by multiple agents. In the metaphor of a human-society one
can be a customer at the bank, but the banker is a customer at the grocery
himself as well.

In the system the roles are easily derived from the functions identified in
11.1. Each role that needs to be present is thus only briefly described below:

Input When an agent acts as input, it receives messages for the system. It
packages a new message for the system, and initiates the processing of the
message.

User Interface An agent that performs the function of user interface, will
handle all of the interaction with the user. This includes letting the user
perceive the message, thus fulfilling the function of output.

Storage A storage handles messages that need to be archived. This in-
cludes storing, retrieving and organisation of the collection of messages.

Transformer The role of transformer involves the conversion from the orig-
inal medium-type of receipt, to the preferred format for acceptance by the
user.

81

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

Router Message have to be transported, and the sequence of operations
needs to be determined. The agent handling this has the role of router. It
connects and coordinates the relation of messages with the other agents in
the system.

Extractor During the extraction, information present in the message is
made explicit. The extractor can be said to write additional meta-data on
the envelope, as processable information for the rest of the system.

Priority profiler A filtering mechanism decides the destiny of a message.
Messages that are important have to be shown to the user instantly, other
messages are hold off until they do become important.

Format profiler A message that is to be given to the user, needs to be
usable on the user’s current device, in the best available format. A format
profiler does so.

12.3 Agents

Now that the roles in the system are known, the agents that fulfil them can
be determined. In this section all classes of agents that appear in the system
and their view upon their environment are described. These are explicitly
classes, since the actual instances that are needed in an implementation may
vary per user, providers and available equipment.

First a small summary of the intended classes of agents and the mapping
of the roles on these. After this, each agent will be described in more detail.
The agents are listed in the order of the intended process, not that of the
previously given list of roles. This process will be discussed in further detail
in the rest of this chapter and the following part.

The last five types of agents have another common denominator. Each of
these agents provide a certain kind of service. Although this is not entirely
clear right now, it will become later on. For now it is mentioned they are
also referred to as Service Agents. Any of the five types is mentioned then.

Message Factory Agent A Message Factory Agent handles the input. It
is named factory since it creates a Router Agent with the packaged
message.

Router Agent The Router Agent handles the routing of messages. It is
directly mapped to a single message.

82

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

Extractor Agent An Extractor Agent adds meta-data to the message.

Profiling Agent A Profile Agent is the only agent which fulfil two roles. It
decides both the applicable priority and the preferred format for the
message.

Transformer Agent An Transformer Agent ensures the message is trans-
formed to the preferred format.

User Interface Agent The User Interface Agent, or UI Agent for short,
handles the interaction with the user.

Storage Agent The Storage Agent acts in the role of storage, which hardly
needs further explanation anymore.

12.3.1 Message Factory Agent

The Factory is the generator of messages for the system. It annotates the
message with protocol specific meta-data before delivering the message to the
system. These protocol specific (primary) meta-data are e.g. time of arrival,
the sender’s address (e-mail, ICQ) or a telephone number (fax, voice-mail)
etc. In metaphor this agent can be seen as the one who fills and posts the
envelope into the system. First some characteristics of the agent, then a few
examples.

Properties The properties of a common Message Factory are listed in
Table 12.1. Since this is the first such listing, the non-obvious items might
need a little explanation. A component is a non-agent element of the system,
that is utilised by the agent. The partners are the other agents the particular
agent communicates with.

When an agent is located “anywhere”, this indicates it is located some-
where in the network, preferably on a central server. With accessibility, the
restrictions for a multi-user system are meant; agents are either personal,
or generic (shared among multiple users). Agents are either of a static or a
mobile type.

Examples A facsimile device can be used as an input device for messages.
Whenever a fax arrives, the agent will buffer the image. When the entire fax
has arrived, the fax is packaged as a system-message. The Fax Factory Agent
can use CLID to add the sender’s original phone-number as meta-data.

Another example would be an Usenet Factory Agent. This type of agent
will monitor news- and discussion-groups as found in Usenet, and feed the

83

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

Table 12.1: Properties of a Factory Agent

Roles Input
Data Creates the message-content and initial meta-data
Components Message receiving devices
Partners Initiates a Router Agent
Accessibility Personal
Location At input device
Type Static
Instances Multiple per user

One per input device
Remarks Can be specific for a certain input medium

Point of contact with external environment

interesting groups3 as messages to the system. The meta-data that can be
added are the name of the group and the address of the poster.

12.3.2 Router Agent

Takes care of the routing of a message through all processing in the system.
It manages the status of a message, and acts accordingly, delivering it at its
next destination. When the other agent is not local, the Router Agent tries to
locate the needed agent, and moves to the remote location. A Router Agent
is (conceptually) directly connected with a message, forming its “conscious”,
or the courier of the envelope. One could say an autonomous message is
created.

Properties The Router Agent has the characteristics found in its table of
properties (12.2).

Process A Router Agent is the one that takes a message through the sys-
tem. It manages the sequence of operations that have to be applied to a
message. This process will be described here. Note that this is the stan-
dard process to be applied to an important message, any deviation hereof
will be discussed later, specifically in 12.6 for the whole system and in more
detail per agent in chapter 14. The steps taken below will be commented on
afterwards:

3Or even single messages with preliminary filtering.

84

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

Table 12.2: Properties of the Router Agent

Roles Router
Data Transports the content and the meta-data
Components None
Partners Initiated by a Factory Agent, contacts all other agents
Accessibility Personal
Location Anywhere, depends on step in the process
Type Mobile
Instances Multiple per user

One per message
Remarks A message packaged with some active code

1. Factory starts Router.

2. Router consults Extractor for meta-data.

3. Router asks Profile for priority.

4. Router requests Profile for preferred format.

5. Message is transformed by Transformer.

6. Router delivers message at User Interface.

7. Router hands message to Storage.

First of all, the message will be packed in the Router Agent by the Fac-
tory. This is where the life-cycle of the Router Agent starts as well. Now
logically, the message is to be judged whether it is important. Some fur-
ther information (the meta-data) is needed first as a basis for that decision.
Therefore the Router will go to the Extractor first, and then the Profile.
Since the message is important, the format to present it in is acquired of the
Profile as well. Now the Transformer is requested to change the message to
this format. It can now be delivered to the user. The user finally decides it
to be stored, so the message is taken to the Storage.

Other activities As was mentioned in 11.5, the Router needs to help in
a few other events. When the user changes his or her situation, the user
does so at the UI Agent. This data is needed at the Profile Agent however,
and the same applies to feedback. Since the Router handles the connection
between these agents, it can be used to transport these notifications as well.

85

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

The concept of using only one agent which handles connectivity is kept intact
as another effect.

12.3.3 Extractor Agent

A Personal Meta-data Extraction Agent handles the extraction of meta-data
for a message. This Extractor adds descriptive meta-data to a message, as a
basis for the Profile (described later) to assign situations and / or preferred
formats. One could say it sticks more notes on the envelope, describing
(properties of the) the contents.

Other agents with usefully information, like the user’s calender and travel-
agent can be integrated. This will be discussed in 13.2.4 and 13.2.5.

Table 12.3: Properties of the Extractor Agent

Roles Extractor
Data Adds meta-data to a message
Components None
Partners Router Agent
Accessibility Personal
Location Anywhere
Type Static
Instances One per user
Remarks Can perform media-specific operations

Properties An Extractor Agent can be recognised as given in Table 12.3.

Example extractions Examples of meta-data that could be generated
include:

• Address unification with a virtual address book (numbers or addresses
specific for the originating device to real-life name).

• Urgency determination based on voice stress analysis of spoken audio.

• Topic classification based on TF-IDF (Term Frequency - Inverse Doc-
ument Frequency) ratio of previous, user-classified messages (as often
applied to e-mail [38, 62]).

• Spam rating, in collaboration with other people’s spam filters.

86

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

• Proximity based marker, that marks the messages of people that are in
the same area as the user, e.g. for appointments, based on telephone-
area codes, known location from an address-book, combined with a
calender or GPS (see CLUES [42]).

• Thread recogniser, that marks groups of messages that are followups
on previous messages, as often used in mailing-lists and discussion-
groups. Algorithms with practical accuracy can be found in current
production-level implementations for this classification [88].

• Relationship determination, adds a field with the relation a sender has
to the user, for instance using an address-book. Results can be for
example family, friend, colleague and customer.

• Due date, if the relevance of the message will expire after an amount
of time.

• Language determination, to established the used language in the mes-
sage. This can be accomplished using e.g. elements of speech recogni-
tion for voice-mail or linguistic analysis for texts.

12.3.4 Profile Agent

The Personal Profile Agent assigns applicable situations to each message. It
is the part of the system that should prevent the user from being overwhelmed
with messages. Each message is assigned zero or more situations, in which
the user would be interested in receiving those messages. These could be seen
as virtual piles, with each pile containing references to the actual messages.
These messages are stored until the user changes its situation, thereby (im-
plicitly) requesting a certain pile. References to messages are then removed
from other piles as well. When a message is assigned to a pile that represents
the user’s current situation, the user can be notified immediately when the
priority requires so. In order to know the current situation, the Profile has
to maintain a state of the user’s situation.

The other task the Profile has is the determination of the format the
message is to be presented in. This agent should therefore keep track of
both the capacities the UI Agent has, as well as the preferences the user has
regarding receiving its messages.

Two roles combined In 11.4 it was argued that both of the described
decisions have to be separated. Earlier on page 62 the relation between
both assignments was made. Although this might seem contradictory, both

87

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

argumentations are still valid. Both decision are indeed different phases in
the process. They do share some data, in order to achieve their decision. The
most important part of this data is the user’s current situation and feedback.
To prevent this information to be known by several agents, it can be shared
in a single agent. The agent thus fulfils two roles.

Properties A Profile Agent can summarised as shown in Table 12.4. It
is intended to act fully autonomous for the user. When a Profile Agent
does require the user to configure it, an (separate) user interface should be
arranged for.

Table 12.4: Properties of the Profile Agent

Roles Priority profiler
Format profiler

Data Decisions are based on the available meta-data
The user’s current situation and device

Components None
Partners Router Agent
Accessibility Personal
Location Anywhere
Type Static
Instances One per user
Remarks Assigns a priority and a desired format to all messages

Profiling characteristics Aside from the properties of the agent itself,
an important aspect of the Profile Agent is the profiling itself. The Profiler
is intended to have machine learning capabilities for the user’s interest. Al-
though this is simply said, it has many implications. A way of learning these
interest, an algorithm for creating a profile, is needed. Before an implemen-
tation can be created, the characteristics of the learning problem must be
known. The most important of these are described here. Further discussion
follows in 13.1.

Heterogeneous fields present Different messages can come from dif-
ferent sources, and have a different content. As a result hereof, the available
meta-data can differ per message as well. This is due to the message it-
self, but also depends on the source and the implemented extractors. A
source like a fax will likely only provide a device-address and a message-size,

88

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

whereas e-mail can provide the sender’s priority and relations to previous
messages (reply-to). The implemented extractors can be medium-specific
(per design), and different media can thus have different meta-data as well.

Heterogeneous field types The meta-data that are present with a
message, can be heterogeneous among the separate fields as well. A header
representing the size of a message is numerical, scalable and sortable, while a
related topic of a message (due to an extractor) can only be used as a discrete
textual classifier. The relation between different meta-data fields is thus
harder to compute. Although this heterogeneity can be used within meta-
data with the same semantics (field name), this usage is strongly discouraged
for its even higher complexity.

Dynamic Over a certain period of time, things on both ends of the
profile might change. The result must represent the user’s interests, which
can change over time (e.g. [42]). On the input, the messages themselves, new
meta-data can become available or might be abandoned. This can be due
to newly added or removed extractors, new media used or other improved
capabilities of the implementation.

Unforeseeable The system is designed to be highly dynamic and ex-
tensible, and to be used over a long period of time. As a result hereof, both
the input and the situations of the user cannot be foreseen in advance. While
the profile remains valid, the user for instance might modify the used situ-
ations. The values used in the field of e.g. a topic classifier (extractor) can
alter over time as well, due to changes in the user’s occupation. Most of
these cannot be established at the time of design, implementation or even
deployment.

Noise As common in machine learning problems, noise will be present
as well. In this case the user can make mistakes in the feedback. Another
important element to consider is inconsistent behaviour of the user. Between
different messages, the user may have the same interests, but provide other
feedback. The system should thus allow for incorrect classification in the set
of known samples.

12.3.5 Transformer Agent

A Data Transformer Agent, or Transformer for short, is generically available
to all users. It provides for transformation of data, from one application for-

89

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

mat to another. These include transformations between different kind of me-
dia, when available. For this reason, advanced features like optical character
recognition (OCR), speech-recognition or synthesis will be necessary. Con-
versions within the same format apply as well, for example down-sampling
audio or reducing the resolution of an image. Note that handling of network-
specific formats and protocols (e.g. SMTP) are handled by the input and
output agents and the corresponding devices. Further improvements to this
agent are presented in 13.2.4.

Properties The most important property of the Transformer Agent is the
fact it is shared by different users. Other aspects are given in Table 12.5.

Table 12.5: Properties of the Transformer Agent

Roles Transformer
Data Message content
Components None
Partners Router Agent
Accessibility Generic
Location Anywhere
Type Static
Instances Redundant, each for multiple users
Remarks Not restricted to messaging,

just provides media-conversion

12.3.6 UI Agent

The User Interface Agent is the point of contact with the user. It forms
an integral unit with an interface device, allowing an user to be notified of,
or access to, its messages. An user has the ability to inform the Profile of
a change in its situation, triggering messages for the new situation to be
given or adjusted to another device. Feedback to a learning mechanism in
the Profile also takes place here. Multiple User Interaction Agents can exist,
connected to different Interface Devices at different places to the network.
Contrary to the Transformer, an UI Agent might need to transform the
transport protocol, to be able to place a message on the wire.

Properties Since the user only has access to the system through this agent,
it handles many functionalities. It does not implement all these functionali-

90

CHAPTER 12. ARCHITECTURE 12.3. AGENTS

ties itself, though. An important detail is the fact that this agent is located
at the user’s device. This means it is the point of access for the user to the
network as well. Since unified messaging has to provide access anywhere,
this can indicate this agent is hosted on a mobile device. An alternative is
hosting the agent as a service handling the last part of the connection, e.g.
as a telephone service. Located at the user’s device is thus a relative term.
Further details can be found in Table 12.6.

Table 12.6: Properties of the UI Agent

Roles User Interface
Data Content of the message
Components User’s interactive device, “display” for the user
Partners Router Agent
Accessibility Personal
Location At user’s device
Type Static
Instances Multiple per user, one active at a time

One per interface device
Remarks Actual delivery of message to user

Point of access to system for user

Examples Since the target is to enable “any” device as a message receiving
facility, many examples can be given. Only a few will be mentioned here.

The most obvious is probably a desktop application. Similar to any e-
mail application, it runs on a personal computer, completely integrated with
the agent. The user has a broad variety of available media here, including
text, images and audio. Other applications can be used here as well, allowing
even more types of media to be received here.

A telephone can be used as well. The agent now will be located on a
system were the telephone service resides. An user can call the service with
any telephone, to activate the particular device. When a new message arrives,
the service rings the user’s telephone, and the message can be played audibly
to the user. The dials of the phone can be used to give commands, based on
an Interactive Voice Response program.

A little unusual will probably be the use of a television. This requires
a programmable television with a network connection of course. The agent
now runs in the television system, and messages can both be shown or played
to the user. The user can use the remote control to interact with the system.

91

CHAPTER 12. ARCHITECTURE 12.4. COMMUNICATION

12.3.7 Storage Agent

The Personal Storage Agent takes care of persistence of messages. It stores
all messages in order for the user to retrieve them later.

Properties Although the Storage Agent is described to be personal in
Table 12.7, the used resources can be shared. Whenever messages are stored
or retrieved, the agent must take care to only access messages of the specific
user.

Table 12.7: Properties of the Storage Agent

Roles Storage
Data Both content and meta-data
Components Background storage (device or service)
Partners Router Agent
Accessibility Personal
Location Anywhere
Type Static
Instances One per user
Remarks Handles persistency

Examples Examples of background storage can be straightforward. A
Storage Agent can be a simple wrapper for an external database. Another
option would be to store messages as regular files on a system, and controlling
those. Other solutions can be created of course, such as traditional UNIX-
mail-spools.

12.4 Communication

In a multi-agent system, agents commonly need to communicate to be able
to cooperate. In this section, an overview of the communication needed is
given (see Table 12.8, grouped by conversation). The type of a message4 is
based on FIPA-performatives [15]. To reduce duplicity, only combinations
of request and inform are given. Agents are allowed to reply to a request

with a refuse or failure as well. These are other FIPA-performatives,

4In this section, these are not regular unified messages, but messages between the agents
themselves in the system (although these may contain the unified message).

92

CHAPTER 12. ARCHITECTURE 12.5. OTHER COMPONENTS

and differ from their corresponding inform in purpose and contain a reason
instead. Replies that can require longer processing may send a similar agree
first, to prevent time-outs.

Table 12.8: Agent communication

Message Type From To Contents
reqMetaData Request Router Extractor Message content, input-device gener-

ated meta-data
infMetaData Inform Extractor Router Meta-data for the message
reqPile Request Router Profile Meta-data
infPile Inform Profile Router Pile(s) and priority for the message
reqFormat Request Router Profile Meta-data
infFormat Inform Profile Router Preferred format for the message
reqTransform Request Router Transformer Format and message content
infTransform Inform Transformer Router Transformed content
reqPresent Request Router UI Full message
infPresent Inform UI Router Storage instruction for message
reqStore Request Router Storage Full message and storage instructions
infStore Inform Storage Router Acknowledgement of success
reqRestore Request Router Storage Message identifier
infRestore Inform Storage Router Full retrieved message

12.5 Other components

Aside from agents, the system will need other elements to function properly.
This section will present a description of these components, most have been
described before as part of their related agent.

Input device An input device is a message receiving device. This can
be any type of hardware, or an abstract “device” such as a network-service
of some kind. Examples of common devices are facsimile machines, voice-
mail recorders, e-mail- and news-ticker-services, etc. . . These devices must be
accompanied with an appropriate Application Programmers Interface (API)
to be usable. They can either provide events for the agent when messages
are received (push), or the agent needs to check them at regular intervals for
new arrivals (pull).

Interactive output device Interactive devices are very common nowa-
days. Each reasonable piece of equipment can be used, ranging from a per-
sonal computer, phone, fax, PDA and so on. . . Of course these devices can be

93

CHAPTER 12. ARCHITECTURE 12.5. OTHER COMPONENTS

accomplished by means of services, like SMS, themselves. An output device
needs an API as well.

Background storage Persistency is commonly supported by means of
background storage. In the used context here however, it is abstracted as
well. A database providing persistency is thus considered a background stor-
age device as well. Others can be used as well, such as files on hard-disks,
tapes or even hard-copy on paper, although the latter would be very imprac-
tical.

User A component that should most certainly not be neglected, is the user.
Normally it is an human entity, who is the reason the system is designed in
the first place. He or she is the one that is supposed to use the system. The
user in the context of the system is the addressee of a message. The sender
will not be addressed with the term user in this document.

94

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6 Work- and dataflow

Now that all the required elements of the architecture are in place, their
coherency can be explained. This will be done along the use cases defined
before (see 10.2 starting at page 61). Each scenario given there will here be
examined with a workflow- and a dataflow-diagram. These should explain
how the work is divided among the different types of agents, and which agent
gets what kind of information. The used diagram methods are explained in
appendix B. Notice the last scenario is extra compared to the use cases. This
scenario is for the presentation of a message, which is shared among three
use cases. To reduce redundancy, this scenario is separated.

95

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6.1 Important new message

Input Factory Router Extractor Profile

Data
arrives

Accept
data

Create
Router

Accept
message

Acquire
meta-data

Accept
message

Accept
message

Accept
result

Acq. pile
& priority

Assign pile
& priority

Accept
result

Extract
meta-data

Present message

Figure 12.2: Workflow for an important new message

When a new message arrives, the workflow behaves as stated in Figure
12.2 with the dataflow in Figure 12.3. The last part of this workflow is
the presentation of the message to the user, as explained later on. A brief
description of this workflow:

1. Data arrives at the Message Input Device.

2. The Factory Agent gets the data, and creates a corresponding Router
with the message.

3. The Router Agent starts of with the message, and will take the message
to the Personal Meta-data Extractor Agent.

4. This instance will annotate the message with meta-data, and return it.

5. Now the Router Agent will take the message to the Personal Profile
Agent.

96

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

Input

Meta-data

Profile

Store

Mediatype

User

Extract

Factory

Profile

Trans-
former

Storage

UI InterfaceInput

R

R R

R

R

R USER

initiate

infMetaData

infPile
reqMetaData

reqPile

Present message

Figure 12.3: Dataflow for an important new message

6. Here, the message will be assigned a priority and the situation(s) it
belongs, and is handed back again.

7. The message travels further to be presented to the user.

97

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6.2 Unimportant new message

Input Factory Router Extractor Profile Storage

Data
arrives

Accept
data

Create
Router

Accept
message

Acquire
meta-data

Accept
message

Accept
message

Accept
message

Accept
result

Acq. pile
& priority

Assign pile
& priority

Accept
result

Store

Extract
meta-data

Store
message

Accept
acknowl.

Figure 12.4: Workflow for an unimportant new message

Another scenario is when the incoming message is not important to the
user at the moment (see figures 12.4 and 12.5). This workflow is almost
identical to that of an important message. The only difference is the last
part, where the message will not follow the way to be presented to the user,
but instead is taken to the Personal Storage Agent.

98

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

Input

Meta-data

Profile

Store

Mediatype

User

Extract

Factory

Profile

Trans-
former

Storage

UI InterfaceInput

R

R R R

USER

reqMetaData

infMetaData

reqPile
reqStore

infPile

initiate

RR

infStore

Figure 12.5: Dataflow for an unimportant new message

99

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6.3 User situation change

Profile Storage UI Interface User

Situation
changeAcceptation

Perform
change

Accept
change

Create
Notify

Accept
notification

Accept
message

Deliver
notification

Create
Request

Accept
message

Deliver
request

Accept
request

Router

Update
situation

Retrieve
messages

Accept
result

Present message

Figure 12.6: Workflow user situation change

Figure 12.6 presents the workflow for the case where the user changes its
current situation. When the user changes its situation, the messages that
have become important due to this new situation, should be retrieved. This
could cause multiple messages to be presented to the user.

1. The user changes its situation.

2. Its interface triggers the User Interface Agent.

3. This User Interface Agent sends a notification,

4. which is routed by the Router Agent,

5. to the Profile Agent.

100

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

Input

Meta-data

Profile

Store

Mediatype

User

Extract

Factory

Profile

Trans-
former

Storage

UI InterfaceInput

R

R USERR

R

initiate(s)

initiate

reqProcessing
reqRestore

infRestore

Present message

R

R

Figure 12.7: Dataflow user situation change

6. Who will update the situation.

7. Furthermore, it will create Router Agents as requests for all messages
that have become important now.

8. These Router Agents place the requests,

9. at the Storage Agent.

10. The latter will return all messages with the Router Agents, where they
are handled to be presented to the user. They behave similar to mes-
sages requested directly by the user.

101

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6.4 User feedback

Router Profile UI Interface User

Message
feedback

Accept
action

Pass
feedback

Accept
feedback

Create
Notify

Accept
notification

Accept
message

Deliver
notification

Learn

Figure 12.8: Workflow user feedback

A user can provide feedback as well (figures 12.8 and 12.9).

1. An user provides feedback after receiving a message.

2. The user’s Interface will trigger the User Interface Agent,

3. to send the feedback.

4. This is routed by the Router Agent to the Profile Agent.

5. This will learn from the feedback, to improve its performance.

Although the diagram shows the Router Agent to move with the feedback,
there is no statement regarding the moment of movement. Since the Router
Agent is autonomous, it has some freedom of its movements. The Router
agent therefore can wait with its actual movement until favourable conditions
exist, for instance until an open (or less expensive) network connection is
already established.

102

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

Input

Meta-data

Profile

Store

Mediatype

User

Extract

Factory

Profile

Trans-
former

Storage

UI InterfaceInput

R

R R

R

R

R USER

initiate

reqProcessing

Figure 12.9: Dataflow user feedback

103

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6.5 Store message

Router UI Interface User

Store
request

Accept
store

Pass
command

Accept
command

Modify
message

Accept
result

Store

Storage

Accept
message

Store
message

Accept
acknowl.

Figure 12.10: Workflow store message

The figures 12.10 and 12.11 represent the situation where a user wants to
store a message. Similar to the handling of feedback, the move of the Router
is not necessarily immediately. Note that storage can only happen after a
message is received or requested, and is thus a reaction to the presentation
of the message (see 12.6.7).

1. The User wants to store a message.

2. The user’s Interface will trigger the User Interface Agent,

3. to annotate the message with storage information.

4. Next, it is routed by the Router Agent,

5. to the Storage Agent, where it is stored.

104

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

Input

Meta-data

Profile

Store

Mediatype

User

Extract

Factory

Profile

Trans-
former

Storage

UI InterfaceInput

R

R R

R

R

R USER

infPresent

reqStore

infStore

Figure 12.11: Dataflow store message

105

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6.6 Request message

Router UI Interface User

Message
request

Accept
action

Pass
command

Accept
command

Create
Request

Accept
message

Deliver
request

Storage

Accept
request

Retrieve
message(s)

Accept
result

Present message

Figure 12.12: Workflow request message

The opposite of storing a message, is of course requesting a message from
the storage. A request to restore a message is a special kind of message,
that is initiated by the UI Agent. The Router Agent does not start directly
with the message, but has to retrieve the message at the storage first. Each
requested message has to be shown, hence only a format is requested from
the profile. This workflow also ends with the presentation.

1. The User requests a message.

2. The user’s Interface will trigger the User Interface Agent,

3. to send a corresponding request.

4. This is routed by a Router Agent to the Storage Agent.

5. This will post the requested message to the Router, to be handled for
presentation.

106

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

Input

Meta-data

Profile

Store

Mediatype

User

Extract

Factory

Profile

Trans-
former

Storage

UI InterfaceInput

R

R R

R

R

R USER

initiate

reqRestore

infRestore

Present message

Figure 12.13: Dataflow request message

107

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

12.6.7 Present message

Router Profile Transformer UI Interface User

Assign user
pref. format

Accept
message

Accept
message

Accept
message

Accept result

Acquire
format

Accept
result

Acquire
transform.

Accept
result

Transform
message

Show

Determine
action

Accept
action

Do action,
show user

Perceive
information

Figure 12.14: Workflow present message

The flows for the presentation of a message are equal for several of the
previous mentioned situations. They are given in figures 12.14 and 12.15.

1. A Router Agent has a message to be presented, and sends it to the
Profile Agent.

2. This agent decides the format to be used, and returns the message.

3. Now the router takes the message to the Data Transformer Agent,

4. where it is transformed and returned.

5. Next it is taken to the UI Agent, where it is given to the Interface to
be shown to the user.

108

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

Input

Meta-data

Profile

Store

Mediatype

User

Extract

Factory

Profile

Trans-
former

Storage

UI InterfaceInput

R

R R

R

R

R USER

reqTranform

infTransform

infPilereqPile

reqPresent

Store message

Figure 12.15: Dataflow present message

People might notice a weakness exists in this model. Once a format is chosen
to present a message, and a transformation has happened, the user’s situation
might have changed. This could even involve the situation that the user is
not reachable at all. In this case, a reevaluation can occur, which is described
in more detail in the task-model (section 14.1.2, in particular in Figure 14.4
on page 124 and its description).

There is an important reason for the move from the Transformer Agent
to the UI Agent. Although this move is the move of an agent through a
network, this implies the move to the user’s (physical) location as well. The
UI Agent is located at the user’s device, or directly connected to it. The
move of the Router Agent is towards this UI Agent, thus towards the user. If
the user is at home for instance, this moves indicates a movement the user’s
home-network. Would the user be travelling, the Router Agent delivers the

109

CHAPTER 12. ARCHITECTURE 12.6. WORK- AND DATAFLOW

message through the user’s telecom operator. The Router Agent’s movements
therefore brings the message to the user.

110

Chapter 13

Anticipations

Some further considerations, that do not directly affect the design, but are
worth mentioning anyway. They start with learning capabilities for the pro-
filer, followed by some ideas for addition of other functionality. These are
anticipations for the feasibility and future developments of the proposed ar-
chitecture.

13.1 Profile learning

One of the main aspects not covered by the architecture is the Profile Agent
itself. In the architecture it is considered to be an user profiling agent capable
of learning to improve future decisions. Seen from the architecture point-of-
view, this is an implementation. An important issue therefore is to know if
such an agent is possible. This learning problem is described below.

Note that no choice in favour of any algorithm is made here. Due to the
use of a separate, personal, profile agent, different algorithms can be applied
for different users. Replacing this agent allows to test the new profile algo-
rithm, allowing to select the best fitting one. The list of algorithms presented
in section 7.3 is neither complete, nor restrictive. It rather shows there are
possibilities to use, not leaving the design with an unsolvable problem. The
optimal algorithm will likely be a complex combination of algorithms, which
will differ per user. Static rules as part of this profile method are neither
excluded.

13.1.1 Learning problem

Before we can describe a solution for a learning-problem, a description of
the problem itself is needed. A brief description with some examples is

111

CHAPTER 13. ANTICIPATIONS 13.1. PROFILE LEARNING

given here. In principle, the Profiler has to assign situations1 to a message,
based on its meta-data. Feedback can be provided by the user regarding the
decision made, to be used as positive and negative examples. In short, we
learn decisions for situations based on meta-data.

For a learning algorithm in general, two domains are essential: the input,
and the output. Other parameters like number of examples, possible error
of judgement, etc. . . are not discussed, since performance is not considered
to be in the main scope of the project. Started is with a short description of
the output-domain, and the more distinct input-domain afterwards.

On the output-side of the profile, zero or more situations2 have to be
given. A situation is user-defined, thus can be regarded to be a label. No
further assumption for correlations are used here, as those can differ per user,
and complicate possible expression of situations dramatically. A hierarchical
definition could be useful, but is more complicated as well. The use of labels
as output allows a great degree of freedom in possible algorithms, many
algorithms are supposed to be able to deliver such a set.

The input into the Profiler exists of meta-data. Meta-data has a broad
meaning, thus should be evaluated further here. In general one can say meta-
data exists of an amount of fields3, each with a semantical value, and their
contents. Typical meta-data has four important degrees of freedom:

Number of fields The number of fields may vary per message, depending
on the extractors available. Addition of a specific extractor can add
one or more fields. Message Factories can generate meta-data as well,
which can vary per device.

Fields present Fields present with one message, can be omitted with other
messages. The presence of fields depends heavily on two things: source
(input device) and extractors. The former defines the meta-data that
arrives with the message itself (e.g. time, size, sender), that varies per
device. For the latter one can think about extractors that are media-
specific (e.g. voice-stress-analysis to determine the urgency), or those
that depend on available data (such as an known contact when using
address-book lookup to resolve the real name from a sender’s device-
or protocol-address).

Heterogeneous content Not only is there no (given) relation between the
separate fields, their type of contents can vary too. An urgency deter-
mination can be seen as sortable values, while a sender’s address is a

1Formats are handled in a similar or even simpler way.
2For simplicity, assigning an extra level of priority is neglected.
3A field is often called attribute in machine learning.

112

CHAPTER 13. ANTICIPATIONS 13.1. PROFILE LEARNING

full-text label. Another possibility is a list of values, for example when
using a topic or keyword determination extractor.

Unknown content The content value of each field is not defined before-
hand. When using dynamic extractors, new values can appear with
each message. Factories that provide meta-data allow for varying con-
tent as well, e.g. since messages can arrive from nearly any sender.

Of course, two other problems cannot be neglected. These are quite common
in machine learning [47] and user profiling however. The first is that in the
described design, the learning of a profile should happen unsupervised, thus
fully automatic. Another is the fact that users can behave inconsistent or
make mistakes during feedback.

Conclusion hereof is that, within certain limitations, the meta-data is
structured, but has no fixed structure4. Furthermore, the possible structure
is not necessarily known in advance, due to replacing or adding agents in an
existing system. Using non-fixed input-data does limit the possible choice
of algorithms, since many require fixed-length or fixed content types. Those
algorithms are thus not suitable for easy — on the fly — adapting to the
user’s situation, profiting from added capabilities in other parts of the system.

In 7.3 a few approaches for learning by machines are described. The
algorithms stated in that section are considered reasonable candidates for
profiling learning as stated here. Most of these can easily be adopted to cope
with heterogeneous fields, as well as various available fields. More details of
various machine learning algorithms can be found in for instance [47].

13.1.2 Examples

As a demonstration of the involved complexity, a few (hypothetical) exam-
ples of possible messages are given. The meta-data is given and the related
classification is described as well.

Example 1 Given the simple fact that this is marked to be from a cus-
tomer, this message is assigned the situation work. If the user’s current sit-
uation is work, the message is forwarded immediately, otherwise it is stored
till the user is at work.

4 One could argue that the meta-data can be grouped to a certain extent, i.e. meta-data
related to sender, receiver, content, etc. . . Although this can be used in an implementation,
it does not have a large impact on the point made. Within the limited structure of these
groups, the same issues still apply.

113

CHAPTER 13. ANTICIPATIONS 13.1. PROFILE LEARNING

Table 13.1: Meta-data example 1

Sender 012-345-6789
Source-device fax
Size 3 pages
From PaysMeWell Inc.
Relation Customer

Example 2 In this case, there is reason to belief this message is indeed
urgent. All possible situations could be assigned, allowing to reach the user
as soon as possible.

Table 13.2: Meta-data example 2

Sender 987-654-3210
Source-device voice-mail
Length 16 seconds
From Brother
Urgency Highest
Time 03:42

Example 3 Now the profiler could make the decision to assign this message
no situation at all, since this is considered to be spam. This message is
therefore not stored on any pile, but just in the storage, where it actually
could result in discarding the message if spam is not stored at all.

Table 13.3: Meta-data example 3

Sender joe@foo.bar
Source-device e-mail
Spam-rating 0.76
Time-of-arrival 15:03
To every-user@entire.planet.com

114

CHAPTER 13. ANTICIPATIONS 13.2. EXTENSION

13.2 Extension

Although the required scenarios have been covered by the presented archi-
tecture, it would be useful to be able to cover other scenarios as well. Some
alternate scenarios to extend the currently designed functionality are pre-
sented below. They are accompanied by a rough solution, but this shall be
far from complete or mandatory. Scenarios to integrate with other systems
and concepts are discussed as well, under the same conditions.

13.2.1 Automated translations

An useful feature that could be added is found in the fundamental concept of
communication. The whole basis for unified messaging, as explained before,
is to transfer a thought from one person to another. Though unified mes-
saging will solve this by delivering this without the restriction of the used
medium, people can still use different languages. Including automatic trans-
lation allows people with different native languages to communicate more
easily. Quite decent automated translation tools are available nowadays (for
example [1]). The functionality described above can be added to the design.

There are two possible solutions to be used here. The first is the addition
of a phase in the entire process. As explained at the choice to have Router
Agents, addition of a phase requires two adjustments. The Routers will have
to incorporate a new phase, before or after the transformation. Another
agent has to be created, which handles the translation (one could call it a
Babel Agent).

This poses one problem however. Current implemented technologies often
require a regular text format to be used. Therefore, extra transformations
might be required, introducing their own risks. Integrating translation with
the Transformer Agent might thus be another reasonable option. In this situ-
ation, the definition of the format, as used for indicating preferred formats of
messages, has to be extended. A language parameter should be incorporated
in a message’s format. The plan formulated within the Transformer then can
incorporate the translation.

13.2.2 Sending messages

All of the described functions so far, have been related to receiving mes-
sages. An important condition for receiving messages is that someone (or
something) has send these. The user itself should be able to send messages
as well, if only it were to respond to received messages.

115

CHAPTER 13. ANTICIPATIONS 13.2. EXTENSION

This could actually be integrated with the existing system. Some of the
components should be extended or adapted, but that is to be expected when
adding functionality. The concept used to receive messages can mostly be
adopted though. Some phases can be left out, and the direction has to be
reversed however.

The UI Agent has to be able to create messages, which can be in any for-
mat. After the message has been created, the virtual address-book described
at the Extractor can optionally be used to find the (device-)address. Now,
a format can be assigned, based on the chosen device, through a preference
agent or just as plain facts. The Transformer now can be used to achieve this
format for the message. The last step would be to post a message with a re-
versed factory, which posts a message to another system instead of receiving
messages from other systems.

13.2.3 Synchronous communication

Although synchronous communication (direct two-way communication like
telephone) was left out of scope, a few things can be said. The described
design can integrate synchronous information nonetheless. Half of the system
will be unused, since it cannot be applied. The Router Agents have to be
adjusted to leave these parts out, and their functions should be mainly to set
up a connection. The remaining can be:

1. A Factory receives an incoming call, and generates a Router Agent,
which will set up the call.

2. The Extractor is mainly left out, only the address to name translation
can be incorporated.

3. The Profile can be used, but will have less meta-data to make a decision.

4. The current UI Agent must have the capability to use synchronous
communication of course.

5. When a connection will be set up, the UI Agent will handle the re-
mainder of the call.

6. Otherwise, the Router Agent can return to the Factory, which can
switch to voice-mail-mode.

Note that (near) real-time constraints are in place when setting up a
synchronous connection.

116

CHAPTER 13. ANTICIPATIONS 13.2. EXTENSION

13.2.4 Enhanced dynamic extensibility

Although most of the designed agents will not change all that often, even
further improvements can be added to the concept. Two agents in particular
are designed to be extensible. Both the Extractor Agent and the Transformer
Agent can be exposed to additional capabilities. The Extractor Agent can
be extended with new extractor capabilities to improve its informativeness.
Transformer Agents can incorporate additional transformations, to improve
quality of transformation or possible transformations.

In order to maintain full dynamic extensibility, an enhancement in the
proposed concept is possible. Instead of creating a single agent that both
plans and performs the transformation or extraction, multiple agents can be
used. The Extractor and Transformer need to be replaced once, with an
agent that supports the used of extensions of transformations in external
agents. The main agent will do the planning, while the external agents do
the actual work. To provide the Router Agent with a single point of access,
the planner remains the “central” point of contact. This agent will transfer
its work to the actual performing agents. These agent can register at the
planner-agent using the FIPA-performative subscribe.

This will not dramatically alter the design though. Both agents behave
practically equal. Only difference will be that the performing agents are
not directly contacted. The delegation of the actual task to other agents
will not be noted5. It does allow easy addition or replacement of individual
extractions and transformations. The single task can be added by launching
an agent with just this task, that subscribes at the planner-agent.

13.2.5 Other agents from the user

Perhaps one of the most discussed type of agents is the personal assistant.
In this relation, the agent is the user’s digital agenda, travel-agent, archiver,
bookkeeper, etc. . . You could say the agent is supposed to be a full digital
secretary. One task of such a secretary would of course be communication
management. The described system can be integrated to handle this after a
little modification. Other functions could be designed as agents as well. This
leads to interaction between these agents, one example of which is described
below.

An example of an agent would be a calender agent. This agent will keep
track of the user’s appointments, and will make those with other people (or
their agents). Notifications to change an appointment might be sent by e-
mail. These messages should thus not be sent to the user itself, but have to

5Except perhaps some additional delay.

117

CHAPTER 13. ANTICIPATIONS 13.2. EXTENSION

be handled by another of its agents.
A general solution to catch communication designated for other agents is

the following. The Extractor should be extended with a subscription mech-
anism, as described in the previous section. An agent that expects messages
can subscribe as an extractor. Beside from extracting meta-data, it should
mark the message with a field to route it to itself. The profiler should be
adjusted to route such messages to the appropriate agent.

Note that in this case the agent really uses the system for its own benefit.
These agents can be used to improve the system’s performance as well. A
personal calendar agent can be included to mark messages regarding short-
term appointments. The profile can utilise this information in the decision
whether the message is important.

118

Part IV

Prototype

This part about the build prototype starts with a chapter about the
technical design (chapter 14). This is rather generic, and could be used
for any implementation. Chapter 15 describes the created implementation
based on this design. Together they form the prototype that was build for
the designed system.

119

Chapter 14

Technical Design

After the findings of part III, we have a functional and global design. Based
on this design, a technical design was made as well. This is a further re-
finement of the previous presented design. Since the design prescribes the
functions each agent has to fulfil, these function will first be specified. The
results are presented in the first section. The second section, from page 133
and further, partially describes the object model. This model is the last step
before the actual implementation, and a few samples of this object model
will be given.

14.1 Task model

In the following sections, the tasks of each agent are described. This is done
with both task hierarchies and task state transaction diagrams. Both type
of diagrams are explained in appendix B.

Task-hierarchies display the relation between tasks. It does not imply
any transitions between tasks, nor any transfer of data or decisions. A task-
hierarchy represents the mutual relation between tasks, identifying the main
tasks and their subtasks.

The accompanying task-states do show these transitions and decisions.
These task-states show which steps are taken during the process, and when
branches can occur. Regarding the task-states one has to keep in mind that
missing failures are normally fatal ones. Some of these are not defined, like
failings during storage of a message, and are left for further development.

121

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Factory task Wait input Create Router
Agent

Figure 14.1: Task hierarchy of a Factory Agent

Wait input

taskStarted

Create Router Agent

succeed

succeed

Figure 14.2: Task states of a Factory Agent

14.1.1 Factory Agent

A Factory’s main task is feeding messages into the system. The messages are
either received by a waiting task, or polled at regular intervals by a similar
task. Once received, it is packed as a message for the system, together with
the known available meta-data (such as time of arrival and sender) and the
current format. With this package, a Router Agent is created, which starts
at the state of a new message.

14.1.2 Router Agent

A Router Agent “simply” helps the message through all required phases of
processing. First it will attempt to acquire meta-data. Next, the Profile is
given a chance to assign situations and a priority to the message. When a
message has to be shown immediately, it will ask the Profile for a format.
Next, it requests the Transformer for this format. Last, it is shown to the
user via the UI Agent.

Some states are not always successful, due to (network-)failure, unknown
media-formats, or other causes. This is where alternative scenario’s have to
take over. In case no meta-data can be assigned, the message is to be judged
without additional information. When no format can be assigned (or is not
needed), a direct attempt to show the message in the current format is made.
When a transformation cannot be accomplished, another format is requested.

122

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Router task

Determine
required agent

Locate
agent

Wait result

Move to
agent

Route
message

Acquire
meta-data

Acquire pile
and priority

Acquire
transformation

Acquire
format

Show
message

Store

Retrieve

Post
message

Figure 14.3: Task hierarchy of the Router Agent

If a message cannot be shown, another attempt to request its priority can be
made, assigning it to either (return to) store, or make another attempt to be
shown. Errors while storing or retrieving messages are fatal in this design.

When a Router Agent starts as a request to restore a message, it starts to
retrieve the message. Next, it enters the same trajectory as a message that
has to be shown now. Note that a message that enters the store returns in
this state.

Phase details Note that each phase-task (in Figure 14.4) is actually a
task consisting of multiple other tasks. All are basically the same: Find the
agent, move there if needed, post the message and await the result. These
are described below, and are shown in Figure 14.5. Only difference between
these phases is the actual data that is communicated, as described in 12.4
and shown in the dataflow diagrams of 12.6.

A remark about finding an agent needs to be made: Finding another
agent is not wandering around and see if its here. The infrastructure needs
to support some type of name lookup. This theoretically requires all places
to have a mechanism for such a lookup, which should be up-to-date for all
locations. Although this implies a (massive) distributed system, this is not
considered a problem. Such systems already have been employed on large

123

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Acquire meta−data

newMessage

Show message

Acquire transformation

Acquire format

endMessage

Retrieve

Acquire pile & priority

Store

requestMessage

succeed

succeed/failed

succeed

succeed

NOW

succeed

stored

later

failed

failed

failed

keep

original

Figure 14.4: Task states of the Router Agent

scale based on open standards, implemented for nearly all networked systems
in the form of DNS [49], which can quite easily be adopted.

After the required service is determined (which follows naturally from
the phase-task), the agent that provides that service1 is determined. Such
an agent is located, and when it cannot be found locally, the Router moves
to another location (where it is likely to find one, or a route towards one,
making moves recursive). If this service can be found at the Router’s location,
the message is posted there. Now the Router waits for the result, which is
used to update the message and / or its meta-data. Note that each move
can be replaced by passing the message to another Router Agent, including
the message’s current state, which is essentially the same as a movement.
Another remark has to be made regarding robustness. An agent that executes
a move is supposed to move uncorrupted (errors introduced due to problems
during the transport). If such corruption can occur, the task should include

1The Extractor, Profile, Transformer, UI and Storage Agents.

124

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Determine
required agent

messageReceived

Locate agent Move to agent

Post message

Wait result

endTask

failed

failed

succeed

succeed

not local

localfailed

succeed

Figure 14.5: Task state of each Router Agent phase

an additional mechanism to recover from errors2.

An important function is fulfilled by the locate and move in the phase task
model. This move is essential for the distributed nature of the agent system.
All agents in the system are bound together because the Router Agents can
find them. In particular the move for the phase to show a message to the
user is crucial. The move in the show-phase effectively brings the message to
the user (and its location). This provides for the anywhere promise of unified
messaging.

Specialisation Last thing a Router Agent can do is transport a notification
from the UI Agent to the the Profile. These notifications contain the special
messages with feedback or updates in the user’s situation. Essentially, this is
the same as the (sub-)task shown in Figure 14.5. It needs to locate the Profile
Agent, and deliver the notification. As a result, this forms the connection
from the user back to the system through the network.

2Such as checkpoints, where the current situation is frozen and can be restored.

125

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

14.1.3 Extractor Agent

Extractor
task

Wait
message

Plan
extraction

Execute plan

Return
message

Meta-data
extraction 1

Meta-data
extraction 2

Figure 14.6: Task hierarchy of an Extractor Agent

Meta−data extraction

messageReceived

Execute plan

Plan extraction

Return message

endTask

succeed / failed

succeed

plan ended succeed / failed

plan not ended

Figure 14.7: Task states of an Extractor Agent

The Meta-data Extraction Agent is a reactive agent. When a request to
process a message arrives, it examines which meta-data extractions can be
applied. This is formulated as a plan. Next, this plan is executed by perform-
ing each meta-data extraction task. Each such task annotates the message
with additional meta-data. When an extraction fails, the plan therefore can
continue, but without the additional meta-data. After the entire plan is
executed, the result should be returned to the originating Router.

126

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Extended extractions One may notice this design does not allow to dy-
namically add new extraction capabilities to this agent. In this design one has
to replace the Extractor to add functionality, rather than add a new function
to the existing Extractor. This is not difficult to realise however, as described
in 13.2.4. One should replace the Extractor once, with an extraction task
that allows other agent to subscribe as another extractor. Once a message
arrives at this new extractor, it can be handed to other subscribed extrac-
tors with new capabilities as well. Only one additional task is needed, which
allows a remote extraction task (handing the message to another extraction
agent), and adjust the planner accordingly.

14.1.4 Profile Agent

Profile task Wait
message

Inspect
Status

Assign

Return
message

Assign
situation

Assign
format

Wait
change

Wait
feedback

Update
situation

Learn

Create Router
Agent (request)

Figure 14.8: Task hierarchy of a Profile Agent

The Profile Agent is reactive to three events. First of all, it reacts to
messages. When a message arrives, it inspects the message which service has
to be provided. Next, either applicable situations or the preferred format are
assigned. Afterwards, the result is reposted to the originating Router.

The second reactive task is related to the update of a user’s situation.
After receiving such a notification, the known current situation is updated.
Next, requests are created to present all messages that have become impor-

127

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Update situation

updateReceived

endTask

Agent(s) (request)
Compose Router

Inspect status

messageReceived

Assign situation Assign format

Return message

endTask

Learn from feedback

feedbackReceived

endTask

succeed/failedsucceed

succeed

needs formatneeds situation

succeed

succeed/failedsucceed/failed

Figure 14.9: Task state of a Profile Agent

tant in the new situation. These requests are created as a Router Agent,
each of which starts in the request state.

The third and last task of the Profile Agent is to receive feedback notifi-
cations. Learning from this feedback is the only subtask performed here.

14.1.5 Transformer Agent

Transformer
task

Wait
message

Plan
transformation

Execute
plan

Return
message

Data
transform 1

Data
transform 2

Figure 14.10: Task hierarchy of a Transformer Agent

The Transformer Agent handles conversion of one media-format to an-
other. An arriving message includes the original message in a given format,

128

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Execute plan Data transformation

Return message

endTask

messageReceived

Plan transformation

plan not ended

succeed

failed

succeed

plan ended

succeed

Figure 14.11: Task state of a Transformer Agent

and a destination format. The destination format has to be reached by the
Transformer. First, a plan to reach this destination must be made (compare
with the Automatic Path Creation found in [56] or the Conversion Planner
of [58]). Next this plan is executed, and the result reposted. Note that this
whole transition is similar to the Extractor. The only difference is the han-
dling of a failure of a transformation step. Since the created plan is sequential
instead of additional, a failure disables the entire sequence. Therefore, a new
plan has to be created that avoids the failing path. When a succeeding plan
cannot be established, the transformation cannot be made.

Extended transformations As with the Extractor Agent, it is possible to
dynamically add new conversions with only a slight modification. Similar as
described on page 127, one has to add a registration task. This registration
should allow the agent to incorporate a remote task in the conversion plan.

14.1.6 UI Agent

Since the User Interface Agent handles all possible actions of the user, it has
four tasks. The first is the only one triggered by the system, the event of
an arriving message. The last three are caused by the user itself, namely
the feedback for a message, changing the current situation, and requesting
a message. Notice the other operations with regard to the storage are not

129

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

UI task Wait
message

Alert user

Wait view
command

Wait store
command

Wait user
change

Wait
feedback

Compose
feedback

Show user

Modify
message

Create Router
Agent (request)

Compose
change

Determine
message status

Display
message

Figure 14.12: Task hierarchy of an UI Agent

described.
An arriving message is examined upon arrival. If it is a new message,

the user is alerted in an appropriate fashion. When the user requested the
message, it is shown. After an alert, the user may request to view a message.
When a message is shown, the user can optionally store the message. In the
latter case, the message is modified with additional storage instructions, and
returned to the Router.

When an user provides feedback, a Router as notification is created. This
is essentially the same as a normal Router Agent, only limited to take the
special message (notification) to the Profile. When the user changes its
current situation, a similar task is performed.

A command to view a message is handled in an equal way. The only
difference is that instead of a notification a request for a message is created.
This includes a request to receive a list of available messages, which is a
special request for the headers of multiple messages.

14.1.7 Storage Agent

A Storage Agent handles 2 events. The first is a request, either directly
from the user (through an UI Agent) or caused by the Profile Agent (to
request important messages after a change in the situation). The second is

130

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

messageReceived

Show userAlert user

Get message status

storeCommand

Modify message

endTask

Return message

viewCommand

changeReceived

Agent (change)
Create Router

endTask

feedbackReceived

Agent (feedback)
Compose Router

endTask

viewCommand

Create Router
Agent (request)

endTask

newly arrived requested

succeed/failed

succeed

succeed/failed

failure

succeed

failed
succeed

succeed succeed

succeed

Figure 14.13: Task state of an UI Agent

Storage task Wait
message

Store
message

Find
messages

Retrieve
message

Fetch
messages

Return
message

Wait
request

Figure 14.14: Task hierarchy of a Storage Agent

an arriving message, that has to be stored, from the same sources.

The first case starts with finding the message or all requested messages.
Next, the message(s) have to be retrieved from the storage, by fetching them

131

CHAPTER 14. TECHNICAL DESIGN 14.1. TASK MODEL

Find messages

requestReceived

Retrieve messageFetch messages

messageReceived

Store

endTask

Return message

endTask

succeed
messages left

succeed/failed

succeed

no messages left

succeed

Figure 14.15: Task state of a Storage Agent

all. After fetching, they are returned to the Router Agent. Note that retrieval
of multiple messages is accounted for in order to retrieve lists of available
messages or aggregated messages.

Storing a message is pretty straightforward. A message with storage-
instructions (i.e. with which indexes, in which folder, etc. . .) arrives. The
message is stored according these instructions. Other operations are not
described in detail here, but can be handled in a similar fashion.

132

CHAPTER 14. TECHNICAL DESIGN 14.2. OBJECT MODEL

14.2 Object model

Figure 14.16 shows a global view of the object model. This is presented
in standard UML, although no attributes nor any methods are given. For
the Router Agent in the design, a more detailed diagram will be given next.
The other agents will not be described any further. Due to the size of the
diagrams only the selected agent will be presented in this document. Note
that this one is not entirely complete, the diagram is reduced for practical
reasons. The implementation is commented with javadoc, which can provide
a more detailed description. Note that the Agent and TaskScheduler are
classes from the Tryllian ADK [75].

Agent

RouterAgent FactoryAgent ServiceAgent

ExtractorAgent

StorageAgent

UIAgent TransformerAgent

ProfileAgent

Figure 14.16: UML object model for agents

14.2.1 Router Agent

The object model of the implemented Router Agent looks rather complex
at first sight. It involves a lot of inheritance however, since most tasks are
only small variations of a more generic task. Figure 14.17 shows a part of
the object model of the Router Agent. If one compares it with the Router
Agent’s task hierarchy and task-state transition (Figures 14.4 – 14.5), one
can recognise each task. The easy way the process to handle a message can
be composed on this basis is demonstrated in 15.5.1.

133

CHAPTER 14. TECHNICAL DESIGN 14.2. OBJECT MODEL

R
o

u
terA

g
en

t
-
m
e
s
s
a
g
e
:

M
e
s
s
a
g
e

R
o

u
terT

ask
-
a
c
q
u
i
r
e
M
e
t
a
D
a
t
a
:

R
o
u
t
e
r
P
h
a
s
e
T
a
s
k

-
a
c
q
u
i
r
e
P
i
l
e
:

R
o
u
t
e
r
P
h
a
s
e
T
a
s
k

-
a
c
q
u
i
r
e
F
o
r
m
a
t
:

R
o
u
t
e
r
P
h
a
s
e
T
a
s
k

-
a
c
q
u
i
r
e
T
r
a
n
s
f
o
r
m
a
t
i
o
n
:

R
o
u
t
e
r
P
h
a
s
e
T
a
s
k

-
s
h
o
w
:

R
o
u
t
e
r
P
h
a
s
e
T
a
s
k

-
s
t
o
r
e
:

R
o
u
t
e
r
P
h
a
s
e
T
a
s
k

-
r
e
s
t
o
r
e
:

R
o
u
t
e
r
P
h
a
s
e
T
a
s
k

R
o

u
terP

h
aseT

ask
-
l
o
c
a
t
e
:

P
h
a
s
e
L
o
c
a
t
e
T
a
s
k

-
m
o
v
e
:

P
h
a
s
e
M
o
v
e
T
a
s
k

-
p
o
s
t
:

P
h
a
s
e
P
o
s
t
T
a
s
k

+
w
a
i
t
:

P
h
a
s
e
W
a
i
t
T
a
s
k

-
r
e
q
u
i
r
e
d
A
g
e
n
t
:

S
e
r
v
i
c
e
A
d
d
r
e
s
s

A
cq

u
ireM

etaD
ataT

ask
A

cq
u

ireP
ileT

ask

A
cq

u
ireF

o
rm

atT
ask

A
cq

u
ireT

ran
sfo

rm
atio

n
T

ask
S

h
o

w
T

ask

S
to

reT
ask

T
askS

ch
ed

u
ler

D
efau

ltT
ask

P
h

aseL
o

cateT
ask

-
a
g
e
n
t
N
a
m
e
:

S
t
r
i
n
g

-
a
g
e
n
t
:

S
e
r
v
i
c
e
A
d
d
r
e
s
s

-
a
d
r
e
s
s
e
e
:

A
d
d
r
e
s
s

P
h

aseM
o

veT
ask

-
n
e
a
r
:

S
e
r
v
i
c
e
A
d
d
r
e
s
s

P
h

aseP
o

stT
ask

-
s
e
r
v
i
c
e
:

S
e
r
v
i
c
e
A
d
d
r
e
s
s

-
r
e
q
u
e
s
t
:

R
e
q
u
e
s
t
T
a
s
k

P
h

aseW
aitT

ask
-
w
a
i
t
W
h
o
m
:

S
e
r
v
i
c
e
A
d
d
r
e
s
s

R
esto

reT
ask

M
o

veT
ask

R
eactiveT

ask

R
eq

u
estT

ask

S
erviceA

d
d

ress
-
a
d
d
r
e
s
s
:

A
g
e
n
t
A
d
d
r
e
s
s

+
g
e
t
A
d
d
r
e
s
s
(
)
:

A
g
e
n
t
A
d
d
r
e
s
s

+
s
e
t
A
d
d
r
e
s
s
(
w
h
o
:
A
g
e
n
t
A
d
d
r
e
s
)
:

v
o
i
d

d
o
e
s

p
e
r
f
o
r
m
s

r
e
q
u
e
s
t
s

m
o
v
e
s

c
o
n
t
a
c
t
s

d
o
e
s

d
o
e
s

d
o
e
s

d
o
e
s

F
igu

re
14.17:

P
artial

U
M

L
for

th
e

R
ou

ter
A

gen
t

134

Chapter 15

Implementation

This chapter describes the translation from design to the implementation of
the prototype. It mainly describes the implementation of the prototype. It is
not meant to describe design choices for the prototype. Note that the reader
is expected to have prior knowledge of the design of the system.

15.1 Environment

The entire implementation has been based on Java 2 Standard Edition [69]
(version 1.3) and the Tryllian ADK [75]. Java is a platform independent
OO-language, running in a Java Virtual Machine. It is used as the basis for
the Tryllian ADK, which is described in appendix A. The latter allows easy
creation of mobile agents, creating agents with their tasks. As development
system a standard Linux desktop computer was used. The User Interface
Agents (see 15.9) were run under MS Windows as well.

15.2 Messages

A message consists of two parts, corresponding with the design. The first
part is a descriptive part, containing all headers. These include headers
added by agents throughout the process. The second part consists of the
message itself.

15.2.1 Envelope

The first part of a message consists of headers. These headers are expressed
as a XML-document [8]. Using XML has some advances, among which two
important ones. The first is easy modification between versions, thus allowing

135

CHAPTER 15. IMPLEMENTATION 15.2. MESSAGES

addition of headers without directly disturbing existing data or an agent using
an older versions. The second is the availability of existing parsers, which
allows for easy implementation.

<message envelope
id=’1−machine.net−RemcoSchaar−1016453553467−6877721874412959’>
<routing type=’new’>

<routeinfo
type=’tryllian .rschaar.common.message.Addressee’
name=’addressee’>
<addressee id=’RemcoSchaar’>RemcoSchaar</addressee>

</routeinfo>
<routeinfo

type=’tryllian .rschaar.common.message.FormatHeader’
name=’format’>image/gif</routeinfo>

<routeinfo
type=’tryllian .rschaar.common.message.SituationHeader’
name=’situation’>home,work</routeinfo>

</routing>
<headers>

<header
type=’tryllian .rschaar.common.message.StringHeader’
name=’device’>SMS: 0800−fakeSMS</header>

</headers>
<type>

<format>text/plain</format>
<parameters>

<parameter name=’lang’>en</parameter>
</parameters>

</type>
</message envelope>

Figure 15.1: Sample envelope

A note has to be placed here. The implementation actually provides for
two sets of headers. The first (headers) allows for headers that are actually
headers for the message itself. The second part (routing) provides a part for
the agents to place notes regarding the delivery. This second part is included
to allow minor exchange of information between agents (like assigning a folder
where the message should be stored), without the requirement of specialised
communication between all different types of agents.

136

CHAPTER 15. IMPLEMENTATION 15.3. AGENT INTERACTION

15.2.2 Content

The contents of a message is relative simple. It is a representation of the
contents of the message as a sequence of bytes. The interpretation of these
bytes is left to the using agents, based on the accompanying MIME-type [19]
of the message.

15.3 Agent interaction

Agents communicate among each other. In the implementation this com-
munication is kept as simple as possible. All communication is performed
with one type of interaction. A RouterAgent always1 initiates all interac-
tion. It places a request to process a certain message, with the actual state
and further information in the envelope. As data for such a request, the
entire message (both envelope and content) is exchanged. The advantage of
this approach is simplicity in implementation, although it implies that agents
may receive or alter more information than actually needed. Section 19.6 has
some further discussion on this topic.

15.4 Factory Agent

Description of the build Factory Agents. Three Factory Agents have cur-
rently been implemented. With these three agents, quite different sources
are covered:

• E-mail.

• RSS (site summary, news sites article references).

• SMS.

15.4.1 E-mail Factory

Most Internet environments provide electronic mail as a means of communi-
cation. This factory is based on polling an IMAP-server at regular intervals,
with the standard javax.mail-API [68]. New mail is delivered through the
system.

1Note that a RouterAgent itself is commonly initiated by a Factory.

137

CHAPTER 15. IMPLEMENTATION 15.4. FACTORY AGENT

<?xml version=”1.0”?>
<backslash xmlns:backslash=”http://slashdot.org/backslash.dtd”>

<story>
<title>KaZaA Collapses</title>
<url>http://slashdot.org/article.pl?sid=02/05/23/020245</url>
<time>2002−05−23 09:30:26</time>
<author>Hemos</author>
<department>end−of−the−world−as−we−know−it</department>
<topic>95</topic>
<comments>39</comments>
<section>articles</section>


</story>

</backslash>

Figure 15.2: Sample article reference (RSS) from Slashdot.org

The E-mail Factory can handle attachments as well. Whenever a new
message arrives without a textual body, but with an attachment, this at-
tachment is send as the message. This way, nearly every format can be
send.

15.4.2 RSS Factory

News sites like Slashdot and Linuxtoday provide a standardised way to check
for new articles. This is provided through RSS (Rich Site Summary). By
checking a small file at a fixed location, one can check for new articles. New
articles on a site can thus easily be spotted. A sample, reduced to a reference
of only one article, is shown in Figure 15.2. This sample is taken directly
from Slashdot.org (“News for nerds, stuff that matters”), a technical news
site. Please note that RSS has various (incompatible) versions, but are all
based on the XML-standard [8].

15.4.3 SMS Factory

This is a fake factory. It allows to address a message to a certain user, with
just a short text. It is thereby in function equal to SMS as used with most
GSM-based mobile phones.

138

CHAPTER 15. IMPLEMENTATION 15.5. ROUTER AGENT

15.5 Router Agent

A description of the implementation of the Router Agent. The Router Agent
is the only mobile agent, and achieves this by implementing the MoveTask

[74].

15.5.1 Task model

According the design, the Router Agent has a task model for all jobs to do.
Each Router Agent starts with a clean task model. As described in the design,
a message has to go through several phases. Each of these phases corresponds
with a set of tasks in the Router Agent, which are very similar to each other
through OO-inheritance. These are scheduled (using a TaskScheduler) to
form the complete set of actions that have to be performed with a message.

The task-model as shown in Figure 14.4 can be implemented as shown in
Figure 15.3. This code example is somewhat reduced, mainly for aesthetically
reasons. Some of the declarations, imports and comments are therefore not
shown.

A task is added to the scheduler with the addTask method. The shown
method’s arguments represent the subtask that is added, the task that is
scheduled next if the subtask succeeds, and the last argument is the task
scheduled next if the subtask fails. Simple rearrangement of these task thus
allows to change the routing process.

15.5.2 Locating Service Agents

One of the most important tasks in each phase is locating the agent that will
actually do the work. These agents are dynamically located, using a lookup
mechanism. The Router agent gains the address from a combination of DNS
[49] and JNDI-registry [65]. Each user has a so called Context, in which the
Service Agents can register themselves. When a selected Service Agent is
not local, the Router Agent moves to the location of the particular Service
Agent. DNS is used to resolve the remote systems for an user. A remote
JNDI-query is performed to check for other agents.

15.6 Extractor Agent

A description of the implemented Extractor Agent. The Extractor Agent
consists of multiple tasks, bound together by a planning task. Each extrac-
tion task has a corresponding filter. This filter is used to test whether the task

139

CHAPTER 15. IMPLEMENTATION 15.6. EXTRACTOR AGENT

public class RouterTask
extends TaskScheduler

{

// Constructor
public RouterTask (UM message) {

// create and initialise tasks
acquireMetaData = new AcquireMetaDataTask(message);
acquirePile = new AcquirePileTask(message);
acquireFormat = new AcquireFormatTask(message);
store = new StoreTask(message);
restore = new RestoreTask(message);
acquireTransform = new AcquireTransformTask(message);
show = new ShowTask(message);
theEnd = new DieTask();
failure = new LogTask(”unrecoverable failure”);

// task transition logic
addTask(theEnd);
addTask(failure , theEnd);
addTask(restore, acquireFormat, failure);
addTask(store, theEnd, failure);
addTask(show, store, acquirePile);
addTask(acquireTransform, show, acquireFormat);
addTask(acquireFormat, acquireTransform, show);
addTask(acquirePile, acquireFormat, store);
addTask(acquireMetaData, acquirePile);

// now start with acquireMetaData
setFirstTask(acquireMetaData);

}

}// RouterTask

Figure 15.3: Sample code of the created task-model

140

CHAPTER 15. IMPLEMENTATION 15.7. PROFILE AGENT

is (possibly) able to extract additional information from a message. These
filters can be rather straightforward, and should decide on simple heuristics.
For instance, a filter for an audio-specific extraction task will only have to
test the type of the content of a message. Based on this decision, a task is
added to a plan. This plan is executed afterwards, resulting in the addition
of meta-information to the headers of the message.

Currently, three extraction tasks are implemented. The first is a lookup
for device-dependant addresses, translating them to “real” names. The sec-
ond tries to find the relation of the receiver to the sender for known senders.
Last is the ability to (manually) add keywords to a message.

15.7 Profile Agent

The state of the Profile Agents. Currently available in the prototype:

15.7.1 Dummy Profile

All new messages are always important for the current situation. These
messages will be shown in any applicable format. The first format that is
available (for the user’s device and after transformation) is applied.

15.7.2 Random Profile

The current situation is assigned to each new message with a certain chance.
For the applied format, the same decision is made as above with the dummy-
profile. It is recognised that the random type of profiling will have no prac-
tical value. The Profile Agent was mainly build to test2 the prototype.

15.7.3 Rule-based Profile

An user can define rules to assign both a situation and a format to a message.
These rules are tested one after another, until a matching rule is found. All
tests in a rule must be satisfied, and when a rule is fully satisfied, the result is
assigned and processing is stopped. The format is assigned through similar
rules. Rules are written in XML for easy parsing, and are read for every
message again so they can be adjusted in runtime3.

The feedback by the user to the Rule Profile Agent is used to compose
some statistics. An user can itself use these statistics to improve the created

2Technically, not functionally as in chapter 16.
3Although at an efficiency cost.

141

CHAPTER 15. IMPLEMENTATION 15.7. PROFILE AGENT

Figure 15.4: Screen-dump of the Rule Profile Agent statistics

rule-set. A small screen-shot of this form of feedback is given in Figure 15.4.
A rule with a low score can be improved by the user in its own advance.

<?xml version=”1.0”?>
< rules profile userID=”RemcoSchaar”>

<situation>
<rule id=”s1”>

<match
header=”Subject”
matcher=”equals”>test</match>

<result>home</result>
</rule>

</situation>

<format>
<rule id=”f1”>

<situation>work</situation>
<type>application/postscript</type>
<result>text/html</result>

</rule>
</format>

</ rules profile>

Figure 15.5: Sample rule set for the Rule Profile Agent

142

CHAPTER 15. IMPLEMENTATION 15.7. PROFILE AGENT

Rule example A small set of rules in Figure 15.5 shows an example of
two rules. The first rule (id “s1”), tries to match a header named “Subject”,
based on the operator “equals”. When it matches, it assigns the resulting
situation “home”. Since it is contained within the section of situations, it is
a rule applied to a decision for a situation.

The second rule applies to messages when assigning a format to a message,
since it is contained in a section “format”. The rule here (id “f1”), is stated to
apply to situation “work”, if the current type is application/postscript.
Resulting format to be used to show the message, is assigned by the result
text/html. Any postscript document that should be shown at work, should
thus be transformed to HTML.

15.7.4 K-Nearest-Neighbours Profile

A learning profile has been implemented as well. This has been created as a
variant of the well-known k-nearest-neighbour algorithm.

The used distance function is actually an inverted distance. The more
similar a message, the higher the score. This similarity is determined with
a very simple comparison, counting the fields that are present and equal for
both messages. The mathematical equation for the used “distance”:

D(m, s) =
∑

h∈(Hm∩Hs)

dh(hm, hs)

In this formula, m is the message to be classified and s is a known sample
it is compared against. The function D determines the distance between
two messages, based on the sum of distances of their mutual headers (hm

and hs, H represents the collection of headers of a message). The distance
between headers dh is a function that varies per header h. A label will
simply be compared whether it is equal, but a numerical header can have
a mathematical distance function for instance. The implemented distance
function for most headers only operates positively. Headers that are not
equal are ignored, since some headers do not necessarily state a message is
less similar if they are unequal. For instance the name of the sender cannot
always be found when translated from device-specific addresses. This does
not imply that person@e-mail.server is automatically another person than
someone calling from 012-3456789.

The result of the k-nearest-neighbour function is determined as follows:

K(m,S) =
⋃

1≤i≤k

max
si∈S

D(m, si)

143

CHAPTER 15. IMPLEMENTATION 15.8. TRANSFORMER AGENT

Here, S is the collection of messages with known — by the user classified
through feedback — applicable situations. Now the function K determines
the resulting set of applicable situations, by taking the k samples with the
maximum score. The implementation automatically uses the most recent by
the user classified samples in favour of “older” samples in case two sample
have the same score.

The applied algorithm can be summarised as follows:

1. Calculate the distance for the message to evaluate with all messages
known from feedback.

2. Select the k most similar (highest score) messages.

3. Get the preferred situations for these selected samples.

4. Create the union of these situations, this is the result.

15.8 Transformer Agent

One Transformer agent has been created. This Transformer agent is fully
Linux based, thus restricting it to a specific platform. Since this is a generic
service for multiple users, in a networked environment, this is not considered
a problem.

The reason to choose for a Linux specific implementation is rapid devel-
opment. Since a properly installed Linux system has many command-line
programs available, transformation tasks can (commonly) easily be created
from a command-line. Two abstract tasks have been created, allowing easy
composition of real transformation tasks. The first is a piped process, based
on UNIX-pipes tied to the standard input and output. The other uses tem-
porary files, for programs that cannot use pipes.

Confirming to the design, an overall planner decides which tasks should be
linked together. This provides to create chains of required transformations,
similar to those in the universal inbox in the ICEBERG project [56]. The
chains are build using a simple breadth-first search algorithm.

Currently available are the following. Note that new tasks can rather
easily be added when the proper programs are available4.

• MS Word to plain text.

• HTML to plain text.

4Certainly many graphical, as well as audio, converters are available for Unices.

144

CHAPTER 15. IMPLEMENTATION 15.9. UI AGENT

• Text to speech, using festival (University of Edinburgh, [3]).

• Postscript to text.

• Adobe’s Portable Document Format to plain text.

• Postscript to a Portable Network Graphic (PNG) file. Note that this
is (currently) limited to the first page of a document.

15.9 UI Agent

Two User Interface Agents have been implemented. These are the Swing UI
Agent and a Phone UI Agent.

15.9.1 Swing UI

Figure 15.6: Screen-dumps of the Swing UI Agent

145

CHAPTER 15. IMPLEMENTATION 15.10. STORAGE AGENT

A desktop application is build, using the javax.swing-API [67]. This
user interface is kept simple, emphasising the functionality. Due to the use
of the standard Swing library, the application should be portable. Another
property follows from the usage of Swing, the application has an adaptable
look and feel. The SwingUIAgent should thus have a native interface on
multiple platforms. A few screen-shots can be found in Figure 15.6.

15.9.2 Phone UI

The simulated phone actually consists of two parts. A simulation for a phone
as well as a part for Short-Message-Service. Not all functionality of the design
is supported, due to limited capabilities of both (corresponding real) devices.
Creating an usable interface would require a study for itself.

15.10 Storage Agent

A storage has been created using JDBC [66], connecting to a MySQL-database
[50]. This allows quite easily to store, retrieve and list messages.

15.11 Runtime examples

The prototype is an operational version of the developed design. Two ex-
amples of how the system operates will be given below. The first example
contains a message that is, according to the user’s profile, important at the
current moment. The second example exists of a case where the message is
judged to be applicable in other situations. Both examples given below cover
the first two use cases given in 10.2.

15.11.1 Example 1: new important message

In this first example, the user will receive a new e-mail message. This e-
mail is send through the system, and is judged to be important to the user’s
current interests. Due to this importance, the message has to be shown
directly to the user. The user’s current device should be considered. As a
more practical note, the message itself is in plain text, and the user prefers
audio as format to receive it.

As a brief explanation, the agents and rooms present here will be de-
scribed. The set up of the environment consists of four rooms. Rooms are

146

CHAPTER 15. IMPLEMENTATION 15.11. RUNTIME EXAMPLES

conceptual, but are not only mentioned for aesthetic reasons, they could rep-
resent physically different machines as well. These rooms with the contained
agents are:

1. Input, where messages are received. The agents that receive messages
are contained here.

2. User1, which contains personal agents. The agents present here are
the Extractor, Profile and Storage.

3. Public, containing an agent for all users. The Transformer is a generic
service.

4. Desktop, where the user’s interface is “located”. The agent that han-
dles the interaction with the user is located here.

First thing here is the E-mail Factory Agent receiving the new e-mail
message.

[EmailFactory in /Input] Send a message: 0

The factory starts a new Router Agent with the message, that will carry
it through the system. This Router Agent will first locate and consult an
extractor agent for the user. Since the located Extractor is not in the same
room, the Router Agent moves there and tries again. Afterwards the Router
posts the message to the Extractor.

[Router-0 in /Input] Started // A message to deliver!
[Router-0 in /Input] -> Extractor // First consult the Extractor
[Router-0 in /Input] locate // Locate Extractor
[Router-0 in /Input] move // Move to the Extractor’s location
[Router-0 in /User1] locate // Check Extractor is here
[Router-0 in /User1] post // Consult the Extractor

The Extractor performs a couple of applicable extractions, and returns
the message to the Router Agent.

[Extractor in /User1] extracting // Annotate: sender from white pages
[Extractor in /User1] extracting // Mark with relation sender to user
[Router-0 in /User1] wait // Wait for Extractor’s reply

The Router Agent will receive this message and will perform its next
task. This next task is to consult the Profile Agent for the importance of the
message.

147

CHAPTER 15. IMPLEMENTATION 15.11. RUNTIME EXAMPLES

[Router-0 in /User1] <- Extractor // Done with extractor
[Router-0 in /User1] -> Profile // Next: Profile
[Router-0 in /User1] locate // Find the Profile, is local
[Router-0 in /User1] post // Ask the Profile

The Router now posts the message to the Profile Agent, to have it as-
signed the appropriate situation. Which the Rule Profile Agent does; based
on the information in the header, it assigns a situation.

[RuleProfiler in /User1] situation // Note this one is important
[Router-0 in /User1] wait // Wait for Profile’s reply

Since the situation is registered as the current one, the Profile Agent
returns positive. After receiving this positive feedback, the Router’s next
task is acquiring the appropriate format to show to the user. The Router
Agent responds now, by a repeated visit to the Profile for having a format
assigned to the message.

[Router-0 in /User1] <- Profile // Done with situation
[Router-0 in /User1] -> Profile // Go get a format
[Router-0 in /User1] locate // Profile is still here
[Router-0 in /User1] post // Ask Profile for format

Which the Profile does, while the Router waits for the answer.

[RuleProfiler in /User1] format // Assign audio
[Router-0 in /User1] wait // Wait for Profile’s reply

After the preferred format is annotated on the message, the Router will
go to ask the Transformer to convert the message. The Router now locates
a Transformer Agent. Since it is located elsewhere, another move is made.

[Router-0 in /User1] <- Profile // Done with format
[Router-0 in /User1] -> Transformer // Consult a Transformer
[Router-0 in /User1] locate // Locate a Transformer
[Router-0 in /User1] move // Move to Transformer’s location
[Router-0 in /Public] locate // Check it is here
[Router-0 in /Public] post // Ask Transformer to transform

Transformer inspects the message, and notes it must transform text into
audio. The Transformer thus transforms the message into the requested
format.

[Transformer in /Public] transforming // Text -> audio
[Router-0 in /Public] wait // Wait for transformed message

148

CHAPTER 15. IMPLEMENTATION 15.11. RUNTIME EXAMPLES

Now the Router’s next task is to actually show the message to the user.
The Router continuous with this modified message to the User Interaction
Agent, which is located elsewhere as well. This thus implies another move,
bringing the message to the user at its current device, and thus location.
This move is to the user’s device, which can be located anywhere with the
user, e.g. at home, work, during travel or in a shop.

[Router-0 in /Public] <- Transformer // Acquired transformed message
[Router-0 in /Public] -> UI // Now go show to the user
[Router-0 in /Public] locate // Locate user’s current device
[Router-0 in /Public] move // Move to user’s device
[Router-0 in /Desktop] locate // Check UI Agent is here
[Router-0 in /Desktop] post // Show to user

The UI Agent will receive the message and show it to its user. The user
now consumes the message, and adds information how to store the message.

[SwingUI in /Desktop] receiving // Receive, show to user
[Router-0 in /Desktop] wait // Wait till message is shown

The UI Agent alerted the user, and when needed makes sure the storage
directives that are needed are added. It now hands the message back to the
Router Agent. Last but not least, the Router hands the message to the user’s
Storage Agent. This agent enables the storage of the message, thus allowing
persistency.

[Router-0 in /Desktop] <- UI // Done showing
[Router-0 in /Desktop] -> Storage // Acquire Storage
[Router-0 in /Desktop] locate // Locate user’s Storage
[Router-0 in /Desktop] move // Move to location
[Router-0 in /User1] locate // Check Storage location
[Router-0 in /User1] post // Request Storage

The Storage receives the message, and responds to it. It inspects the
message, and determines it has to be stored. Storage Agent thus stores the
message in the database with the appropriate information. In this particular
case, the message is stored in a specific folder.

[SQLStorage in /User1] storing // Storage stores
[Router-0 in /User1] wait // Wait confirmation

The Router Agent receives a positive response from the Storage Agent,
so ends its job.

[Router-0 in /User1] <- Storage // Done storing
[Router-0 in /User1] job done // Message fully processed; done

149

CHAPTER 15. IMPLEMENTATION 15.11. RUNTIME EXAMPLES

15.11.2 Example 2: new unimportant message

In this second example, a few modifications to the previous example have
been made. First of all, the message now arriving is considered not to be
important at the moment. The situation assigned does not correspond to
the current situation, so the message should be stored for a later time.

The second major difference is the lack of an Extractor agent, in this
scenario it does not exist. The layout of rooms and agents therefore differs
as well. The room User1 does not contain an Extractor Agent.

The first few steps here correspond to the other example. The E-mail
Factory Agent receives and packs a message, and launches a Router Agent
with this message.

[EmailFactory in /Input] Send a message: 1
[Router-1 in /Input] Started // A message to deliver!
[Router-1 in /Input] -> Extractor // First consult the Extractor
[Router-1 in /Input] locate // Locate Extractor

The Router has to conclude there is no Extractor Agent to locate though.

[Router-1 in /Input] No agents! // None available!

Since there is no Extractor Agent currently available, the Router cannot
locate one. When no Extractor Agent is located, the Router can still deliver
the message. This can be found as an alternative scenario as described in i.e.
14.1.2.

[Router-1 in /Input] -> Profile // Acquire situation
[Router-1 in /Input] locate // Locate Profile
[Router-1 in /Input] move // Move to Profile’s location
[Router-1 in /User1] locate // Check it is here
[Router-1 in /User1] post // Ask Profile for situation

The Router Agent now waits for the Profile to make its decision. Profile
Agent will have to make a decision for this message. Since the available
(meta-)information for the message indicates there is no reason to decide
this is an important message, it marks it as currently not applicable.

[RuleProfiler in /User1] situation // Note currently not important
[Router-1 in /User1] wait // Wait for decision

Since the Profile Agent has assigned a situation that does currently not
apply, the Router Agent receives a failure. After a failure from the Profile
Agent, the Router’s task model instructs it to store the message for now.
The Router Agent will thus try to find a Storage Agent. After this it posts
the message to this Storage Agent.

150

CHAPTER 15. IMPLEMENTATION 15.12. DEVIATIONS

[Router-1 in /User1] -> Storage // Acquire Storage
[Router-1 in /User1] locate // Locate here
[Router-1 in /User1] post // Post message to Storage

The Storage Agent receives the message, and discovers it has to be stored.
It thus modifies the database, and confirms to the Router Agent it has han-
dled the message.

[SQLStorage in /User1] storing // Message is stored
[Router-1 in /User1] wait // Await confirmation

Since the Router Agent receives a confirming answer, it concludes its job
is done.

[Router-1 in /User1] <- Storage // Done storing
[Router-1 in /User1] job done // Message fully processed; done

15.12 Deviations

Although the prototype is implemented according to the design, a few differ-
ences cannot be avoided. For practical reasons not all elements are completely
implemented. A summary of the deviations from the original design is given
in this section.

Agent communication To reduce the complexity of the implementation,
the communication between the agents has been simplified. Instead of a
specific type of request per service (as described in 12.4), a generic request
is used for all services (see 15.3). The actual work to be done is given in the
message itself. Gain is the reduced time for implementing and testing the
agent communication. Further implications hereof are discussed in chapter
19.

Simulation Although the design incorporates certain devices, no specific
devices are used. Instead of using the actual devices, the modalities are
simulated. This reduces the dependency on a particular device or operator.
Standard services (e.g. e-mail) are available through public protocols, and
are implemented. Since the modalities are used, the impact for at least the
tests are considered negligible.

151

CHAPTER 15. IMPLEMENTATION 15.12. DEVIATIONS

Situations Another deviation in the prototype is considered a minor issue
left for further implementation. Although the design defines the situations
to be defined by the user, the prototype used fixed situations. These are
hard-coded in two of the agents, but are treated as string-labels. Left is the
implementation of an (part of the) user interface to manage these situations.
The introduction of new situations should be tested for the profile as well of
course.

152

Part V

Evaluation

After the implementation of the prototype, an evaluation was made. Be-
fore this was made, a series of functional tests were conducted. These are
described in chapter 16. Chapter 17 deals with the interpretation of the re-
sult of these tests. It continues towards an evaluation of the prototype and
the design as well.

153

Chapter 16

Functional Tests

This describes some functional tests of the prototype and design concepts.
Since the prototype is a (partially) representative implementation of the de-
sign, it is used to test the design concepts. A qualitative evaluation of the
most important aspects of the design is the aim of a series of tests. It is
emphasised these are tests for functionality, not the technical tests. The pro-
totype has been build as proof-of-concept, which should be established by
these tests.

First of all, an overview of what these test try to establish is given. After
that, the used approach and a description of the actual experiments are given.
For an interpretation and discussion continue to page 177, to the chapter that
contains the evaluation.

16.1 Objectives

This section will state which points are attempted to be proven. These issues
are listed and explained below1. They are derived from the goals and the
requirements as they were delimited in chapters 4 and 9 respectively. Later
sections will give the approach and the experiments themselves, a discussion
follows in the next chapter.

• Extensibility

• Adaptability

• Personalisation and common services

1One shall note that items like scalability and security are not present, as they were
considered out of scope for this project.

155

CHAPTER 16. FUNCTIONAL TESTS 16.1. OBJECTIVES

• Robustness

• Cross-media profiling

• Communication overload

Extensibility The first element to be tested for is extensibility. Dynamic
extensibility to increase functionality by adding devices to the system is
indicated here. In other words, one could add new features by adding an
agent with these new features to the system to be improved.

The additional gained features can be on all aspects of the system for
various purposes. Note that with the extension, the original functionality
has to be kept intact.

Adaptability Replacing or adjusting existing functionality is another pos-
sible gain. Agents can easily replace each other, by launching a new one and
retracting the other. This allows for easy modification of required function-
ality, while other parts of the system should not be influenced. Although
this is close to extending the system, there can be a major difference as well.
When the replacement agent has completely different behaviour, this could
have different results. The end result of the entire system can thus easily be
adapted to changing needs.

Personalisation Since each person has its own way to deal with his or her
communications, personalisation is an important requirement. Therefore,
distinguishing between the addressee (receiver of the message) and handling
accordingly, is required as well. Although personalising services is a key
feature, this does not imply all services should be personal. Specially for the
Transformer Agent, it has significant benefits to provide this as a common,
shared service for all users. In this case the service can be improved by
one maintainer, providing more capabilities for all users. The result is a
requirement for partial personalised functionality. Thus the capabilities of
the design for this functionality should be evaluated.

Robustness Another subject that can certainly be an issue is robustness.
Due to the many degrees of freedom encountered in communication, one
cannot rely on all messages to confirm to strict standards. This requires a
certain robustness when dealing with messages that cause unforeseen effects.
Another important reason to require robustness is the lack of reliability in
most networked systems. Since all systems are assumed to be connected to
the network, unavailability of parts of the network must be accounted for.

156

CHAPTER 16. FUNCTIONAL TESTS 16.1. OBJECTIVES

Both of the above reasons require certain capabilities to recover in case
one or more steps of the process fail. What has to be shown is the ability to
recover in case of failures. This implies as well that failing for one message
should not result in failures for other messages afterwards. Recovery does not
require to fully gain the same targets, but allows for the usage of alternative
scenarios.

Cross-media profiling Enabling profiling across multiple media is an-
other high-level requirement. Since unified messaging is not bound to a
single medium, it should be possible to establish a decision independent of
the used media. This allows a message of one kind to be judged based on
the similarity with a message of another type. Another benefit would closely
relate to the extensibility. After addition of a new input device (of a new
medium-type), messages from this device can be judged immediately. This
should result in reaching reasonable assignment of importance to a message
directly from the introduction of the new medium. A similar extension would
be the addition of (newly available) extractors. This might provide additional
meta-information, that was previously only available for another format, now
enables the system to cross-reference both media. Evaluation should show
whether the design can support this property.

Communication overload Last, but certainly not least, the system was
designed to help an user overcome a communication overload. Due to the
fact that this may be subjective when measured, it is certainly more com-
plicated to test. Since a field test with a sufficiently large number of users
is beyond proof-of-concept, such a test will not be performed. Preventing
communication overload is a major issue however, and is not completely left
unevaluated. One or more tests have to be performed to prove the func-
tionalities, that could help prevent an overload, are present. The elements
that are considered to be capable of helping to prevent such an overload are
message queueing and profile learning. These are considered to be adequate
enough, since they can achieve what was stated previously in the description
of the problem. There it was stated that only receiving those messages that
are important to the user have to be shown at this moment, by tracking the
user’s interests. Queueing messages for situations that are currently not rel-
evant can solve the former. The latter can be resolved by learning the user’s
profile.

157

CHAPTER 16. FUNCTIONAL TESTS 16.2. APPROACH

16.2 Approach

A description of the approach for the tests is given in this part, along with a
motivation. All tests should be aimed to test for a specific target property,
an item from the previous stated list. The requirement for a test is thus
to distinct between the presence and absence of certain behaviour. A brief
consideration of combinations of several properties and tests follows last.

Extensibility The point to prove is that the system can be dynamically
extended. As a result, the test should be performed with an uninterruptedly
running system. The second requirement for the test follows from extensi-
bility.

A new device should be added to the system. This device should be usable
by only creating a new corresponding agent. For the rest of the process, all
existing agents should be used. The functionalities that were already present
will thereby be kept.

This test will prove successful that the design is extensible, when the
newly added functionality is added transparently. In other words, the func-
tionality should be added without altering other parts of the system. The
other condition for success is that the added functionality behaves as ex-
pected. When both conditions are met, the extensibility can be considered
proven.

Adaptability Adjusting functionality seems very similar to an extension
as discussed above. One thing that is very different though, is adjusting
behaviour. When one adjusts behaviour, one adds an agent that is not
similar to existing agents. A test should thus show how using an agent with
different behaviour influences the system.

The approach that results is the following. Two systems are run next to
each other2. The only difference between both systems should be a single
agent that behaves differently. Resulting effects should be observed for eval-
uation, compared against the intended change in behaviour. This could be
repeated for several different behaviours and agents.

Evaluation can conclude adaptability when a partial functionality is pos-
itively replaced. This is achieved when the new functionality does not affect
other, unadapted, functionalities. The adapted functionality has to behave
correctly as intended of course.

2Although this can of course be performed sequentially.

158

CHAPTER 16. FUNCTIONAL TESTS 16.2. APPROACH

Personalisation Testing for personalised and generic services should be
quite simple. Once a multi-user environment is set up, just sent similar mes-
sages to different users. Make sure you can keep good track of which agents
are used. Furthermore, ensure the users behave different (e.g. with different
interests) to the same message. Now one should be able to observe whether
similar messages are dealt with in different ways for different addressees.

On evaluation one should observe the created track records. Each user
should receive his or her personal messages, in a personal manner. Personal
agents only have to be used for messages addressed to the owner of the agent.
Generic agents may be addressed for use with anyone’s message. The track
has to show whether the proper agents where addressed in each separate
step. Note that unexpected behaviour may have many other causes as well.

Cross-media profiling This aspect probably requires some more work.
One of the things that is considered present here, is profiling. This should
first be tested itself as well, of course. As a minor simplification of this test,
cross-media profiling could be tested by using an explicit way of profiling.
This can be achieved by using profiling without self-learning capabilities.
Discarding learning capabilities assumes that a (static) profile is used, that
is of a quality that can be achieved by learning.

Profiling across multiple media requires the ability to receive multiple
types of media with the system. Furthermore, one should make sure that a
profile is build (i.e. learned or created) against different media than those for
which it is tested. This to make sure that the profile is clearly distinctive on
characteristics of the message, instead of the used medium.

The approach used is using several media in the system, with one medium
without extractors. The next step here is using new extractors for that one
medium, resulting in meta-information that was previously only available for
the other media. After addition of the new Extractor, that one medium has
new meta-information that was available for the other media before. Using
messages from this medium now should result in other (more accurate) as-
signment of importance, based on the profile gathered from the other media.

One can use white-box testing. This method may require a minor modifi-
cation to the implementation, to have explicit access to certain information.
With each decision, one should know the available meta-information, the de-
cision made and the reason why this decision was made. By comparing these,
one can check whether the decision was really made based on knowledge from
another medium.

159

CHAPTER 16. FUNCTIONAL TESTS 16.2. APPROACH

Robustness Recovering from failures implies the presence of errors within
the system. A test for robustness should thus be run with (simulated) failing
parts of the system. Only failing parts are considered, since an entirely failing
system is hard to work with at all.

The method for testing recovering capabilities is quite clear. First run
a system in a normal functioning way with some messages. Then run the
system in the same way, while making parts of the system deliberately fail.
Repeat the above for different parts and other ways of failing.

Judging the result is a little harder than the test itself though. Some of
the recovery actions are deliberately set in advance. These can simply be
compared to the intended actions. More complicated failures are less likely
to occur, but might result in less obvious behaviour. Objective evaluation
of more complicated errors throughout the system should decide how much
failures the system can take before falling back to undesirable behaviour.

Communication overload As stated in the previous section, a full test
for the system whether it prevents a communication overload is beyond the
scope of the project. However, some features that can enable this can be
shown to be present, identified as queueing and learning. Together they are
likely up to the task of helping the user (as discussed before). Both will be
tested separately as well, since there is no direct dependency between them.

Queueing The first is relatively easy to test when using a profiling
system that is controllable. Sending a series of distinctive messages, one
should simply change the applicable situation at the user’s end once in a while
and observe the results. Messages are explicitly required to be distinctive,
since only messages that all apply to the same situation do not make sense.
This can be repeated for different patterns of interest, thus by using different
profiles.

Learning The latter is harder to test. A realistic performance (of de-
cision) test requires a large set of real messages. Since this is not available,
such a test is hard to perform. This makes a quantitative analysis rather
impossible. A qualitative analysis is thus restricted to determining the pres-
ence or absence of learning capabilities. This can be achieved by sending
a large set of reasonable messages through the system, while acting as a
(mostly) consequent user. By tracking the decisions made by the system,
and comparing them by the expected ones, an evaluation can be made.

160

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Mixed tests All of the above tests aim to prove one particular property.
As with all more complex systems the interaction of all parts can have its own
effects. Therefore, tests should be made that combine several of the above.
Most of the above should be able to combine. Several of these combinations
will be tested.

Since many combinations are possible, no further combinations shall be
chosen here. Note however, that some of the tests above are already closely
related. For instance the testing for cross-media capabilities (implicitly) uses
an extension to test for improved profiling.

16.3 Experiments

The tests described in the previous section have been conducted. Here a de-
scription of each of these tests is given. The tests themselves were conducted
on standard personal computers connected by a network, with the developed
prototype. Actual realisation of the tests tried to follow the approach de-
fined in the previous section as strict as possible. Below is a summarised
description of each experiment.

A remark has to be made regarding some terminology used in these de-
scriptions. Since the prototype is implemented with the Tryllian ADK, some
specific terms are used. A habitat is a platform that enables running agents.
These habitats can be connected together. Within this habitat, one or
more rooms can exists. A room is a logical place where agents can be located.

16.3.1 Extensibility

The extensibility test aims to show new devices can be added to the system
dynamically. This was tested by addition of three devices to an existing
running system. For this purpose, two additional computers were used to
host the added agents.

Extensions Three ways of extending the system were tested. They were
added to the system, by starting a new habitat on another machine, with
the extension running in this new habitat.

1. SMS Factory Agent.

2. Phone UI Agent.

3. RSS Factory Agent.

161

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Scenario Below is the scenario that was followed during the test. After
each step, a couple of messages were send from all sources to test they were
functioning.

1. Start the system.

2. Add the SMS Factory Agent.

3. Add Phone UI Agent.

4. Activate new Phone UI Agent.

5. The SMS Factory Agent is stopped.

6. and the RSS Factory Agent is started.

Observations A brief summarisation of the observations, made from a
user’s point of view during the test run. All messages arrived at the most
recent registered device. As an overall observation, one can say that new
input and user interaction devices worked properly after addition. Messages
from a new input device always appeared in the desired format of audio
(speech).

The difference between the path of the original and the message originat-
ing from an extension was the first step it takes after its was started. Since
this first step uses the Extractor Agent, which was located on the main ma-
chine, the messages from the extension made a move between both machines
after the locate was completed. After this move, it travelled the same way
as a message from an input device directly connected to the main machine.

The notification from the UI Agent to the Profile Agent moved between
machines as well. The new messages that arrived after the additional UI
Agent was registered, varied a little more. Now two movements were made,
the first between transformation and display to the user, the second between
display and storage.

The last result from the log-analysis was two-folded and involves the
combination of multiple extensions. First of all, the path of messages with
different origins or destinations (UI Agent) were only influenced by that
factor. Thus, the addition of an agent does not alter existing scenarios.
Secondly, one can combine the effects of an input and output (UI) device.
The total effect of these additions was the same as the combination of the
differences from the individual extensions.

162

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

16.3.2 Adaptability

The test for adaptability of the system was performed next. A complete
system, with one of all the types of agents present was tested. Only for the
UI Agent, both the Swing UI Agent and the Phone UI Agent were deployed.

Adjustments The following adjustments to the system were tested:

• Router: visit Storage with original message before any other operation.

• Router: skip the Extractor.

• Rule Profile Agent: Ignore feedback, do not use it any longer to provide
statistics.

• Phone UI Agent: Automatically accept incoming calls (after registra-
tion), do not ring or ask to hear first.

• SQL Storage Agent: Do not store saved messages at all, only support
the queueing system. Note that this might cause some overlap for the
Router Agent with the robustness test.

Scenario The following activities have been deployed for this test. After
each start of a (modified) system, some SMS and e-mail messages were fed to
the system. Between some of these messages the user switched situations be-
tween both UI Agents. As a remark can be mentioned that the user did store
all messages after receipt, and as feedback (when applicable) did confirm the
interest.

1. The initial system is activated.

2. The first alternative is started, with the first modified agent, the Router
Agent needs to visit the Storage Agent before any other operation.

3. The second edition is started, with the second altered Router Agent,
the one that skips the Extractor phase.

4. Next, the third modified system with the other Rule Profile Agent is
launched, ignoring all feedback.

5. A Phone UI Agent is the next variant, directly accepting all messages.

6. As last modified system, the SQL Storage Agent has been modified to
drop all stored message, except those being queued.

163

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Observations The run of the system with the original setup was as ex-
pected, as can be derived from the design and is similar to that in the de-
scription of the prototype. When the Router was adjusted to skip the phase
of acquiring meta-data (at the Extractor Agent), there were no differences
in the observations. After alteration of the Router to immediately store the
messages, no differences were noticed either.

With an adjusted Rule Profile Agent the first differences in observations
were noted. After giving feedback to the system with the Swing Interface,
there was no reaction in the Rule Profile Agent.

Other differences were observed with the Phone UI Agent that accepts
messages directly. After the phone was registered, the SMS send was read to
the user. The question whether to listen to the message was not asked, the
one asking to store the message was.

As a last test, the SQL Storage Agent was modified to ignore all requests
except those directly related to queueing. The only remarkable thing hap-
pened on request of a list of messages, which contained only a message that
was queued.

Although the user’s observations did not always showed differences, the
logs of the internals did, and vice versa. The first modified Router Agent’s
first action was to acquire an assignment for the applicable piles. The phase
of acquiring meta-data on the message was completely skipped.

The second altered Router Agent’s first move of the Router Agent was
towards the Storage Agent. As effect of this, the Storage Agent stored the
original before any other operation was performed on the message. This
original was eventually lost when the user stored the transformed message.

Another modification was the handling of incoming feedback by the Rule
Profile Agent. It received and acknowledged the message, but did not take
any further action. The modified Phone UI Agent did not show any differ-
ences in the logs.

The last test showed the most (significant) internal differences. Since
the database now stored only those messages that were queued, the first
differences can be found there. All messages for saving, except the one being
queued, were discarded by the adapted Storage Agent. The other remarkable
effect was the interaction of the Storage Agent and the Router Agent. Since
the Storage Agent responds negative to messages other than those to be
queued, the Router Agent tried to find another Storage Agent3. Because it
could not find one, it decided to continue its alternative task. Due to the
current implementation, the request for a list of messages never returns to
the UI Agent. The same applies after the Router Agent visits the Storage

3This is actual a part of the robustness behaviour of the Router Agent.

164

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Agent for its last phase, but this has no further effect, the alternative ends
as well.

16.3.3 Personalisation

For the personalisation test, three users were used. Each of these users had
its own set of agents. All the users had an E-mail Factory Agent and a Swing
UI Agent, both of these personal. The other agents are listed below.

Public Agents Some agents were run as a public available agent:

• Linux Transformer Agent.

• Two SMS Factory Agent, using different numbers.

• A SQL Storage Agent, shared between all users, but making a
clear distinction between the messages of each user.

User 1 Agents The following agents were used for user 1, in a room named
/User1:

• Extractor Agent, with applicable extractions for each message.

• Rule Profile Agent, with a broad rule-set.

User 2 Agents User 2 had the following agents in /User2.

• Extractor Agent, with one particular extraction.

• Rule Profile Agent, judging every message the same.

User 3 Agents /User3 contained the third user’s agents.

• Extractor Agent, without applicable extractions.

• Random Profile Agent, with a chance of 0.5 messages are impor-
tant right now (only for the current situation), in any available
format.

Scenario The scenario can be described rather short. All three users
were sent the same messages4. Between several of these messages, all users
switched between situations sometimes. Each message was send to each user
before a next message was send.

4Aside from the addressing.

165

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Observations From a user’s point of view, messages appeared differently
per user. Some of the messages did not arrive directly for all the users, but
were being queued. After a change of the user’s situation, different messages
showed up as being important. The other difference was found in the way
the messages were displayed. Some of the messages arrived in their original
format for an user, while an other user received those in another format.
This varied not only per user, but for the first user this varied per message
as well. The last user always received the message in its original format.

After checking the logs, the following items were noticed. Although most
agents used were equal in code and all ran in the same habitat, they re-
sponded differently per user. Their configuration was varied per user. Not
all users have to use the same variant of a type of agent (on a code-level).
This follows from the Profile Agent in the test, where the third user had
an entirely different Profile Agent. Although agents can be personal, shared
agents can be used as well. Analysis of the logs shows that the Transformer
Agent was shared by all users.

16.3.4 Cross-media profiling

Testing for cross-media profiling capabilities was performed next. For this
purpose, three different media were used. With two of these media, a profile
was developed based on available extractions. The third medium was used
without extractions at first, with the same extractions as the other media
becoming available during the test. The used media and the related agents
were:

• Fax Factory Agent, emulated by sending only images to an e-mail ac-
count, using a slightly adapted E-mail Factory Agent.

• SMS Factory Agent.

• E-mail Factory Agent.

Extractions used The following extractions were tested. During the ini-
tialisation of the test, the extraction was avoided for the “extended medium”.
Both extractions were added separately, as well as combined.

• From Lookup, translating machine- and protocol-addresses to real-life
names.

• Keyword Extraction (faked by asking operator), adding relevant key-
words to the message.

166

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Scenario The following scenario was applied. The medium used to be
extended with extraction was e-mail. As test set different SMS, e-mail and
fax messages from different senders and with different content were used.

1. Start initial system.

2. Send messages from test set.

3. Start system with extra extraction functionality.

4. Send same set of messages again.

5. Repeat last two steps for both the other additional extraction and their
combination.

Observations All observations were made by monitoring the logs and the
database. From these was observed that all decisions by the profile were made
based on two headers. These were the normalised “from” and “keywords”
headers found with messages.

When no extraction for e-mail was available, no specific decision could
be made for the e-mail messages. As result, all e-mails were received in
the default situation home. On the other hand, the fax- and SMS-messages
arrived in a more distinct manner.

After introduction of the from-lookup for e-mail, messages from e-mail
were no longer all assigned to home. A separation of the messages in two
groups was observed. This determination was, predictably, based on the
sender of the message.

A similar observation was made when an extractor with keywords extrac-
tion was used. With this extractor, the separation was directly made based
on the added keyword-information.

When using extractor tasks with both functions for e-mail as well, even
more distinctive behaviour appeared. The result was seen in assignments to
the e-mail messages that were equal to those for the fax- and SMS-messages.
In other words, each combination of sender and keywords had its own as-
signed situations, whether it was a fax, SMS or e-mail.

16.3.5 Robustness

In order to test how robust a system is, things have to go wrong. Two sys-
tems, both with a full set of agents were used. These systems were dynam-
ically connected over a network. The used tasks of the Router Agent were
equipped with a sufficient long interval per phase before a timeout occurred.
A set of possible failures that can affect the system have been tested:

167

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

• Disabling (remove) an instance of a type of Service Agent, with a re-
dundant agent of the same type available.

• Disabling (remove) all Service Agents of an entire type, thus disabling
that type completely.

• Killing festival while running Transformer Agent with text-to-speech.

• Receiving a corrupt message (PNG-image said to be postscript).

Scenario The reaction of the user was to store the message and confirm
the decision.

1. Both systems were started, running all the mentioned agents.

2. The user initiates the Swing UI Agent for the situation home.

3. A plain text message is send through the system.

4. A second plain text message is send through the system.

5. The previous 4 steps are repeated for all the agents that have to be
disabled, with one of those agents disabled at a time.

6. The same steps were repeated for each case where all agents of a certain
type have to be disabled.

7. Again, but this time all agents are present and the used Transformer
Agent is disturbed during the transformation of the first message.

8. The last cycle is slightly different: the entire system is started, but a
corrupt message is send first. This is an image send to the system as
being a postscript-document. The second message was a regular one.

Observations Some observations were made during the test run. A com-
bination of user observations and logs was used.

• Disabling a single agent proved hard to test at all. To know the effect
of a disabled agent, one should make sure it is used. Due to the dis-
tributed and redundant nature of the entire system, this could not be
achieved without modification of the code5. Since the Service Agents
are dynamically located during message processing, no fixed path was

5The prototype is not optimised to use the “nearest” agent. The local agent is thus
not always chosen.

168

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

used. This mainly depends on network latency, and is thus hard to
control on the user-application level.

Another important implication was found in the nature of a few agents.
Some of these agents are build to run as the only agent of a type for each
user. Therefore, duplicated agents in the same network caused even
more unpredictable behaviour. This did not disturb the test however,
since both the path and decision taken could be followed.

For all agents of which an instance was disabled, the dynamic locating
mechanism helped the Router Agent to consult the other available one.
From the user’s point of view, only the user interface windows of the
removed agent were missing. On the other hand, operations continued
fine, although less possible instances of each type of agent were found.

• Disabling an entire type was testable of course. As predicted in the
design of the system, alternative behaviour took over in case of a failing
part. This behaviour varied per type of agent:

No Extractor Agent The message appeared without any observable
difference. Alternative behaviour guided the Router Agent di-
rectly to the Profile Agent.

No Profile Agent This showed a clear difference; the messages were
stored, after a couple of attempts to find the Profile Agent. This
is the default behaviour of the prototype when the profile (for pile
acquisition) cannot be found. Implied hereby, is that all messages
become unimportant per default.

No Transformer Agent As result of a missing Transformer Agent,
messages appeared in their original format. After a few attempts
the message was delivered to the user, although it was in the
original, instead of the preferred, format. Note that the Profile
Agent was consulted again, so another format could have been
chosen.

No Storage Agent When no Storage Agent was available, the Router
Agent took its next step. In the prototype this is the end of the
process, thus the message was discarded.

• Disrupting an agent during a process. The test showed that a failing
task in an agent does not have to be fatal, for neither the message nor
the agent. For the message itself, the Router Agent attempted to use
another agent of the same type. The agent that encountered problems,
recovered automatically after the failing task terminated.

169

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

• Last, but not least, malicious messages had only temporary and local
effects as well. A message that caused a malfunction in the system, only
affected itself. The agents could recover like above, but the corrupt
message was received in its problematic format.

16.3.6 Queueing

As important aspect in the design to help the user overcome a communication
overload, messages are put on virtual piles. Each messages is thus queued on
zero or more of these piles. This queueing was tested with three situations
for an user, although these are just user-defined labels:

1. home

2. work

3. travel

Messages The messages used for the test form a selected set, known to be
assigned to different situations. All of these were send as e-mail, with different
subjects to distinct between all combinations of the situations. The content of
the messages was unique enough to distinguish between all different messages.
A Rule Profile Agent was used to ensure the proper applicable situations were
assigned.

Scenario The set of messages was send to the user with clear delays be-
tween the messages. Between various of these messages, the user altered its
current situation. A list of messages in the storage was requested as well
during the test. The user responded to messages simply by deleting them
and confirming the assignment made.

Observations For the sake of readability, the observations will be sum-
marised. Although one could summarise the behaviour as: “Some messages
appeared immediately, while others only after a situation change”, a little
more expressive summary will be given:

• Messages known to apply solely to the current situation, appeared di-
rectly to the user.

• If another single situation, that was not the currently active one, ap-
plied, messages appeared after that situation was registered.

170

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

• When multiple situations applied to a new message, these messages
arrived:

1. Directly, when the current situation was included in these situa-
tions.

2. After a change of situation to any of the applicable situations.

3. Otherwise when explicitly requested by the user.

• Messages that arrived after messages that were queued, could be re-
ceived immediately. Messages in a queue did not hold up any other
messages for the current situation or in other queues.

• Messages assigned to multiple queues appeared to the user only as a
new message in one situation. Only the (chronologically) first appli-
cable situation was used to show a queued message. The message was
automatically removed from other queues of new messages in this case.

16.3.7 Learning

A k-nearest-neighbour Profile Agent has been used to test the capabilities of
the system to learn an user profile. For this purpose, a new UI Agent was
created, to automate the reaction of the user. A similar, but even slighter,
change was made for the assignment of keywords. No particular other mod-
ifications were made.

Target values Four different situations were defined for this user. The
following situations were applied:

H Home

W Work

T Travel

V Visit

The user replied to these messages as stated in Table 16.1. Since there
were four times eight combinations, thirty-two possibilities exist. These have
been divided as shown in the table, which can be handled with 12 rules in the
Rule Profile Agent. The automated UI Agent has been constructed based on
such rules.

171

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Table 16.1: User’s reaction to classes of messages

Sender A Sender B Sender C Sender D
Trip H W T H W T H W T H W T
Research W W W W
Code V W V W V W V
Sport H W H W T V H
Free H W H W T V H T
Beer H W H W H W V H V
Games H W H W T V H
Weekend H W H T V H W T

Additional tests The test above was based on the assumption users be-
have always consequent. Since this is not entirely realistic, two variations of
the previous test have been run. In these tests, the automated UI Agent has
been slightly modified. To emulate the inconsistent behaviour users can have,
the feedback given by the UI Agent was changed based on chance. With a
certain chance, the feedback did not comply with the actual preferred situa-
tion. In these cases another arbitrarily set of situations was send as feedback.
This variant was run with both a 2.5% and a 5.0% chance of deviation. See
the results and discussion for further elaboration on this test.

Scenario A message was send after a fixed interval of fifteen seconds. This
message confirmed to one of the above categories, and the user responded as
stated in Table 16.1. The response of the user was automated, through the
specialised UI Agent. All messages were automatically send, based on a small
script, generating a message from a random sender on a random subject. The
used random function is considered to have an uniform distribution.

Observations Since the test was performed in an automated way, no user
observations can be given. The results are therefore analysed for the assign-
ments made. See Figure 16.1 for a visualisation of the cumulative wrongly
assigned situations, drawn against the number of messages send. Since this
is the total error over time, the fact this line levels out is a positive signal.
After 200 messages nearly all of the assignments were made correct. In other
words one could say the long term results in proper assignments of situations
to messages. This test is not to be mistaken for a quantitative evaluation,
although the displayed results include some numbers.

Figure 16.2 shows the same pattern. This is the number of wrongly
assigned situations per message. Over time both the density and the size of

172

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Cumulative erroneous assignments

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Number of messages

T
ot

al
 e

rr
or

Figure 16.1: Profile learning: Cumulative error

Erroneous assignments

0 200 400 600 800 1000
0

1

2

3

4

Number of messages

S
itu

at
io

ns
 in

co
rr

ec
t

Figure 16.2: Profile learning: Errors per messages

these errors decrease. This says more messages are assigned correctly as well.

These errors are split apart in the remaining figures. The first one (Figure
16.3) represents the situations that were assigned when not needed. Figure
16.4 shows the situations that were not assigned (missing) for a message.

This shows that the used agent tends to send messages sooner than hold-
ing them back when less data is available. One can observe this from these

173

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

Overestimated assignments

0 200 400 600 800 1000
0

1

2

3

4

Number of messages

S
itu

at
io

n
su

pe
rf

lu
ou

s

Figure 16.3: Profile learning: Extra assigned situations

Underestimated assignments

0 200 400 600 800 1000
−4

−3

−2

−1

0

Number of messages

S
itu

at
io

n
m

is
si

ng

Figure 16.4: Profile learning: Missing situations

last two figures, where more weight is present in the first graph. Inferred
hereof is that a larger part of the errors occur by assigning situations that
do not apply, rather than lacking the assignment of a situation that is ap-
plicable.

174

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

0 200 400 600 800 1000
0

50

100

150

200

250

300

number of messages

cu
m

ul
at

iv
e

si
tu

at
io

ns
 in

co
rr

ec
t

consistent

2.5% inconsistent

5.0% inconsistent

Figure 16.5: Profile learning: Various user inconsistencies compared

Additional test Two derived, randomly disturbed, tests were run as well.
With these tests an approximation of inconsistent behaviour on the user’s
behalf was made. The results are shown for a 2.5% and 5.0% chance of
inconsistency in Figure 16.5. When compared, the last chance shows the
steepest line. This means that with more inconsistent behaviour, more errors
are shown, thus less accuracy is achieved.

16.3.8 Mixed

All of the previous tests aim for a single property. Many combinations of
the above tests can be made, although some would have little added value.
Some of the tests as described already have some mixed elements, although
they emphasise a specific property. Some additional tests were performed,
and will be described below, although less formal and elaborative as those
above.

The experiments were mainly a combination of adaptability and person-
alisation. First thing tried was to use a variant of the Router Agent per
originating location. As described in the adaptability test, some modified
versions of the Router Agent were build, with a different routing schedule as
result. Two different machines were used for hosting a Factory Agent. Each
of these machines had another variant of the Router Agent stored as original
code-file (called the DNA of the agent). A new message is routed based on a
Router Agent created with this file. The result is a different routing process

175

CHAPTER 16. FUNCTIONAL TESTS 16.3. EXPERIMENTS

per originating location of the message.
Another variant required a minor additional modification. Now the Router

Agent was not varied per location, but per user. In principle, a Factory can
send one message to several users. A practical example is the RSS Factory
Agent (news-headlines), which can send the same new message to a list of
users. A slight modification was made to this agent, to support a new fea-
ture. Instead of sending the message with a standard Router, a Router is
selected based on the addressee. This can be done, since the used file to cre-
ate the Router Agent is determined during runtime. For each new message,
a different Router Agent can thus be created. The result hereof is that the
addressee determines the effective Router Agent. Of course other criteria can
be used to select the applicable Router as well.

176

Chapter 17

Interpretation

This is a discussion about the test- and evaluation itself, but ends with a
discussion of the prototype and the entire design. One should keep in mind
that these are not te final conclusions yet. Please refer to part VI for further
discussion of these items.

17.1 Tests

First, a brief discussion on the strengths and weaknesses of the tests as
they were performed. Seven tests were run, all emphasising on a particular
intended property. Each of these tests was executed under clear delimited
circumstances. On the user’s side idealistic behaviour was incorporated. It
is acknowledged this is not realistic for a (commercial) deployable system.

Nonetheless, the prototype and tests were meant to be proof-of-concept.
For this purpose they are considered to be sufficient. Although the tests are
specialised towards a single point of interest, all these points combined have
to accomplish the desired functionality. All tests did highlight a particular
property, but involved (nearly) all parts of the system. These tests thus show
the properties can be achieved within a complete system, not only a specific
part.

A brief discussion per test follows below. The tests for the mixed proper-
ties are not discussed, since they were conducted in a less formal and elabo-
rate manner. First of all a list of what has been achieved, corresponding to
their related tests:

• Extensibility.

• Adaptability.

177

CHAPTER 17. INTERPRETATION 17.1. TESTS

• Personalisation.

• Cross-media.

• Robustness.

• Queueing.

• Learning.

17.1.1 Extensibility

As the test shows, the system can be dynamically extended. New devices
for both input and interaction with the user (which cover output as well)
have successfully been added. These could integrate with the existing parts
of the system, without any problems. Messages created on the new input
devices were automatically routed through existing systems. The new device
with an appropriate User Interaction Agent was able to provide the user with
all of its available communication transparently. Messages received in other
habitats of the system where automatically delivered at the new device.
Logically, this only happened after it was registered, since the most recent
activated UI Agent is used.

The only requirement for such an addition is the locating mechanism used.
Although this is accomplished with simulated DNS, the implementation of
standard DNS is merely a coding-exercise rather than a challenge of skills
in design. An internal equivalent of this DNS capability would be more
appropriate with respect to a large-scale deployment1. The newly added
devices can be utilised without further requirements. If the Factory and UI
Agent are running, the Router Agent resolves all other connectivity.

The dynamic extensibility is partially a gain of the usage of agents. Due
to the clear separation of functionality, a new device can be added to the
system transparently. No particular knowledge of the device is needed in
the system, the agent shields it off. Furthermore, the new device only needs
an agent that packages the messages. All knowledge of the network and
processing the message is present in the Router Agents, relieving the Factory
Agent hereof.

1 Specifically when security and deployment become involved. Running a secure, fully-
featured DNS-server is not a trivial task for all users.

178

CHAPTER 17. INTERPRETATION 17.1. TESTS

17.1.2 Adaptability

Although only a few modifications were tested, these do show quite a few
things. By the use of agents, easy partial modification of the system becomes
possible. Replacing a single agent can modify a part of the system, without
affecting the remaining functionality. Such a replacement can be two-folded,
for both the result noticed by the user as well as the internals of the system.
It is thus possible to adjust the interface for the user, without further alter-
ations. On the other hand it is possible to adjust the processing of a message
without changing the interaction with the user.

The second conclusion is more related to the handling of messages. The
Router Agent can be altered to follow a different pattern. This can result
in extra or less operations on the message, thus changing the global process
for a message. Of course there are limitations to the magnitude of the mod-
ification. Some modifications (as shown by the modified storage test) have
such impact that they alter the functionality of the entire system, and thus
require further attention.

This is probably one of the strongest agent properties present in the sys-
tem. Partially as a result of the separation of functionality, otherwise of
its mobility. The former ensures each functionality is properly compartmen-
talised. This allows the modification of a function as long as it behaves the
same towards the rest of the system. The Router Agent’s mobility allows
each message to have its own code. Adding code to a message provides the
adaptability of processing for each individual instance.

17.1.3 Personalisation

Since people have different interests and behaviour, a one-size-fits-all solu-
tion is not realistic. Personalisation is shown to be achievable within an
agent-based system. Agents can be configured differently to behave in cor-
respondence with the user they represent. Not only the look-and-feel can
be altered, complete behaviour can be changed, thus enabling customisation
of the entire system. Personalisation goes beyond configuration, by allowing
specific agents to be replaced, thus easily replacing parts of code. Depend-
ing on the recipient of the message, other agents can be used for performing
certain tasks. This allows for different behaviour as response to a message.
As an added benefit, generic services can still be kept, thus enabling certain
improvements to the system for all users at once.

On the downside of this personalisation is an issue that is out of scope for
this study. When each user has its own set of agents, system-requirements
and scalability may become a problem. Using some generic agents might

179

CHAPTER 17. INTERPRETATION 17.1. TESTS

help to reduce these requirements.
Agents play an important role in the personalisation of the system. Al-

though other solutions, like client-server, can use different configurations for
different users, agents easily enable a more powerful form of personalisation.
By using another type of agent for a certain user, entirely new behaviour
can be utilised. The treatment of messages can thus completely be modified
per user. Since agents communicate among each other, they do not need to
know any of the details of the other agent internals or working.

17.1.4 Cross-media

A small test proves it is possible to decide whether a message is important
independent from the used medium. As long as similar meta-data is available
for messages from different media, a classification of messages of one medium
can be used for other media. First of all one has to take into consideration
two important assumptions. One is the availability of similar extraction
tasks for different media. Secondly, the profile needs to be able to handle
this increasing amount of information. A profile is thus expected to become
more distinctive where appropriate.

Acquiring such information can be handled per medium, allowing special-
isation for this job. The overall benefit is the ability to judge messages based
on their content rather than the used medium. Due to the separation of the
extraction and the assignment phase, the latter can be achieved independent
of the used medium. How the information is gained from a medium is left to
the Extractor. Shown is that information previously only available for other
media can be used when it becomes available for another medium. To sum-
marise one could say it is possible to achieve a higher granularity in filtering
with more meta-information, without requiring more data (messages) for the
particular medium, but can be based on messages from “any” medium.

17.1.5 Robustness

To protect the system from the networked and open nature of communication
systems, robustness measures have been integrated in the system. These
measures are effective when an agent of the system is not available, or its
operations get corrupted. Although the functionality of the system is not
fully accomplished, the system does not collapse either. In contradiction,
alternative scenarios can be provided beforehand. In this way the developer
or user of the system can define how to handle failures. Due to the separation
of process logic and actual operations, together with the independent nature
of agents and tasks, errors can be dealt with rather easily.

180

CHAPTER 17. INTERPRETATION 17.1. TESTS

The provided scenarios in the prototype are not all that useful, since some
end up in only logging the failure. In a full-sized system better scenarios can
be implemented, providing better preventive measures against data loss or
corruption. Creating good scenarios for erroneous cases is required of course,
but can be dealt with on a per task level. Missing or corrupted agents thus
have little impact on the system as a whole.

The test itself can be improved as well. Particular mentioned here is the
case when the Extractor Agent could not be used. If messages are used that
will be annotated with meta-data that results in distinct assignments by the
profile, the assignment of importance changes as well. This will show that a
failing extraction reduces accuracy and granularity, but does not render the
user unreachable.

Basis for this robustness is twofold. A function to be performed (task)
may fail, but the next message is handled as a new task, thus is processed
without any influence of a previous task. Another reason agents contribute
to the robustness of the system is their independence. Since each agent runs
as a separate program2, a failure of one agent (program) thus only affects
that agent. Because each message is handled by its own agent, messages
are thus isolated from each other. Due to the task-based design of agents,
recovery scenarios can be established for each task. Whenever a consulted
agent does not continue after failure, the message is not lost but the router
can time out and try again elsewhere.

17.1.6 Queueing

An important achievement in handling the communication overload is queue-
ing messages. Depending on the assigned applicable situations of different
messages, only those messages that are currently interesting are shown di-
rectly to the user. Messages arrive only when the user says (s)he is in a
situation where those messages are useful. The user is thus not bothered or
distracted with messages that are not interesting now. The assignment of
situations to a message is not part of this test, although the success of the
queueing depends on the quality of this assignment.

Messages only arrive in the user’s experience when the user activates a
situation were those messages apply. Message that belong in other situations
are hold back until that applies. When multiple situations are assigned to a
message, a message appears in the first activated situation it applies to. Due
to the fact queued messages are saved in the Storage, messages from other
situations can still be accessed.

2At least in concept, technical optimisation implies a few differences.

181

CHAPTER 17. INTERPRETATION 17.2. PROTOTYPE

17.1.7 Learning

With what is probably the most idealised test, it is shown the designed
agent-based architecture can be used to learn an user’s profile. It is shown
that after enough messages with (consequent) feedback are given, the pro-
file can increasingly correctly assign applicable situations to messages. This
judgement is based on feedback provided by the user in a consistent manner.
When the user responds less consistent, additional tests show the accuracy
to decline. The worse the quality of the feedback, the worse the assignments
made as well. Providing representative and consistent feedback on the user’s
interests for different messages thus seems essential.

Since the implemented algorithm is a loosely founded, simplistic, unop-
timised one, further study can result in higher learning accuracy. The best
algorithm is currently neither given nor described, but the test with the k-
nearest-neighbour algorithm shows automated profiling is achievable. Which
algorithm is the best approach for this learning is not established. Neither is
it shown how well this is able to handle changing interests, nor human-error
and inconsequential responses in feedback. A quantitative analysis of differ-
ent algorithms and situations remains necessary before those conclusions can
be made.

17.2 Prototype

Although the tests were based on the prototype, they did not fully cover
the prototype. From the implementation, usage and tests of the prototype
several things can be learned as well. These will be described below.

Agent languages Using generalised, instead of specific, communication
between the Router Agent and the Service Agents has benefits for implemen-
tation. This requires more strictness on the developer’s side though, since
one can easily operate beyond the scope of the required service. This has
more impact on extensibility and adaptability however, as will be discussed
in 19.6.

Locating mechanism A distributed, searchable and scalable locating sys-
tem is essential for dynamic personalisation and adaptability. In order to add
devices dynamically to the system, a flexible runtime locating mechanism is
essential as well, in order to prevent modification and changes to many parts
of the system. As the prototype shows this can be accomplished with DNS
and JNDI, but a single solution would be preferable.

182

CHAPTER 17. INTERPRETATION 17.2. PROTOTYPE

Automated transformations Creating automated transformations is rel-
ative simple when appropriate software is available. Ensuring quality, speed
and content are optimised, requires further insight in conversion and more
sophisticated planning algorithms.

User Interfaces Although no particular effort has been spend on user
interfaces, a noteworthy fact showed up. Since different user interfaces are
supported aside each other, a light weighted user interface can be very usable.
The Phone UI Agent does not implement all the functionalities to operate
on the storage. Still, a phone is usable as a device, since the storage can be
accessed through another UI Agent as well. Note that these functionalities
are designed to be optional in 10.3.

Multi-part messages From the practises of e-mail the concept of multi-
part messages is known. In a multi-part message, the actual message consists
of several pieces which, when combined, form the actual message itself3.
These pieces can be of multiple media types, and handling these combined
parts needs special attention. Either each part is to be send as a message,
or these packages of parts should be handled by each agent. The former
has huge implications on the idea that one communicates a certain thought
within this one message. The latter would result in a more complicated
implementation for all agents, since several pieces have to be handled at a
single time. For instance, a transformation can fail on each of these parts,
and the question rises whether the whole transformation thus failed.

Meta-data and profile Another issue encountered during the implemen-
tation is the relation between the acquired meta-data and the profile. Many
machine learning algorithms need further knowledge of relations between dif-
ferent instances of data. Either a comparing (i.e. distance) function is needed,
or normalisation of the input is needed.

Object oriented programming allows inheritance of classes. Several ele-
mentary classes can be implemented, providing methods to compare different
values of a meta-data field. This relieves the learning algorithm of the specific
details of the meta-data. Examples of the generic classes can be numerical,
sortable, sets, labels, booleans, date and time. Specific meta-data can be
marked as instances of these classes, e.g. urgency is a numerical in the range
1 to 5 and keywords are a set of labels.

3A single message on a single subject if used properly.

183

CHAPTER 17. INTERPRETATION 17.3. DESIGN

Distributed agent types As briefly discussed at the robustness test, cer-
tain types of agents are not designed to run multiple instances per user. For
several reasons (i.e. robustness and performance) it can be desirable to run
several instances though. When in future implementation this has to be sup-
ported, these agents should take their own precautions for synchronisation.
This way the behaviour of the combined agents of this type will be coherent
to the remainder of the system and the user.

Device data Most of the input devices, and the corresponding agents, are
able to provide the system with some meta-data from the start on. One
should be careful not to blindly include all of this information with the mes-
sage. Two side-effects have been noticed from the prototype:

• The relevance and quality of the provided meta-data can be doubtful.
Due to the open nature of most communication systems, unreliable
information can slip into the system. Other information is unrelated to
the actual content of the message (e.g. the List-Unsubscribe in case
of an e-mail mailing-list).

• Excessive meta-data for a single medium can disturb the cross-media
learning capabilities of the system. When a certain medium has a
relative overhead of headers, comparing messages from different devices
and media becomes more problematic. Due to the small share of generic
headers, media-specific headers can mislead the distinction between
messages from different media. Particular the message with too much
meta-data can hardly be compared with messages from other media,
at least with the learning profile in the prototype. Note that the use of
various and heterogeneous meta-data is encouraged and necessary, one
should just be careful not to include useless redundancy.

17.3 Design

Since the prototype is directly derived from the design and the tests were run
against this prototype, the evaluation applies to the design as well. Apart of
the results of the tests, the following can be said from the experiences gained
throughout the project:

Unified messaging The proposed design is able to handle the concept of
unified messaging. It is able to automatically transform between different
media. New devices can be added dynamically and transparently, when the

184

CHAPTER 17. INTERPRETATION 17.3. DESIGN

generated messages consist of formats known by the Transformer Agent. How
these devices are handled is only bounded to the corresponding agent. The
limitations for the particular device are thus shifted more from the provider
towards implementation and connectivity (e.g. one could have a computer
call ones voice-mail service and record it, if your voice-mail operator will not
cooperate).

Unified messaging was declared in chapter 6 to provide messaging using
any device, anywhere and anytime. The latter is rather simple using elec-
tronic systems, that can operate around the clock. Using device anywhere is
solved with the mobile Router Agent. This agent travels to the user’s device
to let him or her perceive a message. With a dynamic locating mechanism,
this agent is capable to connect to each networked device. Although this sat-
isfies for delivering messages anywhere, using any device implies the message
needs to be adapted to this device. With the automated data transforma-
tion of the Transformer Agent, messages can be delivered in a format the
user prefers and the device can handle.

Adaptable processing Furthermore, it allows for easy adaptation of the
processing of such messages per user. Not only can the user receive messages
in its own preferred format, the timing of each message can even be adjusted.
It thereby should be able to protect the user from a communication overload.

The entire processing has been reduced to the application of certain ser-
vices to a message. Creating scenarios for ones messages would (theoretically)
become as simple as drawing a task-diagram of applicable services. The Tryl-
lian Visual Agent Designer [74] (a description can be found in appendix A)
could be taken as the basis for an implementation of this idea. The main
requirement would then be the creation and explanation of useful tasks, to
let the user define its own system.

Architecture only The design only describes an architecture to handle
personalised messages. How to treat each specific medium for extraction of
meta-data, or how to learn an user profile, is subject of further research.
The proposed architecture does enable incorporation of new insights. In this
way the system, and thus the users, can benefit from progress in a specific
area without the requirement to completely redesign and rewrite software for
these purposes.

Agent are facilitators Closely related to the previous issue, is the fact
that agents are very good facilitators for personalised unified messaging.
They do not provide any form of magic or automated intelligence, just be-

185

CHAPTER 17. INTERPRETATION 17.3. DESIGN

cause they are agents. Elements like machine learning must still be imple-
mented separately.

Dynamic additions In order to be truly capable of dynamically adding
(new) extractions and transformations to the system, a slight modification
might be useful. In the current implementation, an entire agent has to be
replaced. A better alternative would be the scenario suggested earlier (page
117). In this case one agent (per service) would be connected directly to the
system. This “central” agent would only act as the planning agent. The ac-
tual extractions or transformations are performed by execution agents, that
should register themselves with the planning agent. Addition (and retrac-
tion) of a capability could thus be resolved by (un)registering an execution
agent.

Separation of services In the design a separation of services was made.
Through the separation of each phase, several advantages have been achieved.
Functionalities can be added or modified, while failing steps do not compro-
mise the entire system. The prototype showed the separate phases have
enough unity to provide the required functionality. Where modifications and
personalisation were considered, no steps show reasons for further logical
combinations either.

Mobile agent: semantic router Since each message is handled by its
own agent, this facilitates sophisticated handling of each separate message.
Using mobile agents for this concept has been recognised early. Intelligent
mail handling and semantic routing are the terms used by Chess et al. [9].

This concept has been considered before, and assessments were made.
Two of the conclusions of Chess et al:

Although mobile agents offer no exclusive advantage [. . .] One
begins to see here the flexibility gained from this approach.

Mobile agents are a convenient transport mechanism for mail,
but have no essential role in the attribute processing.

These findings can only be acknowledged, based on the findings of this
project. The Router Agent does not perform any processing itself. It does
on the other hand not only transport the message, the router can vary the

186

CHAPTER 17. INTERPRETATION 17.3. DESIGN

processing sequence at each phase of the process. This provides extraordi-
nary flexibility, since each message can (theoretically4) be handled in its own
way.

4Nobody will write code for each individual message in practise, only groups of messages
are realistic achievable.

187

Part VI

Conclusions &
Recommendations

A last, but not least, part of this document. First of all, a brief overview
of what has been accomplished will be given in chapter 18. Next, chapter 19
will discuss these items. The final conclusions follow on page 205. After this
some recommendations for future work follow in 21.

189

Chapter 18

Overview

In the previous parts of this document, most of the stated goals have been
accomplished. This chapter will give a brief overview of what has been ac-
complished. It will mainly give a summary of the previously achieved. This
is not intended as a conclusion and neither as a discussion.

18.1 Backgrounds

A survey of related research and developments has been conducted. The
areas of interest that are covered include unified messaging, user profiling
and agent technology. A brief summary of these backgrounds can be found
in this section.

Unified messaging Research directly targeted at unified messaging is
quite rare. Although some projects exist, they form a rather narrow ba-
sis. There are several related areas of interests that do have a lot of coverage
however. Among these are speech recognition and synthesis, OCR and hu-
man expression recognition. Standards for unified messaging are restricted
to SMTP and MIME, the basis of e-mail.

These standards are often encountered in practise as well. Most com-
mercial offerings are limited to a specific set of media, and have further
restrictions on their usage. Accessing all messages from any device is often
not the case, receiving them in ones e-mail is common practise. Having a fax
read to you by these systems is almost never an option.

Recent developments can offer possibilities for further improvements. Net-
work technologies provide faster data communication and continuous reacha-
bility. New mobile phones and PDA’s have more capabilities, thus providing
a basis for more advanced systems.

191

CHAPTER 18. OVERVIEW 18.2. DESIGN

User profiling Information filtering is often applied to reduce streams of
information towards an user. One of the most used examples is found in e-
mail. Information filtering tries to establish a profile of the user to compare
new messages against. This profile is used to classify new objects, according
to the user’s interests. Most of the systems for e-mail are based on textual
content of e-mails however.

An important technique for information filtering is creating an user profile
with machine learning. Several algorithms for machine learning are briefly
described. Among these are nearest-neighbour, decision trees, rule-based
systems and Bayesian learning. Some other very common methods are not
described since they are considered less applicable.

Agent technology Although agent technology is applied in many areas,
there is now common definition of an agent. All systems based on agents
do have some of a collection of common properties though. Characteristics
of agents are autonomy, intelligence, cooperation, mobility, reactiveness and
various others. An agent can have a certain degree of agency, based on these
properties.

In multi-agent environments, agents can communicate among each other.
KQML and FIPA ACL are the most used languages for this purpose. As
underlying architecture, a blackboard or an asynchronous messaging system
is often chosen.

Agent technology has been proposed in telecommunication, aside from
network management, for several goals. For the UMTS Virtual Home Envi-
ronment, mobile agents are used to utilise the same software on any device.
Intelligent Networks can be build with multi-agents, and IMPAX aims to
support unified messaging with multi-agents. Alternatives for agents can be
found in the client-server concept.

18.2 Design

After the problem was defined, a way to deal with this has been developed.
This has been detailed in the design, which was presented in two parts. First
the concept has been presented in part III. Chapter 14 detailed this concept
on a lower level and in a more technical way. A brief summary of the concept
will be given here.

Multi-Agent The proposed design consists of seven generic types of agents.
Each serves a well-defined functionality. The generic idea behind the design

192

CHAPTER 18. OVERVIEW 18.2. DESIGN

is a collection of agents that provide services for the processing of a message.
A router per message allows individual handling through these services.

Mobile Router A mobile Router Agent helps the message past all services,
controlling the actual processing. This router will do all that has to be done
per message, but to prevent an enormous amount of overhead per message,
it delegates all “real” work to the other agents. These Service Agents act as
consultants, but the high-level decisions are taken by the Router Agent. The
Router Agent effectively controls the workflow of a message.

Agents Aside from a mobile agent as router, several agents have been
identified to be needed. They form the services which the Router Agent can
consult. A brief overview of these:

Factory Agent A Factory Agent handles the input to the system. It shields
any specific handling of input devices from the rest of system, by start-
ing a Router Agent directly with the actual message.

Extractor Agent This class of agents makes information, implicitly present
in a message and its context, explicitly available (extracts it). The
resulting meta-data describes the actual message and its content at a
higher level.

Profile Agent The purpose of profiling is to keep track of the user’s in-
terests. Effectively, decisions whether a message is important or not
are made by this agent, and this should provide the protection for the
user against a flood of messages. Another decision made is the applied
format to present the message to the user.

Transformer Agent A generic Transformer Agent takes care of the reali-
sation of the “unified” part of the messaging. This relieves the input
and output (user interface) of supporting each other’s specific formats.

User Interface Agent Handling the output device, the UI Agent allows
users to perceive messages and interact with the system.

Storage Agent This last type of agent takes care of archiving messages for
the user.

Remainder Within the document, further details are given. This is in-
cludes descriptions of the agents, up to a model of the tasks and objects to
implement. These will not be repeated here, but can be found in the related
chapters.

193

CHAPTER 18. OVERVIEW 18.3. PROTOTYPE

18.3 Prototype

Based on the design a prototype has been implemented. Although this pro-
totype is not exactly confirming to the design, the difference are little. Sev-
eral agents of different types have been implemented. Some of these are
fake implementations, using the same modalities but avoiding specific (hard-
ware) implementation dependencies. Therefore the prototype is not ready
for production-level usage right now, but is usable as proof-of-concept.

Implemented Agents The implementation constructed included the fol-
lowing agents.

• E-mail Factory Agent.

• RSS Factory Agent (Rich Site Summary: new articles published on
site).

• SMS Factory Agent (faked short-text modality).

• Router Agent.

• Extractor Agent, supporting keyword-annotation, address resolving and
relation determination.

• Rule-based Profile Agent.

• K-Nearest-Neighbour Profile Agent.

• Transformer Agent, supporting various formats.

• Swing UI Agent (desktop application based on Java’s default graphical
interface).

• Phone UI Agent (faking telephone and SMS modalities).

• Database Storage Agent.

Several other components are implemented, such as shared libraries. A
few debugging- and testing agents have been created as well. They shall not
be discussed in more detail here however.

194

CHAPTER 18. OVERVIEW 18.4. EVALUATION

18.4 Evaluation

With the created prototype an evaluation of the concept was made. As result
of some tests, the key characteristics of the system are investigated. Based
on the findings of this evaluation, one can say the system:

• Is extensible with new devices and user interfaces.

• Is adaptable per functionality to a high degree.

• Can be personalised per functionality.

• Is capable of queueing unimportant messages.

• Can recover from network-failings and malicious messages.

• Can operate across different media.

• Can facilitate generalisation (learning) of the user’s preferences.

• Allows users to receive their messages anywhere, anytime, anyhow.

Aside from these findings, several other facts where found during the
development. These mainly arose from the implementation and usage of the
prototype as representation of the design.

• A locating mechanism is essential for full dynamic, personalised exten-
sibility.

• Automated transformations are not hard to implement, although main-
taining a minimum level of quality and semantics requires more efforts.

• Multi-part messages (e-mail with attachment) need to be accounted for
early in the implementation.

• User interfaces can implement different levels of functionalities, and
can be independent of underlying implementation of the functionality.

• Redundancy can be used, but certain types of agents require special
measures to be taken.

• One should be careful using the additional information that comes with
a message without proper selection.

195

CHAPTER 18. OVERVIEW 18.4. EVALUATION

A few remarks about the design as a whole can be made as well. These
are only preliminary conclusions of provided capabilities. Further discussion
follows in the next chapters.

• The concept of unified messaging can easily be achieved with a few
types of agents.

• A mobile agent as semantic router allows for flexible, adaptive process-
ing of each individual instance.

• Agents can provide a decent architecture for personalisation, separate
for each function.

• Agents are very good facilitators, but the intelligence must still be
created by the developer.

• Separating different processing-steps as services allows for easy compo-
sition of new processing.

• Agents can easily provide dynamic additional or alternative function-
ality.

196

Chapter 19

Discussion

The presented design is rather complete and its characteristics have been
determined.This chapter will discuss some issues that have not yet been dis-
cussed. Note that chapters 13 and 17 have some preliminary discussion as
well. The discussed issues include:

• Non-mobile router.

• Overhead.

• Scalability.

• Communication overload protection.

• Commercial realisation.

• Agent communication and negotiation.

• Other issues out of scope.

19.1 Non-mobile Router

A primary aspect of the design is the usage of a mobile Router Agent. Due
to the use of a mobile agent, flexible and adaptable handling of messages
becomes available. It does require an underlying platform that supports
agent mobility. This might be a drawback in certain implementations for,
among others, reasons of availability, performance and security. Although
the last two subjects are discussed in this chapter, an alternative variant of
the design is possible at a certain cost.

197

CHAPTER 19. DISCUSSION 19.2. OVERHEAD

Instead of moving a Router Agent with the message, the message is passed
between multiple agents. Each location now has a Router Agent, that ex-
changes a message with a Router Agent in another location where the design
would prescribe a move. Instead of the agent keeping the state of the mes-
sage, this state must now be past along with the message itself. In general,
this would be very like regular e-mail is handled through SMTP [55]. This
will be extended with some additional semantic routing, with the advantage
of adaptability per location.

The main disadvantage is the loss of flexibility of handling each message
in another way. The process a message is subjected to is fixed to a single
scenario. When this process must be modified, all Router Agents need an
update and are still restricted to a fixed kind of processing for a message.
This could be solved by allowing a scenario to be present as part of the
message’s state. When the scripting support for this purpose becomes more
sophisticated, one is effectively back again at the concept of mobile agents.

Along the same lines, one can discuss the mobility of the other agents.
It may be clear the device specific agents are bound to their location. The
Service Agents have no such limitations however, although the Storage may
depend on a database or a physical system. They should be able to move
around, as long as they update their location-record for the locating mecha-
nism. This should allow them to find a better host, avoid system downtime
or reduce network latency for the user. However, consider that specifically
the Transformer Agent can be redundant, thus reducing this advantage of
mobility. The agents can of course always utilise mobility to introduce new
software and services at remote locations.

19.2 Overhead

The usage of mobile agents as message transporters has been suggested be-
fore. Chess et al. [9] discuss it in their assessment of mobile agent technol-
ogy. Their conclusion towards using mobile agents as transport mechanism
is reckoned here:

Mobile agents are a convenient transport mechanism for mail
[. . .]

With the additional conclusion that mobile agents have as disadvantage:

Transmission efficiency, for example a courier agent compared
to a simple SMTP mail object.

198

CHAPTER 19. DISCUSSION 19.3. SCALABILITY

This last issue involves the overhead of using mobile code. As discussed
previously in 19.1, one could use static agents with the loss of flexibility. For
several reasons, the overhead can largely be reduced however:

• Different levels of code. By creating a library with common low-level
standard tasks, agents can be reduced in size, still with the advantage
of variation per agent (thus message). The agent can be composed of
several smaller and simpler common tasks.

• Caching allows for optimisation. The platform used to implement the
agents can cache code, to avoid retransmission. The Tryllian ADK [75]
is optimised to cache both the code of libraries and agents.

• Distinction between code and data. Furthermore, the Tryllian ADK al-
lows agents to implement a state-serialisation. This allows agents
to be transported with a minimal exchange of data. Only the first
time a particular implementation of an agent is moved the entire code
needs to be transported. It is unlikely that each individual message
will be handled by an individual implementation, therefore allowing
optimisation over classes of messages.

19.3 Scalability

An issue that was placed out of scope is scalability. An important aspect
that is often evaluated of architectures is its scalability however. Although
agents have been said to provide scalability in general, a brief evaluation of
expected scalability and bottlenecks of the proposed design is given in this
section. Two potential bottlenecks are identified and discussed here:

• Locating mechanism.

• Network load.

Locating mechanism Partially based on the prototype, a main bottleneck
could be the locating mechanism. Since each user has effectively its own set
of agents, these can be distributed across the network at will. Each user
thus has its own cluster of agents within the whole system and network. An
average server or modern personal computer can support these agents for
at least one user1. With the increasing availability of continuous broadband
connections and personal computer possession, the capacity is provided for,

1Based on the prototype.

199

CHAPTER 19. DISCUSSION 19.4. COMMUNICATION OVERLOAD

leaving the problem to locate these. As the prototype shows, standard DNS
or a similar concept can solve this. DNS has proven to be quite scalable
through its hierarchical and distributed nature, as it is still in use in the
Internet after its enormous growth.

Network load An advantage of the use of separate, mobile Router Agents
is the reduction of network traffic (page 72). This comparison was opposed
a centralised agent though. When compared to, say, regular e-mail (SMTP),
several additional phases of network traffic are added to facilitate the extra
functionality. In 9.4, this was set aside by assuming the presence of a de-
cent backbone. Further calculations and field test must show whether this
assumption is valid enough if the approach is applied on large scale. Ineffi-
cient distribution of the agents, as discussed in the previous paragraph, will
of course increase network load as well.

19.4 Communication overload

One of the problems identified at the start of the project is to prevent the user
from a communication overload. Now, near the end, it is time to evaluate
the proposed solution on this point. A field test with a significant number
of users could do this, but the prototype is proof-of-concept. Since no field
tests were conducted, a very solid assessment cannot be made.

What is shown however, is the possibility to queue messages based on the
user profile. As it is also exhibited this profile can be learned, automatically
reducing the amount of messages that arrive at the user. Combined with
receiving messages in a preferred format, this can help to reduce the load on
the user. The crucial part here is the capability to learn the user’s profile,
which is addressed in section 13.1 and is discussed as future work as well (see
21.1).

19.5 Commercial realisation

Within this project, only a prototype has been implemented. To be of any
use to the end-user, an usable, qualitative and practical implementation is
needed. This would be the case for commercial deployment of the idea. Al-
though this is out of scope, a few considerations for the possible applicability
of the system in commercial practise:

200

CHAPTER 19. DISCUSSION 19.6. AGENT NEGOTIATION

Corporate communication networks A possible area of application is
as an internal system for (large) companies, or by means of an Application
Service Provider (ASP). All employees of the company could be connected
to the system, allowing personalisation of their communication. As advan-
tage for the company employees are less interrupted, except for important
business. The employee itself can customise its communication and is thus
provided with more comfort.

Competitive service The telecommunication providers actually need the
intensive usage of (mobile-) data traffic to make money, but it could be use-
ful to accept a system as proposed. A telecom-provider that supports this
kind of personalisation and bandwidth-reduction, can offer a very attrac-
tive, competitive service. The offering of a personalised, protective system
might appeal to many customers. A proper and understandable user pro-
filing method is needed however, otherwise users will be lost because they
experience unexplainable, seemingly random, behaviour of their communica-
tion.

19.6 Agent communication and negotiation

An important difference between the design and the prototype is the com-
munication between agents. Where the design included different forms of
communication between the router and each service, the implementation used
one common way to exchange messages. Both manners have their advantages
and disadvantages, as explained here.

Specific exchanges When using specialised communication between the
Router Agent and the Service Agents, each step in the process has its own on-
tology2. This ontology allows to pass information specific for what is passed
between the agents. This has advantages, that are commonly seen as disad-
vantage of a generic approach:

• Negotiation. Agents that communicate in a specialised manner about
a job, can more easily negotiate about the job itself. Since a specific
ontology is used, characteristics of the job can be expressed better.
This allows a higher degree of adaptability and adjustment of details of
the job to be done. For instance, the Router and Transformer Agents
could negotiate quality of service. The resulting document size, quality,
costs and response time can be negotiated.

2A systematic way to describe all concepts in some field of discourse.

201

CHAPTER 19. DISCUSSION 19.7. OUT OF SCOPE

• Strictness. Communicating only the required data increases strictness.
The data and results can more easily be checked by the receiving agent.
Manipulation of data that was not supposed to be used is thus impos-
sible.

• Conceptual correct. Multi-agent systems should conceptually be used
in a specialised manner. This includes less risk of abusing and confusing
different agents, and improved possibilities of emerging new utilisation
of the present functionality. It better represents the human society on
which the multi-agent concept is based.

Generic communication Using a generic way to exchange messages is
shown in the prototype. More information about “what to do” (the state of
the message) is contained with the message itself. This has some advantages
as well:

• Reduces size. Since only one way of communication is used, less size (of
agents and their implementation) is needed to support other ontologies.

• Easier to implement. Related to the previous is the reduced implemen-
tation effort. Only one ontology needs to be implemented and tested,
allowing the usage of more shared code.

• Easier for extension. Creating an entirely new step in the processing
of a message is easier. Since no specialised ontology needs to be im-
plemented for the new service, the router only needs to be modified to
utilise the new phase.

Further implementation need to consider this important issue. Although
agents can easily be adjusted, creating a sound and consequent system from
the start on is always a wise thing to do.

19.7 Other issues out of scope

In 5.3 several issues were left out of the scope for the project. Although
they were stated not to be addressed in the project, a minor discussion
is reasonable. Notice that scalability and commercial aspects have been
addressed in resp. 19.3 and 19.5.

202

CHAPTER 19. DISCUSSION 19.7. OUT OF SCOPE

User interfaces No particular effort has been made to design an user
interface. The required functionalities have been identified in chapter 9,
providing a basis for user interface designers. Great similarity can exist with
regular e-mail applications, which have already had a lot of attention to their
design. As shown in the prototype, the usage of different agents and devices
allows for different and lighter interfaces, with reduced support for certain
functionalities.

Security One of the main concerns about mobile agents has been the secu-
rity of an open execution environment. The underlying platform can resolve
this by providing encryption, access-control and similar tools. All these secu-
rity measures must protect privacy, confidentiality, availability and prevent
abuse. The Tryllian ADK [75] resolves many of the security related issues.

203

Chapter 20

Conclusions

This section describes the conclusions that can be made after the research,
development and evaluation in the previous parts of this document. All three
main problems and their corresponding goals are considered.

20.1 Unified messaging

With the design and prototype, it is shown that unified messaging can be
quite easily accomplished. Through the separation of input, output and
transformations, a way to transparently extend the system with new devices
has been established. Furthermore, all messages are not simply delivered as
ones e-mail, but can be received in any way. The latter can be achieved
by using automated transformations, based on chains of smaller conversions.
This can allow you to receive all your messages on nearly any device. Since
new devices can be added dynamically, any new device can be added as soon
as a corresponding agent is available.

An agent-based architecture for personalised unified messaging has been
proposed. The architecture provides unified messaging, combined with per-
sonalised user profiling across different media. Key element of the architec-
ture is a multi-agent based design, with a mobile agent as semantic router
for messages. Proven is this concept can easily be extended with new de-
vices, user interfaces and technologies. The latter allows new developments
in message- and media-processing, user-profiling and machine-learning to be
efficiently integrated into a practical application. Other properties follow
from its agent-based nature, and are listed later on.

205

CHAPTER 20. CONCLUSIONS 20.2. COMMUNICATION OVERLOAD

20.2 Communication overload

To help an user to overcome a communication overload, information filtering
is used. This filtering is used to classify each new message to applicable piles.
An user defines a pile for each situation.

It has been demonstrated it is possible to create a user profile across
different media. The profiling is separated in two parts for this purpose.
First, media specific information is extracted from a message, generating
meta-data that can be used for all media. The actual profiling happens next,
based on this meta-data.

If the user provides feedback, the user profiling can be implemented so it
learns the user’s interests. This user profile learning will have to cope with a
complex learning problem. In the developed architecture it has been defined
to have the following characteristics:

• Heterogeneous available input.

• Heterogeneous input types.

• Dynamic input and output.

• Unknown input and output values during design and implementation.

• The feedback from the user may be inconsistent or erroneous.

No quantitative analysis of algorithms has been performed. The best per-
forming algorithm(s) can thus not be given. Nonetheless, some possible al-
gorithms are estimated to be usable.

In the developed prototype a simple variant of the k-nearest-neighbour
algorithm was used. This algorithm was shown to be capable of learning
a profile of the user. Although it might not be the best solution, it proofs
learning a profile is possible. As important advantage of the developed ar-
chitecture, each user can easily use its own profiler. This allows the usage
of different profiling methods, avoiding the necessity of an one-size-fits-all
algorithm. Furthermore, the prototype can be used to easily integrate and
test other algorithms.

20.3 Agent technology

Mobile agent technology has successfully been applied to personalised unified
messaging. Basis for the developed architecture is a multi-agent system. A
mobile agent is used to route a message through the process. As a result, an
autonomous message is created.

206

CHAPTER 20. CONCLUSIONS 20.3. AGENT TECHNOLOGY

Some tests have been conducted to evaluate the strengths of the system.
Although the developed system can be accomplished with other technologies,
a rather unique combination of capabilities are present. Exhibited are the
following important features:

• Dynamically extensible. Agents provide two important capabilities to
support dynamic extensibility. First, they compartmentalise function-
ality, encapsulating the characteristics of a device and shield those from
the rest of the system. Secondly, agents can be naturally distributed,
thus reducing the problem of connectivity.

• Highly adaptable. Another effect of the clear separation of functionality
is the high adaptability. The agent only has to respond equally towards
the system, allowing modification of its internal behaviour without side-
effects. Mobility of the Router Agent increases this flexibility, and
allows alternative processing of an individual message to be defined
with the message itself, making it independent of the services provided
by the rest of the system.

• Robust. Because each agent is kept apart from the others as a process,
failures in one agent do not affect others. Since each task of an agent
is evaluated to be successful, alternative scenarios in case of failure can
be established in advance. Equipping a message with its own agent
keeps it independent of the offered services. If a consulted service fails,
it can take care itself it is further processed elsewhere.

• Personalisation up to the behavioural level. Since agents are only bound
together by their communication, the usage of an agent for personal or
public purposes is transparent. An agent can thus provide a customised
program for its user for a specific functionality. Other agents can service
multiple users, and can supply, for instance, improved transformations
for all users at once.

Of course these benefits are not the only one. Other benefits often found in
agent systems, such as security and scalability need more investigation, but
are estimated to be present in the proposed design as well.

But there are drawbacks as well. A very important implication of the
usage of agents is the requirement of a supporting platform on all components
in the system. A common runtime platform thus needs to be installed and
present as a widespread infrastructure. Because a message is equipped with
its own code for increased flexibility, this implies a slight penalty due to this
overhead. This will affect performance and efficiency, although the impact is

207

CHAPTER 20. CONCLUSIONS 20.3. AGENT TECHNOLOGY

yet unknown. A last issue is found in security as well. Since new code can be
introduced on a hosting system, one has to ensure this code can be trusted.

Agent technology is not the only possible solution when it comes to per-
sonalised unified messaging. Most of the benefits can be achieved with other
technologies as well, but most only excel on one of the benefits. The use
of agents offers the combination of these benefits, which makes it rather
unique. If the system will be further developed, agent negotiation can be an
important advantage for quality of service. The replacement of agents can
be utilised to test and deploy new technologies and insights in media pro-
cessing and user profiling. Agent technology thus forms a great facilitator
for personalised unified messaging.

The Tryllian ADK is a powerful software development kit for mobile agent
applications. Nearly all of the required functionality for all aspects of agent
technology as used in the design are available. Moving an agent is very
simple and can be achieved based on only a hostname. The task model of
agents allows for an almost direct mapping of a schedule of jobs to perform
to the behaviour of an agent. With a minor addition, the created agents can
support personalisation as well. To summarise, the ADK is well suited to
support personalised unified messaging. Nonetheless, some recommendations
can be found in the next chapter.

208

Chapter 21

Future Work

Although this study nearly reaches its end, research and development can
continue. Similar to almost every software project, progress is never com-
pletely finished. Therefore some issues that can be further investigated will
be described here. A few other recommendations are given as well.

Each of these issues requires attention of course. If a selection must be
made however, user profiling probably deserves the first and most interest.
It has the greatest impact on a usable, deployable system.

21.1 User profiling

At least one important issue is left open during the project. This is one of the
items that will need further investigation. As described before (for instance
in 13.1), automating the process to learn the user’s interests is a complicated
task. It is shown that learning the user’s preferences for receiving ones unified
messages can be done.

The question that has not been answered, is how it can be done best.
What has been achieved is the setting of the learning problem. Although this
is considered a complex one, there is some relieve as well. First of all, there
is no need for an one-size-fits-all solution. Since the agent-based architecture
allows personalisation, different users can use different algorithms. Secondly,
an extremely high accuracy is not needed. A tendency to overestimate a
message’s importance is preferable, since most users rather receive a few less
important messages than missing an important one, certainly if they know
they are reachable in the first place.

Nevertheless, one or more appropriate algorithms need to be selected or
developed. These should then be tested on a large group of users over a longer
period. With the designed architecture and prototype a first environment to

209

CHAPTER 21. FUTURE WORK 21.2. SECURITY

apply and test these algorithms is available. This can reduce the time needed
before the developed profiling techniques can be used in practise.

21.2 Security

Since communication is personal, and sometimes even confidential, measures
to ensure security are needed. One has to take into account the connection to
open systems and use of open networks. Other important reasons for security
are dictated by law, in particular laws regarding privacy [5].

The Tryllian ADK uses encrypted connections to protect against mali-
cious interception of data, together with digital signatures to ensure code
authenticity during runtime. This provides a secure environment to run ones
agent-based applications. Although agent systems can be made secure, this
does ensure complete security.

This would involve much more, as is common in computer system secu-
rity. Procedures and people are involved as well. In all areas large amounts
of information are available, including literature specialised in agent-based
security.

21.3 Performance

Before a (commercial) realisation can be deployed as a large-scale, operational
system, one needs to know how many users and messages it can support.
Performance figures cannot be given at the moment. First of all, several parts
have not been implemented in a deployable manner. Both (hardware) devices
and network environment depend on the choices made by the implementor.
These can greatly affect the effective performance in terms of costs and time.

An analysis of quantitative requirements need to be made. This includes
an estimation of the average number of messages per user and their size, the
number of users, and the desired response-time. Combine these with some
tests for achievable throughput. With these and other figures, hardware
requirements can be calculated, resulting in a partial number for initial costs.
Many other types of quantitative analyses can be performed, and several are
necessary. This is not the place to discuss these any further however.

21.4 Towards a virtual secretary

Handling someones communications is one of the tasks of a secretary. A
flesh-and-blood secretary does a lot more though. Several of these tasks

210

CHAPTER 21. FUTURE WORK 21.5. RELATED WORK

can and have been created as digital services as well. Widely used calender
and planning applications already exist. Speech recognition is still under
development, but can already allow one to dictate letters.

It is already shown (in 13.2.4 and 13.2.5) that various tasks like calender
and address-books can be integrated in this system. Information retrieval
was one of the first task assigned to a personal agent. Perhaps the flexible
facilitating capabilities of mobile agent technology can be used for other typ-
ical secretary tasks as well. Developing and integrating secretary tasks using
agent technology may provide all of us who cannot afford a real secretary
with a reasonable alternative.

21.5 Related work

The proposed design has been strictly limited to receiving message-based
communication. Other areas are, to a more or lesser extent, related however.

Other communications In section 13.2 this subject has been discussed.
Sending messages can be accomplished by reversing some parts of the de-
signed process. Integrating system of several persons can even reduce the
need for external communication media and devices. When a few response-
time constraints are resolved, partial combination with synchronous com-
munication (i.e. telephone) is possible, to set up a synchronous connection.
Until this is accomplished, people might otherwise still need two devices for
communicating.

Document Management Systems Another candidate for combination
or integration can be Document Management Systems. Many shared inter-
ests exist, like classification of documents, usage of meta-data and workflow.
Computer Supported Cooperative Work (CSCW) is a similar closely related
area. Both systems are closely related to exchanging documents and infor-
mation between users. Further research for differences and shared properties
can further improve each concept and mutual integration.

Agent theories Currently available agent theories already provide guid-
ance for further development of the system itself. The proposed system
allows the creation of new ways of processing. Theories of multi-agent sys-
tems aim for agent negotiation to create these new processes. These include
negotiation, discovery and reasoning to allow new emerging behaviour.

Other results of agent theories can be applied to less futuristic tasks.
Agent negotiation for instance, can lead to further refinement of transfor-

211

CHAPTER 21. FUTURE WORK 21.6. TRYLLIAN ADK

mations. The transformation can be negotiated between a Router Agent
and a Transformer Agent. The subject of negotiation can be the quality of
service (QoS), regarding costs, time and size of the message. These have
not been implemented, and thus multi-agent theories leaves room for various
improvements.

21.6 Tryllian ADK

Although one of the conclusions, as found in the previous chapter, is that the
Tryllian ADK is very well suited to support personalised unified messaging,
further improvements can always be made. A few recommendations for some
of these improvements are given in this section.

J2ME To get the best out of the design, the UI Agents should be run
directly on the user’s device. Since a number of the latest PDA’s and mobile
phones come with support for Java, this is a feasible option. There is a small
limitation to this possibility however. The current ADK is build on top of
the Java 2 Standard Edition (J2SE). Sun Microsystems has introduced the
Java 2 Micro Edition (J2ME) for light and embedded devices. Most of the
mobile phones and PDA’s fall in this category, and thus provide a J2ME
environment. Support for the ADK’s Agent Runtime Environment (ARE)
would be a great benefit for the proposed architecture.

Locating mechanism An important element in the prototype to support
personalisation was the use of a locating mechanism. This mechanism was
build from two parts; JNDI and DNS. The Java Naming and Directory Inter-
face is natively supported within the ADK. Within a JNDI Context, agents
can register themselves by a chosen name. This provides the means to find
a certain agent of a certain user in the local habitat. Remote JNDI requests
can be made if the remote system’s name or IP-address is known.

Dynamically adding a new device to the system was supported with the
standard Domain Name System1. DNS allows to find one or more machine-
addresses based on a name, and was used to translate the name of the ad-
dressee to the effective machines. This selection of machines was (remotely)
searched for the applicable agent, searching all machines is not considered
reasonable in a large multi-user system. As mentioned in section 17.1.1, an
integrated version of DNS would be beneficial. This can effectively result in
a native distributed version of the implemented JNDI.

1Actually an effectively equivalent hereof for practical reasons

212

CHAPTER 21. FUTURE WORK

Specialised VAD A last recommendation only applies in a later stadium
of possible deployment. One of the shown advantages is the possibility for
personal adaptability. It would be unrealistic to have each user write its
own agents in code. For this purpose, the Visual Agent Designer might be
refitted. A special version with only relevant tasks could be created. All
an user has to do is draw a diagram like Figure 14.4. This would provide
customisation on the highest-level for a wide range of users.

213

Bibliography

[1] AltaVista — translate with the Babel Fish. WWW site. http://babel.
altavista.com/.

[2] S. R. van den Berg and P. A. Guenther. Procmail — autonomous mail
processor. WWW site and program, 2002. http://www.procmail.org/.

[3] R. Black, A. W. Clark, R. Caley, and P. Taylor. The Festival Speech Syn-
thesis System. The Centre for Speech Technology Research, University of
Edinburgh, 2002. http://www.cstr.ed.ac.uk/projects/festival/.

[4] G. Boone. Concept features in re:agent, an intelligent email agent. In
Second International Conference on Autonomous Agents (Agent ’98),
1998.

[5] J. J. Borking, B. M. A. van Eck, and P. Siepel. Intelligent software agents
and privacy. Technical Report Achtergrondstudies en Verkenningen 13,
Registratiekamer, January 1999.

[6] J. M. Bradshaw. An introduction to software agents. In Software Agents
[7].

[7] J. M. Bradshaw, editor. Software Agents. AAAI, 1997.

[8] T. Bray et al. Extensible markup language. Specification, World Wide
Web Consortium, October 2000.

[9] D. Chess, C. Harisson, and A. Kershenbaum. Mobile agents: Are they
a good idea? Technical Report RC 19887, IBM, December 1994.

[10] W. W. Cohen. Learning rules that classify e-mail. In H. P. Frei, D. Har-
man, P. Schäuble, and R. Wilkinson, editors, AAAI Spring Symposium
on Machine Learning in Information Access, pages 307–315. ACM Press,
New York, US, 1996.

215

http://babel.altavista.com/
http://babel.altavista.com/
http://www.procmail.org/
http://www.cstr.ed.ac.uk/projects/festival/

BIBLIOGRAPHY

[11] D. H. Crocker. Standard for the format of ARPA internet text messages.
RFC 822, Internet Engineering Task Force, August 1982. http://www.
ietf.org/rfc/rfc0822.txt.

[12] P. Farjami, C. Görg, and F. Bell. A mobile agent-based approach for
the UMTS/VHE concept. In Proc. Smartnet ’99 — The Fifth IFIP
Conference on Intelligence in Networks, Bangkok, Thailand, November
1999.

[13] D. Ferris. Drowning in email overload? Ferris Research forecasts it will
only get worse. Press Release, July 2000.

[14] T. Finin, Y. Labrou, and M. James. KQML as an agent communication
language. In Bradshaw [7].

[15] FIPA. FIPA agent communication language. Technical report, Founda-
tion for Intelligent Physical Agents, 1999. http://www.fipa.org/.

[16] FIPA. FIPA agent communication language. Technical report, Founda-
tion for Intelligent Physical Agents, 2000. http://www.fipa.org/.

[17] G. Flood. Managers complain of email overload. Computing, February
2001. http://www.vnunet.com/News/1118317.

[18] N. Freed and N. Borenstein. Multipurpose internet mail extensions
(MIME) part one: Format of internet message bodies. RFC 2045, Inter-
net Engineering Task Force, November 1996. http://www.ietf.org/

rfc/rfc2045.txt.

[19] N. Freed and N. Borenstein. Multipurpose internet mail extensions
(MIME) part two: Media types. RFC 2046, Internet Engineering Task
Force, November 1996. http://www.ietf.org/rfc/rfc2046.txt.

[20] N. Fujino, Y. Matsuda, T Nishigaya, and I. Idia. Multi-agent solution
for virtual home environment. In Hayzelden and Bourne [24], chapter 8,
pages 102–110.

[21] GSM world news — press releases. WWW site, 2001. http://www.

gsmworld.com/news/statistics/index.shtml.

[22] L. Hagen, J. Mauersberger, and C. Weckerle. Mobile agent based services
subscription and customizing using the UMTS virtual home enviroment.
Computer Networks, 31(19):2063–2078, August 1999.

216

http://www.ietf.org/rfc/rfc0822.txt
http://www.ietf.org/rfc/rfc0822.txt
http://www.fipa.org/
http://www.fipa.org/
http://www.vnunet.com/News/1118317
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.gsmworld.com/news/statistics/index.shtml
http://www.gsmworld.com/news/statistics/index.shtml

BIBLIOGRAPHY

[23] U. Hanani, B. Shapira, and P. Shoval. Information filtering: An overview
of issues, research and systems. User Modelling and User Adaptive In-
teraction, 11:203–259, 2001.

[24] A. L. G. Hayzelden and R. A. Bourne, editors. Agent technology for
communication infrastructures. John Wiley & Sons Ltd., 2001.

[25] A. L. G. Hayzelden et al. Future communication networks using software
agents. In A. L. G. Hayzelden and J. Bigham, editors, Software Agents
for Future Communication Systems, pages 1–57. Springer, 1999.

[26] P. Helmersen et al. Impacts of information overload. Technical Report
P947, Eurescom, January 2001. http://www.eurescom.de/public/

projects/P900-series/P947/.

[27] Hotvoice.com — world’s largest free web based unified messaging net-
work. WWW site, 2002. http://www.hotvoice.com/.

[28] X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: A
guide to Theory, Algorithms and System Development. Prentice Hall,
2001.

[29] M. N. Huhns and L. M. Stephens. Multiagent systems and societes of
agents. In G. Weiss, editor, Multiagent system: a modern approach to
distributed artificial intelligence. MIT press, 1999.

[30] IDC. Email mailboxes to increase to 1.2 billion worldwide by 2005. Press
release, September 2001. http://www.cnn.com/2001/TECH/internet/
09/19/email.usage.idg/.

[31] Active IETF working groups. WWW site, 2002. http://www.ietf.

org/html.charters/wg-dir.html.

[32] W. Kepinski. De keuzes in unified messaging. Infoworld (Dutch edition),
6(19), October 2001.

[33] D. Kerr et al. An agent-based platform for next-generation IN services.
In Hayzelden and Bourne [24], chapter 2, pages 19–31.

[34] Y. Labrou. Standardizing agent communication. In M. Luck et al.,
editors, Multi-Agent Systems & Applications, Advanced Course on Arti-
ficial Intelligence (ACAI-01) proceedings, number 2086 in Lecture Notes
in Artificial Intelligence. Springer, 2001.

217

http://www.eurescom.de/public/projects/P900-series/P947/
http://www.eurescom.de/public/projects/P900-series/P947/
http://www.hotvoice.com/
http://www.cnn.com/2001/TECH/internet/09/19/email.usage.idg/
http://www.cnn.com/2001/TECH/internet/09/19/email.usage.idg/
http://www.ietf.org/html.charters/wg-dir.html
http://www.ietf.org/html.charters/wg-dir.html

BIBLIOGRAPHY

[35] D. B. Lange and M. Oshima. Seven good reasons for mobile agents.
Communications of the ACM, 42(3):88–89, March 1999.

[36] M. Lauff, A. Schmidt, and H. Gellersen. A universal messaging agent
integrating device modalities for individualised mobile communication.
In Proc. of the 13th International Symposium on Computer and Infor-
mation Sciences, Belek-Antalya, Turkey, October 1998.

[37] S. Lloyd, A. L. G. Hayzelden, and L. G. Cuthbert. Virtual home envi-
ronments to be negotiated by a multi-agent system. In Hayzelden and
Bourne [24], chapter 9, pages 111–121.

[38] S. A. Macskassy, A. A. Dayanik, and H. Hirsh. EmailValet: Learning
user preferences for wireless email. In IJCAI-99 Workshops: Learning
about Users and Machine Learning for Information Filtering, Stock-
holm, Sweden, August 1999.

[39] P. Maes. Agents that reduce work and information overload. Commu-
nications of the ACM, 37(7):30–40, July 1994.

[40] N. Marmasse and C. Schmandt. Location-aware information delivery
with comMotion. In HUC 2000 Proceedings, pages 155–171, 2000.

[41] S. J. W. Marti. Active messenger: e-mail filtering and mobile delivery.
Master’s thesis, MIT Media Lab, August 1999.

[42] M. Marx and C. Schmandt. CLUES: Dynamic personalized message
filtering. In Proc. of ACM Computer Supported Cooperative Work, pages
113–121, November 1996.

[43] L. McIntyre et al. File format for internet fax. RFC 2301, Internet Engi-
neering Task Force, March 1998. http://www.ietf.org/rfc/rfc2301.
txt.

[44] P. McNamara. E-mail overload drives many users bananas. WWW page,
June 1998. http://www.cnn.com/TECH/computing/9806/18/email.

overload.idg/.

[45] F. Meech, K. Baker, E. Law, and R. Liscano. A multi-agent system for
personal messging. In Proc. of the 4th Int. Conf. on Autonomous Agents
2000, pages 144–145, 2000.

[46] Message4u. WWW site, 2002. http://www.message4u.nl, in Dutch.

[47] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

218

http://www.ietf.org/rfc/rfc2301.txt
http://www.ietf.org/rfc/rfc2301.txt
http://www.cnn.com/TECH/computing/9806/18/email.overload.idg/
http://www.cnn.com/TECH/computing/9806/18/email.overload.idg/
http://www.message4u.nl

BIBLIOGRAPHY

[48] K. Mock. An experimental framework for e-mail categorization and
management. In 24th Annual Int. ACM SIGIR Conf. on Information
Retreival (SIGIR ’01), September 2001.

[49] P. Mockapetris. Domain names — concepts and facilities. RFC 1034,
Internet Engineering Task Force, November 1987. http://www.ietf.

org/rfc/rfc1034.txt.

[50] MySQL AB. MySQL database. http://www.mysql.com/.

[51] Nokia 7650. WWW page — product description, 2002. http://www.

nokia.com/phones/7650/.

[52] H. S. Nwana. Software agents: An overview. Knowledge Engineering
Review, 1996.

[53] M. Pantic. Facial expression analysis by computational intelligence tech-
niques. PhD thesis, Delft University of Technology, 2001.

[54] A. Pizano and W. V. Su. Multimedia messaging systems. In B. Furht,
editor, Handbook of Internet and Multimedia systems and applications,
pages 420–436. CRC Press, 1998.

[55] J. B. Postel. Simple mail transfer prototcol. RFC 821, Internet Engineer-
ing TaskForce, August 1982. http://www.ietf.org/rfc/rfc0821.txt.

[56] B. Raman, R. H. Katz, and A. D. Joseph. Universal inbox: Providing
extensible personal mobility and service mobility in an integrated com-
munication network. In Proc. of the Workshop on Mobile Computing
Systems and Applications (WMCSA’00), December 2000.

[57] J. D. M. Rennie. ifile: An application of machine learning to e-mail
filtering. In Knowledgde Discovery and Data Mining (KDD-2000); Text
mining Workshop, Boston, MA USA, 2000. ACM.

[58] M. Roussopoulos et al. Person-level routing in the mobile people archi-
tecture. In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems, October 1999.

[59] S. Russell and P. Norvig. Artificial Intelligence, a modern approach,
chapter 2: Intelligent agents. Prentice Hall, 1995.

[60] N. Sawhney. Contextual awareness, messaging and communication in
nomadic audio environments. Master’s thesis, MIT Media Lab, June
1998.

219

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.mysql.com/
http://www.nokia.com/phones/7650/
http://www.nokia.com/phones/7650/
http://www.ietf.org/rfc/rfc0821.txt

BIBLIOGRAPHY

[61] R. M. Schaar. Literature survey. Technical report, Delft University of
Technology / Tryllian B.V., 2001.

[62] R. B. Segal and J. O. Kephart. Incremental learning in SwiftFile. In Pro-
ceedings of the Seventh International Conference on Machine Learning,
June 2000.

[63] Siemens SX45. WWW page — product description, 2002.
http://www.siemenscomms.co.uk/online/catalogue/product_

display.php?ID=498.

[64] A. Silberschatz and P. Galvin. Operating Systems Concepts, chapter 18.
Addison-Wesley, 4th edition, 1994.

[65] Sun Microsystems. Java Naming and Directory Interface. http://java.
sun.com/products/jndi/.

[66] Sun Microsystems. JDBC. http://java.sun.com/products/jdbc/.

[67] Sun Microsystems. Swing. http://java.sun.com/j2se/1.3/docs/

guide/swing/.

[68] Sun Microsystems. Javamail API, 1.2 edition, December 2000. http:

//java.sun.com/products/javamail/.

[69] Sun Microsystems. Java 2 Standard Edition. Software Development Kit,
2002. http://java.sun.com/j2se/.

[70] J. Takinnen and S. Shahmehri. Are you busy, cool, or just curious? —
CAFE: a model with three different states of mind for a user to manage
information in electronic mail. Human IT, 2(1), March 1998.

[71] Inc. Tornado Development. Tems unified messaging — e-mail, voice
mail, faxing and paging. WWW site, 2002. http://www.tems.com/.

[72] Tryllian. SmartAgent. Internal methodology, Tryllian B.V., May 2001.

[73] Tryllian. Tryllian agent development kit. Technical white paper, Tryllian
B.V., 2001. http://www.tryllian.com/.

[74] Tryllian. Tryllian ADK developer’s guide, 2002. http://www.tryllian.
com/.

[75] Tryllian. Tryllian Agent Development Kit. Software Development Kit,
2002. http://www.tryllian.com/.

220

http://www.siemenscomms.co.uk/online/catalogue/product_display.php?ID=498
http://www.siemenscomms.co.uk/online/catalogue/product_display.php?ID=498
http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/
http://java.sun.com/products/jdbc/
http://java.sun.com/j2se/1.3/docs/guide/swing/
http://java.sun.com/j2se/1.3/docs/guide/swing/
http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/
http://java.sun.com/j2se/
http://www.tems.com/
http://www.tryllian.com/
http://www.tryllian.com/
http://www.tryllian.com/
http://www.tryllian.com/

BIBLIOGRAPHY

[76] A. Tveit. A survey of agent-oriented software engineering. In Proceedings
of the First NTNU Computer Science Graduate Student Conference.
Norwegian University of Science and Technology, May 2001.

[77] UMTS forum. What is UMTS? WWW page, 2002. http://www.

umts-forum.org/what_is_umts.html.

[78] Unified messaging, e-mail, fax, voicemail, sms, phone all in one in-box.
WWW site, 2002. http://www.unified-messaging.com/.

[79] UnifiedMessaging.com — unified messaging news and information por-
tal. WWW site, 2002. http://www.unifiedmessaging.com, provided
by Captaris, a company offering unified messaging solutions for busi-
nesses.

[80] G. Vaudreuil and G. Parsons. Voice profile for internet mail — version
2. RFC 2421, Internet Engineering Task Force, September 1998. http:
//www.ietf.org/rfc/rfc2421.txt.

[81] W. de Vries. Spam kan i-mode de kop kosten. WWW page,
April 2002. http://www.infoworld.nl/nieuws/bericht.phtml?id=

4397&is_nieuws=1, in Dutch.

[82] S. Whittaker and C. Sidner. E-mail overload: Exploring personal in-
formation management of e-mail. In Conference proceedings on Human
factors in computing systems, pages 276–283, 1996.

[83] M. Wooldridge and P. Ciancarini. Agent-oriented software engineering:
The state of the art. In P. Ciancarini and W. Wooldridge, editors,
Agent-Oriented Software Engineering, volume 1957 of Lecture Notes in
AI. Springer-Verlag, Januari 2001.

[84] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[85] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology
for agent-oriented analysis and design. Journal of Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

[86] XOIP unified messaging. WWW site, 2002. http://www.xoip.nl/.

[87] C. K. Yeo, S. C. Hui, I. Y. Soon, and C. T. Lau. A unified messaging
system on the internet. Microprocessors and Microsystems, 24:523–530,
November 2001.

221

http://www.umts-forum.org/what_is_umts.html
http://www.umts-forum.org/what_is_umts.html
http://www.unified-messaging.com/
http://www.unifiedmessaging.com
http://www.ietf.org/rfc/rfc2421.txt
http://www.ietf.org/rfc/rfc2421.txt
http://www.infoworld.nl/nieuws/bericht.phtml?id=4397&is_nieuws=1
http://www.infoworld.nl/nieuws/bericht.phtml?id=4397&is_nieuws=1
http://www.xoip.nl/

BIBLIOGRAPHY

[88] J. Zawinski. Message threading. WWW page, 2002. http://www.jwz.
org/doc/threading.html.

[89] G. Zhou. Managing the e-mail explosion. WWW page, September
2000. http://www.cnn.com/2000/TECH/computing/09/06/e-mail.

management.idg/.

222

http://www.jwz.org/doc/threading.html
http://www.jwz.org/doc/threading.html
http://www.cnn.com/2000/TECH/computing/09/06/e-mail.management.idg/
http://www.cnn.com/2000/TECH/computing/09/06/e-mail.management.idg/

List of Figures

8.1 Sample FIPA message (fictive) 48

11.1 Chains of transformations . 70
11.2 Centralised versus distributed routing over network 72

12.1 Overview of the architecture 80
12.2 Workflow for an important new message 96
12.3 Dataflow for an important new message 97
12.4 Workflow for an unimportant new message 98
12.5 Dataflow for an unimportant new message 99
12.6 Workflow user situation change 100
12.7 Dataflow user situation change 101
12.8 Workflow user feedback . 102
12.9 Dataflow user feedback . 103
12.10 Workflow store message . 104
12.11 Dataflow store message . 105
12.12 Workflow request message . 106
12.13 Dataflow request message . 107
12.14 Workflow present message . 108
12.15 Dataflow present message . 109

14.1 Task hierarchy of a Factory Agent 122
14.2 Task states of a Factory Agent 122
14.3 Task hierarchy of the Router Agent 123
14.4 Task states of the Router Agent 124
14.5 Task state of each Router Agent phase 125
14.6 Task hierarchy of an Extractor Agent 126
14.7 Task states of an Extractor Agent 126
14.8 Task hierarchy of a Profile Agent 127
14.9 Task state of a Profile Agent 128
14.10 Task hierarchy of a Transformer Agent 128

223

LIST OF FIGURES

14.11 Task state of a Transformer Agent 129
14.12 Task hierarchy of an UI Agent 130
14.13 Task state of an UI Agent . 131
14.14 Task hierarchy of a Storage Agent 131
14.15 Task state of a Storage Agent 132
14.16 UML object model for agents 133
14.17 Partial UML for the Router Agent 134

15.1 Sample envelope . 136
15.2 Sample article reference (RSS) from Slashdot.org 138
15.3 Sample code of the created task-model 140
15.4 Screen-dump of the Rule Profile Agent statistics 142
15.5 Sample rule set for the Rule Profile Agent 142
15.6 Screen-dumps of the Swing UI Agent 145

16.1 Profile learning: Cumulative error 173
16.2 Profile learning: Errors per messages 173
16.3 Profile learning: Extra assigned situations 174
16.4 Profile learning: Missing situations 174
16.5 Profile learning: Various user inconsistencies compared 175

A.1 Screen-dump of the Visual Agent Designer 232

B.1 Example workflow with legend 233
B.2 Example dataflow with legend 234
B.3 Example task hierarchy with legend 235
B.4 Example task-state transition with legend 236

224

List of Tables

12.1 Properties of a Factory Agent 84
12.2 Properties of the Router Agent 85
12.3 Properties of the Extractor Agent 86
12.4 Properties of the Profile Agent 88
12.5 Properties of the Transformer Agent 90
12.6 Properties of the UI Agent 91
12.7 Properties of the Storage Agent 92
12.8 Agent communication . 93

13.1 Meta-data example 1 . 114
13.2 Meta-data example 2 . 114
13.3 Meta-data example 3 . 114

16.1 User’s reaction to classes of messages 172

225

Part VII

Appendices

This part contains some additional information. The first appendix forms
a description of the Tryllian Agent Development Kit. The used diagrams are
explained in appendix B. Abbreviations used throughout the document can
be found in appendix C. Page 239 and further hold a paper written on the
subject of this project.

227

Appendix A

Tryllian ADK

The Tryllian Agent Development Kit (ADK) is an industrial strength soft-
ware development environment based on mobile agent technology. It imple-
ments a number of relevant standards, such as FIPA ACL [15], JNDI [65],
JXTA, SOAP, SNMP and XML [8], and is purely Java based. Below the
concept of the ADK will be accounted for. Afterwards, further details of im-
portant components will briefly be described. For further information, please
visit the Tryllian website at http://www.tryllian.com/.

Concept Concept behind the ADK can be divided in several parts. The
first is an habitat, the environment in which agents are deployed. The habitat
supports all facilities needed for the other concepts. It runs in a Java Virtual
Machine and manages all other concepts.

The second is a room, a logical part of a habitat, that can contain agents.
A room can contain many agents, but an agent can and must be in only one
room.

An agent itself is a mobile agent, consisting of a body and behaviour. The
behaviour is defined by tasks and its knowledge. Agents can move between
various habitats and rooms, after which it can continue its tasks as before it
moved. An agent is also capable of communicating with other agents based
on asynchronous messaging.

A.1 Architecture

The ADK consists of two important parts. The first is the Agent Runtime
Environment (ARE) which provides a basis for running and using agents.
The other are the Agent Foundation Classes (AFC), that provide the funda-
mentals to create agents.

229

http://www.tryllian.com/

APPENDIX A. TRYLLIAN ADK A.2. API HIGHLIGHTS

Agent Runtime Environment The ARE is the supportive basis for
agents to exist and run. It provides the infrastructure needed by agents
to operate. These include an environment where agents are run, facilities
to transport an agent from one system to another and the means for agents
to communicate. Various system agents are available as well, to implement
these capabilities and offer various services agents might need. Noteworthy
example of the latter is the support for JNDI-queries, allowing agents to find
other agents even from remote systems. Other elements the ARE takes care
of include security and persistency of agents.

Agent Foundation Classes To create agents, one can use the AFC. These
foundation classes form the API for the programmer to create agents. The
AFC is formed by a rich collection of Java-libraries, that provide the neces-
sary basic needs of an agent.

It provides various standard tasks, that can be used to construct an agent.
Examples include tasks for moving, waiting and communicating. Other
classes form the body of an agent itself or can be used to construct lan-
guages for communication.

A.2 API highlights

Two elements of the Tryllian ADK API are described below. They are men-
tioned throughout this document. The discussed elements from the API are
the TaskScheduler and the MoveTask.

TaskScheduler The TaskScheduler is one of the two main classes that
can be used to create tasks for an agent. Important difference with the other,
DefaultTask, is the way it is executed. Normally, all subtasks of a task can
be executed in parallel, thus effectively all at the same time1. Within a
TaskScheduler however, all subtasks are executed in sequence, in an order
depending on the success of each subtask. Each task can either succeed or
fail, and to both results, another task can be bound. In other words, one
can simply create branches of a normal sequence for each job that might fail.
A simple example is2: addTask(A, B, C);. After task A finishes, task B is
normally executed if A succeeded. If task A failed however, task C will be
run next. Loops and nesting of tasks are allowed as well, providing for very
powerful constructions. Figure A.3 includes a visualisation of a simple task
that can be accomplished this way.

1Technically there are differences with this concept.
2Without any constructor or initialisation. . .

230

APPENDIX A. TRYLLIAN ADK A.3. MORE

MoveTask Another important task is the MoveTask. This task is all that is
needed to move an agent from one place to another. These places are habitats
or rooms within these habitats. Only argument needed for a MoveTask is the
destination location. This location can be constructed from a hostname or
IP-address in the standard configuration. A hostname is a textual Internet
address, like www.tryllian.com. Making an agent move around can thus be
accomplished solely based on names.

A.3 More

Although the AFC and ARE are very important components of the ADK
there is more. Several tools will be named, and some pointers for further
readings follow as well.

Tools Various tools are provided with the ADK as well. Some of these
tools are essential, but some are optional. An essential tool is of course the
composing tool, which allows a developer to construct and digitally sign an
agent. Optional tools include for instance a habitat-visualisation.

Another tool is the Visual Agent Designer (VAD), that allows easy com-
position of agents. A developer using the VAD can construct agents, even
without any prior knowledge of Java. Creating agents becomes as simple as
drawing as task-transition diagrams. This is a drag-and-drop utility with
various useful tasks, and other building blocks are available for various func-
tionalities. A screen-dump is shown in Figure A.3.

Further information More information can be obtained from the Tryllian
website: http://www.tryllian.com/. A more elaborate introduction to the
ADK can be found in a Technical White Paper found on the website [73].
A complete Developers Guide is available for developers of agents with the
ADK [74].

Research licenses are available for universities and other research insti-
tutes. Last, the next release (ADK v2.0) is scheduled to be released for free3

in June 2002. This can be obtained through the Tryllian website as well
when available.

3Commercial usage is excluded.

231

http://www.tryllian.com/

APPENDIX A. TRYLLIAN ADK A.3. MORE

Figure A.1: Screen-dump of the Visual Agent Designer

232

Appendix B

Diagram Legend

Throughout this document, several types of diagrams have been used. In this
appendix, the legend of each of these diagram-types is given. This should
explain the diagrams, in case some are not obvious yet. In the first two
diagram types a green arrow indicates the diagram is (logically) continued
in another figure. Note that UML, as used for the object models in 14.2
can be found in various literature and will not be described, since no specific
adjustments or notations are used.

B.1 Workflow

The workflow diagrams, as given in section 12.6. An example is the workflow
in case an important message arrives in Figure 12.2. These diagrams are
standard swimlane-diagrams.

Actor 1 Actor 2

Activity 1 Activity 2

Activity 3

Legend
Actor 1 An actor.

Activity
An activity.

Transfer of activity.
Delimiter.

Figure B.1: Example workflow with legend

An actor is an entity that deploys activities in the system. An activity
is an operation in the process, performed by the actor. The transfer of an
activity in the process is the transfer of an activity of one actor to another
activity of another actor. The vertical version represents a transfer from

233

APPENDIX B. DIAGRAM LEGEND B.2. DATAFLOW

one activity to another within the same actor. A delimiter that separates
columns represents the boundaries of the actor’s responsibilities, which is
shown on top of the column. Arrows of transfers indicate the chronological
sequence of activities in a process.

B.2 Dataflow

Dataflow diagrams display how the data is exchanged between various com-
ponents of the system. One can for instance refer to Figure 12.15 for the
dataflow used for the presentation of a message to the user. This section
explains the meanings of all used symbols.

Room 1

Room 2

Agent 1

Agent 2

Device

R R

USER

reply 1

request 1
request 2

Continue

Legend

Agent 1

An agent.
communication

Agent communication.
Device Device.

Agent move.

Room 1
A room.

R
A Router Agent.

USER The user.

Figure B.2: Example dataflow with legend

An agent is a software agent that is part of the system. Each agent is
located in a room, although the used rooms in the diagrams are more or less
conceptual. A room can be empty or contain more agents, and rooms may
be located throughout the network in various habitats, but an agent can be
in only one room at a time. An agent can move between different rooms,
thereby leaving its original location. In the used diagrams, the Router Agent
is the only mobile agent, and each representation of a Router Agent thus
represents the same agent before and after the connecting move. Agents can
communicate, this is where the actual exchange of data happens. The last
entities are not agents, they are the user and its devices and can communicate

234

APPENDIX B. DIAGRAM LEGEND B.3. TASK HIERARCHY

as well. By following the arrows, one can determine the order of data- and
agent transfers.

B.3 Task hierarchy

The task hierarchies are given as part of the prototype’s design in chapter
14. A task hierarchy shows the relation between tasks. It shows how a task
consists of other tasks, and vice versa. One has to read these from the left
to the right.

Task Subtask

Scheduled
subtask 2

Scheduled
subtask 1

Subsubtask Legend

Task
Task

Schedule

Figure B.3: Example task hierarchy with legend

A task is a sort of job to be performed by an agent. When a task is
divided in several smaller jobs, these are subtasks, subsubtask etc. . . Tasks
with multiple subtasks may have scheduled subtasks. Normal subtasks are
all run at the same time (in parallel), but a schedule defines the transitions
from one subtask to another. Scheduled subtasks are executed in sequence,
and their order is determined by their success and the schedule. These are
further described by task-state transitions diagrams, as described in the next
section. More information about tasks and schedules can be found in [74].

B.4 Task-state transition

The mutual relation of several tasks is visualised by a task-state transition
diagram. Figure 14.4 for instance, describes the transitions for the task that
handles the routing in a Router Agent. Below an example with a legend and
explanation.

A task is initialised by the agent itself. This can be due to the initialisa-
tion of the agent itself, a reaction to an external event or another reason. A
subtask is performed, and when it finishes, a transition to another task can
be made. Such a transition can have a condition, which determines the next
task, based on the result of the previous subtask. A command is a special

235

APPENDIX B. DIAGRAM LEGEND B.4. TASK-STATE TRANSITION

initiation

Task 3Task 2

Task 1

userCommand

Task 5

endTask

condition 1a condition 1b

condition 3condition 2

condition 4b
condition 4a

condition 5

Legend
initiation

Initialisation

Task
Subtask

condition

Transition

userCommand

condition
condition

Command

endTask
Finish

Figure B.4: Example task-state transition with legend

kind of task, it waits for a command of the user or another special external
event. A task is completed when it finishes.

236

Appendix C

Abbreviations

ACL Agent Communication Language

ADK Tryllian Agent Development Kit

ADSL Asymmetric Digital Subscriber Line

AFC ADK Agent Foundation Classes

AI Artificial Intelligence

AIM AOL Instant Messenger

API Application Programmers Interface

ARE ADK Agent Runtime Environment

ARPA Advanced Research Projects Agency

ASP Application Service Provider

CLID Calling Line IDentification

CSCW Computer Supported Cooperative Work

DNS Domain Name System

DSL Digital Subscriber Line

ICQ I-seek-you

IF Information Filtering

IR Information Retrieval

237

APPENDIX C. ABBREVIATIONS

IVR Interactive Voice Response

JNDI Java Naming and Directory Interface

JVM Java Virtual Machine

FIPA Foundation for Intelligent Physical Agents

GPRS General Packet Radio Service

GPS Global Positioning System

HTML HyperText Markup Language

KQML Knowledge Query and Manipulation Language

KSE ARPA Knowledge Sharing Effort

MAS Multi-Agent System

MAT Mobile Agent Technology

MSM MicroSoft Messenger

NLP Natural Language Processing

OCR Optical Character Recognition

PDA Personal Digital Assistant

PDF Portable Document Format

PNG Portable Network Graphics

RFC Request for Comments

SMTP Simple Mail Transfer Protocol

TF-IDF Term Frequency - Inverse Document Frequency

TTS Text to speech

UMTS Universal Mobile Telecommunications System

VAD ADK Visual Agent Designer

VHE Virtual Home Environment

XML eXtensible Markup Language

238

Appendix D

Paper

This paper has been submitted for the Belgian-Dutch Conference on Artificial
Intelligence (BNAIC) 2002. Notification of acceptance is scheduled for July 5,
2002. Since this is after the date of publication of this document, publication
is unknown at the time of writing.

239

Agent-Based Intelligent Personal Unified Messaging

R. M. Schaar a L. J. M. Rothkrantz a M. Lassche b

M. V. Jonkers b

a Delft University of Technology, Mekelweg 4, 2628 CD Delft
b Tryllian B.V., Joop Geesinkweg 701, 1096 AZ Amsterdam

Abstract

People who are already flooded with e-mail, will be overloaded by uni-
fied messaging now telecommunication and Internet are merging together.
An architecture based on multi- and mobile-agents is proposed as solution.
Personalised behaviour is included in a flexible and extensible system. New
technology, insights and developments can be integrated in cross-media user
profiling. This is facilitated by using meta-data to describe a message, ex-
tracted in a separate phase from the profiling itself. An user profile classifies
messages that apply to the user’s current situation, thus reducing the user’s
new messages to the important ones. A prototype of the architecture has
been implemented and was used for an evaluation.

1 Introduction

“You have thirteen new e-mails, six new SMS-messages, three peo-
ple tried to ICQ with you, there are four new news-items, seventeen
new Usenet-discussions in your favourite groups and you have two faxes
and one voice-mail.”

With the forthcoming merger of telephone-networks and Internet, it becomes
possible to create an integrated communication-portal for users. This will allow
users to receive all their messages using a single application. Included are all kinds
of message-based communications, from e-mail to voice-mail and CNN-headlines
to Usenet-discussions. But would it not be more usable if the above was stated as
follows:

“You have four new messages that are currently important.”

The last statement is more informative for the user, a lot more comprehensible
and shorter as additional gain. Previous work in this area mainly focused on
e-mail, using text-based information filtering. Here it is tried to accomplish the
same, but applied across all possible media found in unified messaging. This article
will discuss problems involved, present an architecture and its evaluation based on
a created prototype.

APPENDIX D. PAPER

240

2 Problem

Telecommunication allows us to receive new messages anywhere and at any time.
With modern mobile telecommunication equipment combined with the Internet,
people can communicate everywhere. People will therefore be able to be con-
tinuously reachable for all kinds of messages. Three issues with regard to this
phenomenon are considered in this study:

Unified messaging Telecommunication and Internet are converging to one glob-
al communication network. As an advantage, it is nowadays possible to receive
your voice-mails and faxes as regular e-mail. Through mobile phones and com-
puters, you can access your e-mail everywhere. Although one can receive the data
of all received messages, one cannot always access the information in the message.
Using a phone to access a fax for example, is not a trivial task. An user should
be able to access messages independent of the used device [5]. The question is
how the conversion of different media can be automated, so the information can
be received rather than the data.

Communication overload Many people already complain about a flood of new
e-mail every day. The usage of e-mail is still growing, being used by more peo-
ple, who use it more frequently. Similar to the information overload encountered
when searching the Internet, people experience an e-mail overload [10]. With
more means of communication tied together, this can increase even further. This
problem might therefore become a broader communication overload [4].

To overcome the e-mail overload, information filtering has been applied. Most
of the proposed solutions to handle e-mail are text-based however (e.g. [7]). Since
unified messaging includes all kinds of media, a similar solution cannot be used.
What needs to be addressed is: A) how filtering can be accomplished across dif-
ferent media, and B) can such a mechanism improve its performance in time with
machine learning.

Agent benefits Agents have been successfully used to help solve various prob-
lems. A last issue is the way agents can be deployed for this particular problem
and what the benefits of using agent technology will be.

3 Design

An architecture was developed to cope with these problems. Figure 1 presents an
overview of the designed architecture. Described below will be the architecture in
general, the method of profiling and how messages are routed in the system.

3.1 Architecture

A multi-agent architecture has been developed for personalised unified messaging.
Seven types of agents are identified to be necessary. Three of these handle standard

APPENDIX D. PAPER

241

 Network

Message
InputEmail

Message
InputSMS

Message
InputFax

UI
Agent PDA

UI
Agent Phone

Extrac-
tion

Profile

Storage

Trans-
form

UI
Agent PC

UI
Agent Web

User

Figure 1: Overview of the designed architecture.

input, output and storage of messages. A fourth agent performs transformations
of messages from one media-format to another. Each transformation is build of
a sequence of smaller standard document-conversions [5]. Two more agents take
care of the filtering of messages, they will be explained in 3.2. The seventh and
last type of agent conducts the routing of messages, and is discussed in 3.3. Each
of these agents offers a function, but shields the details from the rest of the system.

No unified format is used to represent the message, to avoid useless conver-
sions or the (unrealistic) choice for one universal type of medium. A message is
considered as a package containing the message in its original data format, until
it is transformed to the preferred format. Additional information with regard to
the message can be part of the package as well.

3.2 Profiling

To be able to filter messages of different media-types, the actual filtering is divided
among two agents. These are the extractor agent and the profile agent. The former
performs a data analysis, while the latter should take care of filtering, modelling
and learning when compared with common information filtering [3].

Extractor Agent The first agent performs (media-specific) extractions on mes-
sages. It annotates the message with information implicitly present in the message.
This information is made explicitly available as meta-data. Meta-data can be any
kind of descriptive information about the actual message, the sender or any other
relevant information for the addressee. Note that these meta-data need to consist
of machine-processable types.

Profile Agent All user profiling is performed by the Profile Agent. This agent
decides on two topics; whether messages are important and in which format they

APPENDIX D. PAPER

242

should be shown. The former is accomplished by assigning applicable situations
to a message, placing messages on virtual piles. Each situation is represented by a
pile, for instance home, work and travel, and a message can be on multiple piles.
The format decides how messages should be shown, based on the capabilities of
the user’s current device and the preferences of the user in the past.

Users have to provide their current situation, which determines whether mes-
sages are important. Only messages that are on the pile representing the user’s
current situation will be delivered to the user. Users also have to provide feedback,
so the profile can be improved and learn the user’s interests for each situation.
The profile is based on this feedback, combined with the meta-data of messages.
Since it is based on this meta-data, the profile can be established independent of
the used medium.

This user profile learning is a rather complex problem:

• The present fields (meta-data) can vary per message.

• The fields are heterogeneous (numerical, textual, labels, etc. . .).

• At design and implementation the actual fields are unknown.

• Both fields and target values (interests) can change over time.

• Users will not always be consistent and make mistakes.

3.3 Routing

A separate mobile agent is used as a router. It is separate of the other agents
to isolate all functions that require knowledge of the environment, such as the
other agents and the network. The router dynamically locates, per user, the agent
where the message has to be delivered. This closely resembles the idea of the mail
transfer agent in regular e-mail. The agent suggested here is mobile however, and
each message is handled by its own agent. Messages are thus encapsulated by a
router agent, effectively creating an autonomous message.

It consults the agents described previously. The order in which they are con-
sulted is determined by the router agent however. All processing — like extraction,
profiling and transformation — is delegated to these other agents. A router agent
thus acts as a semantic router, that uses other agents as consultants [2].

Figure 2 shows the standard process a message is subjected to. After meta-
data is extracted, applicable situations are assigned. Unimportant messages are
saved, but important messages are assigned a format as well, which is acquired
next. After the message is shown to the user, the message can be saved. The
additional transitions provide alternative scenarios in case failures occur. Each
step in this task-model can invoke a move of the router agent, if the agent with
the required service is located remotely.

APPENDIX D. PAPER

243

Acquire meta−data

newMessage

Show message

Acquire transformation

Acquire format

endMessage

Retrieve

Acquire pile & priority

Store

requestMessage

succeed

succeed/failed

succeed

succeed

NOW

succeed

stored

later

failed

failed

failed

keep

original

Figure 2: Task model for the Router Agent

4 Prototype

Based on the previously presented design, a prototype has been implemented. It
was created as proof-of-concept and for evaluation of the architecture. As basis for
the implementation the Java-based Tryllian Agent Development Kit (ADK) [9] has
been used. The ADK supports the FIPA Agent Communication Language, and
the agents communicate according performatives of this standard. Some elements
have been simulated for practical reasons, using the modalities instead of the full
devices or processing.

4.1 Description

Of all types of agents, a few different instances were built. Included in the imple-
mentation are e-mail, SMS and news-headlines as inputs. As output for the user a
desktop application, telephone and SMS are available. The prototype is described
in further detail in [6]. Two interesting aspects will be further described below,
and will start with the routing.

The task-state transition of figure 2 is almost directly implemented, using the
task-model behaviour of agents in the Tryllian ADK [8]. Each message in the
design is handled by its own mobile agent, thus equipped with its own individual
code of this model. The process a message is subjected to is determined by this
code, so it can be varied per addressee, originating location or other criteria. This

APPENDIX D. PAPER

244

creates a highly flexible system, where the processing can be modified when needed.
These routing agents can locate other agents through standard Domain Name
System. New components can thus be added dynamically, with the same scalability
as DNS. Failings of the network or other agents are handled by alternative scenarios
and only affect a single message. This robustness is due to the task based behaviour
of an agent and the usage of one mobile agent per message.

4.2 Profiling

For the profile two main alternatives were implemented. The first is a rule-based
one, somewhat similar to the procmail program for e-mail [1]. This allows users
to have full control, but lacks self-learning capabilities. Feedback given by the user
is used to create statistics, so the user can evaluate and improve rules.

This rule-based profile is used to proof the concept of cross-media profiling
based on meta-data. As meta-data in the prototype three distinctive types of
meta-data are used. The senders device-address is changed to a real name, the
relation of the sender with the recipient is determined and a keyword is assigned
to the message based on its content. An evaluation with this profile shows that
messages can be classified based on their meta-data, rather than their content.
Furthermore, it is shown that the usage of more extractions, resulting in more
available meta-data, can provide a more fine-grained classification. When the
same meta-data is available for different media, profiling originally designed for
one medium can directly be applied to another.

Another created profile is based on the k-nearest-neighbour algorithm. The
distance in this profile is based on comparing meta-data, using the same meta-
data as the static rule profile. As function the number of equal meta-data fields
present in both compared messages is used. Fields missing in one of the messages
are ignored, otherwise additional extraction (more available information) can have
a negative influence. Due to object-oriented programming, each type of meta-data
can have its own distance function, to overcome the heterogeneous nature of the
learning problem. The k most recent user-classified messages with the highest
score determine the set of situations in which the classified message is interesting.

Some functional tests were conducted to evaluate the properties of the agent-
based design. One of these tested the capabilities of the system to learn the
user’s preferences. For this purpose a user was simulated, to behave inconsistent
(providing feedback not representing the intended interests) with a certain chance.
For an user that responded consistent for all messages, a profile can be learned
across multiple media. As shown in Figure 3, the more inconsistent the user
responded, the more incorrect classifications the learning profile made. Note that
the shown numbers do not represent a quantitative analysis.

5 Conclusions

In this paper a multi- and mobile-agent design is described to handle unified mes-
saging in a personalised manner. A proof-of-concept prototype has been imple-

APPENDIX D. PAPER

245

0 200 400 600 800 1000
0

50

100

150

200

250

300

number of messages

cu
m

ul
at

iv
e

si
tu

at
io

ns
 in

co
rr

ec
t

consistent

2.5% inconsistent

5.0% inconsistent

Figure 3: k-nearest-neighbour error for three different user consistencies.

mented, demonstrating the concept. This prototype was used as basis for an
evaluation of the properties of the designed architecture.

First of all, automated transformation of different media can easily be accom-
plished. New devices can be added to the system without the requirement of
modifications to existing devices. Messages from or for these new devices are con-
verted to an available medium, so the user will receive the information rather than
the data.

Although the messages in unified messaging are from all kinds of media, au-
tomated filtering to reduce a communication overload is possible. Each message
is annotated with meta-data, describing characteristics of the message and the
sender with relation to the addressee. Annotation is handled by a separate agent
that can perform media-specific operations. This meta-data is used to classify new
messages independent of the used medium. Adding new extractions can improve
the granularity of the classification as well as filtering across different media.

The creation of a profile of the user with machine learning is investigated as
well. Although further research is necessary to determine additional usable extrac-
tions of meta-data and improved profiling algorithms, learning user preferences
based on this meta-data is shown to be achievable. The problem is marked down
to its characteristics, and a possible solution is found in a simple variant of the
k-nearest-neighbour algorithm. Easy integration and evaluation of an algorithm
and application of new extractions is possible in the developed architecture.

APPENDIX D. PAPER

246

Agents have proven to be good facilitators for personalised unified messaging.
Each user can have its own cluster of agents, allowing adaptation of behaviour
per functionality. Due to the routing of a message by its own mobile agent, the
process a message is subjected to is flexible and robust. Individual messages can
be handled differently this way, based on the addressee, location or origin. One of
the main advantages is that each user can not only have its own profile, but apply
an entirely different profiling method as well. A single algorithm that best fits all
users is thus no longer necessary. Other benefits of the usage of agents are the
distributed nature, allowing dynamic extensions and adaptations. Specific details
of devices are encapsulated by the agent from the rest of the system as well.

References

[1] S. R. van den Berg and P. A. Guenther. Procmail - autonomous mail proces-
sor. WWW site and program, 2002. http://www.procmail.org/.

[2] D. Chess, C. Harisson, and A. Kershenbaum. Mobile agents: Are they a good
idea? Technical Report RC 19887, IBM, December 1994.

[3] U. Hanani, B. Shapira, and P. Shoval. Information filtering: An overview of
issues, research and systems. User Modelling and User Adaptive Interaction,
11:203–259, 2001.

[4] P. Helmersen et al. Impacts of information overload. Technical Report P947,
Eurescom, January 2001. http://www.eurescom.de/public/projects/
P900-series/P947/.

[5] B. Raman, R. H. Katz, and A. D. Joseph. Universal inbox: Providing exten-
sible personal mobility and service mobility in an integrated communication
network. In Proc. of the Workshop on Mobile Computing Systems and Appli-
cations (WMCSA’00), December 2000.

[6] R. M. Schaar. Agent technology for personalised unified messaging. Master’s
thesis, Delft University of Technology, June 2002.

[7] R. B. Segal and J. O. Kephart. Incremental learning in SwiftFile. In Pro-
ceedings of the Seventh International Conference on Machine Learning, June
2000.

[8] Tryllian. Tryllian ADK developers guide, 2002. http://www.tryllian.com/.

[9] Tryllian. Tryllian Agent Development Kit. Software Development Kit, 2002.
http://www.tryllian.com/.

[10] S. Whittaker and C. Sidner. E-mail overload: Exploring personal informa-
tion management of e-mail. In Conference proceedings on Human factors in
computing systems, pages 276–283, 1996.

APPENDIX D. PAPER

247

	Preface
	Abstract
	Contents
	Introduction
	I Project Definition
	Background
	Problem
	Unified messaging
	Communication overload
	Agent technology

	Goals
	Research
	Design
	Prototype
	Deliverables

	Scope
	Issues
	Included
	Excluded

	II Backgrounds
	Unified Messaging
	Research
	Unified messaging
	Media processing
	Standards
	Related

	Practise
	Developments

	User Profiling
	Motivation
	Information filtering
	Global technique
	E-mail filtering

	Machine learning
	Nearest neighbour
	Decision tree
	Rule-based generated by clustering
	Bayesian learning

	Agents
	Perspective
	Properties
	Classification
	Agency
	Practise

	Agent communication
	Languages
	Architectures

	In telecommunication
	UMTS/VHE
	Intelligent Network
	IMPAX

	Alternative technologies

	III Concept
	Requirements
	Must have
	Should have
	Could have
	Assumptions

	Func. Design
	Offered functionality
	Use cases
	Internal functions

	Selection
	Multi-agent
	Why?
	Compartment

	Peripherals
	Motivation
	Input
	User Interface
	Storage
	Transformation

	Routing
	Profiling
	Miscellaneous

	Architecture
	Overview
	Roles
	Agents
	Message Factory Agent
	Router Agent
	Extractor Agent
	Profile Agent
	Transformer Agent
	UI Agent
	Storage Agent

	Communication
	Other components
	Work- and dataflow
	Important new message
	Unimportant new message
	User situation change
	User feedback
	Store message
	Request message
	Present message

	Anticipations
	Profile learning
	Learning problem
	Examples

	Extension
	Automated translations
	Sending messages
	Synchronous communication
	Enhanced dynamic extensibility
	Other agents from the user

	IV Prototype
	Technical Design
	Task model
	Factory Agent
	Router Agent
	Extractor Agent
	Profile Agent
	Transformer Agent
	UI Agent
	Storage Agent

	Object model
	Router Agent

	Implementation
	Environment
	Messages
	Envelope
	Content

	Agent interaction
	Factory Agent
	E-mail Factory
	RSS Factory
	SMS Factory

	Router Agent
	Task model
	Locating Service Agents

	Extractor Agent
	Profile Agent
	Dummy Profile
	Random Profile
	Rule-based Profile
	KNN Profile

	Transformer Agent
	UI Agent
	Swing UI
	Phone UI

	Storage Agent
	Runtime examples
	Example: important
	Example: unimportant

	Deviations

	V Evaluation
	Functional Tests
	Objectives
	Approach
	Experiments
	Extensibility
	Adaptability
	Personalisation
	Cross-media profiling
	Robustness
	Queueing
	Learning
	Mixed

	Interpretation
	Tests
	Extensibility
	Adaptability
	Personalisation
	Cross-media
	Robustness
	Queueing
	Learning

	Prototype
	Design

	VI Conclusions & Recommendations
	Overview
	Backgrounds
	Design
	Prototype
	Evaluation

	Discussion
	Non-mobile Router
	Overhead
	Scalability
	Communication overload
	Commercial realisation
	Agent negotiation
	Out of scope

	Conclusions
	Unified messaging
	Communication overload
	Agent technology

	Future Work
	User profiling
	Security
	Performance
	Virtual secretary
	Related work
	Tryllian ADK

	Bibliography
	List of Figures
	List of Tables
	VII Appendices
	Tryllian ADK
	Architecture
	API highlights
	More

	Diagram Legend
	Workflow
	Dataflow
	Task hierarchy
	Task-state transition

	Abbreviations
	Paper

