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ABSTRACT

Although a Bayesian network is widely accepted as a sound and intuitive for-
malism for reasoning under uncertainty in artificial intelligence, their use in
diagnostic expert systems has been limited. The primary goal within these di-
agnostic systems is to determine the most probable cause given a set of evidence
and to suggest what additional information is best to collect. The framework
of a Bayesian network supports this goal by providing various reasoning algo-
rithms for the calculations of the effect of new information. However, for the
support of practical models the networks are often accompanied by restrictions.
One such restriction is that only one cause can be present since the support for
multiple causes becomes computationally challenging. Another restriction is the
limited support for user interaction. In most systems the user has nothing to
say about which causes are investigated, instead the system always investigates
all the causes.

In this thesis I aim to improve the functionality of Bayesian networks by pro-
viding approximation approaches that support the diagnosis of multiple causes.
At the same time I try to improve the interactivity with the user by supporting
the ability to pursue and differentiate between any possible set of causes. The
foundation of the approximation approaches is the relation between the proba-
bility of causes separately and the probability of a combination of those. The
ability to pursue and differentiate between any possible set of causes is a gener-
alization of current possibilities to perform diagnosis, e.g., the pursuit of one or
all possible causes. I believe that these improvements will have a positive effect
on the user acceptance of Bayesian networks in modelling complex diagnostic
systems.
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1. INTRODUCTION

The purpose of this thesis is to describe the research I carried out in the De-
cision Systems Laboratory (DSL) at the School of Information Science of the
University of Pittsburgh. In short, the main objective of this research was to
improve the use of Bayesian networks in diagnostic expert systems. The intro-
duced improvements are approximation approaches for the support of multiple
causes and the ability to pursue and differentiate between any possible set of
causes.

1.1 Motivation

Diagnosis is generally considered as the process of determining the cause of a
malfunction by means of collecting information. This essential task is faced
in various domains such as medicine, business, and engineering. Consider, for
example clinicians who determine the disease of a patient, business consultants
who analyze what is wrong within a company, or technicians who perform tests
to see which part of a machine is malfunctioning. With the goal of assisting a
user in the diagnostic process, a lot of research has been done into the develop-
ment of diagnostic expert systems. In general, expert systems are described as
reasoning systems based on the techniques of artificial intelligence and decision
theory, which perform at a level comparable to or better than a human expert
within a certain domain [Horvitz et al., 1988]. An example of a successful expert
system is the MYCIN system, developed to aid physicians in the diagnosis of
bacterial infections. Essentially, the MYCIN system uses a rule based struc-
ture with certainty factors to model the uncertainty. A short example of one of
those rules is shown in 1.1. Although the diagnostic expert systems have been
modelled in various ways, they generally support two tasks: determine (on the
basis of gathered evidence) the most likely cause, and suggest what additional
information to collect.

The MYCIN knowledge is represented as a set of IF-THEN rules with certainty factors.

IF the infection is pimary-bacteremia;

AND the site of the culture is one of the sterile sites;

AND the suspected portal of entry is the gastrointestinal tract;

THEN there is suggestive evidence (0.7) that infection is bacteroid.

The 0.7 is roughly the certainty that the conclusion will be true given the evidence. If
the evidence is uncertain the certainties of the bits of evidence will be combined with

the certainty of the rule to give the certainty of the conclusion.

Fig. 1.1: Example of the representation of one of MYCIN rules
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In 1959, Ledley and Lusted [1959] discussed the underlying reasoning of
a professional clinician and identified three relevant mathematical disciplines,
symbolic, logic, and probability to model the diagnostic process. From these
disciplines, probability theory with its Bayes theorem was considered the main
approach for its good ability to model uncertainty. Its use resulted in various
diagnostic expert systems, e.g., the diagnosis of heart disease [Gorry and Bar-
nett, 1968] and acute abdominal pain [de Dombal et al., 1972]. Although some
of these systems were quite successful, interest in this approach stagnated in
the late 1970s and shifted to the two other disciplines. A possible reason for
this loss of interest in these systems is their limited possibilities for handling
the complexity associated with the representation and the computation of the
probabilistic schemes.

Fig. 1.2: The interface of the printer troubleshooting system, SACSO, see [Jensen et
al., 2001] for more information

The development of probabilistic graphical models such as Bayesian
networks [Pearl, 1988] and closely related influence diagrams [Howard and
Matheson, 1981] renewed the interest in the use of the probabilistic discipline
and resulted in the development of new diagnostic expert systems, e.g., diag-
nosis of liver disorders [Onísko et al., 1997], lymph node diseases [Heckerman
et al., 1992], and printer troubleshooting (SACSO) [Jensen et al., 2001]. In
Figure 1.2 the interface is shown of the SACSO system, in which the user is
able to diagnose trouble with a printer. The strength of Bayesian networks is
that they provide the user with an intuitive and mathematically sound tool to
model complex relations between uncertain variables.
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As an example a small Bayesian network is shown in Figure 1.3, with the
probabilistic relations between the variables Smoking?, LungCancer?, and
Bronchitis?. From the network may be concluded that LungCancer? and
Bronchitis? have no probabilistic influence on each other, but the knowledge
whether a person smokes will have an impact on the probabilities of both the
variables.

Fig. 1.3: A typical Bayesian network that shows the relation between the uncertain
variables, Smoking?, LungCancer?, and Bronchitis?

The process of reasoning is supported by various efficient algorithms which
determine the effect of instantiating variables. Within diagnostic systems
these reasoning algorithms are applied to find the most likely cause of a
malfunction. Another important task of diagnostic systems is to determine
which (additional) information to collect in order to become more certain
about the true cause. The concept of value of information [Howard, 1966]
captures this task for Bayesian networks. Developed in decision theory, this
concept provides techniques to evaluate beforehand whether or not to collect
new information based on its informativeness and cost.

It seems that Bayesian networks provide sufficient tools to model diagnostic
expert systems. However, most networks and systems are often accompanied
by restrictions. A major restriction is that all the possible causes are mutually
exclusive, i.e., only one cause is possible in the system. Take, for example
someone who is ill and the cause may be either a fever or pneumonia but not
both. It is obvious that systems with this restriction will have trouble modelling
real world applications. The reason for this restriction is that the support of
multiple cause diagnosis results both in computational as well as presentational
problems when the number of possible causes is large. Another restriction of
the networks is the limited support for user interaction. A typical situation
is that the user already has an idea of which causes are the most likely and
wants to pursue these instead of all the causes. Most existing systems do not
support this approach or limit the user to pursue only one cause. An example
of such a system is the GeNIe DIAG application developed at the DSL and
described in Section 3.5. Without this support users may be reluctant to accept
the system as an assistant. Since these restrictions have a negative influence
on using Bayesian networks as a modelling tool for real practical situations, I
believe it is important to find solutions for them.
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1.2 Objective

The main objective of this thesis is to improve the functionality of Bayesian
networks by providing approximation approaches for the diagnosis of multiple
causes and the ability to pursue and differentiate between any possible set of
causes. In order to accomplish this objective, I set myself with the following
goals:

• Study about Bayesian networks and their use in diagnostic systems;

• Analysis of the problem with supporting multiple causes;

• Investigation of possible approximation approaches;

• Design and implementation of multiple cause module;

• Testing of the module whether it delivers qualitative support.

Accompanied with the development of the multiple cause module is that it has
to be able to handle complex systems.

1.3 Overview

The remainder of this thesis is structured as follows. Chapter 2 will provide a
short introduction to Bayesian networks. In Chapter 3 I will describe how these
networks may be used for the process of diagnosis. Chapters 4 and 5 will address
the problems associated with multiple cause diagnosis and propose approxima-
tion approaches to solve these problems. The design and implementation of the
proposed approximations into a module will be described in Chapter 6. The
quality of the module will be tested in Chapter 7. Finally, I will present my
conclusions and outline the direction of future work.



2. BAYESIAN NETWORKS

This chapter presents a brief introduction into Bayesian networks and describes
the necessary concepts for this report. I assume that the reader is familiar
with the essentials of graph and probability theory. If not, I refer the reader
to Jensen et al. [2001] for more information about Bayesian networks and
probability theory in general.

A Bayesian network [Pearl, 1988] (also known as a belief network or
probabilistic network) is a formalism for reasoning under uncertainty. Decision
support based on probabilistic reasoning was developed in the late 1970’s
and gained popularity when efficient algorithms for inference were introduced
in Bayesian networks [Lauritzen and Spiegelhalter, 1988]. Thanks to an
intuitive graphical interface and a sound probabilistic framework, the Bayesian
network has become a popular approach to model various expert systems,
e.g., medical, image interpretation, troubleshooting, and information processing.

In detail, a Bayesian network is an acyclic directed graph that represents a
factorization of the joint probability distribution over a set of random variables.

The graphical structure of the network is the qualitative part of a Bayesian
network and embodies a set of nodes representing the random variables and
a set of arrows representing direct dependencies between connected variables.
Absence of an arrow between variables implies that these variables are (con-
ditionally) independent. The parents of a variable are the variables which are
connected with an arrow with its direction going into this variable.

The joint probability distribution is the quantitative part of a Bayesian
network and embodies the conditional probability distribution defined with
each variable. This distribution characterizes the influence of the values of
the predecessors (parents) on the probabilities of the values of the variable
itself. When a variable has no parents, the probability distribution is the
prior probability distribution. In practice, these distributions are derived from
frequency data or elicited from an expert judgment.

Given a joint probability distribution over a set of random variables, many
different graphs exist which factorize the same joint probability distribution.
A factorization that is especially desired is the graph that reflects the causal
structure of the problem. This graph, also known as a causal graph, normally
reflects an expert’s understanding of the domain and facilitates a user’s insight
during the operational stage.
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Example 1. Consider the Bayesian network in Figure 2.1, which represents a
fictitious Asia example from Spiegelhalter and Knill-Jones [1984]. This network
is based on the ‘knowledge’ that dyspnea (DY ), i.e., shortness-of-breath, may
be due to tuberculosis (TC), lung cancer (LC), or bronchitis (BC). A recent
visit to Asia (V A) increases the probability of tuberculosis, while smoking (SM)
is known to be a risk factor for both lung cancer and bronchitis. Neither the
result of a single chest X-ray (XR) nor the presence or absence of dyspnea,
discriminates between lung cancer and tuberculosis.

Each of the variables is associated with a probability distribution. So has
the variable SM the marginal probability distribution of Table 2.1. And, since
the variable SM is the parent of the variable LC, this variable has a conditional
probability distribution of LC conditioned on SM , see Table 2.2. �

Fig. 2.1: The Bayesian network representing the fictitious Asia example from Spiegel-
halter and Knill-Jones [1984]

Tab. 2.1: Prior probability table of the variable SM

Pr (SM)
SM nonsmoker 0.75

SM smoker 0.25

Tab. 2.2: Conditional probability table of the variable LC conditioned on the variable
SM

Pr (LC|SM) SM nonsmoker SM smoker

LC absent 0.75 0.55
LC present 0.25 0.45
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Various efficient algorithms [Lauritzen and Spiegelhalter, 1988, Pearl, 1988,
Huang and Darwiche, 1994] exist for reasoning with Bayesian networks, e.g.,
determining the impact of processing evidence into the network. Although the
calculation of probabilistic inference is NP-hard [Cooper, 1990], the algorithms
provide reasonable computing times for networks consisting of tens or even
hundreds of nodes.

Before I present the definition of a Bayesian network and Bayes rule, I intro-
duce some necessary notations. Consider a finite set of discrete random variables
V, where each variable X ∈ V is denoted as a capital letter, e.g., X,Y,Z. Each
state of a variable is denoted as a lowercase letter, e.g., x, y, z. The set of all
states within a variable X, is denoted as DX . The probability distribution over
a random variable X is denoted as Pr(X) and the probability of a state x ∈ DX

as Pr(X = x) or in shorter form Pr(x). The negation of a state x is denoted
as x and represents all the states apart from the state x in the variable. The
probability of the negation, Pr(x) is always equal to 1 − Pr(x)

A combination of states of multiple variables is denoted as a scenario. The
set of all the scenarios from a set of variables V, is denoted as DV , and each
scenario as s ∈ DV . In case of one variable, the set of scenarios and the set of
states of the variable are identical. In Table 2.2 from Example 1 the variables
LC and SM yield the four scenarios displayed in Table 2.3. The probability

Tab. 2.3: Four possible scenarios of the variables SM and LC

SM nonsmoker & SM nonsmoker &
LC absent LC present

SM smoker & SM smoker &
LC absent LC present

of a scenario is defined by the joint probability over the states in the scenario.
The probability distribution over a set of variables is denoted as Pr(V) and the
probability of a scenario s ∈ DV as Pr(V = s) or in shorter form Pr(s). The set
of parents of a variable X is denoted as ΠX .

The foundation of the Bayesian network is the Bayes theorem,

Pr (B|A) =
Pr (A|B) Pr (B)

Pr (A)
.

named after Reverent Thomas Bayes (1702-1761). The initial probability Pr(A)
is called the prior probability, and the updated probability Pr(A|B) the posterior
probability. An interpretation of the posterior probability is the probability of
A with the knowledge of the state of variable B. When the knowledge of a
variables has an effect on the probability of another variable these variables
are called dependent. If variables are independent of each other, the posterior
probability and the prior probability are equal, Pr(A|B) = Pr(A).
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Definition 2.1 (Bayesian network). A Bayesian network, BN = 〈G,Θ〉 is
an acyclic directed graph, G = 〈V,A〉, where the arrows A denote a probabilis-
tic relation between the vertices and each vertex, V ∈ V represents a discrete
random variable. Associated with the vertexes is a θV ∈V : DV × DΠV

→ [0, 1]
function with the condition that for each combination of πV ∈ ΠV , there holds:∑

dV ∈DV

θV (dV , πV ) = 1.

The probability distribution of each variable is embodied by the joint prob-
ability distribution encoded in a Bayesian network. Suppose for example two
variables, A and B, with the joint probability distribution Pr(A,B). With
marginalization, the probability distribution of A is calculated by taking the
sum over the joint probability of A with all the states of B.

Pr (A) =
∑

bi∈DB

Pr (A, bi)

In order to determine and present the joint probability, the following theorem
better known as the chain rule may be applied.

Theorem 2.1 (chain rule). Let BN be a Bayesian network over a finite set
of discrete random variables V = {V1, ..., Vn}. The joint probability distribution
Pr (V) is then,

Pr (V) =
n∏

i=1

Pr (Vi|ΠVi
) .

When variables are instantiated (=set to a state) I refer to these variables as
evidence. A possible effect of entering evidence is a change in the dependency
relations between variables, i.e., different variables may become independent of
or dependent on each other. When two sets of variables become independent of
each other given the instantiation of a third set, this is identified as conditional
independence.

Definition 2.2 (conditional independence). Let V be a finite set of discrete
random variables and let Pr (V) denote the joint probability distribution over the
variables. Suppose three disjoint subsets of variables, X ,Y,Z ⊂ V. The sets X
and Y are conditionally independent given Z, if for all sx ∈ DX , sy ∈ DY , and
sz ∈ DZ , there holds:

Pr (sx| sy, sz) = Pr (sx| sz) .

By combining conditional independence with the chain rule I am able to
present the joint probability even more compacter, see Example 2.
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Example 2. Consider the fragment of the Asia network, see Figure 2.2, with
the variables, SM , LC and BC. Whether a person has lung cancer or not is
conditionally independent of whether the person has bronchitis or not, when
there is evidence that the person is a smoker.

Pr (LC|BC,SM = smoker) = Pr (LC|SM = smoker)

Fig. 2.2: Part of the fictitious Asia example to represent conditional independence

The benefit of conditional independence is noticeable with the determina-
tion of the joint probability. For instance, the joint probability of these three
variables LC, SM,BC is according to the chain rule from Theorem 2.1:

Pr(LC, SM,BC) = Pr(LC|SM,BC) · Pr(SM,BC)
Pr(LC, SM,BC) = Pr(LC|SM,BC) · Pr(SM |BC) · Pr(BC).

Combining the joint probability with the conditional independence between the
variables LC and BC given SM , the joint probability is rewritten to:

Pr(LC, SM,BC) = Pr(LC|SM) · Pr(SM |BC) · Pr(BC).

�

A method to determine graphically if variables are conditionally independent
given other evidence is by observing whether the variables are d-separated.

Definition 2.3 (d-separation). Let BN be a Bayesian network over a finite
set of discrete random variables V and let X , Y, and Z stand for any three dis-
joint subsets of variables of V. Z is said to d-separate X from Y, if along every
path (sequence of connected variables) between a variable in X and a variable
in Y, there is a variable W satisfying one of the following two conditions: (1)
W has converging arrows and none of W or its descendants are in Z, or (2) W
does not have converging arrows and W is in Z.

The sound mathematical framework and the support for conditional inde-
pendence and d-separation make a BN a powerful tool for modelling probability
relations between random variables.





3. DIAGNOSTIC PROBABILITY NETWORKS

Before I discuss how a Bayesian network may be applied in the support of diag-
nosis, I will analyze the different tasks associated with this process. Based on
this analysis I will introduce a structure for the Bayesian network that distin-
guishes the variables necessary for diagnosis and supports the essential tasks of
diagnosis.

3.1 Process of Diagnosis

Diagnosis is best known as the process of identifying the disease or disorder
of a patient or a machine by considering its history of symptoms and other
signs [Stensmo and Terrence, 1994]. When diagnosis is performed to determine
the trouble or faults in a machine, the diagnostic process is also referred to as
troubleshooting. In general, two kinds of tasks are involved in the diagnostic
process [Gorry and Barnett, 1968].

The first task is to determine the true cause or when multiple causes
may occur simultaneously the combination of true causes. A cause repre-
sents the presence or absence of a disease, fault, or any other discomfort. In
an expert system this task is usually recognized as ‘reasoning under uncertainty’.

The second task is to reduce the uncertainty about the true cause by
obtaining more information about the state of the world. Possible information
sources are symptoms, results of tests, or historic data. Using this information
several assumptions are made. First, the information is perfect, i.e., there is
no possibility that the information is either wrong or incomplete. Second, the
information is non-intervening, i.e., the information will not change the world.
Third, the information never increases uncertainty, e.g., more hints during an
exam will not make you more uncertain about the answer. The last assumption
makes it seem worthwhile to get all available information. Unfortunately,
information is seldom cost-free, e.g., time to fill in a questionnaire, or the money
paid for a CTI scan. Therefore, a decision has to be made which information
to collect. Since information gathering has an effect on the uncertainty in
the system, each gathering should actually be seen as a step in a sequence of
diagnostic steps.
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By displaying the diagnostic process as a sequence of steps and outlining the
two tasks this results in the process shown in Figure 3.1. As shown the sequence
continues until either the uncertainty about the cause is gone or there are no
more tests available.

Fig. 3.1: The diagnostic process
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3.2 Diagnostic Probability Structure

In order to let Bayesian networks (BNs) support the diagnostic process I
associate the BNs with a structure where the variables necessary for the
diagnostic process are distinguished. A BN associated with this structure
will be denoted as a diagnostic probability network (DPN). The support of
determining the most likely cause or the first task in the diagnostic process
may be performed with one of the available reasoning algorithms for BNs. The
support of the second task or the determination which information to acquire
is provided by applying the concept of value of information. This concept is
described in the next section.

The structure associated with a BN is described in the following definition.

Definition 3.1 (diagnostic probability network). Let B be a BN with a
set of random variables V. A diagnostic probability network (DPN) is defined
as a BN with at least one hypothesis variable and at least one test variable.

• Let H be a hypothesis variable and H a set of all hypothesis variables
also referred to as hypothesis set. A state of a hypothesis variable h ∈ H
is denoted as a hypothesis state. Each hypothesis state may represent a
possible disease, fault in a system, or any other discomfort.

• Let T be a test variable and T a set of all test variables, also referred to
as test set. A state of a test variable t ∈ T is denoted as a test state. Each
test state may represent an observation, physical sign, indicant, symptom
or laboratory result. Each test is associated with a cost value Cost (T ), if
a test variable has no cost, the cost value is set to 0.

Note that it it not necessary that every variable in a BN is either a hypothesis
or a test variable. Variables which are neither hypothesis nor test variables are
referred to as auxiliary variables. The following example clarifies this structure
by transforming the BN of Example 1 into a DPN.

Example 3. Within the BN of Example 1, tuberculosis, lung cancer, and
bronchitis are supposed to be the possible ailments. Therefore, the set H =
{TC,LC,BC} is distinguished as hypothesis set. As possible tests the set
T = {V A, SM,XR,DY } is distinguished. If I assume that each hypothesis
variable has only two states, absent or present, the possible scenarios of the
hypothesis set H are listed in Table 3.1. The goal of performing diagnosis with
this network is to investigate which scenario belongs to the patient. �

Tab. 3.1: The possible scenarios of the hypothesis set H = {TC, LC, BC}
TC absent TC absent TC absent TC absent
LC absent LC present LC absent LC present
BC absent BC absent BC present BC present

TC present TC present TC present TC present
LC absent LC present LC absent LC present
BC absent BC absent BC present BC present
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Fig. 3.2: The diagnostic probability network of the Asia example

During the process of diagnosis each test of the set of test variables may be
instantiated with evidence, i.e., observation of a test. This instantiation uses
the assumption that the information is perfect.

Notice that when the number of variables increases, the number of scenarios
grows exponentially. This exponential growth causes the system to become too
complex both to assess and to compute. Consider, for example a system with
n hypothesis variables where each variable has 2 states, the number of possible
scenarios is then 2n. An often applied solution and escape from handling
multiple causes, is the naive Bayes structure, also known as idiot’s Bayes.
This structure allows only one hypothesis variable and assumes conditional
independency between each test variable. In Figure 3.3 the fictitious Asia
example is transformed to a naive Bayes structure. With this naive Bayes
structure there may only be one disease present. So within Figure 3.3 the
variable Diseases contains the states TC present, LC present, BC present,
and all absent.

Fig. 3.3: Asian example transformed to a naive Bayes structure

The great simplicity of this structure both to assess and to compute made
this approach quite popular to model diagnostic expert systems. However, the
approach also received a lot of criticism because of its apparent mismatch with
the real world.
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3.3 Value of Information

Value of information (VOI) is a central part of performing diagnosis since it
determines which test to perform, i.e., which piece of information to acquire.
Evaluating prior to acquisition of information is a necessity when the user
has limited sources such as time and or numerous tests to choose from. VOI
determines the best test by providing test selection measures or value functions
which assign a ranking to each test. Before I present possible test selection
measures I first formulate the area of VOI. An overview of the complete
procedure of VOI is shown in Figure 3.4. The formalization of this procedure
is in a similar notation as Jensen [1996].

Consider a DPN with a set of hypothesis variables H, a set of test variables
T , and a value function V (Pr (H)) : [0; 1] → R. Since the outcome of a test is
unknown, the expected value (EV ) of performing a test T ∈ T is used:

EV (T ) =
∑
t∈T

V (Pr (H| t)) Pr (t).

The expected benefit (EB) of performing a test, is then defined as the differ-
ence between the expected value of performing a test and the value without
performing a test:

EB (T ) = EV (T ) − V (Pr (H)) =∑
t∈T

V (Pr (H| t)) Pr (t) − V (Pr (H)) .

For assigning a ranking to each test based on the benefit of the test and the
cost of the test T , the test strength (TS) is used:

TS (H, T ) =
EB (T )

V (Pr (H))
− K Cost (T ) .

The coefficient K is necessary for combining the different scaled variables cost
and expected benefit. Since there is no standard formulation for the value of
K, I let this variable be set by the user. This user has to determine how much
the cost of a test weighs in combination with the benefit of a test.

A proper analysis of which information to acquire should contain all the
possible combinations of tests, but since this is computationally intractable, I
restrict myself to the myopic approximation. This approximation assumes that
only one information source is acquired so the effect of performing combinations
of tests is not considered.
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Procedure:TestSelection(H, T )

Input: set of hypothesis variables and set of test variables
Output: list with ranked tests ready for test selection

1. determine V (Pr (H))

2. create empty list to store: test strengths list T

3. for each Ti ∈ T

4. for each tj ∈ Ti

5. instantiate the test state tj

6. determine V (Pr (H| tj))

7. end for each

8. determine EV (Ti)

9. determine EB (Ti)

10. determine TS (H, Ti)

11. add test strength to list T

12. end for each

13. present list T for test selection

Fig. 3.4: Value of information procedure for creating the list with test strengths

3.4 Test Selection Measures

In general, any possible function may be used as a test selection measure. How-
ever, not all functions are equally useful. The following theorem shows that
linear functions are useless, since they always return an expected benefit of zero
[Jensen, 1996].

Theorem 3.1 (zero benefit). Let H be a set of hypothesis variables, let T
be a test variable, and let V : [0, 1]n → R be a value function. When the value
function is of a linear form V (Pr (H)) =

∑
s∈DH as Pr (s), the expected benefit

of performing the test T is zero EB (T ) = 0, or,

∑
t∈T

V (Pr (H| t)) Pr (t) = V (Pr (H)) .
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Proof.∑
t∈T

Pr(t)V (Pr (H| t)) =
∑
t∈T

Pr(t)
∑

s∈DH

as Pr (s| t) =
∑
t∈T

∑
s∈DH

as Pr (s, t)

=
∑

s∈DH

∑
t∈T

as Pr (s, t) =
∑

s∈DH

as Pr(s) = V (Pr (H))

�

Apart from uselessness of linear functions, there is also a preference for
convex value functions over non-convex value functions. The reason for this is
explained in the following theorem [Jensen, 1996].

Theorem 3.2 (positive benefit). Let H be a set of hypothesis variables, let
T be a test variable, and let V : [0, 1]n → R be a value function. When the value
function is convex the expected benefit of performing a test is never negative.∑

t∈T

V (Pr (H| t)) Pr (t) ≥ V (Pr (H))

Proof. (with Jensen’s inequality, see Appendix A)

∑
t∈T

V (Pr (H| t)) Pr (t) ≥ V

(∑
t∈T

Pr (H| t) Pr (t)

)
= V

(∑
t∈T

Pr (H, t)

)
= V (Pr (H))

�

In other words, convex value functions always return a positive value
to collecting information. This corresponds to the assumption I made that
acquiring information never increases uncertainty.

According to the goal of value of information, value functions are desired
which determine which test is the most informative and brings the closest to
a proper diagnosis. Functions with this objective are known as quasi-utility
based functions [Good and Card, 1971]. These functions assign high values to
tests which reduce the uncertainty between the scenarios of a hypothesis set
and have their minimum when the uncertainty is maximal. Below, I discuss
the two most commonly used quasi-utility functions, entropy and weight of
evidence. For more value functions I refer the reader to [Ben-Bassat, 1978,
Glasziou and Hilden, 1989, Jensen, 1996].

Entropy
A well known measurement for determining the uncertainty of a distribution is
the entropy function [Shannon, 1948]:

Definition 3.2 (entropy). Let H be a set of hypothesis variables, and let
s ∈ DH be a scenario of the domain of H. The entropy function ENT (Pr (H))
is then,

ENT (Pr (H)) ≡ −
∑

s∈DH

Pr (s) log2 (Pr (s)).
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As I want the value function to be convex and increase with prefer-
ence, I use the negative entropy function as the entropy based value function
VENT (Pr (H)) = −ENT (Pr (H)). For the simple case of one hypothesis vari-
able with two states and probabilities, Pr (s) and Pr (s) = 1−Pr (s), this entropy
based value function reduces to the following form:

VENT (Pr (H)) = Pr (s) log2 (Pr (s)) + (1 − Pr (s)) log2 (1 − Pr (s)) .

and is plotted in Figure 3.5 as a function of Pr (s).

Fig. 3.5: Entropy based value function over two scenarios with probabilities Pr (s) and
1 − Pr (s)

Theorem 3.3. Associated with the entropy based value function are the follow-
ing properties.

1. When each scenario from a set of hypothesis variables s ∈ DH has the same
probability Pr (s) = 1

n , the VENT (Pr (H)) function will have its minimum.

2. The VENT (Pr (H)) function is a monotonic decreasing function of the
number of scenarios n, when each scenario s ∈ DH has the same proba-
bilities.

3. The composition law: if a set of hypothesis variables is broken down into
two successive choices, the original VENT (Pr (H)) is equal to the weighted
sum of the individual values of VENT (Pr (H)).

4. The entropy function is convex.

Proof. See Appendix A. �
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A possible interpretation of the entropy-based value function is a measure of
the scattering of the probability distribution over the scenarios. The function
has its minimum when the probability distribution is uniform, i.e., every
scenario has the same probability. In general, this situation is considered as
complete uncertainty since each scenario is equally likely. In the limit, when
one scenario has a probability of 1 and the other scenarios have probabilities
0, the entropy based value function is maximal and equal to 0. So the more
scattered the probability distribution is, the higher the value and the less the
uncertainty.

Weight of Evidence
The weight of evidence function was introduced by Good and Card [1971], with
the objective of reducing the uncertainty between a scenario and its negation,
by observing the ratio between them.

Definition 3.3 (weight of evidence). Let H be a set of hypothesis variables,
and let s ∈ DH be a scenario of the domain of H. The weight of evidence
function WOE (Pr (H)) is then,

WOE (Pr (H)) = log Pr (s) − log Pr (s)
= log Pr (s) − log (1 − Pr (s))

= log
Pr (s)

(1 − Pr (s))
.

In Figure 3.6, I show the weight of evidence function for a scenario with
probability Pr (s) ∈ (0, 1).

Fig. 3.6: Weight of evidence function for a scenario with probability Pr (s) ∈ (0, 1)
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Theorem 3.4. Associated with the weight of evidence function are the following
properties.

1. When a scenario from a set of hypothesis variables s ∈ DH and its negation
have the same probability Pr (s) = Pr (s) = 1

2 , the WOE function will be
zero.

2. The WOE function is convex, for a scenario from a set of hypothesis
variables s ∈ DH with probability Pr (s) > 1/2.

Proof. See Appendix A. �

3.5 Single Cause Diagnostic Application

Below I present an example of how the diagnostic probability network and the
area of value of information may be used in a diagnostic application. This
application, which I refer to as GeNIe DIAG, is an existing part of SMILE,
an inference engine, and GeNIe, a development environment for reasoning
in graphical probabilistic models, both developed at the Decision Systems
Laboratory in Pittsburgh. The purpose of the application is to support the user
in the process of diagnosis by allowing the user to direct the diagnosis process
and to suggest which test is the best to perform. This support is presented by
providing the user with the option of selecting a hypothesis state from a list
of preselected hypothesis states as the state he or she wants to pursue. The
application then determines a ranking for each test depending on how good
this test reduces the uncertainty of the selected hypothesis state. To illustrate
the application I use the DPN of the Asia network, see Example 3.

Before the application may be started, a diagnostic probability network
must be available. Furthermore, it expects a selection of hypothesis states in
which the user is interested and wants the option to pursue. These states are
denoted as target states, or targets, and may be defined in the properties of the
variable, together with the defining of the type of the variable. As shown in
Figure 3.7, the variable BC is set as a hypothesis variable and the state present
as a target state. Note that within the application the hypothesis variables are
referred to as target variables. Furthermore, the application assumes that a
hypothesis variable has at least one target state, because if not, it makes no
sense defining this variable as a hypothesis variable.
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Fig. 3.7: The setting of the variable BC to a hypothesis/target variable and the state
present as a target state

When at least one hypothesis variable together with a target state and at
least one test variable are defined, the diagnostic application may be activated.
This will pop up the screen as in Figure 3.8. On the left of this screen there
is a list of all the target states, and on the right a list of the available tests
where each test has a ranking. This ranking represents how good this test
is in reducing the uncertainty of the selected target from the left list. The
determination of the ranking is done by applying the concept of value of
information in combination with the entropy based value function. Whenever
another target is selected and pursued, the rankings in the test-list are recal-
culated so the user is able to see for each target which test is the best to perform.

Within the diagnosis screen the user may perform any test from the list of
ranked tests. By selecting and assigning a test to a state will have an impact on
the probabilities of the targets and the probability distributions of the test vari-
ables. Therefore, the probabilities in the diagnosis screen are adapted and the
application recalculates the rankings of the remaining tests. In Figure 3.9, the
effect of instantiating the test Dyspnea? with the state present is shown. Be-
cause of this instantiation the target Bronchitis present increases to the value
0.834. Furthermore, the test rankings change and present the X−RayResult
as the best test. The user is now able to select and perform another test. This
process may be continued until the user reaches a proper diagnosis or no more
tests are available.
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Fig. 3.8: The diagnostic screen with pursuing the target Bronchitis present

Fig. 3.9: The diagnostic screen with the instantiation of the test Dyspnea
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The Entropy/Cost Ratio, on top of Figure 3.9, represents the coefficient K
that combines the cost and the expected benefit of the test, see Section 3.3.
This variable may be adjusted at any time during the process of diagnosis.
The cost of the test is defined in the properties of the variable, see the option
Observation Cost in Figure 3.7.

What characterizes this application is the support for interactivity with the
user during the process of diagnosis. The user has complete control to direct the
diagnosis, both in investigating hypothesis states as in performing tests. The
system only assists the user by determining a ranking for the test and showing
the impact of performing a test. Unfortunately, the major disadvantage of this
application is the restriction of pursuing only one state instead of multiple states.
If all the hypothesis states are mutually exclusive as in the naive Bayes structure
this application would be logical and even useful. However, if multiple causes
are possible this application totally ignores the other causes and only focusses
on proving the presence or absence of the selected cause.





4. MARGINAL PROBABILITY APPROACH

In Section 3.2 and 3.5 it appeared that the support for multiple hypothesis
variables may become too difficult to realize. Below I formalize this problem and
address it by investigating the relation between marginal and joint probability
distributions. Based on this research I propose and evaluate an approximation
approach which should solve the problem and still present a valuable diagnosis.
Another approximation approach is presented in the next chapter.

4.1 Problem Analysis

The diagnostic probabilistic network (DPN) provides support for multiple
causes by allowing a set of multiple hypothesis variables. As described in
Section 3.1 the process of diagnosis is to determine the most likely scenario by
collecting more information. Which information to collect, is determined by
the value functions which calculate the effect of a test on the probability of the
scenarios. Although this support is complete and exact, the exponential growth
of the number of scenarios1 causes both presentational and computational
problems.

The major presentational problem is the complexity for a user to grasp the
exponential number of possible scenarios. Consider, for example a system with
10 hypothesis variables where each variable has 2 states and the user wishes
to keep track of the effect of performing a test on all scenarios. This means
that the user would have to observe the change in probabilities of 210 = 1024
scenarios. To give an idea of the difficulty of presenting and working with such
a large number, I present a random probability distribution of 1024 scenarios,
see Figure 4.1. Suppose now that only one probability changes because of
performing a test and the user has to notice the effect of this change.

Apart from the trouble in presenting the exponential number of scenar-
ios, the number also causes computational problems when applying the value
functions. Since the value functions depend on the probabilities of the hy-
pothesis scenarios, it is necessary that the entire joint probability distribu-
tion over the hypothesis set is calculated. Although the chain rule, see The-
orem 2.1, is available to efficiently calculate this distribution, the space needed
for storing all the probabilities becomes too large. Furthermore, little ef-
fort has so far been performed to develop an efficient algorithm for deter-
mining the joint probability distribution over a set of variables [Xu, 1995,
Duncan, 2001].

1 The number of scenarios over a set of variables X = {X1, ..., Xn}, is computed by multi-
plication of the number of states at each variable nX :

∏
X∈X (nX).
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Fig. 4.1: A random probability distribution of 1024 scenarios
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On the other hand, several efficient reasoning algorithms are available that
determine the effect of new evidence on marginal probabilities [Lauritzen and
Spiegelhalter, 1988, Pearl, 1988, Huang and Darwiche, 1994].

To solve the two problems described above, I propose two approximation
approaches. Each of these approaches provides a solution to the computation-
ally complexity as well as the presentational complexity. The approaches are
described in detail in the current and next chapter, but for better understanding
I provide a short summary of each approach.

Marginal Probability Approach
The first approach, referred to as the marginal probability approach, uses the
relation between the marginal and joint probability distribution to justify the
use of marginal probabilities. This approach saves a lot of computational effort,
since the joint probability distribution is no longer calculated. Furthermore,
the approach allows the presentation of the hypothesis states instead of the
enormous number of hypothesis scenarios.

Joint Probability Approach
The second approach, referred to as the joint probability approach, is less
radical in the sense that it uses an approximation for the joint probability. The
applied approximation is the use of a marginal based or copula function to
create the joint probability distribution and the use of a differential technique
to allow the display of marginal probabilities.

Along with solving these general problems, these approaches are designed to
continue the interactivity support provided by the diagnostic application from
Section 3.5. In particular, allowing the user to direct the process of diagnosis.
Within multiple cause diagnosis this support translates to providing the user
with the ability to select and pursue any set of scenarios.

4.2 Relation between Marginal and Joint Probability

It is obvious that a strong relation exists between the marginal probabilities
of states and the joint probabilities over the states. Below, I formalize this
relation by deriving a lower and upper bound on the joint probability based
on the marginal probabilities. The quality of this relation is determined by
investigating the difference between the bounds under a growing number of
variables. The derived bounds are not new but are better known as the Fréchet-
Hoeffding bounds [Fréchet, 1957]. Since these bounds are originally derived for
continuous probability distribution functions, I derive them for the discrete case.

Theorem 4.1 (upper bound joint probability). Let X be a set of random
variables {X1, ...,Xn}, where each variable is associated with a probability dis-
tribution. The joint probability over a possible combination of states (scenario)
(x1, ..., xn) is smaller than or equal to the minimum of the marginal probabilities
of the states in the combination, i.e.,

Pr (x1, ..., xn) ≤ min
i

Pr (xi) ∀Xi ∈ X .
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Proof. I consider a set with two discrete binary random variables A and B,
with each a probability distribution Pr(a1) & Pr(a2) and Pr(b1) & Pr(b2). From
the Venn diagram in Figure 4.2, it is easy to see that Pr(a1, b1) ≤ Pr(a1) and
Pr(a1, b1) ≤ Pr(b1) or in other words the joint probability of (a1, b1) is always
smaller than or equal to the minimum of the probabilities of a1 and b1. For
more than two variables or for variables with more states, the proof is similar.

Fig. 4.2: Venn diagram of the probability distributions of A and B where the joint
probability Pr (a1, b1) (arced area) is always smaller than the minimum of
probability of a1 and b1

�

From Theorem 4.1, I learn that when at least one of the marginal probabili-
ties of the states in the scenario is low (close to 0), it is already impossible that
the probability of the scenario is high (close to 1). In other words, a high joint
probability of a scenario is only possible when all the marginal probabilities of
the states in the scenario are high. However, high marginal probabilities do not
automatically imply a high joint probability. To ensure this I need a high lower
bound. That a lower bound for a scenario exists is revealed in the following
example.

Example 4. Suppose two random variables A and B, with states a1, a2 and
b1, b2. Associated with the states are the following probabilities, Pr (a1) =
0.9, Pr (a2) = 0.1 and Pr (b1) = 0.8, Pr (b2) = 0.2.

From the joint probability table, see Table 4.1, it is easy to see that Pr (a1, b1)
have to be at least 0.7, since Pr (a1, b1) and Pr (a1, b2) have to add up to 0.9
and Pr (a1, b2) is at most 0.2. �

Tab. 4.1: Joint probability table with the marginal probabilities of the states at the
right and below the table

b1 b2

a1 ≥ 0.7 ≤ 0.2 0.9
a2 ≤ 0.1 ≤ 0.1 0.1

0.8 0.2

Before I present the theorem and the formula for the lower bound, I derive
the lower bound formula for the scenario (a1, b1) from Example 4. The first step
is to use marginalization to write the relation between marginal probability and
the probability of a scenario.

Pr (a1, b1) + Pr (a1, b2) = Pr (a1) (4.1)
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Since I am interested in a formula with only the probability of the first sce-
nario and the marginal probabilities, I replace the second scenario (a1, b2), by a
marginal probability. The only suitable marginal probability is that of Pr (b2),
since Pr (b2) = Pr (a1, b2)+Pr (a2, b2). Because I am only interested in marginal
probabilities I use the approximation Pr (b2) ≥ Pr (a1, b2). Replacing Pr (a1, b2)
in Equation 4.1 with the approximation Pr (b2) gives:

Pr (a1, b1) + Pr (b2) ≥ Pr (a1)
Pr (a1, b1) ≥ Pr (a1) − Pr (b2) .

I see that this formula agrees with the lower bound I found in Example 4:

Pr (a1) − Pr (b2) ⇐⇒ 0.9 − 0.2 = 0.7.

In short, the lower bound for the probability of a particular scenario is
derived by replacing the probability of each scenario, except the lower bound-
scenario, with an approximation of marginal probabilities. Because scenarios
are unique, I am able to say that every scenario, apart from the lower bound-
scenario, contains at least one state that is not in the lower bound scenario.
Therefore, to replace all the probabilities of scenarios and in particular the
scenarios where only one state is different, I need all the marginal probabilities
of all the states not in the lower bound scenario. Below I formalize this process
in the proof of the lower bound joint probability theorem.

Theorem 4.2 (lower bound joint probability). Let X be a set of random
variables {X1, ...,Xn}, where each variable Xi is associated with a probability
distribution. The lower bound for the joint probability of a possible combination
of states (scenario) (x1, ..., xn) is,

Pr (x1, ..., xn) ≥ max

{
0; 1 − n +

n∑
i=1

Pr (xi)

}
.

Proof. I consider a set of random variables X = {X1, ...,Xn}, where each
variable Xi is associated with a probability distribution Pr(Xi). Each variable
Xi, consists of states which are denoted as xk

i ∈ DXi
. The index k represents

the index of the state in the variable Xi and since every variable may consist
of a different number of states each variable has a different letter that indexes
the states. Without loss of generality, I prove the lower bound for the scenario(
x1

1, x
1
2, ..., x

1
n

)
.

With marginalization, I write the probability of x1
1 as,

Pr
(
x1

1

)
=
∑
xk
2

...
∑
xm

n

Pr
(
x1

1, x
k
2 , ..., xm

n

)
(4.2)

Pr
(
x1

1

)
= Pr

(
x1

1, x
1
2, ..., x

1
n

)
+
∑
xk �=1
2

...
∑

xm �=1
n

Pr
(
x1

1, x
k
2 , ..., xm

n

)
(4.3)

Pr
(
x1

1, x
1
2, ..., x

1
n

)
= Pr

(
x1

1

)
−
∑
xk �=1
2

...
∑

xm �=1
n

Pr
(
x1

1, x
k
2 , ..., xm

n

)
. (4.4)

The goal is to rewrite Equation 4.4 with marginal probabilities. Since each sce-
nario in the sum has at least one state that is not in the scenario

(
x1

1, x
1
2, ..., x

1
n

)
,
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I need all the marginal probabilities of the states which are not in the scenario(
x1

1, x
1
2, ..., x

1
n

)
. During replacement I omit the scenarios associated with the

marginal probabilities so each marginal probability is greater than the scenarios
it replaces. The sum from Equation 4.4 is then,∑

xk �=1
2

...
∑

xm �=1
n

Pr
(
x1

1, x
k
2 , ..., xm

n

)
≤
∑
xk �=1
2

Pr
(
xk

2

)
+ ... +

∑
xm �=1

n

Pr (xm
2 ) (4.5)

∑
xk �=1
2

...
∑

xm �=1
n

Pr
(
x1

1, x
k
2 , ..., xm

n

)
≤
(
1 − Pr

(
x1

2

))
+ ... +

(
1 − Pr

(
x1

n

))
(4.6)

∑
xk �=1
2

...
∑

xm �=1
n

Pr
(
x1

1, x
k
2 , ..., xm

n

)
≤ n − 1 −

n∑
i=2

Pr
(
x1

i

)
. (4.7)

Combining this Equation 4.4 with Equation 4.7, I get the desired lower bound.

Pr
(
x1

1, x
1
2, ..., x

1
n

)
≥ 1 − n + Pr

(
x1

i

)
+

n∑
i=2

Pr
(
x1

i

)
(4.8)

Pr
(
x1

1, x
1
2, ..., x

1
n

)
≥ 1 − n +

n∑
i=1

Pr
(
x1

i

)
(4.9)

Since the proof is valid for any possible scenario, I use the following notation,
Pr (x1, ..., xn) ≥ 1 − n +

∑n
i=1 Pr

(
x1

i

)
. When 1 − n +

∑n
i=1 Pr

(
x1

i

)
< 0, the

lower bound is equal to zero. �

Since the objective of performing diagnosis is to reduce the uncertainty in
a system, I am interested in scenarios that have probabilities close to zero and
one. The following corollary states that these interesting probabilities are only
possible if the marginal probabilities are close to zero and one.

Corollary 4.1 (marginal strength). Suppose a set of random variables X =
{X1, ...,Xn}, where each variable is associated with a probability distribution.
The probability of a scenario s from the domain DX is only close to 0 or 1,
if and only if, all the marginal probabilities of the variables in the set X are
maximal or close to 1.

This corollary provides the right to change the goal of reducing the
uncertainty between scenarios to the goal of reducing uncertainty of marginal
probabilities. The benefits of this approach are noticeable in the number of
computations, since it is no longer necessary to determine the computationally
expensive joint probability distribution. But also in the perception of the user
that may look at the states and their marginal probabilities and interpret
them directly instead of needing to look at the numerous scenarios and their
probabilities. Consider, for example a number of states with each a high
marginal probability and all the other states with a low marginal probability.
The user may deduce that the combinations of states with the low probabilities
states have a low probability. And the scenario that consists of states with
high marginal probabilities has a high probability.
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Although Corollary 4.1 is true for any possible set of states, it is stronger
for a small set of states than for a large set of states. The reason for this is the
strong dependency of the lower bound with the number of states. Consider,
for example the determination of the lower bound for a scenario where all the
marginal probabilities of the states are 0.9. In case of a scenario of two states,
the lower bound will be 0.9 − 0.1 = 0.8. However, if the scenario consists of
10 states, then the lower bound will be 0.9 − (9 · 0.1) = 0, i.e., no meaningful
statement about the lower bound can be made.

This behavior is in sharp contrast with the upper bound, which is indepen-
dent of the number of variables. So the upper bound is always as low as the
lowest marginal probability of the states in a scenario. In order to get more
insight into this behavior I investigate the maximal distance between the upper
and lower bound. As stated in the following theorem, this distance depends on
the number of variables and will grow when the number of variables grows.

Theorem 4.3 (maximum distance between bounds). Let
X = {X1, ...,Xn} be a set of random variables and s = (x1, ..., xn) a scenario
where s ∈ DX . The distance between the upper and lower bound, from respec-
tively Theorem 4.1 and 4.2, for the probability of the scenario s is at most 1− 1

n .

Proof. See Appendix A. �

In Figure 4.3, the distance is shown between upper and lower bound for
all the possible probabilities of a scenario of two states (a, b). According to
Theorem 4.3, the distance between the upper and lower bound is maximal 1 −
1
2 = 1

2 . Obvious is that the minimal distance between the bounds is zero and
is reached when all marginal probabilities are equal to zero or one. That the
maximal distance for the scenario of two states is reached when both states have
a probability of 1

2 is not a coincidence. The following theorem states that the
maximal distance occurs when each marginal probability is equal to 1 − 1

n .

Theorem 4.4 (maximum distance condition). The distance between the
upper and lower bound of the probability of a scenario s = (x1, ..., xn) in a set
of random variables X = {X1, ...,Xn} is maximal and equal to 1 − 1

n , if and
only if, every marginal probability of the states in the scenario s is equal to 1− 1

n .

Proof. See Appendix A. �

This theorem provides me with the information on how to attend to the
increasing distance consequent to an increasing number of variables. When the
marginal probabilities are equal to 1− 1

n , they are less interesting, since such a
distribution makes me most uncertain of the true joint probability.
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Fig. 4.3: Distance between upper and lower bound for all the possible probabilities of
the scenario (a, b)

4.3 Marginal Probability Approach

The research described above formalizes the relation between the marginal
and joint probability. The bounds that the marginal probabilities impose on
the joint probability allows me to say that small and large joint probabilities
are only possible when the marginal probabilities are either small or large.
Justified by this knowledge, I propose a marginal probability approach that
basically uses the marginal probabilities of the states in the scenarios instead
of the joint probability over the states.

This approach refrains from working with the enormous number of scenarios
but instead uses the limited number of states. The advantages of this approach
are that it immediately solves the complexity aspect of presenting multiple
cause diagnosis but also the computational problems. So it is no longer
necessary to display all the scenarios of a set of hypothesis variables but only
the hypothesis states. For this approach I designed new test selection measures,
which also focus on reducing the uncertainty of the hypothesis set, but use
marginal probabilities instead of joint probabilities. These new test selection
measures, or marginal based test selection measures, are derived in the next
section. Another advantage of this approach is that it continues the support to
direct the process of diagnosis. During the selection of multiple states of a list
of hypothesis states, the user is actually selecting scenarios.
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That the approach is based on a large approximation becomes clear when
observing the growing distance between the bounds, see Theorem 4.3. From this
distance I may conclude that a given set of states with marginal probabilities,
may generate any probability within these bounds for the combination of these
states. The point where the distance is maximal is the worst situation, since I
know the least about the value of the joint probability. According to Theorem
4.4 this maximal uncertainty occurs when all the marginal probabilities are
equal to 1 − 1

n . To account for this problem, the new test selection measures
should account for this negative effect by not rewarding marginal probabilities
equal or close to 1 − 1

n .

How this approach is implemented and how the user is able to use it, is
explained in Chapter 6.

4.4 Marginal Based Test Selection Measures

If I translate the marginal probability approach into the design of a marginal
based test selection measure, I want a function that assigns high values to
marginal probabilities close to 0 and 1 and has its minimum at 1− 1

n . Together
with these restrictions I prefer a convex function, so tests which provide
information will always get a positive value.

Since the approach provides the user with the ability to select and pursue
states and intermediately scenarios, I propose to refer to these states as target
or focus states. These states are a selection of the hypothesis states of the
different hypothesis variables. The set of targets is denoted as F , each target
state as f , and the number of targets in a set F as nF . The marginal based
functions are applied over the probabilities of the target states.

Within the restrictions I created two functions, one without the support for
the maximal distance and one with it. Both the functions have been scaled so
that they return a ranking between zero and one. The following definition de-
scribes the function without the maximal distance support and has its minimum
when all the probabilities of the targets are equal to 0.5.

Definition 4.1 (Marginal Strength1). Let F be a set of target states where
each target state f represents a hypothesis state which the user wishes to pursue.
The marginal strength1 function MS1 (Pr (F)) is then,

MS1 (Pr (F)) ≡
(∑

f∈F (f − 0.5)2(
1
2

)2 − nF

)
∗ 1

nF
.

In Figure 4.4, the function is displayed for a set of two targets. It can be
clearly be seen that the minimum of the function is reached when each of the
states is equal to 0.5. That the function is convex is ensured by the summation
of convex functions.
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Fig. 4.4: The MS1 function over two random targets f1 and f2

The second function is a combination of two functions into one function,
which is continuous on the area [0, 1].

Definition 4.2 (Marginal Strength2). Let F be a set of target states where
each target state f represents a hypothesis state which the user wishes to pursue.
The marginal strength function2 MS2 (Pr (F)) is then,

MS2 (Pr (F)) ≡




(∑
f∈F (f−

(
1− 1

nF

)
)2(

1− 1
nF

)2 − nF

)
∗ 1

nF
: 0 ≤ f ≤ 1 − 1

nF
.(∑

f∈F
((

f−
(
1− 1

nF

))
∗(nF−1)

)2

(
1− 1

nF

)2 − nF

)
∗ 1

nF
: 1 − 1

nF
< f ≤ 1.

In Figure 4.5, the change of the minimum depending on the number of
targets n = nF is shown. Within this figure it is assumed that each target f
has an equal probability.

Whether the second function performs better than the first function is de-
termined with tests in Chapter 7.
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Fig. 4.5: The Marginal Strength2 function for a different number of targets n = nF





5. JOINT PROBABILITY APPROACH

The major advantage of using marginal based test selection measures for the
process of diagnosis, is the speed and reduction in complexity. However, it is
undeniable that the approach is based on a rough approximation. Therefore,
I propose another approach which comes a lot closer to using the true joint
probability. Although this approach is far less radical, it is far more expensive
to calculate. Especially in large networks (networks with more than 20 or 30
nodes and a large number of dependency relations) this approach may cost an
extreme amount of time.

Basically this approach is separated into two areas, the area of copulas,
and the area of differential diagnosis. The first area provides marginal based
approximations for the joint probability distribution. The second area basically
allows the user to pursue and differentiate between any possible set of scenarios.
This area is necessary for presenting the enormous number of scenarios to a user
and still providing the user with the ability to pursue any set of scenarios.

5.1 Area of Copulas

In essence, copulas are functions that join or “couple” multivariate probability
distributions to their one-dimensional marginal probability distribution [Nelsen,
1998]. Since the process of multiple cause diagnosis uses the joint probability
distribution, this area may be applied to find a qualitative approximation for
the joint probability. In doing so, I start with a general introduction to copulas,
whereafter I investigate how the area of copulas may be applied. For this
introduction I follow the notation used in Nelsen [1998], where it is assumed
that the probability distributions are continuous and described by a cumulative
distribution function. The cumulative distribution function or distribution
function over a random variable X is a function FX : R → [0, 1] defined as
FX (x) = (X ≤ x).

Before defining copulas I first need to introduce some additional notations.
Let R denote the ordinary real line (−∞,∞), and R denote the extended
real line [−∞,∞]. For any positive integer n, let R

n
denote the extended

n-space R × R × · · · × R. The vector notation is used for the points in R
n
, e.g.,

a = (a1, a2, ..., an). The notation a ≤ b is used when ak ≤ bk for all k. [a,b]
denotes the n-box B = [a1, b1] × [a2, b2] × · · · × [an, bn], the Cartesian product
of n closed intervals. The vertices of a n-box B are the points c = (c1, c2, ..., cn)
where each ck is equal to either ak or bk. A n-place real function H is a
function whose domain, DomH, is a subset of R

n
and whose range, RanH, is

a subset of R.
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Since the definition of a n-dimensional copula depends on the positiveness
of the volume under a n-place real function I start with the definition of a
H-volume.

Definition 5.1 (H-volume). Let S1, S2, . . . , Sn be nonempty subsets of R, and
let H be a n-place real function such that DomH = S1 × S2 × · · · × Sn. Let
B = [a,b] be a n-box all of whose vertices are in DomH. Then the H −volume
of B is given by

VH (B) =
∑

sgn(c)H(c), (5.1)

where the sum is taken over all vertices c of B; and sgn(c) is given by

sgn (c) =
{

1, if ck = ak for an even number of k’s.
−1, if ck = ak for an odd number of k’s. (5.2)

For the two dimensional case n = 2, where H be a function such that
DomH = S1 ×S2. Let B = [a1, a2]× [b1, b2] be a rectangle all of whose vertices
are in DomH. Then the H-volume of B is given by:

VH(B) = H (x2, y2) − H (x2, y1) − H (x1, y2) + H (x1, y1) . (5.3)

Definition 5.2 (n-dimensional copula). A n-dimensional copula is a func-
tion C : [0, 1]n → [0, 1] with the following properties:

1. For every a ∈ [0, 1]n,

C (a) = 0 if at least one coordinate of a is 0.

2. For every a ∈ [0, 1]n,

if all coordinates of a are 1 except ak, then C (a) = ak.

3. For every a and b in [0, 1]n such that a ≤ b,

VC ([a, b]) ≥ 0.

The following theorem introduces the connection between the copula func-
tions and their margins.

Theorem 5.1 (Sklar’s theorem in n-dimensions). Let H be a n-
dimensional distribution function with margins F1, F2, · · · , Fn. Then there ex-
ists a n-copula C such that for all x in R

n
,

H (x1, x2, · · · , xn) = C (F1 (x1) , F2 (x2) , . . . , Fn (xn)) .

If F1, F2, . . . , Fn are all continuous, then C is unique: otherwise, C is uniquely
determined on RanF1×RanF2×· · ·RanFn. Conversely, if C is a n-copula and
F1, F2, . . . , Fn are distribution functions, then the function H defined above, is
a n-dimensional distribution function with margins F1, F2, . . . , Fn.
Proof. See Nelsen [1998]. �

The following theorem presents the upper and lower bound of the Copula
functions. Notice that they are equal to the ones I derived in Section 4.2.
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Theorem 5.2 (copula bounds). If C is any n-copula, then for every u in
DomC there holds,

Mn(u) = min (u1, u2, . . . , un) ≤ C (u) ≤ max (u1 + u2 + · · · , un − n + 1, 0) = Wn(u)

Proof. See Nelsen [1998]. �

Within the area of Copulas many families of possible copula functions have
been created, see [Joe, 1997] for an overview. As an example I present the
Cuadras-Augé family of copulas, where θ ∈ [−1, 1] is a constant, representing
the dependence between the variables:

Cθ (u) = [Mn(u)]θ [Πn(u)]1−θ
.

The value of θ may be determined with Spearman’s correlation coefficient, see
[Dall’Aglio et al., 1991].

This short introduction provides a general idea of what copula functions
are. However, when applying copulas to Bayesian networks various problems
are encountered. One primary problem is that the theory of copulas is based
on continuous (mostly) bivariate probability distributions, where as Bayesian
networks generally work with discrete multivariate probability distributions. A
possible solution is to translate the discrete probability distribution of every
variable to a continuous distribution, apply a selected copula function to
calculate the continuous joint probability distribution, and finally translate this
distribution back to a discrete joint probability distribution. It is obvious that
this approach is computationally quite expensive, and it also implies the use of
several approximations necessary for the translations.

A much more appealing solution is using copula functions that work with
discrete probability distributions and calculate a discrete joint probability dis-
tribution. Unfortunately, I have found only one copula function that supports
this,

Cprod(u) ≡
n∏

(u) = u1u2 · · ·un.

Within copulas this function is better known as the product copula. In
probability theory this function represents the joint probability when all the
variables are independent of each other. To my knowledge this copula function
is the only function that may be used for continuous as well as for discrete
probabilities.

By using this function I am able to implement the copula approach in the
test selection part of the diagnostic process. Before the test selection measures
from Section 3.4 are applied, the product copula is used to determine the joint
probability distribution. More information about the implementation of this
approach is given in Section 6.3.
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5.2 Differential Diagnosis

A way in which human diagnosticians cope with the complexity of diagnosis,
is by counter opposing competitive hypothesizes and seeking evidence that
differentiates between them. This approach, which I refer to as differential
diagnosis, is considered standard in medical science, but only applied in a
simplified form in current diagnostic expert systems. In this section I generalize
this approach and adapt the test selection measures from Chapter 3.3, for the
support of this approach.

Given a diagnostic probabilistic network (DPN) with a set H of hypothesis
nodes, and DH the set of all possible scenarios, I define the concept of differential
diagnosis as the ability to differentiate between any possible partition P . A
partition P of a set ∆ is a set of non-empty subsets of ∆ which are mutually
disjoint and whose union is ∆. How the partitions are used in a DPN, is defined
in the following definition.

Definition 5.3 (differential diagnosis partition). A partition from a set
of hypothesis nodes H consists of one or more scenarios from the domain DH.
The probability of a partition P is defined as the sum of the probabilities of the
scenarios s ∈ P , Pr (P ) =

∑
s∈P

Pr (s). Within a DPN I disallow a partition that

contains all the hypothesis scenarios.

Below I present two possible partition selections within the diagnostic prob-
abilistic network of the Asia example, see Example 3.2.

Example 5. Suppose differential diagnosis is performed on the hypothesis set
H = {TC,LC,BC} in the DPN from Example 3 with all the possible scenarios
in Table 3.1. Now assume a doctor wants to investigate whether a person has
only one disease present. In this case four partitions are formed, see Table
5, three partitions with one disease present and other diseases absent and one
partition which contains all other scenarios.

Tab. 5.1: Partitions with one disease present and the rest
P1 P2 P3 P4

TC present TC absent TC absent all
LC absent LC present LC absent other
BC absent BC absent BC present scenarios

Another interesting case is to pursue the scenario that all diseases are present.
The partitions, see Table 5, are then, one partition with all diseases present and
one partition with all other scenarios. �

Tab. 5.2: Partitions with all diseases present and the rest
P1 P2

TC present all
LC present other
BC present scenarios
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For the partitions I want tests that distinguish between the probabil-
ities of the partitions i.e., reduce the uncertainty between the partitions.
Since the test selection measures from Section 3.4 share this same goal but for
scenarios, I adapted these functions to work with partitions instead of scenarios.

Definition 5.4 (differential entropy). Let H be a set of hypothesis variables,
and let P be a set of n partitions that cover all the scenarios of s ∈ DH. The
differential entropy function Diff ENT (Pr (P ∈ P)) : [0; 1]n → R is then,

Diff ENT (Pr (P)) ≡
∑
P∈P

Pr (P ) log2 (Pr (P ))

with log2(0) = 0.

This measure will calculate the entropy over any number of partitions
{P1, ..., Pn}. It is easy to see that all the properties specified for the entropy
function, defined in Theorem 3.3 also hold for this function.

Definition 5.5 (differential weight of evidence). Let H be a set of hypoth-
esis variables, and let P be a set of n partitions that cover all the scenarios of
s ∈ DH. The differential weight of evidence function Diff WOE (Pr (P ∈ P)) :
[0; 1]n → R is then,

Diff WOE (Pr (P)) ≡ log Pr (P1) − log Pr
(
P1

)
= log Pr (P1) − log (1 − Pr (P1))

= log
Pr (P1)

(1 − Pr (P1))

Also here, this function restricts itself to comparing only one partition with the
rest. It is easy to see that this function has the same properties as the ones
specified for regular weight of evidence, defined in Theorem 3.4.

Although the benefit of this approach is the improved ability to control
and direct the process of diagnosis it also increases presentational problems.
So it is practically impossible in complex networks to let a user decide which
partitions to create, since the number of partitions grows exponentially and
even faster than the number of scenarios. Consider, for example the 10
hypothesis variables where each hypothesis variable has 2 states and the
number of scenarios is then 1024. The number of possible partitions1 is then
115974. Because of this exponentially fast growing number, it is essential
to use a technique that makes the selection of partitions manageable for the user.

The technique I propose, is to let the user choose hypothesis states and select
one out of three interesting methods to form partitions. This technique fits
perfectly in the single fault diagnosis application from Section 3.5, where states
are denoted as targets. These targets represent the states in which the user is

1 The number of possible partitions is also known as the sum of Stirling numbers of the
second kind S(n, k) minus 1 since I do not allow the partition that contains all the scenarios;∑n

k=1 S (n, k) =
∑n

k=1
1
k!

∑k−1
i=0 (−1)i

(
k
i

)
(k − i)n−1, where n is the number of scenarios
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interested and wishes to have the option of pursuing. After selecting a number
of targets the user may choose one out of the three partition-distributions.

Partitions with one or more targets This distribution consists of partitions,
where each partition contains a scenario with at least one target present
and additional one partition for the rest of the scenarios.

Partitions with all the targets This distribution consists of partitions, where
each partition contains a scenario with all the targets present and ad-
ditional one partition for the rest of the scenarios.

Partitions with only one target This distribution consists of partitions, where
each partition contains a scenario with at most one target present and
additional one partition for the rest of the scenarios.

Suppose in Example 5 the presence of the diseases, tuberculosis, lung cancer
and bronchitis are denoted as targets. Then Table 5 shows the first partition-
distribution where all the targets are present and one partition for the rest.
Furthermore, Table 5 represents the second partition-distribution where at
least one target is present and one partition for the rest. If the third partition-
distribution in this example is used, then each partition consists of one scenario.

With this technique I am able to provide the desired ability to pursue and dif-
ferentiate between any set of scenarios and also provide the user with a workable
interface. The details of the implementation of this technique in combination
with the marginal based copula function is described in Section 6.3.



6. MULTIPLE CAUSE MODULE

This chapter describes the multiple cause module (MCM) I developed for the
support of multiple cause diagnosis. For this support I implemented the approx-
imation approaches derived in the previous chapters. The MCM has been made
a part of the diagnostic module already implemented in GeNIe and SMILE. This
existing module provides support for the diagnosis of a single cause as described
in Section 3.5. With some small modifications the interface used for single cause
diagnosis is also used for the MCM. The interface then provides the user with
the ability to select any number of targets and investigates these. Additional to
the two approximation approaches, marginal and joint probability approach, I
also implemented the use of the true joint probability in combination with the
entropy value function. Before I describe the details of the implementations I
provide some information about GeNIe and SMILE.

6.1 GeNIe & SMILE

GeNIe is a versatile and user-friendly development environment for building
graphical decision models developed at the Decision Systems Laboratory. Its
name with its uncommon capitalization originates from the name Graphical
Network Interface and has been developed at the Decision Systems Laboratory.
This original simple interface was designed for SMILE (Structural Modelling,
Reasoning, and Learning Engine), a library of C++ classes implementing
graphical probabilistic and decision-theoretic models. GeNIe may be seen as
an outer shell to SMILE. Furthermore, GeNIe is implemented in Visual C++
and draws heavily on the Microsoft Foundation Classes.

Fig. 6.1: The architecture of GeNIe and SMILE
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SMILE is a fully platform independent library of C++ classes implement-
ing graphical probabilistic and decision-theoretic models, such as Bayesian
networks, influence diagrams, and structural equation models. Its individual
classes, defined in SMILE Applications Programmer Interface, allow to create,
edit, save, and load graphical models, and use them for probabilistic reasoning
and decision making under uncertainty. These classes are accessible from C++
or (as functions) from C programming languages. As most implementations
of programming languages define a C interface, this make SMILE accessible
from practically any language on any system. Also SMILE may be embedded
in programs that use graphical probabilistic models as their reasoning engines.
Furthermore, models developed in SMILE can be equipped with a user interface
that suits the user of the resulting application most. Additional to the SMILE
platform is the development of SmileX, an ActiveX Windows component that
allows SMILE to be accessed from any Windows programming environment,
including World Wide Web pages.

Fig. 6.2: A schematic view of GeNIe with the Hailfinder network

Some of the applications, built using GeNIe or SMILE, are: battle damage
assessment (Rockwell International and U.S. Air Force Rome Laboratory),
group decision support models for regional conflict detection (Decision Support
Department, U.S. Naval War College) intelligent tutoring systems (Learning
and Development Research Center, University of Pittsburgh), medical therapy
planning (National University of Singapore), medical diagnosis (Medical
Informatics Training Program, University of Pittsburgh; Technical University
of Bialystok, Poland). GeNIe and SMILE have been also used in teaching
statistics and decision-theoretic methods at several universities, even the
Technical University of Delft.
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Currently the Decision Science Laboratory is in its final stage of developing
the second version of GeNIe, GeNIe2. This new version is characterized by
its improved functionality to handle decision-theoretic models, e.g., Bayesian
networks. A big improvement is found in the presentational and clarity aspect.
An example of this clarity aspect is the ability to annotate any part of the
network: variables, states and even arrows. The improved presentational aspect
is found in the option of showing a bar chart of the probability distribution of a
variable, see Figure 6.3. Within this bar chart the user is able to set a variable
to a desired state and immediately notice the effect on the probabilities of the
other variables.

Fig. 6.3: The GeNIe2 environment with the Asia network displayed in bar charts

A similar improvement is found in the assigning of the probability tables.
As shown in Figure 6.4, the user may now assign a probability distribution
with the help of a pie chart or bar chart.

The part in SMILE that contains the necessary functions and algorithms for
the diagnostic application described in Section 3.5, is known as the diagnostic
module of SMILE. This module acts as an “extra” layer over the SMILE
library. The benefit of this design is that the module can make use of any
function or class defined in the rest of SMILE. The three important classes
of the diagnostic module are DSL extraDefinition, DSL diagNetwork and
DSL fastEntropyAssessor.
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Fig. 6.4: The assigning of the probability distribution of the variable Smoking with
help of a pie chart

DSL extraDefinition
This class supplies the functions which define the necessary variables within a
diagnosis session. So all the nodes in the available network are divided into
three types: target, observation, and auxiliary. Each node may only be one
of the three types. The target and observation nodes represent the hypothesis
and test variables as defined in Section 3.2. From each of the target nodes a
number of states are denoted as target states.

DSL diagNetwork
The necessary functions to perform diagnosis are provided by this class.
Whenever the user selects a target state to pursue, functions in this class are
called to determine the ranking of each test and returns the results. The actual
determination of the rankings is however not done in this class but is performed
by functions from the following class.

DSL fastEntropyAssessor
The actual process of value of information, see Figure 3.4, is arranged by the
functions in this class. For the single cause diagnosis this class contains the
function to determine the expected benefit and test strength of each available
test. The value function which is used for the support of single cause diagnosis
is given by the entropy value function from Section 3.4.

Together with the interactive interface described in Section 3.5, the diagnos-
tic module already provides a strong support to perform diagnosis with Bayesian
networks. However, to complete this support it is essential to implement the
support of multiple causes.
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6.2 Description of the Multiple Cause Application

The multiple cause application assumes the same preparation as the single
cause application from Section 3.5. In other words, at least one hypothesis
variable along with a target state and at least one test variable must be available.

As is shown in Figure 6.5, the interface of the diagnostic application is
practically the same as the interface of the single diagnostic application. At
the left of the screen the targets are displayed and on the right the available
tests. The difference is that the user is able to select any number of targets
and start the ranking of the available tests. How the tests are ranked depends
on which approach is used, marginal or joint probability approximation. The
result of the rankings is displayed with the list of tests.

In Figure 6.5 the two targets LungCancer and Tuberculosis present are
pursued. The ranking of the tests is determined by the marginal probability
approach in combination with the MS1 function. According to the test-list the
test X−RayResult is the best test to perform.

Fig. 6.5: The diagnostic screen with pursuing the two targets LungCancer and
Tuberculosis present from the Asia DPN

The rankings in the test-list show which test is best in reducing the un-
certainty between possible scenarios of the selected targets. The instantiation
of a test will have an impact on the probabilities of the targets and also the
probability distributions of the test variables. Therefore, the values in the
diagnosis screen will adapt and the multiple cause application will recalculate
the ranking of the remaining tests for the selection of targets. Note that after
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instantiation of a test the selection of targets remains the same. In Figure
6.6 the effect of instantiating the test X−RayResult with the state Normal
is shown. The effect is that both LungCancer and Tuberculosis present get
a low probability. Furthermore, no test provide itself with a high ranking to
become even more certain about the targets. A logical step would be to stop
investigating the target states LungCancer and Tuberculosis present but
instead investigate the presence of the target Dyspnea.

Fig. 6.6: The diagnostic screen with the instantiation of the test X−RayResult to
the state Normal.

The assigning of the ranking for each test may be done by applying either the
marginal probability approach or the joint probability approach. How these are
implemented and the available options are described in the following sections.
Which approach and which underlying function is used, may be set in the code.

6.3 Implementation of the Available Approaches

The implementation of the support for the multiple cause application follows
the value of information procedure displayed in Figure 3.4. Within this
procedure the two approaches, marginal and joint probability approach, are
used whenever the value of the test selection measure is determined. As shown
in Figure 3.4, this is when V (Pr (H)) and for every test outcome V (Pr (H| tj)).
The rest of the test selection procedure uses the result of the approaches to
determine a ranking for each test. Additional to the two approaches I also
implemented the calculational of the full true joint probability in combination
with the differential entropy function.



6. Multiple Cause Module 57

Each of the approaches is implemented in the class
DSL fastEntropyAssessor. Since the class DSL diagNetwork asks the functions
from DSL fastEntropyAssessor class, I also adapted this class so it selects the
right approaches. In the class DSL extraDefinition little has changed since it
already provides all the support necessary for multiple cause diagnosis. Finally,
some changes were made to the single cause interface from Section 3.5. The
changes adjusted the interface so it supports the ability to select and pursue
multiple causes. Below, I provide the details concerning the implementation of
the different approaches.

The marginal probability approach
This approach was the easiest to implement, since it directly uses the marginal
probabilities of the set of selected targets and not the entire joint probability
distribution. With the variable marginalFunction a choice may be made which
of the two marginal based functions, MS1 and MS2 is applied. The general
procedure of the marginal probability approach is shown in Figure 6.7.

Procedure:MarginalValue(F , marginalFunction)

Input: F = set of selected target states, marginal-
Function= choice of marginal function
Output: value V (Pr(F))

1. collect the set of selected targets F

2. set variable result to zero

3. for each fi ∈ F

4. if marginalFunction=MS1

5. determine MS1 (Pr(fi))

6. else marginalFunction=MS2

7. determine MS2 (Pr(fi))

8. end if

9. add determined value to result

10. end for each

11. return variable result

Fig. 6.7: Marginal based approach procedure for the calculation of the test selection
measure
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With the second function, MS2, I make use of an IF statement since this
function is a combination of two functions. See Figure 6.8 for details about
the implementation of the MS2 function. The implementation of the function
MS1 is quite similar to the implementation MS2 function but without the IF
statement and with the pursuedFaultCount variable set to the value 2.

double DSL fastEntropyAssessor::CalculateMarginalStrength2 (const DSL intArray pursued-

Faults, DSL network &thisNet)

{
This value function assigns probabilities close to zero and one a value close to zero and has its

minimums = -1 at the value 0.5

int pursuedFaultCount=pursuedFaults.NumItems();

double marginalStrength=0.0;

double purFaultCountInv = 1/pursuedFaultCount;

double purFaultCountInvMinOne = 1-purFaultCountInv;

for (int a=0; a<pursuedFaultCount; a++)

{
Determine the node and the state of the pursuedFault

int afault = pursuedFaults[a];

const DIAG faultyState &fs = theNetwork→GetFaults()[afault];

int theFaultNode = fs.node;

int theFaultOutcome = fs.state;

Get the marginal of this pursuedfault

DSL Dmatrix theFaultPriors;

thisNet.GetNode(theFaultNode)→Value()→GetValue(&theFaultPriors);

double faultMarginal = (*theFaultPriors)[theFaultOutcome];

Calculation of the measure

if (faultMarginal<=purFaultCountInvMinOne)

marginalStrength+=pow((faultMarginal-purFaultCountInvMinOne),2);

else

marginalStrength+=pow(((faultMarginal-purFaultCountInvMinOne)×
(pursuedFaultCount-1)),2);

}
Normalizing the Marginal Strength to (0,-1) area

marginalStrength/=(pow(purFaultCountInvMinOne,2)*pursuedFaultCount);

marginalStrength-=1;

return(marginalStrength);

}

Fig. 6.8: Implementation of the MS2 value function
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The joint probability approach
This approach was somewhat more difficult to implement, since it first required
all the possible scenarios with the pursued target set. The function then deter-
mines if the scenarios belong to the selected partition-distribution. If yes the
differential value function is calculated over it. For the implementation I choose
the differential entropy function, see Section 5.4. An overview of the process of
using the joint probability approach is shown in Figure, 6.9.

Procedure:JointValue(F , Θ)

Input: F = set of selected target states, Θ = choice
of differential diagnosis distribution
Output: value V (Pr(F))

1. collect the set of selected targets F

2. collect the possible scenarios of the targets DF =
{s1, s2, . . . , sn}

3. set variable result and sum probability to zero

4. for each si ∈ DF

5. if si belongs to the Θ partition-distribution

6. determine probability of this scenario Pr (si)
with product copula function

7. determine Diff ENT (Pr(si))

8. end if

9. add Diff ENT (Pr(si)) to result

10. add Pr(si) to sum probability

11. end for each

12. determine Diff ENT (1 − sum probability)

13. add Diff ENT (Pr(si)) to result

14. return result

Fig. 6.9: Procedure of the joint probability based approach

The variable Θ defines which partition-distribution is taken over the set of
possible target scenarios. According to Section 5.2 there are three possible states
of Θ, at least one target state, only one target state, or all target states in the
scenario. The check whether a scenario is in the partition-distribution is done by
the function CheckDiffDiag. When this function indicates the scenario as part
of the partition-distribution, then the differential entropy function is calculated
over this scenario, see Figure 6.10.
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double DSL fastEntropyAssessor::CalculateJointEntropy Independence(const DSL intArray

& pursuedFaultsNodes, const DSL intArray & pursuedFaultsNumStates, const int intVectors

& pursuedFaultsMatrix, DSL network &theNet) {
double sumScenarioProb=0.0, jointEntropy=0.0;

int numberFaultsNodes = pursuedFaultsNodes.NumItems();

DSL intArray coordinates;

int resultNext=DSL OKAY;

while (resultNext==DSL OKAY)

{
int check=CheckDiffDiag(pursuedFaultsMatrix, pursuedFaultsNumStates, coordinates);

if (check==DSL TRUE)

{
double scenarioProb=1.0;

for (int b=0; b<numberFaultsNodes;b++)

{
int theFaultNode = pursuedFaultsNodes[b];

int theFaultState = coordinates[b];

DSL Dmatrix *theFaultProbs;

theNet.GetNode(theFaultNode)→Value()→GetValue(&theFaultProbs);

double faultMarginal = (*theFaultProbs)[theFaultState];

scenarioProb*=faultMarginal;

}
if (scenarioProb== 0.0 || scenarioProb== 1.0)

jointEntropy += 0.0;

else

jointEntropy += -scenarioProb * Log2(scenarioProb);

sumScenarioProb+=scenarioProb;

}
resultNext=NextScenarioCoordinates(coordinates, pursuedFaultsNumStates);

}
double restScenariosProb=1-sumScenarioProb;

if (restScenariosProb== 0.0 || restScenariosProb== 1.0)

jointEntropy += 0.0;

else

jointEntropy += -restScenariosProb * Log2(restScenariosProb);

return(jointEntropy);

}

Fig. 6.10: Implementation of the calculating of the differential entropy value function
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The true joint probability
Additional to the marginal and joint probability approach, I also implemented
the determination of the true joint probability distribution. Thanks to
this implementation I am able to compare the use of the approximation
approaches with the use of the theoretical approach. For the calculations
of this distribution the chain rule of Theorem 2.1 is applied. Since I
want to provide support for pursuing and differentiating between any set of
scenarios, I used the differential entropy function to determine the test rankings.

The procedure for using the true joint probability is actually similar to the
procedure of the joint probability approach. However, a large difference be-
tween the procedures is that the entire joint probability is calculated before the
differential entropy function is applied. This difference makes this approach
immediately far more expensive to calculate. The reason for this lies in the fact
that according to the chain rule, the joint probability distribution is calculated
by multiplication of conditional and marginal probabilities. This implies the
instantiation of states of multiple variables. The consequence of instantiating
a state is that all the pursued target variables have to be updated. For this
reason I focused on reducing the number of instantiations to a minimum and
create the entire joint probability distribution at once. A consequence is that
for every state in every test variable this entire joint probability distribution
is recalculated. It is obvious that this approach only works within reasonable
small networks and only with a limited number of target nodes. Since the joint
probability keeps the same structure concerning the combination of states I only
once determine which scenarios are interesting according to the differential di-
agnosis distribution. The entire process of using the true joint probability in
combination with the differential entropy function is displayed in Figure 6.11.
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Procedure:TrueJointValue(F , Θ)

Input: F = set of selected target states, Θ = choice
of differential diagnosis distribution
Output: value V (Pr(F))

1. collect the set of selected targets F

2. collect the target variables

3. determine entire joint probability distribution over all
possible scenarios DF = {s1, s2, . . . , sn} with the tar-
get variables

4. determine which scenarios are in the Θ partition-
distribution and store these in scenario locations

5. set variable result and sum probability to zero

6. for each si ∈ scenario locations

7. determine Diff ENT (Pr(si))

8. add Diff ENT (Pr(si)) to result

9. add Pr(si) to sum probability

10. end for each

11. determine Diff ENT (1 − sum probability)

12. add Diff ENT (Pr(si)) to result

13. return result

Fig. 6.11: Procedure of the true joint probability approach
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This chapter describes the two test procedures which I used to determine the
quality of the support of the marginal and joint probability approach. The
first procedure tests in how many cases the diagnosis sequence results in a
correct diagnosis. The second procedure determines the times necessary to
perform diagnosis with a number of targets. In order to show the necessity
of the approximation approaches I performed the second test procedure also
with the true joint probability. The test procedures have been primarily tested
on the Hepar II system, a practical network for the diagnosis of multiple liver
disorders.

7.1 Description of the Hepar II System

The Hepar II system is a continuation of the Hepar project, conducted in the
Institute of Biocybernetics and Biomedical Engineering of the Polish Academy
of Sciences in collaboration with physicians at the Medical Center of Postgrad-
uate Education in Warsaw. The Hepar system was designed for gathering and
processing the clinical data on patients with liver disorders and aimed at re-
ducing the need for hepatic biopsy by modern computer-based diagnostic tools.
An integral part of the Hepar system is its database, created in 1990 and thor-
oughly maintained since then at the Gastroentorogical Clinic of the Institute of
Food and Feeding in Warsaw. The current database contains over 800 patient
records and its size is steadily growing. Each hepatological case is described by
over 200 different medical findings, such as patient self-reported data, results of
physical examinations, laboratory tests, and finally a histopathologically veri-
fied diagnosis.

The structure of the Hepar II system, see Figure 7.1, is divided into three
colors, the red nodes represent the hypothesis variables and the blue and green
nodes the test variables. The reason for the use of two colors with the test nodes
is that blue nodes are mainly patient self-reported data and risk factors while
green nodes indicate symptoms, the results of physical examinations, and labo-
ratory test. Most of the nine hypothesis variables consist of two states, present
and absent of the liver disease. However, the variables Chronic, Hepatitis, and
Cirrhosis each contain three states where two states represent the intensity
of the liver disease and one state represents the absence of the disease. The
total number of possible scenarios with this hypothesis set is then 1152 scenarios.

Before I may use this network for the multiple cause diagnosis application, I
have to indicate which of the hypothesis states are considered as targets. Since
the network is designed to diagnose whether a patient has one or a combination
of liver diseases I distinguish the presence of a liver disease as a target. This
results in the following list of targets, see Table 7.1.
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Fig. 7.1: The Hepar II network translated to a diagnostic probability network, with
the hypothesis variables in red and the test variables in blue and green

Tab. 7.1: The targets of the Hepar II network

Hepatic steatosis present
Chronic hepatitis active

persistent
Hepatic fibrosis present

Cirrhosis decompensate
compensate

Carcinoma present
PBC present

Toxic hepatits present
Functional hyperbilirubinemia present

Reactive hepatitis present
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7.2 Quality and Time Procedures

The goal of testing the multiple cause diagnosis module from Section 6.2, is
to determine if the application performs well in real networks and results in
valuable diagnosis. In order to reach this goal I apply two test procedures on
the Hepar II network. The test procedures are performed on the marginal test
approach with its two marginal functions and the joint probability approach
with the product copula function, the differential entropy function and the
partition-distribution of at least one target. The reason to restrict the differen-
tial diagnosis to only one partition-distribution is that a different distribution
is only useful and interesting if the user has an idea which combination of the
causes is most likely. Unfortunately, it is hard to implement this users intuition
into a computer test program.

Quality Test Procedure
The first procedure tests the quality of the rankings in the test-list, determined
by the different approaches available in the application. The quality is tested
by comparing the quality of a sequence of performing the best test with the
quality of performing all the tests. The sequence of performing the best test is
stopped when according to the test-ranking there is no interesting test left.

The quality of performing a test or sequence of tests may be measured by
comparing the sensitivity and specificity of a test. Before I explain these terms I
start by introducing the true and false positiveness and negatives of a diagnostic
process. In most cases there holds that after performing a test the uncertainty
about a diagnosis is not completely taken away. There are still some situa-
tions imaginable where the information collected by a sequence of tests, does
not completely distinguish between the presence and absence of a cause. By
counting in how many cases a sequence of tests was correct or not, delivers the
4 frequencies of Table 7.2. The frequencies TP , FP , FN and TN represent the
observed frequencies of in how many cases the sequence of tests concluded if the
cause was present or absent and if this diagnosis was correct. In short, these
abbreviations stand for:

• TP : The frequency of how often the sequence of tests was correct indicat-
ing the presence of a cause;

• FP : The frequency of how often the sequence of tests was not correct
indicating the presence of a cause;

• FN : The frequency of how often the sequence of tests was not correct
indicating the absence of a cause;

• TN : The frequency of how often the sequence of tests was correct indi-
cating the absence of a cause.

Tab. 7.2: The four aspects of diagnostic evaluation
True disease state

D+ D-
Sequence of Tests T+ TP FP

T- FN TN
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Given these frequencies, the accuracy of the diagnosis may be determined.
This is done by applying the concepts sensitivity and specificity. The sensitivity
of a test is defined as the likelihood that a diseased patient has a positive test,

Se =
TP

TP + FN
.

If all patients with a disease have a positive test, i.e., not diseased patients
have negative tests, then the test sensitivity is 1. A test with high sensitivity
is useful to exclude a diagnosis because a highly sensitivity test will render few
results that are falsely negative.

The specificity of a test is the likelihood that a healthy patient has a negative
test,

Sp =
TN

TN + FP
.

If all patients with no disease have negative tests, i.e., not healthy patients
have positive tests, then the test specificity is 1. A test with high specificity is
useful to confirm a diagnosis, because a highly specific test will have few results
that are falsely positive. The best possible test is the test with sensitivity and
specificity of 1. This test is never wrong in diagnosing a disease.

The sensitivity and the specificity are then used in an ROC analysis. The
Receiver Operating Characteristic (ROC) analysis was introduced in medical
science in the late 1960s for the assessment of imaging devices. This analysis
now belongs to the standard tools for the evaluation of clinical laboratory tests.
The underlying assumption of the ROC analysis is that a diagnostic variable is
to be used as a discriminator of two defined groups of responses, e.g., presence
or absence of a cause. ROC analysis then assesses the diagnostic performance
of the system in terms of Se and (1 − Sp). This is done for each observed
value of the discriminator variable (cut-off point to differentiate between the
two groups of responses). The pairs Se and (1 − Sp) for each of these cut-off
points are then displayed as a ROC curve. The connection of the points leads
to a staircase trace that originates from the upper right corner and ends at the
lower left corner. The higher the curve is to the top left corner, the higher are
the values of the sensitivity and the specificity or the better the quality of the
diagnosis process.

The generation of the data necessary for the ROC curve is done by a test
program created by Pryztula and Dash. Basically this program generates
records of entire diagnosis sequences and determines in how many cases the
diagnosis was correct and not correct. These records are then used for the
creation of ROC curves. Unfortunately, the program is yet to be described in
an upcoming paper [Pryztula and Dash], so I am not allowed to disclose any
details about this program.
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Time Test Procedure
The second procedure tests the time necessary for creating the rankings in the
test-list. This test procedure is quite simple, but essential, since I expect it to
show that the better the quality of the application, the more calculational effort
is performed. The timer in the program will start whenever the approach func-
tion is called in the class DSL fastEntropyAssessor. This timer will then stop
and calculate the difference when the function is done calculating all the rank-
ings. The time to get the different test-rankings on the screen is not measured
since this is the same for every approach and associated function.

7.3 Test Results

The quality test procedure performed by the test program of Pryztula and
Dash on the Hepar II network, generated a set of 200 test sequences. Each of
these 200 records contained a measurement concerning the quality of the test
sequence over all the available targets, see Table 7.1. From this measurement
data the specificity and the sensitivity of each record was calculated and
translated into a ROC curve.

As is shown in Figure 7.2 this procedure has been performed for the two
marginal strength functions, MS1 and MS2 of the marginal probability ap-
proach. But also for the joint probability approach with its product copula and
the differential entropy function, Product Copula. The top curve in the figure
represents the diagnosis of performing all tests, All tests. This curve is imme-
diately a measurement of how good the network actually is in diagnosing the
targets.

Fig. 7.2: The ROC-curves of the Hepar II network
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Since the quality of a ROC curve is defined by how close it is to the top left
corner, it confirms that performing all available tests results in the qualitatively
best diagnosis. By comparing the other ROC curves to this curve a statement
may be made about the quality of the approximation approach. Since the joint
probability approach is the closest to the all tests curve this approach provides
relative comparable quality. On the other hand the marginal probability
approach with the two functions MS1 and MS2 is even further away from
the All tests curve. This indicates that this approximation approach has a
large effect on the quality of performing diagnosis. A peculiar thing about the
ROC-curves of MS1 and MS2 is that they are almost equal to each other.
Apparently the negative effect of the growing distance between the bounds is
not that serious to account for.

A reason for the equality of the MS1 and MS2 ROC-curves might be the
small number of targets. To investigate this, I also performed the test procedure
with the marginal probability approach on a network much larger than the
Hepar II network. This network has a total of 168 nodes where 47 nodes are
hypothesis variables, 117 nodes are test variables and 4 nodes are auxiliary
variables. From the hypothesis variables, only one state is selected as a target
state, thus in total there are 47 targets to pursue. Since this network belongs
to a company and is used in a professional environment, I did not receive
permission to describe this network in my report. Therefore, I refer to the
network as the Pitt network and will only discuss the test results of this network.

Fig. 7.3: The ROC-curves of the Pitt network
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In Figure 7.3 the ROC curves of the Pitt network are displayed. By
comparing these curves with the curves of the Hepar II network, it is easy to
see that this network is better in performing diagnosis. The most important
indication for this is that the All tests curve within the Pitt network is much
better than the All tests curve of the Hepar II network. However, also with
this network both the MS1 and MS2 curves have almost identical values.
Apparently the increase in number of targets has little effect on which marginal
based function is qualitatively better. On the other hand it is very interesting
to notice that the quality of the MS1 and MS2 curves lie so much closer to the
curve of All tests. Maybe there holds that the better the quality of the network
to perform diagnosis with, the better the quality of the marginal probability
approach. Unfortunately, I could not collect more networks to further test this
hypothesis.

Although it is clear which approach results in qualitative better diagnosis, it
is wrong to say that this approach is automatically the best approach. Therefore,
the second test procedure was designed and performed. This procedure resulted
in the time measurements of the Tables 7.3, 7.4, 7.5, and 7.6. In short these
tables present the necessary times for the calculation of the test rankings for
different numbers of pursued targets. To account for the difficulty of calculating
the test rankings in complex networks the measurements have been performed
with three different networks, Asia diag, Hepar II, and Pitt.

Tab. 7.3: The calculational times in seconds for using the Marginal Strength1 function

MS1 2 targets 3 targets 5 targets 10 targets 15 targets 20 targets 25 targets
Asia diag 0 0 *** *** *** *** ***
Hepar II 1 1 1 1 *** *** ***
Pitt 1 1 1 1 1 1 1

Tab. 7.4: The calculational times in seconds for using the Marginal Strength2 function

MS2 2 targets 3 targets 5 targets 10 targets 15 targets 20 targets 25 targets
Asia diag 0 0 *** *** *** *** ***
Hepar II 1 1 1 1 *** *** ***
Pitt 1 1 1 1 1 1 1

The first two tables use the functions of the marginal probability approach.
As expected these functions take almost no time to process the rankings in the
test-list even in the large Pitt network. This is different in Table 7.5 where
the calculational times for the joint probability approach are displayed. This
table continues the small calculational times for the networks, Asia diag and
Hepar II, but not for the Pitt network. Up till the pursuing of 15 targets the
support is still manageable with times smaller than 1 minute but for more
targets these times increase rapidly. Since the Pitt network contains 47 targets
a consequence is that the pursuing of all targets will certainly take several hours.
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Tab. 7.5: The calculational times in seconds for using the product copula function

ProdCop 2 targets 3 targets 5 targets 10 targets 15 targets 20 targets 25 targets
Asia diag 0 0 *** *** *** *** ***
Hepar II 1 1 1 1 *** *** ***
Pitt 1 1 1 2 43 1636 >60 min

The reason for using approximation approaches becomes clear by observing
Table 7.6 which contains the calculational times of using the true joint prob-
ability distribution. Although the use of this distribution has no effect on the
calculational times with the Asia diag network it has on the other hand already
a large effect on the calculation times with the Hepar II network. In this net-
work the pursuit of 5 targets is still within a minute but 10 targets already takes
514 seconds or 8 minutes and 34 seconds. This effect is even worse in the Pitt
network where the pursuit of 10 targets takes 2303 seconds or 38 minutes and
23 seconds. Pursuing more than 10 targets implies calculational times of longer
than an hour.

Tab. 7.6: The calculational times in seconds for using the the true joint probability

True Joint 2 targets 3 targets 5 targets 10 targets 15 targets 20 targets 25 targets
Asia diag 0 0 *** *** *** *** ***
Hepar II 5 11 42 514 *** *** ***
Pitt 7 14 61 2303 >60 min >60 min >60 min
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8.1 Conclusions

The main objective of this thesis was to improve the functionality of Bayesian
networks by providing approximations for the support of multiple causes. At
the end of this thesis I may conclude that this objective is reached and two
approximations approaches are available to provide support for diagnosis with
small and large Bayesian networks. Furthermore, both approaches provide the
user with the ability to pursue and differentiate between causes.

The study of Bayesian networks at the beginning of this thesis made clear
what a powerful tool these networks provide for modelling uncertainty relations.
Since the objective of performing diagnosis is to reduce the uncertainty in the
system, these networks are a logical choice to model diagnostic systems. In
order to model these systems I introduced a structure that distinguishes the
necessary variables and supports the essential tasks of diagnosis. Unfortunately
this support is in practice limited to diagnosing only one cause since a
combination of causes delivers both presentational as well as computational
problems. Because these problems are not directly solvable I investigated the
use of approximations. This investigation resulted into the development of two
approximation approaches.

The marginal probability approach uses the relation between the marginal
and joint probability to justify the use of marginal based test selection
measures. That this approach makes use of a large approximation is noticeable
in the loss of quality of performing diagnosis. Not even improving the marginal
based test selection measures by taking into account the increasing uncertainty
of more variables could improve this quality. However, the major benefit of this
approach lies in its speed to perform diagnosis on any network. Independent of
the size or complexity of the network, this approach always delivers fast results.

The joint probability approach is a less radical approximation since it tries
to approximate the necessary joint probability distribution by use of a copula
function. Because the joint probability distribution is accompanied with an
enormous amount of scenarios, I developed the area of differential diagnosis
so the user has the ability to control the process of diagnosis. This approach
results in a qualitatively good support for performing diagnosis. Unfortunately,
this support is also not ideal since its use causes large computational times
whenever large amount of causes are pursued.
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Although both approximation approaches are not optimal in providing sup-
port for multiple cause diagnosis, they are however necessary to apply. The rea-
son for this is that the traditional approach of using the true full joint probability
with a test selection measure results in presentational as well as computational
problems, see Table 7.6. Therefore, I recommend the use of the approxima-
tion approaches but let the choice of which approach to apply be dependent on
the network and the number of causes to pursue. Whenever a large complex
network is used, the marginal probability approach is most suitable because of
its speed. Within a small network or the pursuit of small amount of causes,
the joint probability approach is better to use because of its better quality to
perform diagnosis.

8.2 Future Research

For future research I recommend that more research is performed in using
the joint probability approach. Since the area of copula is quite a large
research area with various applications, I believe that it holds other options
and functions than using the product copula function to provide support. As
was shortly introduced in Section 5.1, the Spearman’s correlation coefficient
may be used to determine the correlation within a network. With this extra
information a better copula function may be applied which eventually may
result in better diagnosis. Since this correlation coefficient only has to be
determined once in the calculational process it should not have a large negative
effect on the performance. With more copula functions available, a choice may
be made in combination with performance. An important aspect to take into
account is that the copula functions have to work with discrete variables.

Another approach which has not been discussed in this paper is
the use of an efficient algorithm to determine the joint probability
over an arbitrary set of variables. So far only two papers [Xu, 1995,
Duncan, 2001] have appeared that discuss this approach and provide an
efficient algorithm. The reason that I did not pursue this approach was that
these algorithms probably only work well for determining the joint probability
over small sets of variables and not with large sets in complex networks.
However the befit of this approach is that it allows the use of the traditional
test selection measures in combination with the area of differential diagnosis.

When the support for multiple cause diagnosis is optimized it may be in-
teresting to use this theory for the area of value of information. As noted in
Section 3.3, the general assumption with VOI is that only one information source
is consulted and not a combination of sources. It is obvious that this approach
may result in incorrect advice about which information to collect. Since the
investigation of a combination of sources implies the calculation of the joint
probability over these sources, I expect the research for the support of multi-
ple cause diagnosis may be useful. However, combining these different supports
may also result in radical performance problems. For instance, the effect of each
combination of tests has to be calculated on each possible scenario of a set of hy-
pothesis variables. Consider, for example 10 hypothesis and test variables with
each 2 states, the number of possible options of the effect of tests combinations
on hypothesis combinations is then 210 ∗ 210 = 1024 ∗ 1024 = 1048576.
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A. DEFINITIONS & THEOREMS

This appendix contains the definitions, theorems, and proofs referred to in this
report.

Definition A.1 (convex). A function f : R
n → R is convex if the domain of

f , domf is a convex set and if for all x, y ∈ domf , and θ with 0 ≤ θ ≤ 1, I
have

f (θx + (1 − θ) y) ≤ θf (x) + (1 − θ) f (y)

Theorem A.1 (Jensen’s inequality). Let f : R
n → R be a convex function.

Let x1, ...,xn ∈ R
n and let a1, ..., an ∈ [0, 1], such that

∑n
i=1 ai = 1. Then

f

(
n∑

i=1

aixi

)
≤

n∑
i=1

aif (xi)

Proof. The proof is by induction on n. For n = 2 the inequality is exactly the
convex definition:

f (a1x1 + a2x2) ≤ a1f (x1) + a2f (x2)
f (a1x1 + (1 − a1)x2) ≤ a1f (x1) + (1 − a1) f (x2)

Now I assume that the inequality holds for n−1. Then let a′ = ai/ (1 − an) and
assume that an �= 1.

f

(
n∑

i=1

aixi

)
= f

(
anxn + (1 − an)

n−1∑
i=1

a′
ixi

)

≤ anf (xn) + (1 − an) f

(
n−1∑
i=1

a′
ixi

)

≤ anf (xn) + (1 − an) f
n−1∑
i=1

a′
if (xi)

=
n∑

i=1

aif (xi)

�

Theorem A.2. Associated with the entropy based value function are the fol-
lowing properties.

1. When each scenario from a set of hypothesis variables s ∈ DH has the same
probability Pr (s) = 1

n , the VENT (Pr (H)) function will have its minimum.
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2. The VENT (Pr (H)) function is a monotonic decreasing function of the
number of scenarios n, when each scenario s ∈ DH has the same proba-
bilities.

3. The composition law: if a set of hypothesis variables is broken down into
two successive choices, the original VENT (Pr (H)) should be the weighted
sum of the individual values of VENT (Pr (H)).

4. The entropy function is convex.

Proof.
1, 2, and 3. See [Shannon, 1948].
4. Let H be a hypothesis variable, and let Pr(H) and Pr(H ′) be two distributions
over H. I shall prove that for each t ∈ [0, 1],

tV (Pr (H)) + (1 − t)V (Pr (H ′)) ≥ V (t Pr (H) + (1 − t) Pr (H ′)) .

First note that the function x log x is convex for x > 0 (the second derivative is
positive). So for all x, y > 0,

tx log x + (1 − t) y log y ≥ (tx + (1 − t) y) log (tx + (1 − t) y) .

Then

t (−VENT (Pr (H))) + (1 − t) (−VENT (Pr (H ′)))

=
∑
h∈H

[t Pr(h) log Pr(h) + (1 − t) Pr(h′) log Pr(h′)]

≥
∑
h∈H

[(t Pr(h) + (1 − t) Pr(h′)) log (t Pr(h) + (1 − t) Pr(h′))]

= −VENT (t Pr (H) + (1 − t) Pr (H ′))

�

Theorem A.3. Associated with the weight of evidence function are the following
properties.

1. When a scenario from a set of hypothesis variables s ∈ DH and its negation
have the same probability Pr (s) = Pr (s) = 1

2 , the WOE function is zero.

2. The WOE function is convex, for a scenario from a set of hypothesis
variables s ∈ DH with probability Pr (s) > 1/2

Proof. If I take the second derivative from the Weight of Evidence function,

VWOE(x) = log x − log 1 − x

d2VWOE(x)
dx2

=
1

(1 − x)2
− 1

x2
,

I see that this derivative is only positive if x > 1
2 . Since a function is only

convex if the second derivative is convex this implies that the function is only
convex if the probability of a scenario is greater than 1

2 �
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Theorem A.4 (maximum distance between bounds). Let
X = {X1, ...,Xn} be a set of random variables and s = (x1, ..., xn) a scenario
where s ∈ DX . The distance between the upper and lower bound, from respec-
tively Theorem 4.1 and 4.2, for the probability of the scenario s is at most 1− 1

n .

Proof. In order to prove the maximum distance between the upper and lower
bound, I distinguish two situations, 1 − n +

∑n
i=1 Pr (xi) ≤ 0 (the lower bound

is zero) and 1 − n +
∑n

i=1 Pr (xi) ≥ 0.
In the first situation, the distance is equal to the Upp bound or the minimum

of the marginal probabilities. Without loss of generality, I assume that the min-
imal marginal probability is Pr (xk), so the distance is equal to this probability.
Since Pr (xk) is the minimal marginal probability, the summation of n times
this probability,

∑n
i=1 Pr (xk) = n · Pr (xk) has to be smaller than the summa-

tion of all the marginal probabilities,
∑n

i=1 Pr (xi). With the restriction that
1−n+

∑n
i=1 Pr (xi) ≤ 0 or that

∑n
i=1 Pr (xi) ≤ n− 1, it is clear that n ·Pr (xk)

is also smaller than n−1. Then, Pr (xk) is smaller than 1− 1
n and consequently,

the distance is maximal 1 − 1
n .

For the second situation, I assume the lower bound is greater than 0, so∑n
i=1 Pr (xi) ≥ n − 1. The distance between upper and lower bound is then

mini Pr (xi) − 1 + n −
∑n

i=1 Pr (xi). With the assumption that Pr (xk) is the
minimal marginal probability, I rewrite the distance, −1 + n−

∑n
i=1,i �=k Pr (xi).

In order to prove that this distance is smaller than 1 − 1
n , I proof it for the

two cases: Pr (xk) ≤ n−1
n and Pr (xk) ≥ n−1

n . Starting with the first case,
I separate the sum in the restriction

∑n
i=1 Pr (xi) ≥ n − 1 into two parts,∑n

i=1,i �=k Pr (xi)+Pr (xk) ≥ n− 1, so Pr (xk) ≥ n− 1−
∑n

i=1,i �=k Pr (xi). Since
Pr (xk) ≤ n−1

n the distance, n−1−
∑n

i=1,i �=k Pr (xi), also has to be smaller than
1− 1

n . For the second case I use that
∑n

i=1,i �=k Pr (xi) ≥ (n− 1) ·Pr (xk), since
∀i Pr (xi) ≥ Pr (xk). Combined with Pr (xk) ≥ n−1

n , I get
∑n

i=1,i �=k Pr (xi) ≥
(n − 1) − n−1

n which is the same as −1 + n −
∑n

i=1,i �=k Pr (xi) ≤ n−1
n . Conse-

quently the distance is also in this case smaller than 1 − 1
n . Hence the distance

is maximal 1 − 1
n for all possible probabilities. �
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Theorem A.5 (maximum distance condition). The distance between the
upper and lower bound of the probability of a scenario s = (x1, ..., xn) in a set
of random variables X = {X1, ...,Xn} is maximal and equal to 1 − 1

n , if and
only if every marginal probability of the states in the scenario s is equal to 1− 1

n .

Proof. (⇒) I assume here that the distance is maximal and equal to 1− 1
n . In

order to prove that every marginal probability is equal to 1 − 1
n two situations

are distinguished: 1 − n +
∑n

i=1 Pr (xi) ≤ 0 (the lower bound is zero) and 1 −
n +

∑n
i=1 Pr (xi) ≥ 0.

In the first situation, the distance is equal to the Upp bound, so the minimum
of the marginal probabilities is equal to 1 − 1

n . Without loss of generality, I
assume that the minimal marginal probability is Pr (xk), so Pr (xk) = 1 − 1

n .
Since Pr (xk) ≤ ∀i Pr (xi), the summation of n-1 times this probability Pr (xk),
has to be smaller than the summation of the marginal probabilities without the
minimal marginal probability, (n−1) ·Pr (xk) ≤

∑n
i=1,i �=k Pr (xi). Furthermore,

by separating the sum in the constraint
∑n

i=1 Pr (xi) ≥ n − 1 into two parts,∑n
i=1,i �=k Pr (xi) + Pr (xk) ≥ n − 1, so Pr (xk) ≥ n − 1 −

∑n
i=1,i �=k Pr (xi) there

holds that
∑n

i=1,i �=k Pr (xi) ≤ n− 1−Pr (xk). Consequently there holds (n− 1) ·
Pr (xk) ≤

∑n
i=1,i �=k Pr (xi) ≤ n−1−Pr (xk) and after replacing Pr (xk) with 1−

1
n , I have n−1− n−1

n ≤
∑n

i=1,i �=k Pr (xi) ≤ n−1− n−1
n . So,

∑n
i=1,i �=k Pr (xi) =

(n − 1) · Pr (xk), which is only possible if ∀iPr (xi) = Pr (xk) = 1 − 1
n .

For the second situation, I assume the lower bound is greater than 0, so∑n
i=1 Pr (xi) ≥ n − 1. The distance is then equal to mini Pr (xi) − 1 + n −∑n
i=1 Pr (xi) = 1− 1

n . With the assumption that Pr (xk) is the minimal marginal
probability, I rewrite the distance, −1 + n −

∑n
i=1,i �=k Pr (xi) = 1 − 1

n . Be-
fore I prove ∀i Pr (xi) = 1 − 1

n , I show that Pr (xk) = 1 − 1
n by deriving

Pr (xk) ≤ n−1
n and Pr (xk) ≥ n−1

n . Since ∀iPr (xi) ≥ Pr (xk), there also
holds that (n − 1) · Pr (xk) ≤

∑n
i=1,i �=k Pr (xi). If I combine this with the pro-

vided distance −1 + n −
∑n

i=1,i �=k Pr (xi) = 1 − 1
n , I get (n − 1) · Pr (xk) ≤

(n − 1) − n−1
n . Since n ≥ 2 I derive that Pr (xk) ≤ 1 − 1

n . For the sec-
ond derivation I rewrite the condition for the existence of the lower bound,∑n

i=1 Pr (xi) =
∑n

i=1,i �=k Pr (xi) + Pr (xk) ≥ n − 1. Combining this with the
provided distance, it gives n−1− n−1

n +Pr (xk) ≥ n−1 and that Pr (xk) ≥ 1− 1
n .

Consequently there has to hold that Pr (xk) = 1 − 1
n . When multiplying Pr (xk)

with n− 1, I get (n − 1) ·Pr (xk) which is the same as
∑n

i=1,i �=k Pr (xi). This is
only possible if ∀iPr (xi) = Pr (xk) = 1 − 1

n .
(⇐)I assume here that all the marginal probabilities are equal to 1 − 1

n . In
order to prove that the distance is also maximal and equal to 1− 1

n , I distinguish
two situations: 1− n +

∑n
i=1 Pr (xi) ≤ 0, (the lower bound is zero) and 1− n +∑n

i=1 Pr (xi) ≥ 0.
In the first situation, the distance is equal to the upper bound, which is the

minimum of the marginal probabilities. Since all the marginal probabilities are
equal to 1 − 1

n , the upper bound is equal to 1 − 1
n and also the distance is equal

to 1 − 1
n .

In the second situation, the distance is equal to the upper bound minus the
lower bound. Since all the marginal probabilities are equal to 1 − 1

n , the upper
bound is equal to 1− 1

n and the lower bound is equal to n− 1− n ·
(
1 − 1

n

)
= 0.

Consequently the distance is equal to 1 − 1
n . �
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