
SWAMP

Speech interfacing in the Wireless Automotive Messaging Pilot

(Master’s Thesis of Chen-Ke Yang)

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

2

Graduation Committee:

Dr. drs. L.J.M. Rothkrantz
Prof. dr.ir. E.J.H. Kerckhoffs
ing. R. van Egmond (CMG)
ir. E. M. Visser (CMG)
Prof. dr. H.Koppelaar (chairman)

Yang, Chen-Ke (chen.yang@cmg.nl or c.k.yang@twi.tudelft.nl)

Master’s Thesis, June 2001
“SWAMP:
Speech interfacing in the Wireless Automotive Messaging Pilot”

Delft University of Technology
Faculty of Information Technology and Systems
Knowledge Based Group
Zuidplantsoen 4, 2628 BZ Delft, the Netherlands

CMG Trade Transport & Industry BV
Division Technical Software Engineering (RTSE1)
Kralingseweg 241-249
3062 CE Rotterdam

Keywords: Artificial intelligence, belief desire intention model, context free grammar,
dialogue management, dialogue flow, speech interfacing.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

3

Abstract

Speech technology is rapidly developing and has improved a lot over the last few years.
Nevertheless, speech-enabled applications have not yet become mainstream software.
Furthermore, there is a lack of proven design methods and methodologies specifically concerning
speech applications. So far the application of speech technology has only achieved limited
success.

This thesis describes a project done at CMG Trade Transport & Industry. It is called
SWAMP and is an example of the application of speech technology in human-computer
interaction. The purpose of the project was to build a speech user interface on top of an existing
application with a graphical user interface.

The reasoning model behind the speech interface is based on the Belief Desire Intention
(BDI) model for rational agents. Other important tools that were used to build the speech user
interface are the Microsoft Speech API and CLIPS.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

4

Table of Contents

1 INTRODUCTION...7

1.1 BACKGROUND ...7
1.2 PROBLEM DESCRIPTION ..7
1.3 DELIVERABLES ..8
1.4 SWAMP ...8
1.5 LAYOUT OF THE THESIS ..9

2 DESCRIPTION OF THE ORIGINAL SYSTEM ..10

2.1 ARCHITECTURE OF THE WAM PILOT ..10
2.1.1 The WAM Client ..10
2.1.2 The WAM Back Office..11

2.2 INFORMATION FLOW...11
2.3 SERVICES OF THE WAM CLIENT...12

3 SWAMP SERVICES ..14

3.1 ELABORATION OF NEW SERVICES ..14
3.1.1 Request direction ...14
3.1.2 Speed warning ...15
3.1.3 Request traffic information...15
3.1.4 Request important corporate information ...16

3.2 SUITABILITY OF A SPEECH INTERFACE FOR EACH SERVICE ..18

4 THE SWAMP APPLICATION..20

4.1 DESIGN..20
4.1.1 Objectives..20
4.1.2 Approaches..21
4.1.3 Elaboration of chosen approach...24

4.2 IMPLEMENTATION ..27
4.2.1 Implementation decisions...27
4.2.2 Overview ...28
4.2.3 Implementation strategy...29
4.2.4 Implementation results...30

5 THE SPEECH INTERFACE..32

5.1 SPEECH SOFTWARE...32
5.1.1 Overview of SAPI5...33
5.1.2 SAPI5 usage ..34

5.2 THE ASR COMPONENT ...34
5.2.1 ASR overview...34
5.2.2 The SWAMP Grammar ..36
5.2.3 Grammar handling ..39

5.3 THE DIALOGUE MANAGER ...40
5.4 THE TTS COMPONENT..41

6 THE DIALOGUE MANAGER ..44

6.1 DIALOGUE DESIGN ...44

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

5

6.1.1 Design approach ...44
6.1.2 Dialogue representation...46
6.1.3 Error handling...47

6.2 IMPLEMENTATION OVERVIEW ...48
6.3 THE C++ PART...49

6.3.1 Interaction with the main application ...49
6.3.2 Sensing recognition events from SAPI ..50
6.3.3 The translating function ...52
6.3.4 The actuating function ...53

6.4 AI PART...55
6.4.1 The reasoning model..55
6.4.2 The CLIPS engine..56
6.4.3 Knowledge representation..59
6.4.4 Heuristics for the translation from dialogue flow diagram to CLIPS rules...........60

7 TEST ...63

7.1 TEST PARAMETERS...63
7.2 NUMBER OF TEST-SUBJECTS ...64
7.3 TEST SCENARIOS ..65
7.4 RESULTS AND DISCUSSION..66

7.4.1 Recognition rate ..67
7.4.2 Time to completion ..68
7.4.3 Success rate...69
7.4.4 Other results..70

8 CONCLUSIONS AND RECOMMENDATIONS ..71

8.1 CONCLUSIONS DRAWN FROM THIS WORK...71
8.2 REMAINING WORK AND POSSIBLE IMPROVEMENTS...72

9 REFERENCES ...74

9.1 BOOKS...74
9.2 PAPERS / ARTICLES/ REPORTS ...75
9.3 INTERNET ..76

LIST OF TABLES AND FIGURE...77

TABLE OF ABBREVIATIONS...79

APPENDIXES ..80

A1: HARDWARE SPECIFICATIONS ...80
A2: EVALUATION RESULTS OF SPEECH SOFTWARE ...81
A3: GRAMMAR RULES FOR KM REGISTRATION...86
A4: SAPI5 SYSTEM REQUIREMENTS AND INSTALLATION NOTES ..87
A5: CLASS HIERARCHY..89
A6: SOFTWARE ...89

Development Software...89
Software for Windows CE ...90
Miscellaneous software ...90

A7: DIALOGUE FLOW DIAGRAMS..91
A8: PAPER ..104

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

6

Preface

This master thesis is written as part of my studies at the faculty of ITS at the Delft University of
Technology. It covers the work I did on building a prototype speech user interface in the Wireless
Automotive Messaging project (WAM) at CMG Trade, Transport & Industry in Rotterdam. My
academic supervisor is Drs. Dr. L.J.M. Rothkrantz, Faculty of Information Technologies and
Systems, Delft University of Technology. I thank him for his support during the project. My
supervisor at CMG is Robert van Egmond and my advisors are Hans de Man and Eric Visser (also
from CMG).

First I want to thank CMG for allowing me to work on this magnificent project and letting
me free to decide and unleash my creativity upon the project. I am also very grateful to Robert,
for his support, feedback and interest in my work. I’d also like to thank Eric for his advice and
Hans for taking care of all other details so that I could concentrate on my work. I also owe a lot to
my friend Stephen. Our conversations during the rides to work have greatly influenced this thesis.
Finally a big wave to all fellow-students and colleagues at CMG for putting up with me during the
past twelve months.

Personally I think speech interfacing will become more important in the future and will
eventually be a common human-machine interfacing technique. But the time of the triumph of
speech interfacing has not arrived yet, but I hope my work and experiences with this project will
contribute to draw this day a little closer.

Chen-Ke Yang,
Rotterdam, may 2001

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

7

1 Introduction

1.1 Background

Speech is the most common mode of communication between people. Although speech
communication is not a perfect process (misunderstandings, misinterpretations, etc. occur), we are
able to understand each other with a very high success rate. Research has shown that the use of
speech enhances the quality of communication between humans, as reflected in shorter problem
solving times and general user satisfaction [Chapanis 1981]. Furthermore, speaking to humans
subjectively seems to be a relatively effortless task [Nusbaum 1995]. The benefits mentioned
above are some reasons that have moved researchers to study speech interaction systems between
humans and computers. A quality target commonly used by many speech researchers and
engineers is HAL, the talking computer in “2001: A Space Odyssey” by Arthur C. Clarke e.g.
[Page 1998]. Despite many efforts, speech interfaces have only been successfully applied in a
number of specific situations. Generally, it can be concluded that speech interfaces are most
successful when applied in situation where:

1. Other interfaces are inappropriate e.g. using a keyboard while driving a car, for RSI
patients.

2. The use of speech enables faster task completion than other modes of interaction.

In September 1999 CMG Trade, Transport & Industry (TTI) started the Wireless Automotive
Messaging project (WAM-Pilot). Its purpose was to develop new wireless services in the field of
traffic and transport and thus explore new business opportunities in this field. To boost the
interest of potential clients it was also necessary that these new services could be demonstrated
during meetings, conventions etc. The WAM pilot is an application that delivers services for
highly mobile clients. Because the clients are mobile, communication is based on wireless
communication infrastructure and techniques. The infrastructure used is the GSM network and the
technique applied is communication with SMS messages. The current version of the WAM-Pilot
is used for demonstration purposes. It has already attracted the interest of potential customers.
Despite its success, it appears to have one flaw: the user interface is not suitable.
CMG wants to know what the possibilities of speech technology are and in particular if a speech
interface is better suited for the WAM pilot.

1.2 Problem description

The WAM-Pilot consists of an application that is based on the Client-Server model. The server is
stationary while the client travels with the user. One of the main problems with the WAM-pilot is
that the client (an HP Jornada handheld computer) has only two methods for interaction with the
user. The user can enter input by:
- Pressing keys on the relatively small keyboard of the HP Jornada.
- Using the GUI of Windows CE on the relatively small display of the HP Jornada.

Obviously, these methods of interacting with the system are not practical for a car driver. Not to
mention a danger for the general traffic safety, since the driver must divide his attention between
using the interface of the system and driving. Therefore, a more appropriate method for
interaction is needed. A speech interface seems to be a likely candidate. The focus of the WAM-
Pilot is primarily on car drivers. The goal is to develop as much relevant and interesting new
services for this group as possible. Currently there are only four services available (see section
2.3) and this is considered as too few.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

8

Summarised the following problems exist.
1. Problem : The existing user interface is not suited.

Wish : Integration of a speech interface in the current system.
2. Problem :The amount of services available is too small.

Wish : Develop new relevant and interesting services.

1.3 Deliverables

The services offered by the WAM-pilot must be analysed and the suitability of a speech interface
must be studied. If appropriate, a prototype of the speech interface suitable for demonstration
must be designed and implemented. Also, new services must be implemented and added to the
repertoire of services already available to the WAM-pilot. These new services obviously have to
be useful, interesting and compelling to customers. Apart from this thesis, four other documents
have been written during the project. First a preliminary literature survey, where the state of the
art in speech and other relevant technologies is analysed. Second, a design document containing
the design of the application and a special grammar specification document containing the design
specifics of the grammar and dialogue flow were made. At last an implementation document was
created, describing the final result.

1.4 SWAMP

This thesis describes the SWAMP1 project, which is an extension of the WAM-Pilot project. The
SWAMP project contains an application called the SWAMP client. In summary, the SWAMP
client is basically nothing different from the WAM client, except that it has a speech interface
built on top of it and that it contains a few newly added services. With the addition of a speech
interface, the user interface of the SWAMP application becomes multimodal; the user can access
the services using both the GUI (as in the traditional way) as well as speech (the new way).
Speech interaction between the user and the SWAMP application is based on dialogues.
Generally, the user starts a speech interaction by indicating (via speech) what his desires are. The
SWAMP application then leads the user through a dialogue in which it tries to retrieve
information regarding these desires. If eventually all the necessary information is collected, the
application takes the appropriate actions to realise the user’s desires. To successfully manage
dialogues with a user, the SWAMP application applies Artificial Intelligence (AI) techniques
[Boullart 1992] to achieve some kind of reasoning. Although the SWAMP application is a client
server application consisting of a SWAMP client and a SWAMP back office, this thesis does not
describe the SWAMP back office extensively. The reason is that the SWAMP back office does
not differ from the original WAM back office. A more detailed description of the WAM back
office is given in previous WAM documentation e.g. [Achterhof 2000], [van Egmond 1999] and
[van Breda 1999]. The software that is to be written will primarily be used for demonstrational
purposes. Therefore, some obvious requirements have been left out of the scope of the project.
The most important of which is background noise. Furthermore issues concerning the security of
speech interaction have also been left out.

1 SWAMP is an acronym for Speech Interfacing in the Wireless Automotive Messaging Pilot

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

9

1.5 Layout of the thesis

This thesis is built up as follows:
In chapter 2, an overview of the original WAM pilot is given, presenting a brief discussion of the
hardware components of both the WAM client and the back office. In addition the communication
and information flow is described. Furthermore the services available in the WAM pilot are
analysed.
In chapter 3, the services of the WAM pilot are reviewed and their suitability for speech
interfacing is determined. Also additional new services are discussed and subjected to the speech
interfacing suitability determination test.
Chapter 4 describes the design and implementation of the SWAMP client in general, giving an
overview of the architecture of SWAMP, design and implementation decisions and
implementation strategy.
Chapter 5 elaborates on the speech interface. It focuses on the essential components of the speech
interface (TTS, ASR and dialogue manager) and how they are implemented. Furthermore the
communication architecture and mechanisms between the components are presented and
discussed.
Chapter 6 discusses the dialogue manager component in greater detail. The focus is on the
reasoning model used (BDI) and the AI tools applied (CLIPS) to implement this model.
Chapter 7 describes the usability tests that were conducted near the end of the project.
Furthermore a discussion of the results is presented. The thesis ends with conclusions from this
work and recommendations for improvement and further study.
The last appendix of this report contains a paper about knowledge-based speech interfacing in the
SWAMP project. It is an extensive summary of this report.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

10

2 Description of the original system

The WAM pilot is an application that delivers services for mobile users (clients). Because the
clients are mobile, communication is based on a wireless communication infrastructure and
technique. The infrastructure used is the GSM network and the technique applied is
communication with SMS messages. This Chapter describes the original WAM client. It includes
an overview of the existing technology, the hardware architecture of the WAM pilot. Furthermore
a description of the information flow during communication and the services available in the
WAM pilot are described.

2.1 Architecture of the WAM pilot

The WAM-Pilot consists of an application that is based on the Client-Server model. The server is
stationary while the client travels with the user. Short Messaging Service (SMS) is used for the
communication between the server and its clients. Both server and clients have hardware
available to send and receive SMS messages. Although communication with SMS messages is not
as fast as other means of wireless communication such as (voice) GSM or GPRS, it is very
reliable. SMS messages are guaranteed to arrive, but it usually takes a few seconds. In the
following sections the architecture and hardware of the client and server are discussed further. A
specification of the used hardware can be found in appendix A1.

2.1.1 The WAM Client

The client is an HP Jornada handheld computer (Figure 2.1-1) with the Windows CE 2.11
operating system. Each client is connected to a GPS receiver on the first serial port1 (COM 1) and
to the Motor Management System (MMS) of the car on the second serial port (COM 2). The GPS
receiver enables the clients to retrieve its location anywhere on the earth, while the motor
management system supplies the clients with current car status information such as fuel usage,
speed, oil pressure, air bags status etc. In addition, a Nokia datacard is installed in the clients’
PCMCIA slot to communicate with the Server. The communication is established by means of
SMS messages, which the Nokia datacard is able to send and receive. Figure 2.1-2 gives an
overview of the WAM-Pilot client.

Figure 2.1-1: The HP Jornada handheld computer

1 All serial ports on the HP Jornada are compatible with the RS232 standard

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

11

HP Jornada

G PS S atellite

PCMCIA

G PS Receiver

COM 1 Port

Motor Managem ent System

COM 2 Port

Nokia P hone
Card

Server

Figure 2.1-2: Overview of the WAM-Client

2.1.2 The WAM Back Office

Figure 2.1-3 gives a sketch of the current Server system. The server of the WAM-Pilot is a
Windows NT workstation called the WAM Back Office (WAMBO). The WAMBO is connected
to a Microsoft Access database, where all received messages and other relevant information of the
WAM clients are kept. The WAMBO communicates with clients using a Nokia mobile phone
(model 6110) which is connected to the VHULDO SRUW of the workstation using a Nokia data cable.
The software of the WAMBO intercepts incoming SMS messages from the mobile phone for
further processing. Processing an SMS message means parsing the message and interpreting the
results to take the appropriate actions. For instance, the GPS co-ordinates of a client can be
extracted from an SMS message, and used to show its location on a map. The WAMBO also
contains the software (see appendix A6) to send and receive SMS messages to and from the
WAM clients.

NT W orkstation

Data

GSM

COM
Port

Client

Figure 2.1-3:Overview of the WAM Back Office

2.2 Information flow

When the user wants to use a certain service offered by the WAM application, he clicks on the
appropriate button on the graphical user interface of the WAM client. The WAM client then
constructs an SMS message according to a predetermined format containing the users’ request
and other relevant information and sends it to the server (through the GSM network). Soon

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

12

afterwards, the back office receives the message and processes the request. Figure 2.2-1 illustrates
the typical information flow from the client to the server. The information flow of the response
from the server is similar and will not be discussed further.

User requests a
service

Handheld
PC

Phone
Card

WAM cl ient
appl icat ion

processes the
request and

generates an SMS
message

Nokia Phone
card sends the
SMS message

to the GSM
Phone at tached

to the Back
Off ice

GSM
Network

GSM
Phone

WAM Back
Office

G S M
net

GSM Phone
receives the

SMS message

Back Off ice
interprets the
message and

sends an SMS
reply back

User

Figure 2.2-1: Typical information flow from client to server

2.3 Services of the WAM Client

In this section a brief description of the services of the WAM pilot is given. For a thorough
discussion of the services see discussion in previous reports e.g. [Achterhof 2000].

Table 1: Services of the WAM pilot

Name Description
Login Before the user can use the services in the WAM-pilot, he must

identify himself by supplying his name and the car ID. Furthermore
the back office telephone number and trip type are needed (the
Project ID must be supplied if it is a business trip). The supplied
information is used to identify the client to the back office.

SOS call If something goes wrong during a trip e.g. if the user doesn’t feel
well, a traffic accident has occurred etc, the SOS call is activated.
This service sends information to the back office, where it is decided
what steps will be taken. The SOS service can either be user initiated
(user doesn’t feel well) or system initiated (airbags inflated).

ANWB Call This service is used to call the “Algemene Nederlandse Wielrijders
Bond” (ANWB) to fix the car if, for instance, the car has broken
down on the highway. When the user presses the ANWB button, an
SMS message containing his GPS co-ordinates and relevant
information is sent to the back office. At reception of an ANWB
request message the back office automatically notifies the ANWB.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

13

KM registration At the beginning of a trip and whenever the user changes from trip
type during a trip, a special SMS message containing kilometre
count information is sent to the back office. This allows the back
office to keep track of the kilometres driven by the user. Moreover,
the number of kilometres driven on business trips is attributed to
individual projects. During a trip, the user can indicate a change of
trip type (from business to private or vice versa). All the kilometres
driven from that point on are attributed to the new trip type.

Vehicle tracking The position of a specific car can be requested by the WAMBO.
Upon reception of a position request SMS the client sends an SMS
reply, which contains its GPS position. This service needs no user
interaction thus needing no speech enabling.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

14

3 SWAMP services

This chapter gives an overview of the services in the SWAMP application. The original WAM
application already contained some services (described in chapter 2). Nevertheless, the number of
services is considered as too few, because more services are needed to attract the attention of
more and a broader range of customers. During the SWAMP project a number of new potentially
interesting services have been devised. In the following sections the new services are presented.
The last section contains an analysis of the suitability of a speech interface for both old and new
services.

3.1 Elaboration of new services

This section describes the new services that have been added to the WAM-Pilot. Similar to the old
services, the new ones use SMS messages for communication with the back office. Consequently,
the implemented methods to construct, send and receive SMS messages can be reused by the new
services. These methods are described in previous reports (e.g. [Achterhof 2000], [Yang2 2001])
and will not be discussed here. The SMS messages sent to the back office by each service have a
predetermined format. This format is presented in the discussion. Because of the limited time
available to finish the project, only the client part of the services is implemented. In other words
the back office processing of the new services has not been implemented. If SMS messages of the
new format are received, they are just ignored.

Table 2: Overview of the new services in the SWAMP application

Service Description
Request direction When the user wants to know the directions to a

specific location, the WAM-client retrieves a route
(taking into account local traffic information) and
presents it to the user.

Speed warning When the user travels at a speed of more than x
kilometres per hour, the WAM-client retrieves the
local speed limit. If the current speed surpasses the
local speed limit a warning is given.

Request traffic information During driving the user might require traffic
congestion information to aid him to plan a route to
his destination. This service provides him with the
needed information.

Request important corporate
information

While driving the user might require information e.g.
appointments, stock information.

3.1.1 Request direction

Name Direction Request Dialog
Files: DirectionReqDlg.cpp, DirectionReqDlg.h
Description: Dialog containing controls to enable the user to graphically request

directions.
Exports: None
Uses: SMS API, GPS API
Input: destination, source (optional)
Output: A route from source to destination

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

15

To support the request direction service, the original WAM client is expanded with a Direction
request dialog and a new SMS message type. The direction request dialog contains two selection
lists from which the user can choose the source and the destination location. The default value for
the source is the current location. After the user clicks the OK button, the GPS co-ordinates of the
source and destination are retrieved (using the GPS receiver and/or the location-GPS co-ordinates
list). Then an SMS (in the request direction SMS message format) is sent to the back office
containing the request. The new SMS message type contains, predetermined, comma separated
fields (see Table 3).

Table 3: Request direction SMS message format

Field number Field contents
0 Type
1 Driver ID
2 Car ID
3 Source GPS Latitude
4 Source GPS Longitude
5 Destination GPS Latitude
6 Destination GPS Longitude
7 Date and time
8 Comments

3.1.2 Speed warning

Whenever the driving speed exceeds a certain threshold value, a message is sent to the back office
requesting the speed limit of the current location. If the current speed is higher than the speed
limit a warning is given. This service needs no additional GUI components.

Table 4: The speed warning SMS message format

Field number Field contents
0 Type
1 Driver ID
2 Car ID
3 GPS Latitude
4 GPS Longitude
5 Comments

3.1.3 Request traffic information

Name Request traffic information Dialog
Files: TrafficInfoDlg.cpp, TrafficInfoDlg.h
Description: Dialog containing controls to enable the user to graphically

request traffic information.
Exports: None
Uses: SMS API, GPS API
Input: Street name or location
Output: Traffic information

For this service a new button is added to the GUI of the client. When this button is clicked a
dialog containing controls to enable the user to graphically request traffic information is shown.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

16

After the user has filled in the necessary information, an SMS message conforming to the request
traffic information SMS message format (Table 5) is sent to the back office.

Table 5: The request traffic information SMS message format

Field number Field contents
0 Type
1 Information type (local or global)
2 Driver ID
3 Car ID
4 GPS Latitude
5 GPS Longitude
6 Comments

3.1.4 Request important corporate information

In order to host the request important corporate information service, the WAM client is expanded
with a request corporate information dialog. In this dialog the user can chose between four
buttons: appointments, stock, telephone number, and supply.

Name Request Corporate Information Dialog
Files CorporateInfoDlg.cpp, CorporateInfoDlg.h
Description Dialog containing controls to enable the user to graphically

request corporate information.
Exports None
Uses SMS API, GPS API
Input Type of information needed
Output Requested information

After the user presses the appointment button the request appointments dialog is shown. This
dialog contains GUI controls allowing the user to indicate in which time interval the appointments
must be in.

Name request appointments dialog
Files AppointmentReqDlg.cpp, AppointmentReqDlg.h
Description This dialog contains GUI controls allowing the user to indicate in

which time interval the appointments must be.
Exports None
Uses SMS API, GPS API
Input Time interval
Output Scheduled appointments in the specified time interval

If the user presses the request telephone number button the request telephone number dialog is
shown. This dialog contains GUI controls allowing the user to indicate whose telephone number
he wants to retrieve.

Name request telephone number dialog
Files TelephoneReqDlg.cpp, TelephoneReqDlg.h
Description This dialog contains GUI controls allowing the user to indicate

whose telephone number he wants to request.
Exports None

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

17

Uses SMS API, GPS API
Input Name
Output Telephone number corresponding to the name

Pushing the stock button invokes a dialog in which the user can select the company in whose
stocks he is interested.

Name request stock information dialog
Files StockReqDlg.cpp, StockReqDlg.h
Description Dialog in which the user can choose the company in whose

stocks he is interested
Exports None
Uses SMS API, GPS API
Input Company name
Output Stock information of the company

Pushing the supply button invokes a dialog in which the user can query the amount of a certain
product in the supply-base of the company. This service is interesting for users who order
products for their company, but lack the information on the amount of products to be bought
because it is only available at the last moment e.g. in Just In Time (JIT) processes.

Name supply-base management dialog
Files SupplyDlg.cpp, SupplyDlg.h
Description Dialog in which the user can query the availability of a product in

the companies supply-base.
Exports None
Uses SMS API, GPS API
Input Product
Output Supply information of the product

After the required information is supplied, an SMS is sent to the back office containing the
request. The SMS message contains, predefined, comma separated fields (see Table 6).

Table 6: The request corporate information SMS message format

Field number Field contents
0 Type
1 Information type (appointment, stock, telephone number)
2 Driver ID
3 Car ID
4 GPS Latitude
5 GPS Longitude
6 Target (a person or a company, depending on the value of

information type)
7 Begin time (is only valid if information type is appointment)
8 End time (is only valid if information type is appointment)
9 Comments

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

18

3.2 Suitability of a speech interface for each service

Before starting to design and implement a speech interface, it should be established that speech
recognition is indeed an appropriate interface technology. Therefore an analysis should be done to
determine which tasks of the application will benefit most from a speech interface and which will
be more effectively handled using other types of interfaces. Table 7 gives the results of this
analysis for the services (both old and new) of the SWAMP application. The second and the third
column indicate the suitability of a speech interface (SUI) and graphical user interface (GUI)
respectively (a “+” sign means more suitable and “-“ means less suitable). From the results of the
analysis it has been concluded which services are suitable to be supported by a speech interface
and which are not. Services for which speech interface support will be implemented are indicated

with a “•” sign in the fifth column of Table 7.

Table 7: Services of the SWAMP project and their suitability for speech interfacing

Service SUI GUI Comments

General UI control ++ ++ UI control must be available both with Speech
and GUI. Speech is obviously more effective
during driving.

•

Login + ++ Logging in is usually done before the driver starts
driving. So this is not a driving situation. On the
other hand data (such as project codes) can be
very annoying to enter with a keyboard. In that
case speech may come in very handy.

•

SOS call ++ ++ Speech enabling this service is essential, since a
car accident can put a driver in a position in
which he cannot reach the Pilot’s keyboard (with
his hands).

•

ANWB Call + ++ The ANWB service in the WAM-pilot sends a
message containing the location and type of
problem to an ANWB help service. Voice
enabling this service is not essential, but
appropriate.

•

KM registration + ++ When initialising KM registration the same
situation as with Login occurs. The actual KM
registration itself is an automatic process, the user
is not aware of it. The user just has to supply
some parameters.

•

Vehicle tracking - - This is a BO initialised command. The user is not
aware of this. So no speech assistance is needed
here.

Speed warning ++ - An audible speed warning has far more effect
then a graphical one in drawing the driver’s
attention that he is speeding.

•

Request directions*1 ++ + A typical car driving question. Thus it should be
supported by the interface. The response is also
best presented using speech.

•

1 “ *” after the service name indicates a new service

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

19

Local traffic speed* ++ - System alerts the driver about upcoming speed
checks. The use of speech (sounds) is ideal in this
case.

•

Request Local
traffic Information*

++ + Also a typical car driving question. •

Request corporate
information *

++ ++ Request for the latest updates or changes of the
corporate/project status.

•

The measurement criteria for the suitability of the speech interface are:

1. Estimated minimal time/effort required from the user
Each service requires some parameters to be present before the service can start. For the sake of
the measurement we define that a service is successfully accomplished when all parameters are
present (what happens afterwards is unimportant for the measurement). The measurement consists
of comparing the amount of GUI actions needed to successfully accomplish the service (amount
of mouse clicks, popup windows, button presses etc.) against the estimated amount of atomic
utterances needed to achieve the same. An atomic utterance is a speech utterance that contains
just one parameter (In practice, utterances containing more that one parameter are common). In
both cases, the best case scenario to accomplish the task is used (no errors, no misunderstandings,
no false recognition etc.). The comparison is somewhat out of place, since SUI and GUI are quite
different modalities. Nevertheless, it is used because of the absence of absolute measurement
techniques.

2. Estimated attention requirement
An important issue to consider is that the attention required from the user to accomplish the
service during driving should not be too high, because this can influence the traffic safety. Here
also, there are no absolute measurement techniques available. It is obvious that saying a name
requires far less attention than selecting the name from a list (especially if it is a long list).
Furthermore, the attention requirement is also affected by the ergonomy of the GUI and/or the
recognition rate of the speech interface. So, just as in the previous measurement the result is based
on a (subjective) comparison between the GUI and the SUI. Table 8 shows the possible attention
factors and their attention needs; the small display and small keyboard of the HP Jornada have
been taken into account in the GUI actions.

Table 8: Actions factors and their attention needs

Action Attention need
Utterance Normal
Button click Normal
Key press High
Select from list High
Read one line from screen High (but output is permanent)
Speech output Normal (but output is volatile)

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

20

4 The SWAMP application

This chapter gives an overview of the SWAMP design and implementation. The discussion on the
design includes the design decisions, requirements, overall architecture and components. The
implementation discussion describes important implementation decisions and the implementation
strategy.

4.1 Design

This section describes the design of SWAMP client. The discussion covers a general overview of
the design process. For a detailed report on the design process and results (including UML
diagrams) see the SWAMP client design document [Yang2 2001].

4.1.1 Objectives

This section discusses the objectives of the speech interface. These objectives have been
accumulated from brainstorm sessions and meetings with colleagues. During the compilation of
this list, limited consideration has been given to technical possibilities and capabilities available
in the current hardware. The reasons for this decision are the rapid advancements in the hardware
speed and capabilities and the varying requirements of available speech engines, ranging from
386 to Pentium III computers or from several kilobytes to several hundreds of megabytes disk
space. The list of objectives is summarised in Table 9.

Table 9: The objectives of the SWAMP project

NR Objectives
1 The speech interface must be integrated in the current WAM-Pilot application.
2 The speech interface must not affect the current functionality of the WAM-pilot

application.
3 Current services of the WAM-pilot must be accessible through the Speech interface

(where applicable).
4 The speech interface must be stable and demonstrable.
5 The interface must be English, intuitive and easy to use.
6 The interface must have real time performance. The time boundary is that the

delays should not be annoyingly long. (Unfortunately, no exact boundary could be
found for a time that can be considered as “annoyingly long”. So the acceptance
test of the application should determine this).

7 The speech interface should not require too much attention from the user. This
implies that an acceptable recognition and intelligibility rate should be
accomplished. A typical driver has no problems with dividing his attention between
driving and having a conversation with a real passenger. So, the fault must be
sought at the speech interface when problems do occur if the real passenger is
substituted by a speech interface.

8 The interface must support undo/cancel/interrupt functions.
9 The interaction must be dialogue based, so the speech interface can ask for

clarification and/or confirmation if a user’s utterance is not or partially understood.
10 The user must have control over the user interface configuration.
11 The application must work on a HP Jornada with the Window CE OS. At this

moment there is no suitable speech development software available for the CE OS,
so the speech interface will be simulated on an NT workstation as demonstration.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

21

12 The interface must be speaker-independent (to eliminate the need for extensive
training).

13 A simple mechanism must be implemented to modify and create new vocabulary.
14 Minimal use of screen area must leave space for other applications.

4.1.2 Approaches

A number of different approaches can be thought of to design the speech interface. This section
discusses two rather different approaches: The client-side recognition approach and the server-
side recognition approach. As the names suggest, the approaches are distinguished by the location
the speech input is processed.

4.1.2.1 Server-side recognition

In the server side approach the speech recognition part of the system resides at the server.
Utterances from the user are directly transmitted via the telephone line to the server where they
are processed. The reactions are also synthesised at the server and sent back via telephone lines.
Figure 4.1-1 shows a graphical representation of this approach.

W A M B O

GSM Ne twork

Speech
interface

Cl ient GUIOr ig inal Cl ient
Log ic

Original WAM architecture

Speech
process ing

Added functionality

GSM Ne twork

New Cl ient Log icN e w W a m B O L o g i c

Figure 4.1-1: Server side recognition approach

4.1.2.2 Client-side recognition

In this approach speech recognition and speech synthesis are performed at the client. Utterances
from the user are processed locally. Reactions are also synthesised locally. As a result, the
original communication architecture stays intact. This approach is graphically presented in Figure
4.1-2:

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

22

WAM BO

GSM Network

Speech
interface

Client GUI
Original Client

Logic

 Original WAM architecture

Speech
processing

New Cl ient Logic

 Added functionality

Figure 4.1-2: Client-side recognition approach

4.1.2.3 Comparison between approaches

Table 10 contains a comparison of the strong and/or weak points between the two approaches
(client-side and server-side) presented earlier. The score of each approach is indicated with
plusses (meaning strong) or minuses (meaning weak). Based on the results of the comparison it is
decided to choose the client-side approach for this project. The comparison clearly indicates that
the client-side approach (the approach in which the speech recognition and synthesis components
of the system reside at the client) is the better solution at this moment. The potentially better
quality of speech recognition and synthesised speech does not weight up against the added
complexity and lack of scalability. As the utterances from the user are processed locally and the
speech output is also synthesised locally in the client-side approach, the original communication
architecture can stay intact, leading to no further added complexity.

Table 10: Comparison between the Client-side approach and the Server Side approach

Subject Client-side
approach

Server-side
approach

Comments

Complexity + - The server-side approach requires
changes in the WAM-BO as well as the
WAM-client. Also a new
communication channel needs to be
developed to transmit voice data. The
client-side approach only requires
development on the client side, while the
existing communication architecture can
be used.

Licensing and
maintenance
cost

 - + In the Client-side approach speech
recognition and speech synthesis have to
be handled in the client. As a result, the
maintenance and licensing costs are very
high. In the server-side approach the
speech software is only installed in the
WAM-BO, greatly reducing
maintenance and licensing costs.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

23

Scalability + - The Client-side approach does not
require additional resources and
processing power from the WAM-BO.
Therefore, it is easier to add new users to
the system. In fact, the new system is as
scalable as in the old situation. On the
other hand, if speech processing is done
at the server side (with speech
recognition and synthesis being
processor intensive tasks), the more
clients are connected, the more GSM
connections and processing power are
needed. Degrading scalability of the
system.

Additional
resources

+ - In the client-side approach, the clients
only require additional (software)
resources to perform speech recognition
and speech synthesis. In the server-side
approach, next to the original SMS
connection, a separate voice data
connection is needed. It cannot be
predicted when the user might say
something. Therefore this approach
requires a constant GSM connection
with the Back Office. The Back Office
needs the resources to process voice data
and the WAM-Client needs resources to
send and receive voice data.

Integration + + In the client-side approach, voice
commands are eventually transformed
into the same format as GUI commands.
Furthermore a response from the server
can be presented graphically (the old
way) as well as with speech.
In the Server-side approach, the voice
commands have a separate
communication channel with the WAM-
BO, thus speech interface is essentially
an independent interface.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

24

Quality - + When recognition is done at the client,
the quality of the interface (recognition
rate, speech quality) depends greatly on
the hardware requirements (CPU power,
platform etc.) of the speech software of
the client. We can assume that the Back
Office is capable of running the most
sophisticated speech software, so
potentially the server-side approach can
supply better speech recognition quality
to the system than the Client-side
approach. In the server side approach the
quality of the voice transmission channel
plays the most crucial role.

Compatibility + + As the communication architecture stays
the same in the client-side approach, the
system is still backward compatible. In
the server side approach the original
architecture is not changed (only a new
communication channel has been
added), so the system should still be
compatible with clients without speech
interface.

4.1.3 Elaboration of chosen approach

The speech interface according to the client-side approach consists of three main components.
The speech recognition engine, the text to speech engine and the dialogue control. Because each
component differs considerably from the others, the components are separately designed and
separate design methods will be chosen for each component. Since the chosen approach does not
alter the WAM back office nor the communication architecture between the SWAMP client and
the back office, these topics are not covered further.

4.1.3.1 Data

The purpose of the speech interface is to support speech interaction between a user and the
main application. The term “main application” is used to refer to the logic of the original WAM
client, which is described in chapter 2.
First a definition of a typical user of the SWAMP client will be given. This definition is a key
consideration in many design decisions. At the start of the project, there was no clear definition of
the typical user. Thus, the following (convenient) user has been chosen to represent the typical
user:

The typical user of the system is an adult English speaking male1. He is a skilled
driver and familiar with current computer and communication technology.
Furthermore he travels a lot (privately and/or for the company he works for).

Figure 4.1-3:Definition of a typical user of the system

1 Statistics show that the majority of car drivers is male

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

25

Next an explicit state definition of SWAMP client needs to be defined. The state represents
what the speech interface knows about the world. Together with external inputs (e.g. user
utterances, motor information) this determines the behaviour of the speech interface.
As the world evolves and changes while the SWAMP client is active, this information needs to
evolve and be updated too. Since the state is very big and dynamic, artificial intelligence (AI)
techniques are used as a tool to represent and maintain this state.
The state of the SWAMP client consists of the following related information structures:

State SWAMP of
Driver: Driver
AnnoyanceLevel: {NORMAL, ANNOYED}
FeedbackMode: {normal, silent, verbose}
AlertLevel: {normal, alert}
Sessioninfo: Driver
DialoguePosition: {LoginDlg, MainDlg, SOSCallDlg,

ANWBCallDlg, KMRegDlg, DirReqDlg,
FileInfoDlg, CorpInfoDlg }

Location: GPSCoordinates
CurrentAction: Char*
CurrentGoal: {LOGIN, MAIN, SOS, ANWB, KMREG,

DIRREQ, TRAFFICINFO, CORPINF}
LastSaid: char*
Retries: int
Timeout: int

End State;

Driver:: Name: char*
CarID: char*
ProjectID: char*
TelefoonNr: char*
TripType: {private, business};

Name: char*;
NameAlias: Name -> UserID;
Nametable: NameAlias-set;

CarID: char*;
CarIDTable: CarID-set;

ProjectID : char*;
ProjectIDTable: ProjectID-set;

LocationName:: char*;
GPSCoordinates:: NB: char*

WL: char*;

Location = LocationName ->GPSCoordinates;
Locationtable = GPSCoordinates-set;

Login:: driver: Driver
 location: GPSCoordinates

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

26

loginResult: char*;

SOSCall:: Location: GPSCoordinates
SOSCallResult: char*;

ANWBCall:: Location: GPSCoordinates
ANWBCallResult: char*;

KMReg:: newTriptype {private, business}
NewProjectID: char*
Kmlevel: int
KMRegResult: char*;

DirReq:: sourceLocation: GPSCoordinates
destinationLocation: GPSCoordinates
DirReqResult: char*;

TrafficInfo: infoType: {local, global}
InfoParam: char*
Location: GPSCoordinates
KMRegResult: char*;

CorpInfo: infoType: {Telephone, Appointment, stock}
InfoParam: char*
CorpInfoRes: char*;

4.1.3.2 Components

A system for speech interaction with a user consists of at least three components. The first one is
a component to recognise the user’s utterance and transform it into a format that can be processed
more easily. This component is called the Automatic Speech Recognition or ASR component and
it transforms the speech utterance into text. Then a component is needed to process this text to
figure out what the user wanted to accomplish with the utterance. This is done in the dialogue
manager component. The dialogue manager also takes the appropriate actions as a response to the
user’s utterance. Actions can be speech responses such as feedback or requests for clarifications,
these are sent in text format to the last and final component: the Text To Speech or TTS
component were speech is generated from the text to give response to the user. Figure 4.1-4 gives
a graphical overview of the components and their interconnection.

Text To
Speech

Dialogue
manager

Speech Interface

Speech
Recognitio

Main
application

Figure 4.1-4: Speech interface components

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

27

4.2 Implementation

The discussion in this section is limited to a listing of the most important implementation
decisions and an elaboration on the implementation strategy applied. Also an overview of the
result is presented. For a thorough discussion see the SWAMP implementation document [Yang3
2001].

4.2.1 Implementation decisions

In order to contain the complexity of the project some important implementation decisions have
been made. They are summarised below.

Table 11: Implementation decisions

Decision
Use Windows NT to build a
prototype

Initially it was the intention to build the speech interface
to run on Windows CE (see requirements). Due to
limitations in software1 and hardware of the HP Jornada,
a prototype will be developed to run under Windows NT
first. This step is taken as a safety precaution so that
there is something to demonstrate at the end of the
project.

Use SAPI as middle-ware to
implement speech resources

The Microsoft Speech Application Programming
Interface version 5.0 (SAPI5) [SAPI] consists of two
interfaces: the application-programming interface (API)
and the device driver interface (DDI). The SAPI 5.0 API
dramatically reduces the code overhead required for an
application to access speech recognition and synthesis.
Furthermore, the application programming interface
delivers access to the speech resources in an
independent way, consequently the TTS or ASR
component can be replaced by other (better) components
without having to change a single line of the SWAMP
client’s code. The specific reasons for choosing SAPI5
are discussed in section 5.1.

Use the CLIPS expert
system tool

The CLIPS [CLIPS 2000] expert system tool is designed
to facilitate the development of software to model
human knowledge or expertise. It has been designed for
full integration with other languages such as C. In the
SWAMP client, CLIPS will be used to help manage the
dialogue with the user. In particular, CLIPS will be
applied to do the knowledge processing part of the
dialogue manager.

Use C++ as programming
language

The WAM client was written in C++ and both SAPI and
CLIPS support it. So it is only natural that the SWAMP
client, as an extension of the WAM client, is only
implemented in C++. The development environment is
Microsoft Visual C++ enterprise edition.

1 Microsoft is very vague on COM and ActiveX support on WindowsCE 2.11 which is required for SAPI5
to work

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

28

Rapid prototyping Whenever human factor issues are involved (which is
definitely the case in SWAMP) it adds an extra
dimension to the problem which is hard to capture in
static design models. It can already be anticipated that
unforeseen situations will occur as the result of
unexpected utterances of the user. To anticipate these
unexpected situations a strategy is chosen to develop an
early prototype and refine it through extensive iteration.

Leave client the same as
much as possible

The implementation strategy on the SWAMP client is to
leave the old structure and code of the WAM client
intact as much as possible, so that the old documentation
is still valid.

4.2.2 Overview

Figure 4.2-1 gives a graphical overview of how the speech interface is implemented. All
components will be discussed in more detail in chapter 5.

CLIPS
engine

ASR engine

Dialogue Manager

swamp.xml

swamp.clp

TTS engine

SAPI 5

Main
Application

db files

Figure 4.2-1 Overview of SWAMP implementation

The ASR engine recognises utterances from the user while the TTS engine synthesises speech to
the user. SAPI 5 acts as a communication layer between the dialogue manager and the speech
resources (ASR and TTS engine). The CLIPS engine is embedded in the dialogue manager. It can
be viewed as the knowledge processing and management unit of the dialogue manager. The main
application is the original WAM client modified in such a way that it can communicate with the
dialogue manager.

Data can be written to and retrieved from external files:
swamp.xml This file contains a definition of grammar rules of SWAMP. The ASR

engine loads this file to know which words or sentences to recognise.
swamp.clp This file contains production rules (constructs). The CLIPS engine uses

these constructs to handle dialogue with the user. Swamp.clp contains
references to rules in the swamp.xml explaining the dotted line
between the files.

db files Represents a set of database files:
- name list
- project ID list
- car ID list
- location name to GPS co-ordinates mapping list

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

29

4.2.3 Implementation strategy

The implementation strategy applied in the SWAMP application differs from the way traditional
systems are implemented because human factor issues are involved. The strategy chosen is to
develop an early prototype and refine it through extensive iterations. First a proper speech support
framework is built. Then the services are added one by one. In the end, the system as a whole is
tested again. Figure 4.2-2 gives an overview of the implementation strategy.

iteration point 1
Implement speech framework

iterate1

iteration point 2
For each Service do

iteration point 3
Dialogue analysis
Construct scenarios
Construct a corpus
Construct a grammar
Build facilitation in CLIPS
Implement interaction between GUI and Dialogue manager
Test scenarios

iterate3
end for
Integral system test

iterate2

Figure 4.2-2: Overview of the implementation strategy

Table 12: Implementation steps

Implementation step Description
Implement speech
framework

This step includes initialisation of external resources (SAPI and
CLIPS), implementation of the messaging facility between SUI
components and between the components of the dialogue
manager. In short, it realises all the necessary conditions to
support speech interfacing.

Dialogue analysis Since there are no existing spoken dialogues available, additional
information must be extracted from the way the GUI is
implemented. In particular the navigation structure in the GUI and
the information needed to complete the service is of importance.
Flow diagrams depicting the possible paths through a dialogue are
used to model the dialogue flow.

Construct scenarios Compile a list of possible scenarios (dialogues) for the service.
The scenarios are used to construct a corpus (next step) and to test
the SUI in the testing phase.

Construct a corpus Based on the scenarios and dialogue flow, a corpus of about 15
(common) utterances for the service is constructed.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

30

Construct a grammar The goal in this step is to capture the corpus for the service into
some grammar rules. The obtained grammar rules are stored in the
“swamp.xml” file.

Build facilitation in
CLIPS

Construct CLIPS rules to implement the desired behaviour for the
service. This includes:
Rules that implement the actions to take if a grammar rule is
recognised (interfacing rules).
Rules that implement actions to lead the user to a successful
accomplishment of the service (hidden rules).
The CLIPS rules are stored in ”swamp.clp”.

Implement interaction
between GUI and
Dialogue manager

In this step the implementation of interaction between GUI and
Dialogue manager to synchronise speech and GUI actions is
implemented. The synchronisation is needed so that:
1. The user has some visual indication of what he is doing.
2. The content of the GUI is consistent with what is going on.

Test scenarios Test if the dialogue flow goes as planned. Scenarios can be tested
using speech emulation as well as real speech. With speech
emulation the speech recogniser is disabled and utterances of the
user are entered through a keyboard. Emulation filters out
unwanted effects, such as background noise, so that only the pure
dialogue is tested.

Integral system test Test the system as a whole and let others try it. The purpose is to
test whether the speech interface is usable and indeed an
improvement on the graphical user interface.

4.2.4 Implementation results

Due to the limited time available for this project, not all implementation goals have been
achieved. Nevertheless a working prototype of the described application has been successfully
implemented.

The architecture described in section 4.2.2 has been implemented entirely. SAPI5 enables the
SWAMP client to 1) recognise spoken speech according to a user defined grammar file and 2)
synthesise arbitrary text into speech. Furthermore the voice, speed and pitch of the synthesised
speech can be adjusted. The CLIPS engine has also been successfully embedded. It is possible to
load CLIPS construct files, send messages to standard input of the CLIPS engine, and receive
messages from standard output and standard error. To have a better overview, the client code is
split into five functional categories (Table 13). These categories differ in the functions they are to
fulfil and the changes necessary in the original WAM client code to achieve this. Since the
SWAMP client is an extension of the WAM client, a big part of the WAM clients source code is
also used in the SWAMP client. Appendix A5 shows a comparison between the class hierarchy
diagrams of the SWAMP client and the WAM client (new classes, modified classes, name
changes etc.).

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

31

Table 13: Overview of the functional categories of the SWAMP client’s code

Category Description
GUI code This code contains the implementation of the graphical user

interface. The only changes made here, are due to the new
services and the communication with the dialogue manager.

Communication code Provides the home for communication with the SWAMP back
office, GPS antenna and the Motor management system. This
code is entirely the same as in the WAM pilot.

Recognition code This code is responsible for the initialisation, control, and
destruction of the speech resources. All the code of this category
is new.

Grammar code The grammar code defines the grammar of the SWAMP client’s
speech interface. The grammar code is written in the Microsoft
grammar schema format and resides in a file named
“grammar.xml”.

Dialogue
management code

The dialogue management code is divided into two parts. The
first part is written in CLIPS and resides in a file named
“swamp.clp” the second part is written in C++ and controls the
communication between the first part and the rest of the
application.

The SWAMP architecture is the skeleton on which speech-enabled services can be implemented.
A speech-enabled service consists of a grammar defining the valid utterances, a dialogue flow
design specifying the possible dialogue paths, and an implementation of the designed dialogue
flows. The grammar of the following services have been designed and implemented: Login
(except back office telephone number), SOS call, ANWB call, KM registration (see appendix
A3), request direction, and traffic information. The dialogue flow for the login (except back office
telephone number), SOS call, ANWB call, KM registration, and request direction services have
been designed, implemented and tested. The dialogue flow for the traffic information service has
been designed, but not implemented. Appendix A7 shows the dialogue flow diagrams for the
designed dialogues. Table 14 summarises the current development status of the speech-enabled
services.

Table 14: Current development status of the services

Service Grammar Dialogue
designed

Dialogue implemented
and tested

Login1 yes yes yes
SOS call yes yes yes
ANWB call yes yes yes
KM registration yes yes yes
Request direction yes yes yes
Traffic information yes yes no
Request corporate
information

no no no

1 Except back office telephone number

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

32

5 The speech interface

The purpose of the speech interface is to support speech interaction between a user and the main
application. The general assumption behind the speech interface is that the user wants to
accomplish something with his utterances, in other words he has a certain goal in mind. The set of
all services the SWAMP application has to offer however, is just a subset of all the goals the user
can have. Goals that don’t correspond to a service are beyond the domain of the speech interface
and are ignored. In other words, the speech interface is only applicable in a limited domain and
will not be able to replace a human conversational partner. Generally, a dialogue is started by the
user with an utterance in which he indicates what he wants to achieve: the initial utterance. With
each initial utterance, the speech interface tries to find the corresponding service involved. It then
tries to accomplish the service by checking whether all the necessary information is available. If
this is not the case a dialogue is started to obtain the missing information from the user until the
task can be performed.

The speech interface is divided into a number of different pieces of software called components,
each of which will be discussed separately:

1 The speech recognition or ASR component:
Its function is to recognise the user’s utterance and transform it into a format that
can be processed.

2 The dialogue management component:
Its function is to process the input from the speech recognition component to figure
out what the user wanted to accomplish and take the appropriate actions to realise
the user’s wishes.

3 The speech synthesis or TTS component:
Its function is to generate speech output to the user.

The following sections give a discussion of the speech components and how they work together to
accomplish the desired behaviour. But first a description of the speech software used is given.

5.1 Speech software

Early in the project it was clear that it is impossible to build the TTS component and the ASR
component within the time available for the project. To simplify matters, it seemed best to use
TTS and ASR engine software from third party vendors. Today, there are various ASR, TTS
engines and development tools available to develop speech-enabled applications. Several of these
engines and tools have been evaluated. A list a the evaluated software is summed up in appendix
A2 The evaluation criteria for the software of choice were:

Table 15: Evaluation criteria for the speech software

Criterion Comment
Ease of use It should not be overly complicated to use the software.
Hard/software requirements This criterion became less important after the decision

was made to build a prototype under NT.
Recognition rate This criterion is only applicable to the ASR engine. The

evaluation of the recognition rate depends strongly on
the type of recogniser used (user dependent or user
independent), the evaluation environment (background
noise etc.) and the voice of the user (the performance of
recognition engines varies from person to person).

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

33

Quality of synthesised
speech

This criterion is only applicable to the TTS engine.

Price/support Since the SWAMP application is only a demo prototype,
the price of the speech components should be
proportional.

Ability to recognise
specified grammar

For better performance an ASR that accepts a user
defined grammar rather then a dictation vocabulary is
required. The grammar notation format and its
possibilities are also important.

Features Features are properties or capabilities of the software
that are interesting but not mandatory for the SWAMP
SUI.

In the end, the Microsoft Speech Application Programming Interface 5.0 (SAPI5) [SAPI 2000]
was chosen.

5.1.1 Overview of SAPI5

SAPI5 is not an ASR or a TTS engine, but acts as middle-ware between the engines and the
application Figure 5.1-1. SAPI 5 consists of two interfaces: the application-programming
interface (API) and the device driver interface (DDI). Applications communicate with SAPI5 via
the API layer and speech engines communicate with SAPI5 via the DDI layer. The DDI takes
care of hardware specific issues such as audio device management, while the API removes the
implementation details such as multi-threading. This reduces the amount of code overhead
required for an application to use speech recognition and synthesis.

Figure 5.1-1: SAPI 5 architecture overview

The advantage of using middle-ware is that the choice of the final ASR and TTS engine can be
postponed until a later stadium (e.g. until there is more budget for better engines), provided of
course that there are better engines available. In addition, SAPI5 can be downloaded for free and
an ASR engine and some TTS voices (Mary, Sam and Mike) are already contained in the
package. As for the support of SAPI5, there are two dedicated SAPI newsgroups
(microsoft.public.speech_tech and microsoft.public.speech_tech.sdk) available where Microsoft
professionals (including the people who built SAPI5) regularly answer questions. Also an
extensive manual with several examples and a tutorials is included in the SAPI5 download
package. Availability of (better) speech engines from third parties is also good, since many
companies have announced support for SAPI5 including Lernout & Hauspie/Dragon Systems
Inc., Conversational Computing Corp., Fonix Corp., Fujitsu Ltd., NEC, Toshiba Corp., IBM
Corp. [SAPI5 third party]. SAPI5 compatible speech engines from some of these third parties are
already available for sale.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

34

The compliance tests from Microsoft verify that engine developers have successfully
implemented the required features to be considered compatible with SAPI5, compatible engines
can be used by the SWAMP client without trouble. Moreover, as the application programming
interface gives access to the speech resources in an engine independent way, the TTS or ASR
components can be replaced without having to change a single line of SWAMP application code.

5.1.2 SAPI5 usage

Before SAPI5 can be used, it needs to be installed first (see appendix A4 for more information on
system requirements and installation notes). The next step is to initialise the speech resources.
The initialisation of the engines incorporates the following steps:

Step1 Initialise COM (Common Object Model).
Step2 Create the recogniser object, this provides access to the recognition

engine.
Step3 Create recognition context for the engine. A context is a single area of

the application needing to process speech (in this case, the entire
application).

Step4 Loading grammars and rules. In Step3, the grammar was created. This
step populates the grammar with rules from an external resource. After
this step the initialisation of the recognition engine is complete.

Step5 Create and attach a TTS engine to the recognition context. By attaching
the TTS engine to the recognition context, the ability for barge in is
provided.

After the initialisation phase, the application is speech-enabled. The speech processing is done in
the background. Whenever there is relevant information from the TTS engine or ASR engine,
SAPI collects this information, and returns it back to the application by means of events.
Although numerous methods are available to control the execution of the speech resources, not all
methods are used in the speech interface. The specific methods used will be discussed when the
components using these methods are analysed.

5.2 The ASR component

The core task of automatic speech recognition (ASR) is to take a digitised speech signal as input
and convert that into recognised words and phrases. To successfully recognise incoming speech
the recogniser matches this speech against the grammar. The grammar defines the words and the
order of those words that make a valid sentence. The recognition domain is limited to a grammar
of valid sentences because this provides better accuracy and performance, and reduces the
processing overhead required by the application. The limited grammar also enables speaker-
independent processing. The following sections describe the ASR component along with the
grammar used by the ASR component, how it is obtained, and how it is used.

5.2.1 ASR overview

SAPI 5.0 is based on the common object model (COM), a technique that enables the development
of reusable binary software components. Therefore a lot of COM terminology will be used in this
overview of the ASR engine. COM is explained in many books e.g. Essential COM [Box 1999].
Figure 5.2-1 shows an overview of the information flow from the utterance of the user until the
processing of the recognised words. The figure also shows the role of the ASR engine in this
flow.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

35

User speaks in to
mic rophone

Audio
Hardware

SAPI
DDI

The aud io hardware
conver ts speech in to

a digi ta l s ignal

The SAPI DDI
retr ieves the
digi ta l s ignal

User

A S R

ASR
component

SAPI
API

Swamp
Client

T h e A S R
componen t

converts the
digi ta l s ignal in

recogn ised
words

S W A M PDDI API

The SAPI API
prov ides an

interface for the
SWAMP c l i en t
to retr ieve the

recogn ised
words

T h e S W A M P
cl ient processes
the recognised

words

Figure 5.2-1 : Overview of the information flow from the utterance of the user to the processing of the recognised words

The SAPI DDI manages the audio hardware and provides a unified interface1 for the ASR engine
to retrieve the digitised speech signals. How different ASR engines implement this interface is left
to the ASR engine vendor and is out of the scope of this document. After retrieval of the digitised
speech signals, the ASR engine performs recognition algorithms on the signal to extract the
spoken words. The algorithms applied vary from vendor to vendor. In ”Artificial intelligence, A
modern approach” [Russell 1995] and in the literature survey done prior to this project [Yang1
2001] the most commonly used algorithms are discussed. To share the extracted information with
the SAPI5, the ASR engine (which is a COM object itself) must implement the ISpSREngine
interface (Figure 5.2-2). The SAPI5 API uses the methods of this interface to obtain the
recognised information or to pass details of recognition grammars and tell the engine to start and
stop recognition etc. SAPI5 itself implements the interface ISpSREngineSite. A pointer to this is
passed to the engine and the engine calls SAPI using this interface to read audio, return
recognition results etc. ISpRecoContext is the main interface for speech recognition, it is the
speech interface’s vehicle for receiving notifications for the requested speech recognition events.
Each ISpRecoContext object can take interest in different speech recognition engines and utilise
different recognition grammars. Speech applications must have at least one ISpRecoContext
instance to receive recognitions. Within an ISpRecoContext an application has the choice of two
different types of speech recognition engines (SpRecognizer object). A shared recogniser that
could be shared with other speech recognition applications or an in-process (InProc) speech
recognition engine for application where speed is key: The SWAMP client uses an in-process
recogniser. The SpRecognizer object represents a single SR engine and enables the application to
control aspects of the speech recognition (SR) engine.

1 The term “ interface” must be interpreted, in the spirit of COM, as a means to 1) separate definition
of the functionality of a COM object from the implementation details of that object or 2) gain access
to functionality of the COM object.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

36

Audio hardware

ASR component

SWAMP Client

SAPI DDI

ISpSREngine

ISpRecoContext

SpRecognizerObject

SAPI
ISpSREngineSite

Hardware

Figure 5.2-2: Interfaces of SAPI5

5.2.2 The SWAMP Grammar

The SAPI5 design specification requires that all SAPI5-compatible speech engines must be able
to understand a context-free grammar (CFG) written in a format specified in the SAPI5 grammar
schema. This schema describes the SAPI 5.0 speech recognition grammar format and is based on
the XML framework. Since only SAPI5 compliant ASR engines can be used in the SWAMP
client, the grammar for the dialogues is also defined according to the schema.
The ASR engine uses the CFG to constrain the words contained in the user's utterance that it will
recognise. Furthermore the CFG can be extended with semantic information (property names and
property values) declared inside the grammar. This enables the ASR engine to associate certain
recognised word string with name/value-meaning representations. The dialogue manager then
applies these meaning representation associations to understand and control the dialogue with the
user.

5.2.2.1 Syntax

The SWAMP grammar is stored in a grammar file (swamp.xml). Basically the grammar file
consists of a set of grammar rules in the grammar schema syntax (see Figure 5.2-3). The complete
specification of the schema can be found in the SAPI5 online help file [SAPI5 website].

<RULE
[DYNAMIC = enumeration : 0 | NO | FALSE | 1 | YES | TRUE]
[ID = string]
[NAME = string]
[TOPLEVEL = enumeration: INACTIVE | ACTIVE]

>
<RULEREF>| <P> | <L> | <O> *

</RULE>

Figure 5.2-3: Syntax of a grammar rule

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

37

Attribute Description
DYNAMIC Indicates that the contents of the rule can change during runtime.
ID This is a unique identifier of the rule.
TOPLEVEL The TOPLEVEL tag within the RULE statement gives a rule a

special status. Not only does this identify the rule as being top level,
but it also sets the activation state (active or inactive). Only top-
level rules can be activated or deactivated. SAPI recognises active
rules and conversely does not recognise deactivated ones. The
application may change the state of the rules during execution. so if
a rule is no longer needed, it may be deactivated

Element Description
RULEREF This element is used inside the contents of a rule definition to

reference another defined rule (but not other top-level ones).
P* This element is used to describe the Phrase element. An associated

property name and value pair is generated if the contents of this
element are recognised.

L Defines a list of alternate phrases from which any one can be used
to complete the match. Thus each sub-element within this element
represents a possible separate recognition in place of this element.

O* This element is similar to the P element. With the exception that the
O element is optional. As the name implies, optional words are not
required for a successful rule match.

Elements labelled with * can contain properties or semantic information within tags (property
names and property values). After a successful recognition, the information can be retrieved from
SAPI. References to other rules can be recursive – i.e., rules can reference themselves, either
directly or indirectly.

5.2.2.2 Construction of grammar rules

The grammar rules are derived from a corpus of about fifteen utterances per service. Fifteen
utterances are too few to build a reliable and robust corpus for a service, but should be enough to
allow the demonstration of the general idea of the speech interface in the SWAMP client
prototype without making the grammar too complex. Example 1 shows an example of the
derivation of the grammar rules for the KM registration service out of a corpus of utterances. The
resulting grammar rule is given in pseudo CFG format.

Example 1: Example of the derivation of grammar rules from a corpus

Sample utterances (corpus):
Utterance
It’s private now
Set the trip type to/into private
Change the trip type to/into private
It’s a business trip now
Project ID is X
It’s a business trip and project ID is X

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

38

Bill all kilometres driven from now on project X
This part is of the trip is private
The drive is now private
Did I mention that this was a private trip?
It will be a private trip from here on
The trip type is Private
Trip type is private

The transformation from utterances to a context free grammar is not difficult. In
the worst case the resulting CFG is an enumeration of all the utterances. For
performance reasons it is better to try to discover general patterns in the
utterances and thus to make the CFG as small as possible resulting in the
following pseudo CFG:

<Triptype> = “Private” | “business”
<TriptypeUtterance> = “Trip” | “triptype” | “drive”
<Now> = “now” | “from now on” | “from here on”
<Project-ID> = // obtained from database
<KM-Triptype> = [“change” | “set the”] <TriptypeUtterance> “in” |

“into” | “to” <Triptype>
|
[“the” | “this part of the”] <TriptypeUtterance>
“is” <Triptype>
|
“it’s” | ”Did I mention that this is” | ”It will be” | “I
will be making” “a” <triptype>
<TriptypeUtterance> [<Now>]

<KM-ProjectID> = “Bill all kilometres driven now on project”
< KM-Project-ID> = [“The”] “project I D” [“is”] <Project-ID>
<KM-utterance> = <KM-TripType> | <KM-ProjectID> | <KM-

TripType> “and” <KM-ProjectID>

The pseudo CFG must then be transformed into Microsoft schema language
(which is a real CFG) to be of use for the ASR engine. This process is rather
straightforward and will not be discussed. Appendix A3 shows the resulting
grammar rules in Microsoft schema language.

The grammar rules thus obtained must be stored in a file (in this case: swamp.xml). SAPI5 comes
with a grammar compiler that creates binary grammars from XML defined grammars. The SAPI
grammar compiler is divided into two parts, a front-end section and a back-end section. The front-
end parses the grammar described in XML and optimises the XML formatted text grammar if
requested. The front end then calls the back-end compiler to convert the internal representation
into the SAPI5 binary format. The binary file (grammar.cfg) is stored as an application resource.
During compilation, the grammar compiler gives error messages if the grammar format does not
conform to the Microsoft schema for grammar format. This enables the verification of the validity
of the grammar. Although the process of deriving grammar rules from a corpus is not very
difficult (especially with only fifteen utterances), there are some issues to consider:

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

39

Dynamic content in grammar
Suppose we want a rule with RULE ID EMAIL that needs to support the phrase "send new e-
mail to NAME." The problem is that the phrase "send new e-mail to" is static, and known at
design time, but NAME is undetermined and only available during runtime. We could solve this
problem by explicitly listing all names in a static grammar rule. Static means this list is defined
ahead of execution time and is not subject to change (Although the .xml file may be edited
independently of the application, it may not be changed during execution). This is not an elegant
solution because the grammar file has to be changed and recompiled every time the user adds a
new name to his e-mail list. Luckily SAPI5 also supports dynamic grammars. As the name
implies, a dynamic grammar is the opposite of a static one. First, words may be added and deleted
during runtime and the list does not need to be predetermined. This allows much greater latitude
for applications. To use dynamic grammars, dynamic rule content should be separated from static
rule content. Another motivation for the separation is that it makes grammar design more clear
and improves initial SAPI grammar compiler performance. In the SWAMP grammar, the email
problem could be solved by creating a static rule (with rule ID E-MAIL) that contains the static
phrase and a dynamic rule (with RULE ID NAMEDB) that contains dummy values. The list of
names, e.g. coming from an address book, can be loaded into the dynamic rule at runtime. The
static grammar could then contain a rule reference (RULEREF) to the dynamic rule. When the
SWAMP client starts up, it quickly loads the static content. Afterwards it can load the dynamic
content when needed (resulting in better performance). Moreover, if the list of names (address
book) is updated the run-time grammar of the speech interface is automatically updated along
with it.

Semantics in grammar
The SWAMP grammar is written in a format specified in the SAPI5 grammar schema, which is a
context free grammar (CFG). As CFGs only specify the rules for a valid utterance, another
mechanism must be found to convey meaning to the dialogue manager. The mechanism used in
the SWAMP client to accomplish this is called semantic tagging. Property name and property
value tags are used to tag elements in order to artificially endow some meaning in them.
In the example of the previous paragraph, a semantic property tag e.g. NAME can be attached to
the rule reference to the dynamic NAMEDB rule. The dynamic information corresponding to the
NAME tag (in other words the name actually spoken out) can be retrieved from the recognised
phrase at runtime.

5.2.3 Grammar handling

So far grammar rules were discussed as abstract data types. To define a grammar rule properly,
the operations that can be performed on them need to be considered. SAPI 5 allows some
flexibility in the defined grammar, for example top-level rules can be activated or de-activated
during run-time. In the following a description is given of what the speech interface must do for
each of the six basic grammar rule operations: creation/deletion, load, activation/deactivation and
modification.

Creation and Deletion
When an application creates a grammar object this is reported to the engine via the
OnCreateGrammar() method. From this method the engine must also return a pointer, which is
used to identify the grammar in later calls from SAPI5. When grammars are deleted the
OnDeleteGrammar() method is called.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

40

Loading
SAPI5 takes full control of loading a grammar when an application asks it to. SAPI5 can load
from a file (LoadCmdFromFile()), a COM object (LoadCmdFromObject()), a resource
LoadCmdFromResource()), or from memory (LoadCmdFromMemory()), and can load either
binary or XML forms of the grammar. SAPI5 then notifies the ASR engine about the contents of
the grammar through various DDI methods.

Activation/deactivation of rules
Rules can be top-level, indicating that they can be activated or deactivated during run-time with
the SetRuleState() function. For instance, only the login grammar rules are active during user log
in. If the login procedure is completed successfully, the login rules are deactivated while other
rules now become active. This way, only rules that are relevant in the current context will be
recognised. Moreover, no interference is received from irrelevant rules firing and the performance
and recognition rate of the ASR engine is increased because of a small search space.

Modification
Grammar rules with the DYNAMIC attribute set (see Figure 5.2-3), can be modified during
runtime with the ClearRule() command. The contents of a rule can be cleared first whereupon the
AddWordTransition() command can be used to add a word in the rule contents. This feature is
used to load frequently changing data into the grammar. For example, the list of user names
changes frequently, it is not flexible to explicitly enumerate the list in the grammar file.
Especially, since the whole application needs to be re-compiled if the list is modified. Instead the
list is loaded from a database file into the appropriate grammar rule during runtime.

5.3 The Dialogue Manager

The dialogue manager is responsible for a successful dialogue with the user. It decides which
utterances the ASR engine must recognise, what the TTS engine must say, and how it must be
said. Therefore, it is the part of the program that determines the “face” of the speech interface.
Following is a list of tasks the dialogue manager is responsible for in order to accomplish this.

Table 16: Functions of the dialogue manager

Task Description
1 Controlling the ASR engine The dialogue manager controls the ASR engine by

indicating which grammar rules should be activated
or deactivated at any time. Furthermore the control
task includes starting and stopping of speech
recognition and loading of dynamic data into the
grammar.

2 Controlling the TTS engine The dialogue manager generates text messages and
sends them to the TTS engine for speech synthesis.
Also the dialogue manager is responsible for
starting or stopping speech synthesis and
controlling speed, volume and pitch of the
synthesised speech.

3 Maintaining a model of the
real world

Since dialogues are context sensitive, the dialogue
manager must maintain an internal model of the real
world to be able to correctly interpret the user’s
utterances. This model is temporal and needs to be
constructed and maintained at run-time.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

41

4 Processing and interpreting
recognised speech

As the ASR engine recognises user utterances, it is
the dialogue manager’s task to interpret and extract
the user’s goals from these utterances (taking into
account its model of the real world). Furthermore
the dialogue manager must perform the necessary
actions to achieve these goals.

5 Communicating with main
application

This communication is necessary to keep the main
application updated on relevant changes due to
speech activity of the user or to be updated about
relevant changes due to GUI activity of the user.

The process of extracting the users’ intentions from recognised speech (function 4) requires some
kind of reasoning. Particularly if the utterances are context sensitive and the dialogue manager’s
internal model of the real world must be taken into account. The use of artificial intelligence to
build and maintain the internal models (function 3) is inevitable. Not surprisingly, artificial
intelligence (AI) technology and techniques have indeed been applied to achieve this reasoning.
In chapter 6 the dialogue manager and AI techniques used will be discussed in more detail.

5.4 The TTS component

The text to Speech (TTS) component (or speech synthesis component) takes a sequence of text
words (input text) and produces as output an acoustic waveform (see Figure 5.4-1).

The user
receives the

spoken message
from theSWAMP

client

Audio
Hardware

SAPI
DDI

The audio hardware
converts the digital
s ignal into speech

The SAPI DDI
provides an
interface to

audio hardware

User

TTS

TTS
component

SAPI
API

Dialogue
manager

The TTS
component

converts the text
message into a
corresponding
digital signal

SWAMP

The SAPI API
provides an

interface to the
TTS component

The Dialogue
manager

generates a text
message to be

synthesised

API DDI

Figure 5.4-1: Overview of the information flow from generation of text messages till generation of spoken message

When the following piece of C++ code is executed, the sentence “Get back to work” is
synthesised with normal pitch, maximal volume and the emphasis on the word “get”.

Speak(L"<SAPI> <PITCH MIDDLE='5'/> <VOLUME LEVEL='100'/> <EMPH> Get
</EMPH> back to work </SAPI>");

Several TTS engines can be installed on the same machine, but only the initialised TTS engine is
current. In fact, the “speak” command is a generic SAPI API call to the current TTS engine
(which of course is initialised beforehand). The list of available TTS engines is listed in the
Windows NT registry in: HKEY_LOCAL_MACHINE\Software\Microsoft\Speech\Voices.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

42

The TTS engine used in SWAMP has support for “barge-in”, which allows users to speak at any
point in the system, even while the system is still playing prompts, greatly increasing the speed
and efficiency of the system. Furthermore the SAPI5 API supports the use of simple speech
control symbols (see Table 17) incorporated in the input text.

Table 17: Speech control elements defined in the SAPI TTS XML schema

Element
<CONTEXT> The context can specify the type of normalisation rules which

should be applied to the scoped text. SAPI does not guarantee any
predefined contexts.

<EMPH> Places emphasis on the words contained by this element.
<LANG> Changes the LANGID of the scoped text. When the LANGID is

changed, SAPI will try to detect if the current voice can handle
the new language. If voice does not speak the specified language,
then an engine must choose another language it speaks as a best
attempt.

<PARTOFSP> The part of speech of contained word(s). The PARTOFSP tag is
used to force a particular pronunciation of a word (for example,
the word record as a noun versus the word record as a verb).

<PITCH> The scoped/global element PITCH modifies the underlying
numerical values of a speech block. Relative attribute values,
those preceded by a dash (-) or a plus sign (+), increment the
underlying numerical value by the specified amount. SAPI
compliant engines have the option of supporting only the
guaranteed range of values and behaving as -10 for adjustments
below -10 and behaving as +10 for values above +10.

<PRON> Pronounces the contained text (possibly empty) according to the
provided Unicode string.

<RATE> Sets the relative speed adjustment at which words are synthesised.
<SILENCE> Produces silence for a specified number of milliseconds to the

output audio stream.
<SPELL> Spells out words letter by letter contained by this element.
<VOICE> Sets which voice implementation is used for synthesis of

associated input stream text. The best voice implementation given
the required and optional attributes will be selected by SAPI.

<VOLUME> The scoped/global elements VOLUME modify the underlying
numerical values of a speech block. The underlying value can
never be below zero or exceed 100. All negative value entries will
result in zero and all values above 100 will result in 100.
VOLUME may also receive an absolute value (no '-' or '+'
character) of an integer between zero and 100.

There are two main objects of interest in the TTS Engine: the SpVoice object (SAPI) and
the TTS Engine object (see Figure 5.4-2). The SpVoice object implements two interfaces that are
of concern – ISpVoice, which is the interface which the application uses to access TTS
functionality, and ISpTTSEngineSite, which the engine uses to write audio data and queue events.
The TTS Engine must implement two interfaces as well – ISpTTSEngine, which is the interface
through which SAPI will call the engine, and ISpObjectWithToken, which is the interface through
which SAPI will create and initialise the engine.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

43

TTS Engine

SpVoiceObject

ISpTTSEngine

ISpVoice
SAPI

APPLICATION

ENGINE

SWAMP Client

ISpTTSEngineSite

ISpObjectWithToken

Figure 5.4-2: SAPI5 TTS relevant objects and interfaces

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

44

6 The dialogue manager

In this chapter the dialogue manager will be discussed in more detail. In particular the theoretical
background of the techniques behind the dialogue manager, the way the dialogue manager
represents knowledge and the way it uses this knowledge to generate the actions to be taken.

6.1 Dialogue design

Once the goals of the user are clear, the speech interface must initiate a dialogue to retrieve the
required information from the user (if these are not already available). All possible dialogues that
the speech interface can initiate must be designed beforehand. This includes speech prompts for
each possible situation, and all possible user responses on those prompts. Furthermore design
involves the definition of a grammar that captures the syntax of whole conversations into a few
simple grammar rules (discussed in 5.2.2.2). Important issues in the design of the dialogues are
discussed next.

6.1.1 Design approach

The goal of the speech interface is to give a user access to the SWAMP services by means of
simple speech interaction. To achieve this, one can choose between two different approaches:
- Demand a longer learning time for the speech interface and require the user to adapt his

speaking style.
- Make it easy for the user by allowing an extensive grammar and modelling more and more

complex dialogues so that the user can speak to the system as with another human.

Speech User Interface (SUI) designers have learned that humans are extraordinarily flexible in
their speech and readily adapt to the speaking style of their conversational partners [Design]. This
is not a new finding: think about how easily we adjust our speech depending on whether we are
speaking to children or other adults. This flexibility has useful implications for designing the
speech interface: after extensive use of the speech interface (as the user gets acquainted with the
grammar and has more experience) some dialogues become less and less common. This is
because the user will adapt his style of interacting with the speech interface and refrain to only
those dialogues that were successful in the past. Because of this finding and the choice of our
typical user (“he is familiar with current computer technology”) the first approach was chosen:
only model the most common utterances and let the user adapt to it. After all, it is not our goal to
mimic a real human in human-to-human conversation; this is impossible with the current state of
technology anyway.

What information is needed?
Each service requires some input parameters before it can be executed. Unlike GUI input, where
the parameters are always well defined, speech input can be vague and/or ambiguous. Therefore it
is important to impose stringent constraints on speech input to eliminate or detect possible errors
e.g. what input is valid, when is the input valid and when not, how and in what sequence must the
information be supplied (if important).

How can the information be obtained from the user?
The obvious way to obtain information of the user is by ways of speech prompts. Several
prompting techniques are commonly applied in speech user interfaces:

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

45

Table 18 : Prompting techniques

Technique Description
Open prompt In this approach open short prompts are presented to the user.

Because of these short prompts the dialogues are generally
shorter and therefore the goals of the user are accomplished
quicker. This type of prompting technique is only suitable for
experienced users and a good quality speech recogniser and
complete and well-modelled dialogues are essential. Open
prompts are the dominating type of prompts that the SWAMP
client generates.

Closed prompt These prompts tell the user exactly what they can say (e.g.,
"What type of call would you like to make? Please say collect,
calling card, third number, person to person, or operator"). This
type of prompting has resulted in users' having greater success
with SUIs.

Removable hints These provide a personalised approach where the application
keeps track of how many times a user has successfully answered
a prompt. At first, it supplies hints on the prompt by suggesting
things the user can say in response to the prompt. Once the user
has successfully answered the prompt several times, the hints
are removed. Since the user has to identify himself at the start of
each session this technique could be applied in the SWAMP
client.

Layered approach This is a combination of short open prompts with longer closed
prompts that are more direct. For example, when a user doesn't
respond to a prompt such as "What do you want to order?" in a
predetermined amount of time. The system quickly presents a
more directive prompt, such as "You can order X, Y, or Z." This
approach is very effective for meeting the needs of both new
and experienced users. Inexperienced users get instant help
about what they can order, while experienced users can make
their orders quickly, guided only by the shorter prompts.

Size of the corpus
While designing a dialogue to retrieve information, not only the questions to ask (prompts) but
also the possible responses from the user must be modelled. For the responses on a prompt it must
be determined what is expected (what information must be contained in the response?) and what
can be expected (what are the valid responses?). To obtain valid responses a proper corpus of
dialogues is necessary. A corpus is a compilation of possible dialogues (either real or fictional). If
the corpus is too small many possible responses of the user (probably normal and valid ones) are
left out and the behaviour of the speech interface in these situations is undefined or unsatisfactory.
If the corpus is too large, the grammar and dialogue of the system becomes very complex. In this
prototype, the size of the corpus is about fifteen utterances per service.

Where is the information contained in an utterance?
Utterances of users are only recognised if it conforms to the grammar of the speech interface. The
grammar is written in a format specified in the SAPI5 grammar schema, which is a context free
grammar (CFG). CFGs specify how any legal text can be derived from distinguished symbols.
However CFGs convey no meaning. Consequently, just because the computer recognises the
user’s speech utterance (in other words the utterance is valid according to the CFG) doesn’t mean

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

46

it understands the information contained in the speech utterance. Property name and property
value tags are used to tag elements to artificially insert some meaning in them. During the design
of a grammar it is important to identify the places in an utterance where relevant information is
located.

6.1.2 Dialogue representation

All the design issues mentioned earlier make modelling dialogues much more complicated and
complex then modelling a GUI. Without a proper representation technique, the dialogues can
quickly become very complex and unmanageable. In this project dialogues are represented by
flow diagrams containing nodes representing start/begin points of a dialogue, boxes representing
actions (e.g. an utterance from a user or an action from the system), diamonds representing
decisions point and arcs to connect the nodes, boxes and diamonds. A dialogue always begins
with a start node and ends with an end node. Within these nodes, the dialogue travels from box to
box along the arcs and branching at the decision diamonds. A successful dialogue corresponds to
a path in the flow diagram from the start node to the end node.
Speech dialogues are context sensitive. In this representation, the context is defined by the
positions within the dialogue flow. Each box represents a certain state or context. The arcs
branching from a box indicate the options available within that context and the branches leading
to a box define how that context can be achieved. The power of above dialogue representation
technique lies in the fact that dialogues are represented in a generic way. E.g. the (user action)
boxes define what the user can say at that moment in the dialogue, but not how it must be said
(this is defined in the grammar). In this way, a single path in the dialogue flow diagram can
represent whole categories of similar dialogues.
A well-modelled dialogue flow diagram is one where each possible dialogue fits in. Table 19
shows an example dialogue for the KM registration service. The flow of this dialogue fits into the
flow diagram in Figure 6.1-11 (accentuated). This example was chosen because of its simplicity,
in practice the dialogues are so complex and the dialogue flow diagrams so large that it is best to
split them up into one main dialogue and several smaller sub dialogues. For each sub dialogue a
separate dialogue flow diagram is designed and referred to in the main dialogue flow diagram (by
means of sub dialogue nodes), thus making the dialogue somewhat manageable. See appendix A7
where the dialogue flow diagrams for all the services are listed. Another use for the dialogue flow
diagrams occurs during the testing phase. Since each path from the start node to the end node
corresponds to a successful dialogue. The correctness of the implementation of the dialogues can
easily be verified by traversing all the paths in the dialogue flow diagrams.

Table 19: example dialogue

U: Change trip type
S: Is it a business or a private trip?
U: It’s a business trip?
S: OK, what’s the project ID for this business trip?
U: Project ID is SWAMP
S: Do you want to set the project ID to SWAMP?
U: Yes

1 The dialogue flow in the figure is not complete, the flow after the “no” (in the lower right corner of
the figure) is not modeled yet. Clearly what comes next is context sensitive, as is the action before
that (“ask confirmation”). A way to model this is to create 3 new sub dialogue flows (a separate one
for each call of “ask confirmation”).

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

47

KM regis trat ion

U: Change tr iptype
utterance

Utterance
con tains new

triptype

triptype is
business

S: W hat is the
tr iptype

S: S et private trip,
S : S et bus iness

tr ip

U: Cancel U: ?
U: Utters new

triptype

End : KM
reg is tration

S: A sk confirm ation

S: S end SM S, g ive
feedback

U: yes U: No U: Cancel

Utterance
con tains no

projec tID

S: S et new projec t
ID

S: W hats the
projec tID

U: Project IDU: ? U:Cancel

3x no response

3x no response

End : KM
reg is tration

Figure 6.1-1: a dialogue flow diagram for the KM registration service

6.1.3 Error handling

Fault tolerance is an important issue in dialogue design, since errors and exception are very
common and can come in many ways (e.g. the user wasn’t listening, misunderstanding by user,
misunderstanding by the speech interface, ambiguity in a user’s utterance). The way errors are
handled in SWAMP is similar to the way humans do during dialogue: by requesting clarification,
elaboration, and expansion. Unlike with the GUI, errors can be expected to occur in any dialogue
at any position, so this should already be dealt with in dialogue design. Consequently, error
handling and prevention mechanisms (e.g. give feedback, ask for confirmation, ask for
clarification) must be incorporated in the design. The question however is how and when to apply
these error handling mechanisms. This depends on the user, as experienced users may find error
handling mechanisms in the dialogue annoying, while new users can’t complete a single dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

48

without these mechanisms. In section 4.1.3.1 a typical user of the system was defined, the
dialogues in SWAMP were designed with this user in mind.

Partial information and Ambiguity
For each service supported by the speech interface, some additional information is needed. For
instance, if an appointment with a client must be made, the date and time of the appointment are
needed. In human conversation it is quite common to supply partial information and fill in the
missing pieces as the dialogue goes along. In the speech interface it is the task of the dialogue
manager to detect this and ask the user to supply the missing information and interpret the
returned answers to fill in the gaps. Furthermore the dialogue manager must be aware of possible
ambiguity in the information of the user and must have mechanisms to detect and deal with it.
The information needed and the place where ambiguity can occur depends on the service. It is
dealt with (separately for each service) in the dialogue design ([Yang2 2001]).

No-recognition
No recognition occurs when the speech recogniser does not recognise an utterance of the user.
This happens when:

Problem Solution
The quality of the microphone or
sound card is too poor.

Use a better microphone and/or soundcard or do
something to suppress the noise. This falls out of the
scope of this project.

The user speaks too fast or has
an accent

The speech recogniser must be trained to adjust to the
user (or the other way around).

The utterance of the user is not
defined in the grammar.

The original question is stated in another form and, if
applicable, possible answers are supplied.
Technically, the utterance must be added to the corpus
and the grammar must be updated.

The utterance was not valid Repeat the question and ask the user to rephrase.

Mis-interpretation
Except in exceptional situations (during an emergency) confirmation from the user (via the speech
recogniser) is needed before any radical actions are taken. The dialogue designer defines the place
where these confirmation requests occur (see the dialogue specification document of the SWAMP
project).

No response
With each question of the dialogue manager a special timeout value is associated indicating the
amount of time the manager must wait for a response from the user. If the time has passed and
there is still no response from the user (or the response is not understood) the question is repeated
up to a maximum of three times in which the dialogue manager gives up with a suitable (spoken)
error message.

6.2 Implementation overview

The dialogue manager can be divided into two parts (see Figure 6.2-1):
1. An AI part to do the representation and reasoning with knowledge. An embedded CLIPS

expert system shell (CLIPS engine) [CLIPS 2000] is used to implement this part.
2. A C++ part to embed CLIPS and to perform translation and communication between CLIPS

and external entities (SAPI and the main application).

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

49

Input translation

CLIPS inference
engine

Output Translation

swamp.clp

External entities

Dialogue manager

Knowledge Base

A
I

C
++

Figure 6.2-1: Overview of the dialogue manager

6.3 The C++ part

The C++ part is responsible for the communication between the embedded CLIPS engine and the
outside world (SAPI and main application). It has a sensing function to sense events from the
outside world, a translating function to translate messages from the outside world into a format
understandable to the CLIPS engine and an actuating function to translate CLIPS engine
messages into actions on the outside world. The outside world for the dialogue manager consists
of two entities: the GUI of the main application and SAPI. Communication with the GUI is
necessary, because the SWAMP client is a bi-modal application and the different modalities (GUI
and SUI) need to be synchronised with each other. SAPI is the location where utterances from the
user are recognised and where the text to be synthesised is sent. Since the dialogue processing is
done in the dialogue manager some kind of interaction with SAPI is needed. In the following
sections, the interaction mechanism between the C++ part of the dialogue manager and the two
external entities is described.

6.3.1 Interaction with the main application

Whenever the user uses the GUI, he can change the state of the application in such a way that the
dialogue manager needs to change its representation of the world. Therefore, the dialogue
manager must somehow be notified of the user’s action on the GUI. In SWAMP the
communication is achieved by means of GUI messages of the application framework. The
application framework is devised by Microsoft to build window applications. It generates events
in response to GUI actions of the user, such as keystrokes and mouse clicks. The dialogue
manager uses the generated events to react on GUI changes. In addition the dialogue manager
itself generates events to cause GUI changes. Following is a short description of the
synchronisation mechanism.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

50

The application framework in which the WAM-Pilot was built fires an event whenever a GUI
action occurs. For example, if the user clicks on a button, the button calls a pre-arranged function
in the application. This function is called the event handler of the button and contains the code
that implements the appropriate action for the button. The dialogue manager is only interested in
actions that actually lead to a change in the dialogue manager’s internal model of the world. The
communication from the main application to the dialogue manager is realised by adding code in
the relevant event handlers, to send a message to the Dialogue Manager whenever the event
handler is invoked. All actions performed by the speech interface originate from the AI
component. When an action occurs that requires a change in one or more GUI controls the AI
components sends a message to the dialogue manager notifying it of this event. The information
telling the dialogue manager what exactly needs to be modified in the GUI is contained between
the REACT tags of the messages from the AI component (see 6.3.4). After receiving a message
from the CLIPS engine, the C++ part scans the information contained within the react tags and
performs the actions specified in the message.

6.3.2 Sensing recognition events from SAPI

The ASR engine uses events to report information about what is being recognised. There are
several events the engine can report. These indicate, for example, that the engine has detected the
start or end of speech, or that it has a hypothesis or a completed recognition result. So far, there
are more than 30 events. With the setInterest() command the type of events that are sensed by the
dialogue manager’s sensors are restricted to only the relevant events. The dialogue is only
interested in the following events:

Event Description
SPEI_PHRASE_START SR engine has detected the start of a

recognisable phrase.
SPEI_RECOGNITION SR engine's best hypothesis for the audio data.
SPEI_FALSE_RECOGNITION Apparent speech with no valid recognition.

The most important is the SPEI_RECOGNITION event. The SPEI_RECOGNITION event is
fired when a user utterance matches with an active grammar rule. The dialogue manager
specifically listens for this event. After receiving this event the receiving application can retrieve
the words that have actually been said (and also additional information such as the ID of the rule
that fired etc.). SAPI returns this information in a structure: SPPHRASE. The SPPHRASE
structure does not only contain the phrase spoken, but also additional information such as the ID
of the rule that fired, semantic tag names and values etc.

typedef [restricted] struct SPPHRASE
{

ULONG cbSize;
LANGID LangID;
WORD wReserved;
ULONGLONG ullGrammarID;
ULONGLONG ftStartTime;
ULONGLONG ullAudioStreamPosition;
ULONG ulAudioSizeBytes;
ULONG ulRetainedSizeBytes;
ULONG ulAudioSizeTime;
SPPHRASERULE Rule;
const SPPHRASEPROPERTY *pProperties;

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

51

const SPPHRASEELEMENT *pElements;
ULONG cReplacements;
const SPPHRASEREPLACEMENT *pReplacements;
GUID SREngineID;
ULONG UlSREnginePrivateDataSize;
const BYTE *pSREnginePrivateData;

} SPPHRASE;

Member Description
CbSize The size of this structure in bytes
LangID The language ID of the phrase elements
Wreserved Reserved for future use
UllGrammarID ID of the grammar that contains the top-

level rule used to recognise this phrase
FtStartTime Absolute time for start of phrase audio as a

64-bit value
UllAudioStreamPosition Start time in the audio stream for this

phrase
UlAudioSizeBytes Size of audio data in bytes for this phrase
UlRetainedSizeBytes Size in bytes of the retained audio data
UlAudioSizeTime Length of phrase audio in 100-nanosecond

units
Rule Information about the top-level rule that was

used to recognise this phrase
pProperties Pointer to the root of the semantic property

tree
pElements Pointer to the array of phrase elements
cReplacements Number of text replacements.
pReplacements Pointer to the array of text replacements
SREngineID GUID that identifies the particular SR

engine that recognised this phrase
UlSREnginePrivateDataSize Size of the engine's private data (in bytes)
PSREnginePrivateData Pointer to the engine's private data

According to the default run-time model of the SAPI the ASR engine continues recognising as
long as data is available and it is not explicitly told to stop. Typically, after an engine reports
recognition, it will check for grammar changes and then continue reading data and recognising.
Recognition stops if an application sets the recognition state (with SetRecoState) to inactive. By
inspecting the contents of the SPPHRASE structure, the rule that fired can be obtained. The
element’s property name and value can now be retrieved by traversing the pElements pointer.

Consider the email problem mentioned in section 5.2.2.2. Suppose we want to retrieve the
information contained in the semantic tag NAME from a rule with ID EMAIL. Whenever
recognition is received with this rule ID, the property tree (SPPHRASE.pProperties) is searched
for the property named NAME. Then the function ISpRecoResult::GetPhrase is called with
(SPPHRASEPROPERTY) pNameProp.ulFirstElement and (SPPHRASEPROPERTY)
pNameProp.ulFirstElement, and the application can retrieve the exact text that the user spoke into
the dynamic rule (e.g. user says "send new e-mail to Harry," and we would retrieve "Harry," user
says "send new e-mail to Hermione," and we would retrieve "Hermione,").

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

52

6.3.3 The translating function

As already mentioned, the dialogue manager is divided into two parts. The first part takes care of
the communication with external entities while the second part (the CLIPS engine) does the actual
dialogue managing. Because the external entities (SAPI and the main application) differ radically
from the dialogue managing part a translation step is needed in the dialogue manager. The
translated messages are sent to standard input (stdin) of the CLIPS engine. There are two types of
input messages that can be distinguished:

Speech related These messages are a result of utterances from the user.
GUI related These messages are part of the synchronisation process

between SUI and GUI.

Speech related messages sent to CLIPS have the following format:

(assert (Type LangID Rule Confidence Property Value))

Figure 6.3-1: Format of a speech related input message to CLIPS

Assert Assert is a CLIPS command to add a fact to the fact-list.
Type This field indicates the type of the message. The only message type

defined at this moment is: RECOGNISED
LangID The language identifier (161 for English)
Rule The ID of rule that fired
Confidence Confidence of the speech recogniser that the rule has indeed fired.

SAPI does not demand that all compatible speech recognisers
implement this.

Property Property name (optional)
Value Property value (optional)

The translation component translates SAPI events into CLIPS speech related messages. There
exists the following correspondence between SAPI elements and CLIPS input elements:

Table 20: Correspondence between SAPI elements and CLIPS input elements

SAPI element CLIPS element
633+5$6(�/DQJ,' LangID
633+5$6(�5XOH�ulId Rule
633+5$6(�5XOH�Confidence Confidence
633+5$6(�pProperties.pszName Property
633+5$6(�pProperties.pszValue Value

Now that the correspondence between the elements is known, the translation process is
straightforward.

Main application related messages are sent by the event handlers of GUI controls. Each message
contains the service the control belongs to, the parameter of the control and the new value of that
parameter. Here also, the transformation from main application message to CLIPS message is
straightforward. Main application related messages have the following format in CLIPS:

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

53

 (assert (GUIMSG Service Parameter Value))

Figure 6.3-2: format of a GUI related message to CLIPS

assert: assert is a CLIPS command to add a fact to the fact-list.
GUIMSG: This field indicates the type of the message (GUI message in this

case).
Service: The service involved. This can be any of the services available.
Parameter: The parameter that has changed.
Value: The new value of the property.

6.3.4 The actuating function

The CLIPS engine sends its output messages to standard output (stdout). These messages are
fetched and parsed by the C++ part of the dialogue manager. An output message from CLIPS is a
structured string consisting of elements. Each element has a type and a content. The content of an
element is always surrounded by tags, which specify where an element begins and where it ends.
All elements are optional within a message. Each element of the output message represents an
action that must be taken by the actuators (speech resources and GUI).

Example:

<say>hello</say>

This element has type: say
And contents: hello

Currently, the following tags are defined:

Table 21: List of defined tags in CLIPS output messages

Tag Description
SAY The content of this type of element contains the text to be synthesied by the

TTS engine. The contents of this element is used as main parameter in the
Speak() method.

ACT The content of this type of element contains a list of grammar rules that
needs to be activated separated by a white space. The C++ part of the
dialogue manager calls the activate() method with elements of the list as
parameter.

DEACT The content of this type of element contains a list of grammar rules that
needs to be de-activated separated by a white space. The C++ part of the
dialogue manager calls the deactivate() method with elements of the list as
parameter. If the same grammar rule exists in both the ACT and DEACT
element of the same message, the rule is first de-activated and then activated
again. So the net result is that the rule is activated in the end.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

54

REACT This element specifies an action to invoke in the main application. It
contains an action identifier followed by action parameters. Both the
identifier and parameters are fed to the handleaction() method.

TIME A timeout value in milliseconds. The CLIPS engine is notified if no relevant
speech event occurred in the period of time specified after reception of the
message.

Actions that can be performed on the speech resources include the activation or deactivation of
grammar rules, synthesis of text phrases and other functions to control various properties
(volume, speed, pitch etc.) of the synthesised speech. The elements SAY, DEACT and ACT are
related to actions on speech resources. The methods used to convert the contents these elements
into concrete actions are summarised in Table 22 (only the TTS methods) and Table 23 (only
ASR methods). REACT elements are sent to the ActionHandler (Actionhandler.cpp), which
contains a generic method to correctly modify SWAMP client’s GUI controls specified in the
contents of the REACT element (Table 24).

Table 22: Methods used to control the TTS engine.

Method Description
Speak(WCHAR *phrase) Synthesise the contents of the string phrase. In

addition information such as emphasis, pitch etc.
can be embedded in the string using xml tags.

SetVolume(int level) Set the volume of the synthesised output to level
(a value between 0 and -100).

ChangeVoice(Cstring voice) Change the current TTS engine, to the TTS engine
named voice. Of course voice must be installed
and SAPI compliant.

SetSpeed(int level) Sets the talking speed of the TTS engine (a value
between –10 and 10).

Table 23: Methods used to control the ASR engine

Function Description
ActivateSAPIRule(WCHAR *rule) Activate the SAPI rule with the name rule.
DeactivateSAPIRule(WCHAR *rule) De-activate the SAPI rule with the name rule.
StopASR() (Temporary) stops the recognition engine. (Only

has effect if the engine is active)
LoadGrammar(Cstring file) Load the grammar from the file named file
LoadUserNames() Dynamically load the list of usernames into the

grammar.
LoadLocations() Dynamically load the list of Location names into

the grammar.
LoadProjectIDs() Dynamically load the list of Project ID’s into the

grammar.
LoadCarIDs() Dynamically load the list of Car ID’s into the

grammar.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

55

Table 24: Methods used to manipulate GUI controls

Function Description
HandleAction(Cstring id Cstring param) The id parameter defines what action to take

and the param parameter specifies the
parameters for that action.

6.4 AI part

In Figure 6.2-1 a graphical overview of the architecture of the dialogue manager was given. The
figure showed the division of the dialogue manager in a C++ part and an AI part. The function of
the AI part is to represent and reason with the knowledge available so that natural dialogues with
the user can be achieved. The process of extracting the users’ goals from recognised speech and
taking the appropriate actions to achieve those goals requires some kind of reasoning. In
particular given the fact that the users’ utterances are context sensitive and sometimes ambiguous.
Therefore an internal model of the real world must be maintained within the dialogue manager,
because only then can the utterances be put in the correct and proper context (see Example 2). In
the AI part of the dialogue manager used artificial intelligence tools were used as an aid to build
and maintain this model.

Example 2: An example of a context sensitive user utterance

If the user utters the phrase: “How long?” he can mean (depending on the context):
- How long is the traffic jam?
- How long do we have to wait?

Further applications of reasoning in the dialogue manager include questions on when and how to
prompt for information (section 6.1), when to ask for confirmation and clarification and how to
handle errors and ambiguity in speech (section 6.1.3) etc. The tool used to implement the AI part
is CLIPS. In this section the chosen reasoning model and the implementation of this model in
CLIPS will be discussed.

6.4.1 The reasoning model

In the design of systems that are required to perform high-level management and control of tasks
in complex dynamic environments a number of different approaches have emerged as candidates
for reasoning models. In the choice for a suitable reasoning model for the dialogue manager (one
that is capable of adequately describing the reasoning behaviour of the dialogue manager), it is
important to distinguish practical reasoning from theoretical reasoning. Theoretical or deductive
reasoning is concerned with valid inference: with what follows from the literal meaning of the
premises [Bell J 1992]. Practical or pragmatic reasoning is concerned with what follows from the
premises given a context and is more directed towards actions. Clearly the latter type of reasoning
model is more suitable for the dialogue manager. Ultimately, the Belief-Desire-Intention (BDI)
model [Wooldrige 2000] is chosen as the reasoning model for the dialogue manager. The BDI
model has its roots in the philosophical tradition of understanding practical reasoning in humans.
It gets its name from the fact that it uses beliefs, desires and intentions in rational action. What
makes the BDI model particularly interesting is that it combines three important elements:

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

56

1. It is founded upon a well-known and highly respected theory.
2. It has been implemented and successfully used in a number of complex fielded applications
3. The theory has been rigorously formalised in a family of BDI logics.

Figure 6.4-1 describes an algorithm of a basic control loop for a BDI agent; this control loop fits
the desired behaviour of the dialogue manager quite well. In an implementation of a dialogue
manager according to this model, the dialogue manager continuously executes a cycle of
observing the world and updating its beliefs, deciding what intention to achieve next, determining
a plan of some kind to achieve this intention, and then executing the plan. The purpose of the
above and following (section 6.4.3) formalisation is to build a formally verifiable and practical
system. This formalisation can be used to specify design, and verify that the system, when placed
in the right environment, will exhibit all and only the desired behaviours.

Algorithm BDI agent control loop
1. While true
2. Observe the world;
3. Update internal world model
4. Deliberate about what intention to achieve next;
5. Use means-ends reasoning to get a plan for the intention;
6. Execute the plan
7. End while

Figure 6.4-1: A basic BDI agent control loop

6.4.2 The CLIPS engine

In this project, CLIPS is used to implement the BDI reasoning model discussed earlier. CLIPS is
a rule–base expert system tool developed by the Software Technology Branch (STB),
NASA/Lyndon B. Johnson Space Centre. The reason why it is chosen instead of a normal
procedural language is very simple: The common approach to building applications is to
understand the desired behaviour first, and then try to code this behaviour. Using a procedural
language (e.g. C++), the specification of what should be done as well as how it should be done
must be coded. For a complex task the control logic quickly becomes difficult to write, debug and
maintain. A rule-based expert system such as CLIPS allows us to avoid, to some degree, the last
step. Furthermore CLIPS is freeware and can be easily embedded into a C++ application. The
CLIPS engine consists of three basic elements:

Table 25: Basic elements of the CLIPS engine

Element Description
Facts Initial facts are defined in the swamp.clp file, while new facts are

asserted and retracted at runtime. All input from SAPI or the main
application are also represented as facts in CLIPS. This explains the
“assert” keyword in the messages to the CLIPS engine (section 6.3.3),
as assert is the CLIPS command to insert a fact into the fact-list.

Knowledge-base The knowledge base is the knowledge representation component in
the CLIPS engine. Knowledge is represented in the form of rules,
which specify a set of actions to be performed for a given situation.
The rules are defined in swamp.clp.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

57

Inference engine The inference engine is provided by CLIPS, it takes care of the
matching of the facts against the rules. Thus it controls the overall
execution of the CLIPS engine.

6.4.2.1 CLIPS data structures

In principle there are just two types of information structures in CLIPS: facts and rules. Facts
represent a single chunk of truth within the CLIPS runtime. Each fact can be added using an
assert command, deleted using retract command or modified using retract followed by an assert
command. Rules specify a set of actions to be performed in a given situation. Rules are static and
cannot be changed. A rule is similar to an IF THEN statement in procedural programming,
therefore it is nothing more then a description of a set of conditions and a set of actions to take if
the conditions are true. A rule in CLIPS has the following form:

(defrule <rule-name> [<comments>]
[<declaration>] //Rule Properties
condition 1
: //Invocation condition
condition n

=>
action 1
: //Body
action n

)

Figure 6.4-2: Syntax of a CLIPS rule

A rule in CLIPS can be characterised by a body and an invocation condition. The body
(corresponding to the Right Hand Side (RHS) or the THEN part in an IF THEN statement) is a
list of actions that can be performed to achieve a particular state (corresponding to a desire in the
BDI model). The invocation condition defines the circumstances under which the dialogue
manager should consider the rule (corresponding to the Left Hand Side (LHS) or the IF part in an
IF THEN statement). There are four kinds of rules:

Speech reaction rules These rules contain actions that react to an utterance of the user.
It is characterised by the RECOGNISE keyword in the
invocation condition of the rule. The body of the rule contains
actions to take as a result of the utterance.

GUI reaction rules These rules contain actions to perform as a result of GUI
messages. They are characterised by the GUIMSG keyword in
the invocation condition of the rule. The actions in the body of
these rules consist of updates of facts (the internal presentation
of the real world) brought about by actions on the GUI.

Management rules The purpose of management rules is to manage the state of the
system.

Belief rules These rule describe the general relationship (implication)
between certain facts.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

58

6.4.2.2 CLIPS execution

Execution of CLIPS can be represented as a sequence of Recognise-Select-Act cycles:

While (true)
Recognise //The current facts are matched against the invocation

//condition of the rules. Rules that match are //“instantiated”
Select //Selection of the instantiation to be fired
Act //Executing the body of the selected instantiation

End while;

Figure 6.4-3: overview of the CLIPS execution cycle

In the recognise step, the facts are matched against the left hand side of the rules. The inference
engine takes care of this matching. It is easy to see that the facts are the data that stimulate
execution of the CLIPS engine. In other words the CLIPS engine is data-driven. Execution cycles
continue as new facts are asserted and old facts are retracted during the course of the execution.
If the left hand side of a rule matches the facts, the rule becomes instantiated.
During one execution cycle more then one rule can be instantiated. In this case a selection needs
to be made among the instantiated rules. The selection process is called conflict resolution. The
precedence of an individual rule within conflict resolution can be set with the “declare salience”
declaration: a higher salience gives a rule a higher priority. Otherwise the depth first strategy
(activated rules are placed above all rules of the same salience) is the strategy for conflict
resolution. Once an instantiation has been selected, the body of the instantiation is executed in the
last step of the cycle.

6.4.2.3 Embedding CLIPS

The CLIPS systems may be executed in three ways: interactively using a simple, text-oriented,
command prompt interface; interactively using a window/menu/mouse interface; or as embedded
application in which the user provides a main program and controls execution of the system
[NASA1 1993]. In this project, CLIPS is used in the latter fashion: as an embedded system in the
SWAMP client application. Needless to say, the SWAMP client acts as the main program that
controls the execution of CLIPS. The SWAMP client first initialises CLIPS by calling the
function InitializeCLIPS. Then the appropriate constructs (in the file swamp.clp) are loaded. After
that a reset and a run command is issued to reset the runtime environment and build the initial
model of the world. This concludes the initialisation; the embedded CLIPS system is now ready
to accept events. Whenever an event occurs the translation function of the dialogue manager
translates it into a corresponding fact and sends it to CLIPS. Once again the run command is
issued to allow the appropriate rules in CLIPS to execute as the result of the appearance of the
new fact. Afterwards the output (and/or errors) of the CLIPS engine is collected and processed.
Above discussion is summarised in Figure 6.4-4.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

59

Initialise CLIPS
Load “swamp.clp” Loads a set of constructs into the CLIPS
Reset Resets the CLIPS environment
Run Run initial rules
While (event)

Sendinput(event) Send input to CLIPS
Run Allow rules to execute, as a result of the new input
Receiveoutput(stdout) Receive output from CLIPS
Receiveoutput(stderr) Receive errors from CLIPS
Process output

End while
Clean up CLIPS

Figure 6.4-4: Embedded CLIPS control loop

When running CLIPS as an embedded application, many of the capabilities available in the
interactive interface (the un-embedded version of CLIPS) are also available through function
calls. Calls to CLIPS are made like any other subroutine. The functions are documented in the
advanced CLIPS programming manual [NASA2 1993]. Prototypes for these functions can be
included by using the clips.h header file. Some of these functions are used in the SWAMP client
to collect the status of the CLIPS engine (fact list, agenda etc.) for debugging needs.

6.4.3 Knowledge representation

There is a straightforward mapping between entities in the BDI model and the abstract
information structures of the dialogue manager. Beliefs correspond to information the dialogue
manager has about the real world: the state of SWAMP (section 4.1.3.1). These beliefs may be
incomplete or incorrect. Desires represent the goals of the dialogue manager: successful dialogues
with the user. Finally, the intentions represent the desires the dialogue manager has committed to
achieving. As the reasoning part of the dialogue manager is implemented in CLIPS, there must
also exist a correspondence between concrete CLIPS data structures and the entities in the BDI
model. The relationship between each entity in the BDI model and its CLIPS counterpart is
discussed next.

Beliefs
Beliefs in the BDI model are implemented as facts and rules in CLIPS. Facts are used to construct
the dialogue manager’s internal representation of the world. Facts can be seen as propositions and
thus can only consist of a set of literals without disjunction or implication. Therefore special rules
(belief rules) are used to complete the representation of beliefs. Belief rules represent the general
relationship between facts (e.g. IF utterance=help THEN AlertLevel=high).

Desires
One way of modelling the behaviour of BDI reasoning [Rao 1995] is with a branching tree
structure, where each branch in the tree represents an alternative execution path. Each node in the
structure represents a certain state of the world, and each transition a primitive action made by the
system, a primitive event occurring in the environment or both. In this formal model, one can
identify the desires of the system with particular paths through the tree structure.
The above description of the branching tree structure is logically similar to the structure of the
dialogue flow diagrams described in section 6.1.2. In fact, both structures represent exactly the

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

60

same: a path through the dialogue flow diagram is a successful dialogue, which is also a desire
and therefore a path through the branching tree of the BDI reasoning model. As a result, the
dialogue flows diagrams can be treated as the structures that describe the behaviour of the
dialogue manager. They are directly implemented in CLIPS rules, each rule corresponds to a
branch in the dialogue flow. Rules are both the means for achieving certain desires and the
options available for the dialogue manager. Each rule has a body describing the primitive sub
goals that have to be achieved for rule execution to be successful. The conditions under which a
rule can be chosen as an option are specified by an invocation condition. The set of rules that
make up a path through the dialogue flow, correspond to a desire.

Intentions
The set of rules with satisfied invocation conditions at a time T (the set of instantiated rules)
correspond to the intentions of the dialogue manager at time T. Obviously the intentions of the
system are time dependent. The dialogue manager adopts a single-minded commitment strategy,
which allows continuous changes to beliefs and drops its intentions accordingly. In other words
the intentions of the system can be affected by the utterances of the user in contrast to blind
commitment in which an intention is always executed no matter changes in beliefs.

6.4.4 Heuristics for the translation from dialogue flow diagram to CLIPS rules

In the previous section it was shown that the desires of the dialogue manager component in the
SWAMP client can be represented by dialogue flow diagrams. The flow diagrams are
systematically translated into an executable system formulated in CLIPS rules. This section
discusses the implementation of the desires. In particular the heuristics used for the translation
from dialogue flow diagrams to CLIPS rules.

 N1
KM registration

B1
U: Change trip
type utterance

D1
Utterance contains

new trip type

D2
trip type is business

B4
S: What is the trip

type

B3
S: Set private trip

B2
S: Set business

trip

Figure 6.4-5: Dialogue flow diagram for the heuristics example

Suppose we must transform a dialogue flow diagram as in Figure 6.4-5. (The start of the KM
registration service). This dialogue is initialised when the user utters a phrase that matches the
grammar for a change trip type utterance (box B1). Notice that box B1 has 3 branches (to the

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

61

boxes B2, B3 and B4), furthermore we see that the action in B1 is a speech action from the user.
From this we conclude that the dialogue flow should be implemented using 3 speech rules. The
invocation conditions for each rule are the evaluated values of the expressions in the decision
diamonds D1 and D2. The body of each rule contains the actions specified in the corresponding
destination boxes. Furthermore, the body of the rules also contain actions to anticipate what
follows after the action e.g. after box B4 the user must supply the new trip type so the grammar
rules for trip type utterances should be activated.
The resulting 3 CLIPS rules are presented next.

The first rule corresponds to the branch from box B1 to B2 in Figure 6.4-5. The property name
TripType with value business satisfies condition D1 and D2. The actions taken satisfy B2
(between the <SAY> tags) and anticipate future utterances of the user by activating the yes-no
grammar rule. The other actions in the rule body are used to update the internal representation of
the world.

(defrule KM_Registration_Business
 ?in<-(RECOGNISED 161 VID_KMREG_TRIPTYPE 50 TripType business)
 ?pos<-(POSITION MAIN RUNNING)
 =>
 (printout t "<SAY>Do you want set the triptype to business?</SAY>

<ACT>VID_YESNO</ACT>
<DEACT>"?*Mainrules*"</DEACT>
<REACT></REACT>" crlf)

 (retract ?in)
 (retract ?pos)
 (assert (POSITION MAIN KMREG))
 (assert (WANT CONFIRM))
 (assert (QUESTION KMREG business))
)

The second rule corresponds to the branch from box B1 to B3 in Figure 6.4-5. The property name
TripType with value private satisfies condition D1 but not D2. The actions taken satisfy B3
(between the <SAY> tags) and anticipate future utterances of the user by activating the yes-no
grammar rule. The other actions in the rule body are used to update the internal representation of
the world.

(defrule KM_Registration_Private
 ?in<-(RECOGNISED 161 VID_KMREG_TRIPTYPE 50 TripType private)
 ?pos<-(POSITION MAIN RUNNING)
 =>
 (printout t "<SAY>Do you want set the triptype to private?</SAY>

<ACT>VID_YESNO</ACT>
<DEACT>"?*Mainrules*"</DEACT>
<REACT></REACT>" crlf)

 (retract ?in)
 (retract ?pos)
 (assert (POSITION MAIN KMREG))
 (assert (WANT CONFIRM))
 (assert (QUESTION KMREG private))
)

The third rule corresponds to the branch from box B1 to B4 in Figure 6.4-5. Because there is no
property name both conditions D1 and D2 fail. The actions taken satisfy B4 (between the <SAY>

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

62

tags). Future utterances are anticipated by the activation of the VID_TRIPTYPE_ONLY grammar
rule. The other action commands serve as updates of the internal model.

(defrule KM_Registration_No_Triptype
 "User wants to register KM level but no trip type is given"
 ?in<-(RECOGNISED 161 VID_KMREG_TRIPTYPE 50)
 ?pos<-(POSITION MAIN RUNNING)
 =>
 (printout t "<SAY>Is it a business or a private trip?</SAY>

<ACT>VID_TRIPTYPE_ONLY</ACT>
<DEACT>"?*Mainrules*"</DEACT>
<REACT></REACT>" crlf)

 (assert (POSITION MAIN KMREG))
 (retract ?pos)
 (retract ?in)

)

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

63

7 Test

Testing and evaluation play an important part in the software development cycle. The main reason
for testing software is to determine whether the specifications have been met [Pressman
1994].Testing of a speech interface in this case has an additional goal: to determine the usability
of the speech interface and whether the interface is indeed an improvement on alternative
interfacing methods. For applications that are designed to run while the user is simultaneously
performing other tasks, yet another test can be conducted. This test is needed to determine that the
application does not pose too much distraction to the user, that he is unable to concentrate on the
most important task at hand. A common method used to test this is with workload assessment
techniques [Yang1 2001]. Because the chosen implementation strategy of the SWAMP client is
rapid prototyping with extensive iterations, testing was already done during implementation. But
these tests consisted mainly of functional and dialogue testing. The final test of the SWAMP
client prototype however, is a usability test. This chapter discusses the usability tests that were
performed (after an acceptable prototype was completed).

7.1 Test parameters

The main reason for testing software is to determine whether the specifications have been met. In
order to test an application according to this definition, some questions have to be answered (e.g.
what is the application to be tested?, what are the specifications of the application?).
Having these answers on paper can save a lot of time and trouble during testing, furthermore it
serves as a basis through which the test results must be viewed and test results from other similar
applications can be compared. This section gives the answer to the most important of these
questions.

Test environment The test environment is a silent room with only the tester, the test
subject, and a computer running the SWAMP client present.

Test procedure • At the start of the usability test the test subject gets a
description of the SWAMP application and its services.
Furthermore he is informed about the test procedure.

• The application to be tested (the SWAMP client) is running on
a laptop (PIII 500). During the test GUI input can be given
through the keyboard of the laptop and a mouse. SUI input is
given through a noise-filtering microphone and speech output
comes from the internal speakers of the laptop.

• During a test session the tester sits next to the test subject. The
test subject gets a list of tasks to perform using the GUI as well
as the SUI (but not in combination).

• Each test run is repeated three times but under different
circumstances (see section 7.3). During each run, the user has
to perform the tasks two times, once using only the GUI and
once using only the SUI.

• The tester writes down the time it takes to successfully perform
each task, furthermore the number of utterances, false
recognitions, and successful recognitions are noted.

• If the user gets stuck somewhere in the process the tester is
allowed to complete the task for him, so that the test subject
can continue with the next task.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

64

Scope The attributes tested are: grammar, quality of the speech engines,
quality of dialogue manager, completeness of the designed
dialogues.

Quality attributes Usability of the speech interface

Test Basis The speech interface of the SWAMP client

Acceptation criteria No acceptation criteria are defined, we want to get an indication of
the usability of the speech interface in comparison to the graphical
user interface.

Number of test
subjects

12

7.2 Number of test-subjects

Research [Nielsen 1993] has shown that the number of usability problems found in a
usability test with n users is:

N*1-(1-L)n

Where N is the number of usability problems in the design and L is the proportion of
usability problems discovered while testing a single user. The typical value of L is 31%, averaged
across a large number of projects studied. Figure 7.2-1 shows the curve of the equation for
L=31%. The figure shows that as more users are added, less and less new problems will be found,
so there is no real need to test further. After the fifth user, it is a waste of time by observing the
same findings repeatedly. Time can be better spent to solve the usability problems encountered.
To get statistically significant results, the choice of the amount of test-subjects has been increased
to twelve. The test subjects were students from the University and employees of CMG. There
were 10 males and 2 females ranging in age from 19 to 30 with little or no experience with the
speech interfacing technology in the SWAMP client. Since the subjects were novices, any
qualitative differences between speech and other media were more likely to be noticed. Subjects
with prior experience may have already adapted to these differences and could overlook them
during the experience.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

65

Figure 7.2-1: Curve of the number of usability problems found in usability test with L=0.31

7.3 Test scenarios

During the usability test, the test subject is asked to use the SWAMP client to perform a
set of tasks according to a predefined scenario. The list of tasks is presented on a sheet of paper
(Table 26). The tasks are written in such a way that it does not reveal the underlying grammar of
the speech interface. The test is divided into three test runs. In each test run the test subject has to
perform the same tasks first using only the GUI and then using only the SUI. Each test run is
conducted under different circumstances:

Run number 1
Situation Without prior knowledge of the SWAMP clients’ grammar.
Description In this situation, the test subject must try to perform the tasks led only by his

intuition. This gives the grammar designer a chance to test whether the
corpus is complete enough or needs to be extended. As mistakes and
exceptions are bound to occur, the dialogue designer can also deduce if the
designed dialogues are robust enough. Furthermore, the user gets the chance
to familiarise with the system.

Run number 2
Situation With knowledge of the grammar of the SWAMP client.
Description After the previous test run, the test subject gets an evaluation of his

performance during the run. The tester explains to him what went well but in
particular what went wrong and how he can correct that. During the second
test run the user has to perform the same tasks of the previous run again.
Usually there is an improvement in the success rate of the dialogues
compared to the first test. The amount of improvement in the second test run
gives an indication of the willingness of the users to adapt to the speech
interface. Also, the comments the test subject has after this test are a better
indication of the probability of acceptance of the speech interface in real
circumstances.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

66

Run number 3
Situation Same as run number 2, but with another attention demanding task to

do.
Description This test set-up is based on the workload assessment technique called:

Secondary task measures [Yang1 2001]. In this situation the user
concurrently performs two tasks. The first task is to perform the tasks
specified in Table 26 with the SWAMP client (once with SUI and
once with GUI). The second task is to play a game of Tetris (level 1)
on a mobile phone. This task is chosen to resemble car driving (at least
one hand of the test subject is always occupied, the test subjects must
make decisions at times, and the tasks does not require to have his
constant attention). The results obtained from the previous test run
serve as baseline scores, which can be used later as a comparison. The
degree of the decrement in performance, when compared to the
baseline scores provides a measure for the workload of the task.

Table 26: List of tasks to perform for the usability test

1. Start the swamp client and log in with the following values:
- Name = <Your name>
- Project ID = SWAMP
- Car ID = Ferrari
- Back office telephone number = 0651061625
(The original values where Tu, Timenet, Neon, 0651061625 respectively)

2. Once logged in change your trip type into private

3. Ask for directions to CMG Rotterdam

4. Change trip type into business with project ID timenet

5. Something is wrong with the car: call ANWB

6. Arghh, call help

7.4 Results and discussion

The previous sections presented the test method and other test parameters of the usability test
conducted on the speech interface of the SWAMP client. In this section the results of the usability
tests will be presented and discussed.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

67

7.4.1 Recognition rate

Table 27: Number of false and successful recognitions of utterances for each of the test subjects per test run.

Test Run
number

False
Reco

Good
Reco

Test Run
number

False
Reco

Good
Reco

1 22 22 2 16 21
1 30 16 2 13 17
1 15 20 2 16 20
1 23 13 2 5 16
1 18 11 2 27 18
1 18 9 2 13 18
1 21 23 3 7 19
1 32 16 3 4 22
1 26 22 3 4 21
1 26 10 3 16 20
1 7 16 3 9 18
1 33 1 3 18 18
1 11 15 3 2 20
2 12 24 3 3 19
2 7 20 3 8 21
2 9 19 3 12 17
2 13 16 3 3 17
2 8 16 3 24 23
2 11 21

Test Run number

321

N
um

be
r

of
 u

tte
ra

nc
es

40

30

20

10

0

Good recognitions

False recognitions

Figure 7.4-1: Average number of (good/false) utterances needed to complete the six tasks per test run

Figure 7.4-1 shows a graph containing the average number of utterances uttered by the test
subjects in each test run. Furthermore the ratio of good and false recognitions (recognition rate) is
indicated in the figure. The result is not a good measurement for the recognition quality for the

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

68

speech recognition engine, because some false recognitions occurred as a result of utterances
made up of grammar that was not modelled in the grammar of the dialogue manager. This
occurred more frequently in the first test run then in the others. Furthermore some false
recognitions occurred as result of plain misuse of english grammar by test subjects!
The results do show that the number of utterances needed to successfully complete the tasks
decreases with each test run (as the user becomes more familiar with the grammar of the speech
interface). It can also be seen that the percentage of successfully recognised utterances also
increases with each test run. Furthermore the added attention needs in test run 3 has no significant
impact on the recognition rate.

7.4.2 Time to completion

Table 28: Time needed to complete the tasks with the GUI and with the SUI by each of the test subjects per test run.

Test Run
number

GUI time
(s)

SUI Time
(s)

Test Run
number

GUI time
(s)

SUI Time
(s)

1 118 301 2 53 134
1 90 360 2 55 143
1 98 327 2 38 180
1 79 228 2 44 169
1 88 357 2 76 225
1 115 330 2 37 245
1 58 271 3 82 210
1 175 329 3 53 124
1 84 364 3 77 144
1 58 147 3 45 109
1 39 224 3 84 242
1 98 327 3 70 125
1 55 230 3 54 128
2 37 154 3 96 189
2 36 116 3 68 112
2 48 210 3 67 151
2 0 164 3 87 108
2 37 211 3 78 228
2 36 176

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

69

Test Run number

321

T
im

e
(s

)

400

300

200

100

0

GUI time (sec)

Total SUI Time (s)

Figure 7.4-2: Box plot of the time needed to complete the tasks with the GUI and with the per test run.

Figure 7.4-2 shows a box plot of the time needed to complete the tasks with the GUI as well as
with the SUI. Both SUI and GUI show a decrease of the time needed to complete the tasks, as the
user gets more familiar with the interfaces. The decrease in the needed time is greater with the
SUI then with the GUI. As can be seen, test subjects accomplish the tasks faster with the GUI by
default. On the other hand, the attention needs for working with the GUI is greater than with the
SUI, this is reflected by an increase in completion time in the third test run (while that of the SUI
still shows a decrease).

7.4.3 Success rate

Table 29: Number of test subjects to successfully complete each task per test run.

Test Run number 1 2 3
Task 1 11 11 12
Task 2 10 12 12
Task 3 5 10 11
Task 4 10 12 12
Task 5 1 12 12
Task 6 10 12 12

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

70

Task number

654321

S
uc

ce
ss

 R
at

e
(%

)

110

100

90

80

70

60

50

40

30

20

10

0

Run 1

Run 2

Run 3

Figure 7.4-3: Success rate per task for each test run.

Table 29 shows the number of test subject (out of 12) to successfully complete each task per test
run. The percentage version of this data (success rate) is shown graphically in Figure 7.4-3. The
figure shows that the success rate increases dramatically between the first and second run.
Between the second and third run the increase is much less apparent. This indicates that the
speech interface is not very intuitive, but once the user gets it right once (if he successfully
completes a tasks in a test run), he will have much more success with the task in the next run.

7.4.4 Other results

Apart from the numerical data, test subjects’ comments on the user friendliness and usability of
the speech interface are very important. The overall impression of the test subjects is that
interface is very usable and works fine if everything goes well (if utterances are recognised,
dialogues go smoothly etc.). But if something goes wrong (if an exception occurs e.g. false
recognition, mis-understanding) it is very difficult and/or frustrating to correct the error.
The most heard comment on the user friendliness was the lack of good and clear feedback in
exception situations e.g. the test subjects would like to know (at each moment) what the speech
interface expects from them for example a list of speech options on the computer screen or a
warning if the user keeps saying the wrong things.
The lack of speech options (because of a limited corpus) however, presented no problems for the
test subjects. The test subjects automatically adapted to the grammar of the speech interface with
each test run. This is reflected by a change in intonation and speaking style, leading to a higher
recognition and success rate.
After the test, most test subjects would prefer to use the speech interface rather than the GUI in
car driving interaction. The reason for this is that the SUI is much more natural and less attention
intensive then the GUI. The opinions on the representativeness of first level Tetris with car
driving however were divided. Most test subject stated that car driving is more attention intensive
then playing Tetris.
In the eyes of the test subjects the unreliability of the recognition and the difficulty in correcting
errors pose the biggest problems for the acceptance of the speech interface for the big public.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

71

8 Conclusions and recommendations

8.1 Conclusions drawn from this work

First it can be concluded that the speech interface is capable of handling simple dialogues well
and graciously. Furthermore, the use of CLIPS as knowledge processing component makes the
dialogue manager very flexible. Nevertheless, no decisive conclusion can be drawn about the
question if the SUI is better suited then the GUI, since the speech interface is not thoroughly
tested and certain key factors (e.g. background noise) have been left out of the scope of the
project. The usability test, however shows that once these technical problems are solved, the SUI
is definitely more suitable then the GUI in car driving interactions.
Although the synthesised speech did not sound very well it was still understandable, the
performance of the ASR engine was quite good. An explanation for this is the use of a specialised
grammar that limits the words that are recognised. Combined with the flexibility of SAPI5 and its
ease of use, the choice of third party speech software was a good one.

The complexity of the dialogues grows dramatically as more services are added. This is caused by
the fact that the environment gets more complex as more and more environment variables have to
be taken into account into the reasoning process. The user is presented with more choices, and all
choices need to be handled. E.g. the user can jump from one service to another (with more
services, more jumps are possible) and the interface has to take care of a graceful transition from
one service to another. The use of generic dialogue flow diagrams to visualise and model
dialogues has contributed greatly to the containment of the complexity. Furthermore, these
dialogue flow diagrams can easily and systematically be translated into executable CLIPS rules.

The resulting grammar file and CLIPS file however, are still very big, complex and hard to read.
As the files get bigger, it also becomes easier to make mistakes (for this reason the size of the
corpus per service has been kept low). The problem is also increased by the fact that CLIPS has
no rigid syntax checking facility. There is also no strong typing and variable names do not have to
be declared beforehand. This makes it very hard to spot and correct a typing mistake. The
conclusion is that it is hard to build a complex robust reasoning system, without help of a special
tool. Therefore, it is my opinion that dialogue management building tools needs to be used to aid
the construction of dialogue grammars and (or especially) the construction of the reasoning
system. A survey of six tools providing functionality for dialogue management tasks can be found
in [disc 2000].

Initially UML was used as design methodology to design the speech interface, but it did not work
out as well as expected. In the end, the design was hardly used and had to be updated and
modified constantly. My conclusion is that a good methodology to design and model speech
dialogue systems is needed. Traditional methodologies are not sufficient: it is not suitable to
represent dialogue driven systems, which are essentially dynamic and non-deterministic, with
static design models.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

72

8.2 Remaining work and possible improvements

This section discusses the remaining work and possible improvements on the SWAMP
application. The discussion is divided into speech interface related improvements and other kinds
of improvements.

Speech interface related
Improvement Description
Bigger corpus A corpus of about fifteen utterances was used for each

service. This is too small to construct a reliable and robust
grammar. A larger corpus of utterances per service is
needed. On the other hand, a larger corpus also increases
the complexity of the grammar.

Measure attention
demands

Attention demands for interactions with the speech
interface are not measured. It is very important to verify
that working with the SWAMP client does not cause
information overload. Since one of the goals of allowing
the use of speech to access to the services of SWAMP was
to increase the safety of the driver it has to be tested if this
is indeed the case.

Multiple rule
recognition

One of the most annoying deficiencies of the speech
interface is that it cannot recognise an utterance that
conforms to a combination of grammar rules (unless
explicitly specified in the grammar file). This is not caused
by a flaw in the design or implementation of SWAMP, it is
just not supported by SAPI5. Consequently, utterances that
conform to a combination of grammar rules are also not
handled by the dialogue manager.

Layered prompting
approach

One of the most heard comments on the speech interface
was the lack of good clear feedback in exception situations.
The layered approach to designing dialogues is a
combination of short conversational prompts with longer
prompts that are more direct. E.g. when the user does not
respond in a predetermined time, the system quickly
presents a more directive prompt.

Dialogue management
tool

One of the conclusions drawn from the work was that
dialogue management tools are needed to:
- Check the consistency and completeness of dialogues
- Give better overview of the implementation process
- Automatic generation of grammars

Other improvements
Improvement Description
Port to CE The SWAMP client is developed on an NT platform and is

meant to be a prototype to demonstrate speech interfacing.
Special emphasis is put on the word prototype because it is
far from a complete commercial product. First it has to be
ported to CE.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

73

Build a better
communication method
between SUI and GUI

No consideration was given on the possibility of speech
interfacing during the design and implementation of the
GUI. As the Speech interface had to be build to work next
to and together with the GUI this resulted in difficulties in
communication and synchronisation between both
interfaces during implementation. Since the GUI was
already there and the speech interface had yet to be build.
Eventually, the synchronisation was established using the
hack and crack method: identify where mis-synchronisation
occur during testing and then solve problem. This is not the
most elegant solution, as the source code becomes
unreadable.

Implement new
services in the Back
Office

New services are implemented in the SWAMP client, but
not in the SWAMP server. This has yet to be done, but
shouldn’t be a big problem.

Background noise The problem of background noise has been left out of the
scope of the project. Nevertheless it is a serious
requirement of the SWAMP client to be able to function
around heavy background noise, since this is quite common
in its destined working environment. Without the ability to
function under noisy circumstances the speech interface in
SWAMP has no commercial value.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

74

9 References

9.1 Books

[Boullart 1992]
Boullart, L., “A gentle Introduction to Artificial Intelligence”, In Boullart. L, et al. (eds), in
Boullart, L. et. al. (eds.), “Application of artificial intelligence in process control”, 1992,
Pergamon Press ltd., Oxford, England p5-40.

[Chapanis 1981]
Chapanis, A. “Interactive Human Communication: Some lessons learned from laboratory
experiments”, 1981, In: Shackel, B. (eds). “Man-Computer Interaction: Human Factor Aspects of
Computers and people”, Rockville, MD: Sijthoff and Noordhoff, pp. 65-114.

[Nusbaum 1995]
Nusbaum, H. C. et al., “Using Speech recognition systems: Issues in cognitive Engineering”, In:
Syrdal A. et al. (eds), “Applied Speech Technology”, 1995, Boca Raton, CRC press, pp. 127-194.

[Wooldridge 2000]
Wooldridge, M, “Reasoning about Rational Agents”, The MIT Press, Cambridge, Massachusetts,
2000.

[Rudnicky 1995]
Rudnicky, A. I., “The design of spoken language interfaces“, In: Syrdal A. et al. (eds), “Applied
speech technology”, Boca Raton, CRC press, 1995, pp. 403-427.

[Box 1999]
Box, D., “Essential COM”, Addison Wesley Longman Inc., Reading Massachusetts, 1999.

[Russell 1995]
Russel, S et. al., “Artificial Intelligence: a modern approach”, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1995.

[TCG 1998]
Test Consultancy Group, “Testen voor I&I’ers, De theorie in praktijk”, Testconsultancy Groep,
Groningen, may 1998.

[NASA1 1993]
Software Technology Branch Lyndon B. Johnson Space Center, “CLIPS Reference Manual
Volume 1, Basic Programming Guide Version 6.0”, Software Technology Branch Lyndon B.
Johnson Space Center, June 1993.

[NASA2 1993]
Software Technology Branch Lyndon B. Johnson Space Center, “CLIPS Reference Manual
Volume2, Advanced Programming Guide Version 6.0”, Software Technology Branch Lyndon B.
Johnson Space Center, June 1993.

[Pressman 1994]
Pressman, R., “Software Engineering: A Practitioner’s Approach”, McGraw-Hill Companies,
1994.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

75

9.2 Papers / articles/ reports

[Page 1998]
Page J.H., “The Laureate Text-to-speech System Architecture And Applications”, In: Westall, F.A.
et al (eds), “Speech Technology for Telecommunications”, 1998, T.J. International ltd, Padstow
Cornwall, pp. 127-148.

[Nielsen 1993]
Nielsen, J., et. al., "A mathematical model of the finding of usability problems," Proceedings of
ACM INTERCHI'93 Conference (Amsterdam, The Netherlands, 24-29 April 1993), pp. 206-213.

[Achterhof 2000]
Achterhof, I., “Ids scriptie, The WAM-Pilot project”, CMG TTI, Rotterdam, 2000.

[van Egmond 1999]
van Egmond, R., “Scriptie Wireless Automobile Messaging Pilot”, CMG TTI, Rotterdam, 1999.

[van Breda 1999]
van Breda, E., “Scriptie, WAM-Pilot T3”, CMG TTI, Rotterdam, 1999.

[Yang1 2001]
Yang, C.K., “Speech interfacing in the Wireless Automotive Messaging Pilot, Literature survey”,
CMG TTI, Rotterdam, 2001.

[Yang2 2001]
Yang, C.K., “Speech interfacing in the Wireless Automotive Messaging Pilot, Design Document”,
CMG TTI, Rotterdam, 2001.

[Yang3 2001]
Yang, C.K., “Speech interfacing in the Wireless Automotive Messaging Pilot, grammar
specification”, CMG TTI, Rotterdam, 2001.

[Bell J 1992]
Bell, J., “Pragmatic reasoning, a model-based theory”, Applied Logic Group, Computer Science
Department, Queen Mary and Westfield College, University of London, London, 1992.

[Rao 1995]
Rao, A. et al., “BDI Agents: From Theory to Practice”, Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), San Francisco, USA, June 1995.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

76

9.3 Internet

(The links were last checked at: may 31st 2001)

[SAPI5 website]
Microsoft speech.net technologies home; http://www.microsoft.com/speech/.

[SAPI5 third party]
This page contains a list of speech development or speech related companies who have
announced support for SAPI5; http://www.microsoft.com/speech/thirdparty/.

[CLIPS website]
CLIPS A Tool for Building Expert Systems; August, 1999; http://www.ghg.net/clips/CLIPS.html.

[Disc-2 website]
Spoken Language Dialogue Systems and Components: Best practice in development and
evaluation; Esprit Long-Term Research; March 2000; http://www.disc2.dk.

[Design]
Design Guidelines for Voice User Interfaces;
http://www.microsoft.com/speech/technical/design.asp.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

77

List of tables and figure

TABLE 1: SERVICES OF THE WAM PILOT..12
TABLE 2: OVERVIEW OF THE NEW SERVICES IN THE SWAMP APPLICATION.................................14
TABLE 3: REQUEST DIRECTION SMS MESSAGE FORMAT..15
TABLE 4: THE SPEED WARNING SMS MESSAGE FORMAT ...15
TABLE 5: THE REQUEST TRAFFIC INFORMATION SMS MESSAGE FORMAT16
TABLE 6: THE REQUEST CORPORATE INFORMATION SMS MESSAGE FORMAT17
TABLE 7: SERVICES OF THE SWAMP PROJECT AND THEIR SUITABILITY FOR SPEECH INTERFACING

...18
TABLE 8: ACTIONS FACTORS AND THEIR ATTENTION NEEDS ..19
TABLE 9: THE OBJECTIVES OF THE SWAMP PROJECT ...20
TABLE 10: COMPARISON BETWEEN THE CLIENT-SIDE APPROACH AND THE SERVER SIDE APPROACH

...22
TABLE 11: IMPLEMENTATION DECISIONS..27
TABLE 12: IMPLEMENTATION STEPS...29
TABLE 13: OVERVIEW OF THE FUNCTIONAL CATEGORIES OF THE SWAMP CLIENT’S CODE31
TABLE 14: CURRENT DEVELOPMENT STATUS OF THE SERVICES ...31
TABLE 15: EVALUATION CRITERIA FOR THE SPEECH SOFTWARE...32
TABLE 16: FUNCTIONS OF THE DIALOGUE MANAGER...40
TABLE 17: SPEECH CONTROL ELEMENTS DEFINED IN THE SAPI TTS XML SCHEMA.....................42
TABLE 18 : PROMPTING TECHNIQUES ...45
TABLE 19: EXAMPLE DIALOGUE ...46
TABLE 20: CORRESPONDENCE BETWEEN SAPI ELEMENTS AND CLIPS INPUT ELEMENTS..............52
TABLE 21: LIST OF DEFINED TAGS IN CLIPS OUTPUT MESSAGES ...53
TABLE 22: METHODS USED TO CONTROL THE TTS ENGINE..54
TABLE 23: METHODS USED TO CONTROL THE ASR ENGINE...54
TABLE 24: METHODS USED TO MANIPULATE GUI CONTROLS ..55
TABLE 25: BASIC ELEMENTS OF THE CLIPS ENGINE ...56
TABLE 26: LIST OF TASKS TO PERFORM FOR THE USABILITY TEST ..66
TABLE 27: NUMBER OF FALSE AND SUCCESSFUL RECOGNITIONS OF UTTERANCES FOR EACH OF THE

TEST SUBJECTS PER TEST RUN. ..67
TABLE 28: TIME NEEDED TO COMPLETE THE TASKS WITH THE GUI AND WITH THE SUI BY EACH OF

THE TEST SUBJECTS PER TEST RUN. ...68
TABLE 29: NUMBER OF TEST SUBJECTS TO SUCCESSFULLY COMPLETE EACH TASK PER TEST RUN. .69

FIGURE 2.1-1: THE HP JORNADA HANDHELD COMPUTER ..10
FIGURE 2.1-2: OVERVIEW OF THE WAM-CLIENT..11
FIGURE 2.1-3:OVERVIEW OF THE WAM BACK OFFICE ...11
FIGURE 2.2-1: TYPICAL INFORMATION FLOW FROM CLIENT TO SERVER..12
FIGURE 4.1-1: SERVER SIDE RECOGNITION APPROACH...21
FIGURE 4.1-2: CLIENT-SIDE RECOGNITION APPROACH...22
FIGURE 4.1-3:DEFINITION OF A TYPICAL USER OF THE SYSTEM ..24
FIGURE 4.1-4: SPEECH INTERFACE COMPONENTS ..26
FIGURE 4.2-1 OVERVIEW OF SWAMP IMPLEMENTATION..28
FIGURE 4.2-2: OVERVIEW OF THE IMPLEMENTATION STRATEGY ..29
FIGURE 5.1-1: SAPI 5 ARCHITECTURE OVERVIEW...33
FIGURE 5.2-1 : OVERVIEW OF THE INFORMATION FLOW FROM THE UTTERANCE OF THE USER TO THE

PROCESSING OF THE RECOGNISED WORDS..35
FIGURE 5.2-2: INTERFACES OF SAPI5 ..36

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

78

FIGURE 5.2-3: SYNTAX OF A GRAMMAR RULE...36
FIGURE 5.4-1: OVERVIEW OF THE INFORMATION FLOW FROM GENERATION OF TEXT MESSAGES TILL

GENERATION OF SPOKEN MESSAGE ...41
FIGURE 5.4-2: SAPI5 TTS RELEVANT OBJECTS AND INTERFACES..43
FIGURE 6.1-1: A DIALOGUE FLOW DIAGRAM FOR THE KM REGISTRATION SERVICE.......................47
FIGURE 6.2-1: OVERVIEW OF THE DIALOGUE MANAGER ..49
FIGURE 6.3-1: FORMAT OF A SPEECH RELATED INPUT MESSAGE TO CLIPS...................................52
FIGURE 6.3-2: FORMAT OF A GUI RELATED MESSAGE TO CLIPS ...53
FIGURE 6.4-1: A BASIC BDI AGENT CONTROL LOOP..56
FIGURE 6.4-2: SYNTAX OF A CLIPS RULE ..57
FIGURE 6.4-3: OVERVIEW OF THE CLIPS EXECUTION CYCLE ...58
FIGURE 6.4-4: EMBEDDED CLIPS CONTROL LOOP ..59
FIGURE 6.4-5: DIALOGUE FLOW DIAGRAM FOR THE HEURISTICS EXAMPLE60
FIGURE 7.2-1: CURVE OF THE NUMBER OF USABILITY PROBLEMS FOUND IN USABILITY TEST WITH

L=0.31..65
FIGURE 7.4-1: AVERAGE NUMBER OF (GOOD/FALSE) UTTERANCES NEEDED TO COMPLETE THE SIX

TASKS PER TEST RUN..67
FIGURE 7.4-2: BOX PLOT OF THE TIME NEEDED TO COMPLETE THE TASKS WITH THE GUI AND WITH

THE PER TEST RUN..69
FIGURE 7.4-3: SUCCESS RATE PER TASK FOR EACH TEST RUN...70
FIGURE 0-1: DIALOGUE FLOW DIAGRAM FOR MAIN LOGIN DIALOGUE ...91
FIGURE 0-2: DIALOGUE FLOW DIAGRAM FOR THE REQUEST BACK OFFICE TELEPHONE NUMBER SUB

DIALOGUE OF THE LOGIN DIALOGUE ...92
FIGURE 0-3: DIALOGUE FLOW DIAGRAM FOR THE REQUEST TRIP TYPE SUB DIALOGUE OF THE LOGIN

DIALOGUE ...92
FIGURE 0-4: DIALOGUE FLOW DIAGRAM FOR THE REQUEST CAR ID SUB DIALOGUE OF THE LOGIN

DIALOGUE ...93
FIGURE 0-5: DIALOGUE FLOW DIAGRAM FOR THE REQUEST USERNAME SUB DIALOGUE OF THE

LOGIN DIALOGUE ...94
FIGURE 0-6: DIALOGUE FLOW DIAGRAM FOR THE ANWB CALL DIALOGUE..................................95
FIGURE 0-7: DIALOGUE FLOW FOR THE USER INITIATED VERSION OF THE SOS CALL DIALOGUE96
FIGURE 0-8: DIALOGUE FLOW DIAGRAM FOR THE KM REGISTRATION DIALOGUE97
FIGURE 0-9: DIALOGUE FLOW DIAGRAM FOR THE DIRECTION REQUEST MAIN DIALOGUE...............98
FIGURE 0-10: DIALOGUE FLOW DIAGRAM FOR THE REQUEST DESTINATION SUB DIALOGUE OF THE

REQUEST DIRECTIONS DIALOGUE ..99
FIGURE 0-11: THE DIALOGUE FLOW DIAGRAM FOR THE REQUEST START POINT SUB DIALOGUE IS

SIMILAR TO THAT OF THE REQUEST DESTINATION SUB DIALOGUE ...99
FIGURE 0-12: DIALOGUE FLOW DIAGRAM FOR THE REQUEST TRAFFIC INFORMATION DIALOGUE .100
FIGURE 0-13: DIALOGUE FLOW DIAGRAM FOR THE TRAFFIC JAM SUB DIALOGUE101
FIGURE 0-14: DIALOGUE FLOW DIAGRAM FOR EXISTENCE OF TRAFFIC JAM SUB DIALOGUE102
FIGURE 0-15: DIALOGUE FLOW DIAGRAM FOR TRAFFIC INFORMATION ON A ROUTE SUB DIALOGUE

...103

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

79

Table of abbreviations

Glossary of terms and abbreviations

AI Artificial Intelligence
ANWB Algemene Nederlandse Wielrijders Bond
API Application programming interface, the "top" side of the SAPI 5.0

middleware
ASR Automatic Speech Recognition
BDI Believe Desire Intention Model
CFG Context-free grammar, specifies the rules that make valid sentences in

a language
CLIPS C Language Integrated Production System. An expert system tool
COM Component Object Model, a technique that enables the development of

reusable binary software components
DDI Driver development interface
DTD Document Type Definition
GPS Global Positioning System. A series of 24 geosynchronous satellites

that continually transmit their position. GPS is used in personal
tracking, navigation, and automatic vehicle location technologies

GSM Global System for Mobile communication. Digital cellular standard
used throughout the world, and the primary standard in Europe and
Southeast Asia

GUI Graphical User Interface
HCI Human Computer Interaction
HTTP HyperText Transfer Protocol
MMS Motor Management System
PCMCIA Personal Computer Memory Card International Association
SAPI Microsoft Speech Application Programming Interface. SAPI 5.0 is

middleware that provides an API for applications and a DDI for speech
providers

SMS Short Message Service. Electronic messages on a wireless network
SWAMP Speech interfacing in the Wireless Automotive Messaging Pilot
top-level rules top-level grammar rules have the TOPLEVEL keyword set, indicating

that they can be activated or deactivated during run-time
TTI CMG Trade Transport and Industries
TTS Text-to-Speech, also called speech synthesis
UML Unified modelling language
WAMBO WAM Back Office
WAM-Pilot Wireless Automobile Messaging Pilot
XML Extensible Mark-up Language. A streamlined version of Standard

Generalised Mark-up Language (SGML), XML is regulated by the
World Wide Web Consortium. XML can make far more advanced use
of data, and create more advanced links, than HTML

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

80

APPENDIXES

A1: Hardware specifications

HP Jornada

Product Number HP Jornada 680 (F1262A ABB)
Processor 133MHz 32-bit Hitachi SH3 processor
Memory 16MB SDRAM
Display 6.5-in (16.7-cm) CSTN screen

640 x 240 x 65,536 colors on screen, 0.23mm dot pitch
Input Large (76% full-size) keyboard

Embedded numeric keypad
Touch screen

Communications High-performance internal modem 56Kbps, v.901
Internet e-mail support: POP3, IMAP4, SMTP, and LDAP
E-mail attachment support

Power One rechargeable Lithium-Ion battery
One 3V CR2032 coin-cell backup battery
Up to 8 hours2 of battery life

Ports/Slots One IrDA infrared port
One RS232C serial port
One RJ11 modem port
One PC Card Type II card slot (PCMCIA)
One CompactFlash Type I card slot

Sound Audio speaker and microphone
Built-in voice recording

OS Microsoft Windows CE Services 2.2 or ActiveSync® 3.0
Size and Weight 7.4 x 3.7 x 1.3 in (18.9 x 9.5 x 3.4 cm)

1.1 lbs (510 g) with battery

Garmin GPS receiver

Model Garmin GPS 35/36
Satellites MAX 12
Update rate 1 sec
Acquisition time 12 sec warm

45 sec cold
Position accuracy 3m RMS with differential GPS

15m RMS Non-differential GPS (100m with
selective availability on)

Velocity accuracy 0.2 m/s RMS steady state (subject to selective
availability)

Dynamics 999 knots velocity, 69 dynamics
Communication 2 x RS-232 compatible full duplex communication

channels

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

81

A2: Evaluation results of Speech Software

Name Voice Xpress SDK version 4.5
Producer Lernhout&Hauspie
Type Speaker independent, continuous
Supported languages English, German, Dutch, French, Flemish
Supported Programming languages Visual Basic 5.0+, Visual C++ 5.0+, Delphi 4, C++

Builder 4, Powerbuildre 6, (Java)
Supported platforms Windows 95/98, Windows NT
Price -
Compatible with MS SAPI MS SAPI 3/4
Min. system requirements -
End-user’s min. system requirements Pentium 166 Mhz with MMX

Windows 98/95, Windows NT 4.0 with Service Pack
3 or later
48 MB RAM
Installed end-user license for Voice Xpress
Creative labs soundblaster 16 or compatible sound
card
130 MB disk space
microphone
CD-ROM drive

Contact inf. Email: sdk@lhsl.com
Website: http://www.lhsl.com/voicexpress/sdk/

Comments -
Grammar support unknown

Name Speech SDK 1.0
Producer Philips
Type Continuos, speaker dependent (needs initial training)
Supported languages Language and model adaptive
Supported Programming languages C/C++, Visual Basic, Delphi and other environments

supporting ActiveX controls.
Supported platforms Windows 95/98, Windows NT
Price -
Compatibility Supports SAPI
End-user’s min. system requirements -
Min. System requirements Windows95/98: Pentium II 266 MMX, 64 MB

memory
Windows NT 4.0: Pentium II 266 MMX, 96 memory
Soundblaster 16 compatible soundcard supporting 16
bit recording.

Contact inf. E-mail: SpeechSDK@philips.com
Website: http://www.speech.philips.com

Comments A SDK or a trial version of it could not be obtained.
So this could not be tested.

Grammar support Routines to integrate new words into the user’s
context are provided

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

82

Name IBM Embedded ViaVoice, multiplatform edition
Producer IBM
Type Speaker independent, continuous
Supported languages U.S. English
Supported Programming languages C
Supported platforms WinCE
Price -
Compatibility Java-JSAPI, Not SAPI compatible
End-user’s min. system requirements 242-330KB DRAM

1.4-2.0MB ROM of flash
Min. System requirements 90 MIPS required
Contact inf. e-mail: VoiceClientSystems@us.ibm.com

Website: www.ibm.com/software/voice
Comments Embedded ViaVoice is specifically developed for

mobile devices. Couldn’t obtain trial version
Grammar support Yes (with VoiceXML)

Name smARTspeak CS
Producer ART (Advanced Recognition Technologies)
Type Speaker dependent, continuous
Supported languages language independent
Supported Programming languages ANSI C
Supported platforms Windows(98/CE/NT), EPOC 32, MagicCap
Price -
Compatibility -
End-user’s min. system requirements 2-7 MIPS
Min. System requirements -
Contact inf. e-mail: europesales@artcomp.com

Website: www.artrecognition.com
Comments Features noise immunity

The smARTCar version is special for automotive
systems

Grammar support Yes

Name Voice Tools 6.0
Producer Speech Solutions, Inc
Type Speaker independent
Supported languages English
Supported Programming languages Visual C++, Visual Basic
Supported platforms Windows 9x/NT
Price Evaluation
Compatibility SAPI 4
End-user’s min. system requirements -
Min. System requirements -
Contact inf. Email: getinfo@speechsolutions.com

Website: http://www.speechsolutions.com/

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

83

Comments Speech solutions is a set of 10 ActiveX components.
The activeX components work quite good, and there
exists a grammar and vocabulary tool to define a
tailor made grammar and the words to recognise.

Grammar support Yes

Name Sphinx 2
Producer Carnegie Mellon University
Type Speaker-independent continuous speech recognition
Supported languages English
Supported Programming languages C, C++
Supported platforms Linux, FreeBSD (in Linux emulation), SunOS

HP/UX, Digital Unix, Windows NT
Price Freeware
Compatibility -
End-user’s min. system requirements -
Min. System requirements -
Contact inf. Sphinx is now under Open source development at

http://www.sourceforge.com
Comments The CMU Sphinx Recognition System is a library

and a set of examples and utilities for speech
recognition.
This is an early release of a research system. The
APIs and function names are likely to change, and
several tools need to be made available to make this
all complete.
Although the sphinx was originally written to run
under a linux platform, it is possible to compile the
program under windows. But the application could
not be made to compile under Windows NT.

Grammar support Yes

Name Dragon Naturally Speaking SDK
Producer Dragon Systems, Inc
Type User independent
Supported languages English
Supported Programming languages Visual Basic, Delphi, C++
Supported platforms Windows 95, Windows 98, Windows NT (with SP3

or greater)
Price 49 US$
Compatibility ActiveX Controls or COM interfaces with support for

a subset of Microsoft's Speech API (4.0a)
End-user’s min. system requirements 64 MB Memory

200 MB disk space
CD Drive
Creative Labs Sound Blaster 16 or equivalent sound
card supporting 16-bit recording.

Min. System requirements IBM-compatible with 200 MHz Intel Pentium

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

84

processor with MMX or equivalent.
64 MB Memory (96 recommended)
256 MB disk space
CD Drive
Creative Labs Sound Blaster 16 or equivalent sound
card supporting 16-bit recording.

Contact inf. Website: http://www.dragonsystems.com
Http://developer/dragonsys.com

Comments Dragon NaturallySpeaking 3.52 or later must already
be installed on the system before the SDK can be
used.

Grammar support Yes

Name VoiceAction 2.0.000
Producer United Research Labs
Type User independent
Supported languages English
Supported Programming languages ActiveX supporting environment
Supported platforms Windows 95/98/NT
Price 199 US$
Compatibility 32 Bit Application ActiveX Control
End-user’s min. system requirements -
Min. System requirements -
Contact inf. Customer Support Site : http://www.research-lab.com

Website: http://www.research-lab.com/
Contact e-mail : urlabs@pn2.vsnl.net.in
Contact phone : 0091205888749
Contact fax : 0091205655044

Comments The ActiveX components are easily installed and
registered, but using them requires registration.
Furthermore there are some sample applications
along with the ActiveX components, but these
samples are in Visual basic.

Grammar support allows users to build their own basic vocabulary
database and design their own artificial intelligence
language database of words

Name Chant® SpeechKit™ Version 2.1.2
Producer Chant, Inc.
Type Continuous
Supported languages -
Supported Programming languages C/C++, Delphi, Java, Smalltalk, Visual Basic
Supported platforms Win 9x/NT
Price -
Compatibility Supports Microsoft's Speech API (SAPI) and IBM's

Speech Manager API (SMAPI).
End-user’s min. system requirements

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

85

Min. System requirements Pentium 90 MHz or faster
Windows 95/98/NT
64 MB RAM
30 MB hard drive
CD-ROM
VGA or higher resolution monitor
SAPI or SMAPI compliant speech engines
Microphone
C/C++, Delphi, Java, Smalltalk, or Visual Basic
development environment.

Contact inf. Website: http://www.speechkit.com
E-mail: online@chant.net

Comments Chant does not come with an own recognition engine
but uses the engines already installed. Chant is not a
speech recognition engine but rather a layer of
software on top of the SAP/MSAPI.

Grammar support Yes

Name IPI speech recognition developers kit
Producer IPI speech technologies
Type Speaker dependent, command and control.
Supported languages Language independent
Supported Programming languages Visual C++ 4.2, C
Supported platforms Windows 95/98/NT
Price -
Compatibility Easily portable to numerous IC’s
End-user’s min. system requirements -
Min. System requirements -
Contact inf. Website: http://www.ipispeech.com

President: hboyette@ipispeech.com
Director overseas operations: Sergey Gladkov
sgladkov@ipispeech.com
Sales enquiries: sales@ipispeech.com

Comments Emails have been sent to both director of overseas
operations and sales enquiries, but no replies have
been received yet.

Grammar support

Name ISIP ASR prototype system
Producer Institute for Signal and Information Processing

Mississippi State University
Type -
Supported languages -
Supported Programming languages C++
Supported platforms SunOS 5.7 (Solaris 2.7), cygwin unix-like interface

for Windows, Linux
Price Public domain
Compatibility -

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

86

End-user’s min. system requirements -
Min. System requirements 128 megabytes of RAM, and processors running at

50 megaHertz
Contact inf. Email: help@isip.msstate.edu

Website: http://www.isip.msstate.edu
Comments Fully functional speech recognition system that

includes an acoustic front-end based on mel-
frequency cepstral coefficients and their derivatives,
an acoustic training module capable of Viterbi and
Baum-Welch HMM training, and decision tree-based
phonetic state tying. The decoder is an efficient, one-
pass, lexical tree-based, hierarchical Viterbi-style
decoder capable of handling cross-word triphones
and N-gram language models

Grammar support -

A3: Grammar rules for KM registration

<!-- **********************KM registration *************************** -->

<RULE NAME="VID_NOW">
<L>

<P>now</P>
<P>from now on</P>
<P>from here on</P>

</L>
</RULE>

<RULE NAME="TRIPTYPE_UTTERS">
<L>

<P>trip</P>
<P>drive</P>
�3!WULS W\SH��3!

</L>
</RULE>

<RULE ID="VID_KMREG_TRIPTYPE" NAME="VID_KMREG_TRIPTYPE" TOPLEVEL="INACTIVE">
<L>

<P>
<O>

<RULEREF REFID="VID_StartPolite"/>
</O>
<L>

<P>It is</P>
<P>Its</P>
<P>Did I mention that this is</P>
<P>I will be making</P>
<P>It will be</P>

</L>
<P>a</P>
<P>

<RULEREF NAME="VID_LOGIN_TRIPTYPE"
PROPNAME="TripType"/>

</P>
<P>

<RULEREF NAME="TRIPTYPE_UTTERS" PROPNAME="dontcare"/>

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

87

</P>
<O>

<RULEREF NAME="VID_NOW"/>
</O>

</P>
<P>

<O>
<RULEREF REFID="VID_StartPolite" PROPNAME="dontcare"/>

</O>
<L>

<P>the</P>
<P>this part of the</P>

</L>
<O>

<RULEREF NAME="TRIPTYPE_UTTERS" PROPNAME="dontcare"/>
</O>
<P>is</P>
<O>

<RULEREF NAME="VID_LOGIN_TRIPTYPE"
PROPNAME="TripType"/>

</O>
</P>
<P>

<O>
<RULEREF REFID="VID_StartPolite" PROPNAME="dontcare"/>

</O>
<L>

<P>change</P>
<P>set</P>

</L>
<O>the</O>
<O>

<RULEREF NAME="TRIPTYPE_UTTERS" PROPNAME="dontcare"/>
</O>
<L>

<P>in</P>
<P>into</P>
<P>to</P>

</L>
<P>

<RULEREF NAME="VID_LOGIN_TRIPTYPE"
PROPNAME="TripType"/>

</P>
<O>

<RULEREF REFID="VID_EndPolite" PROPNAME="dontcare"/>
</O>

</P>
</L>

</RULE>

A4: SAPI5 system requirements and installation notes

Supported operating systems are:
• Microsoft Windows 2000 Professional Workstation, English edition or English edition

with Japanese or Simplified Chinese Language support.
• Microsoft Windows Millennium edition.
• Microsoft Windows ® NT Workstation 4.0, service pack 6a, English, Japanese, or

Simplified Chinese edition.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

88

• Microsoft Windows 98 (Windows 95 is not supported).

Software Requirements
• Microsoft Visual C++ 6.0, service pack 3 or later version.
• Platform SDK (PSDK) April 2000 or later edition. Compiling SDK projects requires

components of the PSDK. Within Microsoft Visual C++ 6.0, the PSDK include
directories must be listed before the Visual C++. You can change the order in Tools-
>Options menu under the Directories tab. Move PSDK directories above all Visual C++
directories, if needed. To save disk space, you can load a minimal configuration. This
includes enabling only the following two options:

o Configuration Options
o Build Environment
These options require 13 MB on the system drive and another 80 MB on any other
drive. No other options are needed. You can download the PSDK from
http://msdn.microsoft.com/downloads/sdks/platform/platform.asp.

• Microsoft Internet Explorer 5.0 or later version. Users of NT4 with any version of the
service packs require Microsoft Internet Explorer 5.5 or later. You need this to read the
online documentation and for executing Microsoft XML. You can download the latest
version of Microsoft Internet Explorer from the web at http://www.microsoft.com/ie.

Hardware Requirements
• A PentiumII\PentiumII-equivalent or later processor at 233 MHz with 128 MB is

recommended.
• SAPI 5.0 can now take advantage of a machine and operating system that supports

multiple processors, including all those mentioned above. Additionally, you can use
SAPI 5.0 in a distributed application environment.

• Not all sound cards or sound devices are supported by SAPI 5.0, even if the operating
system supports them otherwise.

The follow table outlines the RAM usage:

Component Minimum RAM Recommended RAM
TTS Engine 14.5 Mb 32.0 Mb
SR C&C 16 Mb 32 Mb
SR Dict 25.5 Mb 128 Mb
SR Both 26.5 Mb 128 Mb

The follow table outlines the disk usage:

File Name Approximate File Size Setup Merge Names
Sapi.dll & Sapisvr.exe .5Mb Sp5.msm
Sapi.cpl 36k Sp5Intl.msm
SR Engine 1.7Mb Sp5Sr.msm
C&C Datafiles 13.4Mb Sp5CCInt.msm
Dictation Datafiles 33Mb Sp5DCInt.msm
TTS Engine & voices 7.8Mb Sp5TTInt.msm

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

89

A5: Class hierarchy

The following figure shows the transformation from WAM classes to SWAMP classes

C M a in F ra m e

A b o u tD lg

L o g in D lg

S W A M P C lie n tD lg

C L IP S In fo D lg

D ire c tio n R e q D lg

S p e e ch C tr lD lg

C S W A M P A p p

C S W A M P D o c

C S p In te rfa ce

C In i

D rive r

S W A M P L o ca tio n

R e co D lg C la ss

C L IP S H a n d le r

A c tio n H a n d le r

G P S

S M S

M M S

C W A M c lie n tA p p

C W A M c lie n tD lg

D rive r

G P S h a n d le r

G P S in fo

G P S P o rt

M e ssa g e

M M in fo

S e ss io n In fo

S M S H a n d le r

S M S In

S M S O u t

S M S P o rt

U se rL o g in

Th re a d s tru c t

W AM SW AMP

A6: Software

Development Software

Name Location
Microsoft Visual Studio 6.0
Enterprise edition

MSDN, Office Test Platform & Development
Tools, disc 1, March 1999

Microsoft speech application
development Kit 5.0 (MSAPI 5.0)

The development kit can be downloaded from the
microsoft website

Microsoft driver development kit
(ddk) for Windows 98/ME/NT/2000

Downloaded from the microsoft website

Platform SDK Downloaded from the microsoft website
CLIPS MFC wrapper libraries Downloaded from the CLIPS website
Motor management libraries These were included in the WAM-pilot

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

90

Software for Windows CE

Name Location Comments
Windows CE toolkit for
Visual C++ 6.0

MSDN, Office Test
Platform & Development
Tools, disc 14, April
1999

During installation, at type of
installation choose the "specific
processor" option, In the
following screen choose SH3 and
SH4 processor. (Installation of
x86 emulation is recommended
but not mandatory.)

Visual C++, H/PC 2.11 Location: MSDN Development
platform, disc 1, April 1999
Comments: install H/PC pro 2.11
in \WinCE\HPCp_sdk\ directory

Miscellaneous software

Name
AND data Road Data
Clavis Map Maps
MS Acess (MDAC 2.11) Database drivers
Nokia datasuite 2.0 & 3.0 Software for the communication with the phone

through the data cable.
Microsoft ActiveSync 3.0 Downloading the application to the HP Jornada
Win CLIPS 6.0 Testing of CLP file
XML Spy 3.5 XML files editing tool, used for syntax checking of

XML file

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

91

A7: Dialogue flow diagrams

S : S a y s o m e w e l c o m i n g s
words AND Ask user to log in

N a m e s u p p l i e d

Log in

U:no response o r
response no t
unders tood

U: Supp l ies log in
in fo rmat ion

S: Ask c lar i f i ca t ion
fo rm user

S : Wha t do you
wan t to change

End Log in

S : Use these
va lues?

U: Yes U: No

R e q u e s t U s e r a m e

S: Retr ieve defaul t
in fo rmat ion

S: Log in

3x No
R e s p o n s e

Name ex is ts in
da tabase

U : N a m e

U: Car ID

U: BO te l

U: Tr iptype

U: Pro ject ID

U: Cance l log in

U: Everyth ing

Reques t P ro jec t
ID

Request Tr ip type

Reques t BO te l

Reques t Car ID

R e q u e s t
U s e r n a m e

R e q u e s t
U s e r n a m e

Ex i t Change Log in

S: OK (Clear a l l)

U: ?

show the va lues ex t rac ted
f rom the log in in format ion

suppl ied. I f none are
supp l ied the defau l ts are

s h o w n

Figure 0-1: dialogue flow diagram for main login dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

92

Reques t BO Te l

S : Wha t i s t heBO
Telnr?

U: Supp l i es BO
Telnr

U: ?

Retu rn Supp l ied
BO Te lnr

S : Con f i rm BO
Telnr

U : NoU: Yes

U:Use de fau l t U : What i s the
defau l t?

U :?

Return Defau l t BO
Telnr

S: Spec i fy defau l t
BO Te lnr

S: Exp la in
s i tuat ion

Ut te rance
conta ins BO te l

S: Use th is va lue?

U: Yes U: no or ?
Reques t BO Te l

3 x no
response

3x no
response

Figure 0-2: Dialogue flow diagram for the request Back Office telephone number sub dialogue of the login dialogue

Request Triptype

S: Is it a Private or
Business trip?

Return Supplied
BO Telnr

U:BusinessU:Private U: Else

Return
Triptype=private

S: Please specify
if its a Private or

business trip

Utterance
contains
triptype

Return Triptype

S: Triptype is now
?triptype

Figure 0-3: Dialogue flow diagram for the request trip type sub dialogue of the login dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

93

RequestCAR ID

S: Use default ID?

U: Suppl ies CAR
ID

U: ?

S: Explain
situation

Return Suppl ied
CAR ID

S: Conf i rm CAR
ID

U: NoU: Yes

U:NoU:Yes
U: What is the

default?
U:?

Return Default
CAR ID

S: Specify default
CAR ID

S: What is i t then?

S: Explain
situation

Figure 0-4: Dialogue flow diagram for the request car ID sub dialogue of the login dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

94

Request
Username

S: ask user to
supply username

U: Supplies name

U: ?

S: Explain
situation

Return Supplied
name

S: Confirm name

U: No U: Yes U:?

S: Explain
situation

Figure 0-5: Dialogue flow diagram for the request Username sub dialogue of the login dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

95

ANWB Cal l

U: cal l ANWB

User initiated

S: asks for
confirmation

U: NoU: YesU: ?

S: send SMS S: OK

End ANWB Cal l

Figure 0-6: Dialogue flow diagram for the ANWB call dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

96

SOS Cal l 1 User Initiated

U: Cal l SOS

S: asks for
confirmation

U: NoU: YesU: ?

S: send SMS S: OK

Alert

End SOS Cal l 1

Figure 0-7: Dialogue flow for the user initiated version of the SOS call dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

97

KM registrat ion

U: Change tr iptype
utterance

Utterance
contains new

triptype

triptype is
business

S: What is the
tr iptype

S: Set private trip,
S: Set business

trip

U: Cancel U: ?
U: Utters new

triptype

End: KM
registration

S: Ask
confirmation

S: Send SMS,
give feedback

U: yes U: No U: Cancel

Utterance
contains no

projectID

S: Set new project
ID

S: Whats the
projectID

U: Project IDU: ? U:Cancel

3x no response

3x no response

End: KM
registration

Figure 0-8: Dialogue flow diagram for the KM registration dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

98

Request D i rec t ion

U: Asks d i rect ion

Dest inat ion
suppl ied?

S: So you want
direct ions f rom
?star t to ?dest

U: Yes U: NoU: ?

S: Send Di r . Req.
S M S m e s s a g e

No response
3x

END Reques t
Direct ion

S: Do you want
di rect ions?

U: YesU: No U: ?

S: to ?Dest ?

U: YesU: NoU: ?

Start point
suppl ied?

S: SET (?star t=current
locat ion)

Req Star tpo in t

Req. Dest inat ion

Figure 0-9: Dialogue flow diagram for the direction request main dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

99

Req. Destination

S: Ask Destination

U: Supplies
Destination

If destination is
a known dest.

END Req.
Destination

S: ?Dest =
supplied

destination

S: Location
unknown

U: CancelU: ?

S: Cancel request

No response
3x

Figure 0-10: Dialogue flow diagram for the request destination sub dialogue of the request directions dialogue

Req Startpoint

Similar to Req. Destination

Figure 0-11: The dialogue flow diagram for the request start point sub dialogue is similar to that of the request
destination sub dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

100

Traffic Information

U: Asks Traffic
Information

Yes-no
Question

Direction
Question

Existance of
Traffic Jam inquiry

Request Direction

End Traffic
Information

The user wants the
shortest path to a

destination taking into
account traffic jams.

Inquiry of all
traffic jams

Jam inquiry

Utterances like: "is
there a jam on the

A2?"

Inquiry of jams
between 2
locations

jam inquiry 2
locations

Figure 0-12: Dialogue flow diagram for the request traffic information dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

101

Jam inquiry

S: Do you want all
information

End existance of
Traff ic Jam inquiry

S: Retrieving
information,
please wait

S: reads the traff ic
information

S: send a traff ic information
request to BO

Information
received from

B O

S: There was an error
getting traffic
information

U: How long was
the jam at street

x?
U: AgainU: OK

U: No response >
z sec

S: Wait for users
response

U: Was there a
jam at street x?

End existance of
Traff ic Jam inquiry

U: Yes
U: NoU: ?

3x No
response

S: Then what
do you want?

U: I want to know
if there is a jam at

street x
U: Cancel U: ?

U: I want to know
if there ia a traffic

jam between x
and y

S: There is no jam
on street x

S: x kmstreet x is free
S: There is a

traffic jam of y km
on street x

Existance of
Traff ic Jam inquiry

U: I want to know
if there is a jam on

the way to x

Jam inquiry 2
locations

Figure 0-13: Dialogue flow diagram for the traffic jam sub dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

102

Existance of
Traff ic Jam inquiry

S: Extract
s t reetname f rom

ut terance

S: Do you want to
know i f there is a

traff ic jam on
?st reet?

End exis tance of
Traff ic Jam inquiry

S: Retr iev ing
informat ion,
p lease wai t

S: "There is a jam of
x km on st reet y"

S: send a traf f ic informat ion
request to BO

Informat ion
received f rom

B O

S: There was an error
gett ing traff ic
informat ion

U: How long?U: Again U: OK
U: No response >

z sec

S: Wai t for users
response

U: Where?

S: x km S: s t reet yEnd exis tance of
Traff ic Jam inquiry

U: YesU: NoU: ?

3x No
response

Figure 0-14: Dialogue flow diagram for existence of traffic jam sub dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

103

jam inquiry 2
locations

Source is given

S: do you want to
know the jams

between x and y

S: Do you want to
know the jams on

the route to y

Source is current location

U:? U: Yes U: No

3x no response

end: jam inquiry 2
locations

U:? U: YesU: No

S: Retrieving
information,
please wait

Information
received from

B O

S: reads the traff ic
information

U: How long was
the jam at street

x?
U: AgainU: OK U: No response >

z sec

S: Wait for users
response

U: Was there a
jam at street x?

jam inquiry 2
locations

S: There is no jam
on street x

S: x kmstreet x is free
S: There is a

traffic jam of y km
on street x

S: Then what do
you want

end: jam inquiry 2
locations

Figure 0-15: Dialogue flow diagram for traffic information on a route sub dialogue

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

104

A8: Paper

