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Diagnosis

The process of determining the cause 
or malfunction by means of collecting 

information
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Diagnostic Expert Systems

Primary tasks: 
Determine the most probable cause

Determine which information to gather

Applications
Medicine

Troubleshooting
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Bayesian Netwerk

Random variables 

Probabilistic relations

Conditional probability 
table

Marginal probability 
distribution

Reasoning algorithms

Introduction

X-Ray Result Dyspnea?

Diseases

Smoking?Visit To Asia?



Diagnostis Proces with BN 

Test Rankings
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X-Ray Result Dyspnea?

Lung Cancer? 
(LC)

Smoking?Visit To Asia?

Tuberculosis? 
(TC)

Bronchitis? 
(BC)

Tuberculosis or 
Lung Cancer?

Suppose Multiple Causes
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Problem Statement

Diagnosing multiple causes leads to the 
following problems:

Presenting the combinations:
User has to keep track on the change of exponential amount

of combinations

Calculational effort:
To determine the test rankings, the joint probability

distribution over all combinations has to be calculated
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Objectives 

Investigation of Value of Information

Development of approaches which:
Handle the computational complexity

Allow the user to work with multiple causes

Implementation of these approaches 

Testing these approaches 

Objectives



Value of Information

Value functions 
Functions that assign a value 
to a distribution

Applied
without a test V(P(H))

with a test V(P(H|T))

V(P(H))

For every
teststate t

V(P(H|t))

EV(T)

EB(T)

TS(T)

Joint prob
P(H)

VOI process



Value Function

Entropy (Shannon)

Minimum at uniform 
probability

Monotonic decreasing
function of the number of 
entries
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Value of Information(2)

Expected Value:

Expected Benefit:

Test Strength:
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Marginal Probability Approach

Create new value functions that work 
with the marginal probability 

distribution 
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Marginal & Joint Relation

Lower bound:

Upper bound: 

High joint probability All high marginal probabilities 

Low joint probability At least one low marginal
probability 
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Marginal VOI Process 

Marginal Strength Function

Minimum at probability 0.5
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For every
teststate t

VMS(P(M|t))

EB(T)

TS(T)

P(M)= 
P(h1),...,P(hn)

VOI process

EV(T)



Marginal Strength
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Joint Probability Approach

Use of a marginal based function or Copula 
function to calculate the joint probability 

distribution

Research



Joint VOI Process

Product Copula

Entropy
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Presentational Aspect

Denote interesting states as targets

Let the user choose targets to pursue

Present

Absent

Tuberculosis?

Present

Absent

LungCancer?

Present

Absent

Bronchitis?

BC_present

LC_present

TC_present

Target states
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Diagnosis with Targets

Marginal probability approach over all 
pursued targets

Joint probability approach over all the
combinations with at least one pursued
target and the rest

TC_present
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TC_absent
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Implementation

SMILE (Structural Modeling, Inference, 
and Learning Engine)

GeNIe (Graphical Network Interface)

Visual C++

GeNIe DIAG

Implementation



GeNIe DIAG

GeNIe DIAG



Time Test 

Time test
-> Time necessary for the VOI process

Asia network
Hepar II network
-> Diagnosis of liver disorders
-> 81 variables, 9 hypothesis variables

Pitt network
-> 181 variables,  47 hypothesis variables 

Tests & Results



Time Test Results
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Quality Test & ROC-Analysis

ROC-curve
Sensitivity = likelihood that a present cause
was correctly diagnosed

Specifity = likelihood that an absence of
cause was correctly diagnosed

Hepar II network

Tests & Results



Quality Test Results

Tests & Results



Conclusions

Development of two approaches 
Implemented in GeNIe & SMILE
Ability to direct the diagnostic process
Tests showed that

Marginal probability approach=fast but less 
qaulitative
Joint probability approach= slow but good 
quality
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Future Research

Other copula functions

Smart algorithm for calculating the true
joint probability distribution

Expansion of the multiple cause support 
to multiple test ranking

Conclusions



Questions?


