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Di1agnosis

The process of determining the cause
or malfunction by means of collecting
information
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Diagnostic Expert Systems

® Primary tasks:

» Determine the most probable cause

> Determine which information to gather
m Applications

m Medicine

m Troubleshooting
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Bayesian Netwerk
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Diagnostis Proces with BN

Test Rankings
Smoking? 0.26
X-Ray Result | 0.26

Dyspnea 0.23
Visit To Asia? | <0.01
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Suppose Multiple Causes

TC=
Tuberculosis

LC=
LungCancer

BC=
Bronchitis

PN=
Pneomia

Tuberculosis or
Lung Cancer?
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Problem Statement

m Diagnosing multiple causes leads to the
following problems:

m Presenting the combinations:

User has to keep track on the change of exponential amount
of combinations

m Calculational effort:

To determine the test rankings, the joint probability
distribution over all combinations has to be calculated
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Objectives

m Investigation of Value of Information

m Development of approaches which:
m Handle the computational complexity
m Allow the user to work with multiple causes

m Implementation of these approaches
m Testing these approaches
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Value of Information

m Value functions
m Functions that assign a value
to a distribution
m Applied
m without a test V(P(H))
m with a test V(P(H|T))
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Value Function

m Entropy (Shannon)
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Value Of InfOI'matiOn(Q) VOI process
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m Expected Value: P(fl)
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Marginal Probability Approach

Create new value functions that work
with the marginal probability
distribution
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Marginal & Joint Relation

m Lower bound:
P(a,b) = max{0; P(a) + P(b)—1}
m Upper bound:
P(a,b) < min(P(a),P(b))

m High joint probability <> All high marginal probabilities
m Low joint probability <& At least one low marginal
probability
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Marginal VOI PI'OCGSS VOI process

P(M)=
P(h,),...,P(h,)

m Marginal Strength Function i
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Marginal Strength
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Joint Probability Approach

Use of a marginal based function or Copula
function to calculate the joint probability
distribution
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Joint VOI Process

m Product Copula
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Presentational Aspect

m Denote interesting states as targets

Tuberculosis? LungCancer? Bronchitis?
Absent Absent Absent

m Let the user choose targets to pursue

Target states
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Diagnosis with Targets

m Marginal probability approach over all
pursued targets

m Joint probability approach over all the
combinations with at least one pursued
target and the rest
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Implementation

m SMILE (Structural Modeling, Inference,
and Learning Engine)

m GeNle (Graphical Network Interface)
L Visual C++ Hﬁ&&%ﬁﬁmuguemmpmm

Implemented in Visual C++1n

| GeNIe DI AG Windows 95/NT environment.

Reasoning engine SMILE >
(Structural Modeing, Inference,
and Learming Engine),

A library of C++ classes,
platfomn independent, weall
defined programmenr’'s interface.

Implementation



GeNle DIAG
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Time Test
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Time Test Results

Time in Seconds Asia Hepar I1 Pitt
network network network
3 targets 10 targets 47 targets
Marginal Probabiltiy 0 0 0

Approach

Joint Probability 0 1 >60 min
Approach

True Joint 0 514 >60 min
Probability
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Quality Test & ROC-Analysis

m ROC-curve

m Sensitivity = likelihood that a present cause
was correctly diagnosed

m Specifity = likelihood that an absence of
cause was correctly diagnosed

m Hepar II network
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Quality Test Results

ROC-curves of the Hepar II network
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Conclusions

m Development of two approaches
m Implemented in GeNle & SMILE

m Ability to direct the diagnostic process

m Tests showed that

m Marginal probability approach=fast but less
qgaulitative

m Joint probability approach= slow but good
quality
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Future Research

m Other copula functions

m Smart algorithm for calculating the true
joint probability distribution

m Expansion of the multiple cause support
to multiple test ranking
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Questions?



