
Context-Aware Rule-Based Data Distribution

Algorithms and Methods for Pervasive Computing

B.P.I. van der Poel
9659093

October 2002

 ii

 i

 ii

 iii

Graduation commity
Drs. dr. L.J.M. Rothkrantz
Prof. dr. ir. E.J.H. Kerckhoffs
Prof. dr. H. Koppelaar (chairman)

PhD. I. Marsic (CAIP)
MSc. A.M. Krebs (CAIP)

van der Poel, B.P.I. (bvanderpoel@mail.com)

Master’s thesis, September 2002
Context-Aware Rule-Based Data Distribution Algorithms and Methods for Pervasive
Computing

Delft University of Technology, The Netherlands
Faculty of Information Technology and Systems
Data and Knowledge Engeering

Keywords: context awareness, dynamic data distribution, rule-base, publish-subscribe

 iv

 v

ACKNOWLEDGEMENTS

This work has been done under the guidance of Mr. Marsic and Mr. Krebs at Centre for
Advanced Information Processing (CAIP), Rutgers University, and Mr. Rothkrantz at the
Delft University of Technology. I am thankful for their academic support they put into
this research that helped me to complete my work.

I acknowledge the financial support of the Koninklijk Instituut van Ingenieurs (KIvI), the
Universiteitsfonds Delft, the CvB of the Delft university of Technology, the Faculty ITS
of the Delft University of Technology, and my parents. I thank you for the funding which
has made it possible for me to work on my master thesis at CAIP.

The work at CAIP was supported in part by the US Army CECOM contract number
DAAB07-02-C-P301 and a New Jersey Commission on Science and Technology
excellence grant.

 vi

 vii

PROLOGUE

This thesis is the result of the research for my master’s exam at CAIP at the Rutgers
University, New Jersey. I worked at CAIP as an exchange graduate student for the period
from September 2001 until August 2002. This work constitutes as the last part for my
masters degree at the Delft University of Technology at the faculty of Information
Technology and Systems at the chair of Data and Knowledge Engineering.

The research reported here is part of US Army CECOM Project. The project aims to
develop hardware and software for future warfare. This research seeks to find means of
efficient collaboration between commanders over wireless networks.

The title of this paper is “Context-Aware Rule-based Data Distribution Algorithms and
Methods for Pervasive Computing”. It addresses new research issues that will improve
mobility support in networking. I hope the views in this paper inspire other researchers to
continue this research.

Bart van der Poel
Oktober 16, 2002

 viii

 ix

ABSTRACT

The research field of pervasive computing is concerned with computing environments of
diverse, possibly mobile computing units connected over wireless networks. The
introduction of mobility in networking poses new challenges for the middleware with
regard to accessibility and usability of data. To address these challenges this research
focuses on context-aware data distribution algorithms and methods. Context-awareness
provides environment dependent adaptation regarding relevance, timeliness and fidelity
of data to the distribution.

In this thesis algorithms are introduced for client profiling and data selection. The client-
profiling algorithm combines user-defined rules with contextual information to set up the
selection rules. The data selection algorithm applies these rules to incoming data. Instead
of Boolean decision the data selection algorithm maps the list of interested clients to
priorities. Sending data to the clients is performed in order of priority.

For the implementation of the algorithms an expert system is embedded in the data
distribution agent. This makes the subscription language for the client profiling highly
expressive since conditions can be defined in conjunctive, disjunctive and negative
forms. The subscription language is extended to support location aware conditions.

A collaborative system, called DISCIPLE, applying the proposed context-aware data
distribution algorithms and methods demonstrates how the results of the research can be
used in real applications. FLATSCAPE is a military collaborative application running on
top of DISCIPLE that is developed for operational planning by commanders.

Grouping users with equal profiles is applied to improve scalability. Experimental results
show that the agent performs well for a large number of data and users and consequently
scalability of the agent is satisfactory.

 1

 2

TABLE OF CONTENTS

1 INTRODUCTION... 10
1.1 PROBLEM SETTING ... 10
1.2 CONTEXT-AWARE DATA DISTRIBUTION .. 11

1.2.1 Dimensions of data adaptation ... 11
1.3 RESEARCH DESCRIPTION .. 11

1.3.1 Project description .. 12
1.3.2 Problem definition... 12

1.3.2.1 Requirements... 12
1.3.2.2 Goals.. 13
1.3.2.3 Challenges ... 14
1.3.2.4 Contributions and motivation.. 15
1.3.2.5 Approach ... 15

1.3.3 Applications... 16
1.4 OVERVIEW ... 17

2 LITERATURE REVIEW... 18
2.1 PERVASIVE COMPUTING ... 18

2.1.1 Related work.. 19
2.2 PUBLISH/SUBSCRIBE MIDDLEWARE .. 19

2.2.1 Theory and terminology .. 19
2.2.2 Related work.. 20

2.3 CONTEXT AWARENESS ... 21
2.3.1 Theory and terminology .. 21
2.3.2 Related work.. 22

2.3.2.1 Network awareness ... 22
2.3.2.2 Location awareness ... 22

2.4 RULE-BASE NOTIFICATION SERVICE ... 23
2.4.1 Related work.. 23

3 AGENT ARCHITECTURE... 24
3.1 SYSTEM ARCHITECTURE ... 24
3.2 MIDDLEWARE ARCHITECTURE.. 25

3.2.1 Controller .. 25
3.2.2 Data Distributor and Data Distribution Agent ... 25
3.2.3 State Merge and History ... 26

3.3 DATA FLOWS.. 26
3.3.1 Interface of agent .. 27

3.4 AGENT ARCHITECTURE... 27
3.4.1 Event replication ... 28
3.4.2 Distribution Decision .. 28
3.4.3 User-defined rules ... 28
3.4.4 Context awareness... 29

3.5 DECENTRALIZED AGENTS VS. CENTRALIZED AGENT... 29

 3

3.6 RESOURCE MANAGER... 30

4 AGENT DESIGN .. 32
4.1 MODEL FOR DATA DISTRIBUTION .. 32

4.1.1 Subscription... 32
4.1.1.1 Semantic information .. 32
4.1.1.2 Adaptation information ... 33
4.1.1.3 Prioritization.. 34

4.1.2 Events .. 34
4.2 DATA DISTRIBUTION ALGORITHMS ... 35

4.2.1 Subscription algorithm.. 35
4.2.2 Event Selection algorithm ... 37
4.2.3 Example algorithms... 37
4.2.4 Algorithm issues .. 39

4.2.4.1 Adaptation and selection ... 39
4.2.4.2 Priority matrix ... 40
4.2.4.3 Adaptation to changing roles and tasks... 41

4.3 INTEGRATING AWARENESS ... 41
4.3.1 Data-independent awareness .. 41
4.3.2 Data-dependant awareness ... 42

4.4 DATA DISTRIBUTION METHODS .. 43
4.4.1 Prioritized Event Replication .. 43
4.4.2 Buffer reordering... 44

5 RULE-BASED REASONING.. 45
5.1 JESS.. 45
5.2 EMBEDDING JESS.. 45

5.2.1 Data flow... 46
5.2.2 Process flows... 47

5.3 FACT-BASE... 47
5.3.1 Deftemplates.. 47
5.3.2 Write facts ... 48
5.3.3 Shadow facts.. 48

5.4 RULE-BASE... 49
5.4.1 Acquisition of knowledge .. 49

5.4.1.1 Qualification rules ... 50
5.4.1.2 Subscription rules.. 51
5.4.1.3 Selection rules ... 52
5.4.1.4 Location awareness rules .. 53

6 IMPLEMENTATION ISSUES.. 55
6.1 SUBSCRIPTION LANGUAGE ... 55

6.1.1 Location awareness in subscription language.. 56
6.1.2 Grouping subscribers.. 56
6.1.3 Multiple subscription files... 57

6.2 PRIORITIZED REPLICATION ... 58
6.2.1 Number of priority level .. 58

 4

6.2.2 Replication code.. 58
6.2.3 Synchronization... 58

6.3 DATA MODEL ... 59
6.4 CONTEXT AWARENESS MEASUREMENTS... 60
6.5 SETTING AND APPLICATION OF RULES .. 61

6.5.1 Set rules ... 61
6.5.2 Apply rules... 61
6.5.3 Synchronization... 62

7 APPLICATION OF AGENT ... 63
7.1 DISCIPLE ... 63

7.1.1 Distributed server.. 63
7.1.2 State merge.. 64

7.2 FLATSCAPE... 64
7.2.1 Tasks and roles.. 64
7.2.2 User interface.. 65

7.3 SIMULATION... 66
7.3.1 Selectivity .. 66

7.3.1.1 Goal and setting... 66
7.3.1.2 Hypothesis and results... 67
7.3.1.3 Concluding remarks .. 67

7.3.2 Network awareness ... 67
7.3.2.1 Goal and setting... 67
7.3.2.2 Hypothesis and results... 68
7.3.2.3 Concluding remarks .. 69

7.3.3 Location awareness... 70
7.3.3.1 Goal and setting... 70
7.3.3.2 Hypothesis and results... 71
7.3.3.3 Concluding remarks .. 71

8 EVALUATION.. 72
8.1 MEASUREMENTS .. 72

8.1.1 Overhead ... 72
8.1.2 Scalability.. 73
8.1.3 Performance gain.. 73

8.2 ANALYSIS... 74
8.2.1 Probabilistic model ... 74
8.2.2 Complexity... 75

9 FUTURE WORK .. 77
9.1 FIDELITY .. 77
9.2 SEMANTIC ROUTING ... 77
9.3 LOCATION AWARE STATE MERGE ... 77
9.4 IMPROVE CONTEXT-AWARENESS .. 78
9.5 LEARNING RELEVANCE VECTORS ... 78

10 CONCLUSION.. 79

 5

10.1 RELEVANCE, TIMELINESS, AND FIDELITY ... 79
10.2 EXPRESSIVENESS AND SCALABILITY... 79
10.3 CONTEXT-AWARE DATA DISTRIBUTION .. 80
10.4 PRIORITIZED REPLICATION ... 80

11 REFERENCES.. 81

APPENDIX A: PUBLICATION FOR HICCS 36 CONFERENCE.......................... 83

APPENDIX B: RULEBASE... 97

APPENDIX C: DATADISTRIBUTIONAGENT CLASS... 103

 6

FIGURES
FIGURE 1-1: THREE EXAMPLES OF APPLICATIONS OF PERVASIVE COMPTING: TRAFFIC

INFORMATION SYSTEM (LEFT), MOBILE INTERNET ON CELLPHONE (MIDDLE), AND
ORDER SYSTEM FOR WAITERING (RIGHT) .. 10

FIGURE 1-2: DIMENSIONS OF DATA ADAPTATION FOR CONTEXT AWARENESS. 11
FIGURE 1-3: COMMANDER COMMUNICATION SYSTEM AT THE BATTLEFIELD...................... 16
FIGURE 2-1: PERVASIVE COMPUTING, A NETWORK ENVIRONMENT WITH MANY DIVERSE

DEVICES ... 18
FIGURE 2-2: PUBLISH/SUBSCRIBE MODEL ... 20
FIGURE 2-3: EXTRACTION OF CONTEXTUAL INFORMATION LEADING TO AWARENESS 21
FIGURE 3-1: PEER-TO-PEER MODEL IS IMMUNE FOR SINGLE-POINT FAILURE: BEFORE SERVER

GOING DOWN(LEFT), AND AFTER SERVER GOING DOWN (RIGHT) 24
FIGURE 3-2: ARCHITECTURE OF MIDDLEWARE... 25
FIGURE 3-3: DATA FLOW IN COMMUNICATION MIDDLEWARE... 26
FIGURE 3-4: ARCHITECTURE FOR THE CONTEXT AWARE DATA DISTRIBUTION AGENT 27
FIGURE 3-6: DECENTRALIZED AGENTS (LEFT), AND CENTRALIZED AGENT (RIGHT)............ 30
FIGURE 4-1: STATE DIAGRAM OF CONTEXT AWARE SUBSCRIPTION. 35
FIGURE 4-2: EXAMPLE OF EVENT SELECTION ALGORITHM ... 39
FIGURE 4-3: TWO DIFFERENT APPROACHES FOR THE ADAPTATION: ADAPTATION SEPARATED

(LEFT) AND ADAPATAION INTEGRATED (RIGHT) ... 40
FIGURE 4-4: OUTLINE OF CONTEXT AWARENESS MODULE.. 42
FIGURE 4-5: LOCATION AWARENESS PREPROCESSING.. 43
FIGURE 4-6: EXAMPLE OF PRIORITIZED EVENT REPLICATION METHOD WITH ABOVE TIME

LINE INCOMING EVENT EN BELOW TIMELINE OUTGOING EVENTS 43
FIGURE 5-1: AGENT WITH EMBEDDED EXPERT SYSTEM (JESS). UPPER PART SHOWS THE JESS

COMPONENTS AN LOWER PART THE JAVA COMPONENTS... 46
FIGURE 6-1: SUBSCRIPTION MANAGEMENT FOR GROUPING OF SUBSCRIBERS 57
FIGURE 6-2: DATA MODEL OF DATA DISTRIBUTION AGENT .. 59
FIGURE 6-3: NETWORK AWARENESS THREADS: BANDWIDTH MEASURING THREAD (LEFT),

AND CONTEXT LISTENER OF DISTRIBUTIONAGENT CLASS (RIGHT) 60
FIGURE 7-1: DISCIPLE ARCHITECTURE WITH WIRED AND WIRELESS COLLABORATOR 63
FIGURE 7-2: USER INTERFACE OF FLATSCAPE.. 66
FIGURE 7-3: RESULT OF SELECTIVITY SIMULATION FOR CLIENT A (LEFT) AND CLIENTB

(RIGHT)... 67
FIGURE 7-4: RESULTS OF SECOND SIMULATION, WITH ALL THE GENERATED UNITS BY

CLIENT B (LEFT), THE UNIT RECEIVED BY CLIENT A AT (0, 0) (MIDDLE), AND THE
UNITS RECEIVED BY CLIENT A AT (-100,150) ... 71

FIGURE 8-1: OVERHEAD OF DATA DISTRIBUTION AGENT .. 72
FIGURE 8-2: SCALABILITY OF DATA DISTRIBUTION AGENT... 73
FIGURE 8-3: PERFORMANCE GAIN OF DATA DISTRIBUTION AGENT 74
FIGURE 8-4: INCREASE OF NUMBER OF SUBSCRIPTIONS.. 75
FIGURE 8-5: EXECUTION TIME WITH AND WITHOUT GROUPING OF SUBSCRIBERS 75

TABLES
TABLE 4-1: ATOM SET OF EQUATION 4-1 ... 33

 7

TABLE 4-2: PRIORITIZED SUBSCRIPTIONS ... 34
TABLE 4-3: EXAMPLE OF EVENT NOTIFICATION. .. 35
TABLE 4-4: EXAMPLE OF PRIORITY MATRIX, WITH N=3. .. 36
TABLE 4-5: Φ OF EXAMPLE SUBSCRIPTION INFORMATION .. 37
TABLE 4-6: RESULTS OF SUBSCRIPTION ALGORITHM.. 38
TABLE 4-7: EVENTS THAT ARE PRIORITIZED Y THE EVENT SELECTION ALGORITHM............ 39
TABLE 4-8: EVENT DELAY STRATEGY .. 41
TABLE 4-9: EVENT RESTRICTION STRATEGY .. 41
TABLE 6-1: EXAMPLE PRIORITIZED SUBSCRIPTIONS. .. 55

LISTINGS
LISTING 3-1: PEER-TO-PEER MODEL IS IMMUNE FOR SINGLE-POINT FAILURE: BEFORE

SERVER GOING DOWN(LEFT), AND AFTER SERVER GOING DOWN (RIGHT) 24
LISTING 3-2: SAMPLE CODE FOR DATA DISTRIBUTOR ... 26
LISTING 5-1: QUALIFICATION RULE FOR NETWORK CONDITION WHEN BANDWIDTH IS

BETWEEN 0 AND 1250 KBS ... 50
LISTING 5-2: RULE REPRESENTING THE PRIORITY MATRIX ... 51
LISTING 5-3: EXAMPLE OF NEW SUBSCRIPTIONS WITH 3 PRIORITY LEVELS 51
LISTING 5-4: RULE FOR THE GENERATION OF A NEW SUBSCRIPTION RULE.......................... 52
LISTING 5-5: GENERATED SUBSCRIPTION RULE .. 52
LISTING 5-6: MATCH RULE RULE .. 53
LISTING 5-7: RULE FOR CALCULATING DISTANCE .. 53
LISTING 5-8: QUERY FOR COUNTING DISTANCE FACTS ... 54
LISTING 6-1: EXAMPLE OF THE XML SUBSCRIPTION FILE.. 55
LISTING 6-2: SAMPLE CODE FOR DISTANCE KEYWORD.. 56
LISTING 6-3: SAMPLE CODE FOR COUNT KEYWORD .. 56
LISTING 6-4: EXAMPLE CODE FOR REPLICATION ALGORITHM... 58
LISTING 7-1: SERVER SPECIFICATION XML FILE.. 63
LISTING 7-2: CODE OF REFRESH METHOD... 64
LISTING 7-3: ROLES AND TASK DEFINITION.. 65
LISTING 7-4: SUBSCRIPTION FACTS AND RULES FOR PLATOON LEADER WITH OFFENSIVE

TASK WHEN BANDWIDTH = 3750.0 KBS.. 68
LISTING 7-5: SUBSCRIPTION FACTS AND RULES FOR PLATOON LEADER WITH OFFENSIVE

TASK WHEN BANDWIDTH = 195.6 KBS.. 69
LISTING 7-6: LOCATION AWARE SUBSCRIPTION ... 70

 8

 9

 10

1 INTRODUCTION
This chapter will describe the problem of the research presented in this thesis. The setting
of the problem, a description of the project the problem is part of, the definition of the
problem, and applications of the problem are discussed in this order. The last section
gives an overview of the remainder of this thesis.

1.1 Problem setting
Computing in this era has changed in a way that data needs to be accessible and
exchangeable everywhere and all the time. Mobility of computing resources has become
a prerequisite for users. Devices such as PDA’s and cellular phones are used on a wide
scale and are increasingly connected with each other. Mobility presents new challenges to
networking because the accessibility and usability of data depends on the environment of
the user. The accessibility is limited by the available bandwidth of the connection, and
the usability in many cases depends on the location of the user. A solution to this problem
is context-aware data distribution.

This new way of computing presents itself in many forms in everyday life. When driving
in the car the driver will be interested in traffic information of the region he’s driving in.
A traffic application will track the driver’s location with GPS and connects to a server to
request the desired information. Mobile Internet on cell phones enables users to lookup
news, weather, the stock market, etc. anywhere at any time. Waiters take orders on a
handheld; the order is send to the kitchen that prepares the order, and to the cash register
that calculates the check.

Figure 1-1: Three examples of applications of pervasive compting: traffic information system (left),
mobile internet on cellphone (middle), and order system for waitering (right)

The field of research that is concerned with connecting large number of different
(mobile) computing devices connected everywhere and all the time is called Ubiquitous
Computing or Pervasive Computing. The pervasive computing vision assumes that future
computing environments will compromise devices ranging from large computers to
microscopic processing units, that will communicate over a wireless network. Mobility
and dynamic reconfiguration will be inherent features in this environment [21]. We will
discuss pervasive computing in more detail in section 2.1.

 11

1.2 Context-aware data distribution
Within pervasive computing data distribution has become a very challenging task.
Because of the diversity of the connected devices the data needs of each client will be
different, as will the ways to present the data. Data distribution depends on the
capabilities of the device, the location of the user, the quality of the connection, etc. In
short, the distribution of data must be aware of the context of the client.

To achieve context-awareness data adaptation is necessary. Data distribution mechanisms
match the contents of data with user profiles to decide to whom to forward the data. The
adaptation of data comes down to adjusting the user profile to the environment, or
context, of the client. This may result in (i) a selection of data for users or in (ii) a
different representation of data. The first represents the interests of the user and the
second the display capabilities. In the next subsection we discuss data adaptation in more
detail.

1.2.1 Dimensions of data adaptation
In the research presented here, the focus is context-aware data distribution that addresses
both network and location awareness issues. Data needs to be adapted to the current
contextual state of the client. Important dimensions of data adaptation are relevance,
fidelity, and timeliness, see Figure 1-2, where: (i) relevance is determined by user’s
interests and priorities; (ii) fidelity is dictated by computing platform’s capabilities; and
(iii) timeliness is determined by the requirements of the task [1].

fidelity

timeliness

relevance

Figure 1-2: Dimensions of data adaptation for context awareness.

First of all the relevance of data has to be provided by the user and represent his interest
in different types of data. This may depend on his work or the task he is performing.
Fidelity of data is the level of detail that is to be applied during distribution of the data.
An example of this may be that a device that displays the data textually doesn’t need to
receive graphical information of the data. The timeliness addresses timing constraints of
data. Especially for real time applications this is an important dimension. Data with strict
time constraint will have higher priority than loosely time constraint data.

1.3 Research description
The research that is topic of this thesis is part of a project called CECOM. The project is
done for the US Army and aims to develop hardware and software for future warfare. The

 12

problem the research described here focuses on, is the data distribution of a collaborative
application for commanders.

1.3.1 Project description
The objective of the project is to develop and demonstrate a middleware framework for
performance-optimized ubiquitous collaboration over heterogeneous networks. It will
enable quality-of-service applications and support selective data distribution. The key
component of the proposed framework is the collaboration bus, which is a middleware to
support group communication in data-centric groupware. The research includes: a)
algorithms and methods for dynamic monitoring of network capabilities, b) data
transformation and adaptation policies for adjusting network traffic, and c) assessing and
controlling the performance impact involving in broadcasting each message.

Some of the key elements of the research are the development of Data Adaptation
Agents. These agents transform and change the data so that it can be used by different
applications and hardware. The research will bring new capabilities for multi-user
collaboration within reach.

1.3.2 Problem definition
The research problem this paper is concerned with is the design and implementation of a
Data Adaptation Agent that is responsible for the distribution of data based on contextual
information about clients. The agent makes decisions about which clients are interested in
the data and replicates the data for each interested client. Subsequently the replicated data
is sent to the clients.

Context awareness means that the decisions are at least partly based on the environment
of the client. The agent has to construct profiles for the clients on which the decisions for
distribution are based. For the selection of data an expert system will be embedded in the
agent that consults a set of rules that represent the client profiles. A design with
embedded expert system is used in order to define complex profiles.

1.3.2.1 Requirements
A couple of requirements exist for the design of a data distribution agent. The
requirements mentioned here are the topics of research throughout this thesis. They are
listed and discussed below.
• Adaptive. The decision of data distribution must be based on information about the

environment. The agent should at least adapt to the following two environmental
variables: the connection quality and the location of the client.

• Dynamic. A consequence of the support of mobile clients is a dramatically changing
environment. Since the environment will change over time the adaptation should be
dynamic. This makes monitoring of the environment necessary.

• Profile definition by user. Selection decisions must be based on user profiles. User-
specific rules are to be generated from the profile. The user profiles are subject to
adaptation, so the user should supply enough information for the server to interpret
the profile in different environments.

 13

• Expressiveness. To support expressive selection conditions a rule-based approach will
be used. The rule-base enables the selection mechanism to make decisions
deductively in rules constructed in first order logic.

• Efficiency. The data distribution must be as efficient as possible. The agent should be
usable for real-time applications, for example for collaborative systems. Efficiency
will be measured by the overhead the data distribution imposes.

• Scalability. It is important the system can support many users simultaneously without
resulting in a high overhead. In collaborative environments many users may want to
share some shared data set.

• Robustness. The whole data distribution system must be robust, so not all users are
victims of a local failure in the network. This is an important prerequisite since the
research is performed for the US Army.

• Hierarchy. The agent should support the hierarchy of the military. Rules exist that lay
down the privileges and accessibility of data for commanders. These rules tell the
system what data a commander may see or edit. The hierarchy is dynamic and
consequently these rules should adapt to changes in the hierarchy.

1.3.2.2 Goals
The main goal of this research is the design and implementation of a data distribution
agent that dynamically adapt to the contextual situation of the agent. To specify this, the
following sub-goals are defined:
• A model of adaptation and selection. The agent needs to consult some model of user

profiles to base selection decisions upon. The model is dynamic and should offer
means for adaptation of these profiles. Important is that adaptation does not cause
conflicting subscription rules.

• Algorithm for adaptation. The algorithm describes the steps the agent has to execute
to adapt to its environment. New profiles should be calculated efficiently as a reaction
of the monitoring of contextual inputs.

• Approach for context-awareness. A way to integrate context-awareness has to be
designed. Extension of different kinds of contextual input should be supported. The
environment must be monitored continuously.

• A decision engine. The decision engine selects to whom data should be forwarded. A
rule-based approach for selection will be adopted. Important to the decision-making
are the three requirements: expressiveness, efficiency, and scalability.

• Framework to integrate these parts. All the above-mentioned sub-goals should come
together in a framework for context-aware data distribution. The framework should
be flexible and easy to adopt. Flexibility makes redevelopment and replacement of
parts possible.

We also aim at gaining more knowledge about how context-awareness can benefit
pervasive computing and how to employ it. This knowledge will be useful to improve
collaborative applications. We envision future applications for mobile clients with data
presentation tailored to the specific needs of the client. This research makes this vision
closer within reach.

 14

The findings of this research result in a couple of deliverables that are described in this
thesis. The deliverables are listed below:
• Related work research. First of all the literature about existing algorithms and

systems of related research is to be overviewed. This will offer insight in what ways
other researchers approached the problem and show the improvements that are to be
made.

• The design of algorithms for adaptive data distribution. The design of adaptive data
distribution algorithms is the core part of this research. The algorithms should
integrate context awareness to adapt to.

• Implementation of adaptive rule-base. The designed algorithms are implemented as
an adaptive rule-base. The rules should be adapted to the changes in the environment.

• Development of data distribution agent. The algorithms and rule-base have to lead to
the development of the actual data distribution agent. The agent is to be programmed
in Java and the rule-base is to be embedded in the agent code.

• Evaluation of agent. Once the agent has been developed it has to be tested.
Measurements have to be performed to assess the performance of the agent.

1.3.2.3 Challenges
As mentioned above, data distribution for pervasive computing is a challenging task.
Important challenges that will be addressed in this research are the following:
• Efficiency, scalability, and expressiveness. Three important requirements for data

distribution algorithms are: (i) efficiency, the algorithm should classify and distribute
the data fast, because it should support time critical data exchange; (ii) scalability, in
order to support many users the algorithm must scale well; and (iii) expressiveness,
precise selection of data is needed to avoid unnecessary network traffic. These
requirements contradict each other, e.g. the more expressive the selection criteria are
the worse efficiency will get. The context-awareness of the algorithm presented here
puts the focus on expressiveness and scalability rather than efficiency. But efficiency
will still be important for the algorithm to be useful.

• Language for user profile definition. The user must be able to define his preferences
in an expressive way so complex profiles can be created. The more expressive the
language for profile definition is the more precise the data selection for the users will
be. However the language should be transparent for the user so it is simple and clear
how to define profiles. In the design of the agent we must also make a decision about
the form of profile definition. Should the user explicitly write rules or choose among
templates? Or should the agent automatically create profiles based on user actions?

• Monitoring of dynamic environment. For mobile clients the environment will change
drastically over time. Sensors are needed that measure the environmental variables
constantly. The agent should monitor these sensors and react to changes in the
measured values. A policy has to be chosen when and how these changes take place
in the agent, actively or statically.

• Accessibility of data. For mobile clients with low bandwidth accessibility of data at a
remote site will be a major problem. The data distribution agent must acknowledge
this and find a way to deal with this problem. Adaptation of data selection to
bandwidth is necessary.

 15

• Usability of data. Roaming users want to receive information that is relevant to the
place where they are. This means the data distribution has to be aware of the location
of each client.

• Timing of data. The quality of the connection of mobile users will constantly change.
The timing of data is thus relevant. At some points it will be wise to delay
unimportant data to give more important data priority. The delayed data may be sent
when the quality of the connection improves.

• Recovery. When a server in the network fails permanently the client has to reconnect
to another server. The data and subscription information has to be recovered. The
agent should offer a way to recover both. The data should be replicated over the
servers and the subscription information must be re-sent by the subscriber.

1.3.2.4 Contributions and motivation
The contributions of this research to the current state of the research field Pervasive
Computing are discussed in this subsection. Each contribution is motivated to express its
importance to the research field.
• Context-awareness. Selection of data by the data distribution algorithm traditionally

is only based on the users’ interests. However the algorithm we have designed also
takes the environment of the client into consideration. This environment is dynamic,
which makes the algorithm more complex. The dynamics of the system makes
adaptation of the otherwise static user profiles necessary. The environmental
variables are used to conditionally select different user profiles in different contextual
situations Context-awareness is motivated, as mentioned above, by the use of mobile
devices in the network. It will enhance the accessibility and usability of data to the
mobile clients.

• Expressive selection language. For the implementation of the data distribution
algorithm an expert system is used, which makes the selection criteria more
expressive than any existing algorithms. As a result more precise selections are
possible. The expert system deductively maps many input variables, based on the
contents of data and the context of clients, to its decisions for distribution. This is
important for mobile users since a precise selection saves network resources by
reduction of redundant data packets sent.

• Priority sending. The data distribution algorithm as a black box has data as input and
a list of connections as output. In the algorithm presented in this paper the
connections are mapped to priorities. The priority is used for the order of sending.
The higher the priority the sooner the data will be sent over the connection. So
priority sending addresses the timeliness dimension of Figure 1-2.

1.3.2.5 Approach
The problem will be approached in a couple of stages.
• The first stage will be literature research. This stage will provide the theoretical

background and offer insight in related researches. After looking into the literature
the current state of the research topic should be clear and global ideas for design will
follow

 16

• The ideas are used to make a global design that will lead to the first prototype. The
prototype will demonstrate the features that will improve data distribution with
contextual information. The ideas will be assessed and the good ones will be the ones
that will be elaborated.

• The main phase of the research is the incremental development of the agent. Loops of
redesign and implementation will stepwise improve the algorithms and methods.

• Evaluation is needed to assess the final agent design. The performance of the
implemented software will be measured and also a theoretical analysis should give us
qualitative information about the design.

1.3.3 Applications
An example of an application for such adaptive data distribution is operation planning for
the military. Commanders are equipped with wireless communication devices and have to
base operational plans on the received data about friendly and hostile units. The amount
of data they are able to receive is limited by the bandwidth. The relevance of data will be
different for each commander based on his task and the location of his unit. Fidelity of
data depends on the rank of the commander; a low rank commander with an offensive
task wants to be informed of the positions of the men in his unit and targets in the nearby
area. The information a high rank commander will receive concerns positions of units
instead of men. The timeliness of data about tanks will be more important to commanders
than the timeliness of data about infantry, because tanks will move faster.

Figure 1-3: Commander communication system at the battlefield

 17

1.4 Overview
The next chapter is dedicated to literature concerning the topics of this research. The text
in this chapter introduces some theory and reviews related research. The related research
is compared with the research presented in this paper. The third chapter will describe the
architecture of the data distribution agent. The first sections cover the architecture with an
increasing level of detail. A chapter describing the algorithms used by the agent follows
this, which also covers the designed integration of the context awareness into the agent.
Rule-base reasoning is topic of the next chapter, describing how the agent uses the rule-
base to make decisions for distribution. Implementation issues are discussed in the fifth
chapter. The subscription language and the replication code are issues that we will take a
look at. The last section of this chapter shows the data-model. We take a look at the
application of the agent in the sixth chapter. A collaborative system called DISCIPLE is
discussed. The agent is integrated in this system. Also an application running on top of
this system called FLATSCAPE is introduced. In the evaluation chapter some experimental
results of measurements are shown and the algorithms used are analyzed. In the eighth
chapter some topic for further research and enhancements of the current agent are
proposed. The paper is finished with a chapter dedicated to conclusions.

 18

2 LITERATURE REVIEW
The goal of literature research is to gain insight in the theory and terminology of the
research topic. We will also take a look at some other research projects that are related to
the one presented in this thesis. The related works are compared with our research to
demonstrate the benefits of our research.

This chapter reviews literature on the main topic of our research. The topics are divided
into three sections: the first pervasive computing, the second publish/subscribe
middleware, the third context awareness, and the last rule-based notification service. The
second topic describes the communication model between client and server that we will
use. The section about context awareness focuses on network awareness and location
awareness. The terminology introduced in this chapter is used throughout this paper.

2.1 Pervasive computing
Pervasive computing is the research field that is concerned with connecting many,
diverse devices in a wireless network. The devices share and exchange data with each
other but have complete different characteristics. Display, connectivity, computing
power, and battery power are just a few such characteristics that will change for each
device.

Figure 2-1: Pervasive computing, a network environment with many diverse devices

 19

To illustrate how a pervasive environment works take a look at Figure 2-1. At the core of
the environment is a network with servers and routers that connect the devices. The
connections in the network may be either wired or wireless. The devices connect to the
closest server, also wired or wireless. Possible devices are workstations, laptops, PDA’s
or cell phones. Each device should have an accurate representation of the shared data
repository.

2.1.1 Related work
The Cooltown project of HP Labs is a good example of pervasive computing. It aims at
supporting nomadic users with location aware information about the physical world. The
research divides up physical entities in three categories: people, places, and things [23].
The people are the ones we communicate with, the places are the physical places we visit
and the things are the devices we use. Entities in each category get a web-presence so the
user can access them over the Internet.

Cooltown presents an interesting counterpoint to many other ubiquitous computing
systems by placing the user in the control loop. It involves the user in the resource
discovery [24]. This means it is uses pull-technology; the user pulls the data. The agent
that we will design will use push-technology, removing the user from the control loop.
This is a more challenging task because in this situation the agent has to make decisions
about the information supply to clients.

2.2 Publish/subscribe middleware
In this section we review some literature on the publish/subscribe paradigm. First the
theory and terminology of the paradigm are discussed. Next we take a look at some
existing publish/subscribe systems.

2.2.1 Theory and terminology
The communication model used in the research is the publish/subscribe model. This
model lets producers of data and consumers thereof communicate asynchronously. The
producers are called the publisher, and the consumers the subscribers. The publisher
pushes data, called events, to the network without any knowledge about who will receive
this data. To let the network know what kind of information a subscriber wants to
receive, he has to set up the conditions that the data must meet, in other words he has to
subscribe. When the network receives data from the publisher that meets the conditions,
the subscription, it forwards the data to the subscriber. The forwarded data is called an
event notification. See Figure 2-2.

Publish/subscribe systems can roughly be divided in two groups: subject-based systems
and content-based systems. The systems select event notifications for subscribers by
subject respectively by content. This research is focusing on the content-based systems.
Selection in these systems is more flexible and more precise, because subscribers can
apply many-dimensional criteria instead of choosing between pre-defined groups.

 20

Figure 2-2: Publish/subscribe model

The goal of the use of subscriptions is twofold: (i) preservation of resources, and (ii)
implementation of user preferences. The first goal prevents redundant event replication,
and consequently unnecessary network traffic. The second assures the user is only
bothered with events he is interested in. Care must be taken to ensure that the algorithms
used to support filtering do not cause undue burden on distributed system resources [12].
The increased computational overhead of the filtering algorithm should be worth the
improved performance of the system.

2.2.2 Related work
The best-known content-based publish/subscribe systems are GRYPHON [2], SIENA [3],
ELVIN [4], [5], and KERYX [6]. The selection algorithm for GRYPHON emphasizes
efficiency and scalability. It uses matching trees, which make its time-complexity sub-
linear with the number of subscriptions. A drawback of this algorithm is the limited
expressiveness: subscriptions can only be defined with conjunctions. In [7], a similar
approach is suggested, using Binary Decision Diagrams, with a richer language for
subscriptions. Expressiveness and scalability are the main interests for the SIENA
selection algorithm. For this it uses covering relations, which are partial orderings with
respect to subsumption. Though the expressiveness of subscriptions is still limited to
conjunctive patterns. ELVIN uses the most expressive of the above-mentioned algorithm.
It supports first order logic patterns, and regular expressions for selecting events. The
algorithm in the KERYX system is expressive, but not very efficient. It uses a LISP-like
filtering language.

The research in [10] and [11] both investigate the use of publish/subscribe for mobile
nodes in a network, but concentrate on the network organization instead of the event
selection. However both papers recognize that the publish/subscribe paradigm is a good
candidate for mobile computing, because it fully de-couples event generators from
receivers. However current publish/subscribe systems do not account for the possibility
of dynamically reconfiguration [10]. Development of mobile devices demands
publish/subscribe-systems not only to select events with content-based attributes, but also
to adapt to the client’s environment. Attributes that define computing capabilities of
devices or the quality of the connection or location-dependent attributes should be
considered as well. All systems mentioned above are not adaptive. [8] Proposes a stateful

Publisher Subscriber

publish

notify

subscribe

 21

approach that does take adaptation into account. The algorithm selects events with the
conditions set by the user and the client state. The conditions are compiled at runtime.
However the work in [8] does not have the expressive power for event selection
comparable to the one showed in this thesis.

In contrast with the systems mentioned in this section, the selection algorithm in this
thesis results into priorities, based on current network conditions. These priorities are
used for the distribution of events. The advantage of a prioritized approach is that less
relevant events can still be sent when the network is idle. Instead, all systems mentioned
above make boolean decisions about whether an event has to be replicated. If an event is
not sent to a client because of current conditions, it will never be sent, even when the
conditions improve.

2.3 Context awareness
In [9] the following definition of context awareness is given:

Acquisition and utilization of any information that describes the setting of the
users’ activities, with emphasis on the physical attributes: time, place, people,
physical artifacts, and computational objects.

Figure 2-3: Extraction of contextual information leading to awareness

An illustration of how extraction of contextual information leads to awareness is shown
in Figure 2-3. In the illustration different variables of users, devices and connections are
measured. The vector of measurements is a representation of the current state of the
environment. Interpretation of these values leads to awareness.

2.3.1 Theory and terminology
Context awareness means we have to adapt the data distribution to the environments of
the clients. We distinguish two forms of adaptation: static adaptation and dynamic
adaptation.

MeasurementsConnection
Bandwidth
Packet RTT

Device
Display
Computing power

User
Location
Preferences
Task

Context

awareness

 22

• Static adaptation. At design time we define the profiles for each possible context and
during setting up the connection the agent looks at the context of the client and
chooses the appropriate profile. This makes the adaptation process very efficient.

• Dynamic adaptation. The profile is generated on the fly based on the current context
of the client. The user specifies just enough information so the agent can deduct the
right profile. Consequently the agent has to monitor the environment continuously,
because it may change at any moment. Each time the environment changes the profile
has to be adapted.

We choose to design a data distribution agent that adapts dynamically. The reason is that
the support of mobile clients results in drastically changing client environments. To
correctly distribute data based on context we have to constantly adapt to the current
context.

2.3.2 Related work
The definition of context awareness tells us that context aware information can have
many different forms. In this research we have focused on two forms of context
awareness: network-awareness (computational object) and location-awareness (place).
We divide the related work review in these two parts.

2.3.2.1 Network awareness
The quality of network connectivity changes dramatically for mobile devices. To
maintain an acceptable level of Quality of Service applications have to adapt to these
changes. This is called network awareness. The parameters that play a key role in
network awareness are available bandwidth and packet round trip time.

The limited capabilities and limited quality of network connection of PDA’s are topics of
the research in [16]. In order to avoid problems due to low bandwidth or even
disconnection a pre-fetch of the data is performed so data can be manipulated locally.
The application instructs the middleware what data needs to be cached. When the quality
of the connection is sufficient, the data is replicated to the PDA. This approach is not
possible in the setting of our problem. In order to pre-fetch data, it already has to be in the
repository. However we have to deal with new incoming data and distribute it
immediately.

In ODYSSEY [17] agility is marked as the main concern of adaptation. Sound adaptation
decisions require accurate and timely knowledge of resource availability. ODYSSEY
adapts the fidelity of data application-dependently. However the system does not select
data for replication. Data selection, though, is the main interest of this research.

2.3.2.2 Location awareness
Data distribution for nomadic users is dependent on the physical environment. Selection
based on the location of objects in the environment of the user or the location of the user
self will help capturing only the useful information for the mobile user.

 23

Location awareness is not a new feature in ubiquitous computing. Many traveler assistant
systems, such as CYBERGUIDE [13], use location dependent information to support the
traveler. However the data in these systems is static in contrast to the agent presented in
this thesis, which uses the location-dependent information of dynamic data at the time it
arrives at the server for distribution of the data. This makes the processing of location
aware information performance-wise more complex. The application presented in [14]
does provide dynamic information about the locations of users, however the locations of
the other data, buildings, printers, etc. is still static.

The complexity of the problem at hand is described in [15] as follows: the middleware
platform operating the applications must filter information for potentially millions of
users, given their continuously changing location information, their profiles (or
subscriptions), and the static and dynamic information about the environment. The
system introduced in [15], combines traditional subscription language with SQL in order
to create location-aware user profiles. Location information is stored in a database and
accessed with SQL. In contrast the subscription language in this paper is extended with
specific location-awareness tags.

2.4 Rule-base notification service
The subscriptions have a rule-based character. If the conditions of the subscription are
satisfied then the event should be forwarded to the subscriber. A rule-base approach
seems therefore obvious. The downside of a rule-base approach is the complexity of the
evaluation of the rules. We must make sure it does not make the distribution inefficient.

2.4.1 Related work
As we have mentioned in the introduction we will use a rule-based approach to the event
selection. By use of an expert system a more expressive means of defining subscriptions
is obtained. The researchers of [20] apply a similar approach. In this publication a system
is described that consults an expert system to map a set of sensor values to certain
actions. The system waits until a predefined situation occurs to trigger an action. The
situations and the actions are stated in the antecedents and the consequents, respectively,
of the rules. An example of a rule is “if I’m logged into my workstation and I’m in my
room, I want to be notified by email if my supervisor enters the lab”. More expressive
means of event matching is also the reason for a rule-based approach for these
researchers. The ECA Rule matching of [20] focuses on reactive applications instead of
distributive applications that we are interested in.

The deterministic character of most new technologies in computing based on high-speed
networking pose problems because they interact with non-deterministic environments
[26]. In [26] the adaptive processing is mentioned as a main requirement for complex
applications that depend on their environment in order to select the best strategy. A rule-
base assigns dynamic parameters such as priority and deadline for each event. The rule-
base approach is well suitable for real-time data distribution. However it does not
consider semantic information of events but just environmental information. Another
difference with our approach is that it uses multiple, decentralized agents while we have
chosen for a centralized agent.

 24

3 AGENT ARCHITECTURE
In this chapter the system architecture, middleware architecture and the agent architecture
are covered. We start with a picture of the complete system and middleware, and work
our way to a more detail picture of the parts and their interdependence of the data
distribution agent. This will offer us a clear image of all components that are important
for the data distribution.

3.1 System architecture
We start with the highest level of architecture that is the architecture of the system. The
system is a network of clients and servers, like shown in Figure 2-1. On each of these
clients and servers some middleware runs that enables that node in the network to
communicate with the others. We look at the network of servers as one distributed server
to which all clients subscribe.

The servers will communicate among each other in a peer-to-peer fashion. In this
communication model each server is considered as equal and contains information about
all its neighboring servers. The downside of this approach is an increase of overhead.
However, the peer-to-peer model does not suffer from single-point failure, meaning that
not all clients get disconnected when one server goes down. When a server goes down the
clients of that server are disconnected, but for the other clients communication is possible
after rerouting.

Figure 3-1: Peer-to-peer model is immune for single-point failure: before server going down(left), and
after server going down (right)

When a server is down for some time the clients subscribed at that server should
reconnect at a different server. Mobile clients can automatically look for the closest
server and connect there.

The communication between clients and the distributed server takes place using the
publish/subscription model as discussed in 2.2. The reason for this choice is that
publishers and subscribers communicate asynchronously without being aware of each
other’s presence. This is beneficial in a network with mobile clients who may disconnect
at runtime.

 25

3.2 Middleware architecture
The software we are concerned with is middleware for collaborative data exchange. This
layer is identical for the clients and the servers. The middleware is responsible for
communication and data management for the client or server. Data distribution is one of
these tasks. The complete architecture is shown in Figure 3-2.

Figure 3-2: Architecture of middleware

3.2.1 Controller
At the heart of the architecture is the controller. It coordinates all data flows through the
middleware. The controller maintains all connections with other clients or servers. The
connections can be of a variety of types, for example TCP/IP or UDP/IP. The connections
are threads that will continuously listen to events and incoming events are forwarded to
the controller.

The controller interprets the events as commands and acts accordingly. Possible
commands are login commands or data update commands. All events are saved in the
repository. When an event is added to the repository it may reflect in the application to
the user interface, depending on the type of command.

3.2.2 Data Distributor and Data Distribution Agent
The data distributor dispatches events generated by the client or received by the server. It
consults the data distribution agent for the list of connections to forward the event to. The
data distribution agent makes decisions about the selection of connections for each event
based on client profiles. This is the component that we are interested in and which will be
elaborated in the next sections.

The data distributor loops through the connection-list that is returned by the agent. For
each connection it checks if the connection is not the one of the publisher. The publisher
is the originator of the event and hence does not need to receive it again. The event is
send to all the other connections. See the sample code in Listing 3-1.

Controller

Application

Data distributorData distribution
agent

Connection Connection Connection

Repository

State merger

History

 26

Listing 3-1: Sample code for data distributor

3.2.3 State Merge and History
The State Merger updates the repository when a client logs in or reconnects. In the time
that a client is disconnected the server may receive new events. When the client
(re)connects it should be notified of these new events. For each of the events the clients
need to be notified of the Data Distribution Agent should decide if the client is interested
in it. It is also possible that the client creates new events during the time of disconnection.
The State Merger also processes these events to the server repository.

The History component lists all events time-chronologically. When a client disconnects
the component registers this time so it can easily deduct which events the client is aware
of and which events happened during disconnection. This knowledge is used by the State
Merger when the client (re)connects.

3.3 Data flows
The architecture of the middleware is based on the Client-Server model. On the client-
side an application is running that communicates with the middleware on the server.
Figure 3-3 shows the data flow through the middleware.

Figure 3-3: Data flow in communication middleware

The data flow illustration shows two separate data flows, color-coded with gray and
black:
• Subscription data flow (red). In order to start the communication subscriber Userα

has to set up the rules that define what events he wants to receive. These rules are
sent to the data distribution agent that, in combination with the measurement that
follow form the context-awareness, interprets the user-defined rules.

for all connections in connection-list {
if connection is not equal to publisher {

Send event to connection
}

}

Application Data Distribution
Agent

Context
Awareness

C
om

m
unication Bus

Client β

Client α Server

Set rules

Set rules

Measurements

Apply rules

Event Event Event

User α

User β

C
om

m
unication Bus

 27

• Event selection data flow (blue). When the rules are set up for Userα the agent is
ready to forward the desired events to the user. When Userβ publishes an event, the
agent is consulted. Propagation of the event to Userα depends on the decision that
follows after applying the rules.

For both data flows an algorithms should be designed to handle the tasks at the agent. So
we need a subscription algorithm and an event selection algorithm. The first takes care of
the data adaptation and the other matches events with subscriptions.

3.3.1 Interface of agent
We can easily deduct the interface from the architecture. As inputs to the agent are: (i)
the user-defined rules, (ii) context-aware measurements, and (iii) the events. The only
output of the agent is the decision to which users the event has to send. The agent of this
research returns a mapping of connections to priorities. A list of connections is used so
for the event replication a loop through this list is sufficient. By mapping the connections
to priorities the sending of events to a client can be performed in order of importance.
Time critical events could be sent first while the sending of low importance events or
events with looser time constraints are postponed. In the next section we will discuss
interface issues further.

3.4 Agent architecture
In this section we introduce the architectures of the data distribution agent. The
architecture contains several components, which are illustrated with their
interrelationships in
Figure 3-4. The figure shows the process flow after an event is triggered and how the
different components interact with each other. The color-coding of the arrows
corresponds to the color-coding used in Figure 3-3.

Data distribution agents use replication algorithms to make copies of an event for each
interested client. The replication algorithm is executed by the Data Distributor, which
sends the data to the selected connections. The other components are part of the actual
Data Distribution Agent that carries out the selection of events for clients and adapts the
data distribution.

Figure 3-4: Architecture for the context aware data distribution agent

Event
Notification

Distribution
Decision

Event Replication

Context
awareness

Environment

User-defined
Rules

 28

3.4.1 Event replication
Event Replication algorithms make copies for each of the clients that are interested in the
event. The Data Distributor executes the algorithm, see also 3.2.2. Usually the Event
Replication is based on a Boolean decision that is supplied by the Distribution Decision
component. In this case the Data Distributor simple send the event directly to each of the
connections in the list. The Event Replication algorithm proposed in this thesis extends
the replication with the user of priorities. This enables us to influence the timing of
sending of events.

For the architecture of the agent the prioritization means that the interface between the
event selection component and the event replication component must enable the
exchange of a mapping from connections to priorities.

3.4.2 Distribution Decision
Two possibilities exist where the selection of events for a client takes place:
• At the server-side. In this case the middleware at the server only replicate events to

the clients that are interested.
• At the client-side. The software at the server replicates events to all the clients. The

client middleware has to select of all incoming events if it accepts it or rejects it. This
makes the replication at the server very efficient.

In our design the selection will take place at the server-side. When an event notification
arrives at the agent the distribution decision component makes a selection to which
connections the event is to be sent. This avoids unnecessary network traffic of redundant
data packets that are send to uninterested clients.

The distribution decision will consult an expert system. The expert system contains rules
that help the component to deduct a decision for each client. The users will supply the
rules, as described in the next subsection. The fact-base of the expert system contains
information about connections of clients, event notifications, and contexts of clients.

3.4.3 User-defined rules
In order to make decisions about the distribution, the users need to define a user profile
that can be interpreted by the Distribution Decision component. The user defines rules
that can be used to deduct a decision for distribution based on the context. This means
that the profile needs to contain two kinds of information:
• Semantic information. This information describes what kind of contents the event

should contain to be selected. This is the subscription of the client as described in
2.2.1. It is a logical expression that states the conditions that attributes of the event
must meet.

• Adaptation information. This is information the agent needs to decide how to adapt
the selection criteria in different contextual situations. This information describes the
relevance of different types of data.

 29

It is important that the user can simply define complex rules. A structural rule definition
language, or subscription language, is eminent to achieve this. Several forms of profile
definition are possible:
• Fully user-defined. Each user has to completely define his own rules. This is a time-

consuming task for the users, but offers great flexibility and puts the user in control.
• Templates. Pre-defined rules are used as templates. The templates will be based on

the role and/or task that is applicable to the user.
• Automatically. By monitoring the user the agent can create the profiles automatically.

Completely automated profiling is probably not achievable. However in combination
with templates or user-defined rules automated optimization of profiling is useful.

The agent we developed supports all three forms of profile definition. In FLATSCAPE, the
system described in 7.2, we use templates that map roles and tasks to subscriptions.

3.4.4 Context awareness
The Context Awareness component extracts contextual information of clients by
measuring environmental variables, such as bandwidth and location. This component is
needed because both availability and usability of data change with the dynamics of the
environment, with the introduction of mobility. In this thesis we will not discuss the
methods used for the measurements, but we assume their existence.

Since we have already decided in 2.3.1 that we adapt to the context dynamically, the
context needs to be monitored by threads. The threads perform the measurements
periodically so the measured values always represent the current state of the environment.

The measured values will, in most cases, be numerical. The Context Awareness
component needs to qualify these values for the Distribution Decision component to be
able to reason with these values. Intervals need to be defined to assign values to classes
with a qualitative value.

3.5 Decentralized agents vs. centralized agent
We distinguish two ways to organize the agent structure: decentralized or centralized, see
Figure 3-5. A decentralized agent organization initiates an agent for each subscriber at the
server when the subscriber connects. Each agent carries out the selection of events for
one subscriber. The advantage of this approach is that the agent run simultaneously, so
the selection of events per subscriber is processed in parallel.

When the server runs a centralized agent, one agent takes care of the event selection
decisions of all the subscribers. As a result the overhead will increase, as the agent must
keep track of the conditions of each subscriber. The benefit is that conditions that apply
for several subscribers only need to be checked once.

 30

Figure 3-5: Decentralized agents (left), and centralized agent (right)

The centralized agent organization is preferred in our design for the reason that the agent
will consult an expert system for the selection. When we choose for decentralized agents
the temporal and spatial overhead will be unacceptably large, because then each agent
must launch an expert system.

3.6 Resource manager
The middleware should also support resource management. A resource manager makes
decisions about the distribution of resources. For example some total bandwidth is
available through some wire. High rank users will be assigned a larger portion of this
bandwidth maximum than low rank users. For military applications this is a interesting
feature, because of the strict hierarchy.

The current middleware does not support resource management. This topic will not be
mentioned further in this thesis, but is something for further research and development.

P

agent

agent

agent

S

S

S P agent

S

S

S

serverserver

 31

 32

4 AGENT DESIGN
Designing a context-aware data distribution agent comes down to the following tasks:
• Modeling data distribution objects,
• Construction of an algorithm that handles the selection of events for all the clients,
• Integrating context awareness,
• Designing data distribution methods.
This chapter covers all these tasks, which will result in a design of the data distribution
agent. First we take a look at the model of subscriptions and events. Section 4.2 deals
with the construction of the data distribution algorithms. Two algorithms are described:
one for the selection of events and one for adaptation. The next section of this chapter
shows how to integrate awareness into the algorithm. How data distribution is used by
methods is described in the last section. This section focuses on the replication algorithm.

4.1 Model for Data Distribution
First we need to construct a model to work with. Important requirements of the model are
that it enables the agent to adapt the data distribution and that conditions used by several
subscribers should only be evaluated once per event. The second requirement will
improve performance of the event selection algorithm.

We have to model the subscriptions and the events. Users define the subscriptions before
running the application to express what information they are interested in. This
information is saved in a file that is read by the application during establishing the
connection. The events are products by the users using the application at runtime. Every
time a user produces data that need to be distributed this is send as an event.

4.1.1 Subscription
Subscriptions are logical expressions that select events for a client based on the contents
of events. The expression states the conditions that must apply to attributes in order to be
selected. Naturally, the attributes that appear in the subscription depend on the kind of
events that need to be selected. An example of a subscription for selecting unit updates
may be:

unittype ∈ {infantry, armor, artillery} AND size ≤ 100 Equation 4-1

Equation 4-1 expresses what values the attributes unittype and size must have for the
event to be selected.

Besides containing semantic information about the event the subscription should also
have information how to adapt to changes in the environment. The actual subscription
that is used by the event selection algorithm will be different for a user in every
contextual situation.

4.1.1.1 Semantic information
Logical expressions are constructed by atomic expressions connected with logical
operators. Atomic expressions are equations that compare attributes with values. To

 33

define the semantic information of a subscription, we define the atoms and the logical
form of the expression separately. This separated definition offers us the flexibility to
evaluate atom and expressions differently. The atoms will be evaluated subscriber-
independent and the expressions subscriber-dependent. In other words the Boolean value
of an atom applies to all the subscribers and the Boolean value of a logical expression
only applies to the subscribers that are subscribed to that expression.

Each atom is a tuple φ = (nameφ, operatorφ, valueφ), and a subscription is a logical
expression of these atoms. The name nameφ is the identifier of the attribute. The atom
applies the operator operatorφ with the value valueφ to the attribute. When the
subscription language supports not only expressions in conjunctive form, but also allow
disjunctive logical connectives, the subscription should also describe the form of the
logical expression the atoms should be interpreted in. We define a form function Γ, as the
application of the logical form of the expression to a set of atoms. So Γ(Φ) is the
complete logical expression of the subscription, of all atoms.

Table 4-1: Atom set of Equation 4-1
Id Name Operator Value
φ0 unittype = infantry
φ1 unittype = armor
φ2 unittype = artillery
φ3 size ≤ 100

For example, when we observe Equation 4-1 we distinguish four atoms, namely the ones
listed in Table 4-1. A set of atoms is denoted by Φ. The form function Γ is equal to the
following expression:

 (φ0 OR φ1 OR φ2) ANDφ3 Equation 4-2

The application of the form function to the atom set of Table 4-1, Γ(Φ), results in the
logical expression of Equation 4-1.

4.1.1.2 Adaptation information
The semantic information of a subscription describes the global interest of the subscriber.
However some events selected with this expression may be more important to him than
other events. When the contextual situation prescribes to decrease the amount of network
traffic over the connection, e.g. in the case of low bandwidth, the expression should be
more restrictive than the total semantic expression.

The agent needs some extra information about the relevance of each part of the semantic
expression so it can adapt to the different contextual situations. We define the relevance
vector of the subscription to express the relative interests of the subscriber. The relevance
vector r for a connection specifies how the subscription should be interpreted under
different environmental conditions. Each element in the vector, r(φ), assigns the
importance of the corresponding atom in Φ for a client. The possible values for r(φ)
should be in the discrete set ρ that contain the classifications of r(φ). It has to be a

 34

discrete set because later on we have to fully define how each classification has to be
prioritized.

Take for example the following relevance vector for the semantic expression of Table 4-1
and Equation 4-2:

r = (3 2 1 3) Equation 4-3

In this relevance vector ρ = {0, 1, 2, 3}, where 0 represents the class of no relevance, and
1, 2, and 3 the classes of low, medium and high relevance, respectively. So there is a high
relevance for information about units with infantry with less then 100 men. Events that
match this profile should be replicated no matter what the context. Information about
artillery is evidently of less interest and should only be sent when the context permits it,
e.g. in the case of high bandwidth.

4.1.1.3 Prioritization
Events should be matched with the subscriptions and be assigned a priority for each
subscriber. To achieve this each subscription is associated with a priority for the user.
When the event matches the subscription the priority is returned.

When the server is started the number of priorities N for the agent is chosen. Let π be the
discrete set of possible priority values. For each of the N values in π, a subscription is
created for each user. So when N different priority levels are considered, we have N
subscriptions for each subscriber, associated with the corresponding priorities. The
assignment of priorities to subscriptions for a subscriber depends on the context.

Suppose we have the following set of priorities: π = {1, 2, 3}, with 1 as the highest
priority and 3 as the lowest. The relevance vector of Equation 4-3 applies. We define
three subscriptions for a subscriber as shown below:

Table 4-2: prioritized subscriptions
Subscription Description Priority
s1 Events about units with infantry smaller than 100 1
s2 Events about units with armor smaller than 100 2
s3 Events about units with artillery smaller than 100 3

When one of these subscriptions match with an event than the associated priority is
triggered for the subscriber for the event. So if the event contains information about an
armor unit smaller than 100 men, subscription s2 matches and priority 2 is assigned to the
event for the subscriber.

4.1.2 Events
The contents of data are captured by event notifications. An event notification Ε is a set
of name value pairs, called attributes and denoted by ε = (nameε, valueε). E defines the
contents of the event. The more attributes the event contains the more accurate the

 35

representation of the event will be and the more accurate the selection of event can take
place.

Table 4-3 shows an example of an event that represents an event about a hostile unit with
infantry of the size of 85 men.

Table 4-3: Example of event notification.
Name Value
unittype Infantry
affiliation Hostile
size 85

4.2 Data distribution algorithms
In this section we discuss the algorithm used in the Distribution Decision component of
Figure 3-4. Actually we distinguish two algorithms: (i) the subscription algorithm, and
(ii) the event selection algorithm. The first algorithm establishes a connection and sets up
the rules for the client. The event selection algorithm handles incoming events and
distributes it to the subscribed clients.

4.2.1 Subscription algorithm
First we describe how clients subscribe to the server. At the server side a set Φ of logical
atoms is defined of all the atoms that may appear in a subscription. A subscription is a
logical expression of these atoms. The form of this logical expression is defined in a form
function Γ. The atoms and form function are described in 4.1.1. The subscriber supplies
this information.

The state diagram in Figure 4-1 shows the process of subscription. Each client
subscribing to the server will follow these states. The process is context aware; it
monitors environmental variables and adapts subscriptions accordingly.

change in
environment

subscribed,
context invalid

subscribe

subscribed,
context aware

unsubscribed,
context aware

measure
sensors connect

connected,
unsubscribeddisconnected

Update
subscription

Figure 4-1: State diagram of context aware subscription.

For establishing a connection the connecting party has to send a relevance vector r. The
relevance vector for a connection specifies how the subscription should be interpreted
under different environmental conditions. The relevance vector is also described in 4.1.1.

The second step is to measure or predict environmental variables. This information
makes the method context aware. If we use M different environmental variables the state
of the connection is defined in a M-dimensional context space, called C. This space maps

 36

the M-dimensional state to a context value c. The context value should be an element of
the discrete set χ of all context classes, so c∈χ. The context of the connection should be
monitored all the time. When a change in the environmental state is registered, the
context the subscription is based on is invalid, and the subscription has to be updated.

Now we know the relevance values for each atom and the context value of the state, we
can assign subscriptions. For each priority value, a subscription is defined for each
connection. So when N different priority levels are considered, we have N subscriptions
for each client, associated with the corresponding priority. Let π be the discrete set of
possible priority values. A priority matrix P is used to assign the priority to each atom in
Φ, see Table 4-4. The rows of the matrix represent the elements of χ, and the columns the
elements of ρ. Each entry in the matrix is the priority p∈π, for the particular context and
relevance value. The relevance values and context values 1, 2, 3, represent a low,
medium, high value respectively. The priority values 1, 2, 3, represent a high, medium,
low value respectively. The N prioritized subscriptions can now be generated by first
determining the subset of atoms for each priority level. Once we have these prioritized
atom subset Γ is applied to the subset. The subset of atoms for priority level p and its
prioritized subscription are given by the following two equations:

})),(({)(pcrPcp ≥=Φ φφ Equation 4-4

))(()(ccs p
subp ΦΓ= Equation 4-5

Atoms that are used in the subscription with a higher priority are also used in the
subscriptions with a lower priority, so the latter is less restrictive. This is an important
property, because it ensures the right order of subsumption of the prioritized
subscriptions. This means that the low priority subscription selects at least all the events
the high priority subscription selects.

Equation 4-6

Table 4-4: Example of priority matrix, with N=3.

Relevance value r(φφφφ)
1 2 3

1 3 2 1
2 2 1 1

Context
value c

3 1 1 1

The assumption is made that disjunctive operators connect the atoms that differ between
the prioritized subscriptions for a client. The reason behind this lies in the fact that
conjunctive operators connect the atoms of different attributes and should all appear in
each prioritized subscription. It is important that this assumption is kept because it
ensures that the higher priority subscription is more restrictive. The relevance vector
should enforce this property.

 37

4.2.2 Event Selection algorithm
The algorithm for event selection is much simpler. New events trigger the process to
decide if the event should be replicated to other clients. The event selection algorithm
selects events for the clients based on their prioritized subscriptions and the contents of
events. In this way the server will only replicate events for the interested clients, which
saves unnecessary network traffic. The contents of data are captured by event
notifications as described in 4.1.1.

The process first matches all the atoms with the notification name-value pairs. The
function MATCH(φ,ε) returns true for atom φ and event attribute ε if and only if the names
fields are equal and the operator field of φ applied to the value field returns true. All
atoms that do not match any notification name-value pair are false. We say that atom φ is
matched when at least for one event attribute ε the MATCH function returned true.

�
�
� ∧=⇔

=
otherwisefalse

valuevalueoperatornamenametrue
,

),(
),MATCH(φεφφεεφ Equation 4-7

Next we see if the logical expression of the application of Γ to the atoms of the
prioritized subscription sp(c) results to true. If it does, we say that subscription sp(c) fires.
We define the function EVALUATE(sp(c)), that returns priority p when sp(c) fires for event
notification E and the null value ∅ when it does not fire.

Equation 4-8

When sp(c) fires, priority p is returned for the data object for the connection. More
prioritized subscriptions may fire for a connection because of the property in Equation
4-6; in this case the value representing the highest priority is returned. The priorities for
all interested clients are returned as a mapping from connection to priority, as discussed
in 3.3.1.

{ }))((cSEVALUATEpriorityppriorityMAXp p=⋅∈∀= π Equation 4-9

4.2.3 Example algorithms
To clarify the algorithms, consider the following example. First we will take a look at the
subscription algorithm. Suppose the subscriber sends the subscription information to the
server. The subscription information contains Φ, the relevance vector, and Γ. The
subscription information is shown in Table 4-5 and Equation 4-10.

Table 4-5: ΦΦΦΦ of example subscription information
Id Name Operator Value Relevance
φ0 unittype = infantry 3
φ1 unittype = armor 2
φ2 unittype = artillery 1
φ3 size ≤ 100 3

 38

(φ0 OR φ1 OR φ2) AND φ3 Equation 4-10

Now the agent has to execute the subscription algorithm to this information. The agent
will be looping through a piece of code that checks the context value and if necessary
executes the algorithm. We define three values for the context: χ={1, 2, 3}, where 1 is the
worst context value and 3 the best context value. So the lower the context-value the more
restrictive the subscriptions should be.

Table 4-6: Results of subscription algorithm
Context Priority matrix Atom subsets Subscriptions

1 Relevance value r(φφφφ)
1 2 3

1 3 2 1
2 2 1 1

Context
Value c

3 1 1 1

Φ3(1) = {φ0, φ1, φ2, φ3}
Φ2(1) = {φ0, φ1, φ3}
Φ1(1) = {φ0, φ3}

S3(1)=(φ0 OR φ1 OR φ2) AND φ3
S2(1)=(φ0 OR φ1) AND φ3
S1(1)=φ0 AND φ3

2 Relevance value r(φφφφ)
1 2 3

1 3 2 1
2 2 1 1

Context
Value c

3 1 1 1

Φ3(2) = {φ0, φ1, φ2, φ3}
Φ2(2) = {φ0, φ1, φ2, φ3}
Φ1(2) = {φ0, φ1, φ3}

S3(2)=(φ0 OR φ1 OR φ2) AND φ3
S2(2)=(φ0 OR φ1 OR φ2) AND φ3
S1(2)= (φ0 OR φ1) AND φ3

3 Relevance value r(φφφφ)
1 2 3

1 3 2 1
2 2 1 1

Context
Value c

3 1 1 1

Φ3(3) = {φ0, φ1, φ2, φ3}
Φ2(3) = {φ0, φ1, φ2, φ3}
Φ1(3) = {φ0, φ1, φ2, φ3}

S3(3)=(φ0 OR φ1 OR φ2) AND φ3
S2(3)=(φ0 OR φ1 OR φ2) AND φ3
S1(3)=(φ0 OR φ1 OR φ2) AND φ3

The results of the subscription algorithm are summarized in Table 4-6. Suppose the
context value is measured and qualified as 1. This situation is listed in the first row. The
first line in the priority matrix is used. We look up the priority values of each atom φi.
This is 1, 2, 3, 1, for φ0, φ1, φ2, and φ3 respectively. Sequentially we construct the atom
subsets for each priority level, see the third column. The algorithm finishes with the
application of the form function of Equation 4-10 to the atom subsets.

If the measured context values are qualified as 2 or 3, than the results will be as shown in
the second and third row of the table. The atom subsets and subscriptions in these cases
have similar results for different priorities. For example when the context value is 3 all
the prioritized subscriptions are the same. Since the event selection algorithm chooses the
highest priority in these cases, this results into a situation where all the data is either
ignored (the events do not match the subscriptions) or selected with the highest priority.
In this case the context is good enough, e.g. very high throughput, to send all interesting
events directly.

When we compare between the rows we can conclude that the subscriptions of the lower
context values is more restrictive. When the context value is low (context = 1) only
information about infantry is send immediately, all other events are postponed. When the
context value is in the middle (context = 2), information about infantry as well as events
about armor units are sent directly. And when the context is high (context = 3) all
selected events are sent at once.

 39

When the prioritized subscriptions are constructed for the client, the agent is ready to
select events for the client. The event selection algorithm is illustrated in Figure 4-2. The
MATCH function is executed for all atom φi, and event attribute εj combinations, using
Equation 4-7. If ε0 ∨ ε1 is true for an atom then the atom is satisfied. Subsequently we use
the evaluation function to determine which prioritized subscription fire. The highest
priority of the fired subscriptions is the priority that is used for replication of the event to
the client, as in Equation 4-9. This means in this example the resulting priority for the
event is 2.

Figure 4-2: Example of event selection algorithm

This algorithm is applied to all the events that arrive at the agent. In Table 4-7 a list of
events is shown that are evaluated by the event selection algorithm. The table shows how
the priority responds to contextual changes and event contents. In the first two columns
the ID’s and contents of events are shown. The third column states the context value. The
context changes because the environment is dynamic. In the next column are the
subscriptions that fire and in the last column the priority that is assigned to the event.

Table 4-7: Events that are prioritized y the event selection algorithm
Event ID (unittype, size) Context Subscription Priority
e1 artillery, 85 2 S2(2) 2
e2 artillery, 85 3 S1(3) 1
e3 armor, 10 1 S2(1) 2
e4 artillery, 32 1 S3(1) 3
e5 artillery, 26 1 S3(1) 3
e6 infantry, 78 1 S1(1) 1
e7 armor, 16 2 S2(2) 2

4.2.4 Algorithm issues
A couple of issues about the algorithms still have to be discussed. In this section we pay
attention to these issues. First we want to make some comments about the separation of
tasks between the two algorithms. Second, the priority matrix will be discussed in more
detail.

4.2.4.1 Adaptation and selection
While constructing the algorithms a deliberate choice is made to let the data adaptation
take place separate of the event selection. The reason for this is to decrease the overhead
of the event selection algorithm. The efficiency of the event selection is very important to
support real-time application. To have a separate algorithm for the adaptation, the
subscriptions are adapted when a change in the environment takes place. When an event
comes in, the current subscription only has to be evaluated by the event selection
algorithm. Another benefit will be that subscribers using the same subscriptions can use

Matching Match(φφφφi, εεεεj)

 φ0 φ1 φ2 φ3
ε0 F F T F
ε1 F F F T
ε0 ∨ ε1 F F T T

Event notification e1

ε0 unittype artillery
ε1 size 85

Evaluation subscriptions

po = EVALUATE(s3(1)) = 3
p1 = EVALUATE (s2(1)) = 2
p2 = EVALUATE (s1(1)) = ∅

 40

one subscription together. So these subscriptions only have to be evaluates once for all
the subscribers that use it.

Another approach would be to check the context values during the event selection and
integrate the contextual variables in the logical expression of the subscription. However
\this will slow down the event selection, because it has to consult the context awareness
module. When this approach is applied subscribers will in no case be able to use the same
subscription because the context variables in the subscriptions are personal.

Figure 4-3: two different approaches for the adaptation: adaptation separated (left) and adapataion
integrated (right)

The total overhead of the two algorithms will be different in the two approaches. It
depends on the number of contextual changes and the workload of events that will come
in. We expect that especially the workload of events will contribute to the total of the
overhead. So our approach will save time because the event selection will be less time
consuming.

4.2.4.2 Priority matrix
The priority matrix contains the information how to adapt the subscriptions to contextual
changes. It represents the adaptation strategy. We distinguish two major strategies for
adaptation:
• Event delay. This strategy delays the sending of events with a low relevance value. So

when the context is low, e.g. low throughput, the events that are less important to the
subscriber are sent later when either network traffic is low or throughput increases.

• Event restriction. When this strategy is applied the selection of events is more
restrictive. If the context is low the events with low relevance are not sent at all. Only
important events are sent.

The strategy is visible when we analyze the priority matrix. The event delay strategy
results in a decreasing priority for atoms with a decreasing context value, but in all cases
a priority is assigned. An example of such a priority matrix is shown in Table 4-8. Notice
that the decrease of priority means an increase of the priority value (3 is the lowest
priority in this case). The event restriction strategy needs to appoint a priority value
representing exclusion to the events with low relevance. In this case we define the
priority level –1 when an event is restricted. An example of such an priority matrix is
shown in Table 4-9.

event

subscriptions

Event selection

Adaptation

event

subscriptions

Event selection

adaptation

 41

Table 4-8: Event delay strategy Table 4-9: Event restriction strategy
Relevance value r(φφφφ) Relevance value r(φφφφ)
1 2 3

1 2 3

1 3 2 1 1 -1 -1 1
2 2 1 1 2 -1 2 1

Context
value c

3 1 1 1

Context
value c

3 1 1 1

4.2.4.3 Adaptation to changing roles and tasks
The agent must support adaptation to the changing roles and tasks of the subscribers. For
example a task of commander might change from offense to defense when some goal has
been achieved. In the case of a new role or task the subscriber sends a new relevance
vector that represents his new interests. The subscription algorithm is triggered because
the context of the subscriber has changed and adjusts the subscriptions accordingly.

4.3 Integrating awareness
The context-awareness component in Figure 3-4 is discussed in this section. As
mentioned earlier, we focus on two types of awareness: network awareness and location
awareness. The methods used for the measurements to obtain the values of network
parameters or the position of users and events is of no interest in this discussion. Of
interest is how these values are used in the data distribution.

First of all we distinguish data-independent awareness and data-dependent awareness.
Whether the awareness depends on data is crucial in the approach how to integrate the
awareness. Data-independent awareness, such as network awareness, can be assessed and
processed separately from the event selection. However when the awareness is data-
dependent, like location-awareness, the awareness has to be integrated in the event
selection. In this section we will first take a look at data-independent awareness. After
this data-dependent awareness is covered.

4.3.1 Data-independent awareness
Data-independent awareness concerns information about the environment that does not
change based on the data that is to be distributed. Examples are network awareness and
awareness of device properties such as battery power. In the design of the agent data-
dependent awareness is integrated in the subscription algorithm such as described in the
previous section. The motivation for applying context awareness in the subscription
algorithm instead of the event selection algorithm is performance. During execution of
the event selection algorithm reduction of the overhead is very important, so that data
distribution is efficient. The agent achieves this in two ways: (i) reduction of overhead
per subscription, and (ii) decreasing the number of subscriptions. The first follows from
the fact that the data-dependent awareness does not need to be considered in the event
selection algorithm since the subscription algorithm already did that. Consequently the
actual adaptation of the subscription may be done parallel to the event selection. The
second follows from the fact that the clients with equal profiles can be grouped and
processed together, because connection-dependencies, such as available bandwidth, are
already taken into account by the subscription algorithm.

 42

This environmental state of a client is derived of sensor values that measure
characteristics of the environment. The sensor values are the inputs to the M different
awareness modules Ai that classify the inputs and return the classified value ai. For
example, awareness module A1 may be about network awareness and uses the inputs
bandwidth and packet round trip time. The possible values for its output may be
α1={HIGH, MEDIUM, LOW}. When bandwidth is high and the variance of the round
trip time is low than the value of a1 is probably HIGH.

Figure 4-4: Outline of context awareness module.

All the values ai, are used to find the context value c that represents the current state of
the environment. This context value is found in the pre-defined M-dimensional context
space C. This space maps each vector of awareness values to a context value. So the
context value is given by the following formula.

)(aCc = Equation 4-11

4.3.2 Data-dependant awareness
When data contains information that is used for the awareness the integration of data has
to be processed differently than described above. An example of this kind of awareness is
location awareness. Data-dependant awareness takes place in the event selection
algorithm.

In order to use data-dependent awareness some preprocessing is needed before the event
selection algorithm as described in 4.2.2 is executed. The data-dependent awareness
preprocessing processes awareness information of users, previous event notifications, and
the current event notification. The awareness conditions defined in the subscriptions are
calculated and added to the current event notification. This context-aware event
notification is passed to the Event Selection component. The process is illustrated in
Figure 4-5

Context value c∈χ

aM∈αMa2∈α2a1∈α1

…

…… …

A1
Network

Awareness

M-dimensional context space C

B
andw

idth
R

ound T
rip

A2
Device

Awareness

B
attery pow

er
R

esolution

AM
…

 43

Figure 4-5: Location awareness preprocessing

Because the data-dependent awareness preprocessing is based on the awareness
conditions in the subscription, no unnecessary processing is done. Only the desired
awareness values are calculated.

As consequence of the fact that the data-dependent awareness is part of the event
selection algorithm the subscription language need to support conditions based on the
awareness. For example, a subscription language that supports location-awareness should
be able to express distance conditions.

4.4 Data distribution methods
The methods describe how the prioritized events, that are the result of the distribution
algorithms, are used in the agent. The method that is described below shows how the
event replication takes place for the events that are assigned priorities.

4.4.1 Prioritized Event Replication
We have discussed how to prioritize events for each subscriber. However the question
remains how to use the prioritized events. In this subsection the event replication method
is discussed that answers this question. The method takes care of the ordering of events
per subscriber by priority and is applied for each subscriber.

The number of priorities levels N is set when a server is started. For each subscriber N
event buffers are created, one for each priority level. When an event is assigned the
priority level p for the subscriber the event is placed in the event buffer assigned to p.
Simultaneously events are read out on the buffers to be sent to the subscriber. The events
in the highest priority buffer are read out first. When this buffer is empty the second
highest buffer is read.

Figure 4-6: Example of prioritized event replication method with above time line incoming event and
below timeline outgoing events

Data-dependent awareness information

Event notification Data-dependent awareness preprocessing Event Selection

Subscriptions

Time

e2
pri=1

e1
pri=2

e3
pri=2

e4
pri=3

e5
pri=3

e6
pri=1

e7
pri=2

e2

1 e2
2 e1
3

1
2 e7
3 e4 e5

1 e6
2 e3
3 e4 e5

1
2 e3
3 e4 e5

1
2
3 e4 e5

1
2 e1 e3
3 e4

1
2
3 e5

e1

e6 e3 e7 e4

e5

 44

Figure 4-6 illustrates the method. As input events we take the ones listed in Table 4-7.
Above the timeline we see the incoming events with their priorities, and below the
timeline the outgoing events are shown with the event buffers for every priority level. In
this example we have 3 priority levels, priority level 1 is the highest priority and priority
level 3 the lowest.

In the case of the first outgoing event we see that two events, e1 and e2, are buffered with
priorities 2 and 1 respectively. Since event e2 is buffered in the highest priority level
queue that one is sent. We see that events with low priorities, e4 and e5, are sent at the
end when no other events are buffered.

One problem that is not tackled by this method is the dynamic behavior of the priorities.
Since the priorities are assigned based on a certain context of the subscriber, the priorities
of events that are buffered for some time should be adjusted when the context changes.
However this problem only arises with very heavy workload.

4.4.2 Buffer reordering
A problem with the method described above is that when the context changes the
priorities also change. Consequently the buffers have to be reordered. First the new
subscriptions rules are set. Secondly the rules are applied to the events in the buffers to
calculate the new priorities. At last we can order the priority buffers again.

Listing 4-1: Possible JAVA code for priority buffer re-ordering after a change in context

In Listing 4-1 possible JAVA code is shown that does take care of the re-ordering of the
priority buffers. First all the buffered events are gathered in one buffer. The method loops
through this buffer and calculates the priority of each event and puts the event in the right
buffer.

for (i=1; i<4; i++) {
Vector currentBuffer = priorityBuffer[i];
while (currentBuffer.hasElements())

totalBuffer.addElement(currentBuffer.nextElement());
priorityBuffer[i] = new Vector();

}
while (totalBuffer.hasMoreElements()) {

Event currentEvent = totalBuffer.nextElement();
int priority = applyRules(currentEvent);
priorityBuffer[priority].addElement(currentEvent);

}

 45

5 RULE-BASED REASONING
When a server is started it initiates two distribution agents: one for the clients connected
to the server, and one for the neighboring servers. We distinguish these two agents
because the replication for clients and the replication for peers are executed by two
different threads. An event notification triggers both agents to decide to which
connections the update has to be replicated to.

In this chapter we take a closer look at the embedded rule-base of the agent. We will
discuss the benefits of JESS first. Next the architecture of the rule-based agent is covered.
In the third section the acquisition and usage of the knowledge in the rule-base is
discussed.

5.1 Jess
A rule-based distribution agent matches incoming event notifications to the prioritized
subscriptions. The data distribution agent utilizes an embedded expert system for the
matching process. We use the JESS Expert system, because it (i) is easily integrated in the
existing Java software and (ii) it uses the efficient Rete algorithm for rule matching [18].

JESS is a CLIPS-like expert system developed in JAVA. The scripts are interchangeable
with CLIPS and the JAVA objects can easily be represented by facts in JESS. We can define
templates for facts that are similar to the object structure. JESS even offers API calls that
automatically generate such templates and convert objects to JESS facts.

In expert systems the rule-base is mostly static and the set of facts in the expert system is
more dynamic. Though large part of the fact-base will be static as well. The Rete
algorithm uses this knowledge to make inference efficient. Complexity of inference is
measured in the number of rules in the rule-base (R), the number of facts (F), and the
average number of facts in the rules (P). The Rete algorithm reduces the complexity to
O(RFP), by remembering which facts in the rules are already satisfied. The next time the
inference engine is run, only the facts in the rules that did not yet satisfy need to be
evaluated.

5.2 Embedding Jess
The agent utilizes an embedded expert system, namely JESS, for making decision about
distribution. For the JAVA code of the agent to interact with the JESS code some interface
is necessary. The different tasks of the agent are divided between the JAVA part and the
JESS part. Figure 5-1 shows the components of the agent with an embedded expert
system.

The upper part of Figure 5-1 shows the JESS components and the lower part shows the
JAVA components of the agent. Since the expert system is embedded only the JAVA part
receives input and returns output to the other parts of the system. The JESS part only
communicates with the JAVA part of the agent.

 46

Figure 5-1: Agent with embedded expert system (JESS). Upper part shows the JESS components an
lower part the JAVA components.

5.2.1 Data flow
All data flows, represented by the arrows, are numbered in Figure 5-1. We will discuss
then here in order of their numbering.
0 Input. The input of the agent can be either the subscription information, when a

subscriber established a connection, contextual information, or events. The pre-
processor calls setRules() or applyRules() depending on the type of input. These
methods are described in section 6.5.

1.1 Measurements. The measurements are the values of the contextual variables. These
values are passed to the pre-processor. The variables are continuously measured.

1.2 Command/object. Depending on the input the pre processor sends commands to be
executed by the inference engine or data in the form of objects. When setRules is
called a command will be send with some data to set up a subscription rule for the
connecting subscriber. If the applyRules is executed the event is send in the form of
an object.

1.3 Objects. The outcome of the rule-based reasoning is some data that maps
connections to priorities. In the JAVA part this will be some object.

2.1 Commands. The JAVA/JESS interface maps objects to facts and sends commands to
the inference engine. The JAVA code initiates a Rete objects whose methods are
API’s for the expert system. The most used method is run() that makes the
inference engine evaluate all the rules that are activated by the new facts. Another
useful method is executeCommand() that parses a string parameter as a JESS
command.

Java/Jess interface

Pre processor

Context listener

Post processor

Fact-base Rule-base

Inference engine

2.4 read/write rules 2.3 read/write facts

2.2 read/write facts

2.1 commands

1.2 commands/objects

1.1 measurements

1.3 objects

0. input

AGENT

3. output

 47

2.2 Read/write facts. The objects are mapped to facts by the JAVA/JESS interface, are
saved in the fact-base. These are the new facts that will activate rules. When the
run() method is executed the activated rules are evaluated. Facts are also read by
the JAVA/JESS interface, namely the output.

2.3 Read/write facts. When the inference engine runs, the facts in fact-base are read to
see if the patterns of rules are satisfied. The consequents of rules may assert new
facts, which are written to the fact-base.

3 Output. The output is an object that maps connections to priorities. This data is read
out of the fact-base.

5.2.2 Process flows
We distinguish two process flows through the architecture, corresponding to the two
algorithms described in 4.2. The subscription process starts with the subscription
information and relevance vector as input at the controller. The controller runs the
inference engine and a new subscription rule is generated. This is explained in more
detail in 5.4.1. This process can also be triggered by the Context Listener, which
continuously checks the context changes. When the context is changed the subscription
process is triggered.

When an event arrives at the controller the event selection process is initiated. The
inference engine checks which subscription rules fire and return the connections and
priorities of the rules that do. The JAVA/JESS interface passes the connections and the
priorities to the post-processing component that only return the highest priorities of the
connections that appear in the connection list.

5.3 Fact-base
The fact base contains short-term and long-term facts. The short-term facts change
constantly, because of the dynamic adaptation. Since clients change subscriptions all the
time the subscription facts are short-term facts. Long-term facts are not changed after
they are asserted and can be considered as the memory of the expert system. Each event
notification fact that has been asserted is saved permanently as a long-term fact for future
reference.

5.3.1 Deftemplates
All the facts in the fact-base will be ordered facts. This means the form of the facts are
defined as templates. A template describes an entity with attributes and thus is quite
similar to objects in JAVA. The templates are defined at design time. To define a template
we use the deftemplate command in JESS. In Listing 5-1 the definition of the templates of
form function and atom are shown.

Listing 5-1: Templates definitions of form function and atom

(deftemplate form_function (slot id) (multislot nodes) (multislot branches)
(multislot connections))

(deftemplate atom (slot id) (slot name) (slot operator) (slot value) (slot include)
(slot satisfied))

 48

The attributes in the template definitions are called slots of multislots. A slot can contain
a single value and a multislot can contain a list of values. So the form function contains a
single id, multiple nodes and branches (the form function is saved as a tree), and multiple
connections.

5.3.2 Write facts
For the Java/Jess interface to write a fact in the fact-base it has to create a fact according
to the template. First the template of the fact should be assigned and secondly the slots
should be assigned values. The slots are identified by the slot-name. The values are
objects with the actual value and a type of values. The value types are RU.ATOM (Do
not confuse this ATOM with the atoms used throughout this paper. The ATOM
mentioned here is just a JESS identifier.) for single slots and RU.LIST for multislots.

In Listing 5-2 a piece of code is shown to illustrate how the form function object can be
parsed to a fact. The setSlotValue methods of the Fact object assign a value to a slot. For
id the type RU.ATOM is used and for nodes and branches RU.LIST. With an assert
commando the initiated fact is actually saved in the fact-base and can be used by the
expert system.

Listing 5-2: Write form function fact

5.3.3 Shadow facts
JESS offers methods to automatically generate templates and facts out of class definitions
and objects. In this way JAVA objects can be represented as facts in JESS. The facts are
called shadow facts and can be used in patterns for the rules. Lets take look at an
example.

Listing 5-3: Generation of template for connection

The JAVA code in Listing 5-3 first initiates a Rete object. The Rete object is the inference
engine of the expert system. The engine calls the JESS command defclass that generates a
template based on the class disciple.cbus.TcpIpConn and is named “connection”. This
connection template contains attributes, called slots, which correspond to the properties
of the TcpIpConn class.

Rete r = new Rete();
r.executeCommand("(defclass connection disciple.cbus.TcpIpConn)");

Fact f = null;
try {

f = new Fact("form_function", engine);
f.setSlotValue("id", new Value(id_, RU.ATOM));
f.setSlotValue("nodes", new Value(nodes_, RU.LIST));
f.setSlotValue("branches", new Value(branches_, RU.LIST));

}
catch (Exception e) {

e.printStackTrace();
}
engine.assert(f);

 49

Listing 5-4: Generation of shadow fact for connection

Listing 5-4 shows the code that generates a shadow fact for the connection. First it
initiates a new TcpIpConn object. A reference to this object is stored in the expert system,
identified with “TCPIP”. The definstance command creates a connection fact with the
stored connection object reference.

At connection time the connection object of a subscriber is saved in Jess this way. We do
not really need the fact, but to return a list of connection objects it needs the object
references that are stored.

5.4 Rule-base
The rule-base is a set of rules that are checked when the inference engine is running. It is
a dynamic process since new rules will be generated at run-time. In this section we take a
look at how the knowledge in the rule-based is captured and how it is used for deduction.

5.4.1 Acquisition of knowledge
The acquisition of knowledge is done dynamically. Based on the subscription information
the client submits, the subscription rules are generated. The relevance vector the client
sends defines how the agent has to adapt the subscription of the client.

When we look at the rule sequencing in the inference engine after a run() command is
executed we get the global diagram, shown in Figure 5-2. The bold labels at the
transitions represent rules and labels in italics will be discussed in more detail below.
When an arrow is labeled with ε, no rule is executed for the state transition. The ovals are
different states of the rule-base.

Figure 5-2: Global rule sequencing

TcpIpConn conn = new TcpIpConn();
r.store("TCPIP", conn);
r.executeCommand("(definstance connection (fetch TCPIP) dynamic)");

ε

subscription qualification

location
awareness

setDistance
selection ε

message
facts

location
facts

end

new
subscription

start

 50

The qualification and subscription transitions are executed when the subscription
algorithm is executed and the selection transition when the event selection algorithm is
executed. If a user or some data changes location the location awareness transition is
triggered. This can be followed by the selection transition when a new distance is
calculated.

5.4.1.1 Qualification rules
The first step in the generation of subscription rules is to qualify the network conditions
and the relevance conditions. These qualifications are needed for determination of
priorities, which subsequently result in a fact for a new subscription. This rule sequencing
is depicted in Figure 5-3.

Figure 5-3: Rule sequencing of qualification

The qualification rules for relevance and bandwidth facts depend on the number of
priorities, because we divide the spectrum of the values into this number of intervals. The
number of priorities is set when the agent is initiated and at that time these rules are
generated and saved in the rule-base. In Listing 5-5 an example of such a rule is
demonstrated.

Listing 5-5: Qualification rule for network condition when bandwidth is between 0 and 1250 kbs.

At this point we know the qualities of the network conditions and the relevance values.
The priority matrix is now used to determine the priority for each atom as is explained in
4.2.1. The rule that represents the priority matrix bind variables for each priority level to
the set of atoms that has to appear in the subscription of that priority. Since we use
integer values for the qualifications we can calculate the priority for each atom in a
straightforward manner to obtain a priority matrix with the form like Table 4-4, where
priority 0 is the highest priority.

(defrule bandwidth_0
?f <- (bandwidth (value ?value))
(test (and (> ?value 0.0) (<= ?value 1250.0)))
=>
(assert (bandwidth_quality (value 0)))
(retract ?f)

)

setNewSubscription priorityMatrix

ε

ε relevance_i

bandwidth_i

start

relevance
facts

bandwidth
fact

relevance
bandwidth

atoms_i
variables

new
subscription

 51

Listing 5-6: Rule representing the priority matrix

Subsequently the inference engine creates new_subscription facts for each priority level,
containing the atoms, the connection ID and the priority of the new subscription. In
Listing 5-7 an example of such facts are shown.

Listing 5-7: Example of new subscriptions with 3 priority levels

5.4.1.2 Subscription rules
The next step is to implement the new subscriptions. For this the decision-tree in
Figure 6-1 has to be evaluated which is explained in more detail in 6.1.2. When the
subscriber is already registered to another subscription with the same priority the
subscriber is first removed from that incorrect subscription. Next we can add the
subscriber to the correct subscription.

Figure 5-4: Rule sequencing of subscription rules

(deftemplate new_subscription (atoms a0 a1) (connection conn0) (priority 0))
(deftemplate new_subscription (atoms a0 a1 a3) (connection conn0) (priority 1))
(deftemplate new subscription (atoms a0 a1 a2 a3) (connection conn0) (priority 2))

(defrule priorityMatrix
"If we know the quality value of the relevance of the atom and the quality value
of the bandwidth, then determine the priority level of the atom"
(declare (salience 5))
?rq <- (relevance_quality (id ?r_id) (value ?r_value))
?co <- (bandwidth_quality (value ?b_value))
(number_of_priorities (value ?priorities))
=>
(bind ?p (- ?priorities 1))
(bind ?priority (min ?p (+ ?r_value ?b_value)))
(while (> ?priority 0)

(bind ?var_name (str-cat "$?atoms_" ?priority))
(eval (str-cat "(bind " ?var_name " (create$ " ?r_id " " ?var_name "))"))
(bind ?priority (- ?priority 1))

)
(retract ?rq)

)

ε

ε
ε

ε

ε

ε

addConnection

addSubscription

keepConnectionWithSubscription

ignoreConnection

removeSubscriber
end new

subscription

new
subscription

new
subscription

new
subscription

new
subscription

 52

In the case that the subscription does not already exist the subscription rule has to be
generated. For this the following rule is used.

Listing 5-8: Rule for the generation of a new subscription rule

This rule takes the new_subscription fact and the form_function fact and tests that the
connection is not yet registered to another subscription. If the rule fires a subscription
fact is asserted into the fact-base, that maintains the connections of the subscribed clients
and the priorities, and call the createRule function to generate the new rule. The new fact
and the new rule have the same ID to reference each other.

Listing 5-9: generated subscription rule

The result of the subscription process is a generated rule in the rule-base that represents
the subscription. The form function, the subset of atoms that apply to the client’s
prioritized subscription, the connection ID of the client, and the priority for the client are
input to the generation of a rule. The antecedent of the rule is a pattern of all included
atoms, the subscription fact that lists the connections with appropriate priorities, and the
form function as a logical test. The name of the rule is based on the value in the id-field
of the subscription fact. An example subscription rule is shown in Listing 5-9.

5.4.1.3 Selection rules
The selection is performed in two steps. First the atoms are matched and secondly the
subscription rules are evaluated.

Figure 5-5: Rules sequencing of selection rules

(defrule subscription0
(atom (id p0) (satisfied ?p0))
(atom (id p1) (satisfied ?p1))
(atom (id p4) (satisfied ?p4))
(atom (id p5) (satisfied ?p5))
(atom (id p7) (satisfied ?p7))
(subscription (id 0)(atoms p7 p5 p4 p1 p0) (connections $?connections)

(priorities $?priorities))
(test (or (or ?p0 ?p1) (and ?p4 (or ?p5 ?p7))))
=>
(assert (result (connections $?connections) (priorities $?priorities)))

)

(defrule addSubscription
"If the new subscription does not yet exist, then create the new subscription and
add the connection with its priority to it"
?new <- (new_subscription (atoms $?atoms) (connection ?connId) (priority ?pri))
?sub <- (sub_count (value ?count))
(form_function (id ?formId) (nodes $?n) (branches $?b) (connections $?connections))
(not (subscription (atoms $?atoms) (form_id ?formId)))
(test (neq (member$?connId $?connections) FALSE))
=>
(assert (subscription (id ?count) (atoms $?atoms) (connections (create$?connId))

(priorities ?pri) (form_id ?formId)))
(createRule ?count $?atoms)
(modify ?sub (value (+ ?count 1)))
(retract ?new)

)

subscription_i matchAtoms message
facts

satisfied
message

end

 53

A rule in the rule-base called match_atom, see Listing 5-10, tests if an event notification
matches an atom. All event attributes in the notification are asserted as separate facts. The
antecedent is a pattern with a notification and an atom and a logical test that implements
Equation 4-7. When the rule fires it sets, the satisfied field of the atom fact to TRUE.
Next the subscription rules can be checked.

Listing 5-10: match rule rule

5.4.1.4 Location awareness rules
The locations of three entities are maintained: of the user, of the past UForms, and of the
new UForm. When the location of one of these changes a location fact is asserted or
modified.

Figure 5-6: Rule sequencing for location awareness rules

When a distance condition is defined in a subscription file a distance fact is asserted in
the fact-base that registers the two objects between which the distance is to be measured.
For each user or event notification in the fact-base that match a distance parameter a
location fact is generated. Next the distance can be deducted by the straightforward rule
setDistance.

Listing 5-11: Rule for calculating distance

When the distance is part of a count condition we can count the distance facts that satisfy
the requested distance with the following query.

(defrule match_atom
?nf <- (notification (name ?n_name) (value ?n_value))
?fs <- (atom (id ?a_id)(name ?a_name)(operator ?a_operator)(value ?a_value)

(satisfied ?a_satisfied))
(test (and (eq ?n_name ?a_name)(eq ?a_satisfied FALSE)

(eval (str-cat "(" ?a_operator " " ?n_value " " ?a_value ")"))))
=>
(modify ?fs (satisfied TRUE))
(retract ?nf)

)

(defrule setDistance
"Calculate the distance of two locations indicated by the parameters"
(distance (id ?id) (param1 ?p1) (param2 ?p2))
(location (id ?p1) (x ?x1) (y ?y1) (z ?z1))
(location (id ?p2) (x ?x2) (y ?y2) (z ?z2))
(newUform)
=>
(bind ?distance (sqrt (+ (** (- ?x1 ?x2) 2) (** (- ?y1 ?y2) 2) (** (- ?z1 ?z2) 2))))
(assert (message (name ?id) (value ?distance)))

)

setUFormLocation

setSelfLocation

changeUserLocation

setUserLocation

location
facts

start

 54

Listing 5-12: Query for counting distance facts
(defquery countDistances

"Count all the distance facts with the given id"
(declare (variables ?id ?value))
(message (name ?id) (value ?mesValue))
(test (<= ?mesValue ?value))

)

 55

6 IMPLEMENTATION ISSUES
Issues concerning implementation of the agent are described in this chapter. We start off
with the subscription language. In this section is shown how the subscription language is
structured. In the second section of this chapter we discuss the code used for the
prioritized replication. We continue this chapter with a section about the data-model that
is followed by a section about context aware measurements. In the last section of this
chapter we discuss how the rules are set and applied by the agent.

6.1 Subscription language
The subscription information is defined in an XML file. An example of such a file is
shown in Listing 6-1. The subscription is structured like a tree with logical operators as
nodes and atomic expression as leafs. The tree-structure of logical operators is the Γ
function, introduced in section 4.2.1, and the atom elements form the set Φ of atoms.
Thus the total subscription file represents Γ(Φ). This is the structure clients may
subscribe to by sending relevance vectors r. The size of the vector must equal the number
of atom elements in the subscription XML file. Each element in the relevance vector
describes the importance of a corresponding atom for the client. When the value of
relevance vector is equal to zero the client is not interested in the atom at all and it will
not appear in the client’s prioritized subscriptions.

Listing 6-1: Example of the XML subscription file
<SUBSCRIPTION filename=”subscription.xml”>
<LOGICAL_OPERATOR value="OR">
<LOGICAL_OPERATOR value="OR">
<ATOM name="type" operator="=" value="document"/>
<ATOM name="type" operator="=" value="time"/>
<ATOM name="type" operator="=" value="overlay"/>
<ATOM name="type" operator="=" value="chat"/>

</LOGICAL_OPERATOR>
<LOGICAL_OPERATOR value="AND">
<ATOM name="type" operator="=" value="unit"/>
<LOGICAL_OPERATOR value="OR">
<ATOM name="affiliation" operator="=" value="H"/>
<ATOM name="affiliation" operator="=" value="F"/>
<ATOM name="affiliation" operator="=" value="N"/>

</LOGICAL_OPERATOR>
</LOGICAL_OPERATOR>

</LOGICAL_OPERATOR>
</SUBSCRIPTION>

Suppose we use the subscription of Listing 6-1, and the priority matrix of Table 4-4.
When the context value c is LOW and we submit the relevance vector (H M M L H H
M L), the server will setup the following prioritized subscriptions for the client.

Table 6-1: Example prioritized subscriptions.
Priority Subscription
LOW type ∈ {document, time, overlay, chat} ∨ (type=unit ∧ affiliation ∈ {H, F, N})
MEDIUM type ∈ {document, time, overlay} ∨ (type=unit ∧ affiliation ∈ {H, F})
HIGH type ∈ {document} ∨ (type=unit ∧ affiliation ∈ {H})

When the quality of the connection or the relevance vector changes over time the
prioritized subscriptions for the connection are adjusted to the new values.

 56

6.1.1 Location awareness in subscription language
To facilitate location awareness the subscription language must be able to express
location-aware conditions. To achieve this the subscription language is extended with
some keywords that are treated differently. The two keywords introduced are distance
and count. Atoms using these keywords are parameterized as show in the listings Listing
6-2 and Listing 6-3. The parameter tags have two fields: name and properties. The name
is the type name of the object referred to by the tag. The possible type names are: user,
uform, this, or distance. The distance type name can only be used by the count keyword.
The properties field summarizes the conditions that apply to the referred object. The user
type parameter references a user object that can be specified by the username. The uform
type specifies previous processed event notifications that may be conditioned by the
contents of the notification. When the type is equal to this it refers to the current event
notification, which is not further conditioned because the conditions that must apply the
current conditions are set in the other atoms. Finally the distance parameter specifies the
distance within which the counted objects must be.

Listing 6-2: Sample code for distance keyword

To condition a subscription to a certain distance between two objects the code looks like
the one in Listing 6-2. In the atom field is specified which operator and value applies to
the condition. The parameter atoms describe the objects between which the distance is to
be measured.

Listing 6-3: Sample code for count keyword

Listing 6-3 illustrates an atom with the count keyword. The atom fields specify the
operator and the value that apply to the count. The parameter tags specify the objects
between which the distance is to be measured, and the value that must apply to the
measured distance. A count atom may also just count a certain type of object. In that case
it only has one parameter referring to the object to be count.

6.1.2 Grouping subscribers
As the clients subscribe, a lot of subscriptions will overlap or even be identical. For
performance reasons, clients with identical subscriptions are grouped. For each
subscription we register the clients that are using the subscription with their priorities.
When n clients use a subscription only one rule has to be evaluated instead of n.

The grouping of subscribers makes subscription management necessary. When a
subscriber changes its subscription or priority the rule-base must be kept consistent. In

<ATOM name="distance" operator="<=" value="150">
<PARAMETER name="user" properties="username=user1"/>
<PARAMETER name="uform" properties="affiliation=H"/>

</ATOM>

<ATOM name="count" operator="<=" value="3">
<PARAMETER name="uform" properties="affiliation=H"/>
<PARAMETER name="user" properties="username=user1"/>
<PARAMETER name="distance" properties="value=150"/>

</ATOM>

 57

Figure 6-1 is shown how consistency of subscriptions can be maintained. When a new
subscription for a client is set up we first have to check if it already exists. If it does not
we make sure that the user-priority combination is not used in another subscription, and
subsequently add the new subscription. In the case that the subscription does exist we see
if the user is already subscribed to it, and if so with the right priority. We ensure that the
user-priority is not registered to another subscription and add the right user-priority
combination to the new subscription.

Figure 6-1: Subscription management for grouping of subscribers

6.1.3 Multiple subscription files
Each user has the possibility to send a subscription XML file, as discussed in the
beginning of this section, to the server. The server maintains a list of all defined
subscription XML files. When the user just wants to use an existing file, only sending the
filename is sufficient. The rule-base kept track of which users are using what form
function. For each defined subscription XML file the rule-base asserts a form function.
The atoms that appear in the various form functions are aggregated as one global set of
atoms so no redundant atoms are saved.

The benefit of multiple subscription files is flexibility. Each user has the freedom to
construct a subscription XML file that fulfills his specific needs.

Does subscription
exist?

Delete user from that
subscription

YES

YES

YES

YES

NO

NO NO

NO

Is user in userlist? User/priority in
other subscription?

Is priority the
same?

User/priority in
other subscription?

Delete user from
existing subscription

YES NO

Delete user from that
subscription

Add user with new
priority

Create new
subscription

Do nothing

 58

6.2 Prioritized replication
The advantage of prioritization of the subscriptions is that we know the urgency of the
replication of different events for each client. The server can order events by urgency and
send it by magnitude of priority. When we assign a high priority to a time critical event
we can be assured it is sent before other events with lower priority.

In this section we discuss issues of prioritized replication. We first take a look at how the
number of priority levels should be chosen. Next we show sample code for the replication
algorithm using prioritization.

6.2.1 Number of priority level
The optimal number of priorities to use depends on the type of system the data
distribution agent is used for. With an increasing number of priority levels the interval
classes of the context will be smaller with the result that subscriptions have to be
reevaluated more often. However a more accurate ordering of importance of events will
be possible, which is useful in the case of heavy data traffic. On the other hand, in the
case many users are logged into the system cutting down adaptation time by decreasing
the number of priority levels may be crucial.

6.2.2 Replication code
A sample code for the replication algorithm, using prioritization is presented here, see
Listing 6-4. The priority levels are integers, with 0 as highest priority and as the integer
increases the priority will decrease. For each priority level a dirty queue is assigned that
contains the events that has to be sent with that priority. Initially all the events are placed
in the dirty queue of priority 0. Next the real priority of the event for the user is
calculated. When the real priority is 0 then the event is sent immediately; if it is unequal
to 0 the event is placed in the dirty queue of the real priority.

Listing 6-4: Example code for replication algorithm

6.2.3 Synchronization
The synchronization of writing and reading prioritized events is solved by sequentially:
determining the priority of the event, putting it in the right buffer, and reading the buffers.
No further synchronization is needed.

for (int priority=0; priority<numberOfPriorities; priority++) {
for (int i=0; i<dirtyQueue[priority].size()) {

Event event = dirtyQueue[priority].next();
if (priority == 0)

int newPriority = getUFormSendingPriority(event);
if (newPriority != 0) {

dirtyQueue[priority].remove(event);
if (newPriority > 0) //-1 is no replicate

dirtyQueue[newPriority].add(event);
continue;

}
}
connection.send(event);

}
}

 59

6.3 Data model
The data model of the agent is depicted in Figure 6-2. On top of the model is the abstract
class DataDistributionAgent, which models the interface of the agent. The class has a
repository that points to the global data repository of the server. With the methods
setRules and applyRules the agent sets up the subscription and test an event with the
subscriptions respectively.

Figure 6-2: Data model of data distribution agent

The DataDistributionAgent class is a generalization of the class DistibutionAgent at the
center of the model. The engine property is the inference engine of the expert system.
When a client logs in, the DistributionAgent object executes addContextListener(), which
results in a new ContextListener class with the connection ID, the bandwidth, and the
relevance vector set. The subscription information is set using the setRules() method. The
subscription XML file, see Listing 6-1, is parsed by the Subscription object into Atom
objects, FormFunction objects and Parameter objects. Both the Atom class, the
FormFunction class as the Parameter class have a method called toFact() that converts
the object to a Jess Fact. All facts are saved in the factBuffer property of the Subscription
object. When the method assertFacts() is executed all the facts in factBuffer are assert in
the fact-base of the expert system.

 60

The event notifications in the system are called UForms (Universal Form). When an
UForm arrives at the server the agent adds the UForm to the UformFactBase. The UForm
is parsed by the UformFact class and assertAsMessageFact(), which asserts a temporary
fact, is called. Subsequently the applyRules() method of the agent is executed to match
the UForm with the subscription. After the application of the rules the UForm is
permanently saved in the fact-base for future use by calling the assertAsUFormFact()
method of the UformFact object.

6.4 Context awareness measurements
We will not discuss the method of measurements of the context awareness. However two
ways of passing the awareness information are distinguished. The two ways are only
relevant for data-independent information, and are described below.
• Push approach. A thread continuously measures the contextual variables. When the

context changes the thread notifies the agent of this change. Thus the contextual
information is pushed to the agent. The advantage of this approach is that the values
are always up-to-date.

• Pull approach. When an agent needs the context information it asks the context
awareness component to measure the variables and pass the values. The agent pulls
the information. The benefit of this approach is that the measurements are only
performed when needed.

The implemented agent uses the push approach. This is a prerequisite for our approach
because the subscription algorithm needs to be aware of changes in the context to
maintain up-to-date subscriptions.

For network awareness, a thread constantly measures the bandwidth. This thread is
defined in the Bandwidth class, and the changes are stored in a variable that is shared
with the DistributionAgent class. The contextListener method in this class waits for
changes of this variable, and when needed the subscription algorithm is called to adapt
the subscriptions in the rule-base.

Figure 6-3: Network awareness threads: bandwidth measuring thread (left), and context listener of
DistributionAgent class (right)

Context listener Bandwidth thread

NO

YES

newBandwidth = measureBandwidth()

Call subscription algorithm

newBandwidth ≠ oldBandwidth

oldBandwidth = newBandwidth

 61

6.5 Setting and application of rules
The abstract class DataDistributionAgent has two major method, namely setRules() and
applyRules(). The first sets up subscription rules for the subscriber when he connects and
the second applies the rules when events arrive at the agent. Both interact with the expert
system to achieve their tasks.

6.5.1 Set rules
The input to the method setRules() is an subscription XML file as described in 6.1, and
the connection ID of the subscriber. First the method will parse the XML file to a DOM-
tree so it is able to read the subscription information. Each subscription file has a name
with is used as identifier of the subscription. The method checks if the subscription is
already added to the rule-base by looking up the name of the subscription file in a list of
added subscriptions. If this is not the case the subscription is added to the rule-base. The
last step of the method is to actually subscribe the connection ID to the subscription. In
Figure 6-4 the method is illustrated with a diagram.

Figure 6-4: Diagram of the setRules() method

6.5.2 Apply rules
The applyMethod() of the DistributionAgent class is triggered when a UForm, an event,
arrives at the agent. The UForm is added to the fact-base of the expert system and the
inference engine runs the subscription rules. A result fact is created with a list of
connections and a list of priorities. The connections and priorities in the lists correspond
with each other. All connections and priorities are placed in the new lists connList and
priList. When a connection already exists in the connList the corresponding priority is set
to the highest priority of the current priority in priList and the priority of the new element
in the list of the result fact. The combination of connList and priList is returned. The
method is illustrated in Figure 6-5.

Subscription XML file subfile
Connection ID conn

XML subfile to DOM sub

Subscription sub
already in rule-base

Add subscription sub to rule-base

Subscribe conn to sub

NOYES

 62

Figure 6-5: Diagram of the applyRules() method

6.5.3 Synchronization
Prioritized subscriptions are set by one algorithm and used by another. The two
algorithms have to be synchronized else the event selection algorithm might use a
subscription that is being updated by the subscription algorithm. Because both algorithms
are executed by the expert system Jess deals with the synchronization. When the expert
system is running for one algorithm the other algorithm has to wait until the expert
system is done.

Uform uf

Add uf to rule-base and run rules

Read result fact rf

i := 0

If rf.conn[i] == connList[j]
for some j ∈ N

Rf.pri[i] < priList[j]

PriList[j] := rf.pri[i]
Add rf.conn[i] to connList

Add rf.pri[i] to priList

i := i +1

More connections in rf

Return connList/priList

 63

7 APPLICATION OF AGENT
In this chapter is demonstrated how the data distribution is applied. The system we will
be reviewing is called DISCIPLE. The data distribution agent is part of this system. The
application running on this system is called FLATSCAPE. We demonstrate how the system
works by simulation of a couple of scenarios.

7.1 DISCIPLE
DISCIPLE (acronym for Distributed System for Collaborative Information Processing and
Learning) is used for collaboration environments that share data between wired and
wireless devices with widely disparate capabilities [19]. In Figure 7-1 the architecture of
the DISCIPLE system is depicted. The system approached the problem of different
platforms data-centric, and transforms the data locally to the characteristics of the device.

Figure 7-1: DISCIPLE architecture with wired and wireless collaborator

The JavaBeans are actually not part of the system, but are supplied by the application
developer. The information transformers manipulate incoming data to the specifics of the
platform and abstract outgoing data. The collaboration bus is an application-independent
communication channel, which is used to send events between the clients and server. The
intelligent agents plane support all the previous mentioned layers. The data distribution
agent subsides in this plane.

7.1.1 Distributed server
For better scalability the subscribers are distributed over multiple servers. The servers
communicate with each other in a peer-to-peer manner. Each server defines a relevance
vector to specify what kind of events it wants to be notified by. This avoids unnecessary
network traffic between servers. The relevance vectors are stated in an XML file that is
read when a server is started. Each server starts up a data distribution agent for replication
of events to its neighboring servers. Next it sets up the relevance vectors of these servers
in the agent.

Listing 7-1: Server specification XML file

When we observe the network of servers as one global server the whole system works
like a client-server system that communicates as a publish/subscribe model.

Wireless collaboratorWireless gatewayWired collaborator

In
te

lli
ge

nt
 a

ge
nt

s JavaBeans

Information transformer

Collaboration bus In
te

lli
ge

nt
 a

ge
nt

s

Information transformer

Collaboration bus In
te

lli
ge

nt
 a

ge
nt

s JavaBeans

Information transformer

Collaboration bus

<SERVERLIST>
<SERVER hostname="128.6.237.92" port="5000" name="1" value="0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9"/>
<SERVER hostname="128.6.237.92" port="5300" name="2" value="0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9"/>
<SERVER hostname="128.6.237.61" port="5500" name="3" value="0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9"/>

</SERVERLIST>

 64

7.1.2 State merge
For collaborative systems the sharing of data is the main focus. Each client needs to have
a representation of the same dataset to work on. As a consequence when a client connects
to the server the local dataset needs to merge with the global dataset.

When a user logs on to the system, the system synchronizes the data to the local data
repository of the client. This is called the state merge. The merger collects all the events
that have to be sent to the client in an array. This array is send to the data distribution
agent that filters out the events that match the client’s subscription. A method called
refresh() loops through the array of events and calls the applyRules() method for each
event.

Listing 7-2: Code of refresh() method

In Listing 7-2 the code of the refresh method is shown. First an array lists all event
notifications, called UForms. Then for each UForm in the array we call
testUformForUser(), which tests if the connection of the user appears in the list returned
by the method applyRules(). All the selected UForms are listed in the update vector that
is converted to an array called result.

7.2 Flatscape
FLATSCAPE is an application that runs on top of DISCIPLE. It allows collaborators to work
on a military operational plan. Friendly, hostile or neutral units of different types can be
added, removed, or moved in an area to stage the operational plan. The collaborators will
be commanders of different ranks working on wired workstations as well as on wireless
handhelds in the field.

7.2.1 Tasks and roles
Based on the rank of the commander different types of data will be relevant. For
example, a team leader will only be interested in information about his team members
and about the hostile units in the neighborhood. On the other hand, a high rank
commander will be interested in the locations of all units and hostile units in the whole
area. The relevance vectors are based on a task and the role of the commander. The role
corresponds with the rank of the commander and the task indicates the current work of
the commander. The relevance vectors are defined in an XML file. Listing 7-3

public UForm[] refresh(long id) {
Vector update = new Vector();
UForm[] uforms = repository_.getUForms();
for (int i=0; i<uforms.length; i++) {

if (testUformForUser(uforms[i], id)) {
update.addElement(uforms[i]);

}
}
UForm[] result = new UForm[update.size()];
for (int j=0; j<update.size(); j++) {

result[j] = (UForm)update.elementAt(j);
}
return result;

}

 65

demonstrates such a file for two roles: team leader and platoon leader, for three different
tasks: offense, defense, and intelligence. The relevance vectors in this XML file are based
on the subscription XML file of Listing 6-1. With each relevance-vector a default field
tells if the role-task combination is the default combination when FLATSCAPE is start up.

Listing 7-3: Roles and task definition

7.2.2 User interface
In this section we will briefly discuss the user interface of FLATSCAPE. Figure 7-2 shows
the interface. The most important view is the map and the units that are placed on it. With
the tools pane, units can be added and modified, in the unit pane, units can be specified,
in the users pane all users logged into the system are listed, and the overlays pane shows
the structure of all the objects on the map. The Task pane has two choice boxes, one for
the role and one for the task of the commander. The values in these choice boxes are
derived from the XML file that specifies the roles and tasks, see Listing 7-3.

When a unit is added, removed or moved around by the user, an UForm containing the
up-to-date information of the unit, is sent to the server. At the server the UForm is passed
to the data distribution agent that decides to which other users and with what priority the
UForm is to be distributed. Next DISCIPLE loops through the list on connections and
sends the UForm. At the client side the UForm is passed to FLATSCAPE that updates the
unit’s graphical representation on the map.

<RELEVANCE>
<ROLE name="team leader">

<TASK name="offense">
<RELEVANCE value="1 0.1 0.3 0.8 1 1 0.9 0.2" default="no"/>

</TASK>
<TASK name="defense">

<RELEVANCE value="1 0.3 0.1 0.8 1 1 0.8 0" default="no"/>
</TASK>
<TASK name="intelligence">

<RELEVANCE value="1 0 0 0.8 1 1 0 0.8" default="no"/>
</TASK>

</ROLE>
<ROLE name="platoon leader">

<TASK name="offense">
<RELEVANCE value="1 0.3 0.3 0.8 1 1 0.9 0.5" default="yes"/>

</TASK>
<TASK name="defense">

<RELEVANCE value="1 0.3 0.3 0.8 1 1 0.5 0.9" default="no"/>
</TASK>
<TASK name="intelligence">

<RELEVANCE value="1 0 0.2 0.8 1 1 0 0.8" default="no"/>
</TASK>

</ROLE>
</RELEVANCE>

 66

Figure 7-2: User interface of Flatscape

7.3 Simulation
To demonstrate the effect of the data distribution agent three scenarios have been
simulated. The scenarios focus on the (i) selectivity of the agent (ii) the network
awareness of the agent (iii) the location awareness of the agent.

7.3.1 Selectivity
The selectivity simulation tests if the event selection algorithm works correctly. The test
is executed simply by exchanging events between clients with different interest. The
resulting datasets should reflect the different interests.

7.3.1.1 Goal and setting
The goal of this simulation is to demonstrate the selective property of the agent. The core
task of the agent to select event for subscribers so it is crucial this task is performed
satisfactory. Two clients will connect to a server. Both will use the subscription
information as defined in Listing 6-1 and the roles and tasks as defined in Listing 7-3.
Client A will perform the role of team leader with a defensive task, and client B will
perform the role of team leader with an intelligence task. So both clients have different
relevance vectors.

Both clients will send one UForm with hostile affiliation, one with friendly affiliation,
and one with neutral affiliation. Because of the different relevance vectors each client
will have a different data-subset in the end. Client A is interested in hostile and friendly
units, and client B is interested in hostile and neutral units.

 67

7.3.1.2 Hypothesis and results
The result of this simulation is shown in Figure 7-3. The diamond, rectangle, and square
icons represent hostile, friendly, and neutral units respectively. Client A added the icons
with a cylindrical form and client B added the icons with two stripes. So it is to be
expected that client A only receives diamond and rectangle icons with two stripes from
client B, and client B only receives diamond and square icons with cylindrical forms.

Client B did not receive the friendly unit, rectangle with cylindrical form, added by client
A, because the relevance vector for a team leader with an intelligence task is 0. And since
a team leader with a defensive task has 0 relevance for neutral units, client A did not
receive the neutral unit, square with two stripes, sent by client B. Of course client A does
see the neutral (square) unit with cylindrical form because it sent it itself. The same
applies to client B for the friendly unit sent by client B.

Figure 7-3: Result of selectivity simulation for client A (left) and clientB (right)

7.3.1.3 Concluding remarks
We see that the results justify the hypothesis. The selection of events for both clients is as
we expected. This means that the implementation of the event selection algorithm works
correctly. Clearly the expert system makes the right decisions based on the right
subscriptions.

7.3.2 Network awareness
The subscription algorithm should also be tested. This algorithm is responsible for the
adaptation of the subscriptions to the context. The scenario described here tests the
adaptation to network awareness.

7.3.2.1 Goal and setting
This second scenario will show the network awareness of the agent. One client will
connect to the server with the subscription information of Listing 6-1 and the role and
task file as in Listing 7-3. The user is a platoon leader with an offensive task. We will
take a look at the fact-base and the rule-base to show the adaptation at two different times

 68

when the bandwidth of the connection is different. The priority level of the agent is set to
3.
The client is running on a T20 laptop and is connected through a wireless LAN. Walking
around with the laptop will make the bandwidth change. We make two snapshots with
different bandwidths that should certainly result in different subscriptions for the client.

7.3.2.2 Hypothesis and results
When the quality of the connection is high the client does not assign different priorities to
events. In this situation the throughput of data is so good that all event can be sent
immediately. If the bandwidth is low the events will be assigned different priorities in
order to sort the events that are waiting to be sent by importance. We expect to witness
this by a changing subscription set where the number of possible priorities assigned to
events increases when the quality of the connection decreases.

The bandwidth at the first point in time is equal to 3750.0 kbs. The subscription facts and
rules are shown in Listing 7-4. The listing shows the subscriptions for priority 0 and
priority 1. No subscription rule is defined for priority 2, because it is the same as for
priority 1. The subscription with ID set to 0, and with priority 0, contains all the atoms a0
to a7, while the other subscription for priority 1, does not contain any atom.
Consequently the second subscription will not select any events.

Listing 7-4: Subscription facts and rules for platoon leader with offensive task when bandwidth =
3750.0 kbs

After a while the bandwidth decreases to 195.6 kbs. The subscriptions are adapted as
shown in Listing 7-5. The selection of data is now more diversified over the prioritized
selections, leading to the delay of middle and low priority UForms. Three subscription

(subscription (id 0) (atoms a7 a6 a5 a4 a3 a2 a1 a0) (connections
tcpipconn243932837794985469) (priorities 0) (form_id subscription.xml))

(subscription (id 1) (atoms) (connections tcpipconn243932837794985469) (priorities 1)
(form_id subscription.xml))

(defrule subscription0
""
(declare (salience 0) (node-index-hash 0))
(atom (id a0) (satisfied ?a0))
(atom (id a1) (satisfied ?a1))
(atom (id a2) (satisfied ?a2))
(atom (id a3) (satisfied ?a3))
(atom (id a4) (satisfied ?a4))
(atom (id a5) (satisfied ?a5))
(atom (id a6) (satisfied ?a6))
(atom (id a7) (satisfied ?a7))
(subscription (atoms a7 a6 a5 a4 a3 a2 a1 a0) (connections $?user_list) (priorities

$?priorities))
(test (or (or ?a0 ?a1 ?a2 ?a3) (and ?a4 (or ?a5 ?a6 ?a7))))
=>
(assert (result (connections $?user_list) (priorities $?priorities))))

(defrule subscription1
""
(declare (salience 0) (node-index-hash 0))
(subscription (connections $?user_list) (priorities $?priorities))
(test (eq TRUE FALSE))
=>
(assert (result (connections $?user_list) (priorities $?priorities))))

 69

rules are created, for each priority level one. The atom-sets or higher priority (lower
integer) is a sub-set of the atom-set of a lower priority (higher integer). So a higher
priority subscription rule is more restrictive than lower priority subscription rules.

Listing 7-5: Subscription facts and rules for platoon leader with offensive task when bandwidth =
195.6 kbs

7.3.2.3 Concluding remarks
In Listing 7-4, the bandwidth is high, only two subscriptions are created: subscription0
with priority 0 for the subscriber, and subscription1 with priority 1. However
subscription0 will select all the hostile, friendly and neutral units, while subscription1
will select no units at all. So all units will be selected with priority 0.

(subscription (id 2) (atoms a6 a5 a4 a3 a0) (connections tcpipconn243932837794985469)
(priorities 0) (form_id subscription.xml))

(subscription (id 3) (atoms a7 a6 a5 a4 a3 a0) (connections
tcpipconn243932837794985469) (priorities 1) (form_id subscription.xml))

(subscription (id 4) (atoms a7 a6 a5 a4 a3 a2 a1 a0) (connections
tcpipconn243932837794985469) (priorities 2) (form_id subscription.xml))

(defrule subscription4
""
(declare (salience 0) (node-index-hash 0))
(atom (id a0) (satisfied ?a0))
(atom (id a1) (satisfied ?a1))
(atom (id a2) (satisfied ?a2))
(atom (id a3) (satisfied ?a3))
(atom (id a4) (satisfied ?a4))
(atom (id a5) (satisfied ?a5))
(atom (id a6) (satisfied ?a6))
(atom (id a7) (satisfied ?a7))
(subscription (atoms a6 a5 a4 a3 a2 a1 a0) (connections $?user_list) (priorities

$?priorities))
(test (or (or ?a0 ?a1 ?a2 ?a3) (and ?a4 (or ?a5 ?a6 ?a7))))
=>
(assert (result (connections $?user_list) (priorities $?priorities))))

(defrule subscription3
""
(declare (salience 0) (node-index-hash 0))
(atom (id a0) (satisfied ?a0))
(atom (id a3) (satisfied ?a3))
(atom (id a4) (satisfied ?a4))
(atom (id a5) (satisfied ?a5))
(atom (id a6) (satisfied ?a6))
(atom (id a7) (satisfied ?a7))
(subscription (atoms a7 a6 a5 a4 a3 a0) (connections $?user_list) (priorities

$?priorities))
(test (or (or ?a0 ?a3) (and ?a4 (or ?a5 ?a6 ?a7))))
=>
(assert (result (connections $?user_list) (priorities $?priorities))))

(defrule subscription2
""
(declare (salience 0) (node-index-hash 0))
(atom (id a0) (satisfied ?a0))
(atom (id a3) (satisfied ?a3))
(atom (id a4) (satisfied ?a4))
(atom (id a5) (satisfied ?a5))
(atom (id a6) (satisfied ?a6))
(subscription (atoms a6 a5 a4 a3 a0) (connections $?user_list) (priorities

$?priorities))
(test (or (or ?a0 ?a3) (and ?a4 (or ?a5 ?a6))))
=>
(assert (result (connections $?user list) (priorities $?priorities))))

 70

In the second case, with low bandwidth, three new subscriptions apply for the same
subscriber: subscription2, subscription3, and subscription4 with priorities 0, 1, and 2
respectively. In this case the subscriptions select different events with different priorities.

The hypothesis was right: with different bandwidth values the prioritization of events is
also different. The number of possible priorities for high bandwidth and low bandwidth
values are 1 respectively 3. So in the case of low bandwidth events with low relevance
are deliberately delayed. We can conclude that the adaptation works and so the
implementation of the subscription algorithms works for network awareness.

7.3.3 Location awareness
A mentioned earlier we distinguish data-independant and data-dependant context
awareness. In this simulation we will test the data-dependant context awareness of the
agent.

7.3.3.1 Goal and setting
In this simulation round we will demonstrate the location awareness of the agent. Two
clients connect to the server. Client A submits the subscription file listed in Listing 7-6
and the relevance vector (1 0.3 0.3 0.8 1 1 1 0.9 0.5). Only units within the
distance of 150 from the user will be forwarded to client A.

Listing 7-6: Location aware subscription

Client B is only started to generate UForms. The UForms generated are clustered in two
groups. Client A will move from the center of one cluster of UForms to the center of the
other cluster of UForms.

<SUBSCRIPTION filename="test2.xml">
<LOGICAL_OPERATOR value="OR">

<LOGICAL_OPERATOR value="OR">
<ATOM name="type" operator="=" value="document"/>
<ATOM name="type" operator="=" value="time"/>
<ATOM name="type" operator="=" value="overlay"/>
<ATOM name="type" operator="=" value="chat.message"/>

</LOGICAL_OPERATOR>
<LOGICAL_OPERATOR value="AND">

<ATOM name="type" operator="=" value="unit"/>
<ATOM name="distance" operator="<=" value="150">

<PARAMETER name="user" properties="username=user1"/>
<PARAMETER name="this" properties=""/>

</ATOM>
<LOGICAL_OPERATOR value="OR">

<ATOM name="affiliation" operator="=" value="H"/>
<ATOM name="affiliation" operator="=" value="F"/>
<ATOM name="affiliation" operator="=" value="N"/>

</LOGICAL_OPERATOR>
</LOGICAL_OPERATOR>

</LOGICAL_OPERATOR>
</SUBSCRIPTION>

 71

7.3.3.2 Hypothesis and results
Because of the limited distance client A witnesses, we expect that it can only see all the
UForms of one cluster at once. When client A is close to one cluster it will only see the
UForms of that cluster and will not see the other UForms.

All the UForms generated by client B are shown in Figure 7-4 at the left side. Client A
starts at position (0, 0) and after a while moves to (-100, 150). The results of the data
distribution are shown in the middle and right side pictures of Figure 7-4. At the first
position client A sees the four UForms of cluster A and none of cluster B. At the second
position the situation is the other way around: client A sees all three UForms of cluster B
and none of cluster A.

Figure 7-4: Results of second simulation, with all the generated units by client B (left), the unit
received by client A at (0, 0) (middle), and the units received by client A at (-100,150)

7.3.3.3 Concluding remarks
The effect of the location-aware subscription of client A is clear. It only sees the UForms
of one cluster at a time. The data-dependant adaptation is thus successful for location
awareness.

 72

8 EVALUATION
In this chapter we will evaluate the data distribution agent. This will give us insight in the
computational performance of the agent. In the first section we will take a look at our
experimental results and in the second section we will analyze the algorithm further.

8.1 Measurements
To test the performance of the data distribution agent experimentally we have performed
a set of measurements. The first measurements concern the overhead of the agent, the
second the scalability of the agent, and the last measurements are about the performance
gain of the use of the agent.

8.1.1 Overhead
We have measured the overhead of the selective event replication with use of the agent
compared to the event replication without selection. In this measurement, we recorded the
time used for events to be distributed among 10 other clients. We are interested in the
time increase of the replication with the increase of the number of events that are
transmitted. We calculate the overhead by subtracting the time lapses of data distribution
with and without agent and divide this by the time of data distribution without agent. See
Equation 8-1.

%100/)(×−= nalunconditionalunconditiolconditiona TTToverhead Equation 8-1

The results of these measurements are shown in Figure 8-1. We see that most
measurements fluctuate between 0.5 % and 3.5 %, with an average of approximately
1.5%. We can conclude that the data distribution agent scales well with an increasing
number of events. The data distribution agent does not result in an increasing overhead.

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of events

O
ve

rh
ea

d
%

Figure 8-1: overhead of data distribution agent

An average overhead of just 1.5 % is very satisfactory. It means that the event selection
algorithm does not impose a lot of extra execution time for the distribution of data. We

 73

can also conclude that the overhead does not increase with the number of events. So the
algorithm scales well for an increasing number of events.

8.1.2 Scalability
In order to assess the scalability of the data distribution agent the next set of
measurements we are interested in the increase of time with an increasing number of
users. The time recorded is between the moment an event is sent and the moment all
users received the event. To show that the scalability can be further improved with an
increasing number of servers the measurement is performed for a network with one, two
and three servers that connect the users. The users are evenly distributed among the
servers. The results are shown in Figure 8-2.

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

number of users

tim
e

(m
s)

One server

Tw o servers

Three servers

Figure 8-2: Scalability of data distribution agent

We can clearly see that all three graphs are linear, though the slope decreases with an
increasing number of servers in the network. The graphs show us that for less than 25
users two servers are preferred and for more than 25 users a configuration of three servers
performs better. It is to be expected that for a high number of servers the graph will be
almost flat. This means the increase of users does not influence the time when we use
many servers. Because of the linearity of the scalability graphs we can conclude that the
data distribution agent scales well to an increasing number of users.

8.1.3 Performance gain
The last set of tests measure the performance gain of the data distribution agent compared
to a system that does not use the agent. Since the agent avoids redundant replication of
events computational time is saved. The aim of this test is the demonstration of this
effect. We take a certain amount of events and increase the percentage of events that is
selected. The time measured starts when the publisher sends the first event and ends
when the subscriber receives the last selected event. The order in which events are sent is
random, but obviously we have best and worst case. The best case is that all events to be
selected are send first. The worst case is the situation when the last event sent is to be
selected. If we are using a system without using the data distribution agent, all updates
will have the same priority and thus be constant in this graph, this is shown by the

 74

horizontal line. The time measured for distribution with this system starts when the first
data item is sent and ends when the last data item arrives.

The results of the measurements are shown in Figure 8-3. In a normal situation the
distribution time will be somewhere between the best case and the worst case. The
distribution time increases linearly with increasing percentage of selected events. When
less than 90% of the events are selected the use of the data distribution agent is
beneficial.

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100
 % selected data items

tim
e

(m
s)

Worst case
Best case
unconditional

Figure 8-3: Performance gain of data distribution agent

It is to be expected that in normal situations the percentage of selected events will be
between 30% and 60%, so a considerate amount of time will be gained with the use of the
agent. We can conclude that the use of the event selection algorithm saves a lot of
execution time and so the use of it is beneficial.

8.2 Analysis
In this section a probabilistic model is presented of the algorithms discussed in 4.2. This
probabilistic model is used to analyze the benefit of grouping of subscribers.

8.2.1 Probabilistic model
Suppose NA atoms are defined for a form function in the rule-base. Since each atom may
of may not appear in a subscription rule the maximum number of subscriptions for the
form function will be given by:

AN
SN 2= Equation 8-2

This is the theoretical maximum of subscriptions; however the real maximum will be
much lower because many possible subscription rules are not useful. Lets denote NE as
the number of subscriptions that already exist for the form function. Every time a user
sets up its subscription rule, there are two possibilities:

1. The subscription rule already exists with a the probability of P1 = NE/NS,
2. The subscription rule does not exist with a probability of P2 = (NS-NE)/NS

 75

In the second case a new subscription is created and so the NE is incremented. Over time
NE will increase and consequently P1 will increase and P2 will decrease. Eventually NE
will reach its maximum NS. The increase of NE is depicted in Figure 8-4.

Figure 8-4: Increase of number of subscriptions

The execution time of the event selection algorithm depends on the number of
subscription rules. Lets assume that each rule takes a constant amount of time, k ms. With
use of grouping of subscribers as discussed in 6.1.2, the execution time will be k⋅NE,
because we have NE rules. However without use of the grouping of subscribers a rule will
exist for each subscriber. In this case, with Nsubscribers as the number of subscribers, the
execution time will be k⋅ Nsubscribers. The comparison is demonstrated in Figure 8-5.

Figure 8-5: Execution time with and without grouping of subscribers

8.2.2 Complexity
The complexity of the algorithms is expressed with the number of rules in the rule-base
that are evaluated. First we take a look at the complexity of the subscription algorithm
and than we discuss the complexity of the event selection algorithm.

Determining the complexity of the subscription algorithm comes down to a summation of
the complexities of the following tasks: determining context value, lookup of priorities in
priority matrix, and rule creation. The complexity first task depends on the number of
environmental variables M. For each variable a rule has to determine the classified value
of the variable. One rule is needed to map all outputs of the awareness modules to a
single context value. The number of atoms in a form function determines the complexity
of second task. For each atom the priority is looked up in the priority matrix. Since a rule
is setup for each priority, the complexity of the last task depends on the number of
priorities. The total complexity of the subscription algorithm is thus given by:

)1(+++Ο prioritiesatoms NNM Equation 8-3

NE = NS

Number of subscribers

NE

Execution time k⋅Nsubscribers

k⋅NE

k⋅NS

Nsubscribers

 76

,with Natoms as the average number of atoms for a form function and Npriorities as the
number of priorities.
The complexity of the event selection algorithm is easily deducted. When an event
notification arrives at the server the agent has to match all the atoms with all the event
attributes. When Natoms is the total number of atoms defined in the rule-base, and Nattributes
is the average number of event attributes, the complexity of the atom matching is given
by Equation 8-4.

)(attributesatoms NN ⋅Ο Equation 8-4

Next the subscription rules have to be evaluated. In the previous subsection we stated the
execution time of the subscriptions per form function as k⋅NE. Lets denote the number of
form functions in the rule-base as Nff. Consequently, the total complexity of the event
selection algorithm is:

)(ffEattributesatoms NNNN ⋅+⋅Ο Equation 8-5

Since all the parameters in the parameters in Equation 8-5 are limited by the number of
facts asserted in the rule-base the complexity of the event selection algorithm will grow
with the size of the fact-base.

 77

9 FUTURE WORK
In this chapter we take a look at useful improvements of the current data distributed
agent. The four topics of future work covered in this chapter are fidelity, semantic
routing, location aware state merge, and improvement of context-awareness.

9.1 Fidelity
In the introduction of this paper the three dimensions of adaptive data distribution are
mentioned. The agent design presented in the previous chapter mainly focused on
relevance and timeliness of data distribution. Fidelity is the dimension that is not really
covered by the agent.

Integrating a method to also select the level of detail of data in the agent would be a real
improvement. When the events are structured as XML the depth of the tree structure will
indicate the level of detail. Consequently, the events can be adapted to the wishes of each
subscriber. This will reduce unnecessary network traffic even further.

An example of the benefit of adapting event based on fidelity is commanders of different
rank that want to receive events in different detail. A team leader wants to see the
location of all the men in his team and a higher rank officer wants to see the locations of
teams instead of men.

9.2 Semantic routing
To take advantage of the fact that each server in the network has defined a relevance
vector, see 7.1.1, the relevance vectors should adapt to the local data demand. In the
current implementation the relevance vector of a server is predefined in an XML file.
However, the relevance vectors of the subscribers connected to a server determine the
kind of data the server should receive. By adapting the relevance vector of a server the
routing of data will be based on local needs. This is called semantic routing

A straightforward approach to semantic routing will be that each server calculates the
average of the relevance vectors of the connected subscribers and send this to all the
neighboring servers. To express the different ranks of the subscribers a weighted average
may be more suitable.

Because semantic routing also generates network traffic, the sending of the adapted
relevance vector, it should only be adopted if it decreases the overall network traffic. In
other words the updating of the relevance vectors should be worth the saved redundant
data sending.

9.3 Location aware state merge
When a user moves around his relative location towards other object will change.
Because of his new location past events that did not match his subscription may now be
selected. A refresh of the user’s local repository is needed every time his location
changes. In the current implementation refreshing the repository is preformed as

 78

described in 7.1.2. However this is a time-consuming method since all the events have to
be checked. A state merge method that takes location awareness into account should be
designed.

The trick is to only refresh the events that are selected for the new location. A possible
solution is to structure the events in a location-based graph, where each node represents
an event and edges exist between the directly neighboring events. We take the new
location of the user and start the refresh method with the nearest nodes in the graph.
When an event is selected the events of the neighboring nodes are checked. The refresh
method stops at a node that is not selected.

9.4 Improve context-awareness
The current implementation focuses on network and location awareness. Another form of
awareness that will be useful is client awareness. For example, the data distributed could
be adapted to the battery power of clients. Or the agent may adapt the fidelity of events
based on the display of the device: there is no need to send 3D graphical information
when the client only displays the data in 2D.

9.5 Learning relevance vectors
The users have to define relevance vectors themselves in the current agent. However, by
observing user actions the system can be enhanced by a learning mechanism that
automatically creates relevance vectors that are representative for the users. The user
actions reveal information about the user interests. This information can be feed back to
the agent that adapts the relevance vector to this information.

In [22] such an approach is described for users that browse the World Wide Web. The
links they choose and the information they read tells the agent about the interests of the
user. The same could be applies to the data distribution agent. This method could be
additive to the user-defined relevance vector to obtain more accurate adaptation.

 79

10 CONCLUSION
In the introduction of this thesis we described context-aware data distribution and
pervasive computing. We stated that the three dimensions of data adaptation are
relevance, fidelity, and timeliness. We set the requirements and discussed the challenges
of this research. Three important, contradicting requirements were efficiency,
expressiveness, and scalability of the data distribution agent. The contributions
mentioned were the context-awareness of the data distribution, the expressiveness of the
subscriptions, and the prioritization of the distribution. These are all topics that we will
review in this chapter.

The agent design we have described in this thesis uses two main algorithms: one for
subscription and adaptation, and one for event selection for subscribers. The first
algorithm sets up user profiles based on information supplied by the user and contextual
information. The second one uses the user profiles to make decisions for data
distributions. Instead of boolean decisions the agent maps events per subscriber to
priorities. The events are sent in order of priority.

A rule-based approach is used for the data distribution. The subscriptions are saved as
rules that are evaluated when event facts are asserted to the fact-base. The rules are
adapted according to the changes in the environment of the subscriber.

In the remainder of this chapter we will discuss the issues stated in the introduction and
assess to what extend we have succeeded. The issues covered are in order of appearance:
the dimensions of data adaptation, the requirements, and the contributions.

10.1 Relevance, timeliness, and fidelity
When we look back at the three dimensions of data distribution adaptation, see Figure
1-2, mentioned in the introduction, we can conclude that the agent presented in this paper
operates in the relevance-timeliness plane. The relevance vectors explicitly express the
relevance of data. The values of the vector represent the importance of each condition in
the subscription, so the agent is able to adapt the subscription, and thus the selection of
data, according to the environmental state of the client. The agent addresses timeliness
issues by means of prioritizing events. Time critical events will be assigned a high
priority and the events without time constraints may be delayed until network traffic
decreases. Fidelity is not explicitly supported. However, when data of different levels of
detail are sent in separate events, subscriptions that select different levels of detail can be
defined.

10.2 Expressiveness and scalability
The focus of the agent is expressiveness and scalability, and less focus on performance.
To achieve an expressive subscription language the agent approaches the event selection
in a rule-based manner. An expert system is embedded and rules are constructed that
represent the subscriptions. Consequently the subscription language supports conjunctive,
disjunctive and negative conditions.

 80

Looking at the results of the measurements in 8.1 we can conclude that the system is
scalable for an increasing number of events as well as for an increasing number of
subscribers. The small overhead in Figure 8-1 and the linearity of the graphs in Figure
8-2 support this conclusion.

10.3 Context-aware data distribution
We stated that in order to support mobility in networking adaptive data distribution in a
prerequisite. The reason for this is to avoid unnecessary network traffic. A means of
processing context awareness information is therefore needed.

Algorithms are presented in this paper that adapt dynamically to the environment of the
users. The algorithms offer a framework to integrate different forms of context awareness
based on data dependency. The distinction of data dependency is necessary to process
data independent awareness separate from the event selection. This makes the grouping
of subscribers possible and will result in a more efficient event selection.

This research has focused on two forms of context awareness: network awareness and
location awareness. Both represent a different class of awareness, namely data-
independent and data dependent awareness respectively. The network awareness aims at
adaptation to the availability of data and location awareness at the usability of data.
Together these forms of awareness result in a highly dynamic data distribution agent.

10.4 Prioritized replication
Instead of boolean decisions for data distribution this paper suggests the option of
prioritized decisions. The priorities offer a more flexible way of distribution. Information
is classified by importance instead of merely selected or not selected. This makes delays
of unimportant information possible.

The benefit of prioritized data replication is evident for mobile clients. When network
conditions are low the agent focuses only on important data and waits with sending
unimportant data until network conditions improve. In this way mobile clients are still
able to receive background information, though delayed.

 81

11 REFERENCES
[1] B. van der Poel, Y. Tan, A.M. Krebs, I. Marsic, “Prioritized Replication With
Dynamic Selection For Mobile Environments,” Submitted for publication, 2002.
[2] M. K. Aguilera, R.E. Storm, D.C. Sturman, M. Astley, T. Chandra, “Matching
events in a content-based subscription system,” Proc. 18th ACM Symp. Principles of
Distributing Computing (PODC), 1999.
[3] A. Carzaniga, D.S. Rosemblum, A.L. Wolf, “Achieving scalability and
expressiveness in an internet-scale event notification service,” Proc. 19th ACM Symp.
Principles of Distributing Computing (PODC), 2000.
[4] J. Gough, G. Smith, “Efficient recognition of events in a distributed system,”
Proc. ACSC-18, 1995.
[5] B. Segall, D. Arnold, “Elvin has left the building: A publish/subscribe
notification service with quenching,” Proc. Australian UNIX and Open Systems User
Group Conference, 1997.
[6] S. Brandt, A. Kristensen, “Web push as an Internet notification service,” Proc.
W3C Workshop on Push Technology, 1997.
[7] A. Campailla, S. Chaki, E. Clarke, S. Jha, H. Veith, “Efficient filtering in publish-
subscribe systems using binary decision diagrams,” Proc. Int’l Conf. Software
Engineering (ICSE), Toronto, Canada, 2001.
[8] M. Ionescu, I. Marsic, “A stateful approach for publish-subscribe systems in
mobile environments,” Submitted for publication, 2001.
[9] T.P. Moran, P. Dourish, “Context –Aware Computing,” Special Issue of Human-
Computer Interaction, Volume 16, 2001.
[10] G. Cugole, E. di Nitto, “Using a publish/subscribe middleware to support
computing,” IFIP/ACM Middleware 2001 Conference, 2001.
[11] Y. Huang, H. Garcia-Molina, “Publish/subscribe in a mobile environment,” Proc.
2nd ACM Int’l Workshop on Data Engineering for Wireless and Mobile Access (MobiDe
'01), 2001.
[12] C. O’Ryan, D.C. Smith, J.R. Noseworthy, “Patterns and performance of a
CORBA Event Service for Large-scale Distributed Interactive Simulations,”
International Journal of Computer Systems Science and Engineering, CRL Publishing,
2001.
[13] G.D. Abowd, “Software Engineering Issues for Ubiquitous Computing,” In
proceedings of ICSE'99, 1999.
[14] J. Anhalt, A.Smailagic, D.P. Siewiorek, F. Gemperle, D. Salber, S. Weber, J.
Beck, J. Jennings, “Toward Context-Aware Computing: Experiences and Lessons,” IEEE
Intelligent Systems, 2001.
[15] H.A. Jacobsen, “Middleware Services for Selective and Location-based
Information Dissemination in Mobile Wireless Networks,” IFIP/ACM Middleware 2001
Conference, 2001.

 82

[16] L. Capra, W. Emmerich, C. Mascolo, “Middleware for Mobile Computing:
Awareness vs. Transparancy,” Online at: http://www.cs.ucl.ac.uk/staff/l.capra/hotos.pdf
[17] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, K.R. Walker,
“Agile Application-Aware Adaptation for Mobility,” Proceedings of the 16th ACM
Symposium on Operating System Principles, 1997.
[18] E. Friedman-Hill, “JESS: The Java expert system shell,” Sandia National
Laboratories, Livermore, CA. Online at: http://herzberg1.ca.sandia.gov/jess/
[19] I. Marsic, “Adaptive Collaboration for Wired and Wireless Platforms,” IEEE
Internet Computing, Vol.5, No.4, pp.26-35, July/August 2001.
[20] D. Lopez de Ipina, E. Katsiri, “An ECA Rule-Matching Service for Simpler
Development of Reactive Applications,” IEEE Distributed Systems Online, Vol. 2 , No.
7, 2001.
[21] K. Geihs, “Middleware Challenges Ahead,” IEEE Computer, Vol. 34, No. 6, June
2001.
[22] J. Goecks, J. Shavlik, “Learning Users’ Interests by Unobtrusively Observing
Their Normal Behavoir,” Proceedings of the 2000 International Conference on
Intelligent User Interfaces, pp. 129-132, 2000.
[23] T. Kindberg, J. Barton, “A Web-based Nomadic Computing System," Computer
Networks, Elsevier, vol 35, no. 4, pp. 443-456, March 2001.
[24] N. Davies, H.W. Gellersen, “Beyond Prototypes: Challenges in Deploying
Ubiquitous Systems,” IEEE Pervasive Computing, Vol. 1, No. 1, 2002.
[25] Z. Lei, N.D. Georganas, “Context-based Media Adaptation in Pervasive
Computing,” Canadian Conference on Electrical and Computer Engineering, Vol. 2,
2001.
[26] I. Benyahia, M. Hilali, “An Adaptive Framework for Distributed Complex
Applications Development,” Proceedings of 34th International Conference on
Technology of Object-Oriented Languages and Systems, pag. 339-349, 2000.

 83

APPENDIX A: PUBLICATION FOR HICCS 36 CONFERENCE

Prioritized Replication With Dynamic Selection For
Mobile Environments

Bart van der Poel*†, Yingzhen Tan†, Allan Meng Krebs†, and Ivan Marsic†

 †Center for Advanced Information

Processing (CAIP)
Rutgers — The State University of New

Jersey
Piscataway, NJ 08854-8058 USA

+1 732 445 4208

*Delft University of Technology
Zuidplantsoen 4

2628 BZ, Delft, The Netherlands
+31 15 278 7504

{bart, krebs, marsic}@caip.rutgers.edu, tan@paul.rutgers.edu

Abstract
The proliferation of small mobile devices and wireless networks has resulted in an increasing demand to
support the applications found in wired environments on mobile wireless devices. In real-time replication
systems, such as collaborative systems, this trend gives some new problems to address. The properties of
wireless networks are low bandwidth and high latency, which change dynamically over time. The risk of the
network getting congested is therefore high with the result that the user will not receive the important
information in time. Consequently there is a need to develop algorithms and methods for adaptive data
distribution, to get the relevant data to the user at the right time, with the right fidelity. This paper presents
an algorithm and methods for intelligent data distribution for both publish/subscribe and peer-to-peer
systems using dynamic selection rules. The generation of the selection rules is based on the status of the
computing and communication resources. The rules enable prioritizing of the data being delivered to the
clients. By sending data in order of priority, important data is sent immediately and unimportant data is sent
when conditions improve. An example system was implemented using an expert system as a decision maker
supporting both the publish/subscribe model between clients and server and the peer-to-peer model among
multiple servers. The decision maker in the example system adapts to the available bandwidth. The
evaluation of the example system shows satisfactory scalability of the algorithm.

Keywords: Mobile computing, data replication, rule-based systems.

 84

1 INTRODUCTION
Currently networks are increasingly supporting mobility. Wireless networks make the replication of data
objects in nodes more complex, because the accessibility of the mobile nodes depends on the environment
it is in. Dynamic properties, such as bandwidth and position, influence the way data is distributed to mobile
clients. With low bandwidth a user may want to receive only high priority information, while he is also
interested in background information should the available bandwidth increase. Therefore, to support mobile
clients, a context aware replication algorithm is needed.
Important dimensions of data adaptation are relevance, fidelity, and timeliness (see Figure 1), where: (i)
relevance is determined by user’s interests and priorities; (ii) fidelity is dictated by computing platform’s
capabilities; and (iii) timeliness is determined by the requirements of the task.

The user provides the relevance information to state his interests, the device and the application determine
the fidelity of the data, and timeliness issues time constraints to data delivery, set by the requirements of the
tasks. Evaluation of data with respect to the three dimensions results in a priority. This priority represents
the relevance of data to the user in a certain environmental state. The more relevant data is, the higher its
priority will be, and the more certain it is to be sent. With different priorities for levels of details we can
select at what level of detail data should be sent. Sorting data by priority before sending addresses the
timeliness: high priority data is sent immediately and low priority data is sent later when network
conditions improve.
An example application in the real world could be a military application for situational awareness on the

battlefield. Commanders, equipped with wireless communication devices, have to base their decisions on
the received data about friendly and hostile units. The amount of data they are able to receive is limited by
the bandwidth. The relevance of data will be different for each commander based on his task, and the
fidelity of data depends on the level of command. For example, a squad or platoon leader with an offensive
task wants to be informed of the positions of the men in his unit and targets in the nearby area. A higher-
level commander would be more interested in receiving information about positions of units than of men.
The timeliness of information about tanks will be more important to commanders than the timeliness of
information about infantry, because tanks can move faster.
We present a prioritized replication algorithm with dynamic selection. The criteria used for selection
depend on the environmental variables, and is therefore dynamic. When these variables change the
selection criteria have to adapt to the situation. As we mentioned above, this is motivated by the increasing
mobility of network nodes.
Other algorithms replicate data based on a Boolean selection; instead our approach uses priorities, returned
by the selection criteria, to replicate data. The benefit of this approach is that data is sent in order of
importance to the receiver. Sending of less relevant data may be postponed until conditions improve.
We applied our prioritized replication algorithm on a publish/subscribe system with distributed servers. The
servers replicate data to each other using a peer-to-peer epidemic algorithm. In an epidemic algorithm each
peer propagates data it receives.

fidelity

timeliness

relevance

Figure 0-1: Dimensions of data adaptation for quality of service
(QoS).

 85

The next section of this paper reviews the related research. We continue with describing the selective and
prioritized replication algorithm. The fourth section presents our algorithm and serves as an example
application. Then we evaluate the performance of the implemented system by discussing the result of
measurements we performed. Finally, we conclude the paper and discuss the future work.

2 RELATED WORK
First we discuss similar research in publish/subscribe systems that focus on the selection algorithm. Next
related peer-to-peer systems are discussed. The discussion of peer-to-peer systems is more concerned with
the replication algorithm. We conclude this section by comparing our system with the other systems
mentioned here.

2.1 Publish/Subscribe
Publish/Subscribe systems can roughly be divided in two groups: subject-based systems and content-based
systems. The systems select notifications for subscribers by subject respectively by content. This research
is focusing on the content-based systems. Selection in these systems is more flexible and more precise,
because subscribers can apply many-dimensional criteria instead of choosing between pre-defined groups.
The best-known content-based systems are GRYPHON [1], SIENA [3], ELVIN [5],[4], and KERYX [6]. The
selection algorithm for GRYPHON emphasizes efficiency and scalability. It uses matching trees, which make
its time-complexity sub-linear with the number of subscriptions. A drawback of this algorithm is the
limited expressiveness: subscriptions can only be defined with conjunctions. In [7], a similar approach is
suggested, using Binary Decision Diagrams, with a richer language for subscriptions. Expressiveness and
scalability are the main interests for the SIENA selection algorithm. For this it uses covering relations, which
are partial orderings with respect to subsumption. Though the expressiveness of subscriptions is still limited
to conjunctive patterns. ELVIN uses the most expressive of the above-mentioned algorithm. It supports first
order logic patterns, and regular expressions for selecting strings. The algorithm in the KERYX system is
expressive, but not very efficient. It uses a LISP-like filtering language.
Development of mobile devices demands Publish/Subscribe-systems not only to select messages with
content-based attributes, but also with attributes based on the client’s environment. Attributes that define
computing capabilities of devices and the quality of the connection should be considered as well. All
systems mentioned above do not support this feature. [8] Proposes a stateful approach that does take this
feature into account. The algorithm selects events with the conditions set by the user and the client state.
The conditions are compiled at runtime. However the work in [8] does not have the expressive power
comparable to the one showed in this paper and does not use priorities.

2.2 Peer-to-Peer
Systems based on the traditional peer-to-peer model [7],[18] allow direct communication and
synchronization between all participants, but exhibit scaling problems. Scaling problems exist because they
have been implemented by replicating all relevant information to every participant in the system without
any discrimination among the participants. For example, BAYOU [7] supports mobility based on the
peer-to-peer model. It allows direct any-to-any communication, but it tries to replicate the whole database
on every nodes regardless the physical condition of the nodes and the network. ORACLE [16],[7] tried to
avoid the scaling problem by using multimaster-slave model. The idea is similar to ours. The assumption is
the number of masters will be much smaller than the total number of users. Only replication among masters
is peer-to-peer. However, ORACLE’s replication algorithm is not ‘epidemic’, which means that updates can
only be propagated by the server that originates those actions. This is based on a too good assumption for
network connectivity, which is not so real in wireless environments.
Neither BAYOU nor ORACLE provides selective replication. CODA [14] provides selective replication at the
clients, but not at the replicated servers, which are traditional peers. CODA has prioritized replication, but
the idea is different to ours. Their prioritized replication means the system has two replication schemas:
first-class and second-class. The first-class schema is for replication among servers and the second-class
schema is for replication between clients and servers. The whole algorithm is static, when to use which
schema is determined at the system start-up time. Because in CODA architecture, servers are connected, the
first class replication always assumes a good bandwidth and connectivity. Disconnected operations and

 86

algorithms are only considered in the client-server replication. No priority is considered, however, within
the disconnected operation algorithm.
Though some other systems (FICUS [17], RUMOR [11]) have peer-to-peer replication and selective
replication features like CODA, some system like Lotus Notes [15] even allow the user to define certain
rules for replica selection. None of them provide prioritized replication with dynamic selection, based on
network awareness.

2.3 Comparison
In contrast with these systems, the selection algorithm in our work results into priorities, based on current
network conditions. These priorities are used for the replication of messages. The advantage of a prioritized
approach is that less relevant messages can still be sent when the network is idle. Instead, all systems
mentioned above make boolean decisions about whether a message has to be replicated. If a message is not
sent because of current conditions, it will never be sent, even when the network conditions improve.

3 SELECTED AND PRIORITIZED REPLICATION

3.1 General Framework
 A design of a prioritized algorithm with dynamic selection is composed of several major components. The
components and their interrelationship shown in Figure 2 is a generalized picture of how such replication
algorithms work. This figure gives a big picture of the process flow after a database-updated event is
triggered and how different components interact with each other. A replication algorithm does not
necessarily implement all components. In fact, most do not. However, if algorithms follow a well-defined
interface standard when programmers developing components, then later another third party or custom
made component can be plugged in to enhance the algorithm functionality. All currently existing
algorithms can be categorized into four classes, dependent on the components implemented and their
functionality.
1: Pure Replication
Pure replication algorithms implement the replication component only. After a database-updated event is
triggered, the algorithm replicates the updates to the clients immediately, without any selection or priority
taken into consideration. The replication component may use publish/subscribe communication model,
peer-to-peer model or both. In essence, pure replication algorithms do not have selective replication at all.
2: Conditional Replication
One step further than pure replication algorithms is to implement a decision-making component with fixed
conditions in addition to the replication module. After a database-updated event is triggered, the algorithm
first decides whether or not this update should be propagated to the clients and if so, it sets the priority of
this update. Then based on the final decision, the replication component will ignore the update, propagate it
immediately, or postpone the propagation to a certain time.
3: Rule-Based Replication
Adding rules to the conditional replication algorithm enhances it further compared to the basic conditional
replication algorithms. A typical algorithm provides default conditions for decision-making. In addition, it

Database
Updated

Decision Making

Replication

Context awareness
and Predicting

Environment

Rules

Figure 0-2: Framework for selective replication.

 87

also allows users to set up the rules themselves. Hence, the decision-making module will receive a rule file
as an input, and make decisions based on this rule file the user has provided. Most existing selective
replication algorithms fall into this category. Users are provided the opportunity to write a rule file telling
the algorithm what kind of data they want to have replicated. The rule file is maintained in the users home
server and can be retrieved by other servers before a replication if required. Rule-based replication
algorithms are more flexible than the simple conditional replication algorithms in the sense that users can
control the replication process at their own will.
4: Dynamic Rule-Based Replication
Although rule-based replication algorithms provide the users nice control over the replication, they still
have drawbacks. Because the only input for the decision-making module is the rule file defined by users
when they connect in, decisions cannot be made according to the dynamic environmental state. It is
important, however, to make different decisions in different states. For example, a user may want some
background information to be sent when the network bandwidth is good, but may like to conserve the
bandwidth for more important information if connectivity is poor. Thus, we need another input besides the
static rule file to reflect the dynamic changing network. Adding another component for environment
awareness and prediction does this. This component collects the real time information about the
environment (e.g. available network bandwidth and latency, context and location) and provides it to the
decision-making module.
This paper presents a dynamic rule-based replication algorithm. All modules of figure 2 are included in our
algorithm.

3.2 Decision Making
For the decision-making module of our algorithm, two parts are distinguished: the subscribing part and the
selection part. The first part establishes a connection and sets up the subscription for the connection. The
selection part handles incoming data objects and distributes it to the subscribed connections.

First we describe how clients subscribe to the server. At the server side a set Φ of atoms is defined of all the
atoms that may appear in a subscription. Each atom is a tuple φ = (nameφ, operatorφ, valueφ), and a
subscription is a logical expression of these atoms. When the subscription language supports not only
expressions in conjunctive form, but also allow disjunctive logical connectives, the subscription should also
describe the form of the logical expression the atoms should be interpreted in. For example the atoms in
Table 1 could be of the form: (φ0 OR φ1) AND φ2. We define a form function Γ, as the application of the
form to a set of atoms, so Γ(Φ) is the total subscription of all atoms.

Table 2: Example of ΦΦΦΦ.
Id Name Operator Value
φ0 company = IBM
φ1 company = DELL
φ2 price ≤ 100

The state diagram in Figure 3 shows the process of subscription. Each connection subscribing to the server
will follow these states. The process is context aware; it monitors environmental variables and adapts
subscriptions accordingly.
For establishing a connection the connecting party has to send a relevance vector r. The relevance vector
for a connection specifies how the subscription should be interpreted under different environmental
conditions. Each element in the vector, r(φ), assigns the importance of each atom in Φ for a connection.
The possible values for r(φ) should be in the discrete set ρ. The relevance values for the atoms are used
further in the process when we determine the priority values.
The second step is to measure or predict environmental variables. This information makes the method
context aware. If we use M different environmental variables the state of the connection is defined in a M-
dimensional context space, called C. This space maps the M-dimensional state to a context value c. The
context value should be an element of the discrete set χ of all possible context values, so c∈χ. The context
of the connection should be monitored all the time. When a change in the environment state is registered,

 88

the context the subscription is based on is invalid, and the subscription has to be updated. Now we know
the relevance values for each atom and the context value of the state, we can assign subscriptions. For each
priority value, a subscription is defined for each connection. So when N different priority levels are
considered, we have N subscriptions for each connection, associated with the corresponding priority. Let π
be the discrete set of possible priority values. A priority matrix P is used to assign the priority to each atom
in Φ. The rows of the matrix represent the elements of χ, and the columns the elements of ρ. Each entry in
the matrix is the priority p∈π, for the particular state and relevance value. The N prioritized subscriptions
can now be generated by first determining the set of atoms for each priority level, and then apply Γ to the
set. The set of atoms for priority level p and its prioritized subscription are given by the following two
functions:

})),(({)(pcrPcp
sub ≥=Φ φφ (1)

))(()(ccs p
subp ΦΓ= (2)

Atoms that are used in the subscription with a higher priority are also used in the subscriptions with a lower
priority, so the latter is less restrictive.
Table 3: example of priority matrix, with N=3.
 Relevance value r(φφφφ)
 LOW MEDIUM HIGH

LOW LOW MEDIUM HIGH
MEDIUM MEDIUM HIGH HIGH Context

value c HIGH HIGH HIGH HIGH

The assumption is made that disjunctive operators connect the atoms that differ between the prioritized
subscriptions for a connection. The reason behind this lies in the fact that conjunctive operators connect the
atoms of different attributes and should all appear in the prioritized subscriptions. It is important that this
assumption is kept because it ensures that the higher priority subscription is more restrictive. The relevance
vector should enforce this property.
The selection process is much simpler. Updates in the data collection trigger the process to decide if the
update should be replicated to other connections, which may be with peers or with clients. The
subscriptions select data for the connections, based on the contents of data objects. In this way the server
will only replicate data for the interested parties, which saves unnecessary network traffic. The contents of
data are represented by notifications. A notification is a conjunction of name value pairs α = (nameα,
valueα), that define the content of the data.
Table 4: Example of notification.
Name Value
Company IBM
Price 85

The process first matches all the atoms with the notification name-value pairs. An atom φ in a prioritized
subscription sp(c) is true for a certain notification if and only if nameα = nameφ ∧ operatorφ (valueα, valueφ)
[3]. All atoms that do not match any notification name-value pair are false. Next we see if the logical
expression of the application of Γ to the atoms results to true. If it does, we say that subscription sp(c) fires.

change in
environment

subscribed,
context invalid

subscribe

subscribed,
context aware

unsubscribed,
context aware

measure
sensors connect

connected,
unsubscribed disconnected

Update
subscription

Figure 0-3: State diagram of context aware subscription.

 89

When sp(c) fires, priority p is returned for the data object for the connection. More prioritized subscriptions
may fire for a connection; in this case the value representing the highest priority is returned. The priorities
for all users are returned as a mapping from user to priority.

3.3 Context Awareness and Prediction
The context awareness and prediction module provides dynamic environment status to the decision-making
module. This is especially important for networks that support mobility, where for example network and
location awareness influence the way data should be distributed. An important consideration in designing
context awareness for pervasive computing is that the cost of acquiring context awareness does not exceed
its utility: if not obtained efficiently, context awareness could decrease performance. Several approaches
could be used to measure or predict the network status, see for example [6]. A discussion about these
approaches goes beyond the scope of this paper.
The purpose of the context awareness module is to supply the state of the environment of a node in the
network to the decision-making module. This state is derived of sensor values that measure characteristics

of the environment. These values are the inputs to the M different awareness modules Ai that reason about
the quality of the inputs and return this quality value ai. For example, awareness module A1 may be about
network awareness and uses the inputs bandwidth and packet round trip time. The possible values for its
output may be α1={HIGH, MEDIUM, LOW}. When bandwidth is high and the variance of the round trip
time is low than the value of a1 is probably HIGH.
All the values ai are used to find the context value c that represents the current state of the environment.
This context value is found in the pre-defined M-dimensional context space C. This space maps each vector
of awareness values to a context value. So the context value is given by the following formula.

)(aCc = (3)
It should be clear that context information is independent of values in the notifications. So if location
awareness is used in the context module this means awareness of location information about the node in the
network. When notifications contain location aware information this should be handled in the subscriptions.
The reason for applying context awareness in the subscription part instead of the selection part of the
decision-making module is performance. In the selection part it is important to reduce the overhead as
much as possible, so that data distribution is efficient. By considering the context awareness during
generation of the selection rules, in the subscription part, only application of the rules is needed when data
arrives at the server. The actual adaptation of the subscription may be done when the server is idle.

3.4 Replication
The replication module is responsible for replicating data between different replicas. Depending on the
result it receives from the decision-making module, the replication algorithm may choose one of the
following actions: discard the data update, send the update immediately or send the update later. The third
action is chosen when the update has a lower priority but not low enough to ignore it. The actual
communication mechanism may vary among different systems. For example, we can use publish/subscribe
or peer-to-peer.
The peer-to-peer model does not have the single point failure problem as the publish/subscribe model does.
However, the tradeoff is that it is less scalable than the publish/subscribe model. Because temporary
disconnection may occur, each node has to maintain a list per peer to remember the updates needed to

Context value c∈χ

Sensor values

aM∈αMa2∈α2 a1∈α1
A1 A2 AM

M-dimensional context space C

Figure 0-4: Outline of context awareness module.

 90

inform that peer. To use the prioritized replication, these lists need to provide some way to support
retrieving by order of priority. Epidemic and optimistic algorithms should be used in peer-to-peer
replication in order to remove the single point failure problem and increase performance [19]. Conflict
resolution method, either provided by the system or by the user, is called during the replication when two
disconnect nodes update the same data separately and both try to propagate the updates. Disconnect
operations are needed on each node to support the ad-hoc, partitioned network environment.
The publish/subscribe communication paradigm allows suppliers of data objects and receivers thereof to
communicate asynchronously. Both publishers and subscribers do not have to know anything about the
other party. When the server receives a data object from the publisher it decides to which subscribers it will
forward the message. The decision is based on the subscriptions the possible receivers have defined. A user
subscribes to the server by sending the relevance vector. Next the server sets up the prioritized
subscriptions for the user as described above. The server updates the local data repository of the client by
sending all data that are selected by the user’s subscriptions.

4 IMPLEMENTATION
In this section we discuss how the algorithm described above is implemented in our example system. We
show how the subscription information is stored, how the decision-making agent works, and how data is
replicated.

4.1 XML Subscription
The subscription information is defined in an XML file at the server side. An example of such a file is
shown in Listing 1. The subscription is structured like a tree with logical operators as nodes and atomic
expression as leafs. The tree-structure of logical operators is the Γ function, introduced in the section about
decision-making, and the atom elements form the set Φ of atoms. Thus the total subscription file represents
Γ(Φ). This is the structure users may subscribe to by sending relevance vectors r. The size of the vector must
equal the number of atom elements in the subscription XML file. Each element in the relevance vector
describes the importance of an atom for the user. When the value of relevance vector is equal to zero the
user is not interested in the atom at all and it will not appear in the user’s prioritized subscriptions.
Listing 1: Example of the XML subscription file.
<SUBSCRIPTION>
<LOGICAL_OPERATOR value="OR">
<LOGICAL_OPERATOR value="OR">
<ATOM name="type" operator="=" value="document"/>
<ATOM name="type" operator="=" value="time"/>
<ATOM name="type" operator="=" value="overlay"/>
<ATOM name="type" operator="=" value="chat"/>

</LOGICAL_OPERATOR>
<LOGICAL_OPERATOR value="AND">
<ATOM name="type" operator="=" value="unit"/>
<LOGICAL_OPERATOR value="OR">
<ATOM name="affiliation" operator="=" value="H"/>
<ATOM name="affiliation" operator="=" value="F"/>
<ATOM name="affiliation" operator="=" value="N"/>

</LOGICAL_OPERATOR>
</LOGICAL_OPERATOR>

</LOGICAL_OPERATOR>
</SUBSCRIPTION>

Suppose we use the subscription of Listing 1, and the priority matrix of Table 2. When the context value is
low and we summit the relevance vector (H M M L H H M L), the server will setup the following
prioritized subscriptions for the user.

Table 5: Example prioritized subscriptions.
Priority Subscription
LOW type ∈ {document, time, overlay, chat} ∨ (type=unit ∧ affiliation ∈ {H, F, N})
MEDIUM type ∈ {document, time, overlay} ∨ (type=unit ∧ affiliation ∈ {H, F})
HIGH type ∈ {document} ∨ (type=unit ∧ affiliation ∈ {H})

 91

When the quality of the connection or the relevance vector changes over time the prioritized subscriptions
for the connection are adjusted to the new values.
As the users subscribe, a lot of subscriptions will overlap. For performance reasons, connections share
subscriptions. The sharing connections with according priorities are registered for each subscription. In this
way the system needs to evaluate less subscriptions.

4.2 Rule-Based Distribution Agent
A rule-based distribution agent matches incoming data objects to the prioritized subscriptions. The agent
utilizes an embedded expert system for the matching process. We use the Jess Expert system, because it is
easily integrated in the existing Java software and it uses the efficient Rete algorithm for rule matching [8].
Data objects are the input of the expert system and a mapping of connections to priorities are the output.
The subscriptions are the rules the inference engine of the expert system uses to decide to whom and with
what priorities a data object should be forwarded.
When a server is started it initiates two distribution agents: one for the clients connected to the server, and
one for the neighboring servers. We distinguish these two agents because the replication for clients and the
replication for peers are executed by two different threads. A database update triggers both agents to decide
to which connections the update has to be replicated to.

4.3 Replication Algorithm
In our example system replications among servers are done in peer-to-peer mode. Upon starting, each
server will receive configuration information from a configuration file, including the relevance value for
each condition described in the subscription file. Currently, neighbor information like neighbor server
address and port number is retrieved from server configuration file too. However, a slight modification can
make the server dynamically recognize neighbors by using multicasting messages. The server will open a
channel listening for data updates propagated to it from other servers. When an update is made on the local
repository, either by a client connected to the server or by another neighbor server, the update will be put
into dirty queues for each neighbor server and separate threads are waken up trying to propagate the update.
Those threads will ask the Jess expert system for the priority of a certain update and then decide how to
handle it. As we discussed before, the update will be discarded, sent as soon as possible or postponed to
send later. If an update should be sent later, it is moved into some secondary dirty queue based on its
priority. When all updates with high priorities are sent, updates in the secondary dirty queue will be sent if
the network connection allows it. Below is an example code for the propagation method:

Listing 2: Example code for replication algorithm.
for (int priority=0; priority<numberOfPriorities; priority++) {
 for (int i=0; i<dirtyQueue[priority].size()) {

Update update = dirtyQueue[priority].next();
//determine the uform sending priority, if it's 0 send immediately
if (priority ==0) {//initially, all dirty uforms are in priority 0 queue

int newPriority = getUFormSendingPriority(update);
if (newPriority != 0) {

dirtyQueue[priority].remove(update);
if (newPriority > 0) //-1 is no replicate

dirtyQueue[newPriority].add(update);
continue;

}
}
// compare the neighborVector with update.version,
// send if update version is later than the neighbor's
if (newerThan(update.getVersionVector(), neighborVersionVector)) {

con.send(update);
}

}
}

The interesting part is that the propagation method in listing 2 maintains an array of lists. Each list
corresponds to a dirty queue with a specific priority. Initially, all updates are in the priority 0 queue. Before
sending, this thread asks the decision-making module to decide the priority of the update and acts

 92

accordingly. Upon environmental change, the decision-making module will re-evaluate all dirty updates
again. In that case, the sending thread will get notified. The current loop will start all over to send updates
from the highest priority queue again.
The replication algorithm used in the peer-to-peer model is epidemic and optimistic. Each server will try to
propagate an update to other servers but the server that it gets the update from. There is no single point
failure problem. The tradeoff is that it may incur unnecessary network traffic. In order to reduce the
network traffic as much as possible, a global version vector is used for each server that records the updates
seen by the server as a whole and propagates updates that a neighbor server has not yet seen. The global
version vector is only updated when all updates are received from a neighbor server. Working perfectly
well in good network condition, it still cannot totally eliminate redundant traffic in poor network condition
unfortunately.
Optimistic replication algorithms apply weak-consistency restrictions and allow access to replicas and
propagate updates to other replicas in the background. By contrast, a conservative or pessimistic algorithm
does not allow multiple writers when the writers cannot directly communicate to serialize the order of
operations. Thus, an optimistic approach can greatly improve the data availability in wireless environments,
where unreliable connection and low bandwidth are common cases and somewhat stale replicas are more
acceptable by users than frequently long delays in data access. Version vectors at data item level are used to
decide update sequences and detect conflicts. Each client is assigned a priority level and he or she will
stamp the priority level on all updates he or she makes. Upon a confliction, the update with higher priority
wins. This is a default conflict resolution approach. If the user likes, he or she can also plug in a user-
defined conflict resolution method as long as the method follows the same interface. Strategy design
pattern [9] is used here so that the new conflict resolution method can be plugged in without modifying the
rest of the code.
In the publish/subscribe model the replication algorithm does not have to worry about any version vectors.
Clients connect to the server by sending a relevance vector, and all objects in the server’s repository that
are selected by a client’s subscription are replicated to its local repository. As long as the client is
connected to the server, it receives all data updates at the server that it subscribed to.
5 MEASUREMENTS
In this section we discuss the results of measurements we have taken with our algorithm. We show the
overhead the scalability and the performance gain of both the peer-to-peer model as the publish/subscribe
model.

5.1 Overhead
We have measured the overhead of prioritized replication in peer-to-peer communication model. In this
measurement, we recorded the time used for data to be transmitted from one server to another server. The
experiment is done on a LAN with two Pentium III severs. Two sets of experiments were done. First we
transmitted data without any priority decision. Then we determined the data priorities and transmitted data
according to their priorities. We can see in figure 5 that the transmission times go linearly in both cases.
The overheads for the priority decision go linearly to the number of data items we sent. The reason is clear:
since each data item needs to be assigned a priority, the more data items we want to send, the more time we
spend in the decision-making module. However, the overheads will be generally within 10% of the total
time we need. Interestingly, the overheads for the first two columns were negative. We believe this is
because the overhead in these cases is small enough to be flatted out by the measurement error under this
number of data items.

 93

Also for the publish/subscribe model the overhead is measured, see figure 6. The time measured for the
conditional and unconditional replication is the time between the moment the data items are submitted and
the time a fixed number of clients receive them. The linearity of both the conditional and the unconditional
is clear. The overhead is constant at approximately 1.5%.

5.2 Scalability
Figure 7 shows the scalability for the publish/subscribe model over an increasing number of users. We
again measure the time it takes between sending a data item and receiving it by all other users. The
measurements are done for one, two and three servers. The graphs for all three are linear, though the slope
decreases with an increasing number of servers. The graphs show us that for less than 25 users two servers
are preferred and for more than 25 users a configuration of three servers performs better. It is to be
expected that for a high number of servers the graph will be almost flat. This means the increase of users
does not influence the time when we use many servers.
In Figure 8, we measured the time used to replicate updates among servers. With the number of servers
increasing, the total time needed goes almost linearly. Figure 8 shows that the scalability of our system over
increasing number of servers is satisfactory, at least for ten servers.

In Figure 9 we measured the benefits of prioritized replication. The scenario is as follows: first we have 60
data item updates, among which an increasing percentage of the items should have high priority. The time
measured starts when we send the first data item and ends when the last high priority data item is received.
The order in which high and low priority updates are sent is random, but obviously we have best and worst
case. The best case is that all high-priority updates are in the very front and if one of them appears as the
last update, it becomes the worst case. If we are using unconditional sending, all updates will have the same
priority and send by time order, this is shown by the yellow line. The time measured for the unconditional
replication starts when the first data item is sent and ends when the last data item arrives. We can see from
the figure that if high priority updates are about less than 75%, we will have a performance gain. The
performance gain goes down dramatically when the high priority updates are under 50%.

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

number of data items

tim
e

(m
s)

conditional

unconditional

Figure 41: Overhead of conditional replication for
the peer-to-peer model.

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

number of data items

tim
e

(m
s)

conditional

unconditional

Figure 41: Overhead of conditional replication for
publish/subscribe model.

 94

The same measurements are performed for the publish/subscribe model. The results, shown in figure 10 are
comparable with the results for the peer-to-peer model. Though, the slopes of the conditional graphs are
more linear. The conditional replication algorithm performs better for situations where less than 90% of the
data items are selected.
6 CONCLUSION AND FUTURE WORK
In this paper we presented an algorithm for selective and prioritized replication with dynamic selection.
The results of the measurements show us that the algorithm is scalable and produces little overhead. The
fact that the algorithm is context aware makes it more suitable to networks with mobile nodes than
traditional methods of replication. Prioritized subscriptions extend traditional Boolean subscriptions and
give subscribers more control over the way the want to receive data.
The algorithm presented addresses all three dimensions important to data adaptation mentioned in the
introduction: relevance, fidelity, and timeliness. Relevance of data is explicitly expressed in the relevance
vector. Subscriptions may contain conditions that select certain levels of detail. The timeliness is addressed
by the sending of data in order of priority.
In our current work we focused on the network awareness. For future work we will do more research in
location awareness. Processing both geographical location of the user as well as location information in
data objects will be of interest to our work. Another part of future work will be in the expressive power of
the subscriptions in out system. Currently the subscription language supports disjunctions and conjunctions,
but other logical operators, such as negation, will be useful.

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100
% selected data items

tim
e

(m
s)

worst case
best case
unconditional

Figure 41: Performance gain of conditional
replication for peer-to-peer.

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100
 % selected data items

tim
e

(m
s)

Worst case
Best case
unconditional

Figure 41: Performance gain of conditional
replication for publish/subscribe.

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7 8 9 10

number of servers

tim
e

(m
s)

Figure 4: Scalability of peer-to-peer over
increasing number of servers.

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

number of users

tim
e

(m
s)

One server
Two servers
Three servers

Figure 41: Scalability of publish/subscribe over an
increasing number of users.

 95

7 ACKNOWLEDGMENTS
The research reported here is supported in part by NSF Grant No. ANI-01-23910, US Army CECOM
Contract No. DAAB07-02-C-P301 and by the Rutgers Center for Advanced Information Processing
(CAIP).

8 REFERENCES
[1] M. K. Aguilera, R.E. Storm, D.C. Sturman, M. Astley, T.Chandra, “Matching events in a content-
based subscription system,” Proc. 18th ACM Symp. Principles of Distributing Computing (PODC), 1999.
[2] M. Altinel and M. J. Franklin ,“Efficient filtering of XML documents for selective dissemination of
information,” Proc. 26th VLDB Conference, 2000.

[3] S. Brandt and A. Kristensen, “Web push as an Internet notification service,” Proc. W3C Workshop on
Push Technology, Boston, MA, Sep. 1997
[4] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient filtering in publish-subscribe
systems using binary decision diagrams,” Proc. Int’l Conf. Software Engineering (ICSE), Toronto, Canada,
2001.
[5] A. Carzaniga, D. S. Rosemblum, and A.L. Wolf’ “Achieving scalability and expressiveness in an
internet-scale event notification service,” Proc. 19th ACM Symp. Principles of Distributing Computing
(PODC), 2000.
[6] L. Cheng and I. Marsic, “Piecewise network awareness service for wireless/mobile pervasive
computing.” MONET, 7(4):269-278, 2002.

[7] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch, “The Bayou architecture:
Support for data sharing among mobile users,” Proc. Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, USA, Dec. 1994.

[8] E. Friedman-Hill, “JESS: The Java expert system shell,” Sandia National Laboratories, Livermore,
CA. Online at: http://herzberg1.ca.sandia.gov/jess/
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Longman, Inc., Reading, MA, 1995.
[10] J. Gough and G. Smith, “Efficient recognition of events in a distributed system,” Proc. ACSC-18,
Adelaide, Australia, 1995.

[11] R. Guy, P. Reicher, D. Ratner, M. Gunter, W. Ma, and G. Popek, “Rumor: Mobile data access through
optimistic peer-to-peer replication,” Proc ER'98 Workshop on Mobile Data Access, 1998.
[12] Y. Huang and H. Garcia-Molina, “Publish/subscribe in a mobile environment,” Proc. 2nd ACM Int’l
Workshop on Data Engineering for Wireless and Mobile Access (MobiDe '01), Santa Barbara, CA, pp.27-
34, 2001.
[13] M. Ionescu and I. Marsic, “A stateful approach for publish-subscribe systems in mobile
environments,” Submitted for publication.

[14] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the Coda file system,” ACM
Transactions on Computer Systems, 10(1):3, February 1992.

[15] Lotus Development Corporation. “Lotus Notes: Essential software for group communications.” Lotus
Notes Technical Series Vol. 1, December 6 1989.
[16] Oracle 7 Distributed Database Technology and Symmetric Replication. Oracle White Paper, April
1996.
[17] T. W. Page, Jr., R. G. Guy, G. J. Popek, J. S. Heidemann, W. Mak, and D. Rothmeier. “Management
of replicated volume location data in the Ficus replicated file system.” Proc. USENIX Conf., Los Angeles,
CA, pp. 17-29, June 1991.

 96

[18] P. Reiher, J. Popek, M. Gunter, J. Salomone, and D. Ratner, “Peer-to-peer reconciliation based
replication for mobile computers,” Proc. ECOOP Workshop on Mobility and Replication, July 1996.
[19] Y. Saito, “Optimistic replication algorithms,” Tech. report, University of Washington, August 2000.

[20] B. Segall and D. Arnold, “Elvin has left the building: A publish/subscribe notification service with
quenching,” Proc. Australian UNIX and Open Systems User Group Conference, 1997.

 97

APPENDIX B: RULEBASE

; author : Bart van der Poel
; date : 04/09/2002
; descr. : Rule-base for adaptive message distribution agent. Return mapping of users to
; priorities.

; #### TEMPLATES ##

(deftemplate bandwidth (slot value))
(deftemplate relevance (slot id) (slot value))
(deftemplate connection (slot connId))
(deftemplate form_function (slot id) (multislot nodes) (multislot branches)

(multislot connections))
(deftemplate atom (slot id) (slot name) (slot operator) (slot value) (slot include)

(slot satisfied))
(deftemplate message (slot name) (slot value))
(deftemplate relevance_quality (slot id) (slot value))
(deftemplate bandwidth_quality (slot value))
(deftemplate new_subscription (multislot atoms) (slot connection) (slot priority))
(deftemplate subscription (slot id) (multislot atoms) (multislot connections) (multislot priorities)

(slot form_id))
(deftemplate result (multislot connections) (multislot priorities))
(deftemplate sub_count (slot value))
(deftemplate pred_count (slot value))
(deftemplate number_of_priorities (slot value))
(deftemplate formfunction_connection (slot formfunction_id) (slot connection_id))
(deftemplate uform (slot id) (slot type) (multislot keys) (multislot values))
(deftemplate parameter (slot id) (slot name) (multislot attributes) (multislot values))
(deftemplate location (slot id) (slot x) (slot y) (slot z))
(deftemplate distance (slot id) (slot param1) (slot param2))
(deftemplate count (slot id) (slot param))

; #### SYSTEM VARIABLES ###

(bind $?nodes (create$))
(bind $?branches (create$))

; #### INITIALIZATION ###

(assert (sub_count (value 0)))

; #### SUBSCRIPTION MANAGEMENT ##

(defrule addSubscription
"If the new subscription does not yet exist, then create the new subscription and add the
connection with its priority to it"
?new <- (new_subscription (atoms $?atoms) (connection ?connId) (priority ?pri))
?sub <- (sub_count (value ?count))
(form_function (id ?formId) (nodes $?n) (branches $?b) (connections $?connections))
(not (subscription (atoms $?atoms) (form_id ?formId)))
(test (neq (member$?connId $?connections) FALSE))
=>
(assert (subscription (id ?count) (atoms $?atoms) (connections (create$?connId))

(priorities ?pri) (form_id ?formId)))
(bind $?nodes $?n)
(bind $?branches $?b)
(createRule ?count $?atoms)
(modify ?sub (value (+ ?count 1)))
(retract ?new)

)

 98

(defrule keepConnectionWithSubscription
"If the new subscription already exists with the connection and the same priority, then no
adaptation is needed"
?new <- (new_subscription (atoms $?pred) (connection ?connId) (priority ?pri))
?sub <- (subscription (id ?index) (atoms $?pred) (connections $?subscribers)

(priorities $?priorities) (form_id ?formId))
(form_function (id ?formId) (connections $?connections))
(test (and (neq (member$?connId $?subscribers) FALSE) (eq (nth$ (member$?connId $?subscribers)

$?priorities) ?pri) (neq (member$?connId $?connections) FALSE)))
=>
(retract ?new)

)

(defrule addConnectionToSubscription
"If the new subscription exisits but the connection is not registered to it, then add connection to
subscription"
?new <- (new_subscription (atoms $?pred) (connection ?connId) (priority ?pri))
?sub <- (subscription (id ?index) (atoms $?pred) (connections $?subscribers)

(priorities $?priorities) (form_id ?formId))
(form_function (id ?formId) (connections $?connections))
(test (and (eq (member$?connId $?subscribers) FALSE) (neq (member$?connId $?connections) FALSE)))
=>
(modify ?sub (connections (create$?connId $?subscribers)) (priorities (create$?pri $?priorities)))
(retract ?new)

)

(defrule removeConnectionFromWrongSubscription
"If the connection with its priority is assigned to the wrong subscription, then delete the
connection from this subscription"
(declare (salience 5))
?new <- (new_subscription (atoms $?new_pred) (connection ?connId) (priority ?pri))
?sub <- (subscription (id ?index) (atoms $?sub_pred) (connections $?subscribers)

(priorities $?priorities) (form_id ?formId))
(form_function (id ?formId) (connections $?connections))
(test (and (neq $?new_pred $?sub_pred) (neq (member$?connId $?subscribers) FALSE)

(eq (nth$ (member$?connId $?subscribers) $?priorities) ?pri) (neq (member$
?connId $?connections) FALSE)))

=>
(bind ?pos (member$?connId $?subscribers))
(modify ?sub (connections (delete$ $?subscribers ?pos ?pos)) (priorities (delete$

$?priorities ?pos ?pos)))
)

(defrule removeConnectionNewPriorityIsHigher
"If the connection is registered to the right subscription but the new priority is higher, then
remove the connection from the subscription"
(declare (salience 5))
?new <- (new_subscription (atoms $?pred) (connection ?connId) (priority ?pri))
?sub <- (subscription (id ?index) (atoms $?pred) (connections $?subscribers)

(priorities $?priorities) (form_id ?formId))
(form_function (id ?formId) (connections $?connections))
(test (and (neq (member$?connId $?subscribers) FALSE) (> (nth$ (member$?connId $?subscribers)

$?priorities) ?pri) (neq (member$?connId $?connections) FALSE)))
=>
(bind ?pos (member$?connId $?subscribers))
(modify ?sub (connections (delete$ $?subscribers ?pos ?pos)) (priorities (delete$

$?priorities ?pos ?pos)))
)

(defrule ignoreConnectionWithNewPriorityIsLower
"If the connection is registered to the right subscription and the new priority is
lower, then ignore the new priority"
(declare (salience 5))
?new <- (new_subscription (atoms $?pred) (connection ?connId) (priority ?pri))
?sub <- (subscription (id ?index) (atoms $?pred) (connections $?subscribers)

(priorities $?priorities) (form_id ?formId))
(form_function (id ?formId) (connections $?connections))
(test (and (neq (member$?connId $?subscribers) FALSE) (< (nth$ (member$?connId

$?subscribers) $?priorities) ?pri) (neq (member$?connId $?connections) FALSE)))
=>
(retract ?new)

)

 99

(defrule removeConnectionFromWrongSubscriptionWithRightPriority
"If the connection is assigned to the wrong subscription with the right priority and
assigned to the right subscription with the wrong priority, then remove the connection
from the wrong subscription"
(declare (salience 5))
?new <- (new_subscription (atoms $?pred1) (connection ?connId) (priority ?pri))
?sub1 <- (subscription (id ?index1) (atoms $?pred1) (connections $?users1) (priorities

$?priorities1) (form_id ?formId))
?sub2 <- (subscription (id ?index2) (atoms $?pred2) (connections $?users2) (priorities

$?priorities2) (form_id ?formId))
(form_function (id ?formId) (connections $?connections))
(test (and (neq ?index1 ?index2) (neq (member$?connId $?users1) FALSE) (neq (nth$

(member$?connId $?users1) $?priorities1) ?pri) (neq (member$?connId $?users2) FALSE)
(eq (nth$ (member$?connId $?users2) $?priorities2) ?pri) (neq (member$?connId
$?connections) FALSE)))

=>
(bind ?pos (member$?connId $?users2))
(modify ?sub2 (connections (delete$ $?users2 ?pos ?pos)) (priorities (delete$

$?priorities2 ?pos ?pos)))
)

(defrule removeSubscriptionFromWrongSubscriptionNotRightlySubscription
"If the connection if assigned to the wrong subscription with the right priority and not
assigned to the right subscription, then remove the connection from the wrong subscription"
(declare (salience 5))
?new <- (new_subscription (atoms $?pred1) (connection ?connId) (priority ?pri))
?sub1 <- (subscription (id ?index1) (atoms $?pred1) (connections $?users1) (priorities

$?priorities1) (form_id ?formId))
?sub2 <- (subscription (id ?index2) (atoms $?pred2) (connections $?users2) (priorities

$?priorities2) (form_id ?formId))
(form_function (id ?formId) (connections $?connections))
(test (and (neq ?index1 ?index2) (eq (member$?connId $?users1) FALSE) (neq (member$?connId

$?users2) FALSE) (eq (nth$ (member$?connId $?users2) $?priorities2) ?pri) (neq (member$
?connId $?connections) FALSE)))

=>
(bind ?pos (member$?connId $?users2))
(modify ?sub2 (users (delete$ $?users2 ?pos ?pos)) (priorities (delete$ $?priorities2 ?pos

?pos)))
)

; #### LOCATION AWARENESS ###

(defrule setSelfLocation
"Set the location of the new uform in the knowledge-base"
(parameter (id ?id) (name this))
(message (name pos_x) (value ?x))
(message (name pos_y) (value ?y))
(message (name pos_z) (value ?z))
(not (location (id ?id)))
=>
(assert (location (id ?id) (x ?x) (y ?y) (z ?z)))

)

(defrule setUserLocation
"Set the location of a user in the knowledge-base"
?xyz <- (user_pos ?u ?x ?y ?z)
(parameter (id ?id) (name user) (attributes $?attributes) (values $?values))
(not (location (id ?id)))
(test (eq ?u (nth$ 1 $?values)))
=>
(assert (location (id ?id) (x ?x) (y ?y) (z ?z)))
(retract ?xyz)

)

 100

(defrule changeUserLocation
"Update the location of the user indicated by the parameter"
?xyz <- (user_pos ?u ?x ?y ?z)
(parameter (id ?id) (name user) (attributes ?attribtues) (values $?values))
?loc <- (location (id ?id))
(test (eq ?u (nth$ 1 $?values)))
=>
(modify ?loc (x ?x) (y ?y) (z ?z))
(retract ?xyz)

)

(defrule setUFormLocation
"Lookup the location of the uform indicated by the parameter and set it in the knowledge-base"
(parameter (id ?id) (name uform) (attributes $?attributes) (values $?values))
(uform (type unit) (keys $?keys) (values $?ufvalues))
(test (testCondition (create$ (length$ $?attributes) $?attributes $?values (length$ $?keys)

$?keys $?ufvalues)))
=>
(bind ?indexX (member$ x $?keys))
(bind ?indexY (member$ y $?keys))
(bind ?indexZ (member$ z $?keys))
(assert (location (id ?id) (x (nth$?indexX $?ufvalues)) (y (nth$?indexY $?ufvalues))

(z (nth$?indexZ $?ufvalues))))
)

(defrule setDistance
"Calculate the distance of two locations indicated by the parameters"
(distance (id ?id) (param1 ?p1) (param2 ?p2))
(location (id ?p1) (x ?x1) (y ?y1) (z ?z1))
(location (id ?p2) (x ?x2) (y ?y2) (z ?z2))
(newUform)
=>
(bind ?distance (sqrt (+ (** (- ?x1 ?x2) 2) (** (- ?y1 ?y2) 2) (** (- ?z1 ?z2) 2))))
(assert (message (name ?id) (value ?distance)))

)

; #### SETTING VALUES FOR NEW SUBSCRIPTION ##

(defrule setNewPrioritizedSubscriptionForConnection
"If we know the priorities of all atoms, then we setup the prioritized subscription for the
connection"
?u <- (connection (connId ?connId))
?c <- (bandwidth_quality)
(number_of_priorities (value ?priorities))
=>
(bind ?i 0)
(while (< ?i ?priorities) do

(bind ?priority (- ?priorities ?i 1))
(eval (str-cat "(assert (new_subscription (atoms $?atoms_" ?i ") (connection " ?connId ")

(priority " ?priority ")))"))
(eval (str-cat "(bind $?atoms_" ?i " (create$))"))
(bind ?i (+ ?i 1))

)
(retract ?u)
(retract ?c)

)

(defrule priorityMatrix
"If we know the quality of the relevance and of the bandwidth, determine the priority of the atom"
(declare (salience 5))
?rq <- (relevance_quality (id ?r_id) (value ?r_value))
?co <- (bandwidth_quality (value ?b_value))
(number_of_priorities (value ?priorities))
=>
(bind ?p (- ?priorities 1))
(bind ?priority (min ?p (+ ?r_value ?b_value)))
(while (> ?priority 0)

(bind ?var_name (str-cat "$?atoms_" ?priority))
(eval (str-cat "(bind " ?var_name " (create$ " ?r_id " " ?var_name "))"))
(bind ?priority (- ?priority 1))

)
(retract ?rq)

)

 101

(defrule addConnectionToFormfunction
"Add the connection to the formfunction"
(declare (salience 5))
?fc <- (formfunction_connection (formfunction_id ?fid) (connection_id ?cid))
?ff <- (form_function (id ?fid) (connections $?connections))
(test (eq (member$?cid $?connections) FALSE))
=>
(modify ?ff (connections (create$ $?connections ?cid)))
(retract ?fc)

)

; #### MATCHING RULES ###

(defrule newUformReset
"After the matching is done, delete the newUform fact"
(declare (salience -10))
?nu <- (newUform)
=>
(retract ?nu)

)

(defrule atomReset
"After the matching is done, reset the satisfied field of all atoms to FALSE"
(declare (salience -10))
?fp <- (atom (id ?id) (satisfied TRUE))
=>
(modify ?fp (satisfied FALSE))

)

(defrule messageReset
"After the matching is done, delete all remaining message facts"
(declare (salience -10))
?fm <- (message)
=>
(retract ?fm)

)

(defrule matchAtom
"If the operator of the atom applied to the values of the message and atom is true and the names of
the message and atom are equal then the atom is matched"
?mf <- (message (name ?mes_name) (value ?mes_value))
?fs <- (atom (id ?sub_id) (name ?sub_name) (operator ?sub_operator) (value ?sub_value)

(satisfied ?sub_satisfied))
(test (and (eq ?mes_name ?sub_name) (eq ?sub_satisfied FALSE) (eval (str-cat "(" ?sub_operator " "

?mes_value " " ?sub_value ")"))))
=>
(modify ?fs (satisfied TRUE))
(retract ?mf)

)

; #### QUERIES ##

(defrule countUFormFacts
"Perform the counting op the given parameter"
(count (id ?id) (param ?param))
?nu <- (newUform)
=>
(bind ?count (count-query-results countUforms ?param))
(assert (message (name ?id) (value ?count)))

)

(defquery countUforms
"Count all uforms that satisfy the conditions of the given parameter"
(declare (variables ?param))
(parameter (id ?param) (name uform) (attributes $?attributes) (values $?values))
(uform (type unit) (keys $?keys) (values $?ufvalues))
(test (testCondition (create$ (length$ $?attributes) $?attributes $?values (length$ $?keys) $?keys

$?ufvalues)))
)

 102

(defrule countDistanceFacts
"Perform the counting of uforms within the distance indicated by the distance fact"
(distance (id ?id))
(parameter (id ?pid) (name ?id) (attributes value) (values ?value))
?nu <- (newUform)
=>
(bind ?count (count-query-results countDistances ?id ?value))
(assert (message (name (eval (str-cat count ?id))) (value ?count)))

)

(defquery countDistances
"Count all the distance facts with the given id"
(declare (variables ?id ?value))
(message (name ?id) (value ?mesValue))
(test (<= ?mesValue ?value))

)

; #### FUNCTIONS ##

(deffunction createRule (?index $?atom_list)
"This function dreates a new subscription rule"
(bind ?rule_name (str-cat "subscription" ?index))
(bind ?antecedent "")
(foreach ?p $?atom_list

(bind ?antecedent (str-cat "(atom (id " ?p ") (satisfied ?" ?p ")) " ?antecedent))
)
(bind ?antecedent (str-cat ?antecedent " (subscription (atoms " $?atom_list ")

(connections $?user_list) (priorities $?priorities))"))
(bind ?antecedent (str-cat ?antecedent "(test " (getSubscriptionString $?atom_list)

")"))
(bind ?rule_body (str-cat ?antecedent " => (assert (result (connections $?user_list)

(priorities $?priorities)))"))
(eval (str-cat "(defrule " ?rule_name ?rule_body ")"))

)

(deffunction hasPredicates ($?predicate_list)
"Tests if a subscription contains atoms"
(return (> (length$ (complement$ (create$ and or not nil) $?predicate_list)) 0))

)

(deffunction equal_to_first (?item $?list)
"Tests if the first item in the list is equal to the given item"
(if (> (length$ $?list) 0) then

(return (eq ?item (nth$ 1 $?list)))
else

(return FALSE)
)

)

(deffunction testCondition ($?parameters)
"Test the conditions stated in the parameter, the result is a boolean value indicating if the
conditions are met"
(bind ?lengthParameters (nth$ 1 $?parameters))
(bind $?attributes (subseq$ $?parameters 2 (+ ?lengthParameters 1)))
(bind $?values (subseq$ $?parameters (+ ?lengthParameters 2) (+ (* ?lengthParameters 2) 1)))
(bind ?lengthUform (nth$ (+ (* ?lengthParameters 2) 2) $?parameters))
(bind ?indexUform (+ (* ?lengthParameters 2) 2))
(bind $?keys (subseq$ $?parameters (+ ?indexUform 1) (+ ?indexUform ?lengthUform)))
(bind $?ufvalues (subseq$ $?parameters (+ ?indexUform ?lengthUform 1) (+ ?indexUform (* ?lengthUform

2))))
(bind ?result TRUE)
(bind ?j 1)
(foreach ?attribute $?attributes

(bind ?subresult (and (neq (bind ?i (member$?attribute $?keys)) FALSE) (eq (nth$?i $?ufvalues)
(nth$?j $?values))))

(bind ?result (and ?result ?subresult))
(bind ?j (+ ?j 1))

)
(return ?result)

)

 103

12

(deffunction getSubscriptionString ($?predicate_list)
(bind $?include_list (create$ and or not $?predicate_list))
(bind $?current_nodes (create$))

(foreach ?n $?nodes
(if (neq FALSE (member$?n $?include_list)) then

(bind $?current_nodes (create$ $?current_nodes ?n))
else

(bind $?current_nodes (create$ $?current_nodes nil))
)

)

(bind ?str "")
(bind $?countPredicates (create$ 0))
(bind $?logicList (create$))
(bind $?visited_nodes (create$))
(bind $?stack (create$ (first$ $?branches)))

(if (eq (hasPredicates $?current_nodes) TRUE) then
(while (> (length$ $?stack) 0)

(bind ?position (member$ (nth$ 1 $?stack) $?branches))
(bind ?n (nth$ (nth$ 1 $?stack) $?current_nodes))
(if (eq (member$ (nth$ 1 $?stack) $?visited_nodes) FALSE) then

(if (or (eq ?n and) (eq ?n or) (eq ?n not)) then
(bind ?str (str-cat ?str "(" ?n " "))
(bind $?countPredicates (create$ (+ (nth$ 1 $?countPredicates) 1)

(rest$ $?countPredicates)))
(bind $?countPredicates (create$ 0 $?countPredicates))
(bind $?logicList (create$?n $?logicList))

else
(if (neq ?n nil) then

(bind ?str (str-cat ?str "?" ?n " "))
(bind $?countPredicates (create$ (+ (nth$ 1 $?countPredicates) 1)

(rest$ $?countPredicates)))
)

)
(bind $?visited_nodes (create$ $?visited_nodes (nth$ 1 $?stack)))

else
(if (eq ?position FALSE) then

(if (eq (nth$ 1 $?countPredicates) 0) then
(if (>= (length$ $?logicList) 2) then

(if (eq (nth$ 2 $?logicList) and) then (bind ?str (str-cat ?str
"TRUE")))

(if (eq (nth$ 2 $?logicList) or) then (bind ?str (str-cat ?str
"FALSE")))

(if (eq (nth$ 2 $?logicList) not) then
(if (eq (nth$ 3 $?logicList) and) then (bind ?str (str-cat

?str "TRUE")))
(if (eq (nth$ 3 $?logicList) or) then (bind ?str (str-cat

?str "FALSE")))
)

else
(bind ?str "(eq TRUE FALSE)")

)
)
(bind ?str (str-cat ?str ") "))
(bind $?countPredicates (rest$ $?countPredicates))
(bind $?logicList (rest$ $?logicList))

)
)
(if (neq ?position FALSE) then

(bind $?stack (create$ (nth$ (+ ?position 1) $?branches) $?stack))
(bind $?branches (delete$ $?branches ?position (+ ?position 1)))

else
(bind $?stack (rest$ $?stack))

)
)

else
(bind ?str "(eq TRUE FALSE)")

)

(return ?str)
)

 104

APPENDIX C: DATADISTRIBUTIONAGENT CLASS

/**
* title : Date Distribution Agent
* description : The interface of the data distribution agent
* @author : B.P.I. van der Poel
* @since : 07/14/2002
* @version : %Version%
*/

package disciple.agents;

import disciple.repository.UForm;
import disciple.repository.Repository;
import disciple.bandwidth.Bandwidth;

public abstract class DataDistributionAgent {

/**
* The repository of the server
*/
protected Repository repository_;

/**
* This constructor initiates a new data distribution agent
* @param repository The repository of the server
*/
public DataDistributionAgent(Repository repository) {

repository_ = repository;
}

/**
* This method sets the repository of the agent
* @param repository repository of agent, narmally points to global repository of server
*/
public void setRepository(Repository repository) {

repository_ = repository;
}

/**
* This method returns the repository of the agent.
* @return repository of the agent, normally points to global repository of server
*/
public Repository getRepository() {

return repository_;
}

/**
* This method will be overridden in most cases. An agent is instantiated.
* @param repository The repository of the server
* @return The instantiated agent
*/
public static DataDistributionAgent loadAgent(Repository repository) {

DataDistributionAgent agent = null;
return agent;

}

/**
* This method sets up the rules for a connection.
* @param subscription The text that define the rules
* @param connId The id of the connection
*/
public abstract void setRules(String subscription, String connId);

 105

/**
* Test to which connections a uform has to be forwarded.
* @param uf The uform that has to be matched with the rules
* @return Mapping of connections to priorities
*/
public abstract PrioritizedConnectionList applyRules(UForm uf);

/**
* Sets the bandwidth of a connection for the data distribution agent.
* @param id The id of the connection
* @param bw The bandwidth of the connection
*/
public abstract void setQoSParameters(String id, Bandwidth bw);

/**
* Determines the list of uforms needed to refresh the repository of a user.
* @id The id of the connection requesting the update
* @return The list of uforms
*/
public abstract UForm[] refresh(long id);

}

