SWAMP

Speech interfacing in the Wir eless Automotive M essaging Pilot

(Master’s Thesis of Chen-Ke Yang)

{,;;slr".

GEMIG TU Delft

Information Technology Delft University of Technology

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Graduation Committee:

Dr. drs. L.JM. Rothkrantz

Prof. dr.ir. E.JH. Kerckhoffs
ing. R. van Egmond (CMG)

ir. E. M. Visser (CMG)

Prof. dr. H.Koppelaar (chairman)

Y ang, Chen-Ke (chen.yang@cmg.nl or ¢.k.yang@twi.tudelft.nl)

Master’s Thesis, June 2001
“SWAMP:
Speech interfacing in the Wireless Automotive Messaging Pilot”

Dl ft University of Technology

Faculty of Information Technology and Systems
Knowledge Based Group

Zuidplantsoen 4, 2628 BZ Ddlft, the Netherlands

CMG Trade Transport & Industry BV

Division Technica Software Engineering (RTSE1)
Kralingseweg 241-249

3062 CE Rotterdam

Keywords: Artificial intelligence, belief desire intention model, context free grammar,
dial ogue management, dial ogue flow, speech interfacing.

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Abstract

Speech technology is rapidly developing and has improved a lot over the last few years.
Nevertheless, speech-enabled applications have not yet become mainstream software.
Furthermore, there isa lack of proven design methods and methodologies specifically concerning
speech applications. So far the application of speech technology has only achieved limited
success.

Thisthesis describes a project done at CMG Trade Transport & Industry. Itiscalled
SWAMP and is an example of the application of speech technology in human-computer
interaction. The purpose of the project was to build a speech user interface on top of an exigting
application with a graphical user interface.

The reasoning model behind the speech interface is based on the Belief Desire Intention
(BDI) model for rational agents. Other important tools that were used to build the speech user
interface are the Microsoft Speech API and CLIPS,

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Table of Contents

1 INTRODUCTION. . aan 7
1.1 BACKGROUND ...ttt ettt e ettt e e e e e et et s e e e s e e s e b b s e eesseeabba e eessessbbaansaeaaaes 7
1.2 PROBLEM DESCRIPTION ..uutiiiiiittttiitisiitestssisessssesssssasssessssessssssseesssessssneesssessssinsseesaes 7
1.3 (D] AV A= =YY =TI LSRR 8
1.4 SWVAIMP .ttt ettt ettt et ee st s e s e e e s s s st e e s s e s s s s s e s e e s s s s e s s e s e s e e s s s e e s s seesnnnnnnnnrnnnnnnnnnnnns 8
1.5 LAY OUT OF THE THESIS i iiiiitttttii e i e e e e ettt s e e e e s e eatb s s e s e s ses bbb s eesssessbbaseesssessbbaaneeaaaes 9

2 DESCRIPTION OF THE ORIGINAL SYSTEM ...coooiiiiieeeeeee, 10
2.1 ARCHITECTURE OF THEWAM PILOT oiiiiieeeeeeeeeeeeeeeeeeeeee 10

211 ThEeWAM ClIENt ... 10
2.1.2 The WAM Back OffiCe......coooeiiieeeeeeeeee e, 11
2.2 TN =0l -y [N = T AT 11
2.3 SERVICES OF THE WAIM CLIENT cetttttttitiiiietieeeeeeeeeeeeeeeeeeeeeesesessessssssssssessesssssssssesessesree 12

3 SWAMPSERVICES ... 14

3.1 ELABORATION OF NEW SERVICES....ccciiiiiieeeeeeeeeeeeeeeeeeeeee e, 14
311 REQUESE QIMECLION ...t 14
312 SOCEA WAINING -ttt ettt ettt ettt ettt ettt n e et 15
313 Request traffic informMation............coceeviiiiiiiiee s 15
314 Request important corporate informationccoeeerenieneenee e 16

3.2 SUITABILITY OF A SPEECH INTERFACE FOR EACH SERVICE ..cevvvvvvrererreeereeeeeeeeeeereereeeeeeees 18

4 THE SWAMPAPPLICATIONooooii 20

4.1 D15 e N T 20
411 OBJECLIVES. ...ttt ettt b et sb e b e sb e e sbe b 20
412 APPIOBCIES. ...ttt 21
4.1.3 Elaboration of choSen approach..............coveiiiiiiiiiii e 24

4.2 IMPLEMENTATION «..iiietttteeeeeteeett s s e e et eeeabb s eesseessba s eesssessbbaa s eeessessbbaa s eessseesbaaanses 27
421 IMplementation dECISIONS.........cocuiriiiiieie e 27
422 OVEIVIBW ...ttt sasssssssssssssssssssssssssssnnsnnnnnns 28
4.2.3 IMPIEMENLALi ON SErALEOY.veeveerteerieerteeie ettt 29
4.2.4 IMPIEMENEALi ON FESUITS. ...t 30

5 THESPEECH INTERFACE.. ... 32

51 S o S @ = IV = TR 32
511 OVEINVIEW OF SAPIS. ... s s ssssssssssssssnnes 33
512 SAPIS USAGE ...ttt 34

52 THE ASR COMPONENT ..cetttttitiieiiittttieseeesseestbtssesssesatba s eesssessbbaseesssesssbaaseeesserssses 34
521 F NS R 6 Y= QY 1= 34
522 The SWAMP GramIMaroooeeeeeeeeeeeeeeeeeeeeeeeeeeee e 36
523 Grammar NANAIINGcooeeii e 39

53 THE DIALOGUE MANAGER ...ttt nnnan 40

54 THE TTS COMPONENT ...cttttttiteeeiiittttisseeessesstat s e eessesatba s eesssessbbasesassesssbaassseesserssses 41

6 THEDIALOGUE MANAGER ... 44
6.1 DIALOGUE DESIGN ..evtvtuuiiiiiiiettttiieeesietsssssseesssesssssassessssesssaseesssessssseesserssss 44

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

6.1.1 DeSigN aPPrOaCHcueiiiiiii e 44
6.1.2 Dial OgQUE repreSENtatiON........eeveeeieieeeieie ettt r e 46
6.1.3 Error NaNdIiNg.........ooieiiiiee e 47

6.2 IMPLEMENTATION OVERVIEW 1.utttttttteesisutiteereessssssssssessessssssssssessssssssssssssessssssnnsssssenes 48
6.3 LI TS O o = = 49
6.3.1 Interaction with themain application............ccceeveiiiiiii i 49
6.3.2 Sensing recognition eventS from SAPToiiiiiie e 50
6.3.3 The tranglating fUNCLIONoocuiiiiiie e 52
6.34 The actuating fFUNCLIONoiiiiieie e 53

(ST N I = =5 PP PPPPPPPPPPPPPPRt 55
6.4.1 The reasoning MOOE]coiiiiiiiie e 55
6.4.2 TNE CLIPSENGINE.......ciitiiitieitie ittt sttt sttt st sb e b b sreesree e 56
6.4.3 KNow edge repreSantation.coveeeeeieeieeie e 59
6.4.4 Heuristicsfor the trandation from dialogue flow diagramto CLIPSrules........... 60

A N = | SR 63
7.1 TEST PARAMETERS. ... uuuuuuuuuuunnnunannn 63
7.2 NUMBER OF TEST-SUBJIECTS ...t iuttttttteeeesiiustseeessesssssssssssessssssssssssesssssssssssssesssssssnnnes 64
7.3 TEST SCENARIOS ... uuuuuuuuuuuununnnn i nnnannnnnnnnnnnnnnnannn 65
7.4 RESULTSAND DISCUSSIONcciiieeeeeeeeeeeee e 66
74.1 RECOGNITION FALE ..ot e 67
7.4.2 TIMETO COMPIELION ... e 68
7.4.3 S U000\ = (=R 69
7.4.4 (@101 =S| £SO 70

8 CONCLUSIONSAND RECOMMENDATIONS ...ttt 71
8.1 CONCLUSIONS DRAWN FROM THISWORK c11eeetiutttiretseeesssssirnesesesssssssseessassssnsssssneesasens 71
8.2 REMAINING WORK AND POSSIBLE IMPROVEMENTS.....uuutttiiieeeeiiiiiiseesaeessssnssnessassssnnnnes 72
O REFERENCES.co oottt ettt e e et e e e e e e s e e e e e e e e e e sabaaeeeeeeeeannnees 74
9.1 BOOKS. .o 74
9.2 PAPERS/ ARTICLES REPORTS . uttteeiiteeeeiitteeeeiitteeesiteeessassesesssssesesassesessassesessnssesesssens 75
9.3 NI R 76
LIST OF TABLESAND FIGUREooeeoieeeeeee ettt 77
TABLE OF ABBREVIATIONS......oo oottt ettt e e e e e eatasee e e e e e s saaareeeeaeseennnees 79
F N AN B = SO 80
AL HARDWARE SPECIFICATIONS ..ttttttteeisiauttrteessessssssssssesssesssassssssssssssssssssssssessessssnnssssseesessns 80
A2: EVALUATION RESULTS OF SPEECH SOFTWARE ...uuvtttretteesiiiissiinreeeessssnsssseessssssssssssssesssssns 81
A3: GRAMMAR RULES FOR KIM REGISTRATION ..citeitiittitteteeeesssisstieresaesesssssssnessasssssssssnessasens 86
A4: SAPI5 sYSTEM REQUIREMENTS AND INSTALLATION NOTES ..vvvvetreeeeiiirrreneesesesssnsrnnessaseens 87
AL CLASSHIERARCHY ... 89
AB. SOFTWARE ... 89
Devel OPMENE SOftWAIE.c.veeteeieet ettt be b b nneenneas 89
SOftWAre fOr WANAOWS CE ..ottt ear e e e e e sarr e e e e e e enarareeeeeeas 90
MiSCEHANEOUS SOfWAI€...cceeeeei ittt e e e e e e e bbb e e e e e e e ennbraeeeeeeeean 920

AT DIALOGUE FLOW DIAGRAMS....tttttieeiiiiuttteettaesssaasstssesssesssssssssssesassssissssssssssessssnnsmssessesens 91
ABIPAPER ... 104

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Preface

This master thesisiswritten as part of my studies at the faculty of ITS at the Delft University of
Technology. It coversthe work | did on building a prototype speech user interface in the Wireless
Automotive Messaging project (WAM) at CMG Trade, Transport & Industry in Rotterdam. My
academic supervisor is Drs. Dr. L.JM. Rothkrantz, Faculty of Information Technologies and
Systems, Delft University of Technology. | thank him for his support during the project. My
supervisor at CMG is Robert van Egmond and my advisors are Hans de Man and Eric Visser (dso
from CMG).

First | want to thank CMG for allowing me to work on this magnificent project and letting
me free to decide and unleash my creativity upon the project. | am aso very grateful to Robert,
for his support, feedback and interest in my work. I'd aso like to thank Eric for his advice and
Hans for taking care of all other details so that | could concentrate on my work. | aso owealot to
my friend Stephen. Our conversations during the rides to work have gresatly influenced thisthesis.
Finally a big wave to all fellow-students and colleagues at CMG for putting up with me during the
past twelve months.

Persondlly | think speech interfacing will become more important in the future and will
eventually be a common human-machineinterfacing technique. But the time of the triumph of
speech interfacing has not arrived yet, but | hope my work and experiences with this project will
contribute to draw thisday alittle closer.

Chen-Ke Yang,
Rotterdam, may 2001

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

1 Introduction

1.1 Background

Speech isthe most common mode of communication between people. Although speech
communication is not a perfect process (misunderstandings, misinterpretations, etc. occur), we are
able to understand each other with a very high success rate. Research has shown that the use of
speech enhances the quality of communication between humans, asreflected in shorter problem
solving times and general user satisfaction [Chapanis 1981]. Furthermore, speaking to humans
subjectively seemsto be arelatively effortless task [Nusbaum 1995]. The benefits mentioned
above are some reasons that have moved researchers to study speech interaction systems between
humans and computers. A quality target commonly used by many speech researchers and
engineersisHAL, the talking computer in “2001: A Space Odyssey” by Arthur C. Clarke e.g.
[Page 1998]. Despite many efforts, speech interfaces have only been successfully applied in a
number of specific situations. Generally, it can be concluded that speech interfaces are most
successful when applied in situation where:

1. Other interfaces areinappropriate e.g. using a keyboard while driving a car, for RS

patients.
2. Theuse of speech enables faster task completion than other modes of interaction.

In September 1999 CMG Trade, Trangport & Industry (TTI) started the Wireless Automotive
Messaging project (WAM-Pilat). Its purpose was to devel op new wireless services in the field of
traffic and transport and thus explore new business opportunitiesin thisfield. To boost the
interest of potential clientsit was also necessary that these new services could be demonstrated
during meetings, conventions etc. The WAM pilot is an application that delivers services for
highly mobile clients. Because the clients are mobile, communication is based on wireless
communication infrastructure and techniques. The infrastructure used isthe GSM network and the
technique applied is communication with SM'S messages. The current version of the WAM-Pilot
isused for demonstration purposes. It has already attracted theinterest of potential customers.
Despite its success, it appearsto have one flaw: the user interface is not suitable.

CMG wants to know what the possibilities of speech technology areand in particular if a speech
interface is better suited for the WAM pilot.

1.2 Problem description

The WAM-Pilot consigts of an application that is based on the Client-Server model. The server is
stationary whilethe client travel s with the user. One of the main problems with the WAM-pilot is
that the client (an HP Jornada handheld computer) has only two methods for interaction with the
user. The user can enter input by:

- Pressing keys on the relatively small keyboard of the HP Jornada.

- Using the GUI of Windows CE on therelatively small display of the HP Jornada.

Obvioudly, these methods of interacting with the system are not practical for acar driver. Not to
mention a danger for the general traffic safety, since the driver must divide his attention between
using the interface of the system and driving. Therefore, a more appropriate method for
interaction isneeded. A speech interface seems to be a likely candidate. The focus of the WAM-
Pilot isprimarily on car drivers. The goal isto develop as much relevant and interesting new
services for thisgroup as possible. Currently there are only four services available (see section
2.3) and thisis considered astoo few.

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Summarised the following problems exist.
1. Problem : Theexisting user interfaceis not suited.

Wish : Integration of a speech interface in the current system.
2. Problem :Theamount of services availableistoo small.

Wish : Develop new relevant and interesting services.

1.3 Deliverables

The services offered by the WAM-pilot must be analysed and the suitability of a speech interface
must be studied. If appropriate, a prototype of the speech interface suitable for demongtration
must be designed and implemented. Also, new services must be implemented and added to the
repertoire of services already available to the WAM-pilot. These new services obviousy haveto
be useful, interesting and compelling to customers. Apart from thisthesis, four other documents
have been written during the project. First apreliminary literature survey, where the state of the
art in speech and other relevant technologies is analysed. Second, a design document containing
the design of the application and a special grammar specification document containing the design
specifics of the grammar and dial ogue flow were made. At last an implementation document was
created, describing the final result.

14 SWAMP

Thisthesis describes the SWAMP" project, which is an extension of the WAM-Pilot project. The
SWAMP project contains an application called the SWAMP client. In summary, the SWAMP
client isbasically nothing different from the WAM client, except that it has a speech interface
built on top of it and that it contains a few newly added services. With the addition of a speech
interface, the user interface of the SWAMP application becomes multimodal; the user can access
the services using both the GUI (asin the traditiona way) as well as speech (the new way).
Speech interaction between the user and the SWAMP application is based on dia ogues.
Generally, the user starts a speech interaction by indicating (via speech) what his desires are. The
SWAMP application then leads the user through a dialogue in which it triesto retrieve
information regarding these desires. If eventually all the necessary information is collected, the
application takes the appropriate actions to realise the user’ s desires. To successfully manage
dialogues with a user, the SWAMP application applies Artificial Intelligence (Al) techniques
[Boullart 1992] to achieve some kind of reasoning. Although the SWAMP application isa client
server application consisting of a SWAMP client and a SWAMP back office, thisthesis does not
describe the SWAMP back office extensively. Thereason isthat the SWAMP back office does
not differ from the original WAM back office. A more detailed description of the WAM back
officeis given in previous WAM documentation e.g. [Achterhof 2000], [van Egmond 1999] and
[van Breda 1999]. The software that isto be written will primarily be used for demonstrational
purposes. Therefore, some obvious requirements have been left out of the scope of the project.
The most important of which is background noise. Furthermore issues concerning the security of
speech interaction have a so been left out.

* SWAMP is an acronym for Speech Interfacing in the Wireless Automotive Messaging Pilot

8

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

15 Layout of thethess

Thisthesisis built up as follows:

In chapter 2, an overview of the original WAM pilot is given, presenting a brief discussion of the
hardware components of both the WAM client and the back office. In addition the communication
and information flow is described. Furthermore the services available in the WAM pilot are
anaysed.

In chapter 3, the services of the WAM pilot are reviewed and their suitability for speech
interfacing is determined. Also additional new services are discussed and subjected to the speech
interfacing suitability determination test.

Chapter 4 describes the design and implementation of the SWAMP client in general, giving an
overview of the architecture of SWAMP, design and implementation decisions and
implementation strategy.

Chapter 5 elaborates on the speech interface. It focuses on the essential components of the speech
interface (TTS, ASR and dia ogue manager) and how they areimplemented. Furthermore the
communication architecture and mechanisms between the components are presented and
discussed.

Chapter 6 discusses the dial ogue manager component in greater detail. The focusis on the
reasoning model used (BDI) and the Al tools applied (CLIPS) to implement this model.

Chapter 7 describes the usability tests that were conducted near the end of the project.
Furthermore a discussion of the resultsis presented. The thesis ends with conclusions from this
work and recommendations for improvement and further study.

The last appendix of thisreport contains a paper about knowledge-based speech interfacing in the
SWAMP project. It isan extensive summary of thisreport.

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

2 Description of theoriginal system

The WAM pilot is an application that delivers services for mobile users (clients). Because the
clients are mobile, communication is based on a wireless communication infrastructure and
technique. The infrastructure used isthe GSM network and the technique applied is
communication with SMS messages. This Chapter describes the original WAM client. It includes
an overview of the existing technology, the hardware architecture of the WAM pilot. Furthermore
a description of the information flow during communication and the services available in the
WAM pilot are described.

2.1 Architecture of the WAM pilot

The WAM-Pilot consigts of an application that is based on the Client-Server model. The server is
stationary whilethe client travel s with the user. Short Messaging Service (SMS) is used for the
communication between the server and its clients. Both server and clients have hardware
available to send and receive SMS messages. Although communication with SMS messages isnot
as fast as other means of wireess communication such as (voice) GSM or GPRS, it isvery
reliable. SMS messages are guaranteed to arrive, but it usually takes afew seconds. In the
following sections the architecture and hardware of the client and server are discussed further. A
specification of the used hardware can be found in appendix Al.

211 TheWAM Client

The client isan HP Jornada handheld computer (Figure 2.1-1) with the Windows CE 2.11
operating system. Each client is connected to a GPS receiver on the first serial port' (COM 1) and
to the Motor Management System (MMS) of the car on the second serial port (COM 2). The GPS
receiver enables the clientsto retrieve itslocation anywhere on the earth, while the motor
management system supplies the clients with current car status information such as fuel usage,
speed, oil pressure, air bags status etc. In addition, a Nokia datacard isinstalled in the clients
PCMCIA dot to communicate with the Server. The communication is established by means of
SMS messages, which the Nokia datacard is able to send and receive. Figure 2.1-2 gives an
overview of the WAM-PFilot client.

Figure 2.1-1: The HP Jornada handheld computer

* All serial ports on the HP Jornada are compatible with the R$232 standard

10

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

GPS Satellite

l
@ GPS Receiver

b Ceewen)

Nokia Phone HP Jornada ggEeel]l] il
Card Motor Management System

Figure 2.1-2: Overview of the WAM-Client

212 TheWAM Back Office

Figure 2.1-3 gives a sketch of the current Server system. The server of the WAM-Pilot isa
Windows NT workstation called the WAM Back Office (WAMBO). The WAMBO is connected
to a Microsoft Access database, where al received messages and other relevant information of the
WAM clients are kept. The WAMBO communi cates with clients using a Nokia mobile phone
(model 6110) which is connected to the serial port of the workstation using a Nokia data cable.
The software of the WAMBO intercepts incoming SM S messages from the mobile phone for
further processing. Processing an SM'S message means parsing the message and interpreting the
resultsto take the appropriate actions. For instance, the GPS co-ordinates of a client can be
extracted from an SM'S message, and used to show its location on amap. The WAMBO dso
contains the software (see appendix A6) to send and receive SM'S messages to and from the
WAM clients.

Figure 2.1-3:Overview of the WAM Back Office

2.2 Information flow

When the user wantsto use a certain service offered by the WAM application, he clicks on the
appropriate button on the graphical user interface of the WAM client. The WAM client then
congtructs an SM S message according to a predetermined format containing the users’ request
and other relevant information and sendsit to the server (through the GSM network). Soon

11

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

afterwards, the back office receives the message and processes the request. Figure 2.2-1 illustrates
the typical information flow from the client to the server. The information flow of the response
from the server is similar and will not be discussed further.

User Handheld Phone GSM GSM WAM Back
PC Card Network Phone Office

User requests a WAM client Nokia Phone GSM Phone Back Office
service application card sends the receives the interprets the
processes the SMS message SMS message message and
request and to the GSM sends an SMS

generates an SMS Phone attached reply back

message to the Back
Office

Figure 2.2-1: Typical information flow from client to server

2.3 Servicesof the WAM Client

In this section a brief description of the services of the WAM pilot is given. For athorough
discussion of the services see discussion in previous reports e.g. [Achterhof 2000].

Table 1: Services of the WAM pilot

Name Description

Login Before the user can use the services in the WAM-pilot, he must
identify himself by supplying hisname and the car ID. Furthermore
the back office telephone number and trip type are needed (the
Project ID must be supplied if it isabusinesstrip). The supplied
information is used to identify the client to the back office.

SOS call If something goes wrong during atrip e.g. if the user doesn’t feel
well, atraffic accident has occurred etc, the SOS call is activated.
This service sends information to the back office, where it is decided
what steps will be taken. The SOS service can either be user initiated
(user doesn’t feel well) or system initiated (airbagsinflated).
ANWB Call Thisserviceis used to call the “ Algemene Nederlandse Widrijders
Bond” (ANWB) to fix the car if, for instance, the car has broken
down on the highway. When the user presses the ANWB button, an
SM'S message containing his GPS co-ordinates and rel evant
information is sent to the back office. At reception of an ANWB
request message the back office automatically notifies the ANWB.

12

Project: Speech Interfac
Document: Fina Thesis

ing in the WAM-Pilot

KM registration

At the beginning of atrip and whenever the user changes from trip
type during atrip, a special SM'S message containing kilometre
count information is sent to the back office. Thisallows the back
office to keep track of the kilometres driven by the user. Moreover,
the number of kilometres driven on businesstripsis attributed to
individual projects. During artrip, the user can indicate a change of
trip type (from business to private or vice versa). All the kilometres
driven from that point on are attributed to the new trip type.

Vehicletracking

The position of a specific car can be requested by the WAMBO.
Upon reception of a position request SMSthe client sendsan SMS
reply, which containsits GPS position. This service needs no user
interaction thus needing no speech enabling.

13

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

3 SWAMP services

This chapter gives an overview of the services in the SWAMP application. The original WAM
application already contained some services (described in chapter 2). Nevertheless, the number of
servicesis considered as too few, because more services are needed to attract the attention of
more and a broader range of customers. During the SWAMP project a number of new potentially
interesting services have been devised. In the following sections the new services are presented.
The last section contains an analysis of the suitability of a speech interface for both old and new
services.

3.1 Elaboration of new services

This section describes the new services that have been added to the WAM-Pilot. Similar to the old
services, the new ones use SM'S messages for communication with the back office. Conseguently,
the implemented methods to construct, send and receive SM S messages can be reused by the new
services. These methods are described in previous reports (e.g. [Achterhof 2000], ['Yang2 2001])
and will not be discussed here. The SM S messages sent to the back office by each service have a
predetermined format. Thisformat is presented in the discussion. Because of the limited time
available to finish the project, only the client part of the servicesisimplemented. In other words
the back office processing of the new services has not been implemented. If SMS messages of the
new format are received, they are just ignored.

Table 2: Overview of the new servicesin the SWAMP application

Service Description

Request direction When the user wants to know the directionsto a
specific location, the WAM-client retrieves aroute
(taking into account local traffic information) and
presentsit to the user.

Speed warning When the user travels at a speed of more than x
kilometres per hour, the WAM-client retrieves the
local speed limit. If the current speed surpasses the
local speed limit awarning is given.

Request traffic information During driving the user might require traffic
congestion information to aid him to plan aroute to
his destination. This service provides him with the
needed information.

Request important corporate While driving the user might require information e.g.
information appointments, stock information.

311 Reques direction

Name Direction Request Dialog

Files: DirectionReqDlg.cpp, DirectionRegDlg.h

Description: Dialog containing controlsto enable the user to graphically request
directions.

Exports: None

Uses: SMSAPI, GPS AP

Input: destination, source (optional)

Qutput: A route from source to destination

14

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

To support therequest direction service, the original WAM client is expanded with a Direction
request dialog and anew SMS message type. The direction request dialog contains two selection
lists from which the user can choose the source and the destination location. The default value for
the sourceisthe current location. After the user clicks the OK button, the GPS co-ordinates of the
source and destination are retrieved (using the GPS receiver and/or the location-GPS co-ordinates
list). Then an SMS (in therequest direction SMS message format) is sent to the back office
containing the request. The new SM S message type contains, predetermined, comma separated
fields (see Table 3).

Table 3: Request direction SMS message format

Field number Field contents

Type

Driver ID

Ca ID

Source GPS Latitude
Source GPS Longitude
Destination GPS L atitude
Destination GPS Longitude
Date and time

Comments

X INOOTBA|W|IN|F O

3.1.2 Speed warning

Whenever the driving speed exceeds a certain threshold value, a message is sent to the back office
requesting the speed limit of the current location. If the current speed is higher than the speed
[imit awarning is given. This service needs no additiona GUI components.

Table 4: The speed warning SMS message format

Field number Field contents
Type

Driver ID

Ca ID

GPS Latitude
GPS Longitude
Comments

Q| WINF|O

3.1.3 Request trafficinformation

Name Request traffic infor mation Dialog

Files: TrafficlnfoDIg.cpp, TrafficinfoDIlg.h

Description: Dialog containing control s to enable the user to graphically
request traffic information.

Exports: None

Uses: SMSAPI, GPS AP

Input: Street name or location

Output: Traffic information

For this service anew button is added to the GUI of the client. When this button is clicked a
dialog containing controls to enable the user to graphicaly request traffic information is shown.

15

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

After the user hasfilled in the necessary information, an SM S message conforming to the request
traffic information SM'S message format (Table 5) is sent to the back office.

Table 5: The request traffic information SMS message format

Field number

Field contents

Type

Information type (local or global)

Driver ID

Car ID

GPS L atitude

GPS Longitude

OO WINF|IO

Comments

3.1.4 Request important corporateinformation

In order to host the request important corporate information service, the WAM client is expanded
with arequest corporate information dialog. In thisdialog the user can chose between four
buttons: appointments, stock, telephone number, and supply.

Name
Files
Description

Exports
Uses
Input
Output

Request Cor porate I nfor mation Dialog
CorporatelnfoDIg.cpp, CorporatelnfoDlg.h

Dialog containing controls to enable the user to graphically
regquest corporate information.

None

SMSAPI, GPS AP

Type of information needed

Requested information

After the user presses the appointment button the request appointments dialog is shown. This
dialog contains GUI controls allowing the user to indicate in which time interval the appointments

must bein.

Name
Files
Description

Exports
Uses
Input
Output

request appointments dialog

AppointmentRegDIg.cpp, AppointmentRegDlg.h

Thisdialog contains GUI controls allowing the user to indicate in
which timeinterval the appointments must be.

None

SMSAPI, GPS AP

Timeinterval

Schedul ed appointments in the specified time interval

If the user presses the request telephone number button the request telephone number dialogis
shown. This dialog contains GUI controls allowing the user to indicate whose tel ephone number

he wantsto retrieve.

Name
Files
Description

Exports

request telephone number dialog

TelephoneRegDlg.cpp, TelephoneRegDlg.h

Thisdialog contains GUI controls alowing the user to indicate
whose telephone number he wantsto request.

None

16

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Uses SMSAPI, GPS AP
Input Name
Output Telephone number corresponding to the name

Pushing the stock button invokes a dialog in which the user can sdlect the company in whose
stocks heisinterested.

Name request stock information dialog

Files StockRegDIg.cpp, StockRegDIg.h

Description Dialog in which the user can choose the company in whose
stocks heisinterested

Exports None

Uses SMSAPI, GPS AP

Input Company name

Output Stock information of the company

Pushing the supply button invokes a dialog in which the user can query the amount of a certain
product in the supply-base of the company. This service isinteresting for users who order
products for their company, but lack the information on the amount of products to be bought
becauseit is only available at the last moment e.g. in Just In Time (JI'T) processes.

Name supply-base management dialog

Files SupplyDIg.cpp, SupplyDlg.h

Description Dialog in which the user can query the availability of a product in
the companies supply-base.

Exports None

Uses SMSAPI, GPS AP

Input Product

Output Supply information of the product

After therequired information is supplied, an SMSis sent to the back office containing the
request. The SM'S message contains, predefined, comma separated fields (see Table 6).

Table 6: The request corporate information SMS message format

Field number Field contents

Type

Information type (appointment, stock, telephone number)
Driver ID

Car ID

GPS Latitude

GPS Longitude

Target (a person or acompany, depending on the value of
information type)

Begin time (isonly valid if information type is appointment)
End time (isonly valid if information type is appointment)
Comments

OO R|WINIFO

O

17

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

3.2 Suitability of a speech interface for each service

Before starting to design and implement a speech interface, it should be established that speech
recognition isindeed an appropriate interface technology. Therefore an analysis should be doneto
determine which tasks of the application will benefit most from a speech interface and which will
be more effectively handled using other types of interfaces. Table 7 gives the results of this
andysis for the services (both old and new) of the SWAMP application. The second and the third
column indicate the suitability of a speech interface (SUI) and graphical user interface (GUI)
respectively (a“+” sign means more suitable and “-* means less suitabl€). From the results of the
analysisit has been concluded which services are suitable to be supported by a speech interface
and which are not. Services for which speech interface support will be implemented are indicated

with a“e” sign in the fifth column of Table 7.
Table 7: Services of the SWAMP project and their suitability for speech interfacing

General Ul control Ul control must be available both with Speech
and GUI. Speech isobviously more effective
during driving.
Login + ++ Logging in isusually done before the driver starts | o

driving. So thisisnot adriving situation. On the
other hand data (such as project codes) can be
very annoying to enter with a keyboard. In that
case speech may come in very handy.

SOS call ++ ++ Speech enabling thisserviceis essential, sincea | o
car accident can put adriver in apositionin
which he cannot reach the Pilot’ s keyboard (with
his hands).

ANWB Call + ++ The ANWB servicein the WAM-pilot sendsa .
message containing the location and type of
problem to an ANWB help service. Voice
enabling this service is not essential, but
appropriate.

KM registration + ++ When initialisng KM registration the same .
situation as with Login occurs. The actual KM
registration itself is an automatic process, the user
isnot aware of it. The user just has to supply

some parameters.

Vehicletracking - - ThisisaBO initialised command. The user is not
aware of this. So no speech assistance is needed
here.

Speed warning ++ - An audible speed warning has far more effect o

then a graphical onein drawing the driver's
attention that heis speeding.

Request directionst® | ++ | + A typical car driving question. Thusit shouldbe | e
supported by the interface. The responseisalso
best presented using speech.

tuxm after the service name indicates a new service

18

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Local traffic speed* | ++ - System alerts the driver about upcoming speed .
checks. The use of speech (sounds) isided in this
case.

Request Local ++ + Also atypical car driving question. o

traffic Information*
Request corporate ++ ++ Request for the latest updates or changes of the .
information * corporate/project status.

The measurement criteriafor the suitability of the speech interface are:

1. Estimated minimal time/effort required from the user

Each service requires some parameters to be present before the service can start. For the sake of
the measurement we define that a serviceis successfully accomplished when all parameters are
present (what happens afterwards is unimportant for the measurement). The measurement consists
of comparing the amount of GUI actions needed to successfully accomplish the service (amount
of mouse clicks, popup windows, button presses etc.) against the estimated amount of atomic
utterances needed to achieve the same. An atomic utterance is a speech utterance that contains
just one parameter (In practice, utterances containing more that one parameter are common). In
both cases, the best case scenario to accomplish thetask is used (no errors, no misunderstandings,
no false recognition etc.). The comparison is somewhat out of place, since SUI and GUI are quite
different modalities. Nevertheless, it is used because of the absence of absolute measurement
techniques.

2. Egtimated attention requir ement

An important issue to consider is that the attention required from the user to accomplish the
service during driving should not be too high, because this can influence the traffic safety. Here
also, there are no absol ute measurement techniques available. It is obvious that saying a name
requires far less attention than selecting the name from alist (especialy if itisalong list).
Furthermore, the attention requirement is also affected by the ergonomy of the GUI and/or the
recognition rate of the speech interface. So, just asin the previous measurement the result is based
on a (subjective) comparison between the GUI and the SUI. Table 8 shows the possible attention
factors and their attention needs; the small display and small keyboard of the HP Jornada have
been taken into account in the GUI actions.

Table 8: Actions factors and their attention needs

Action Attention need

Utterance Norma

Button click Norma

Key press High

Select from list High

Read one line from screen High (but output is permanent)
Speech output Normal (but output isvolatile)

19

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

4 The SWAMP application

This chapter gives an overview of the SWAMP design and implementation. The discussion on the
design includes the design decisions, requirements, overall architecture and components. The
implementation discussion describes important implementation decisions and the implementation

strategy.
4.1 Design

This section describes the design of SWAMP client. The discussion covers a genera overview of
the design process. For a detailed report on the design process and results (including UML
diagrams) see the SWAMP client design document [Yang2 2001].

411 Objectives

This section discusses the objectives of the speech interface. These objectives have been
accumulated from brainstorm sessions and mestings with colleagues. During the compilation of
thisligt, limited consideration has been given to technical possibilities and capabilities available
in the current hardware. Thereasons for this decision are the rapid advancements in the hardware
speed and capabilities and the varying requirements of available speech engines, ranging from
386 to Pentium 111 computers or from several kilobytes to several hundreds of megabytes disk
space. Thelist of objectivesis summarised in Table 9.

Table 9: The objectives of the SWAMP project

NR | Objectives

1 The speech interface must be integrated in the current WAM-Pilot application.

2 The speech interface must not affect the current functionality of the WAM-pilot
application.

3 Current services of the WAM-pilot must be accessi ble through the Speech interface
(where applicable).

4 The speech interface must be stable and demonstrable.

5 The interface mugt be English, intuitive and easy to use.

6 The interface must have real time performance. The time boundary is that the
delays should not be annoyingly long. (Unfortunately, no exact boundary could be
found for atime that can be considered as “annoyingly long”. So the acceptance
test of the application should determine this).

7 The speech interface should not require too much attention from the user. This
implies that an acceptabl e recognition and intelligibility rate should be
accomplished. A typical driver has no problems with dividing his attention between
driving and having a conversation with areal passenger. So, the fault must be
sought at the speech interface when problems do occur if thereal passenger is
substituted by a speech interface.

The interface must support undo/cancel/interrupt functions.

The interaction must be dialogue based, so the speech interface can ask for
clarification and/or confirmation if a user’s utteranceisnot or partialy understood.
10 | Theuser must have control over the user interface configuration.

11 | The application must work on a HP Jornada with the Window CE OS. At this
moment thereis no suitable speech devel opment software available for the CE OS,
so the speech interface will be simulated on an NT workstation as demonstration.

©|00

20

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

12 | Theinterface mus be speaker-independent (to eliminate the need for extensive
training).

13 | A simple mechanism must be implemented to modify and create new vocabulary.
14 | Minima use of screen area must leave space for other applications.

4.1.2 Approaches

A number of different approaches can be thought of to design the speech interface. This section
discusses two rather different approaches: The client-side recognition approach and the server-
side recognition approach. Asthe names suggest, the approaches are distinguished by the location
the speech input is processed.

4.1.2.1 Server-siderecognition

In the server side approach the speech recognition part of the system resides at the server.
Utterances from the user are directly transmitted via the telephone line to the server where they
are processed. Thereactions are also synthesised at the server and sent back viatelephonelines.
Figure 4.1-1 shows a graphical representation of this approach.

Added functionality

New WamBO Logic New Client Logic
Speech GSM Network)« .Speech
processing interface

A

¥

Original Client |
Logic

GSM Network)« »(Client GUI

(

Original WAM architecture

Figure 4.1-1: Server side recognition approach

4.1.2.2 Client-sde recognition

In this approach speech recognition and speech synthesis are performed at the client. Utterances
from the user are processed locally. Reactions are al so synthesised locally. As aresult, the
original communication architecture stays intact. This approach is graphicaly presented in Figure
4.1-2:

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Added functionality

Speech P Speech
processing | interface

4

Original WAM architecture

Y

GSM Network)« Original Client | »(Client GUI
Logic
New Client Logic

Figure 4.1-2: Client-side recognition approach

4.1.2.3 Comparison between approaches

Table 10 contains a comparison of the strong and/or weak points between the two approaches
(client-side and server-side) presented earlier. The score of each approach isindicated with
plusses (meaning strong) or minuses (meaning weak). Based on the results of the comparison it is
decided to choose the client-gde approach for this project. The comparison clearly indicates that
the client-side approach (the approach in which the speech recognition and synthesis components
of the system reside at the client) is the better solution at this moment. The potentially better
quality of speech recognition and synthesi sed speech does not weight up againg the added
complexity and lack of scalability. Asthe utterances from the user are processed locally and the
speech output is also synthesised locally in the client-side approach, the original communication
architecture can stay intact, leading to no further added compl exity.

Table 10: Comparison between the Client-side approach and the Server Sde approach

Subject Client-sde | Server-side | Comments
approach | approach
Complexity + - The server-side approach requires

changes in the WAM-BO aswel| asthe
WAM-client. Also anew
communication channel needsto be
developed to transmit voice data. The
client-side approach only requires
development on the client side, whilethe
existing communication architecture can

be used.
Licensngand | - + In the Client-side approach speech
maintenance recognition and speech synthesis have to
cost be handled in the client. Asaresult, the

maintenance and licensing costs are very
high. In the server-side approach the
speech softwareis only ingalled in the
WAM-BO, greatly reducing
maintenance and licensing costs.

22

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Scaability | + -

The Client-side approach does not
require additional resources and
processing power from the WAM-BO.
Therefore, it iseasier to add new usersto
the system. In fact, the new system isas
scalable asin the old situation. On the
other hand, if speech processing is done
at the server side (with speech
recognition and synthesis being
processor intensive tasks), the more
clients are connected, the more GSM
connections and processing power are
needed. Degrading scalability of the
system.

Additiona + -
resources

In the client-side approach, the clients
only require additional (software)
resources to perform speech recognition
and speech synthesis. In the server-side
approach, next to the original SMS
connection, a separate voice data
connection isneeded. It cannot be
predicted when the user might say
something. Therefore this approach
requires a constant GSM connection
with the Back Office. The Back Office
needs the resources to process voice data
and the WAM-Client needs resourcesto
send and receive voice data.

Integration + +

In the client-side approach, voice
commands are eventual ly transformed
into the same format as GUI commands.
Furthermore a response from the server
can be presented graphically (the old
way) aswell aswith speech.

In the Server-side approach, the voice
commands have a separate
communication channel with the WAM-
BO, thus speech interfaceis essentially
an independent interface.

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Quality - + When recognition isdone at the client,
the quality of the interface (recognition
rate, speech quality) depends greatly on
the hardware requirements (CPU power,
platform etc.) of the speech software of
the client. We can assume that the Back
Office is capable of running the most
sophisticated speech software, so
potentially the server-side approach can
supply better speech recognition quality
to the system than the Client-side
approach. In the server side approach the
quality of the voice transmission channel
plays the most crucial role.
Compatibility | + + As the communication architecture stays
the same in the client-side approach, the
system is till backward compatible. In
the server side approach the original
architecture isnot changed (only anew
communication channel has been
added), so the system should ill be
compatible with clients without speech
interface.

4.1.3 Elaboration of chosen approach

The speech interface according to the client-side approach consists of three main components.
The speech recognition engine, the text to speech engine and the dial ogue control. Because each
component differs considerably from the others, the components are separately designed and
separate design methods will be chosen for each component. Since the chosen approach does not
alter the WAM back office nor the communication architecture between the SWAMP client and
the back office, these topics are not covered further.

4.1.31 Data

The purpose of the speech interface is to support speech interaction between a user and the
main application. Theterm “main application” isused to refer to thelogic of the origind WAM
client, which is described in chapter 2.

First a definition of a typical user of the SWAMP client will be given. This definition isakey
consideration in many design decisions. At the start of the project, there was no clear definition of
the typical user. Thus, the following (convenient) user has been chosen to represent the typical
user:

Thetypical user of the system is an adult English speaking male'. Heis a skilled
driver and familiar with current computer and communication technol ogy.
Furthermore hetravels alot (privately and/or for the company he works for).

Figure 4.1-3: Definition of a typical user of the system

! Statistics show that the majority of car drivers is male

24

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Next an explicit state definition of SWAMP client needs to be defined. The State represents
what the speech interface knows about the world. Together with external inputs (e.g. user
utterances, motor information) this determines the behaviour of the speech interface.

Astheworld evolves and changes while the SWAMP client is active, this information needs to
evolve and be updated too. Since the state is very big and dynamic, artificial intelligence (Al)
techniques are used as a tool to represent and maintain this state.

The state of the SWAMP client consists of the following related information structures:

State SWAMP of
Driver: Driver
Annoyancel evel: {NORMAL, ANNOYED}
FeedbackMode: {normal, silent, verbose}
AlertLeve: {normal, alert}
Sessioninfo: Driver
DialoguePostion: {LoginDlg, MainDlg, SOSCallDlg,
ANWBCallDlg, KMRegDIg, DirRegDlg,
FilelnfoDlg, CorplnfoDlg}
Location: GPSCoordinates
CurrentAction: Char*
CurrentGoal: {LOGIN, MAIN, SOS, ANWB, KMREG,
DIRREQ, TRAFFICINFO, CORPINF}
LastSaid: char*
Retries: int
Timeout: int
End State;
Driver:: Name: char*
CarlD: char*
Projectl D: char*
TelefoonNr: char*
TripType: {private, business};
Name: char*;
NameAlias. Name-> UserID;
Nametable: NameAlias-st;
CarlD: char*;
CarlDTable: CarlD-s=t;
ProjectID : char*;
ProjectiDTable: Pr oj ectl D-set;
LocationName:: char*;
GPSCoordinates.: NB: char*
WL: char*;

Location = LocationName ->GPSCoordinates,
L ocationtable = GPSCoordinates-set;

Login:: driver: Driver
location: GPSCoor dinates

25

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

loginResult: char*;

SOSCall:: Location: GPSCoor dinates
SOSCallResult: char*;

ANWABCall:: Location: GPSCoor dinates
ANWBCallResult: char*;

KMReg:: newTriptype { private, business}
NewPr ojectl D: char*

Kmlevel: int
KM RegResult: char*;

DirReq:: sour cel ocation: GPSCoor dinates
destinationL ocation: GPSCoor dinates
Dir RegResult: char*;

Trafficlnfo: infoType: {local, global}

I nfoPar am: char*
L ocation: GPSCoor dinates
KM RegResult: char*;

Corpinfo: infoType: { Telephone, Appointment, stock}
I nfoPar am: char*
CorplnfoRes: char*;

4.1.3.2 Components

A system for speech interaction with auser consists of at |least three components. Thefirst oneis
a component to recognise the user’ s utterance and transform it into a format that can be processed
more easily. This component is called the Automatic Speech Recognition or ASR component and
it transforms the speech utterance into text. Then a component is needed to process thistext to
figure out what the user wanted to accomplish with the utterance. Thisis done in the dialogue
manager component. The did ogue manager al so takes the appropriate actions as a response to the
user’s utterance. Actions can be speech responses such as feedback or requests for clarifications,
these are sent in text format to the last and final component: the Text To Speech or TTS
component were speech is generated from the text to give response to the user. Figure 4.1-4 gives
agraphical overview of the components and their interconnection.

Speech Interface
x Speech
‘/ Recognitio
\ Dialogue Main
manager | application
Text To
Speech

Figure 4.1-4: Speech interface components

26

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

4.2 Implementation

Thediscussion in this section islimited to aligting of the most important implementation
decisions and an elaboration on the implementation strategy applied. Also an overview of the
result is presented. For athorough discussion see the SWAMP implementation document [Y ang3
2001].

421 Implementation decisions

In order to contain the complexity of the project some important implementation decisions have
been made. They are summarised below.

Table 11: Implementation decisions

Decison
Use Windows NT to builda | Initialy it was the intention to build the speech interface
prototype to run on Windows CE (see requirements). Due to

limitations in software' and hardware of the HP Jornada,
a prototype will be developed to run under Windows NT
first. Thisstep istaken as a safety precaution so that
thereis something to demonstrate at the end of the
project.

Use SAPI as middle-wareto | The Microsoft Speech Application Programming
implement speech resources | Interface version 5.0 (SAPI5) [SAPI] consigts of two
interfaces: the application-programming interface (API)
and the device driver interface (DDI). The SAPI 5.0 APl
dramatically reduces the code overhead required for an
application to access speech recognition and synthesis.
Furthermore, the application programming interface
delivers access to the speech resourcesin an
independent way, consequently the TTSor ASR
component can be replaced by other (better) components
without having to change a single line of the SWAMP
client’s code. The specific reasons for choosing SAPI5
are discussed in section 5.1

Use the CLIPS expert The CLIPS [CLIPS 2000] expert system tool is designed
system tool to facilitate the development of software to model
human knowledge or expertise. It has been designed for
full integration with other languages such asC. In the
SWAMP client, CLIPS will be used to help manage the
dialogue with the user. In particular, CLIPS will be
applied to do the knowledge processing part of the

dialogue manager.
Use C++ as programming The WAM client was written in C++ and both SAPI and
language CLIPS support it. So it isonly natural that the SWAMP

client, as an extension of the WAM client, isonly
implemented in C++. The devel opment environment is
Microsoft Visua C++ enterprise edition.

! Microsoft is very vague on COM and ActiveX support on WindowsCE 2.11 which is required for SAPI5
to work

27

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Rapid prototyping Whenever human factor issues are involved (which is
definitely the case in SWAMP) it adds an extra
dimension to the problem which is hard to capturein
static design models. It can already be anticipated that
unforeseen situationswill occur asthe result of
unexpected utterances of the user. To anticipate these
unexpected situations a strategy is chosen to develop an
early prototype and refine it through extensive iteration.

Leave client the same as The implementation strategy on the SWAMP client isto

much as possible leave the old structure and code of the WAM client
intact as much as possible, so that the old documentation
isdtill valid.

422 Overview

Figure 4.2-1 gives a graphical overview of how the speech interface isimplemented. All
components will be discussed in more detail in chapter 5.

swamp.xml" ASR engine || TTS engine |

SAPI 5

o [
vl —

Dialogue Manager

P CLII_:’S
swamp.clp engine i Main
- —p Application

Figure 4.2-1 Overview of SWAMP implementation

The ASR engine recognises utterances from the user while the TTS engine synthesi ses speech to
the user. SAPI 5 acts as a communication layer between the dial ogue manager and the speech
resources (ASR and TTS engine). The CLIPS engineis embedded in the dialogue manager. It can
be viewed as the knowl edge processing and management unit of the dialogue manager. The main
application isthe original WAM client modified in such away that it can communicate with the
dialogue manager.

Data can be written to and retrieved from external files:

swamp.xml Thisfile contains a definition of grammar rules of SWAMP. The ASR
engine loads this file to know which words or sentences to recognise.
swamp.clp Thisfile contains production rules (constructs). The CLIPS engine uses

these constructs to handl e dialogue with the user. Swamp.clp contains
references to rulesin the swamp.xml explaining the dotted line
between the files.
dbfiles Represents a set of database files:
- namelist
- project ID list
-car ID list
- location name to GPS co-ordinates mapping list

28

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

4.2.3 Implementation strategy

The implementation strategy applied in the SWAMP application differs from the way traditional
systems are implemented because human factor issues are involved. The strategy chosen isto
develop an early prototype and refine it through extensive iterations. First a proper speech support
framework isbuilt. Then the services are added one by one. In the end, the system asawholeis
tested again. Figure 4.2-2 gives an overview of the implementation strategy.

iteration point 1
Implement speech framework
iteratel

iteration point 2
For each Service do
iteration point 3
Dialogue analysis
Construct scenarios
Construct a corpus
Construct a grammar
Build facilitation in CLIPS
Implement interaction between GUI and Dial ogue manager
Test scenarios
iterate3
end for
Integral systemtest
iterate?

Figure 4.2-2: Overview of the implementation strategy

Table 12: Implementation steps

Implementation step | Description

Implement speech Thisstep indudes initialisation of external resources (SAPI and
framework CLIPS), implementation of the messaging facility between SUI
components and between the components of the dialogue
manager. In short, it realises all the necessary conditions to
support speech interfacing.

Dialogue analysis Since there are no existing spoken dia ogues available, additional
information must be extracted from the way the GUI is
implemented. In particular the navigation structure in the GUI and
the information needed to complete the service is of importance.
Flow diagrams depicting the possible paths through a dialogue are
used to model the dialogue flow.

Construct scenarios Compilealist of possible scenarios (dialogues) for the service.
The scenarios are used to construct a corpus (next step) and to test
the SUI in the testing phase.

Construct a corpus Based on the scenarios and dialogue flow, a corpus of about 15
(common) utterances for the serviceis constructed.

29

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Construct a grammar The goal in this step isto capture the corpus for the service into
some grammear rules. The obtained grammar rules are stored in the
“swamp.xml” file.

Build facilitation in Construct CLIPS rulesto implement the desired behaviour for the
CLIPS service. Thisincludes:

Rules that implement the actions to take if a grammar ruleis
recognised (interfacing rules).

Rules that implement actionsto lead the user to a successful
accomplishment of the service (hidden rules).

The CLIPS rules are gored in ” swamp.clp”.

Implement interaction | In this step the implementation of interaction between GUI and
between GUI and Dialogue manager to synchronise speech and GUI actionsis
Dial ogue manager implemented. The synchronisation is needed so that:

1. Theuser has some visual indication of what heis doing.

2. The content of the GUI is consistent with what is going on.

Test scenarios Test if the dialogue flow goes as planned. Scenarios can be tested
using speech emulation aswell asreal speech. With speech

emul ation the speech recogniser is disabled and utterances of the
user are entered through a keyboard. Emulation filters out
unwanted effects, such as background noise, so that only the pure
dialogueistested.

Integral system test Test the system asawhole and | et otherstry it. The purposeisto
test whether the speech interface is usable and indeed an
improvement on the graphical user interface.

424 Implementation results

Due to the limited time available for this project, not al implementation goals have been
achieved. Nevertheless aworking prototype of the described application has been successfully
implemented.

The architecture described in section 4.2.2 has been implemented entirely. SAPI5 enables the
SWAMP client to 1) recognise spoken speech according to a user defined grammar file and 2)
synthesise arbitrary text into speech. Furthermore the voice, speed and pitch of the synthesised
speech can be adjusted. The CLIPS engine has al so been successfully embedded. It is possible to
load CLIPS construct files, send messages to standard input of the CLIPS engine, and receive
messages from standard output and standard error. To have a better overview, the client codeis
split into five functional categories (Table 13). These categories differ in the functionsthey areto
fulfil and the changes necessary in the original WAM client code to achieve this. Since the
SWAMP client is an extension of the WAM client, a big part of the WAM clients source codeis
also used in the SWAMP client. Appendix A5 shows a comparison between the class hierarchy
diagrams of the SWAMP client and the WAM client (new classes, modified classes, name
changes etc.).

30

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

Table 13: Overview of the functional categories of the SWAMP client’s code

Category

Description

GUI code

This code contains the implementation of the graphical user
interface. The only changes made here, are dueto the new
services and the communication with the dial ogue manager.

Communication code

Provides the home for communication with the SWAMP back
office, GPS antenna and the Motor management system. This
codeis entirely the same asin the WAM pilot.

Recognition code

Thiscodeisresponsible for the initialisation, control, and
destruction of the speech resources. All the code of this category
iShew.

Grammar code

The grammar code defines the grammar of the SWAMP client’s
speech interface. The grammar code is written in the Microsoft
grammar schemaformat and residesin afile named
“grammar.xml”.

Dialogue
management code

The dialogue management code is divided into two parts. The
first part iswritten in CLIPS and residesin afile named
“swamp.clp” the second part iswritten in C++ and controls the
communication between the first part and therest of the
application.

The SWAMP architecture is the skeleton on which speech-enabled services can be implemented.
A speech-enabled service congists of a grammar defining the valid utterances, a dialogue flow
design specifying the possible dialogue paths, and an implementation of the designed dialogue
flows. The grammar of the following services have been designed and implemented: Login
(except back office telephone number), SOS call, ANWB call, KM regisration (see appendix

A3), request direction, and traffic information. The dial ogue flow for thelogin (except back office

telephone number), SOS call, ANWB call, KM registration, and request direction services have

been designed, implemented and tested. The dial ogue flow for the traffic information service has

been designed, but not implemented. Appendix A7 shows the dial ogue flow diagramsfor the
designed dialogues. Table 14 summarises the current development status of the speech-enabled

SErvices.

Table 14: Current development status of the services

Service Grammar Dialogue Dialogue implemented
designed and tested

Login® yes yes yes

SOS call yes yes yes

ANWB call yes yes yes

KM registration yes yes yes

Request direction yes yes yes

Traffic information yes yes no

Request corporate no no no
information

! Except back office telephone number

31

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

5 The speech interface

The purpose of the speech interface is to support speech interaction between a user and the main
application. The general assumption behind the speech interface isthat the user wants to
accomplish something with his utterances, in other words he has a certain goal in mind. The set of
all services the SWAMP application hasto offer however, isjust a subset of all the goals the user
can have. Goalsthat don’t correspond to a service are beyond the domain of the speech interface
and areignored. In other words, the speech interface is only applicablein alimited domain and
will not be able to replace a human conversational partner. Generally, a diaogue is started by the
user with an utterance in which he indicates what he wants to achieve: theinitial utterance. With
each initial utterance, the speech interface tries to find the corresponding service involved. It then
tries to accomplish the service by checking whether al the necessary information isavailable. If
thisisnot the case a dialogue is started to obtain the missing information from the user until the
task can be performed.

The speech interface is divided into a number of different pieces of software called components,
each of which will be discussed separately:

1 The speech recognition or ASR component:
Its function isto recognise the user’ s utterance and transform it into a format that
can be processed.

2 The dialogue management component:
Its function isto process the input from the speech recognition component to figure
out what the user wanted to accomplish and take the appropriate actions to realise
the user’ swishes.

3 The speech synthesisor TTS component:
Its function isto generate speech output to the user.

The following sections give a discussion of the speech components and how they work together to
accomplish the desired behaviour. But first a description of the speech software used is given.

51 Speech software

Early in the project it was clear that it isimpossible to build the TTS component and the ASR
component within the time avail able for the project. To simplify matters, it seemed best to use
TTSand ASR engine software from third party vendors. Today, there are various ASR, TTS
engines and devel opment tool s avail able to devel op speech-enabled applications. Several of these
engines and tools have been evaluated. A list athe evaluated software is summed up in appendix
A2 The evaluation criteria for the software of choice were:

Table 15: Evaluation criteria for the speech software

Criterion Comment

Ease of use It should not be overly complicated to use the software.
Hard/software requirements | This criterion became less important after the decision
was made to build a prototype under NT.

Recognition rate Thiscriterion isonly applicable to the ASR engine. The
evaluation of the recognition rate depends strongly on
the type of recogniser used (user dependent or user
independent), the evaluation environment (background
noise etc.) and the voice of the user (the performance of
recognition engines varies from person to person).

32

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Quality of synthesised Thiscriterionisonly applicableto the TTS engine.
speech
Price/support Since the SWAMP application isonly a demo prototype,

the price of the speech components should be
proportional.

Ability to recognise For better performance an ASR that accepts a user
specified grammar defined grammar rather then a dictation vocabulary is
required. The grammar notation format and its
possihilities are al so important.

Features Features are properties or capabilities of the software
that are interesting but not mandatory for the SWAMP
SUL.

In the end, the Microsoft Speech Application Programming Interface 5.0 (SAPI5) [SAPI 2000]
was chosen.

51.1 Overview of SAPI5

SAPI5isnot an ASR or aTTS engine, but acts as middle-ware between the engines and the
application Figure 5.1-1. SAPI 5 consgists of two interfaces: the application-programming
interface (API) and the device driver interface (DDI). Applications communicate with SAPI5 via
the APl layer and speech engines communicate with SAPI5 viathe DDI layer. The DDI takes
care of hardware specific issues such as audio device management, while the API removes the
implementation details such as multi-threading. Thisreduces the amount of code overhead
required for an application to use speech recognition and synthesis.

Application Application
API{
SAF| Runtime
DDI{
Fecognition Synthesis
Engine Engine

Figure5.1-1: SAPI 5 architecture overview

The advantage of using middle-ware isthat the choice of thefina ASR and TTS engine can be
postponed until alater stadium (e.g. until thereis more budget for better engines), provided of
course that there are better engines available. In addition, SAPI5 can be downloaded for free and
an ASR engine and some TTS voices (Mary, Sam and Mike) are aready contained in the
package. As for the support of SAPI5, there are two dedicated SAPI newsgroups

(mi crosoft.public.speech_tech and microsoft.public.speech_tech.sdk) available where Microsoft
professionals (including the people who built SAPI5) regularly answer questions. Also an
extensive manual with several examples and atutoriasisincluded in the SAPI5 download
package. Availability of (better) speech engines from third partiesis also good, since many
companies have announced support for SAPI5 including Lernout & Hauspie/Dragon Systems
Inc., Conversational Computing Corp., Fonix Corp., Fujitsu Ltd., NEC, Toshiba Corp., IBM
Corp. [SAPI5 third party]. SAPI5 compatible speech engines from some of these third partiesare
already available for sale.

33

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

The compliance tests from Microsoft verify that engine devel opers have successfully
implemented the required features to be considered compatible with SAPI5, compatible engines
can be used by the SWAMP client without trouble. Moreover, as the application programming
interface gives access to the speech resources in an engine independent way, the TTS or ASR
components can be replaced without having to change a single line of SWAMP application code.

512 SAPI5usage
Before SAPI5 can be used, it needsto be installed first (see appendix A4 for moreinformation on

system requirements and install ation notes). The next step is to initialise the speech resources.
Theinitidisation of the engines incorporates the following steps:

Stepl Initialise COM (Common Object Moddl).

Step?2 Create the recogniser object, this provides access to the recognition
engine

Step3 Create recognition context for the engine. A context isa single area of
the application needing to process speech (in this case, the entire
application).

Stepd Loading grammars and rules. In Sep3, the grammar was created. This

step populates the grammar with rules from an external resource. After
this step the initialisation of the recognition engine is complete.

Step5 Create and attach a TTS engine to the recognition context. By attaching
the TTS engine to the recognition context, the ability for bargeinis
provided.

After theinitialisation phase, the application is speech-enabled. The speech processing isdonein
the background. Whenever there isrelevant information from the TTS engine or ASR engine,
SAPI callects this information, and returns it back to the application by means of events.
Although numerous methods are available to control the execution of the speech resources, not al
methods are used in the speech interface. The specific methods used will be discussed when the
components using these methods are anal ysed.

5.2 The ASR component

The core task of automatic speech recognition (ASR) isto take a digitised speech signal asinput
and convert that into recognised words and phrases. To successfully recognise incoming speech
the recogniser matches this speech against the grammar. The grammar defines the words and the
order of those words that make a valid sentence. The recognition domain islimited to a grammar
of valid sentences because this provides better accuracy and performance, and reduces the
processing overhead required by the application. The limited grammar also enables speaker-
independent processing. The following sections describe the ASR component along with the
grammar used by the ASR component, how it is obtained, and how it is used.

52.1 ASR overview

SAPI 5.0 is based on the common object model (COM), atechnique that enables the devel opment
of reusable binary software components. Therefore alot of COM terminology will be used in this
overview of the ASR engine. COM is explained in many books e.g. Essential COM [Box 1999].
Figure 5.2-1 shows an overview of the information flow from the utterance of the user until the
processing of the recognised words. The figure also shows therole of the ASR enginein this
flow.

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

User Audio SAPI ASR SAPI Swamp

Hardware DDI component API Client

:> 55 O :> DDI :> ASR :> AP :> SWAMP

D ooooo
User speaks into The audio hardware The SAPI DDI The ASR The SAPI API The SWAMP
microphone converts speech into retrieves the component provides an client processes
a digital signal digital signal converts the interface for the the recognised
digital signal in SWAMP client words
recognised to retrieve the
words recognised
words

Figure5.2-1: Overview of the information flow from the utterance of the user to the processing of the recognised words

The SAPI DDI manages the audio hardware and provides a unified interface® for the ASR engine
to retrieve the digitised speech signals. How different ASR engines implement thisinterface isleft
to the ASR engine vendor and is out of the scope of this document. After retrieval of the digitised
speech signals, the ASR engine performs recognition algorithms on the signal to extract the
spoken words. The agorithms applied vary from vendor to vendor. In " Artificia intelligence, A
modern approach” [Russell 1995] and in the literature survey done prior to this project [Y angl
2001] the most commonly used algorithms are discussed. To share the extracted information with
the SAPI5, the ASR engine (which isa COM object itself) must implement the | SpSREngine
interface (Figure 5.2-2). The SAPI5 APl uses the methods of thisinterface to obtain the
recognised information or to pass details of recognition grammars and tell the engineto start and
stop recognition etc. SAPIS5 itself implements the interface | Sp0SRENgineSite. A pointer to thisis
passed to the engine and the engine calls SAPI using thisinterface to read audio, return
recognition results etc. 1SpRecoContext isthe main interface for speech recognition, it isthe
speech interface’ s vehicle for receiving notifications for the requested speech recognition events.
Each 1 SpRecoContext object can take interest in different speech recognition engines and utilise
different recognition grammars. Speech applications must have at least one | SpRecoContext
instance to receive recognitions. Within an 1SpRecoContext an application has the choice of two
different types of speech recognition engines (SpRecognizer object). A shared recogniser that
could be shared with other speech recognition applications or an in-process (InProc) speech
recognition engine for application where speed is key: The SWAMP client uses an in-process
recogniser. The SpRecognizer object represents a single SR engine and enables the application to
control aspects of the speech recognition (SR) engine.

! The term “interface” must be interpreted, in the spirit of COM, as a means to 1) separate definition
of the functionality of a COM object from the implementation details of that object or 2) gain access
to functionality of the COM object.

35

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

ASR component

SWAMP Client
J) ISpSRENgine

SAPI o ISpRecoContext
ISpSRENgineSite
SAPI DD SpRecognizerObject
4
A
Hardware -
Audio hardware

Figure 5.2-2: Interfaces of SAPI5

522 TheSWAMP Grammar

The SAPI5 design specification requiresthat all SAPI5-compatible speech engines must be able
to undergtand a context-free grammar (CFG) written in a format specified in the SAPI5 grammar
schema. This schema describes the SAPI 5.0 speech recognition grammar format and is based on
the XML framework. Since only SAPI5 compliant ASR engines can be used in the SWAMP
client, the grammar for the dialoguesis a so defined according to the schema

The ASR engine uses the CFG to constrain the words contained in the user's utterance that it will
recognise. Furthermore the CFG can be extended with semantic information (property names and
property values) declared inside the grammar. This enables the ASR engine to associate certain
recognised word string with name/val ue-meaning representations. The dial ogue manager then
applies these meaning representation associations to understand and control the dialogue with the
user.

5221 Syntax

The SWAMP grammar is stored in agrammar file (swamp.xml). Basically the grammar file
consists of a set of grammar rules in the grammar schema syntax (see Figure 5.2-3). The complete
specification of the schema can be found in the SAPI5 online help file [SAPI5 website].

<RULE
[DYNAMIC = enumeration : 0 |[NO | FALSE | 1| YES| TRUE |
[ID = gring]
[NAME =dtring]
[TOPLEVEL = enumeration: INACTIVE | ACTIVE]
>
[<RULEREF>| <P> | <L> | <O> ¥
</RULE>

Figure 5.2-3: Syntax of a grammar rule

36

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Attribute Description
DYNAMIC Indicates that the contents of the rule can change during runtime.
ID Thisisauniqueidentifier of therule.

TOPLEVEL The TOPLEVEL tag within the RULE statement givesarule a
special status. Not only does thisidentify the rule as being top level,
but it aso sets the activation sate (active or inactive). Only top-
level rules can be activated or deactivated. SAPI recognises active
rules and conversdly does not recognise deactivated ones. The
application may change the state of the rules during execution. so if
aruleisno longer needed, it may be deactivated

Element Description
RULEREF Thiselement is used inside the contents of a rule definition to
reference another defined rule (but not other top-level ones).

P* Thiselement is used to describe the Phrase element. An associated
property name and value pair is generated if the contents of this
element are recogni sed.

L Defines alist of alternate phrases from which any one can be used

to complete the match. Thus each sub-element within this element
represents a possible separate recognition in place of this e ement.
o* Thiselement is similar to the P e ement. With the exception that the
O element is optional. Asthe name implies, optional words are not
reguired for a successful rule match.

Elementslabelled with * can contain properties or semantic information within tags (property
names and property values). After a successful recognition, the information can be retrieved from
SAPI. References to other rules can be recursive —i.e., rules can reference themselves, either
directly or indirectly.

5.2.2.2 Construction of grammar rules

The grammar rules are derived from a corpus of about fifteen utterances per service. Fifteen
utterances are too few to build areliable and robust corpus for a service, but should be enough to
allow the demongration of the general idea of the speech interface in the SWAMP client
prototype without making the grammar too complex. Example 1 shows an example of the
derivation of the grammar rules for the KM regigtration service out of a corpus of utterances. The
resulting grammar rule is given in pseudo CFG format.

Example 1: Example of the derivation of grammar rules froma corpus

Sampl e utterances (corpus):

Utterance

It's private now

Set the trip type to/into private
Changethe trip type to/into private
It's a business trip now

Project ID is X

It'sabusinesstrip and project ID is X

37

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

Bill all kilometres driven from now on project X

Thispart isof thetripis private

The drive is now private

Did | mention that this was a private trip?

It will beaprivatetrip from hereon

Thetrip typeis Private

Trip typeis private

following pseudo CFG:

<Triptype> =
<TriptypeUtterance> =
<Now> =
<Project-ID> =
<KM-Triptype> =

<KM-ProjectID> =
< KM-Project-1D> =
<KM-utterance> =

The transformation from utterances to a context free grammar isnot difficult. In
the worst case the resulting CFG is an enumeration of all the utterances. For
performance reasonsit is better to try to discover general patternsin the
utterances and thus to make the CFG as small as possible resulting in the

“Private” | “business’

“Trip” | “triptype” | “drive’

“now” | “from now on” | “from here on”

/I obtained from database

[“change’ | “set the” | <TriptypeUtterance> “in”
“into” | “to” <Triptype>

|

[“the’ | “this part of the”] <TriptypeUtterance>

“is’ <Triptype>

I

“it’'s’ | "Did | mention that thisis’ | "It will be” | “I
will be making” “a’ <triptype>
<TriptypeUtterance> [<Now>]

“Bill al kilometres driven now on project”
[“The’] “project | D" [“is’] <Project-1D>
<KM-TripType> | <KM-PrgjectID> | <KM-
TripType> “and” <KM-PrgjectID>

The pseudo CFG must then be transformed into Microsoft schema language
(whichisareal CFG) to be of usefor the ASR engine. This processis rather
straightforward and will not be discussed. Appendix A3 shows the resulting
grammar rulesin Microsoft schema language.

The grammar rules thus obtained must be stored in afile (in this case: swamp.xml). SAPI5 comes
with agrammar compiler that creates binary grammars from XML defined grammars. The SAP
grammar compiler isdivided into two parts, a front-end section and a back-end section. The front-
end parses the grammar described in XML and optimises the XML formatted text grammar if
requested. The front end then calls the back-end compiler to convert the interna representation
into the SAPI5 binary format. The binary file (grammar.cfg) is stored as an application resource.
During compilation, the grammar compiler gives error messagesiif the grammar format does not
conform to the Microsoft schema for grammar format. This enables the verification of the validity

of the grammar. Although the process of deriving grammar rules from acorpusis not very
difficult (especially with only fifteen utterances), there are some issuesto consider:

38

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Dynamic content in grammar

Suppose we want arule with RULE 1D EMAIL that needs to support the phrase "send new e-
mail to NAME." The problem isthat the phrase "send new e-mail to" is static, and known at
design time, but NAME is undetermined and only available during runtime. We could solve this
problem by explicitly listing all names in a static grammar rule. Static meansthislist is defined
ahead of execution time and isnot subject to change (Although the .xml file may be edited
independently of the application, it may not be changed during execution). Thisis not an elegant
solution because the grammar file has to be changed and recompiled every timethe user adds a
new nameto hise-mail list. Luckily SAPI5 aso supports dynamic grammars. As the name
implies, adynamic grammar isthe opposite of a static one. First, words may be added and deleted
during runtime and the list does not need to be predetermined. This alows much greater | atitude
for applications. To use dynamic grammars, dynamic rule content should be separated from static
rule content. Another motivation for the separation is that it makes grammar design more clear
and improves initial SAPI grammar compiler performance. In the SWAMP grammar, the email
problem could be solved by creating a satic rule (with rule ID E-MAIL) that contains the Static
phrase and a dynamic rule (with RULE ID NAMEDB) that contains dummy values. Thelist of
names, e.g. coming from an address book, can be [oaded into the dynamic rule at runtime. The
static grammar could then contain arule reference (RULEREF) to the dynamic rule. When the
SWAMP client starts up, it quickly loads the static content. Afterwards it can load the dynamic
content when needed (resulting in better performance). Moreover, if thelist of names (address
book) is updated the run-time grammar of the speech interface is automatically updated al ong
with it.

Semanticsin grammar

The SWAMP grammar iswritten in aformat specified in the SAPI5 grammar schema, which isa
context free grammar (CFG). As CFGs only specify therules for a valid utterance, another
mechanism must be found to convey meaning to the dialogue manager. The mechanism used in
the SWAMP client to accomplish thisis called semantic tagging. Property name and property
value tags are used to tag elementsin order to artificially endow some meaning in them.

In the exampl e of the previous paragraph, a semantic property tag e.g. NAME can be attached to
therulereference to the dynamic NAMEDB rule. The dynamic information corresponding to the
NAME tag (in other words the name actually spoken out) can be retrieved from the recognised
phrase at runtime.

523 Grammar handling

So far grammar rules were discussed as abstract data types. To define a grammar rule properly,
the operations that can be performed on them need to be considered. SAPI 5 allows some
flexibility in the defined grammar, for example top-level rules can be activated or de-activated
during run-time. In the following adescription is given of what the speech interface must do for
each of the six basic grammar rule operations: creation/del etion, load, activation/deactivation and
modification.

Creation and Deletion

When an application creates agrammar object thisisreported to the engine viathe
OnCreateGrammar () method. From this method the engine must also return a pointer, which is
used to identify the grammar in later calls from SAPI5. When grammars are deleted the
OnDeleteGrammar () method is called.

39

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

L oading

SAPI5 takes full control of loading a grammar when an application asksit to. SAPI5 can |oad
from afile (LoadCmdFromFile()), a COM object (LoadCmdFromObject()), aresource
LoadCmdFromResource()), or from memory (LoadCmdFromMemory()), and can load either
binary or XML forms of the grammar. SAPI5 then notifies the ASR engine about the contents of
the grammar through various DDI methods.

Activation/deactivation of rules

Rules can be top-level, indicating that they can be activated or deactivated during run-time with
the SetRuleState() function. For ingtance, only the login grammar rules are active during user log
in. If thelogin procedure is completed successfully, the login rules are deactivated while other
rules now become active. Thisway, only rules that are rdevant in the current context will be
recognised. Moreover, no interference is received from irrelevant rules firing and the performance
and recognition rate of the ASR engineisincreased because of a small search space.

M odification

Grammar rules with the DY NAMIC attribute set (see Figure 5.2-3), can be modified during
runtime with the ClearRule() command. The contents of arule can be cleared first whereupon the
AddWordTransition() command can be used to add aword in therule contents. This featureis
used to load frequently changing datainto the grammar. For example, theligt of user names
changes frequently, it isnot flexible to explicitly enumerate theligt in the grammar file.
Especially, since the whol e application needs to be re-compiled if the list is modified. Ingtead the
list isloaded from a database file into the appropriate grammar rule during runtime.

5.3 The Dialogue M anager

The dialogue manager isresponsible for a successful dia ogue with the user. It decides which

utterances the ASR engine must recognise, what the TTS engine must say, and how it must be
said. Therefore, it isthe part of the program that determines the “face” of the speech interface.
Following isalist of tasks the dial ogue manager isresponsible for in order to accomplish this.

Table 16: Functions of the dialogue manager

Task Description

1 | Contralling the ASR engine | The dialogue manager controlsthe ASR engine by
indicating which grammar rules should be activated
or deactivated at any time. Furthermore the control
task includes starting and stopping of speech
recognition and loading of dynamic data into the
grammar.

2 | Controllingthe TTSengine | The dialogue manager generates text messages and
sends them to the TTS engine for speech synthesis.
Also the dialogue manager isresponsible for
gtarting or stopping speech synthesis and
controlling speed, volume and pitch of the

synthesised speech.
3 | Maintaining amodel of the | Since diaogues are context sensitive, the dialogue
real world manager must maintain an internal model of the real

world to be able to correctly interpret the user’s
utterances. This model istemporal and needs to be
constructed and maintained at run-time.

40

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

4 | Processing and interpreting | Asthe ASR enginerecognises user utterances, itis
recognised speech the dial ogue manager’ s task to interpret and extract
the user’ s goals from these utterances (taking into
account itsmodel of thereal world). Furthermore
the dial ogue manager must perform the necessary
actions to achieve these goals.

5 | Communicating with main This communication isnecessary to keep the main
application application updated on relevant changes dueto
speech activity of the user or to be updated about
relevant changes dueto GUI activity of the user.

The process of extracting the users’ intentions from recognised speech (function 4) requires some
kind of reasoning. Particularly if the utterances are context senstive and the dialogue manager’s
interna model of thereal world must be taken into account. The use of artificial intelligenceto
build and maintain the internal models (function 3) isinevitable. Not surprisingly, artificia
intelligence (Al) technology and techniques have indeed been applied to achieve thisreasoning.
In chapter 6 the dialogue manager and Al techniques used will be discussed in more detail.

54 TheTTS component

Thetext to Speech (TTS) component (or speech synthesis component) takes a sequence of text
words (input text) and produces as output an acoustic waveform (see Figure 5.4-1).

Dialogue SAPI TS SAPI Audio User
manager API component DDI Hardware
SWAMP |:> API |:> 18 |:> DDI |:> 58,1l |:>
[] ooooo
The Dialogue The SAPI API The TTS The SAPI DDI The audio hardware The user

manager provides an component provides an converts the digital receives the
generates a text interface to the converts the text interface to signal into speech spoken message
message to be TTS component message into a audio hardware from theSWAMP
synthesised corresponding client
digital signal

Figure 5.4-1: Overview of the information flow from generation of text messagestill generation of spoken message

When the following piece of C++ code is executed, the sentence * Get back to work” is
synthesised with normal pitch, maximal volume and the emphasis on the word “get”.

Speak(L"<SAPI> <PITCH MIDDLE=5/> <VOLUME LEVEL="100/> <EMPH> Get
</EMPH> back to work </SAPI>");

Several TTS engines can be installed on the same machine, but only theinitialised TTS engineis
current. In fact, the “speak” command isageneric SAPI API cdl to the current TTS engine
(which of courseisinitialised beforehand). Thelist of available TTS enginesis listed in the
Windows NT registry in: HKEY_LOCAL_MACHINE\Softwar é\Micr osoft\Speech\V oices.

41

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

The TTS engine used in SWAMP has support for “barge-in”, which allows users to speak at any
point in the system, even while the system is gtill playing prompts, greatly increasing the speed
and efficiency of the system. Furthermore the SAPI5 API supports the use of simple speech
control symbols (see Table 17) incorporated in the input text.

Table 17: Speech control elements defined in the SAPI TTS XML schema

Element

<CONTEXT>

The context can specify the type of normalisation rules which
should be applied to the scoped text. SAPI does not guarantee any
predefined contexts.

<EMPH>

Places emphasis on the words contained by this element.

<LANG>

Changesthe LANGID of the scoped text. When the LANGID is
changed, SAPI will try to detect if the current voice can handle
the new language. If voice does not speak the specified language,
then an engine must choose another language it speaks as a best
attempt.

<PARTOFSP>

The part of speech of contained word(s). The PARTOFSP tag is
used to force a particular pronunciation of aword (for example,
the word record as a noun versus the word record as a verb).

<PITCH>

The scoped/global e ement PITCH modifies the underlying
numerical values of a speech block. Relative attribute val ues,
those preceded by a dash (-) or a plus sign (+), increment the
underlying numerical value by the specified amount. SAPI
compliant engines have the option of supporting only the
guaranteed range of values and behaving as -10 for adjustments
bel ow -10 and behaving as +10 for values above +10.

<PRON>

Pronounces the contained text (possibly empty) according to the
provided Unicode string.

<RATE>

Sets the relative speed adjustment at which words are synthesi sed.

<SILENCE>

Produces silence for a specified number of milliseconds to the
output audio stream.

<SPELL>

Spells out words letter by letter contained by this element.

<VOICE>

Sets which voice implementation is used for synthesis of
associated input stream text. The best voice implementation given
the required and optional attributes will be selected by SAPI.

<VOLUME>

The scoped/global e ements VOLUME modify the underlying
numerical values of a speech block. The underlying value can
never be below zero or exceed 100. All negative value entries will
result in zero and all values above 100 will result in 100.
VOLUME may also receive an absolute value (no *-' or '+
character) of an integer between zero and 100.

There aretwo main objects of interest in the TTS Engine: the SpV oice object (SAPI) and
the TTS Engine object (see Figure 5.4-2). The SpV oice object implements two interfaces that are
of concern —1SpVoice, which is the interface which the application usesto access TTS
functionality, and | SpT T SEngineSite, which the engine uses to write audio data and queue events.
The TTS Engine must implement two interfaces as well — |SpTTSEngine, which istheinterface
through which SAPI will call the engine, and | SpObjectWithToken, which isthe interface through
which SAPI will create and initialise the engine.

42

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

APPLICATION SWAMP Client

ISpVoice
SAPI
SpVoiceObject
ISpTTSENgineSite
@]
ENGINE ©
ISpObjectWithToken ISpTTSENgine
TTS Engine

Figure 5.4-2: SAPI5 TTSrelevant objects and interfaces

43

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

6 Thedialogue manager

In this chapter the dialogue manager will be discussed in more detail. In particular the theoretical
background of the techniques behind the dial ogue manager, the way the dia ogue manager
represents knowledge and the way it uses this knowledge to generate the actions to be taken.

6.1 Dialogue design

Once the goals of the user are clear, the speech interface must initiate a dialogue to retrieve the
required information from the user (if these are not already available). All possible dial ogues that
the speech interface can initiate must be designed beforehand. Thisincludes speech prompts for
each possible situation, and all possible user responses on those prompts. Furthermore design
involves the definition of a grammar that captures the syntax of whole conversationsinto a few
simple grammar rules (discussed in 5.2.2.2). Important issues in the design of the dialogues are
discussed next.

6.1.1 Design approach

The goal of the speech interface isto give a user access to the SWAMP services by means of

simple speech interaction. To achieve this, one can choose between two different approaches:

- Demand alonger learning time for the speech interface and require the user to adapt his
speaking style.

- Makeit easy for the user by allowing an extensve grammar and modelling more and more
complex dia ogues so that the user can speak to the system as with another human.

Speech User Interface (SUI) designers have learned that humans are extraordinarily flexible in
their speech and readily adapt to the speaking style of their conversational partners[Design]. This
isnot anew finding: think about how easily we adjust our speech depending on whether we are
speaking to children or other adults. Thisflexibility has useful implicationsfor designing the
speech interface: after extensive use of the speech interface (as the user gets acquainted with the
grammar and has more experience) some dial ogues become less and less common. Thisis
because the user will adapt his style of interacting with the speech interface and refrain to only
those dial ogues that were successful in the past. Because of this finding and the choice of our
typical user (“heisfamiliar with current computer technology”) the first approach was chosen:
only model the most common utterances and let the user adapt to it. After all, it isnot our goal to
mimic area human in human-to-human conversation; thisisimpossible with the current state of

technology anyway.

What information isneeded?

Each service requires some input parameters before it can be executed. Unlike GUI input, where
the parameters are always well defined, speech input can be vague and/or ambiguous. Therefore it
isimportant to impose stringent constraints on speech input to eliminate or detect possible errors
e.g. what input isvalid, when isthe input valid and when not, how and in what sequence must the
information be supplied (if important).

How can the infor mation be obtained from the user?
The obvious way to obtain information of the user is by ways of speech prompts. Several
prompting techniques are commonly applied in speech user interfaces:

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Table 18 : Prompting techniques

Technique Description

Open prompt In this approach open short prompts are presented to the user.
Because of these short prompts the dialogues are generaly
shorter and therefore the goals of the user are accomplished
quicker. Thistype of prompting techniqueis only suitable for
experienced users and a good quality speech recogniser and
complete and well-modelled dia ogues are essential. Open
prompts are the dominating type of prompts that the SWAMP
client generates.

Closed prompt These promptstell the user exactly what they can say (e.g.,
"What type of call would you like to make? Please say collect,
calling card, third number, person to person, or operator"). This
type of prompting hasresulted in users having greater success
with SUls.

Removable hints These provide a personalised approach where the application
keeps track of how many times a user has successfully answered
aprompt. At first, it supplies hints on the prompt by suggesting
things the user can say in response to the prompt. Once the user
has successfully answered the prompt several times, the hints
areremoved. Since the user hasto identify himself at the start of
each session this technique could be applied in the SWAMP
client.

Layered approach Thisisa combination of short open promptswith longer closed
prompts that are more direct. For example, when auser doesn't
respond to a prompt such as "What do you want to order?' in a
predetermined amount of time. The system quickly presents a
more directive prompt, such as"You can order X, Y, or Z." This
approach isvery effective for meeting the needs of both new
and experienced users. Inexperienced users get instant help
about what they can order, while experienced users can make
their orders quickly, guided only by the shorter prompts.

Size of the corpus

While designing a dialogue to retrieve information, not only the questions to ask (prompts) but
also the possible responses from the user must be modelled. For the responses on a prompt it must
be determined what is expected (what information must be contained in the response?) and what
can be expected (what are the valid responses?). To obtain valid responses a proper corpus of
dialoguesis necessary. A corpusisacompilation of possible dialogues (either real or fictional). If
the corpusistoo small many possi ble responses of the user (probably normal and valid ones) are
left out and the behaviour of the speech interface in these situationsis undefined or unsatisfactory.
If the corpus istoo large, the grammar and dial ogue of the system becomes very complex. In this
prototype, the size of the corpusis about fifteen utterances per service.

Whereistheinformation contained in an utter ance?

Utterances of users are only recognised if it conformsto the grammar of the speech interface. The
grammar iswritten in aformat specified in the SAPI5 grammar schema, which isa context free
grammar (CFG). CFGs specify how any legal text can be derived from distinguished symbols.
However CFGs convey no meaning. Conseguently, just because the computer recognises the
user’s speech utterance (in other words the utterance is valid according to the CFG) doesn’t mean

45

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

it understands the information contained in the speech utterance. Property name and property
value tags are used to tag elementsto artificially insert some meaning in them. During the design
of agrammar it isimportant to identify the places in an utterance where relevant information is
located.

6.1.2 Dialogue representation

All the design issues mentioned earlier make modelling dial ogues much more complicated and
complex then modelling a GUI. Without a proper representation technique, the dial ogues can
quickly become very complex and unmanageable. In this project dialogues are represented by
flow diagrams containing nodes representing start/begin points of a dial ogue, boxes representing
actions (e.g. an utterance from a user or an action from the system), diamonds representing
decisions point and arcs to connect the nodes, boxes and diamonds. A dial ogue always begins
with a start node and ends with an end node. Within these nodes, the dialogue travel s from box to
box along the arcs and branching at the decision diamonds. A successful dialogue correspondsto
a path in the flow diagram from the start node to the end node.

Speech dialogues are context sendtive. In thisrepresentation, the context is defined by the
positions within the dial ogue flow. Each box represents a certain state or context. The arcs
branching from a box indicate the options available within that context and the branchesleading
to a box define how that context can be achieved. The power of above dialogue representation
technique liesin the fact that dialogues are represented in a generic way. E.g. the (user action)
boxes define what the user can say at that moment in the dialogue, but not how it must be said
(thisis defined in the grammar). In thisway, a single path in the dial ogue flow diagram can
represent whole categories of similar dia ogues.

A well-modelled dialogue flow diagram is one where each possible dialoguefitsin. Table 19
shows an example dialogue for the KM registration service. The flow of this dialogue fitsinto the
flow diagram in Figure 6.1-1" (accentuated). This example was chosen because of its simplicity,
in practice the dialogues are so complex and the dialogue flow diagrams so large that it is best to
split them up into one main dialogue and several smaller sub dialogues. For each sub dialogue a
separate did ogue flow diagram is designed and referred to in the main dia ogue flow diagram (by
means of sub dialogue nodes), thus making the dial ogue somewhat manageable. See appendix A7
where the dialogue flow diagramsfor al the services are listed. Another use for the dial ogue flow
diagrams occurs during the testing phase. Since each path from the start node to the end node
corresponds to a successful dialogue. The correctness of the implementation of the dialogues can
easily be verified by traversing al the pathsin the dial ogue flow diagrams.

Table 19: example dialogue

U: Changetrip type

S: Isit abusiness or a private trip?

U: It sabusinesstrip?

S: OK, what’sthe project ID for this businesstrip?
U: Project ID is SWAMP

S: Do you want to set the project ID to SWAMP?
U: Yes

! The dialogue flow in the figure is not complete, the flow after the “no” (in the lower right corner of
the figure) is not modeled yet. Clearly what comes next is context sensitive, as is the action before
that (“ask confirmation”). A way to model this is to create 3 new sub dialogue flows (a separate one
for each call of “ask confirmation”).

46

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

KM registration

v

v

. S: W hat is the
U: Change triptype triptype
utterance

v v v

U: Utters new
triptype

U: Cancel u:?

3x no response

End: KM
registration

Utterance
contains new
triptype

triptype is
business

S: Set business
trip

S: Set private trip,

S: Set new project J
ID

tteranc
contains no
rojectiD.

S: Ask confirmation

T
|
|
|
I
I
I
H I
3 l l
|
v |
I U:yes U: No U: Cancel
S: W hats the |
projectiD |
L
I
|
i l | S: Send SMS, give
A : feedback
I
u:? U:Cancel U: Project ID I
I
I M

3x no response

v
End: KM
registration

Figure 6.1-1: a dialogue flow diagram for the KM registration service

6.1.3 Error handling

Fault tolerance is an important issue in dialogue design, since errors and exception are very
common and can come in many ways (e.g. the user wasn't listening, misunderstanding by user,
misunderstanding by the speech interface, ambiguity in a user’ s utterance). The way errors are
handled in SWAMP is smilar to the way humans do during dialogue: by requesting clarification,
elaboration, and expansion. Unlike with the GUI, errors can be expected to occur in any dialogue
at any position, so this should already be dealt with in dial ogue design. Consequently, error
handling and prevention mechanisms (e.g. give feedback, ask for confirmation, ask for
clarification) must be incorporated in the design. The question however ishow and when to apply
these error handling mechanisms. This depends on the user, as experienced users may find error
handling mechanisms in the dialogue annoying, while new users can’t complete a single dialogue

47

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

without these mechaniams. In section 4.1.3.1 atypical user of the system was defined, the
dialoguesin SWAMP were designed with this user in mind.

Partial information and Ambiguity

For each service supported by the speech interface, some additional information isneeded. For
instance, if an appointment with a client must be made, the date and time of the appointment are
needed. In human conversation it is quite common to supply partia information and fill in the
missing pieces as the dialogue goes along. In the speech interface it is the task of the dialogue
manager to detect this and ask the user to supply the missing information and interpret the
returned answersto fill in the gaps. Furthermore the dial ogue manager must be aware of possible
ambiguity in the information of the user and must have mechanismsto detect and deal with it.
The information needed and the place where ambiguity can occur depends on the service. It is
dealt with (separately for each service) in the dialogue design (['Yang2 2001]).

No-recognition
No recognition occurs when the speech recogniser does not recognise an utterance of the user.
Thishappens when:

Problem Solution

The quality of the microphone or | Use a better microphone and/or soundcard or do

sound card is too poor. something to suppressthe noise. Thisfalls out of the
scope of this project.

The user speakstoo fast or has The speech recogniser must be trained to adjust to the

an accent user (or the other way around).

The utterance of the user isnot The original question is stated in another form and, if

defined in the grammar. applicable, possible answers are supplied.
Technically, the utterance must be added to the corpus
and the grammar must be updated.

The utterance was not valid Repeat the question and ask the user to rephrase.

Mis-interpretation

Except in exceptional situations (during an emergency) confirmation from the user (viathe speech
recogniser) is needed before any radical actions are taken. The dialogue designer defines the place
where these confirmation requests occur (see the dialogue specification document of the SWAMP
project).

No response

With each question of the dialogue manager a special timeout value is associated indicating the
amount of time the manager must wait for aresponse from the user. If the time has passed and
thereis still no response from the user (or the response isnot understood) the question isrepeated
up to a maximum of three timesin which the dial ogue manager gives up with a suitable (spoken)

error message.
6.2 Implementation overview

The dialogue manager can be divided into two parts (see Figure 6.2-1):

1. An Al part to do the representation and reasoning with knowledge. An embedded CLIPS
expert system shell (CLIPS engine) [CLIPS 2000] is used to implement this part.

2. A C++ part to embed CLIPS and to perform trandation and communication between CLIPS
and external entities (SAPI and the main application).

48

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Dialogue manager
swamp.clp Knowledge Base
4
\ 4 P
iy CLI Psngfséence
Input translation Output Translation (17
4

v
External entities

Figure 6.2-1: Overview of the dialogue manager

6.3 The C++ part

The C++ part isresponsible for the communication between the embedded CLIPS engine and the
outside world (SAPI and main application). It has a sensing function to sense events from the
outside world, atrandating function to trandate messages from the outside world into a format
understandabl e to the CLIPS engine and an actuating function to trandate CL1PS engine
messages into actions on the outside world. The outside world for the dial ogue manager consists
of two entities: the GUI of the main application and SAPI. Communication with the GUI is
necessary, because the SWAMP client is a bi-modal application and the different modalities (GUI
and SUI) need to be synchronised with each other. SAPI isthe location where utterances from the
user are recognised and where the text to be synthesised is sent. Since the dialogue processing is
donein the dialogue manager some kind of interaction with SAPI is needed. In the following
sections, the interaction mechanism between the C++ part of the dialogue manager and the two
external entities is described.

6.3.1 Interaction with the main application

Whenever the user usesthe GUI, he can change the gate of the application in such a way that the
dialogue manager needs to change its representation of the world. Therefore, the dialogue
manager must somehow be notified of the user’ s action on the GUI. In SWAMP the
communication is achieved by means of GUI messages of the application framework. The
application framework is devised by Microsoft to build window applications. It generates events
in response to GUI actions of the user, such as keystrokes and mouse clicks. The dialogue
manager uses the generated eventsto react on GUI changes. In addition the dial ogue manager
itself generates events to cause GUI changes. Following isa short description of the
synchronisation mechanism.

49

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

The application framework in which the WAM-Pilot was built fires an event whenever a GUI
action occurs. For example, if the user clicks on a button, the button calls a pre-arranged function
in the application. This function is called the event handler of the button and contains the code
that implements the appropriate action for the button. The dialogue manager is only interested in
actions that actually lead to a changein the dialogue manager’ sinternal mode of the world. The
communication from the main application to the dial ogue manager isrealised by adding codein
the relevant event handlers, to send a message to the Dia ogue Manager whenever the event
handler isinvoked. All actions performed by the speech interface originate from the Al
component. When an action occursthat requires a changein one or more GUI controlsthe Al
components sends a message to the dial ogue manager notifying it of this event. The information
telling the dial ogue manager what exactly needs to be modified in the GUI is contained between
the REACT tags of the messages from the Al component (see 6.3.4). After receiving a message
from the CLIPS engine, the C++ part scans the information contained within the react tags and
performs the actions specified in the message.

6.3.2 Sensing recognition events from SAPI

The ASR engine uses events to report information about what is being recognised. There are
several events the engine can report. These indicate, for example, that the engine has detected the
start or end of speech, or that it has a hypothesis or a completed recognition result. So far, there
are more than 30 events. With the setInterest() command the type of eventsthat are sensed by the
dialogue manager’ s sensors are restricted to only the relevant events. The dialogueis only
interested in the following events:

Event Description

SPEI_PHRASE START SR engine has detected the start of a
recognisable phrase.

SPEI_RECOGNITION SR engine's best hypothesis for the audio data.

SPEI_FALSE RECOGNITION | Apparent speech with no valid recognition.

The most important isthe SPEI_RECOGNITION event. The SPEI_RECOGNITION event is
fired when a user utterance matches with an active grammar rule. The dial ogue manager
specifically listensfor this event. After receiving this event the receiving application can retrieve
the words that have actually been said (and also additional information such asthe ID of therule
that fired etc.). SAPI returnsthis information in a structure; SPPHRASE. The SPPHRASE
structure does not only contain the phrase spoken, but also additiona information such asthe ID
of therulethat fired, semantic tag names and val ues etc.

typedef [restricted] struct SPPHRASE

{
ULONG cbSize;
LANGID LangID;
WORD wReserved;
ULONGLONG ullGrammarID;
ULONGLONG ftStartTime;
ULONGLONG ullAudioStreamPosition;
ULONG ulAudioSizeBytes;
ULONG ulRetainedSizeBytes;
ULONG ulAudioSizeTime;
SPPHRASERULE Rule;
const SPPHRASEPROPERTY *pProperties;

50

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

const SPPHRASEELEMENT *pElements;

ULONG cReplacements;

const SPPHRASEREPLACEMENT *pReplacements;

GUID SREnginelID;

ULONG UlSREnginePrivateDataSize;

const BYTE *pSREnginePrivateData;
SPPHRASE;
Member Description
CbSize The size of this structure in bytes
LangID The language ID of the phrase elements
Wreserved Reserved for future use
UllGrammarID ID of the grammar that contains the top-

level rule used to recognise this phrase

FtStartTime Absolute time for start of phrase audio as a

64-bit value

UllAudioStreamPosition

Start time in the audio stream for this
phrase

UlAudioSizeBytes Size of audio data in bytes for this phrase

UlRetainedSizeBytes Size in bytes of the retained audio data

UlAudioSizeTime Length of phrase audio in 100-nanosecond
units

Rule Information about the top-level rule that was
used to recognise this phrase

pProperties Pointer to the root of the semantic property
tree

pElements Pointer to the array of phrase elements

cReplacements Number of text replacements.

pReplacements Pointer to the array of text replacements

SREnginelID GUID that identifies the particular SR

engine that recognised this phrase
UlSREnginePrivateDataSize | Size of the engine's private data (in bytes)
PSREnginePrivateData Pointer to the engine's private data

According to the default run-time model of the SAPI the ASR engine continues recognising as
long asdatais available and it isnot explicitly told to stop. Typically, after an engine reports
recognition, it will check for grammar changes and then continue reading data and recognising.
Recognition stops if an application sets the recognition gate (with SetRecoState) to inactive. By
inspecting the contents of the SPPHRASE structure, therule that fired can be obtained. The
element’ s property name and value can now be retrieved by traversing the pElements pointer.

Consider the email problem mentioned in section 5.2.2.2. Suppose we want to retrieve the
information contained in the semantic tag NAME from arule with ID EMAIL. Whenever
recognition isreceived with thisrule ID, the property tree (SPPHRASE.pProperties) is searched
for the property named NAME. Then the function | SpRecoResult::GetPhrase is called with
(SPPHRASEPROPERTY) pNameProp.ulFirstElement and (SPPHRASEPROPERTY)
pNameProp.ul FirsElement, and the application can retrieve the exact text that the user spoke into
the dynamic rule (e.g. user says "send new e-mail to Harry," and we would retrieve "Harry," user
says "send new e-mail to Hermione," and we would retrieve "Hermione,").

51

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

6.3.3 Thetrandating function

As aready mentioned, the dialogue manager is divided into two parts. The first part takes care of
the communication with external entities while the second part (the CL1PS engine) does the actua
dialogue managing. Because the external entities (SAPI and the main application) differ radically
from the dial ogue managing part a trandlation step isneeded in the dialogue manager. The
trandated messages are sent to standard input (stdin) of the CLIPS engine. There are two types of
input messages that can be distinguished:

Speech related These messages are aresult of utterances from the user.
GUI related These messages are part of the synchronisation process
between SUI and GUI.

Speech related messages sent to CLIPS have the following format:

(assert (Type LanglD Rule Confidence Property Value))

Figure 6.3-1: Format of a speech related input message to CLIPS

Assert Assert isa CLIPS command to add a fact to the fact-list.

Type Thisfield indicates the type of the message. The only message type
defined at this moment is: RECOGNISED

LanglD The language identifier (161 for English)

Rule TheID of rulethat fired

Confidence Confidence of the speech recogniser that the rule hasindeed fired.

SAPI does not demand that al compatible speech recognisers
implement this.

Property Property name (optional)

Value Property value (optional)

The trandation component translates SAPI events into CL1PS speech related messages. There
exists the following correspondence between SAPI eements and CLIPS input e ements:

Table 20: Correspondence between SAPI elements and CLIPSinput elements

SAPI element CLIPS element
SPPHRASE.LangID LangID
SPPHRASE.Rule.ulld Rule
SPPHRASE.Rule.Confidence Confidence
SPPHRASE.pProperties.pszName Property
SPPHRASE.pProperties.pszVaue Vaue

Now that the correspondence between the elementsis known, the trandlation processis
straightforward.

Main application related messages are sent by the event handlers of GUI controls. Each message
contains the service the control belongsto, the parameter of the control and the new value of that
parameter. Here also, the transformation from main application message to CLIPS messageis
straightforward. Main application related messages have the following format in CLIPS:

52

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

(assert (GUIMSG Service Parameter Vaue))

Figure 6.3-2: format of a GUI related message to CLIPS

assert: assert isa CLIPS command to add afact to the fact-list.

GUIMSG: Thisfield indicates the type of the message (GUI messagein this
case).

Service: The serviceinvolved. This can be any of the services available.

Parameter: The parameter that has changed.

Vaue The new value of the property.

6.34 Theactuating function

The CLIPS engine sendsiits output messages to standard output (stdout). These messages are
fetched and parsed by the C++ part of the dialogue manager. An output message from CLIPSisa
structured string consisting of e ements. Each e ement has a type and a content. The content of an
element is always surrounded by tags, which specify where an dement begins and whereit ends.
All dlements are optional within a message. Each element of the output message represents an
action that must be taken by the actuators (speech resources and GUI).

Example:

<say>hello</say>

Thiselement hastype: say
And contents: hello

Currently, the following tags are defined:
Table 21: List of defined tagsin CLIPS output messages

Tag Description

SAY The content of this type of element contains the text to be synthesied by the
TTSengine. The contents of this element is used as main parameter in the
Speak() method.

ACT The content of this type of element containsalist of grammar rules that

needs to be activated separated by a white space. The C++ part of the
dialogue manager calsthe activate() method with e ements of thelist as
parameter.

DEACT The content of this type of element containsalist of grammar rules that
needs to be de-activated separated by a white space. The C++ part of the
dialogue manager calsthe deactivate() method with elements of thelig as
parameter. If the same grammar rule exigts in both the ACT and DEACT
element of the same message, theruleisfirg de-activated and then activated
again. So the net result isthat theruleis activated in the end.

53

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

message.

REACT This element specifies an action to invoke in the main application. It
contains an action identifier followed by action parameters. Both the
identifier and parameters are fed to the handl eaction() method.

TIME A timeout value in milliseconds. The CLIPS engineisnotified if no relevant

speech event occurred in the period of time specified after reception of the

Actions that can be performed on the speech resources include the activation or deactivation of
grammar rules, synthesis of text phrases and other functionsto control various properties
(volume, speed, pitch etc.) of the synthesised speech. The elements SAY, DEACT and ACT are
related to actions on speech resources. The methods used to convert the contents these e ements
into concrete actions are summarised in Table 22 (only the TTS methods) and Table 23 (only
ASR methods). REACT dements are sent to the ActionHandler (Actionhandler.cpp), which
contains a generic method to correctly modify SWAMP client’s GUI controls specified in the

contents of the REACT element (Table 24).

Table 22: Methods used to control the TTS engine.

Method

Description

Speak(WCHAR *phrase)

Synthesise the contents of the string phrase. In
addition information such as emphasis, pitch etc.
can be embedded in the gring using xml tags.

SetVolume(int level)

Set the volume of the synthesised output to level
(a value between 0 and -100).

ChangeV oice(Cstring voice)

Changethe current TTS engine, to the TTS engine
named voice. Of course voice must be installed
and SAPI compliant.

SetSpeed(int level)

Setsthe talking speed of the TTS engine (a value
between —10 and 10).

Table 23: Methods used to control the ASR engine

Function

Description

ActivateSAPIRUle(WCHAR *rule)

Activate the SAPI rule with thenamerule.

DeactivateSAPIRule(lWCHAR *rule)

De-activate the SAPI rule with thenamerule.

StopASR()

(Temporary) stops the recognition engine. (Only
has effect if the engineis active)

L oadGrammar(Cstring file)

L oad the grammar from the file named file

LoadUserNames() Dynamically load the list of usernamesinto the
grammar.

LoadL ocations() Dynamically load the list of Location namesinto
the grammar.

LoadProjectI Ds() Dynamically load the list of Project ID’ s into the
grammar.

LoadCar|Ds() Dynamically load thelist of Car ID’sinto the

grammar.

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Table 24: Methods used to manipulate GUI controls

Function Description

HandleAction(Cstring id Cdaring param) | Theid parameter defines what action to take
and the param parameter specifies the
parametersfor that action.

6.4 Al part

In Figure 6.2-1 a graphical overview of the architecture of the dialogue manager was given. The
figure showed the division of the dialogue manager in a C++ part and an Al part. The function of
the Al part isto represent and reason with the knowledge available so that natural dialogues with
the user can be achieved. The process of extracting the users' goals from recognised speech and
taking the appropriate actions to achieve those goal s requires some kind of reasoning. In
particular given thefact that the users' utterances are context sensitive and sometimes ambiguous.
Therefore an internal model of the real world must be maintained within the dial ogue manager,
because only then can the utterances be put in the correct and proper context (see Example 2). In
the Al part of the dial ogue manager used artificial intelligence tools were used as an aid to build
and maintain thismodel.

Example 2: An example of a context sensitive user utterance

If the user uttersthe phrase: “How long?’ he can mean (depending on the context):
- How long isthetraffic jam?
- How long do we have to wait?

Further applications of reasoning in the dial ogue manager include questions on when and how to
prompt for information (section 6.1), when to ask for confirmation and clarification and how to
handle errors and ambiguity in speech (section 6.1.3) etc. Thetool used to implement the Al part
is CLIPS. In this section the chosen reasoning model and the implementation of this model in
CLIPS will be discussed.

6.4.1 Thereasoning model

In the design of systemsthat are required to perform high-level management and control of tasks
in complex dynamic environments a number of different approaches have emerged as candidates
for reasoning models. In the choice for a suitable reasoning model for the dial ogue manager (one
that is capable of adequately describing the reasoning behaviour of the dialogue manager), itis
important to distinguish practical reasoning from theoretical reasoning. Theoretical or deductive
reasoning is concerned with valid inference: with what follows from the literal meaning of the
premises [Bell J1992]. Practical or pragmatic reasoning is concerned with what follows from the
premises given a context and is more directed towards actions. Clearly the latter type of reasoning
model is more suitable for the dialogue manager. Ultimately, the Belief-Desire-Intention (BDI)
model [Wooldrige 2000] is chosen as thereasoning model for the dial ogue manager. The BDI
model hasitsroots in the philosophical tradition of understanding practical reasoning in humans.
It getsits name from thefact that it uses beliefs, desiresand intentionsin rational action. What
makes the BDI model particularly interesting isthat it combines three important elements:

55

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

1. Itisfounded upon awell-known and highly respected theory.
2. It has been implemented and successfully used in a number of complex fielded applications
3. Thetheory has been rigorously formalised in afamily of BDI logics.

Figure 6.4-1 describes an algorithm of a basic control loop for a BDI agent; this control [oop fits
the desired behaviour of the dialogue manager quite well. In an implementation of a dialogue
manager according to this modd, the dial ogue manager continuously executes a cycle of
observing the world and updating its beliefs, deciding what intention to achieve next, determining
a plan of some kind to achieve this intention, and then executing the plan. The purpose of the
above and following (section 6.4.3) formalisation isto build aformally verifiable and practica
system. Thisformalisation can be used to specify design, and verify that the system, when placed
in theright environment, will exhibit all and only the desired behaviours.

Algorithm BDI agent control [oop
1. Whiletrue
2. Observe the world;
3 Update internal world model
4, Deliberate about what intention to achieve next;
5. Use means-ends reasoning to get a plan for the intention;
6 Execute the plan
7. Endwhile

Figure 6.4-1: A basic BDI agent control loop

6.42 TheCLIPSengine

In this project, CLIPS is used to implement the BDI reasoning modd discussed earlier. CLIPSis
arule-base expert system tool devel oped by the Software Technology Branch (STB),
NASA/Lyndon B. Johnson Space Centre. The reason why it is chosen instead of a normal
procedural language is very simple: The common approach to building applicationsisto
understand the desired behaviour firgt, and then try to code this behaviour. Using a procedural
language (e.g. C++), the specification of what should be done as well as how it should be done
must be coded. For a complex task the control logic quickly becomes difficult to write, debug and
maintain. A rule-based expert system such as CLIPS alows us to avoid, to some degree, the last
step. Furthermore CLIPS is freeware and can be easily embedded into a C++ application. The
CLIPS engine consists of three basic e ements:

Table 25: Basic elements of the CLIPS engine

Element Description

Facts Initial facts are defined in the swamp.clp file, while new facts are
asserted and retracted at runtime. All input from SAPI or the main
application are also represented as factsin CLIPS. This explainsthe
“assert” keyword in the messages to the CLIPS engine (section 6.3.3),
as assert isthe CLIPS command to insert afact into the fact-list.
Knowledge-base | The knowledge base is the knowledge representation component in
the CLIPS engine. Knowledge is represented in the form of rules,
which specify a set of actions to be performed for a given situation.
Therules are defined in swamp.clp.

56

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Inference engine | Theinference engineis provided by CLIPS, it takes care of the
matching of the facts against therules. Thusit controls the overall

execution of the CLIPS engine.

6.4.2.1 CLIPSdata structures

In principle there are just two types of information sructures in CLIPS: facts and rules. Facts
represent a single chunk of truth within the CLIPS runtime. Each fact can be added using an
assert command, deleted using retract command or modified using retract followed by an assert
command. Rules specify a set of actions to be performed in a given situation. Rules are static and
cannot be changed. A ruleissmilar to an IF THEN statement in procedural programming,
therefore it is nothing more then a description of a set of conditions and a set of actionsto take if
the conditions aretrue. A rulein CLIPS hasthe following form:

(defrule <rule-name> [<comments>]

[<declaration>] _//Rule Properties
condition 1
: /Invocation condition
condition n
=> -
action 1
: /Body
actionn

Figure 6.4-2: Syntax of a CLIPSrule

A rulein CLIPS can be characterised by a body and an invocation condition. The body
(corresponding to the Right Hand Side (RHS) or the THEN part in an IF THEN statement) isa
list of actionsthat can be performed to achieve a particular state (corresponding to adesire in the
BDI model). The invocation condition defines the circumstances under which the dialogue
manager should consider therule (corresponding to the Left Hand Side (LHS) or theIF part in an
IF THEN statement). There are four kinds of rules:

Speech reactionrules | These rules contain actions that react to an utterance of the user.
Itis characterised by the RECOGNISE keyword in the
invocation condition of therule. The body of therule contains
actionsto take as aresult of the utterance.

GUI reactionrules These rules contain actionsto perform asaresult of GUI
messages. They are characterised by the GUIMSG keyword in
the invocation condition of the rule. The actions in the body of
these rules consist of updates of facts (theinternal presentation
of thereal world) brought about by actions on the GUI.

Management rules The purpose of management rules isto manage the state of the
system.
Belief rules These rule describe the generd relationship (implication)

between certain facts.

57

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

6.4.2.2 CLIPS execution

Execution of CLIPS can be represented as a sequence of Recognise-Select-Act cycles:

While (true)
Recognise //The current facts are matched against the invocation
/[condition of therules. Rulesthat match are //“instantiated”

Select //Selection of the ingtantiation to be fired
Act //Executing the body of the selected instantiation
End while;

Figure 6.4-3: overview of the CLIPS execution cycle

In the recognise step, the facts are matched against the left hand side of the rules. Theinference
engine takes care of thismatching. It is easy to see that the facts are the data that stimulate
execution of the CLIPS engine. In other words the CLIPS engine is data-driven. Execution cycles
continue as new facts are asserted and old facts are retracted during the course of the execution.

If theleft hand side of arule matches the facts, the rule becomes instantiated.

During one execution cycle more then onerule can be instantiated. In this case a sel ection needs
to be made among the ingtantiated rules. The selection processis called conflict resolution. The
precedence of an individual rule within conflict resolution can be set with the “ declare salience”
declaration: ahigher salience gives arule ahigher priority. Otherwise the depth first strategy
(activated rules are placed above all rules of the same salience) isthe strategy for conflict
resolution. Once an instantiation has been selected, the body of the instantiation is executed in the
last step of the cycle.

6.4.2.3 Embedding CLIPS

The CLIPS systems may be executed in three ways: interactively using asimple, text-oriented,
command prompt interface; interactively using a window/menu/mouse interface; or as embedded
application in which the user provides amain program and controls execution of the system
[NASA1 1993]. In this project, CLIPS is used in the latter fashion: as an embedded system in the
SWAMP client application. Needless to say, the SWAMP client acts asthe main program that
controls the execution of CLIPS. The SWAMP client first initialises CLIPS by calling the
function InitializeCLIPS. Then the appropriate constructs (in the file swamp.clp) are loaded. After
that areset and arun command isissued to reset the runtime environment and build theinitial
model of the world. This concludes the initialisation; the embedded CLIPS system isnow ready
to accept events. Whenever an event occurs the trandation function of the dial ogue manager
trandatesit into a corresponding fact and sendsit to CLIPS. Once again therun command is
issued to allow the appropriate rules in CLIPSto execute as theresult of the appearance of the
new fact. Afterwards the output (and/or errors) of the CLIPS engineis collected and processed.
Above discussion is summarised in Figure 6.4-4.

58

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Initialise CLIPS
Load “swamp.clp” Loads a set of constructsinto the CLIPS
Reset Resets the CLIPS environment
Run Runinitial rules
While (event)
Sendinput(event) Send input to CLIPS
Run Allow rules to execute, as a result of the new input

Receiveoutput(stdout) Receive output from CLIPS
Receiveoutput(stderr) Receive errors from CLIPS
Process output

End while

Clean up CLIPS

Figure 6.4-4: Embedded CLIPS control loop

When running CLIPS as an embedded application, many of the capabilities availablein the
interactive interface (the un-embedded version of CLIPS) are also avail able through function
calls. Callsto CLIPS are made like any other subroutine. The functions are documented in the
advanced CLIPS programming manua [NASA2 1993]. Prototypes for these functions can be
included by using the clips.h header file. Some of these functions are used in the SWAMP client
to collect the status of the CLIPS engine (fact list, agenda etc.) for debugging needs.

6.4.3 Knowledge representation

Thereisa straightforward mapping between entities in the BDI model and the abstract
information structures of the dia ogue manager. Beliefs correspond to information the dialogue
manager has about the red world: the state of SWAMP (section 4.1.3.1). These beliefs may be
incomplete or incorrect. Desires represent the goal s of the dial ogue manager: successful dia ogues
with the user. Finally, the intentions represent the desires the dia ogue manager has committed to
achieving. Asthereasoning part of the dialogue manager isimplemented in CLIPS, there must
also exist a correspondence between concrete CLIPS data Sructures and the entitiesin the BDI
model. The relationship between each entity in the BDI model and its CLIPS counterpart is
discussed next.

Beliefs

Beliefsin the BDI model areimplemented as facts and rulesin CLIPS. Facts are used to construct
the dial ogue manager’ sinterna representation of the world. Facts can be seen as propositions and
thus can only consist of a set of literalswithout digunction or implication. Therefore special rules
(belief rules) are used to compl ete the representation of beliefs. Belief rules represent the general
relationship between facts (e.g. IF utterance=help THEN AlertLevel=high).

Desires

One way of modelling the behaviour of BDI reasoning [Rao 1995] iswith a branching tree
structure, where each branch in the tree represents an aternative execution path. Each node in the
structure represents a certain state of the world, and each transition a primitive action made by the
system, a primitive event occurring in the environment or both. In this forma model, one can
identify the desires of the system with particular paths through the tree structure.

The above description of the branching tree structure islogically similar to the structure of the
dialogue flow diagrams described in section 6.1.2. In fact, both structures represent exactly the

59

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

same; a path through the dialogue flow diagram is a successful dialogue, which isalso adesire
and therefore a path through the branching tree of the BDI reasoning model. As aresult, the
dialogue flows diagrams can be treated as the structures that describe the behaviour of the
dialogue manager. They are directly implemented in CLIPS rules, each rule corresponds to a
branch in the dialogue flow. Rules are both the meansfor achieving certain desires and the
options avail able for the dial ogue manager. Each rule has a body describing the primitive sub
goals that have to be achieved for rule execution to be successful. The conditions under which a
rule can be chosen as an option are specified by an invocation condition. The set of rulesthat
make up a path through the dialogue flow, correspond to adesire.

Intentions

The set of rules with satisfied invocation conditions at atime T (the set of instantiated rules)
correspond to the intentions of the dial ogue manager at time T. Obvioudy the intentions of the
system are time dependent. The dial ogue manager adopts a single-minded commitment Srategy,
which allows continuous changes to bdliefs and drops its intentions accordingly. In other words
the intentions of the system can be affected by the utterances of the user in contrast to blind
commitment in which an intention is always executed no matter changesin beliefs.

6.44 Heurigticsfor thetrandation from dialogue flow diagram to CLIPSrules

In the previous section it was shown that the desires of the dialogue manager component in the
SWAMP client can be represented by dial ogue flow diagrams. The flow diagrams are
systematically trandated into an executable system formulated in CLIPS rules. This section
discusses the implementation of the desires. In particular the heurigtics used for the trandation
from dialogue flow diagramsto CLIPSrules.

N1
KM registration

B1
U: Change trip
type utterance

D1
Utterance contains
ew trip type

D2
rip type is business

A A

B2 B3 B4
S: Set business S: Set private trip S: What is the trip

trip type
! ! !

v v v

Figure 6.4-5: Dialogue flow diagram for the heuristics example

Suppose we must transform a dialogue flow diagram as in Figure 6.4-5. (The start of the KM
registration service). This dialogue isinitialised when the user utters a phrase that matches the
grammar for a change trip type utterance (box B1). Notice that box B1 has 3 branches (to the

60

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

boxes B2, B3 and B4), furthermore we see that the action in B1 is a speech action from the user.
From this we conclude that the dial ogue flow should be implemented using 3 speech rules. The
invocation conditions for each rule are the eval uated values of the expressionsin the decision
diamonds D1 and D2. The body of each rule contains the actions specified in the corresponding
destination boxes. Furthermore, the body of the rules a so contain actions to anticipate what
follows after the action e.g. after box B4 the user must supply the new trip type so the grammar
rules for trip type utterances should be activated.

Theresulting 3 CLIPSrules are presented next.

The firg rule correspondsto the branch from box B1 to B2 in Figure 6.4-5. The property name
TripType with value business satisfies condition D1 and D2. The actions taken satisfy B2
(between the <SAY > tags) and anticipate future utterances of the user by activating the yes-no
grammar rule. The other actionsin the rule body are used to update the internal representation of
the world.

(defrule KM Registration Business

?in<- (RECOGNISED 161 VID KMREG TRIPTYPE 50 TripType business)

?pos<- (POSITION MAIN RUNNING)

=>

(printout t "<SAY>Do you want set the triptype to business?</SAY>
<ACT>VID7YESNO</ACT>
<DEACT>"?*Mainrules*"</DEACT>
<REACT></REACT>" crlf)

(retract ?in)

(retract ?pos)

(assert (POSITION MAIN KMREG))

(assert (WANT CONFIRM))

(assert (QUESTION KMREG business))

The second rule corresponds to the branch from box B1 to B3 in Figure 6.4-5. The property name
TripType with value private satisfies condition D1 but not D2. The actions taken satisfy B3
(between the <SAY > tags) and anticipate future utterances of the user by activating the yes-no
grammar rule. The other actionsin the rule body are used to update the internal representation of
the world.

(defrule KM Registration_ Private

?in<- (RECOGNISED 161 VID KMREG TRIPTYPE 50 TripType private)

?pos<- (POSITION MAIN RUNNING)

=>

(printout t "<SAY>Do you want set the triptype to private?</SAY>
<ACT>VID7YESNO</ACT>
<DEACT>"?*Mainrules*"</DEACT>
<REACT></REACT>" crlf)

(retract ?in)

(retract ?pos)

(assert (POSITION MAIN KMREG))

(assert (WANT CONFIRM))

(assert (QUESTION KMREG private))

The third rule corresponds to the branch from box B1 to B4 in Figure 6.4-5. Because thereisno
property name both conditions D1 and D2 fail. The actions taken satisfy B4 (between the <SAY >

61

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

tags). Future utterances are anticipated by the activation of the VID_TRIPTYPE_ONLY grammar
rule. The other action commands serve as updates of the internal model.

(defrule KM _Registration No Triptype
"User wants to register KM level but no trip type is given"
?in<- (RECOGNISED 161 VID KMREG TRIPTYPE 50)
?pos<- (POSITION MAIN RUNNING)
=>
(printout t "<SAY>Is it a business or a private trip?</SAY>
<ACT>VID TRIPTYPE ONLY< /ACT>
<DEACT>"?*Mainrules*"</DEACT>
<REACT></REACT>" crlf)
(assert (POSITION MAIN KMREG))
(retract ?pos)
(retract ?in)

62

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

7 Tes

Testing and evaluation play an important part in the software devel opment cycle. The main reason
for testing software isto determine whether the specifications have been met [Pressman
1994].Testing of a speech interface in this case has an additional goal: to determine the usability
of the speech interface and whether the interface isindeed an improvement on alternative
interfacing methods. For applications that are designed to run while the user is s multaneously
performing other tasks, yet another test can be conducted. Thistest is needed to determine that the
application does not pose too much distraction to the user, that heis unable to concentrate on the
most important task at hand. A common method used to test thisiswith workload assessment
techniques [Yangl 2001]. Because the chosen implementation strategy of the SWAMP clientis
rapid prototyping with extengve iterations, testing was already done during implementation. But
these tests consisted mainly of functional and dialogue testing. The final test of the SWAMP
client prototype however, is a usability test. This chapter discusses the usability tests that were
performed (after an acceptabl e prototype was compl eted).

7.1 Test parameters

The main reason for testing software isto determine whether the specifications have been met. In
order to test an application according to this definition, some questions have to be answered (e.g.
what is the application to be tested?, what are the specifications of the application?).

Having these answers on paper can save alot of time and trouble during testing, furthermoreit
serves as a basi s through which the test results must be viewed and test results from other smilar
applications can be compared. This section gives the answer to the most important of these
questions.

Test environment The test environment is a slent room with only the tester, the test
subject, and a computer running the SWAMP client present.

Test procedure o At thedtart of the usability test the test subject getsa
description of the SWAMP application and its services.
Furthermore heisinformed about the test procedure.

e Theapplication to be tested (the SWAMP client) isrunning on
alaptop (PI11 500). During the test GUI input can be given
through the keyboard of the laptop and amouse. SUI input is
given through a noise-filtering microphone and speech output
comes from the internal speakers of the laptop.

e During atest session thetester sitsnext to the test subject. The
test subject gets alist of tasks to perform usng the GUI aswell
asthe SUI (but not in combination).

e Eachtest runisrepeated three times but under different
circumstances (see section 7.3). During each run, the user has
to perform the tasks two times, once using only the GUI and
once using only the SUI.

e Thetester writes down thetimeit takes to successfully perform
each task, furthermore the number of utterances, false
recognitions, and successful recognitions are noted.

e If theuser gets stuck somewherein the process the tester is
allowed to complete the task for him, so that the test subject
can continue with the next task.

63

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Scope The attributes tested are: grammar, quality of the speech engines,
quality of dialogue manager, completeness of the designed
dialogues.

Quality attributes Usahility of the speech interface
Test Basis The speech interface of the SWAMP client

Acceptation criteria No acceptation criteria are defined, we want to get an indication of
the usability of the speech interface in comparison to the graphical
user interface.

Number of test 12
subjects

7.2 Number of test-subjects

Research [Nielsen 1993] has shown that the number of usability problemsfound in a
usability test with n usersis:

N*1-(1-L)"

Where N isthe number of usability problemsin the design and L is the proportion of
usability problems discovered while testing a single user. The typical value of L is 31%, averaged
across alarge number of projects studied. Figure 7.2-1 shows the curve of the equation for
L=31%. The figure shows that as more users are added, less and |ess new problems will be found,
so thereisno real need to test further. After the fifth user, it isawaste of time by observing the
same findings repeatedly. Time can be better spent to solve the usability problems encountered.
To get satigtically significant results, the choice of the amount of test-subjects has been increased
to twelve. Thetest subjects were students from the University and employees of CMG. There
were 10 males and 2 femalesranging in age from 19 to 30 with little or no experience with the
speech interfacing technology in the SWAMP client. Since the subjects were novices, any
qualitative differences between speech and other media were more likely to be noticed. Subjects
with prior experience may have already adapted to these differences and could overlook them
during the experience.

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

5 100%
oy
3
by

75%
['7]
=
Q
Eal

50%

e 0
o
Py

2 25%
0
mn
3

0%

0 3 6 9 12 15
Number of Test Users

Figure 7.2-1: Curve of the number of usability problems found in usability test with L=0.31

7.3 Test scenarios

During the usability test, the test subject is asked to use the SWAMP client to perform a
set of tasks according to a predefined scenario. Thelist of tasksis presented on a sheet of paper
(Table 26). The tasks are written in such away that it does not reveal the underlying grammar of
the speech interface. Thetest isdivided into three test runs. In each test run the test subject hasto
perform the same tasks first using only the GUI and then using only the SUI. Each testrun is
conducted under different circumstances:

Run number 1

Situation Without prior knowledge of the SWAMP clients grammar.

Description In this situation, the test subject must try to perform the tasksled only by his
intuition. This gives the grammar designer a chance to test whether the
corpus is complete enough or needs to be extended. As mistakes and
exceptions are bound to occur, the dialogue designer can also deduce if the
designed dialogues are robust enough. Furthermore, the user gets the chance
to familiarise with the system.

Run number 2

Situation With knowledge of the grammar of the SWAMP client.

Description After the previous test run, the test subject gets an evaluation of his

performance during therun. The tester explains to him what went well but in
particular what went wrong and how he can correct that. During the second
test run the user hasto perform the same tasks of the previous run again.
Usually thereis an improvement in the success rate of the dialogues
compared to the first test. The amount of improvement in the second test run
gives an indication of the willingness of the usersto adapt to the speech
interface. Also, the comments the test subject has after thistest are a better
indication of the probahility of acceptance of the speech interface in real
circumstances.

65

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Run number 3

Situation Same as run number 2, but with another attention demanding task to
do.

Description Thistest set-up is based on the workload assessment technique called:

Secondary task measures [Yangl 2001]. In this situation the user
concurrently performs two tasks. The first task isto perform the tasks
specified in Table 26 with the SWAMP client (once with SUI and
once with GUI). The second task isto play a game of Tetris (level 1)
on amobile phone. Thistask is chosen to resemble car driving (at least
one hand of the test subject is aways occupied, the test subjects must
make decisions at times, and the tasks does not require to have his
constant attention). The results obtained from the previous test run
serve as baseline scores, which can be used later as a comparison. The
degree of the decrement in performance, when compared to the
baseline scores provides a measure for the workload of the task.

Table 26: List of tasks to perform for the usability test

7.4

1. Start the swamp client and log in with the following values:

- Name= <Y our name>

- Proect ID = SWAMP

- Ca ID = Ferrari

- Back office telephone number = 0651061625

(The original values where Tu, Timenet, Neon, 0651061625 respectively)

2. Once logged in change your trip type into private
3. Ask for directionsto CMG Rotterdam
4. Change trip type into business with project ID timenet

5. Something is wrong with the car: call ANWB

6. Arghh, call help

Results and discussion

The previous sections presented the test method and other test parameters of the usability test

conducted on the speech interface of the SWAMP client. In this section theresults of the usability

testswill be presented and discussed.

66

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

741 Recognition rate

Table 27: Number of false and successful recognitions of utterances for each of the test subjects per test run.

Test Run False Good Test Run False Good
number Reco Reco number Reco Reco
1 22 22 2 16 21
1 30 16 2 13 17
1 15 20 2 16 20
1 23 13 2 5 16
1 18 11 2 27 18
1 18 9 2 13 18
1 21 23 3 7 19
1 32 16 3 4 22
1 26 22 3 4 21
1 26 10 3 16 20
1 7 16 3 9 18
1 33 1 3 18 18
1 11 15 3 2 20
2 12 24 3 3 19
2 7 20 3 8 21
2 9 19 3 12 17
2 13 16 3 3 17
2 8 16 3 24 23
2 11 21
40
301
201
5
g
5 104
o
g -Good recognitions
€
2 0 . . . |:|False recognitions
1 2 3

Test Run number

Figure 7.4-1: Average number of (good/false) utterances needed to complete the six tasks per test run

Figure 7.4-1 shows a graph containing the average number of utterances uttered by the test
subjects in each test run. Furthermore the ratio of good and fal se recognitions (recognition rate) is
indicated in the figure. The result is not a good measurement for the recognition quality for the

67

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

speech recognition engine, because some fal se recognitions occurred as aresult of utterances
made up of grammar that was not modelled in the grammar of the dialogue manager. This
occurred more frequently in the first test run then in the others. Furthermore some false
recognitions occurred asresult of plain misuse of english grammar by test subjects!

Theresults do show that the number of utterances needed to successfully complete the tasks
decreases with each test run (as the user becomes more familiar with the grammar of the speech
interface). It can aso be seen that the percentage of successfully recognised utterances also
increases with each test run. Furthermore the added attention needs in test run 3 hasno significant
impact on the recognition rate.

7.4.2 Timetocompletion

Table 28: Time needed to complete the tasks with the GUI and with the SUI by each of the test subjects per test run.

Test Run GUI time | SUITime TestRun | GUItime | SUIl Time

number (s) (s) number (s) (s)
1 118 301 2 53 134
1 20 360 2 55 143
1 98 327 2 38 180
1 79 228 2 44 169
1 88 357 2 76 225
1 115 330 2 37 245
1 58 271 3 82 210
1 175 329 3 53 124
1 84 364 3 77 144
1 58 147 3 45 109
1 39 224 3 84 242
1 98 327 3 70 125
1 55 230 3 54 128
2 37 154 3 96 189
2 36 116 3 68 112
2 48 210 3 67 151
2 0 164 3 87 108
2 37 211 3 78 228
2 36 176

68

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

400
300
200
@]
100 -
L é % |:|GUI time (sec)
£
= 0 -Total SUl Time (s)

1 2 3

Test Run number

Figure 7.4-2: Box plot of the time needed to complete the tasks with the GUI and with the per test run.

Figure 7.4-2 shows a box plot of the time needed to complete the tasks with the GUI as well as
with the SUI. Both SUI and GUI show a decrease of the time needed to complete the tasks, asthe
user gets more familiar with the interfaces. The decrease in the needed timeis greater with the
SUI then with the GUI. As can be seen, test subjects accomplish the tasks faster with the GUI by
default. On the other hand, the attention needs for working with the GUI is greater than with the
SUI, thisisreflected by an increase in completion timein the third test run (while that of the SUI
gtill shows a decrease).

7.4.3 Successrate

Table 29: Number of test subjects to successfully complete each task per test run.

Test Run number 1 2 3
Task 1 11 11 12
Task 2 10 12 12
Task 3 5 10 11
Task 4 10 12 12
Task 5 1 12 12
Task 6 10 12 12

69

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

110

100

90 1

80 1

70 1

60 -

50 -

40 1

S

o 30

S

g 204 |:|Run1
(%]

8 10 |:|Run2
g

n 0 |_ -Run3

1 2 3 4 5 6
Task number

Figure 7.4-3: Successrate per task for each test run.

Table 29 shows the number of test subject (out of 12) to successfully complete each task per test
run. The percentage version of this data (success rate) is shown graphicaly in Figure 7.4-3. The
figure shows that the success rate increases dramatically between the first and second run.
Between the second and third run the increase is much less apparent. Thisindicates that the
speech interface isnot very intuitive, but once the user getsit right once (if he successfully
completes atasksin atest run), he will have much more success with the task in the next run.

7.4.4 Other results

Apart from the numerical data, test subjects comments on the user friendliness and usability of
the speech interface are very important. The overall impression of thetest subjectsis that
interface is very usable and works fine if everything goes well (if utterances are recognised,
dialogues go smoothly etc.). But if something goeswrong (if an exception occurs e.g. false
recognition, mis-understanding) it is very difficult and/or frustrating to correct the error.

The most heard comment on the user friendliness was the lack of good and clear feedback in
exception situations e.g. thetest subjects would like to know (at each moment) what the speech
interface expects from them for example alist of speech options on the computer screen or a
warning if the user keeps saying the wrong things.

The lack of speech options (because of alimited corpus) however, presented no problems for the
test subjects. Thetest subjects automatically adapted to the grammar of the speech interface with
each test run. Thisisreflected by a change in intonation and speaking style, leading to ahigher
recognition and success rate.

After thetest, most test subjects would prefer to use the speech interface rather than the GUI in
car driving interaction. Thereason for thisis that the SUI is much more natural and less attention
intensive then the GUI. The opinions on the representativeness of first level Tetriswith car
driving however were divided. Most test subject stated that car driving is more attention intensive
then playing Tetris.

In the eyes of the test subjects the unreliability of the recognition and the difficulty in correcting
errors pose the biggest problems for the acceptance of the speech interface for the big public.

70

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

8 Conclusions and recommendations

8.1 Conclusionsdrawn from thiswork

Firg it can be concluded that the speech interface is capable of handling simple dia ogues well
and gracioudly. Furthermore, the use of CLIPS as knowledge processing component makes the
dialogue manager very flexible. Nevertheless, no decisive conclusion can be drawn about the
question if the SUI is better suited then the GUI, since the speech interface is not thoroughly
tested and certain key factors (e.g. background noise) have been I eft out of the scope of the
project. The usability test, however shows that once these technical problems are solved, the SUI
is definitely more suitable then the GUI in car driving interactions.

Although the synthesised speech did not sound very well it was still understandable, the
performance of the ASR engine was quite good. An explanation for thisisthe use of a specialised
grammar that limits the words that are recognised. Combined with the flexibility of SAPI5 and its
ease of use, the choice of third party speech software was a good one.

The complexity of the dialogues grows dramatically as more services are added. Thisis caused by
the fact that the environment gets more complex as more and more environment variables have to
be taken into account into the reasoning process. The user is presented with more choices, and all
choices need to be handled. E.g. the user can jump from one service to another (with more
services, more jJumps are possible) and the interface has to take care of a graceful trangtion from
one service to another. The use of generic dialogue flow diagramsto visualise and model
dialogues has contributed greatly to the containment of the complexity. Furthermore, these
dialogue flow diagrams can easily and systematically be trandated into executable CLIPS rules.

Theresulting grammar file and CLIPS file however, are till very big, complex and hard to read.
Asthefiles get bigger, it aso becomes easier to make mistakes (for this reason the size of the
corpus per service has been kept low). The problem isalso increased by the fact that CLIPS has
norigid syntax checking facility. Thereisalso no strong typing and variable names do not have to
be declared beforehand. This makesit very hard to spot and correct a typing mistake. The
conclusion isthat it ishard to build a complex robust reasoning system, without help of a special
tool. Therefore, it ismy opinion that dialogue management building tools needs to be used to aid
the construction of dialogue grammars and (or especially) the construction of the reasoning
system. A survey of six tools providing functionality for dialogue management tasks can be found
in [disc 2000].

Initially UML was used as design methodology to design the speech interface, but it did not work
out as well as expected. In the end, the design was hardly used and had to be updated and
modified constantly. My conclusion is that a good methodology to design and model speech
dialogue systems is needed. Traditional methodol ogies are not sufficient: it isnot suitable to
represent dial ogue driven systems, which are essentially dynamic and non-deterministic, with
static design models.

71

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

8.2 Remaining work and possible improvements

This section discusses the remaining work and possible improvements on the SWAMP
application. The discussion is divided into speech interface related improvements and other kinds
of improvements.

Speech interface related

I mpr ovement Description

Bigger corpus A corpus of about fifteen utterances was used for each
service. Thisistoo small to construct ardiable and robust
grammar. A larger corpus of utterances per serviceis
needed. On the other hand, alarger corpus also increases
the complexity of the grammar.

Measure attention Attention demands for interactions with the speech
demands interface are not measured. It is very important to verify
that working with the SWAMP client does not cause
information overload. Since one of the goals of allowing
the use of speech to access to the services of SWAMP was
to increase the safety of the driver it hasto be tested if this
isindeed the case.

Multiplerule One of the most annoying deficiencies of the speech
recognition interface isthat it cannot recognise an utterance that
conforms to a combination of grammar rules (unless
explicitly specified in the grammar fil€). Thisisnot caused
by aflaw in the design or implementation of SWAMP, itis
just not supported by SAPI5. Consequently, utterances that
conform to a combination of grammar rules are also not

handled by the dia ogue manager.
Layered prompting One of the most heard comments on the speech interface
approach was the lack of good clear feedback in exception situations.

The layered approach to designing dialoguesisa
combination of short conversational prompts with longer
prompts that are more direct. E.g. when the user does not
respond in a predetermined time, the system quickly
presents a more directive prompt.

Dialogue management | One of the conclusions drawn from the work was that

tool dial ogue management tools are needed to:

- Check the consistency and completeness of dialogues
- Give better overview of the implementation process

- Automatic generation of grammars

Other improvements
I mpr ovement Description

Port to CE The SWAMP client is developed on an NT platform andis
meant to be a prototype to demonstrate speech interfacing.
Special emphasisis put on the word prototype becauseit is
far from a complete commercial product. First it hasto be
ported to CE.

72

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

Build a better
communi cation method
between SUI and GUI

No consideration was given on the possibility of speech
interfacing during the design and implementation of the
GUI. As the Speech interface had to be build to work next
to and together with the GUI thisresulted in difficultiesin
communication and synchronisation between both
interfaces during implementation. Since the GUI was
aready there and the speech interface had yet to be build.
Eventually, the synchronisation was established using the
hack and crack method: identify where mis-synchronisation
occur during testing and then solve problem. Thisisnot the
most e egant solution, as the source code becomes
unreadable.

Implement new
services in the Back
Office

New services are implemented in the SWAMP client, but
not in the SWAMP server. This has yet to be done, but
shouldn’t be abig problem.

Background noise

The problem of background noise has been |&ft out of the
scope of the project. Neverthelessit isa serious
requirement of the SWAMP client to be able to function
around heavy background noise, sincethisis quite common
in its destined working environment. Without the ability to
function under noisy circumstances the speech interface in
SWAMP hasno commercial value,

73

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

9 References

9.1 Books

[Boullart 1992]

Boullart, L., “A gentle Introduction to Artificia Intelligence”, In Boullart. L, et al. (eds), in
Boullart, L. et. al. (eds.), “Application of artificial intelligencein process control”, 1992,
Pergamon Press Itd., Oxford, England p5-40.

[Chapanis 1981]

Chapanis, A. “ Interactive Human Communication: Some lessons learned fromlaboratory
experiments’, 1981, In: Shackel, B. (eds). “Man-Computer Interaction: Human Factor Aspects of
Computers and people”, Rockville, MD: Sijthoff and Noordhoff, pp. 65-114.

[Nusbaum 1995]
Nusbaum, H. C. et al., “Using Speech recognition systems: Issues in cognitive Engineering”, In:
Syrdal A. et al. (eds), “ Applied Soeech Technology”, 1995, Boca Raton, CRC press, pp. 127-194.

[Wooldridge 2000]
Wooldridge, M, “Reasoning about Rational Agents’, The MIT Press, Cambridge, Massachusetts,
2000.

[Rudnicky 1995]
Rudnicky, A. 1., “The design of spoken language interfaces’, In: Syrdal A. et a. (eds), “Applied
speech technology”, Boca Raton, CRC press, 1995, pp. 403-427.

[Box 1999]
Box, D., “Essential COM”, Addison Wesley Longman Inc., Reading Massachusetts, 1999.

[Russell 1995]
Russdl, Set. d., “ Artificial Intelligence: a modern approach”, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1995.

[TCG 1998]
Test Consultancy Group, “Testen voor 1&1'ers, De theoriein praktijk”, Testconsultancy Groep,
Groningen, may 1998.

[NASA1 1993]

Software Technology Branch Lyndon B. Johnson Space Center, “ CLIPS Reference Manual
Volume 1, Basic Programming Guide Version 6.0", Software Technology Branch Lyndon B.
Johnson Space Center, June 1993.

[NASA2 1993]

Software Technology Branch Lyndon B. Johnson Space Center, “ CLIPS Reference Manual
Volume2, Advanced Programming Guide Version 6.0” , Software Technology Branch Lyndon B.
Johnson Space Center, June 1993.

[Pressman 1994]

Pressman, R., “ Software Engineering: A Practitioner’s Approach”, McGraw-Hill Companies,
1994,

74

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

9.2 Papers/ articles reports

[Page 1998]
Page J.H., “The Laureate Text-to-speech System Architecture And Applications’, In: Westall, F.A.

et a (eds), “ Speech Technology for Telecommunications’, 1998, T.J. International Itd, Padstow
Cornwall, pp. 127-148.

[Nielsen 1993]
Nielsen, J, et. al., "A mathematical model of the finding of usability problems,” Proceedings of
ACM INTERCHI'93 Conference (Amsterdam, The Netherlands, 24-29 April 1993), pp. 206-213.

[Achterhof 2000]
Achterhof, 1., “Ids scriptie, The WAM-Pilot project”, CMG TTI, Rotterdam, 2000.

[van Egmond 1999]
van Egmond, R., “ Scriptie Wireless Automobile Messaging Pilot”, CMG TTI, Rotterdam, 1999.

[van Breda 1999]
van Breda, E., “ Scriptie, WAM-Pilot T3”, CMG TTI, Rotterdam, 1999.

[Yangl 2001]
Yang, C.K., “Speech interfacing in the Wirel ess Automotive Messaging Pilot, Literature survey”,
CMG TTI, Rotterdam, 2001.

[Yang2 2001]
Yang, C.K., “ Soeech interfacing in the Wirel ess Automotive Messaging Pilot, Design Document” ,
CMG TTI, Rotterdam, 2001.

[Yang3 2001]
Yang, C.K., “ eech interfacing in the Wirel ess Automotive Messaging Pilot, grammar
specification”, CMG TTI, Rotterdam, 2001.

[Bell J1992]
Bell, J., “Pragmatic reasoning, a model-based theory”, Applied Logic Group, Computer Science
Department, Queen Mary and Westfield College, University of London, London, 1992.

[Rao 1995]

Rao, A. et d., “BDI Agents: From Theory to Practice”, Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), San Francisco, USA, June 1995.

75

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

9.3 Internet
(The links were last checked at: may 31st 2001)

[SAPI5 website]
Microsoft speech.net technol ogies home; http://www.microsoft.com/speech/.

[SAPIS5 third party]
This page contains a list of speech development or speech related companies who have
announced support for SAPI5; http://www.microsoft.com/speech/thirdparty/.

[CLIPS website]
CLIPS A Tool for Building Expert Systems; August, 1999; http://www.ghg.net/clips/CLIPS.html.

[Disc-2 website]
Spoken Language Dialogue Systems and Components: Best practice in devel opment and
evaluation; Esprit Long-Term Research; March 2000; http://www.disc2.dk.

[Design]

Design Guidelines for Voice User Interfaces,
http://www.mi crosoft.com/speech/techni cal/design.asp.

76

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

List of tablesand figure

TABLE 1: SERVICES OF THE WAIM PlLOT tuuuiiiiiiiiittii e ee ettt e e e e eeab s e e e s s eeabbs s s e s s s e sabba e eeanes 12
TABLE 2: OVERVIEW OF THE NEW SERVICES IN THE SWAMP APPLICATIONcceeeeeeeieieeeeeeeeeeee. 14
TABLE 3. REQUEST DIRECTION SMS MESSAGE FORMAT
TABLE 4: THE SPEED WARNING SMS MESSAGE FORMAT
TABLE 5: THE REQUEST TRAFFIC INFORMATION SM S MESSAGE FORMAT ..cceeeeeeiieeeeeeeeeeeeeeeeeeeee.
TABLE 6: THE REQUEST CORPORATE INFORMATION SM S MESSAGE FORMAT
TABLE 7: SERVICES OF THE SWAMP PROJECT AND THEIR SUITABILITY FOR SPEECH INTERFACING

TABLE 8: ACTIONSFACTORS AND THEIR ATTENTION NEEDS....

TABLE 9: THE OBIECTIVESOF THE SWAMP PROJECT . .coiiiiitieie ettt eera e
TABLE 10: COMPARISON BETWEEN THE CLIENT-SIDE APPROACH AND THE SERVER SIDE APPROACH
... 22
TABLE 11: IMPLEMENTATION DECISIONS. t.uuttiiiiittttiiieestieststssessseesssssnseessssssssssesssessssnnneeeenes 27
TABLE 12: IMPLEMENTATION STEPS...ccttttuitiieiiittttiisieessiesssssesssersssseeessrssrseessesssaan 29
TABLE 13: OVERVIEW OF THE FUNCTIONAL CATEGORIES OF THE SWAMP CLIENT’ SCODE 31
TABLE 14: CURRENT DEVELOPMENT STATUS OF THE SERVICES .. .ciivvtttiiiieeeieeesiiiiseeessessssnnseeeanes 31
TABLE 15: EVALUATION CRITERIA FOR THE SPEECH SOFTWARE.ccttttiiiieeiiiertiinseeessesssssneeeanes 32
TABLE 16: FUNCTIONS OF THE DIALOGUE MANAGER.......cctttttiiiiiieiiieiiiiiiseeesseesssissesssessssaeeeanes 40
TABLE 17: SPEECH CONTROL ELEMENTSDEFINED IN THE SAPI TTS XML SCHEMA..................... 42
TABLE 18 : PROMPTING TECHNIQUESeetiiutttteeteessiasttseeesesessasssssesssssssssssssssasssssnssssssessssssnnnes 45
TABLE 19: EXAMPLE DIALOGUE ..uuviiiiiittttie st eeeeeetttis s e e esseesbbassessssssabba s eesssessbbaasssesssessssaansaeeanes 46
TABLE 20: CORRESPONDENCE BETWEEN SAPI ELEMENTSAND CLIPS INPUT ELEMENTS.............. 52
TABLE 21: LI1ST OF DEFINED TAGS IN CLIPS OUTPUT MESSAGEScvvvtiiiiiieiiieiiiiineeeeeeeviinnseeeaes 53
TABLE 22: METHODSUSED TO CONTROL THE TTS ENGINE...vuuiiiiiiiieiiiie i eeeeeeeetin e e e s s eeebsi e eaes
TABLE 23: METHODSUSED TO CONTROL THE ASR ENGINE ..vvuuiiiiiieeitiieieeeeeeesviis e e e s s eeaasiseeeaes
TABLE 24: METHODSUSED TO MANIPULATE GUI CONTROLS
TABLE 25: BASIC ELEMENTSOF THE CLIPS ENGINE .. .oiiiiititie ettt eetvs e e raab e
TABLE 26: LIST OF TASKS TO PERFORM FOR THE USABILITY TEST ..citvvttuiiiieeiieerriiinseeessessssnnseeeanes 66
TABLE 27: NUMBER OF FALSE AND SUCCESSFUL RECOGNITIONS OF UTTERANCES FOR EACH OF THE
TEST SUBJECTS PER TEST RUN. t1ttutiittuuiierunieretutesstseesssseesssseesssseersseerssneerssineersneerns 67
TABLE 28: TIME NEEDED TO COMPLETE THE TASKSWITH THE GUI AND WITH THE SUI BY EACH OF
THE TEST SUBJECTS PER TEST RUN. 1ttuutitttutiietuiieietueersrueerssseesssseersssesrssneersssneerssnneersnns 68

TABLE 29: NUMBER OF TEST SUBJECTS TO SUCCESSFULLY COMPLETE EACH TASK PER TEST RUN. .69

FIGURE 2.1-1: THE HP JORNADA HANDHELD COMPUTER ..uuviiiiiiitiiiiseeseeisssiisseessseessssnsseessesssnes 10
FIGURE 2.1-2: OVERVIEW OF THE WAIM-CLIENT .. .ottt ettt eet s e s s s e e saba e e s s eeaaae 11
FIGURE 2.1-3:OVERVIEW OF THE WAM BACK OFFICE ..vvuuiiiiiiiiiiiiiei ettt eeavis e e s e eaaans 11
FIGURE 2.2-1: TYPICAL INFORMATION FLOW FROM CLIENT TO SERVERctttttiiiieeiieerriiinieeessennnnns 12
FIGURE 4.1-1: SERVER SIDE RECOGNITION APPROACHuuuiiiiiiiiiiiiiiiseesssessiiisseessseessssnsseessesssnes 21
FIGURE 4.1-2: CLIENT-SIDE RECOGNITION APPROACH ...cttuuniiiiiiiitiiiiseesseessssisseessseessssnssesssesssses 22
FIGURE 4.1-3:DEFINITION OF A TYPICAL USER OF THE SYSTEM ..cvvtvuiiiiiieiiieiiiiinieeesseesssnaseeesseensnns 24
FIGURE 4.1-4: SPEECH INTERFACE COMPONENTSciittttttiieeesitestssisseesssessssassesssesssssseesserssnes 26
FIGURE 4.2-1 OVERVIEW OF SWAMP IMPLEMENTATION ..t iiiiiettiieiseeeeeeetsiisseessseessssnssseessesssnes 28
FIGURE 4.2-2: OVERVIEW OF THE IMPLEMENTATION STRATEGY ..vtvvuiiiiieiiieiiiiiiieeesieessisnsneesseessnns 29
FIGURE5.1-1: SAPI 5 ARCHITECTURE OVERVIEW.....ccivttttiiiiieiiiesiiiiiseesssessssssseessseessssnseessesssnes 33
FIGURE 5.2-1 : OVERVIEW OF THE INFORMATION FLOW FROM THE UTTERANCE OF THE USER TO THE

PROCESSING OF THE RECOGNISED WORDS.....uuuiitttiiiettnieietstesesseesssseesssssesssseesssneessmens 35

FIGURE 5.2-2: INTERFACESOF SAPI5

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

FIGURE 5.2-3: SYNTAX OF A GRAMMAR RULE ..1tuutiiiiiiettiisieeesseettsiissseessssssbaansssessseessssnssesssesssnes 36
FIGURE 5.4-1: OVERVIEW OF THE INFORMATION FLOW FROM GENERATION OF TEXT MESSAGESTILL
GENERATION OF SPOKEN MESSAGE ...cvvuiiittiiiiitiieietieeistasesessessessessttesssessrersrersns 41
FIGURE 5.4-2: SAPI5 TTS RELEVANT OBJECTS AND INTERFACES. ..uuuiiiieiiietiiiiseeeeeeesriinseeesseennnns 43
FIGURE 6.1-1: A DIALOGUE FLOW DIAGRAM FOR THE KM REGISTRATION SERVICE.....cccceeeeunnnnnnn. 47
FIGURE 6.2-1: OVERVIEW OF THE DIALOGUE MANAGER ...uuuiiiiiiitttiiiseeeseeettisssessseessssanssesssessssns 49
FIGURE 6.3-1: FORMAT OF A SPEECH RELATED INPUT MESSAGE TO CLIPS......cooiiiiiiiiieieeeeeei, 52
FIGURE 6.3-2: FORMAT OF A GUI RELATED MESSAGE TO CLIPS ... 53
FIGURE 6.4-1: A BASIC BDI AGENT CONTROL LOOP.....cuttuiiiiiiiieitiiiiiseesseesssiisseessseesssseessesssnes 56
FIGURE 6.4-2: SYNTAX OF A CLIPS RULE ..ottt ee v e e n e eaaae 57
FIGURE 6.4-3: OVERVIEW OF THE CLIPS EXECUTION CYCLE ...ccivttttiiiieeieietiiiie e eeeeeerrin e e e e eeaanns 58
FIGURE 6.4-4: EMBEDDED CLIPS CONTROL LOOPccvtttiiiiiieiiieitiiei e eeseeettis s eesseessbaaseessseeasnns 59
FIGURE 6.4-5: DIALOGUE FLOW DIAGRAM FOR THE HEURISTICS EXAMPLE «..uuuuuuininnnnnns 60
FIGURE 7.2-1: CURVE OF THE NUMBER OF USABILITY PROBLEMS FOUND IN USABILITY TEST WITH
L=0.30 e 65
FIGURE 7.4-1: AVERAGE NUMBER OF (GOOD/FAL SE) UTTERANCES NEEDED TO COMPLETE THE SIX
TASKSPER TEST RUN ettutiitttttiittttetetueeresseeresatesssseesssseesssseessseersseerssneersnneereneerns 67
FIGURE 7.4-2: BOX PLOT OF THE TIME NEEDED TO COMPLETE THE TASKSWITH THE GUI AND WITH
THE PER TEST RUN . uuittuuiitttttetetteetesueesesseesstatesssseesssssterssstsssseersseerssnneersroneersneerns 69
FIGURE 7.4-3: SUCCESS RATE PER TASK FOR EACH TEST RUNcvtttuiiiieeiiirtiiiiieeeeseessssnseeesseessnns 70
FIGURE O-1: DIALOGUE FLOW DIAGRAM FOR MAIN LOGIN DIALOGUEuuuuuuuuuninnnnnnnnnnnnnnnnnnnnnnnnnns 91
FIGURE 0-2: DIALOGUE FLOW DIAGRAM FOR THE REQUEST BACK OFFICE TELEPHONE NUMBER SUB
DIALOGUE OF THE LOGIN DIALOGUE ..ccvvuiiittiiiiitiieeettiesstssesssssesssssesssssssssnesssssnsesssnneeees 92
FIGURE 0-3: DIALOGUE FLOW DIAGRAM FOR THE REQUEST TRIP TY PE SUB DIALOGUE OF THE LOGIN
[1Y @ T N 92
FIGURE 0-4: DIALOGUE FLOW DIAGRAM FOR THE REQUEST CAR ID SUB DIALOGUE OF THE LOGIN
[1Y @ T N 93
FIGURE 0-5: DIALOGUE FLOW DIAGRAM FOR THE REQUEST USERNAME SUB DIALOGUE OF THE
LOGIN DIALOGUE «.eettutiiitttieiettieiettsesessatesesssessssasssssssssessnetesssesssstetesstssesssersssneesessnrerees 94
FIGURE 0-6: DIALOGUE FLOW DIAGRAM FOR THE ANWB CALL DIALOGUE......uuuuuuuinnnnnnnnnnnns 95
FIGURE O-7: DIALOGUE FLOW FOR THE USER INITIATED VERSION OF THE SOS CALL DIALOGUE....96
FIGURE 0-8: DIALOGUE FLOW DIAGRAM FOR THE KM REGISTRATION DIALOGUEuuuuuunnnnnnnnnnn. 97
FIGURE 0-9: DIALOGUE FLOW DIAGRAM FOR THE DIRECTION REQUEST MAIN DIALOGUE............... 98
FIGURE 0-10: DIALOGUE FLOW DIAGRAM FOR THE REQUEST DESTINATION SUB DIALOGUE OF THE
REQUEST DIRECTIONS DIALOGUE ..uuuuieeiiitttuiieeeeeeeetttuaseeaeseessssnnaeaesseestsnnseeassesssnnnaaeeeseeessnns 99
FIGURE 0-11: THE DIALOGUE FLOW DIAGRAM FOR THE REQUEST START POINT SUB DIALOGUE IS
SIMILAR TO THAT OF THE REQUEST DESTINATION SUB DIALOGUE «..vvvveeeeeeeiiirrreeeeeeeeeensseeness 99
FIGURE 0-12: DIALOGUE FLOW DIAGRAM FOR THE REQUEST TRAFFIC INFORMATION DIALOGUE .100
FIGURE 0-13: DIALOGUE FLOW DIAGRAM FOR THE TRAFFIC JAM SUB DIALOGUEeinnnnnnne. 101
FIGURE 0-14: DIALOGUE FLOW DIAGRAM FOR EXISTENCE OF TRAFFIC JAM SUB DIALOGUE 102
FIGURE 0-15: DIALOGUE FLOW DIAGRAM FOR TRAFFIC INFORMATION ON A ROUTE SUB DIALOGUE
... 103

78

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Table of abbreviations

Glossary of terms and abbreviations

Al Artificial Intelligence

ANWB Algemene Nederlandse Widrijders Bond

API Application programming interface, the "top" side of the SAPI 5.0
middleware

ASR Automatic Speech Recognition

BDI Believe Desire Intention Modedl

CFG Context-free grammar, specifies the rules that make valid sentencesin
alanguage

CLIPS C Language Integrated Production System. An expert system tool

COM Component Object Model, a technique that enables the devel opment of
reusabl e binary software components

DDI Driver development interface

DTD Document Type Definition

GPS Glaobal Positioning System. A series of 24 geosynchronous satdllites
that continually transmit their position. GPSisused in personal
tracking, navigation, and automatic vehicle location technologies

GSM Global System for Mobile communication. Digital cellular standard
used throughout the world, and the primary standard in Europe and
Southeast Asia

GUI Graphical User Interface

HCI Human Computer Interaction

HTTP HyperText Transfer Protocol

MMS Motor Management System

PCMCIA Personal Computer Memory Card International Association

SAPI Microsoft Speech Application Programming Interface. SAPI 5.0 is
middleware that provides an APl for applicationsand a DDI for speech
providers

SMS Short Message Service. Electronic messages on awireless network

SWAMP Speech interfacing in the Wireless Automotive Messaging Pil ot

top-level rules top-level grammar rules have the TOPLEVEL keyword set, indicating
that they can be activated or deactivated during run-time

TTI CMG Trade Transport and Industries

TTS Text-to-Speech, also called speech synthesis

UML Unified modelling language

WAMBO WAM Back Office

WAM-Pilot Wireless Automobile Messaging Pilot

XML Extensible Mark-up Language. A streamlined version of Standard
Generalised Mark-up Language (SGML), XML isregulated by the
World Wide Web Consortium. XML can make far more advanced use
of data, and create more advanced links, than HTML

79

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

APPENDIXES

A1: Hardware specifications

HP Jornada

Product Number

HP Jornada 680 (F1262A ABB)

Processor 133MHz 32-hit Hitachi SH3 processor
Memory 16MB SDRAM
Display 6.5-in (16.7-cm) CSTN screen
640 x 240 x 65,536 colors on screen, 0.23mm dot pitch
Input Large (76% full-size) keyboard

Embedded numeric keypad
Touch screen

Communications

High-performance internal modem 56K bps, v.901
Internet e-mail support: POP3, IMAP4, SMTP, and LDAP
E-mail attachment support

Power

One rechargeable Lithium-lon battery
One 3V CR2032 coin-cell backup battery
Up to 8 hours2 of battery life

Ports/Slots

One IrDA infrared port

One RS232C seria port

One RJ11 modem port

One PC Card Type Il card dot (PCMCIA)
One CompactFlash Type | card dot

Sound

Audio speaker and microphone
Built-in voice recording

oS

Microsoft Windows CE Services 2.2 or ActiveSync® 3.0

Size and Weight

74x37x13in(18.9x9.5x 3.4 cm)
1.11bs (510 g) with battery

Garmin GPSrece ver

Model Garmin GPS 35/36

Satellites MAX 12

Update rate 1sec

Acquisition time 12 sec warm
45 sec cold

Position accuracy 3m RM S with differential GPS
15m RMS Non-differential GPS (100m with
selective availability on)

Ve ocity accuracy 0.2 m/s RMS steady state (subject to selective
availahility)

Dynamics 999 knots vel ocity, 69 dynamics

Communication

2 x RS-232 compatible full duplex communication
channels

80

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

A2: Evaluation results of Speech Software

Name Voice Xpress SDK version 4.5
Producer Lernhout& Hauspie
Type Speaker independent, continuous

Supported languages

English, German, Dutch, French, Flemish

Supported Programming languages

Visua Basic 5.0+, Visua C++ 5.0+, Delphi 4, C++
Builder 4, Powerbuildre 6, (Java)

Supported platforms

Windows 95/98, Windows NT

Price

Compatible with MS SAPI

MS SAPI 3/4

Min. system requirements

End-usar’ smin. system requirements

Pentium 166 Mhz with MM X

Windows 98/95, Windows NT 4.0 with Service Pack
3or later

48 MB RAM

Ingtalled end-user license for Voice Xpress

Creative labs soundblaster 16 or compatible sound
card

130 MB disk space
microphone
CD-ROM drive
Contact inf. Email: sdk@lhsl.com
Website: http://www.lhsl.com/voicexpress/sdk/
Comments -
Grammar support unknown
Name Speech SDK 1.0
Producer Philips
Type Continuos, speaker dependent (needs initial training)

Supported languages

Language and model adaptive

Supported Programming languages

C/C++, Visual Basic, Delphi and other environments
supporting ActiveX controls.

Supported platforms Windows 95/98, Windows NT
Price -
Compatibility Supports SAPI

End-usar’ s min. system requirements

Min. System requirements

Windows95/98: Pentium || 266 MMX, 64 MB
memory

Windows NT 4.0: Pentium |1 266 MM X, 96 memory
Soundblaster 16 compatible soundcard supporting 16
bit recording.

Contact inf. E-mail: SpeechSDK @philips.com
Website: http://www.speech.philips.com
Comments A SDK or atria version of it could not be obtained.

So this could not be tested.

Grammar support

Routines to integrate new words into the user’s
context are provided

81

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Name IBM Embedded ViaVoice, multiplatform edition
Producer IBM

Type Speaker independent, continuous

Supported languages U.S. English

Supported Programming languages C

Supported platforms WinCE

Price -

Compatibility Java-JSAPI, Not SAPI compatible

End-user’ smin. system requirements | 242-330KB DRAM
1.4-2.0MB ROM of flash

Min. System requirements 90 MIPS required

Contact inf. e-mail: VoiceClientSystems@us.ibm.com
Website: www.ibm.com/software/voice

Comments Embedded ViaVoiceis specifically developed for
mobile devices. Couldn’t obtain trial version

Grammar support Yes (with VoiceXML)

Name sSnMARTspeak CS

Producer ART (Advanced Recognition Technol ogies)

Type Speaker dependent, continuous

Supported languages language independent

Supported Programming languages ANSI C

Supported platforms Windows(98/CE/NT), EPOC 32, MagicCap

Price -

Compatibility

End-user’ smin. system requirements | 2-7 MIPS

Min. System requirements -

Contact inf. e-mail: europesal es@artcomp.com
Website: www.artrecognition.com

Comments Features noise immunity
The smARTCar version is special for automotive
systems

Grammar support Yes

Name Voice Tools 6.0

Producer Speech Solutions, Inc

Type Speaker independent

Supported languages English

Supported Programming languages Visual C++, Visual Basic

Supported platforms Windows 9x/NT

Price Evaluation

Compatibility SAPI 4

End-user’ smin. system requirements | -

Min. System requirements -

Contact inf. Email: getinfo@speechsol utions.com
Website: http://www.speechsol uti ons.com/

82

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Comments

Speech solutionsisa set of 10 ActiveX components.
The activeX components work quite good, and there
exists agrammar and vocabulary tool to define a
tailor made grammar and the words to recognise.

Grammar support

Yes

Name Sphinx 2

Producer Carnegie Mélon University

Type Speaker-independent continuous speech recognition
Supported languages English

Supported Programming languages C, C++

Supported platforms Linux, FreeBSD (in Linux emulation), SunOS
HP/UX, Digital Unix, Windows NT

Price Freeware

Compatibility -

End-usar’ smin. system requirements

Min. System requirements

Contact inf. Sphinx is now under Open source devel opment at
http://www.sour ceforge.com
Comments The CMU Sphinx Recognition System isalibrary

and a set of examples and utilities for speech
recognition.

Thisisan early release of aresearch system. The
APIs and function names are likely to change, and
several tools need to be made available to make this
all complete.

Although the sphinx was originally written to run
under alinux platform, it is possible to compile the
program under windows. But the application could
not be made to compile under Windows NT.

Grammar support

Yes

Name Dragon Naturally Speaking SDK
Producer Dragon Systems, Inc
Type User independent

Supported languages

English

Supported Programming languages

Visual Basic, Delphi, C++

Supported platforms Windows 95, Windows 98, Windows NT (with SP3
or greater)

Price 49 US$

Compatibility ActiveX Controls or COM interfaces with support for

a subset of Microsoft's Speech APl (4.0a)

End-usar’ smin. system requirements

64 MB Memory

200 MB disk space

CD Drive

Creative Labs Sound Blaster 16 or equivalent sound
card supporting 16-bit recording.

Min. System requirements

IBM-compatible with 200 MHz Intel Pentium

83

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

processor with MM X or equivalent.

64 MB Memory (96 recommended)

256 MB disk space

CD Drive

Creative Labs Sound Blaster 16 or equivalent sound
card supporting 16-bit recording.

Contact inf. Website: http://www.dragonsystems.com
Http://devel oper/dragonsys.com
Comments Dragon NaturallySpeaking 3.52 or later must already

be installed on the system before the SDK can be
used.

Grammar support

Yes

Name VoiceAction 2.0.000
Producer United Research Labs
Type User independent
Supported languages English

Supported Programming languages

ActiveX supporting environment

Supported platforms Windows 95/98/NT
Price 199 US$
Compatihility 32 Bit Application ActiveX Control

End-usar’ s min. system requirements

Min. System requirements

Contact inf.

Customer Support Site : http://www.research-lab.com
Website: http://www.research-lab.com/

Contact e-mail : urlabs@pn2.vsnl.net.in

Contact phone : 0091205888749

Contact fax : 0091205655044

Comments

The ActiveX components are easily installed and
registered, but usng them requires registration.
Furthermore there are some sample applications
along with the ActiveX components, but these
samplesarein Visua basic.

Grammar support

allows users to build their own basic vocabulary
database and design their own artificial intelligence

language database of words
Name Chant® SpeechKit™ Verson 2.1.2
Producer Chant, Inc.
Type Continuous

Supported languages

Supported Programming languages

C/C++, Delphi, Java, Smalltalk, Visua Basic

Supported platforms Win Ox/NT
Price -
Compatibility Supports Microsoft's Speech APl (SAPI) and IBM's

Speech Manager APl (SMARPI).

End-usar’ s min. system requirements

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Min. System requirements

Pentium 90 MHz or faster

Windows 95/98/NT

64 MB RAM

30 MB hard drive

CD-ROM

VGA or higher resolution monitor

SAPI or SMAPI compliant speech engines
Microphone

C/C++, Delphi, Java, Smalltalk, or Visua Basic
development environment.

Contact inf. Website: http://www.speechkit.com
E-mail: online@chant.net
Comments Chant does not come with an own recognition engine

but uses the engines already installed. Chant isnot a
speech recognition engine but rather alayer of
software on top of the SAP/MSAPI.

Grammar support

Yes

Name | Pl speech recognition developer skit
Producer IPl speech technologies
Type Speaker dependent, command and control.

Supported languages

L anguage independent

Supported Programming languages

Visual C++ 4.2, C

Supported platforms Windows 95/98/NT
Price -
Compatibility Easily portable to numerous IC's

End-user’ s min. system requirements

Min. System requirements

Contact inf.

Website: http://www.ipi speech.com
President: hboyette@i pi speech.com

Director overseas operations. Sergey Gladkov
sgladkov@i pi speech.com

Sales enquiries: sales@ipispeech.com

Comments

Emails have been sent to both director of overseas
operations and sales enquiries, but no replies have
been received yet.

Grammar support

Name ISIP ASR prototype system

Producer Ingtitute for Signal and Information Processing
Mississippi State University

Type -

Supported languages

Supported Programming languages C++

Supported platforms SunOS 5.7 (Solaris 2.7), cygwin unix-like interface
for Windows, Linux

Price Public domain

Compatibility -

85

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

End-usar’ s min. system requirements

Min. System requirements 128 megabytes of RAM, and processors running at

50 megaHertz
Contact inf. Email: help@isip.msstate.edu

Website: http://www.isip.msstate.edu
Comments Fully functiona speech recognition system that

includes an acoustic front-end based on mel-
frequency cepstral coefficients and their derivatives,
an acoustic training modul e capable of Viterbi and
Baum-Welch HMM training, and decision tree-based
phonetic state tying. The decoder is an efficient, one-
pass, lexical tree-based, hierarchical Viterbi-style
decoder capable of handling cross-word triphones
and N-gram language models

Grammar support -

A3: Grammar rulesfor KM registration

<l-- **********************KM I’eglﬂl’aIIOn dhkkkkkhkkkkhhhkhkhkhrkrkkd __>

<RULE NAME="VID_NOW">

<L>
<P>now</P>
<P>from now on</P>
<P>from here on</P>
</L>
</RULE>
<RULENAME="TRIPTYPE_UTTERS">
<L>
<P>trip</P>
<P>drive</P>
<P>trip type</P>
</L>
</RULE>
<RULE ID="VID_KMREG_TRIPTYPE" NAME="VID_KMREG_TRIPTYPE" TOPLEVEL="INACTIVE">
<L>
<P>
<O>
<RULEREF REFID="VID_StartPolite"/>
</O>
<L>
<P>ltis</P>
<P>lts</P>
<P>Did | mention that thisis</P>
<P>1 will be making</P>
<P>It will be</P>
</L>
<P>a</P>
<P>

<RULEREF NAME="VID_LOGIN_TRIPTYPE"
PROPNAME="TripType'/>
</P>
<P>

<RULEREF NAME="TRIPTYPE_UTTERS"' PROPNAME="dontcare"/>

86

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

PROPNAME="TripType'/>

PROPNAME="TripType'/>

</P>
<0O>
</O>
</P>
</L>
</RULE>

</P>
<O>
<RULEREF NAME="VID_NOW"/>
</O>
</P>
<P>
<O>
<RULEREF REFID="VID_StartPolite' PROPNAME="dontcare"/>
</O>
<L>
<P>the</P>
<P>this part of the</P>
</L>
<O>
<RULEREF NAME="TRIPTYPE_UTTERS" PROPNAME="dontcare"/>
</O>
<P>is</P>
<O>

<RULEREF NAME="VID_LOGIN_TRIPTYPE"

</O>
</P>
<P>
<O>
<RULEREF REFID="VID_StartPolite' PROPNAME="dontcare"/>
</O>
<L>
<P>change</P>
<P>set</P>
</L>
<O>the</O>
<O>
<RULEREF NAME="TRIPTYPE_UTTERS" PROPNAME="dontcare"/>
</O>
<L>
<P>in</P>
<P>into</P>
<P>to</P>
</L>
<P>

<RULEREF NAME="VID_LOGIN_TRIPTYPE"

<RULEREF REFID="VID_EndPalite" PROPNAME="dontcare"/>

A4: SAPI5 system requirements and installation notes

Supported operating systems are:

e Microsoft Windows 2000 Professional Workstation, English edition or English edition
with Japanese or Simplified Chinese Language support.

e Microsoft Windows Millennium edition.

e Microsoft Windows ® NT Workstation 4.0, service pack 6a, English, Japanese, or
Simplified Chinese edition.

87

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Microsoft Windows 98 (Windows 95 is not supported).

Software Requirements

Microsoft Visua C++ 6.0, service pack 3 or later version.
Platform SDK (PSDK) April 2000 or later edition. Compiling SDK projects requires
components of the PSDK. Within Microsoft Visual C++ 6.0, the PSDK include
directories must be listed before the Visual C++. Y ou can change the order in Tools-
>QOptions menu under the Directoriestab. Move PSDK directories above al Visua C++
directories, if needed. To save disk space, you can load aminimal configuration. This
includes enabling only the following two options:

o Configuration Options

o Build Environment

These options require 13 MB on the system drive and another 80 MB on any other

drive. No other options are needed. Y ou can download the PSDK from

http://msdn.mi crosoft.com/downl oads/sdks/platform/platform.asp.
Microsoft Internet Explorer 5.0 or later version. Users of NT4 with any version of the
service packs require Microsoft Internet Explorer 5.5 or later. Y ou need this to read the
online documentation and for executing Microsoft XML. Y ou can download the latest
version of Microsoft Internet Explorer from the web at http://www.microsoft.com/ie.

Hardware Requirements

A Pentiuml\Pentiuml I-equivalent or later processor at 233 MHz with 128 MB is
recommended.

SAPI 5.0 can now take advantage of a machine and operating system that supports
multiple processors, including all those mentioned above. Additionally, you can use
SAPI 5.0 in adistributed application environment.

Not all sound cards or sound devices are supported by SAPI 5.0, even if the operating

system supports them otherwise.

The follow table outlines the RAM usage:

Component Minimum RAM Recommended RAM
TTS Engine 14.5Mb 32.0 Mb

SRC&C 16 Mb 32 Mb

SR Dict 25.5Mb 128 Mb

SR Both 26.5Mb 128 Mb

The follow table outlines the disk usage:

File Name Approximate File Size Setup Merge Names
Sapi.dll & Sapisvr.exe .5Mb Sp5.msm

Sapi.cpl 36k Sp5Intl.msm

SR Engine 1.7Mb Sp5Sr.msm

C&C Datafiles 13.4Mb Sp5CClInt.msm
Dictation Datafiles 33Mb Sp5DCInt.msm
TTSEngine & voices 7.8Mb Sp5TTInt.msm

88

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

A5: Class hierarchy

The following figure shows the transformation from WAM classes to SWAMP classes

WAM

CWAMclientApp
CWAMclientDlg
Driver
UserLogin
GPShandler
GPSPort
GPSinfo

SMSHandler
SMSin
SMSOut
SMSPort

Message
MMinfo
Sessioninfo

Threadstruct

AG6: Software

Development Software

SWAMP

CSWAMPApp
CMainFrame
LoginDlg
SWAMPClientDlg
CLIPSInfoDlg
DirectionReqDlg
SpeechCtriDlg
AboutDlg
CSWAMPDoc
Driver
SWAMPLocation
Clni

CSplinterface
ActionHandler
CLIPSHandler
RecoDlIgClass

GPS

SMS

MMS

Name

L ocation

Microsoft Visual Studio 6.0
Enterprise edition

MSDN, Office Test Platform & Devel opment
Todls, disc 1, March 1999

Micraosoft speech application
development Kit 5.0 (MSAPI 5.0)

The devel opment kit can be downloaded from the
mi crosoft website

Microsoft driver devel opment kit
(ddk) for Windows 98/ME/NT/2000

Downloaded from the microsoft website

Platform SDK

Downloaded from the microsoft website

CLIPS MFC wrapper libraries

Downloaded from the CLIPS website

Motor management libraries

These were included in the WAM-pilot

89

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

Softwar e for Windows CE

Tools, disc 14, April
1999

Name L ocation Comments
Windows CE toolkit for | MSDN, Office Test During installation, at type of
Visual C++ 6.0 Platform & Development | installation choose the "specific

processor" option, In the
following screen choose SH3 and
SH4 processor. (Ingtallation of
x86 emulation is recommended
but not mandatory.)

Visua C++, H/PC 2.11

Location: MSDN Deve opment
platform, disc 1, April 1999
Comments: install H/PC pro 2.11
in \WinCE\HPCp_sdk\ directory

M iscellaneous softwar e

Name

AND data Road Data
Clavis Map Maps

MS Acess (MDAC 2.11) Database drivers

Nokia datasuite 2.0 & 3.0

Software for the communication with the phone
through the data cable.

Microsoft ActiveSync 3.0

Downloading the application to the HP Jornada

Win CLIPS 6.0

Testing of CLPfile

XML Spy 3.5

XML file

XML files editing tool, used for syntax checking of

90

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

A7: Dialogue flow diagrams

Login

>
<

A

S: Say some welcomings
words AND Ask user to login

A

U: Supplies login |

information

Name supplied

Name exists i
database

Request Userame

show the values extracted
from the login information
supplied. If none are
supplied the defaults are
shown

A

U:no response or
response not
understood

S: Ask clarification| |
form user

—» U: Project ID

Request Project

T

— U: Triptype

Request Triptype

T

—» U: BO tel

Request BO tel

N

—» U: Car ID

Request Car ID

S: Use these
values?
A A
U: Yes U: No
A A
S: Retrieve default S: What do you
information want to change
A
S: Login

End Login

—» U: Name

Request
Username

TIT

—» U: Everything

S: OK (Clear all) —b(

Request
Username

)

—» U: Cancel login

Exit Change Login

T

3x No
Response

I,

Figure 0-1: dialogue flow diagram for main login dialogue

91

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Request BO Tel

!

b

Utterance

4

ontains BO t #
S: What is theBO|
Telnr? h
U: Supplies BO U:Use default U2 U: What is the
Telnr default?

|

S: Specify default
BO Telnr

A A

S: Confirm BO Return Default B
Telnr Telnr
A

S: Explai S: Use this value?
: Explain
.9 . .
v U ves u: No ‘ situation }>
3x no
response

Figure 0-2: Dialogue flow diagram for the request Back Office telephone number sub dialogue of the login dialogue

< A
Return Supplied 3 :
e
Request BO Tel
BO Telnr q U: Yes U:noor?

[

Request Triptype

Utterance
contains
triptype

Y
S: Triptype is now S: Is it a Private or
?triptype Business trip?

. \ v

A
Geturn Triptpr U:Private U:Business U: Else

A
S: Please specify
if its a Private or +—
business trip

Return Supplied
BO Telnr

Return
Triptype=private

Figure 0-3: Dialogue flow diagram for the request trip type sub dialogue of the login dialogue

92

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis
RequestCAR ID

A

A

S: Use default ID?

; ; ;

Figure 0-4: Dialogue flow diagram for the request car 1D sub dialogue of the login dialogue

93

U: What is the
. . .
U:Yes U:No default? U:?
A A
Return Default S: Specify default | | S: Explain
CAR ID . CAR ID situation
S: What is it then? &
U: Supplies CAR
ID
S: Confirm CAR
ID
' , b
u:? U: Yes U: No —
S: Explain Return Supplied
T situation CAR ID

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

Request
Username

S: ask user to

supply username |-
A
r U ?
U: Supplies name #
S: Explain L]
situation
4
S: Confirm name |«
A v 4
— U: No U: Yes u:?
4 4
Return Supplied S: Explain |
name situation

Figure 0-5: Dialogue flow diagram for the request Username sub dialogue of the login dialogue

94

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis
(ANwB call

U: call ANWB

A

S: asks for
confirmation

User initiated

A A A
— u:? U: Yes . No
A A
S: send SMS . OK
A
End ANWB Call

Figure 0-6: Dialogue flow diagram for the ANWB call dialogue

95

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

SOS Call 1 User Initiated

A
U: Call SOS

Alert

A

S: asks for
confirmation

u.? U: Yes U: No
Y A
S: send SMS S: OK

End SOS Call 1

Figure O-7: Dialogue flow for the user initiated version of the SOScall dialogue

96

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

KM registration

v

A

U: Change triptype
utterance

contains new

S: What is the
triptype
! : }
U Ut_ters new U: Cancel u:?
triptype

triptype

triptype is
business

S: Set private trip,
S: Set business
trip ‘

End: KM
registration

3x no response

tteranc
contains no
rojectiD

S: Set new project
ID

A

S: Ask
confirmation

v

U: Cancel

A
U: yes
S: Whats the
projectiD L
S: Send SMS,
Y give feedback
u:? U:Cancel U: Project ID ‘

3x no response

End: KM
registration

Figure 0-8: Dialogue flow diagram for the KM registration dialogue

97

Project: Speech Interfacing in the WAM-Pilot
Document: Fina Thesis

Request Direction

: Asks direction

Destination
supplied?

Req. Destination |4

S: SET (?start=current
location)

Start point
supplied?

S: So you want
directions from
?start to ?dest

A A

Req Startpoint

4

Y A
S: Send Dir. Req. S: Do you want
SMS message directions?
Lo
‘ U: No ‘ ‘U:Yes‘ ‘ u:?

S: to ?Dest ?

END Request
Direction

Figure 0-9: Dialogue flow diagram for the direction request main dialogue

98

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis
Req. Destination

4

S: Ask Destination |«

A v ¥
u:? U: Cancel U: Supplies S: Location
Destination unknown

]

A

destination |
a known dest,

0 response
3x

A
S: ?Dest =
S: Cancel request supplied
destination

END Regq.
Destination

Figure 0-10: Dialogue flow diagram for the request destination sub dialogue of the request directions dialogue

Similar to Req. Destination

Req Startpoint

Figure 0-11: The dialogue flow diagram for the request start point sub dialogue is similar to that of the request
destination sub dialogue

99

Project: Speech Interfacing in the WAM-Pilot

Document: Fina Thesis
Traffic Information

A

U: Asks Traffic
Information

Utterances like: "is
there a jam on the
A27"

Yes-no
Question

Existance of
Traffic Jam inquiry
jam inquiry 2
locations

Inquiry of all
traffic jams

The user wants the
shortest path to a
destination taking into
account traffic jams.

Direction
Question

End Traffic
Information

Figure 0-12: Dialogue flow diagram for the request traffic information dialogue

100

Project: Speech Interfacing in the WAM-Pilot

Document: Final Thesis

S: Do you want all |
information

S: Then what
do you want?

U: Yes

A,
S: Retrieving

information,
please wait

S: send a traffic information
request to BO

}

U: Again —

S: There is no jam

on street x

‘ <

Figure 0-13: Dialogue flow diagram for the traffic jam sub dialogue

<

101

U: | want to know U ! want to know U: | want to know
. . L if there ia a traffic . X
U: Cancel if there is a jam at . if there is a jam on u:?
jam between x
street x the way to x
and y
Existance of Jam inquiry 2
Traffic Jam inquir locations
S: There was an error|
getting traffic
information
End existance of
Traffic Jam inquir :
S: reads the traffic |
information
v
S: Wait for users
response
! \ l l
i U: How long was i
y. Was there a the jam at street U: 0K U: No response >
jam at street x? X2 z sec
A
S: There is a
traffic jam of y km street x is free S: x km
on street x

End existance of
Traffic Jam inquir

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

Existance of
Traffic Jam inquiry,

A
S: Extract
streetname from
utterance

A

S: Do you want to
know if there is a

traffic jam on

?street?
v ! v
u:? U: No U: Yes
‘. T
3% No S Retne_vmg
information,
response .
please wait

S

: There was an error

getting traffic

S: send a traffic information
request to BO

information
received from
BO
End existance of
Traffic Jam inquiry
S: "There is a jam of
X km on street y"
S: Wait for users
response
A X \ ! !
N >)
— U: Again U: OK U: No response U: How long? U: Where?
z sec
3 A
End existance of
: S: street
Traffic Jam inquiry S:x km y

L]

Figure 0-14: Dialogue flow diagram for existence of traffic jam sub dialogue

102

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

jam inquiry 2
locations

S: Do you want to

Source is given know the jams on

Source is current location

the route to y i

S: do you want to u:?
r» know the jams
between x and y

U: No U: Yes

—T
v v v
u:? U: Yes U: No

S: Then what do
you want

end: jam inquiry 2
locations

3x no response

v

S: Retrieving

— information,

end: jam inquiry 2 please wait
locations

received from
BO

S: reads the traffic

information

v

S: Wait for users
response

Y

|

})

}

U: 0K U: No response >
z sec

U: Again

U: How long was
U: Was there a the jam at street
jam at street x? x?
A
S: Thereis a
traffic jam of y km street x is free S: x km
on street x

L]

S: There is no jam
on street x

e

L]

jam inquiry 2
locations

Figure 0-15: Dialogue flow diagram for traffic information on a route sub dialogue

103

Project: Speech Interfacing in the WAM-Pilot
Document: Final Thesis

A8: Paper

104

