PHI S TU Delft

Abstract

In this thesis the methods implemented to resolve anaphorain the speech recognition
environment of the SPICE-EPG demonstration prototype, an electronic programming
guide, of Philips Research are described. The SPICE-EPG uses shallow-parsing, which
provides no information about sentence structure and only relevant phrases are returned.
To resolve anaphora, syntactic information is very important, and without it anaphora
resolution becomes very difficult. To overcome the lack of syntactic information a
reference resolution model is used, which determines the preference for referents without
needing syntactic information and a set of filtersis applied to be able to determine some
of the dependencies between different phrases, which are needed to successfully solve
anaphora.

Three different ways to determine the dependencies between the phrases are empl oyed:
looking at the properties of the different phrases and determine the dependency based on
the match with these properties, assigning a subphrase to a phrase which indicates the
dependency, and assign a superphrase to a phrase which indicates the dependency. The
first method is applied when two different phrases do not necessarily appear next to each
other, but other unrelated phrases can occur between them. The second method is suitable
when the two phrases always occur next to each other, and one of them provides extra
information about the other. The third method is employed when a so called compound
reference occurs: a phrase refers to a property of another phrase, which is areference
itself.

This group of methods is tested on a small corpus, which is based on examples of
reference given by co-workers, based on their ideas about the type of references which
the electronic programming guide should ideally be able to handle. Offline tests show
that the chosen method is adequate in resolving references which fall within the scope of
the project. Online tests however show that additional measures must be taken to solve
certain problems with speech recognition errors.

[JL.R.D Woei-A-Jin , 2001

.:..!:‘

--I k™

PH S

—p
b

Preface

The past twelve months | have been engaged in my diplomathesis for the faculty of
Information Technology Systems at the Delft University of Technology in the
specialization of Knowledge Based Systems. Starting from September 2000 until August
2001 | have done my diplomawork at the Philips GmbH Forschungslaboratorien in
Aachen, who were so graceful to provide me the opportunity to have my internship there,
and support me continuously with advising employees, working space and equipment.
This paper iswritten as the final report on my work on Referencesin a Multi-modal User
Interface, during my period in Aachen.

First | would like to thank Petra Philips, who was my supervisor at Philips GmbH
Forschungslaboratorien in Aachen. Even though she was very busy with her own project,
she always found time to help me.

Second | would like to thank my professor, drs. dr. L.J.M. Rothkrantz, for helping meto
find a place to do my diplomathesis, supervising my project and supplying helpful hints
and ideas for the project.

Further | would like to thank the other co-workers at Philips for being so welcome, and
providing a helpful hand whenever | needed it. Especially Andreas Kellner and Thomas
Portele for their hard work in helping me preparing the system for integration with my
module, and their useful tips for my reports.

And last but not least, | would like to thank my parents and sister for their mental,
physical, financial, material and overall support they have given me.

i J.L.R.D Woei-A-Jin , 2001

PHI S TU Delft

Summary of table of contents

@ 7= 0 = 0 OSSR 1
L0 (W Tox 1 o o SRS 1
1.1. The Problem DefiNitioN..........coeiiiiririeeie e 3
1.2. The SPICE-EPG SYSLEMociiieiiieiieieieieie ettt sse e nneeneas 4
1.3. An Introduction t0 REFEIENCESccoiiiiiiicee e e 10
1.4. The Evaluation of PerformancCe..........coceiiieiiieniere e 14
(7= 0 = U 16
State of the Art in ANaPhora RESOIULIONc.ccoiieiiiiiiiie e 16
2.1. Suitable Grammars for Anaphora RESOIULIONcceceeveeieeviere e 16
2.2. Anaphora Resolution AlQOrthms ..o e 23
2.3. Introduction to EHipSiS RESOIULION.........cccviieiiee e 35
(@1 7= 0] = 0 TR 37
The Anaphora Resolution Module in the SPICE-EPG ..o 37
3.1. Requirements for the MOdule............ocoeriiiiiie e 37
3.2. NAITOWING thE SCOPE......cecveeieeiecieeie ettt et e e e e ae e e sneenaesreenes 40
3.3. Choosing the reference resolution Mmethod............ccocooveienienenene e 45
3.4. Grammar requirements for the SOIULIONccevveie e 47
3.5. General outline of the algorithm ... 54
3.6. SYSIEM DESION....cctieieceeieee ettt et e et e s sreeae e e reennennee e 57
3.7 SUMIMEAIY .ottt ettt e s e s esae e eas e e eaeeeane e sae e eabeeaaeeenneesneesmreenneaennas 96
(7= 0 = 98
(Y7 11 = o] PP R 98
4.1, Evaluation MEtNOM.ccuiiiiiieiee e 98
4.2. ChoiCe Of the COMPUS.......coiiiiiiitieieeee ettt re e 98
4.3. Errors and problems encountered during teStiNg.........coovevveveereereeieeseeseseeseeeeens 99
4.4. Perfomance of the reference resolution module.............cccoovoeiiiiininiineienne, 102
(O 7= 0 = USSR 108
(070 070: 115 o] o 10PN 108
5.1. Finding a method to compensate for lack of syntactic data............cccccevveveenennen. 108
5.2. Implementation of the proposed MOdel ..o, 109
5.3 TESE TESUITS ...ttt bbbt re e 110
(@4 7= 0] L= G SRRSO 112
RECOMMENUALIONS ..ottt bbbttt a e e b e 112
6.1. Filter out non-filler concepts which make N0 SENSe........cccvveeviieenerce e 112
6.2. Relax the grammar for reference reCognitionccccveceeveeresieesesseeseesee e 113
6.3. Use asecond parser to allow more complex CONCEPLS.........ccvererrirreeriereesenenns 113
6.4. Determine references for all NypothesiS.........ooveiieeii e 113
6.5. Penalize hypotheses with unresolved reference...........cooeveecenenercesceseeeeens 114
6.6. Find away to process references to content description............cceccveeeeveeieseenens 114
6.7. Find away to tag content description and add the tagged information to the
(60 010 o PP 114
6.8. Use afilter to determine when to skip the salience list..........ccoveveiiiienciiieeinne 114
6.9. Solve one anaphora using the salienCe list.........cooveveveeiieccesece e 115
BiDlOGrapNy ..o et 116

ii J.L.R.D Woei-A-Jin , 2001

PH S TU Delft
F N 0= 10 [G TSR 120
Examples of referencesto be solved intheideal case.......c.ccccovveeveccvcevecce e, 120
F N o]0 < 1 o [G = TSR 126
Grammar to recognize referenCe fOrMS.........cvvieieee s 126
F N 0= 1 o [G SRR 133
Phrases With @XplEliVEScue e 133
F N o]0 < 1o [G 5 TSR 135
System tasks and information requirements based on examples..........cccoceecevceereeeenens 135
F N] 0= 1 0 [G =TSR 142
SOUMCE COR ...ttt bbb bbbt et e e s e s e nbesbe s besbesbenbeeneas 142

MaAIN INEEITACE ... e sttt ae e b e snee s 142
LS o] = Y (== o = USSP 153
=TT =g o T PSR RURRR PR 158
(0T F= (1Y, oo L1 = RSSO 166
SAlIENCE LISE ..ttt sttt s a e neenne s 170
[TS 0] Y I S 190
GroUPING MOTUI......c.eiiieiieeee ettt st be et s neesreeeesneens 200
DEIXIS TN ... et r s 205
Reference Detection & Classification MOdUl............ccoceveiiiniiininiiniereee e 207
Constraint DeteCtion MOUUIE...........ccoiiriiiiiine e e 212
Pronoun ReSOIUtION MOAUIE...........ooiiiiiieeeee e e 222
Definite Description Resolution MOdUIE...........ccveceeieereee e 227
Demonstrative Resolution MOUIE............cooiiiiiiiienieiee e 237
One Anaphora Resolution MOAUIE...........c.ccveieiieieee et 240
CONCEPL TYPE FIILEN ...ttt re e e 244
(O] 01 o RSP SOTSOPRROPRR 254
(@00 015 1 = | USSP 263
N o 0= 10 S 268
0SS L (=S =S TSP 268
N o 0= 1o [S 269
TESE RESUITS ... ettt sttt b et ne e s reeneeneas 269
N o 0= 10 1 S 274
(O00] 015 1 = 1TSS 274
N o 0= o S 294
LITEIAUINE SUIVEYeeieiiieeie ettt st sttt sttt b et ae e b e et e s ae e beentesreenseenee e 294

iv J.L.R.D Woei-A-Jin , 2001

PHI S TU Delft

Table of Contents

@ 7= 0 = 0 OSSR 1
L0 (W Tox 1 o o SRS 1
1.1. The Problem DefiNitioN..........coeiiiiririeeie e 3
1.2. The SPICE-EPG SYSLEMociiieiiieiieieieieie ettt sse e nneeneas 4
1.2.1. Motivation for the SPICE-EPG...........ccccooiriririeieniese e 4
1.2.2. SPICE-EPG DESIgN GOAIScoieeieriierieeiieeiesieeie st ee s e 4
1.2.2.1. Spontaneous SPEECH INPULeieeieiierece e 5
1.2.2.2. DIireCt aCCESS IO CONTENE.......ccueeiiereierieeie ettt s nee e 5
1.2.2.3. USer-driven iNteraCtion..........coeveeerieiieniese s s 5
1.2.2.4. Cooperative il OQUE..........ccueieeriirieiiesiee et 6
1.2.3. Features Of SPICE-EPGcccoc i 6
1.2.4. The SPICE-EPG ATrChItECIUIE.........coiereiiieeieeeeseee e 7
1.2.4.1. The Automated Speech RECOgNIZEXcccvveeieeierice e 7
1.2.4.2. The Natura Language Understanding Module............ccoccevveririniennennnns 7
1.2.4.3. The Multimodal Integration MOAUIE............cceeveiereereeeseee e 9
1.2.4.4. The Context Interpretation MOdule...........cooeeiiiiiiiineneseee e 9
1.2.4.5. The DialOgue ManaQErccccceruierieriesieciesees e eeesreeseeseesaeestseeesneenseeneens 9
1.2.4.6. The MediaPlanner ..o 9
1.2.4.7. The Language Generation Module............ccocvevveeiieresceeseee e 10
1.2.4.8. The Text-to-Speech Module............ccooiiiiiiiiieeee e 10
1.3. An Introduction t0 REFEIENCESccoiiiiiieeeeee e 10
1.3.1. References in Natural LangUage.........ccceeeeerereerienieneesie e 10
1.3.1.1. Reference to an entity that was introduced into the discourse viaa
NOUN PRFASE. ...ttt sttt ettt esneenae e 11
1.3.1.2. Reference to a subset of a group that was introduced into the discourse
VIAANOUN PRFESE... .ot e 12
1.3.1.3. Reference to a superset of individual entities that were introduced into
the diSCourse Via nouN PhFraseS.ccoveeeieeieneeniesee e 12
1.3.1.4. Reference to ageneral class of entities introduced into the discourse
asaspecific entity viaanoun Phrase.ccccveeveneenenieenesiee e 12
1.3.1.5. Reference to a property of an entity that was introduced into the
discourse viaanoun Phrase..........ccoceeereeieneesensee e 12
1.3.1.6. Reference to an event tYPe.ccveceveereeie et 13
1.3.1.7. Reference to an aCtion tYPE.cceeieeieerienieeie e 13
1.3.1.8. Reference to aproperty Of @an aCtion.ccccveeeveeresceeseese e 13
1.3.1.9. Reference to afact Or PropoSItiON.cceeeereriinieenese e 13
1.3.1.10. Reference to the general topic of the conversation.ccccccceevveennenee. 13
1.3.1.11. Reference to world/common knowledge not mentioned in the
ISCOUMSE. ...ttt ettt b e e nes 13
1.3.1.12. Referenceto nothing at all.cccoeoiiiiiiiiine e 14
1.3.1.13. Reference to an entity from another modality..........cccceevevvrcenenciennnnne. 14
1.4. The Evaluation Of PerformancCe..........coceeeieeiiieiinie e 14
(7= 0 = U 16
State of the Art in ANaPhora RESOIULIONc.cciiiiiiiiie e 16

\Y JL.R.D Woei-A-Jin, 2001

PH S TU Delft
2.1. Suitable Grammars for Anaphora ReSOIULIONcoieeiieiinieeeeee e 16
2.1.1. Government and BiNAINGccoceeiiieenieie e 17
2.1.1.1. Co-reference constraints in Government and Binding.cccoceevenene. 18
2.1.2. Discourse Representation TNEOIYcccciveieieereeiieseesieseeseesae e seesee e 19
2.1.3. ParSET @K ..ottt 19
2.1.3.1. Binding constraints in ParSeTalK.........ccccovivevvienieeie e 21
2.1.4. Tagger as SUDSHITULE FOr ParSar.cocveieieeiesee e 22
2.1.4.1. Binding constraints using the taggerccvvevevieseese s 23
2.2. Anaphora Resolution AlQOrthms ..o e 23
2.2.1. A smple model of anaphora resolution based on history lists...........ccccueu...e. 23
2.2.2. The Centering MOE!ccoiiieeeeeeeee e e 24
2.2.2.1. Technical Details of the Centering Modélcccoovevevieiiecnciccece, 24
2.2.2.2. Interaction of Centering Preferences with Intrasentential Interpretations26
2.2.2.3. Solutions for Centering AmMbBIgQUILYccceevevieie e 27
2.2.3. Never look back: An alternative to Centering.........ccoveeeeverieneenencenseeeseeees 28
2.2.3.1. Resolution of abstract entitieS.........cccceeeeeiirene s 30
2.2.4. HeuristiC AlQOMtNMS.........ooiiiiierieeeee e e 31
2.2.4.1. Traning @deCiSION trE........cceveerieeee et 31
2.2.4.2. Stochastic model fOr NEUMSHICSceveriiiieieeeee e 32
2.2.4.3. Experimenting with different configurations of rules..........c..ccccceevuenneee. 33
2.2.5. Summary of resolution Methods ... 34
2.3. Introduction to EHipSiS RESOIULION.........ccceiieiieeee e 35
(O 7= 0 = 0 TSR 37
The Anaphora Resolution Module in the SPICE-EPG ..o 37
3.1. Requirements for the module: Must-haves and Should-Haves.............ccccveueeee. 37
3L L MUSE-NAVES ...ttt bbbt 37
3.1.1.1. Reference reSOIULION.........cceieeiieeieeeee e e 37
3.1.1.2. Operational Within SPICE...........cccooeviriececeece e 38
3.1.1.3. Operational iNreal-tiMecccoeeiiieeiieee e 39
3.1.1.4. Not dependent on extensiVe [EXICON..........ccccevereereeceeseese e 39
3.1.2. SNOUIA-NAVES.......coeieeee e e 39
3.1.2.1. RODUSINESS.......ueiuieiieieiesie sttt sttt sttt sttt e b s 39
3.1.2.2. Adaptable for other appliCations...........cccovirierieneneeee e 39
3.1.2.3. Parameterized SEttiNGS.......c.ccveerreeiriierieeeseeseeeesee e e sae e nne e 40
3.1.2.4. Noincrease in System reqUIreMENtS.........oocuereerereereesieeseesesee e seesneens 40
3.1.2.5. Littleincrease in processing tiMe..........ccveveeieeieeresieeseesesee e eee e 40
3.1.2.6. WHTEN TN C oo s 40
3.2. NAITOWING thE SCOPE.......eiveeieeeeiteeie ettt ae e te et sneeae e e nreenaesreenes 40
3.2.1. Solving references within the CONSraiNts...........ccoeeverieneeneeie e 41
Nt Nt 1 1= TSP 41
3.2.1.2. References to an entity from another modalityccoooveeiveiienciiiennnne 42
3.2.1.3. References to a superset of individual entities from another modality 42
3.2.1.4. References to a property of an entity from another modality 43
3.2.1.5. References to an entity that was introduced into the discourse viaa
NOUN PRFGSE ...ttt re e neenre s 43
3.2.1.6. References to world knowledge not mentioned in the discourse.............. 44

Vi J.L.R.D Woei-A-Jin , 2001

PH S TU Delt
3.2.1.7. Referencesto afaClccoouviiiieiieeeee e 44
3.2.1.8. Referencesto nothing at @lcccoecveveeiecenece e 44

3.2.2. The Narrowed dOWN SCOPE.........cerverreerieerieriesiee e seesreeseeseesseeeesaeesaeseesseensens 44
IMIUSE NAVES......eee et bbbttt b e e s 45
SNOUIA NAVES ... et s 45

3.3. Choosing the reference resolution method............cccovvveveece e, 45
3.4. Grammar requirements for the SOIULTONcoieeiiiereeee e 47

3.4.1. Recognition Of rEfErENCES........cceveeieeie et 47

3.4.2. Recognition of objects which can bereferred to.........cccoovveiiiiiiiieiieee 48

3.4.3. Recognition of phrases adding contextual constraints............cccocevveeeereenene 48

3.4.4. Recognition Of EXPIELIVES........ccoiiieeriiriesieeriee e 49

3.4.5. Adaptation of the SPICE-EPG Grammar...........cccoceeceeveeneeieseeseseeseeseesnens 49

3.4.6. Use of methods to compensate lack of syntactic information.............ccccc..... 51

3.4.7. Summary of grammar reqUIrEMENES..........ccceeeererieereereseeseesee e sseeseesseeneens 53

3.5. General outline of the algorithm ... 54
3.6. SYSIEM DESION....cctieie ettt et e et e e sreeae e e reenneenee e 57

3.6.1. DefiNiNg the ODJECEScoieiee e e 57
3.6.1.1. processing display data.........cccoeeeeieereeieseere e 59
3.6.1.2. processing user utterance with areference to a concept in focus

(oL] 7o o) S 61
3.6.1.3. processing user utterance with areference to a concept in focus

(AEMONSLIELIVE)......eceeeieeieeeie ettt e e ae e sreeneennes 64
3.6.1.4. processing user utterance with a reference to a concept out of focus

(definite dESCIiPLION)ccveeeeeeeerieeee e 67
3.6.1.5 processing user utterance with areference to a concept out of focus

(T T=To oo - S 72
3.6.1.6. processing user utterance with a compound reference (definite

(01550 £ 11T) S 77
3.6.1.7. processing user utterance with areference to adeictic concept............... 85
3.6.1.8. Processing user utterance without areference.........cccvvveeevieeveveesenene 89

3.6.2. Overview of the Classes.........coeiriieee e 91
3.6.2.1. MaIN INEEITACEeiiiierecereeee e e 91
3.6.2.2. DISplay REATEScovueiieeeeceee et 91
3.6.2.3. MAIN ENQINE.....ociiiiieitieie e steee e st te et te e e e e aesnaesreesennenns 92
3.6.2.4. Update MOUIE..........cceeiiiceeee e 92
3.6.2.5. SAIENCE LIS ... 92
A S o 11 (] Y I P 93
3.6.2.7. Grouping MOGUIE.........ccecueieee e ne e 93
3.6.2.8. DEIXIS IO ...ciuieeieieeese e 93
3.6.2.9. Reference Detection & Classification Module............ccocovevenenenineeneee, 94
3.6.2.10. Constraint Detection MOdUIE...........cccoreiiiriiie e 9
3.6.2.11. Pronoun Resolution MOdUIEccoererieiieieenesesesee e 94
3.6.2.12. Demonstrative Resolution Module.............cccoiiriiiiineniineeee e 95
3.6.2.13. Definite Description Resolution Module...........ccevveeeieenieeieseesienns 95
3.6.2.14. One Anaphora Resolution module............ccocoeeiierneninieiee e 95

.7 SUMIMIEIY ..ttt ab e ae e e bt e e e bb e e sabe e e s abe e e sabe e e sabe e e sabeeennbeeennreeennes 96

Vil J.L.R.D Woei-A-Jin , 2001

PH S TU Delft
IMIUSE NBVES........eoeieeee et ettt sr e 96
ShOUIA NBVES ... e 96

(O 7= o = 7 TSR 98
EVAIUBLTON. ...ttt bbb b e st b ettt ne b 98
4.1, Evaluation MELNO..........coouiiiieee et e 98
4.2. ChoiCe Of the COMPUS.......coiiiiiecieeieces ettt ne e 98
4.3. Errors and problems encountered during teStiNG.........cocevereereenenieeseeree e 99
4.3.1. ConfliCting CONSITAINTSceceeieeieseesieeie e e e et esreenesneenneas 99
4.3.2. Constraints differ for different concept typesccovevereeiincenenie e 99
4.3.3. Display contains less than actual data.............cccccveveeveererieseeie e 100
4.3.4. Grammar conflicts with content desCription...........ccoceveeeereenenceneesie s 100
4.3.5. Misassignment Of CONSLIAINS.........cccuereeiuereerieeeeseesieeiee e seeeeesee e eeesseenes 101
4.3.6. EMpPLtY CONCEPL Graph.......coveiiierieeiieieseeie st 101
4.3.7. Misrecognition causing to 100K for [iStS.........cccvvvevviieereece s 101
4.3.8. Concepts overriding reference CONCEPLSooovvrveererierenriesee e 101
4.3.9. Misrecognition Of ProNOUNS...........cocueiueiierieeieseeseeeeseeseeseesreeeesseesseeneesnes 101
4.3.10. Non-recognition Of @rtiCleS.........ccooeeiiriiirieeesee s 102
4.3.11. Two different iNpUt StrEMSccceeieeiereesece e 102
4.4. Perfomance of the reference resolution module.............cocooveieiiinniinenenne, 102
A0, TESETESUITS...c.eevitiiiieieeieeee ettt bbb nn b e s 104
4.4.1.1. OFffliNe @ValUaLiON......cceeoieieiiiieiee e e 104
4.4.1.2. ONlNE @VAIUBLION ...t 105
Reference resolved t0 NOthING.........couiiiiriiiee e 105
(O 7= 0 = PSSR 108
(000 070: 115 o] o 10PN 108
5.1. Finding a method to compensate for lack of syntactic data............ccccceevevernennen. 108
5.2. Implementation of the proposed MOdEl ..., 109
5.3 TESE TESUITS ...ttt bbb nre s 110
(@4 7= 0] L= G PSPPSRI 112
RECOMMENUALIONS ..ottt bbbttt e sbe e b nne s 112
6.1. Filter out non-filler concepts which make N0 SENSe.........ocvveeveiieneccin e 112
6.2. Relax the grammar for reference reCognitionccccvecereereseesesieeseeseeseeneens 113
6.3. Use asecond parser to allow more complex CONCEPLS.........ccververreereeriereesenenns 113
6.4. Determine references for all NypothesiS........cooveiieeci e 113
6.5. Penalize hypotheses with unresolved reference..........cooeveeceneneniesceseeeins 114
6.6. Find away to process references to content description............cceccveeeeveeiieseennns 114
6.7. Find away to tag content description and add the tagged information to the
(00010 o TSP 114
6.8. Use afilter to determine when to skip the salience list..........ccoooeveviienciieeine 114
6.9. Solve one anaphora using the salienCe list.........coveeeveeiecceseee e 115
BiDlOGrapNy ..o et 116
N o 0= 10 A S 120
Examples of referencesto be solved intheideal case...........ccoveveieiiinecnecce e, 120
N o 0= 10 = S 126
Grammar to recognize referenCe fOrMS.........ccoiieiereneee e 126
N o 0= 0 S 133

viii J.L.R.D Woei-A-Jin , 2001

PH S TU Delft
Phrases With @XPletiVEScuo i 133
N o 0= T I S 135
System tasks and information requirements based on examples..........cccecveveeiiecnee, 135
N 00 0 =S 142
SOUICE COUR ...ttt ettt ettt et b et e st e s b e et e saeesbeebesneenseeneens 142

=TT 1= = o USSR 142
DiSplay REATENccueieiiieiee ettt sttt b et sae e b neeneens 153
[1720 = g 1 S 153
IMPIEMENtAtioN FIlE ..o e 154
Y= =T T USSP 158
(1720 (= g 1 TSP R 158
IMPIEMENEAiON TIl.....cveeeeceee e 161
UPAAE MOUUIE........eeeieeeieee e ettt sr e ae e 166
[1720 = g 1 S 166
IMPIEMENtatioN fIl........cooi e 168
SAlIENCE LISE...ieieiieie ettt et e et e e ne e teeneenreenaeennenneennean 170
[15720 (= g 1 TSP 170
IMPIEMENEAiON TIl@.....ccveeeeceeeee e 175
[TS 0] Y I PSPPI 190
[1720 = g 1 S 190
IMPIEMENtation fil.........ooi e 194
GroUPING MOGUI......cueeieeeieie ettt esre et e esaesseeaeeneesreennesneens 200
[1720 (= g 1 RSP R 200
IMPIEMENEAiON TIl.....cveee e 201
D1 DS 11 (SR PRPR PR 205
[1720 = g 1 S 205
IMPIEMENtation fil........cooi e 206
Reference Detection & Classification MOdUIE...........ccocceveeieecesieie e 207
[15720 (= g 1 TSP 207
IMPIEMENEAtiON TIl.....ceeeeeeeee e 208
Constraint DeteCtion MOTUIE..........ccoiiiieiee e e 212
[1720 = g 1 S 212
IMPIEMENtatioN fIl........coieeee e 213
Pronoun ReSOIUtION MOAUIE...........oocueiieieceseese e 222
(1720 (= g 1 TSP 222
IMPIEMENEAtiON TIl.....ccveeeeceeeee e 223
Definite Description Resolution MOdUIE...........ccooiiieiiiieee e 227
[1720 = g 1 S 227
IMPIEMENtatioN fil........cooi e 229
Demonstrative Resolution MOAUIE............ccceeeeiieieiieseee e 237
[15720 (= g 1 TSP R 237
IMPIEMENEAtiON TIl.....ccveee e e 239
One Anaphora Resolution MOUIE...........cooeiiiiiiieeeee e 240
[15720 = g 1 S 240
IMPIEMENtatioN fil@........coieee e 242
(@0 aTor= o1 1Y/ o1 | = SRS 244

iX J.L.R.D Woei-A-Jin , 2001

PH S TU Delft
(1720 (= g 1 TSP 244
IMPIEMENEAiON TIl.....ccveeee e 245
CONCEPDL. ...ttt ettt sttt et e et e e s bt e et e e ae e e ase e saeeeabeaeseeeseesaeeenneesnneereennnean 254
HEAAEY Tl 254
IMPIEMENtation fil..... ..o e 258
(@001 (=1 | PO P RURTRTRSR 263
[1720 (= g 1 TSP R 263
IMPIEMENEAtiON TIl.....cveeeeceece e 265
F N o]0 1< 1 o [G TSR 268
[0S 0T =S =S T 268
F N o]0 1 o [G TSR 269
TESE RESUITS ...ttt bbbttt n b nne e 269

OFflINE TESES ...ttt st b e et esaeesae e e sneenne s 269

(@0 1] T (S USSP 271
F N o]0 1< 1 0 [o SRR 274
(@001 1= 1] KPP SSSPP 274
F N 0= 1 o [G TSR 294
LITEIalUrE SUMVEYeeceeeieeie e stee ettt e e e et e st e e s esaeenteeseesseeneesnaesseentesseenseeneens 294

X JL.R.D Woei-A-Jin, 2001

PH' S J Deift
List of Tables
Tablel. Thetypesof movement for centers 25
Table2. Discourse and hearer newness of discourse entities 28
Table3. Grouping of the different types of discourse entities 29
Table4. Precedence of entitiesin the salience list 29
Table5. Recognizing individual and abstract entities 30
Table6. Overview of the properties and results of the different reference
resolution methods 45
Table7. Properties of methods to acquire syntactic information 51
List of Figures
Figurel. The SPICE-EPG Graphical Interface
Figure2. Dialogue system model used by Philips Research 7
Figure3. Dependency tree for: Mariatells Peter’ s story about himself 8
Figure4. Overview of grammatical relationshipsfor: ‘Mariatells Peter’ s story
about himself.’ 8
Figure5. Syntactic treefor: Jill told Mary about her 9
Figure6. Meaningful concepts of ‘ Please record teh second program’ 9
Figure7. Instances representing six relevant references to entities 15
Figure8. Syntactic tree of: ‘the musician’ sinterpretation of that sonata 17
Figure9. Syntactic tree of the sentence: Jill read Mary’ s book about her 18
Figure 10. A DRS of the sentences ‘ Peter owns abook.’, ‘I1f aman owns a book he
readsit.” & ‘It has 200 pages 19
Figure 11. Part of ahierarchical tree of alexicon in ParseTak 20
Figure 12. Dependency tree for: Mariatells Peter’ s story about himsel f 21
Figure 13. Output from the tagger of: ‘Mariatells Peter’ s story about himself’ 22
Figure 14. The flowchart of the anaphora resoultion module in SPICE 56
Figure15. Objectsand their relations 58
Figure 16. Dataflow between objects for the processing of display data 59
Figure 17. Sample output from the reference resolution module handling system
data 60
Figure18. Dataflow between objects for the processing of user utterance with
reference to concept in focus (pronoun) 61
Figure 19. Sample output from the reference resolution module handling a
pronoun 63
Figure20. Dataflow between objects for the processing of user utterance with
reference to concept in focus (demonstrative) 64
Figure21. Sample output from the reference resolution module handling a
demonstrative 66
Figure22. Dataflow between objects for the processing of user utterance with
reference to concept out of focus (definite description) 67
Figure 23. Sample output from the reference resolution module handling a definite
description 69

Xi

JL.R.D Woei-A-Jin, 2001

PHI S TU Delf

Figure24. Dataflow between objects for the processing of user utterance with

reference to concept out of focus (one anaphora) 72
Figure 25. Sample output from the reference resolution module handling one

anaphora 74
Figure 26. Dataflow between objects for the processing of user utterance with a

compound reference 77
Figure 27. Sample output from the reference resolution module handling a

compound reference 81
Figure28. Dataflow between objects for the processing of user utterance with

reference to a deictic concept 85
Figure29 Sample output from the reference resolution module handling adeictic

reference 87
Figure 30. Dataflow between objects for the processing of user utterance without

areference 89
Figure31 Sample output from the reference resolution module handling a concept

with no referential properties 90

Xii J.L.R.D Woei-A-Jin , 2001

PHI S TU Delft

Chapter 1.

Introduction

Every serious company devel oping machines, user hardware, software, household
appliances, or any other technical product used by humans should include usability
considerationsin their design process. A well designed man-machine interface can
prevent much frustration when the user is trying to work with some apparatus, whether it
isasimple thing like a payphone or a complicated thing like a new computer program:
Which button should | press now? Why does it beep now? Why does it do something else
than | want it to?

A badly designed user interface may cause users to have trouble when using the machine,
and it will take along time before the user understands the behavior of the apparatus,
increasing the time before the machine can be adequately used. It may even be the cause
of severe injury like Repetitive Strain Injury (RSI), which is believed to be the result of
intensive use of the interface under stressful situations for alonger period of time.

If auser interface is easy to understand and ergonomically designed, personnel can easily
and quickly adapt to a new user environment, so training time and costs can be reduced
when anew system isintroduced. It may even cut in medical costs since Repetitive Strain
Injury is prevented.

Nowadays multi-modal man-machine interfaces are a very interesting research topic,
because they allow a user to intuitively communicate with amachinein afor the user
optimal and natural way [Coh98]. Different tasks can be performed using different
modalities, allowing the user to pick the most suitable modality for specific tasks or
subtasks.

Speech is an important aspect of multi-modality, because it is one of the primary ways
how humans pass on information. It is especially suitable for complex tasks where
otherwise many actions must be performed, before the task can be completed. With
speech, this can usually be done in one or two sentences.

On the other hand, some simple tasks which can be done with one point of the finger are
atedious process when the speech modality is used, because extensive description of the
required task is needed. The Man-machine Interface group of Philips Research in Aachen
has built an Electronic Programming Guide (EPG) with a multi-modal interface for
television program recording within the Speech Interface for Consumer Electronics
project (SPICE). This system supports both speech as well as pointing input to
accommodate user needs when operating the system.

References occur very often in natural language use, because of the so called general
Conservation Principle, which states that hearers do not like to make new discourse
entities when old ones will do and that speakers try to form their utterances so that the
hearer can make maximal use of old entities [Pri81]. This report will describe the
reference resol ution module which has recently been added to the SPICE-EPG system, to
further ease the user’ s tasks, when he or she istrying to record a program. The literature
study on reference handling is mainly based on reference handling for texts, because most

1 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

- .
)

PH S

b

of the literature available covers this topic. With speech recognition, the speech is
transcribed into text, before it is further processed, so in principle text based reference
handling can be applied in a speech understanding environment. However not all data
which isavailable for text processing is available, because the methods used for text are
not robust enough for speech processing.

Chapter 1 gives ageneral introduction about the environment of the project. In section
1.1 the problem is defined. Section 1.2 gives an introduction about the SPICE-EPG: why
the SPICE-EPG is developed, what its features are, and what the structure of the dialogue
model is, and where the reference resolution module is placed in this model. In section
1.3 isdiscussed in which form references occur and what they can refer to in general.
Finally section 1.4 describes how the performance is measured for reference resolution
models.

Chapter 2 gives a short overview of the state of the art in reference resolution. In section
2.1 different grammars suitable for reference resolution is described. This description is
meant to give ageneral idea what the grammar is about and how it would helpin
anaphora resolution. It is not a description how each grammar work and how the different
structures are constructed with the grammars and what operations can be performed on
these structures. Section 2.2 gives an overview of anaphora resolution models. An
introduction to ellipsis resolution is also given in this section, even though it is strictly not
aform of anaphora. The introduction is given because ellipsisis an important and often
occuring form of reference. It may be desirable to solve elipsis for the SPICE-EPG, but
chapter 3 will show that it falls outside the scope of the project. Thisis aso the reason
that no more than a short introduction is given on ellipsis resolution.

Chapter 3 describes the anaphora resolution module in the SPICE-EPG. In section 3.1 the
reguirements for the modul e are stated, which are narrrowed down in section 3.2 to fit
within the time and environmental constraints of the project. Section 3.3 describes which
reference resolution model was choosen in the first stage of the project and why (see also
appendix | for the literature survey from the first stage of the project). Section 3.4
describes what information is needed from the grammar for reference resolution, and how
the system should be adapted to provide this information. Section 3.5 gives a general
outline of the algorithm, followed by the system design in section 3.6.

Chapter 4 describes the evaluation of the reference resolution module, what works and
what went wrong and in Chapter 5 the conclusions of the project are stated. Finally in
chapter 6 future recommendations are given about possible improvements.

2 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

1.1. The Problem Definition

In the first three months of this project aliterature survey was done to find a suitable
solution for reference resolution in a demonstration prototype of the SPICE-EPG (see
appendix 1). The most suitable model for reference resolution in this prototype was found
to be the model proposed in [Str98], Never look back: An alternative to Centering. Close
examination of the examples given for the algorithm gave rise to the suspicion that the
algorithm was probably not implemented, but hand tested only, and the author assumed
that the datafor correct resolution are ssmply present. Requests for clarifactions on this
by e-mail, were responded by vague answers and confirmation that the author assumes
that the algorithms to provide the data are present. Also, the algorithm istested only for
written text, whereas reference resolution has to work in a speech recognition
environment, where recognition is not 100% and grammar is much looser. In the second
stage of this project, this algorithm has to be implemented and tested.
Another problem is that because of the grammar used for the SPICE-EPG environment,
no binding constraints are present for references to items in the same sentence, also
dependencies between words in the sentence are missing. For this also a solution must be
found. So there is still abig gap between the theoretical model proposed in [Str98] to
solve references in written text, and having the model work in areal speech processing
environment, without the certainties of written text and the presence of all the data
needed.
The goals of the second part of the project are as follows:
» Implement the proposed model for operation in a speech recognition environment.
» Test the proposed model in a speech recognition environment.
* Find amethod to compensate for the lack of syntactic information in a shallow
parsing environment.

3 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

1.2. The SPICE-EPG System

The SPICE-EPG system (Speech Interface for Consumer Electronics — Electronic
Programming Guide) provides the application scenario in which the reference resolution
module will be tested. It is aresearch prototype which was built to demonstrate the
potential of conversational user interfaces for consumer electronic devices and is used to
test and eval uate speech and language technology [Kel00].

In this section a short introduction to the SPICE-EPG will be given. The next subsection
will explain why SPICE-EPG was devel oped, what the design goals were for the
prototype, and what the features are. The last subsection will discuss the system
architecture used for SPICE-EPG.

1.2.1. Motivation for the SPICE-EPG

An EPG is an application with which the user can browse through a database of TV
programs, get additional information on specific TV programs, switch to a program that
is currently running or schedule it for later viewing or recording.

The entries from the database are usually accessed through channel, date, time or
category, by selecting the appropriate function on the TV’ s remote control. The matches
retrieved for the current selection are displayed on the screen. The remote control is then
used to select one of the programs.

A review of EPG systemsin the magazine * Sound&Vision' [SVM99] showsthat it is
guite awkward to operate them with just aremote control. In this paper it is pointed out
that it takes between 8 and 48 button presses with today’ s EPG systems just to find out
what is on a certain channel on a certain day at a certain time. Since the EPG is aready a
very complex application compared to, for example, controlling a TV -application, as far
as the user-system interaction is concerned, it is deemed suitable as a carrier application
within the SPICE-EPG project to test and evaluate speech and language technology.
Another consideration was the fact that the EPG is avery well understood application
within Philips Research. It has been atestbed for many new technologies. The application
isalso relevant to Philips Consumer Electronics, since an electronic programming guide
will probably become part of most TV setsin the future.

1.2.2. SPICE-EPG Design Goals

The SPICE-EPG is designed to be a Mixed Initiative System, which means that the user
is able to decide what information is given at what time in which way, and that both the
user and the system may control the dialogue flow. Thisin contrast to simple Interactive
V oice Response, where the user is prompted for a sequence of specific information items
in apurely system directed way and only to alimited set of command words. These
command words are basically just a replacement of buttons on aremote control. The
main features of conversational user interfaces are:

* Spontaneous speech input

» Direct accessto content

» User driven interaction

4 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

» Cooperative dialogue
These features will be discussed in the following subsections.

1.2.2.1. Spontaneous speech input

With natural language input, the user is able to formulate his request or command in his
own words and does not have to use a specific pre-defined keyword. In the simplest case,
this means that the user can choose between alarge number of alternative ways to
express acommand. Beyond that, he is able to use more complex formulations and give a
number of information items in a single utterance.

For example the user can say: “record the six o’ clock program on channel 4,” instead of:
“channel,” wait for system to display choice of channels, “channel 4,” wait for system to
display thelist of programs on channel 4, “time,” wait for system to display choice of
times, “six o’ clock,” wait for system to show the six 0’ clock program on channel 4,
“record.”

1.2.2.2. Direct access to content

In most traditional user interfaces, the user selects a specific content item (e.g. amovie
title) by navigating through a selection displayed on the screen. For example: select time
slot, browse through the list of times, select channel slot, browse through list of channels,
select title slot, browse through list of programs, select the appropriate title, and then
access thetitle.

Using its large-vocabulary speech recognition capabilities, a conversational interface
even allows the user to directly access the complete content at any time in the interaction,
even if this specific item is not displayed on the screen. Using natural language input and
information retrieval, it is also possible to refer to atitle or the description of a program
directly even if the formulation used does not exactly match the database entry.

So it ispossible to tell the system to “record the James Bond movie tonight”, without
having the title displayed on the screen first. The system would recognize that the movie
“James Bond 007: Golden Eye” hasto be recorded.

Especialy if the number of available choicesisvery large, thisis a mgor advantage and
allows for much faster and more intuitive access.

1.2.2.3. User-driven interaction

In most of the current interfaces to consumer electronics devices, the user hasto follow a
hierarchy of menus and sub-menus to accomplish a complex task. The correct top-level
menu is often not very obvious and therefore the user either has to remember al the steps
of acommand or try out various menus and submenusto find the right one. In a
conversational user interface, the user does not have to follow the structure of a pre-
defined control menu in order to complete atask. He can directly access functions at any
level in the control hierarchy and give the information items in an arbitrary order.

In cases where the user’ sinput is not sufficient to identify a specific command and its
arguments, the system will ask additional questionsin order to obtain the missing
information.

5 J.L.R.D Woei-A-Jin, 2001

PH S

1.2.2.4. Cooperative dialogue

In conversational user interfaces, the interaction between the user and the system
becomes a two-way communication. While the user isin full control of the dialogue and
tells the device what to do, the device can also take the initiative and ‘talk’ back to the
user. This can be used to give the user feedback on the system’s current state or to verify
some of the user’s commands.

Furthermore, the system can actively guide the user through a complex task or offer some
suggestions for content-sel ection based on the user’ s preferences.

1.2.3. Features of SPICE-EPG

The SPICE-EPG allows input from two different modalities. It is possible to do all tasks
hands-free with spoken input only, or control the device with touch screen input in
addition to speech. The current prototype output consists mainly of visual feedback for
displaying information (e.g. alist of program items matching the user’s selection) and
spoken output to guide the user through the dialogue. In addition, an anthropomorphic
cartoon character gives visual feedback on the current system status. Figure 1 shows the
graphical interface of the SPICE-EPG.

Eile Cptions |
— output data
SELECTIOM-LIST |
Your Selection |
REMIND-LIST I
T I Date |Stat |End |Ch | Title | genre
Mon 11, 16:20 17:00 Discovery_.. rex hunt’s fishing world Emissi
Mon 11, 16:30 17:00 BEBC_WORLD a golfer’s travels Emissi
kon 11, 16:30 1645 EBEBC_Prime hodger and badger Serie
Mo 11, 16:30 17:00 CHN world sport Sport
kMon 11, 16:30 17:00 Channel_4 watercolour challenge Emissi
Mon 11, 1645 17:05 BBC_Prime playdays Kids
kMon 11, 1655 17:.00 BBCZ bhc news regional news digital uk today w... --
Mon 11, 17:00 1650 SKY_Movie.. sesame street presents follow that bird 1385 Movie
& Mon 11, 17.00 1730 Channel_4 fifteen to one Enterte|
V] =
INE O | WATCH REMINDl RECORDl ‘
— Search criteria = =
date | time | channel | title | gente |
11-0s-00 [1e19--1813 | | |
— Recognized
QuT | RESET ||reset HELF I

Figure 1: The SPICE-EPG Graphical Interface.

In the SPICE-EPG prototype, an offline copy of three weeks of program data with 7110
entries downloaded EuroTV (http://www.eurotv.com) is used. The user can select a set
of programs from the database by specifying one or more of the following itemsin one

utterance:
 Date

e Time

« Genre

e Channd
o Title

» Description

6 J.L.R.D Woei-A-Jin, 2001

110

PH S

1.2.4. The SPICE-EPG Architecture

The dialogue model used for the SPICE-EPG used by Philips Research in a man-machine
speech interface is shown in figure 2 [Kel00]. The different components of the model are
discussed in the following subsections in order of the flow through the system.

—>
Multi
| LM |AR | Lex | Media Dialog Control
—_— Integration
Automated Natural Context Knowledge
> Speech > Language > Interpreter Update
Recogni zer Understanding
Planning
Text To Natural Context
< Speech < Language < Generation Outout
Generation Multi A pu
Media anning
Planning
—

Figure 2. Dialogue system model used by Philips Research.
LM = Language Model, AR = Acoustic Reference, Lex = Lexicon.

1.2.4.1. The Automated Speech Recognizer.

The Automated Speech Recognizer (ASR) analyses the acoustic waveforms, and

recogni zes the word sequence spoken by the user. In order to do this, the ASR makes use
of aLexicon, an Acoustic Reference model, and a Language model. In the Lexicon the
phonetic transcription of every word in the systems vocabulary is defined (similar to the
pronunciation of aword in adictionary). These phonetic transcriptions can be matched to
(parts of) the acoustic waveform with the Acoustic Reference model, which calculates the
likelihood that a signal refersto a particular phonetic unit. The Language Model is used
to determines the a-priori likelihood of aword sequence, based on atext corpus that
reflects the statistics of the application data.

1.2.4.2. The Natural Language Understanding Module

The Natural Language Understanding module interprets the input sentences. This means,
it derives all the semantic information that is relevant in the given application. In some
cases this analysis is done together with parsing (which is finding the syntactic structure
of a sentence). While not strictly correct, both functionalities will be grouped in this text
under the term parsing, for ease of explanation of the different grammars, thisis also
because in many papers no distinction is made and parsing is also used for derivation of
semantic information.

7 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

Depending on the parser the depth of the derived information ranges from a dependency
tree, where al the relations between the words are identified (see figure 3.) [Stro5], to an
overview of only grammatical relations like subject, object, etc. [Ken99] (seefigure 4.),
to syntactic structures like verbs, noun phrases, pronouns, etc. [Al195] (seefigure5.) to
only the meaningful parts without grammar base [Kel00] (seefigure 6.). Most of these
approaches are based on complex linguistic grammars, and achieve great performance at
parsing large bodies of text, but are not robust enough to be used in spoken language
dialogue systems. The main reasons for that are:
* Most of the input sentences are not structured correctly according to textual grammar
rules.
» The speech recognizer introduces additional errors which lead to parsing problems.

tells
subj dirObj
Maria story

saxGen

Peter’s about

pObj

himself

Figure 3. Dependency tree for: Mariatells Peter’s story about himself.

0
1 Maria Maria subj:>2 @SUBJ N NOM SG
2 tells tell main:>0 @+FMAINV V PRES SG3

3 Peter's Peter dat:>2 @1-OBJ N GEN SG

4 story story obj:>2 @OBJ N NOM SG

5 about about ha>2 @ADVL PREP

6 himself he pcomp:>5 @<P <Refl> PRON PERS MASC SG3

Figure 4. Overview of grammatical relationships for: ‘Mariatells Peter’s story about himself.’

It is enough for the system though to only extract those words or phrases that are
meaningful with respect to the current task. The rules specified in the grammar do not
have to cover the complete user utterance, but only the meaningful phrasesin the
utterance must be represented. These are called concepts. The concepts are extracted
from the user utterance by atop-down chart parser that allows for island parsing. This
means that the parser attempts to assign concept types to the largest group of the words
first and progressively decreases the size of the group. These groups can be isolated parts
of the utterance, so that meaningless phrases are ignored. The so-called filler model
allows the handling of meaningless phrases, which cannot be assigned to a concept
[Aus95] [MasS00] [Sou00].

8 J.L.R.D Woei-A-Jin, 2001

PH S

S
/\
NP1 VP
/\
Y NP PP
/\
P NP
Jill told Mary about her

Figure 5. Syntactic tree for: Jill told Mary about her.

/Filler\c% definite description
(| | o
Please record the second program

Figure 6. Meaningful concepts of ‘Please record the second program’.

1.2.4.3. The Multimodal Integration Module

Here the parsed sentence is matched with the dialogue history and information from other
modalities. The semantics represented in the speech input and in the pointing input are
combined into a coherent semantic representation of the user input, so deixisis already
taken care of. It allows for synchronous coordinated use of speech and pointing [Phi00].

1.2.4.4. The Context Interpretation module
References to previously mentioned topics or objects are resolved here.

1.2.4.5. The Dialogue Manager

The Dialogue Manager is the central module of the system. It maintains the system’s
internal knowledge stack (system belief), interacts with the actual application (e.g. TV,
VCR, or EPG-database), and decides about the next action of the system.

1.2.4.6. The Media Planner

The Media Planning module decides how the information should by presented to the user
and which media are suitable to do this. The abstract representation of the system’s
responseis split into information to be presented in spoken and visual form.

9 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

1.2.4.7. The Language Generation Module

The Language Generation modul e translates the abstract representation of the system
output which has to be spoken into a sequence of words.

1.2.4.8. The Text-to-Speech Module

The Text-to-Speech Modul e transforms the textual representation of this sequence of
words into acoustic waveforms that are played to the user. In the SPICE-EPG prototype,
the acoustic waveforms consist of pre-recorded spoken text.

1.3. An Introduction to References

Currently the Context Interpretation module of Philips lacks a method to solve references
to previously mentioned topics or objects. Only references to objects which have been
pointed to using the touch screen are resolved here. Since references very often abound in
naturally occurring discourse, they are acritical part of natural language understanding. It
istherefore important to be able to solve references in a user-friendly speech
environment.

For example the user of the SPICE-EPG may want to use references like:

* Record thefirst movie.

* Remind meof it.

* Record the one at ten p.m.

1.3.1. References in Natural Language

In general the following types of references can be distinguished [AlI95]:

* Anaphoric reference: A reference to a previously mentioned entity. For example:
Mary bought a dress. It is very beautiful.

An anaphoric reference can be intrasentential (e.g. the referent is mentioned in the
same sentence) or intersentential (e.g. the referent is mentioned in a different
sentence).

» Cataphoricreference: A referenceto ayet to be mentioned entity. For example:
These are our demands: We want three million helicopters and a dollar!... uhm |
mean three million dollars and a helicopter

* Deicticreference: A reference to an entity from another modality. For example: |
want that (with the speaker pointing to an apple).

» Ellipsis: A grammatically incomplete sentence, where part of a previous sentence
grammatically compl etes this sentence. For example: Sam forgot his wallet. Jack did
too.

Anaphoric, cataphoric and deictic references can be in the form of [AlI95]:

* Pronouns: I, me, my, mine, you, your, yours, he, him, his, she, her, hers, it, its, we,
our, ours, they, their, theirs, myself, yourself, himself, herself, itself, ourselves, and
themsel ves.

10 J.L.R.D Woei-A-Jin, 2001

PH S

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

A zero pronoun (not for cataphoric references): The referring pronoun is left out of
the sentence, for example: A judge ordered that Mr. Curtis be released, but /7agreed
with the request from the prosecutors. Here [1 marks the spot where a pronoun,
referring to the judge, should have been. Zero pronouns are not very common in
English, but may occur often in languages like Spanish, Italian, Japanese, and
Chinese [Fer00]. It can be argued that zero pronouns are some form of ellipsis (at
least in English).

Demonstratives: this, that, these and those.

Noun phrases modified with a definite article, a quantifying determiner, or a
demonstrative (definite descriptions): The word which forms the basis of the phrase
is called the head, the words that provide extrainformation about the head, are called
modifiers: the dog, the mangy dog, the mangy dog at the pound, the four books, all
books, some of the books, those books etc.

The word one (also called one anaphora. One anaphorais also not used in cataphoric
cases), for example: John had a blue shirt, Mary had a red one.

Ellipsis takes the form of a grammatically incomplete sentence, where a subject, object,
verb, or other grammatical function is missing: My friend came by, and gave me a
present.

References may refer to [Bea99, Byr99, Eck99, Mcc96, Mur96, Pin00]:

an entity that was introduced into the discourse via a noun phrase.

asubset of agroup that was introduced into the discourse via a noun phrase.
asuperset of individual entities that were introduced into the discourse via noun
phrases.

agenera class of entities introduced into the discourse as a specific entity viaanoun
phrase.

aproperty of an entity that was introduced into the discourse via a noun phrase.
an event type.

an action type.

a property of an action.

afact or proposition.

the general topic of the conversation.

world/common knowledge not mentioned in the discourse.

nothing at all.

an entity from another modality.

In the next few subsections, the different types of references will be described in more
detail.

1.3.1.1. Reference to an entity that was introduced into the discourse via a
noun phrase.

The referent isintroduced previously in the discourse via a noun phrase. Example:
First we are going to take [both engines] from Elmira to Corning and then to Dansville.
In Dansville they should pick up the three boxcars.

11 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

In this example they refers to the previously introduced noun phrase both engines.

1.3.1.2. Reference to a subset of a group that was introduced into the
discourse via a noun phrase

A group of entities as a whole may be introduced during the discourse and then later
references can be made to a more specific (set of) individual entities of the previously
introduced group. Example: [A group of girls] went to Yorkshire by car. The girl behind
the wheel was not paying attention to the road.

In this example The girl behind the wheel is areference to an individual from the
previously introduced group A group of girls.

1.3.1.3. Reference to a superset of individual entities that were introduced
into the discourse via noun phrases.

Sometimes individual entities are mentioned first in the discourse and later referred to as
agroup. Example:

[Bill] paid [Bob] avisit. The men talked for a long time.

In this example Bill and Bob were introduced first in the discourse and are referred to as a
group in the next sentence by The men.

1.3.1.4. Reference to a general class of entities introduced into the
discourse as a specific entity via a noun phrase.

Sometimes, a specific entity will be introduced into the discourse and then a subsequent
reference will be to amore genera class, of which the specific entity is amember.
Strictly thisis not considered an anaphoric reference, but in some applications (e.g.
information extraction) it may have to be linked with the entity, since it may add
important information about that entity. Example:

[Familymart Co. of Seibu Saison group] will open a convenience store in Taipel Friday
in a jointventure with Taiwan’s largest car dealer. Thiswill be the first overseas store to
be run by a Japanese convenience chain store operator.

The identifier a Japanese convenience chain stor e oper ator is arather general
reference to a class of entities. However, a system, which for instanceisinterested in
nationality information of organizations, may need to be able to link this noun phrase to
Familymart Co. of Seibu Saison group.

1.3.1.5. Reference to a property of an entity that was introduced into the
discourse via a noun phrase.

The referent of adefinite noun phraseis a property of a previously mentioned entity.
Example:

| went to [an old house] yesterday. The roof was leaking badly and...

In this example The roof refers to the roof of an old house. Another example:

...in [the Soviet Union], they spent more money on military power than anything.

In this example they refers to the government of the Soviet Union.

12 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

1.3.1.6. Reference to an event type.

The referent may be an event mentioned in the discourse. Example:

Oh, let me just check that we do not have [two trainstrying to cross each other on the
same track], but I do not think that is happening.

In this example that refers to the event of two trains trying to cross each other on the
same track.

1.3.1.7. Reference to an action type.

The referent is an action mentioned in the discourse. Example:
How long does it take to [convert the oranges into orange juice] ? It takes one hour.
It refers to the action type convert the oranges into orange juice.

1.3.1.8. Reference to a property of an action.

The referent may be a property of a mentioned action in the discourse. Example:

So that will take two hoursto [get to Corning] an hour to [load the oranges] and two
hours to [get to Bath] . So that will be another five hours.

In this example that refers to the time required to perform the action get to Corning, load
the oranges and get to Bath.

1.3.1.9. Reference to a fact or proposition.

The referent may be afact or proposition. Thisis usually awhole sentence. The
difference between fact and proposition is that afact is true, and a proposition may be
true. Example:

We need to pick up the boxcar of bananasin Avon.

Okay, um[there are boxcars that are closer to Avon], if that helps any.

It does not really matter, but...

In this example both It and that refer to the whole sentence there are boxcarsthat are
closer to Avon.

1.3.1.10. Reference to the general topic of the conversation.

Also caled *Vague Anaphors', the referent is not a clearly defined linguistic antecedent,
but the general discourse topic. Example:

| mean, the baby is like seventeen months and she just screams. Well even if she knows
that they are fixing to get ready to go over there. They are not even there yet — you
know...

Yeah. Itishard.

1.3.1.11. Reference to world/common knowledge not mentioned in the
discourse.

Usually a definite noun phrase refers to an entity mentioned previously in the discourse.
Sometimes, though, a definite noun phrase is unique in the context and refers to some
world knowledge instead of something mentioned previously. Example:

Yesterday a man was busted by the FBI .

13 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

In this example the FBI refers to acommonly known institute, namely the Federa
Bureau of Investigation. It does not have to be introduced prior usage, becauseit is
known what is meant with it.

1.3.1.12. Reference to nothing at all.

Occasionally pronouns do not refer to anything at all. These are called expletives.
Example:
Itishardto realize, that there are places that are just so, bare on the shelves as there.

1.3.1.13. Reference to an entity from another modality.

In an multi-modal user interface a user may point to an object and refer verbally to that
object. Example:

| want that (while pointing to an orange)!

Naturally that refers to the orange.

1.4. The Evaluation of Performance

Once recognized, areference has to be resolved. Ideally areference resolution algorithm
would correctly find every reference and resolve it to its referent. Unfortunately, thisis
not an ideal world, and any reference resolution algorithm that is designed for any large
corpus of text islikely to make mistakes. Even human reference resolution is not
flawless.

In general there are two approaches to eval uate the performance of an agorithm [Mcc96].
The ssimplest approach is Accuracy, a more elaborate approach is Recall & Precision.
Recall is defined as the fraction of reference rel ationships between entities in atext that
are correctly found by a system.

Precision is defined as the fraction of reference relationships found by a system that are
correct.

For example consider figure 7: In the text there are six entities with referential properties:
A, B,C,D,Eand F. Brefersto A, D refersto C and F refersto E. Suppose an agorithm
finds the following matches: B refersto A, D refersto A and F refersto E. Then this
algorithm has arecall of 67% (2 out of 3 reference relationships between entitiesin the
text are correctly resolved) and a precision of 67% (2 out of 3 reference relationships
found are correct).

Accuracy is simply defined as the percentage of correctly resolved references, and does
not distinguish between not finding an existing reference relationship and finding a non-
existing reference relationship. So 12 out of 15 combinations are correctly classified as
referring or not-referring, so the agorithm has an accuracy of 87%.

<A-B> <A-C> <A-D> <A-E> <A-F>
<B-C> <B-D> <B-E> <B-F>

<C-D> <C-E> <C-F>

<D-E> <D-F>

<E-F>

Figure 7. Instances representing six relevant references to entities

14 J.L.R.D Woei-A-Jin, 2001

PH S

Given aparticular level of accuracy, the results of different reference resolution
algorithms can vary widely: Suppose there are two different algorithms. Oneisvery
conservative, rarely matching areference to areferent. The other ismore liberal,
matching references to wrong referents more easily. They both can have the same
accuracy, but the first algorithm will have alow recall and high precision, whereas the
second a high recall and low precision. The relative importance between recall and
precision is still an open question though, but it does give an indication of where the
algorithm fails.

Because different authors use different corpuses and evaluation criteria, comparison of
the different algorithms based on these values only is difficult.

15 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Chapter 2.

State of the Art in Anaphora Resolution

Currently the most popular research topics on references are pronominal anaphora and
elipsis. Definite descriptions is a less frequent topic of research. Very few iswritten on
demonstrative anaphora and deixis, and even less is written on cataphoric references.
Three different disciplines are interested in researching reference resol ution methods:
e Computer linguist: in need of deeper understanding of language structure in dialogues
and/or written text.
» Information Extraction: in need to resolve references to retrieve interesting
information for their database.
* Man-Machine Interface: in need to understand the user using natural language.
Even though different disciplines may take more interest in different types of references,
their theories may be interesting for the different areas with some modifications. So
theories presented in papers by computer linguists may be used for man-machine
interfaces. It should be noted though, that computer linguist and information extraction
application do not require real-time reference resol ution, whereas with man-machine
interfaces real-time resolution is crucial. Also each disciplines usually focus on different
types of applications, so the references encountered may differ.
In this chapter a short overview will be given of the grammars and algorithms used for
anaphora resolution. These methods are mainly for reference handling in texts and not
speech, but because speech is transcribed into text before it is processed further, the
models would be in principle usable for reference handling in speech.
Also ashort introduction is given on the general method of how ellipsisis resolved.
According to linguists ellipsisis not really aform of anaphora (although it is a'so known
as sentence anaphora) and in section 3.2.1 will be discussed that ellipsis falls outside the
scope of the project, but because in appendix A where examples are given of references
which ideally should be solved, according to the co-workers at Philips, contain ellipsis, a
short introduction is given on the general method used to solve ellipsis.

2.1. Suitable Grammars for Anaphora Resolution

In order to be able to resolve references, information is needed about the role the
reference has in the sentence and how other words in the sentence relate to the reference.
A grammar model should provide the possibility to do so. There are several grammar
models suitable for reference resolution. These are Government and Binding, Discourse
Representation theory, and ParseTalk. In addition to these grammars, a method using a
tagger is also discussed, because it allows to analyze a sentence without the use of
complex parsers. The description of the grammars is meant to give a general ideawhat
the grammar is about and how it would help in anaphora resolution. It is by no means
meant to describe how the grammars work and how to construct the different structures
with the grammars.

16 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

2.1.1. Government and Binding

One of the most sophisticated approaches for treating anaphora at the sentence level of
description is Government and Binding Theory, which was mainly developed by
Chomsky [Cho81]. Government and Binding Theory (GB) assumes that alarge portion
of the grammar of any particular language is common to al languages, and is therefore
part of Universal Grammar. The GB view isthat Universal Grammar can be broken down
into two main components: levels of representation and a system of constraints.

In the level of representation it is defined which words can be grouped into meaningful
groups (phrases), what the syntax of these groups are, and how these groups are
structured into a sentence.

For example, for the noun inter pretation the following syntax can be defined to group it
into a meaningful phrase:

- interpretation, N, [_(PPof)]

Which means, that interpretation is a noun (N), which can be complemented with a
proposition phrase using the proposition of (PP(.7). The underscore denotes the position
of the noun interpretation in the group.

Figure 8. shows an example of how the different phrases are structured in the sentence:
The musician’ s interpretation of that sonata.

NP

/\
NP+ N1
P ! No PP
the NIO interpretation o1

/ \

miisician’s po NP
/\
nf D N1
that NO

snnAata

Figure 8. Syntactic tree of: ‘the musician’sinterpretation of that sonata

The system of constraints consists of binding constraints which define the scope of noun
phrasesin an intrasentential context. For example, consider figure x. In thisfigure a
syntactic tree is shown for the sentence: Jill read Mary’ s book about her. In order to

17 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

resolve the reference her to the correct referent, the system of constraints defined in GB
can be used. The scope of the referents are based on their relative position in the syntactic
tree.

S
/\
NP1 VP
s
Y NP>
/\
DET CNP
[T
NP3 N PP
—
P NP4
Jill read Mary's book about her

Figure 9. Syntactic tree of the sentence: Jill read Mary’s book about her.

2.1.1.1. Co-reference constraints in Government and Binding.

1. A reflexive pronoun must refer to a noun phrase (NP) in the same domain with the
following properties: The NP does not dominate the pronoun and the first branching
node that dominates the pronoun must also dominate the NP. This property is called
the C-commanding relationship.

A domain of anode consists of the set of nodes in the tree, which are grouped under
the closest S or NP. So NP3 and NP, are in the same domain, but NP; and NP5 not.
The S or NP which defines the domain is said to dominate the nodes in that domain.
(Infigure 9, NP; does not dominate NP,, NP3, and NP,, and the first branching node
that dominates NP; isthe S; thus NP; C-commands NP,, NP3, and NP4. NP,, on the
other hand dominates NP3, and NPy, so it does not C-command them. The first
branching node of NPs (NP,) dominates NP7, and as aresult C-commandsiit). The
domain of an item is defined as the set of items closest S or NP that containsit. So
NP5 and NP, are in the same domain.

For NP, to co-refer with Mary, the pronoun would have to be reflexive, because
according to this constraint a pronoun can only refer to a NP in the same domain
which it C-commandsif it isreflexive.

2. A non-reflexive pronoun cannot refer to a C-commanding NP within the same local
domain. For example, the pronoun her in figure 9 can refer to Jill according to this
constraint because, although NP; C-commands NP;, it isnot in NP4’ slocal domain.

3. A non-pronomina NP cannot co-refer with an NP that C-commandsit. This
constraint acounts for sentences like He said Jack wants to leave. Because he C-
commands Jack, they cannot co-refer.

4. Two co-referential noun phrases must agree in number, gender and person.

18 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

2.1.2. Discourse Representation Theory

Another strong alternative for considering anaphora constitutes the framework of
Discourse Representation Theory (DRT) [Kap81]. DRT was originally designed as a
principled method to cope with two related problems: The fact that intersentential and
intrasentential pronouns seem to call for two entirely different types of explanation, and a
problem in connection with the interpretation of full noun phrasesin certain types of
sentences, like : John does not own a donkey. It is gray. and Every boy invited a girl. Her
name is Joan. In these sentences It and Her cannot refer to a donkey and a girl
respectively, because they contradict with the information given in the sentence. To solve
this problem DRT defines some accessibility restrictions to so called ‘ Discourse
Representation Structures’ (DRS), which are objects which represent the information
provided in a sentence. The scope of DRS' s define the scope of possible referents. In
figure 10. an example is given of how this can be done. In general it consists of a
"discourse referent’ (ul — u6), which is basically a marker representing an object which
has been introduced in the discourse, and a ‘ condition’ over this discourse referent. It (U6)
cannot refer to *book’, because discourse referents cannot access other discourse referents
from outside, unlessif both are in the parts of the same conditional DRSs. So u5 can refer
to ud. Another restriction is that a negated discourse referent cannot be accessed from
outside, so that the pronoun It in the sentence ‘ John does not own a donkey. It is gray,’
cannot refer to a donkey.

ul, u2, u6: peter (ul)

book (u2)
owns (ul, u2)
u3, u4: man (u3) u5: ub5=u4
book (u4) — reads(u3,ub)
owns (u3, u4)

u6=u4
number_of pages(u6,200)

Figure 10. A DRS of the sentences ‘ Peter owns a book.’, * If a man owns a book he readsit.” & * It has
200 pages.’

2.1.3. ParseTalk

Another model to describe the role of wordsin a sentenceis ParseTak [Stro5], whichisa
dependency-oriented grammar model. In [Str95] the authors claim that ParseTalk
overcomes the problems that Government and Binding (GB) and Discourse
Representation Theory (DRT) have. According to them, GB cannot handle some crucial
linguistic phenomena, such as topicalization very well (This picture, | never liked it, is
the topicalized form of | never liked this picture), without assuming very complex forms,
and it isnot very suitable for free word order languages, such as German.

DRT lacks a thorough treatment of complex syntactic constructions, and fails when
various non-anaphoric text phenomena need to be interpreted. Thisis due to the fact that
DRT isbasically a semantic theory, not a comprehensive model for text understanding. It
lacks any systematic connection to comprehensive reasoning systems concerning the

19 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

conceptual knowledge and specific problem solving models underlying the chosen

domain.

The authors claim that the dependency-based grammar model underlying ParseTak

1. coversintrasentential anaphora at the same level of descriptive adequacy as current
GB, although it provides less complex representation structures than GB analysis,

2. doesnot exhibit anincreasing level of structural complexity when faced which cause
considerable problems for current GB theory,

3. goesbeyond GB in that it allows the treatment of anaphora at the intersentential level
of description within the same grammar formalism asis used for intrasentential
anaphora, and,

4. goes beyond the anaphora-center treatment of text structure characteristic of the DRT
approach in that it already accounts for the resolution of intrasentential ellipsis.

Like most grammars, the ParseTalk model of Dependency Grammar consists of a
lexicon, a set of rules, which specify how words are grouped into meaningful phrases,
and a set of constraints, which define the scope of possible referents.

The lexicon is ordered as a hierarchical tree, which defines the relationships between
different words. Figure 11 shows an example of a part of the hierarchical tree of a
lexicon. The hierarchical tree in the lexicon allows for resolution of referenceslike: My
computer crashes quite often. | think the motherboard has the wrong chipset and
Yesterday | bought a LPS 105, this harddisk has a really good perfomance! With the
lexicon the motherboard can be resolved to the motherboard of my computer, and this
harddisk can be resolved to LPS 105.

ComputerSystem

hasrharddWmother board

LPS 105 is-harddisk Harddisk Motherboard

has-memor has-cpu
Memory CPU

Figure 11. Part of a hierarchical tree of a lexicon in ParseTalk.

For each lexical item, rules are defined what dependencies it has with other items that can
modify it in a sentence. For example: tell has a subject and a direct object. Using these
rules, a sentence can be parsed into a dependency tree. Figure 12 shows a dependency
tree for the sentence Maria tells Peter’ s story about himself.

Finally a set of binding constraints define the scope of possible referents based on the
relative position in the tree.

20 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

tells

subj dirObj

Maria story

saxGen ppALtt
Peter’s about
pObj
himself

Figure 12. Dependency tree for: Mariatells Peter’s story about himself.

2.1.3.1. Binding constraints in ParseTalk

Before the constraints can be discussed, the term d-binding must be introduced. A head is

the the word which forms the basis of a phrase, and the set of phrases which complete the

meaning of the head are colled modifiers, so in figure 12, tellsis the head, and Maria and

Peter’ s story about himself are the modifiers. It is said that the head governs its

modifiers. A modifier M in thetree is d-bound by some head H, if no node N intervenes

between M and H for which one of the following conditions holds:

1. node N represents afinite verb, or

2. node N represents a noun with a possessive modifier, i.e. possessive determiners,
saxon genitive, genitival and prepositional attributes.

Based on the definition of d-binding, it is possible to specify several constraints on

reflexive pronouns and anaphors in Dependency Grammar terms:

1. A reflexive pronoun and the antecedent to which the reflexive pronoun refers are d-
bound by the same head. So according this constraint, in the example of figure 12
himself can refer to Peter because both are d-bound by the same head, and himself is
reflexive.

2. The antecedent to which a pronominal or nominal anaphor refers may only be
governed by the same head H, which d-binds the anaphor, if the antecedent isa
modifier of head H,, which is governed by Hi, and the antecedent precedes the
anaphor in the linear sequence of text items. In the example Whether Peter should go
to Dublin, he could not decide, Peter is governed by decide, which d-binds he and
Peter isamodifier of go whichin turn is governed by decide. But Peter precedes he
in the linear sequence of text items, so Peter and he can co-refer. In the example He
could not decide whether Peter should go to Dublin, he precedes Peter in the linear
sequence, so this constraint is violated, meaning he and Peter cannot co-refer.

21 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

2.1.4. Tagger as substitute for parser.

According to [Ken96] current state-of-the-art parsing technology still falls short of
robust and reliable delivery of syntactic analysis of real textsto the level of detail needed
for most anaphora resolution algorithms. Because of this, the authors have developed a
text processing framework which builds its capabilities entirely on the basis of a
considerably shallower linguistic analysis of the input stream.

The base level linguistic analysis of the text processing framework is the output of a part
of speech tagger, augmented with syntactic function annotations for each item. This kind
of analysisis generated by the morphosyntactic tagging system described in [Kar95], and
can betested at http://www.conexor.fi/testing.html. The tagger provides avery smple
analysis of the structure of the text: for each lexical item in each sentence, it provides a
set of values which indicate the morphological, lexical, grammatical and syntactic
features of the item in the context in which it appears. Figure 13 shows the output from
the tagger of: Mariatells Peter’ s story about himself. In the first column the offset is
listed, in the second the actual words are listed, the third column lists the basic form of
those words, the fourth column lists the linguistic representation (subj= subject, main =
main element, dat = indirect object, obj = object, ha = heuristic high attachment, pcomp=
prepositional complement), and the last column lists the functional tags (@SUBJ =
subject, @+FMAINV = finite main predictor, @I-OBJ = indirect object, @OBJ = abject,
@ADVL = adverbial, @<P = other prepositional complement) with information about
the type and form of the words (i.e. noun, verb, nominal, genitive, reflective, etc.).

The tagger used achieves 99.77% overall recall and 95.54% overall precision, over a
variety of text genres, meeting the requirement to develop arobust text processor.

0
1 Maria Maria subj:>2 @SuUBJ N NOM SG
2 tells tell main:>0 @+FMAINV V PRES SG3

3 Peter's Peter dat:>2 @1-OBJ N GEN SG

4 story story obj:>2 @OBJ N NOM SG

5 about about ha:>2 @ADVL PREP

6 himself he pcomp:>5 @<P <Refl> PRON PERS MASC SG3

Figure 13. Output from the tagger of: ‘Mariatells Peter’s story about himself.’

After the text is tagged, thetext isrun through a set of filtersto acquire information
about sentence structure and phrasal units.

The first filter identifies noun phrases, using a grammar which contains pattern
characteristics about noun phrase composition. A second filter is used to detect nominal
sequences in two subordinate syntactic environments. containment in an adverbial
adjunct and containment in an NP. Containment means that there is a phrase or object
within a phrase. For example see figure 9, where NP, is contained in VP. Finally athird
filter identifies and tags occurrences of expletive it. These are occurrences of it where no
specific referents are present.

Because the tagger does not generate any configurational information, the binding
constraints are based on inferences from grammatical function and precedence. The
authors show that in practice these constraints are extremely accurate. Their reference
resolution algorithm achieves a 75% accuracy rate using this text processing framework,

22 J.L.R.D Woei-A-Jin, 2001

http://www.conexor.fi/testing.html

PHI S TU Delft

whereas the original algorithm using a parser achieves aratio of 85%. Of the 75
misinterpreted pronouns, only afew could be traced to afailure to correctly identify the
syntactic context in which the referent appeared.

2.1.4.1. Binding constraints using the tagger

Three conditions which are of particular relevance to anaphora resolution are defined,

using the functional information provided by the tagger:

1. A pronoun which has the function of subject or direct object, cannot co-refer with a
direct object, indirect object, or accusative item, which follow the pronoun, without
an intervening subject (The hypothesis being that a pronoun cannot corefer with a
coargument, and that a subject indicates the beginning of the next clause). For
example, in he gave him a hug, the subject he cannot corefer with the direct object
him.

2. A pronoun which is contained cannot refer to an object which precedesit, if thereis
no object in between with a containment value of nil. For examplein Jill read Mary’s
book about her, the pronoun her cannot refer to Mary, because Mary precedes the
pronoun her which is contained in Mary’ s book about her, and no object with a
containment value of nil (book is also contained) is present between them.

3. Two co-referential noun phrases must agree in number, gender and person.

2.2. Anaphora Resolution Algorithms

In this section four different approaches to anaphora resolution are presented. These are:
resolution based on the recency constraint (section 2.2.1), resolution based on the
centering model (section 2.2.2), resolution based on given-new (section 2.2.3), resolution
based on heuristics (section 2.2.4).

2.2.1. A simple model of anaphora resolution based on history
lists

The most simple technique to resolve anaphorais with the use of simple history lists
[Al195]. This algorithm implements what is often called the recency constraint, which
states that the antecedent should be the most recently mentioned object that satisfies all
the constraints. This algorithm can often be used for definite descriptions as well as
pronouns.

The history isalist of discourse entities generated by the preceding sentences, with the
most recent listed first. The entities from the current local context are listed first, then the
entitiesin local context generated by the sentence before that, and so on.

The possible antecedents for pronouns are not restricted to appearing in the local context,
but the local context is very important for resolving pronominal reference. A large
majority of antecedents for pronouns are found in the same sentence or in the local
context. The further back in the discourse an antecedent was last mentioned, the less
likely it isto be referred to again by a pronoun.

The history list consists of all the discourse entities that have been evoked in the
reasonably recent past. Some systems allow just the last one or two local contexts, while

23 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

otherslet the history list grow unboundedly. Given the history list, the algorithm for
finding an antecedent proceeds as follows: Check the most recent local context for an
antecedent that matches all the constraints related to the pronoun. Constraints may come
from any source. For example, reflexivity constraints will prohibit some objects from
being the antecedent, gender and number will eliminate others. If no antecedent is found
in the current local context, then move down the history list to the next most recent local
context and search there.

2.2.2. The Centering Model

A more advanced and currently very popular algorithm is based on the notion of a
‘discourse focus' or ‘center’. The centering model is arefinement of Sidner’s local
focusing model [Sid83]. Theintuition behind these theoriesis that most discourseis
organized around an object that the discourse is about [AlI95]. This object, called the
center, tends to remain the same for afew sentences and then shift to a new object. The
second key intuition isthat the center of a sentence istypically pronominalized. This
affects the interpretation of pronouns because once a center is established, there will be a
strong preference for subsequent pronouns to continue to refer to the center. For example:

a. Jack |eft for the party late.
b. When he arrived, Sam met him at the door.
c. Hedecided to leave early.

Semantically, sentence c of the example makes sense with either Jack or Sam asthe
antecedent, and the structural preferences favor Sam because he plays a central rolein the
major clause in sentence b of the example. Centering theory, however, would predict that
Jack is the antecedent because Jack was referred to pronominally in sentence b and thus
isthe center of sentence b, and nothing in sentence c indicates that the center has
changed.

2.2.2.1. Technical Details of the Centering Model

In centering theory two interacting structures are used [AlI95]:

» Thediscourse entitiesin the local context, which are called the ‘ potential next
centers' (or forward-looking centers, C;). These are listed in an order reflecting
structural preferences: subject first, direct object next, indirect object, and then the
other discourse entities in the sentence. Thefirst one on thelist is called the * preferred
next center’ (C,).

» Thecenter, also called ‘ backward-looking center’ (Cy), iswhat the current sentenceis
about. The backward-looking center is one of the potential next centers, and typically
it is pronominalized.

The constraints between the center and pronominalization can be stated as follows:

» Centering Constraint 1: If any object in the local context isreferred to by apronounin
the current sentence, then the center of that sentence must aso be pronominalized.

» Centering Constraint 2: The center must be the most preferred discourse entity in the
local context that isreferred to by a pronoun.

24 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

» Centering Constraint 3: Continuing with the same center from one sentence to the
next is preferred over changing the center.

The last constraint can be specified more precisely in the following way:

» Centering Constraint 3': Continuing with the same center from one sentence to the
next, which is the preferred next center (Continue), is preferred over continuing with
the same center from one sentence to the next, which is not the preferred next center
(Retain), Retaining over shifting to the preferred next center, and shifting to the
preferred next center over shifting to the nonpreferred next center. Table 1 shows the
types of movement for centers.

Table 1. The types of movement for centers.

Cbz = Cpz Cbz # Cp2
Cbi = Cb2 Continuing Retaining
Cbi # Cbz Shifting to preferred Shifting to nonpreferred

Continue < Retain < Shift to Preferred < Shift to nonpreferred.
With < being the preference relationship.

In [Kam93] avariant on the centering model is presented, in which the transitions differ.
Thismodel, called the temporal centering model, was originally presented as a meansto
resolve anaphoric properties of past and present, using centering theory, but is also used
for pronominal reference resolution in other papers [Pas89][Pas96].

The following four transition relation types for centering are described: Cb-retention, Cb-

establishment, Cb-resumption, and the NULL transition.

» Cb-retention means that the same center is kept from one sentence to another. In this
model no distinction is made between Continuing (continuing with the same center
from one to the next, which is the preferred center) and Retaining (continuing with
the same center from one to the next, which is not the preferred center).

* Cb-establishment means that another member of the forward-looking center becomes
the current focus of attention. Again no distinction is made between shifting to
preferred and shifting to nonpreferred.

* Cb-resumtion means that an old center (Cb) not in the list of forward-looking centers
becomes the current focus of attention. Thisis one of the real differences between the
model described in [AlI95] and the temporal centering model. In the ‘normal’
centering model, only centersin the list of forward-looking centers are candidates for
the next focus of attention, centers outside the list are ignored.

* Cb-NULL meansthat in the new state, there is no center.

Temporal centering posits a default preference for retention over establishment.
Establishment is preferred over resumption or NULL-transition.

25 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Example:

a. Johnwenttothestore. Cf;=[John’, storel], Cb;=NULL

b. Hesaw Bill. Cfy=[John’, Bill'], Cby=John’, Cb-establishment
c. Hewaked towardshim. Cf;=[John’, Bill’], Cbs=John’, Cb-retention

C'. Heappeared paleto him. Cfy=[John’, Bill’], Cbz=Bill’, Cb-establishment

In the exampl e the centering model isillustrated, with sentence ¢ and sentence ¢’ as

alternative continuations of sentence b. After sentence a., the list of forward-looking

centers contain two entities, John’ and storel. In b., John' is referred to with a subject

pronoun, and is established as the center. In c., because John’ isthe current Cb, and

because retention is preferred over establishment, centering predicts that a subject

pronoun will refer to John’ rather than to Bill’. The default is overriddenin ¢’ and

instead, the subject pronoun isinferred to refer to Bill’ becauseit islikely that the

perceiver in thefirst perceptual state, ‘se€’, remains the perceiver in the subsequent

perceptual state, ‘ appear’.

Thismodel can be extended with additional constraints which define the behavior on

centering of the pronoun it and the demonstrative that [Pas89]. These constraints are

based on the notion that the grammatical role and form of the pronoun and demonstrative

may indicate a preference to certain antecedents in certain grammeatical roles and forms.

Grammatical roles refer to subject and non-subject roles, and grammatical forms refer to

canonica and non-canonical forms, meaning a single word or noun phrase and a clause

like phrase respectively. The following constraints are defined.

* Itindicates canonical or non-canonical center retention.

» Itinsubject role conflicts with non-subject antecedents, but is compatible with an
NP-subject antecedent.

» That blocks canonical center retention.

* That may be more compatible with non-canonical center retention.

* That in subject roleis most likely when the antecedent is not a noun phrase.

e That is enhanced when the antecedent is not a noun phrase.

» That is enhanced when the antecedent NP is a non-subject.

Noun phrase subjects have arelatively unspecified attentional status.

The algorithm to solve pronominal references will be as follows:

1. Generate aranked list of possible antecedents for each pronoun

2. Use general reasoning to select the appropriate antecedents based on local discourse
context, the co-reference restrictions, and the centering constraints.

3. Usetheresults of step 2 to define the Cy, for the sentence to be used as part of the
local context of the next sentence.

2.2.2.2. Interaction of Centering Preferences with Intrasentential
Interpretations

Itisstill not entirely clear how centering preferences interact with the possibility of
intrasentential interpretations, which are provided by certain grammars, like Government
and Binding (see section 2.2.1). Determining what technique is best must await further
development and evaluation of the possible algorithms. Currently, some agorithms
always prefer intrasentential referents, while others favor the reverse. Another

26 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

combination isto prefer any interpretation that assigns a pronoun to the center, but failing
that, to prefer intrasentential readings over intersentential readings [All195]. [Keh93]
describe another possibility , where the following observations are made:

» Intersententially-referring pronouns have a strong bias towards their preferred
referent, that is, the most highest-ranked entity in the forward-looking center, for
which reference is not blocked by syntactic co-reference or agreement constraints.

* All pronouns have reflexive and non-reflexive forms (e.g., accusative = him,
nominative = he, genitive = his).

* Non-reflexive pronouns cannot refer to a C-commanding NP.

» Reflexive forms must refer to a C-commanding NP.

In [Stro6b] is stated that not only the grammatical roles must be considered when finding
the preferred referent, but the functional information structure is crucia in finding it. The
functional information structure has impact not only on the resolution of intersentential
anaphora, but also on the resolution of intrasentential anaphora. Hence, the most
preferred antecedent of an intrasentential anaphor is a phrase which is aso anaphoric. To
illustrate this, consider the following example:

If the resume mode is active, the T3100SX switches itself automatically of.
When the computer isturned on later, it resumes at exactly the same place.

In the second sentence the computer is resolved to the T3100SX from the previous
sentence, and the pronoun it is resolved to the already resolved anaphor the computer.

2.2.2.3. Solutions for Centering Ambiguity

There is a situations where the centering model will come into trouble and will not be
able to solve the situation correctly. Thisis the case where areference is ambiguous to
what it refersto, and choice of the wrong referent will cause strange behaviour of the
algorithm. This can be illustrate by the following example:

Asfar as performance is concerned, the LPS 105 harddisk also produced rather
compelling results.

Regarding the mean access time (16,5 ms) this hard disk compares to the Seagate ST-
3144, by which it scores second-best in this category.

Also, considering data throughput it turns out to be a high-caliber product.

The first sentence has a unique structural analysis, the forward-looking centers consist of
two semantic/conceptual elements, the LPS 105 hard disk and performance. In the second
sentence, a nominal anaphor occurs, this hard disk, which is resolved to LPS 105 from
the previous sentence. Unfortunately, the noun phrase this hard disk is nominative as well
as accusative and may be alternatively attached to the verb compares to both in its subject
and object role. In this state, one cannot determine which of the grammatical functionsis
the correct one, thus a structural ambiguity has been identified. Since the second NP in
this sentence (the Seagate ST-3144) is ambiguous with respect to both of these cases, too,
the parser produces two structurally and conceptually ambiguous readings. Asa

27 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

consequence, two different forward-looking centers (Cfs) have been created, namely
LPS-105 and Seagate ST-3144, which indicate two different center transitions, eligible at
the end of the analysis of the second sentence. This choice option becomes crucial for the
resolution of the pronoun it in the third sentence, as it depends on the appropriate
selection of one of the two different Cfs. Depending on how the text actually proceeds
either oneisequally possible. So, for the actual anaphora resolution the transition type
preferences are of no help at all to decide among any of these variants. It is therefore
concluded that additional representation devices have to be supplied to keep track of
these structurally induced ambiguities at the center level [Hah96].

Therefore atwo-level representation of structural ambiguities for the centering model is
proposed, one at which local and global structural ambiguities are made explicit. Global
ambiguities are represented as sets of forward-looking centers, while local ambiguities
are represented as a set of such centering sets. When an ambiguity is encountered, aset is
created for each possibility. For each set, the center is determined, and kept for the next
sentence. If the new sentence contains information which indicates that the center of a set
isincorrect, the set is discarded. Otherwise for each possibility the new center will be
determined.

2.2.3. Never look back: An alternative to Centering

In [Str98] an alternative to centering is proposed, in which the functions of the backward-
looking center and the centering transitions are replaced by the order among the elements
of thelist of salient discourse entities (S-list). This S-list ranking criteriais based on the
observation from [Pri81] that there is a preference for hearer-old over hearer-new
discourse entities. Hearer-old means that the entity is already in the knowledge model or
the hearer, whereas hearer-new means that it is not. Because of these ranking criteria, the
difference in salience between definite NPs (mostly hearer-old) and indefinite NPs
(mostly hearer-new) can be accounted for. Table 2 shows how discourse entities can be
categorized according to how new they are in the discourse and to the hearer.

Table 2. Discourse and hearer newness of discourse entities

Hearer-old Hearer-new
Discourse-old Evoked (E) Inferrable (1)
Situationally Evoked (E°) Containing Inferrable (1)
Discourse-new | Unused (U) Brand-New Anchored (BN?)
Brand-New (BN)

Discourse-new entities can be of two types. In one case, the hearer creates a new entity,
either of the form BRAND-NEW (BN) or BRAND-NEW ANCHORED (BN™). A discourse entity
iISANCHORED if the noun phrase representing it is linked by means of another noun
phrase, or “anchor,” to some other discourse entity. Thus a busis UNANCHORED, and
simply BRAND-NEW, whereas a guy | work with, containing the noun phrase I, is BRAND-
NEW ANCHORED, since the discourse entity the hearer creates for this particular guy will
be immediately linked to his discourse entity for the speaker. In the data, all anchored
entities contain at least one anchor that is not itself BRAND-NEW. In the other case, the

28 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

- .
)

PH S

b

hearer has a corresponding entity in his own model and simply hasto placeit in the
discourse-model, these discourse entities are usual proper names and titles. Thistypeis
called uNuseD (U).
Discourse-old entities can also be of two types. Either the discourse entity isaready in
the discourse-model, in which case it is an EVOKED (E) or aSITUATIONALLY EVOKED (EY)
entity, or the discourse entity is not aready in the discourse model, but can be inferred,
vialogical or plausible reasoning, from discourse entities already present in the model, in
which caseit is an INFERABLE (1) or a CONTAINING INFERABLE (I). A discourse entitiy is
EVOKED if the entity is previously introduced into the discourse model via a noun phrase.
It iSSITUATIONALLY EVOKED it the entity entered the model through another modality. A
discourse entity is INFERABLE if the speaker assumes the hearer can infer it, vialogical or
plausible reasoning, from discourse entities aready in the discourse model, for example
The driver may be inferable from a bus. A discourse entity is a CONTAINING INFERABLE if
it can beinferred from a discourse entity which is a superset containing this entity, for
example one of these eggs is a CONTAINING INFERABLE, as it isinferable from these eggs.
With this definition of the hearer’ s attentional state, the following familiarity scale can be
defined, where x >y indicates that an entity from x is preferred over an entity from y:
{E,E} >U>1>1°>BN">BN
So the hearer ismore likely to assign areferent to an evoked entity than a brand new
entity. Based on this familiarity scale, three different sets of expressions are distinguished
by [Str98]: hearer-old discourse entities (OLD), mediated discourse entities (MED) and
hearer-new discour se entities (NEW). OLD consists of evoked and unused discourse
entities, while NEW consists of brand-new discourse entities. MED consists of
inferables, containing inferables and anchored brand new discourse entities. These
discourse entities are discourse-new but mediated by some hearer-old discourse entity.

29 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Table 3. Grouping of the different types of discourse entities.

OLD MED NEW

E E> U I, 1°, BN? BN

Anaphoraresolution is performed with a simple look-up in the salience list, which is

ranked as follows:

* Anentity that isOLD precedes a MED entity.

* Anentity that isOLD precedes aNEW entity.

* Anentity that is MED precedes a NEW entity.

» If both entities are from the same attentional state, than the entity from the later
utterance precedes the other entity [Ram93], [Va90], [Val96].

» If both entities are from the same attentional state, and the same utterance, than the
entity which comesfirst precedes the other entity [Ram93], [Val90], [Va 96].

Table 4. Precedence of entitiesin the salience list.

if (x 0 OLD Oy OMED) O(x 0 OLD Oy O NEW) O(x O MED Oy O NEW) then
X<y

if (x,y 0OLD Ox, yll MED [0Ox, y£I NEW) then
if (utty < utty) theny <x
if (utty= utt, 0 pos, < pos,) then x <y

The reference resolution agorithm with Never look back is as follows:

» Process the utterance from left to right.

» If areferenceisencountered, test the elements of the S-list in the given order until
one test succeeds.

» Update the S-list just after an anaphoric expression is resolved.

» Update the S-list if anon-referential noun phrase is encountered.

» If theanalysis of the utterance is finished, remove all discourse entities from the S-
list, which are not used in the utterance.

2.2.3.1. Resolution of abstract entities

In [Eck99], [Eck99b] this algorithm is extended for resolution of abstract entities. In
order to do this, afilter is used so that references to abstract entities and individual
entities can be distinguished. Thisis done by looking for verbs like istrue, assume
[Gar97], which is summarized in table 5, where |-incombatibility means preferentially
associated with abstract objects and A-incompatibility means preferentially associated
with individual entities. References to individual entities are solved using an S-ist,
references to abstract entities are solved using an A-list, which contain abstract objects
previously referred to anaphorically. These objects remain only for one turn. Checking
for compatibility of candidate abstract referents is done in the following order:
» abstract entitiesin the A-List
» abstract entities within the same turn: Clause to the | eft of the clause containing the
anaphor.

30 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

» abstract entities within the previous turn: Rightmost main clause (and subordinated
clausestoitsright).

» abstract entities within the previous turn: Rightmost complete sentence.

The first compatible entity is accepted as the referent.

table 5. Recognizing individual and abstract entities

I-incompatible A-incompatible
(Preferentially associated with abstract (Preferentially associated with individual
objects) objects)

e Equating constructions where a « Equating constructions where a
pronominal referent is equated with an pronominal referent is equated with a
abstract object, e.g., x is making it concrete individual referent, e.g., X is a
easy, X is a suggestion. car.

e Copula constructions whose adjectives | ¢« Copula constructions whose adjectives
can only be applied to abstract can only be applied to concrete
entities, e.g., x is true, x is false, x is entities, e.g., X is expensive, X is tasty,
correct, x is right, x isn’t right. x is loud.

* Arguments of verbs describing « Arguments of verbs describing physical
propositional attitude which only take contact/stimulation, which cannot be
S’-complements, e.g., assume. used metaphorically, e.g., break x,

* Obiject of do. smash x, eat x, drink x, smell x but

+ Predicate or anaphoric referent is a NOT *see X.

“reason”, e.g., X is because | like her, x
is why he’s late.

2.2.4. Heuristic Algorithms

Another popular method to resolve references is the use of heuristics. Heuristicsisa
method where experimental rules are used to solve problems. Use of these rulesis
determined by trial and error experiments. There are several methods for this, which are
discussed in the following subsections.

2.2.4.1. Training a decision tree

In [Mcc96] atraining model is proposed to link those entities with each other, that refer
to the same object. Thismodel is designed to extract only interesting pieces of
information from large bodies of newspaper articles about joint ventures and terrorist
bombing. Each new reference is paired with each previous reference in atext and
categorized as coreferring (e.g referring to the same object) or non-coreferring. In order
to form these pairs, the entities go through a decision tree, which contain domain-
independent and domain-dependent features. These features are tests which can be
answered with TRUE, FALSE, UNKNOWN. For example:

- Do the phrases come from the same trigger family?

- Do the phrase share a common, simple noun phrase?

- Isphrase 2 an dlias of phrase 1?

- Does each phrase contain adifferent name?

- Doesphrasei start with a definite article?

31 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

- Doesphrasei start with an indefinite article?

- Areboth phrases subjectsin their respective clauses?

- Do the two phrases occur in the same constituent?

- Do the phrases share acommon head noun?

- Do the phrases share acommon modifier?

- Do the phrases share a common head noun or modifier?

- Do the phrases share acommon, simple noun phrase?

- Do the phrases agree in gender?

- Isphrase 1 the most recent phrase that is compatible with phrase 2?
These features are built into the decision tree using a machine learning algorithm based
on a corpus.

2.2.4.2. Stochastic model for heuristics

In [Mur96] a stochastic model is proposed where probability weights of the referential
properties of an entity and the candidate referents are calculated. Rules to determine the
referential property of noun phrases include:
* When anoun is modified by areferential pronoun, this, its, etc.

Then { indefinite (0,0) definite (1,2) generic (0,0) }
* When anoun phrase is accompanied by a particle to, up to or from

Then { indefinite (1,0) definite (1,2) generic (1,0) }
* When anoun phrase is accompanied by of, and it modifies a noun phrase

Then { indefinite (1,0) definite (1,2) generic (1,3) }
The two numbers between parenthesis are the possibility and the probability weight
(ranging from O to 10) of having the referential property. The entities are tested for each
rule and the probability weights are added. The property with the highest number will be
assigned to the entity.

To determine referents of noun phrases, the following three constraints are made:

1. Referential property constraint: When a noun phrase is estimated to be a definite noun
phrase, the system judges that the noun phrase refers to a previous noun phrase which
has the same head noun. Else the system gets a possible referent of the noun phrase
from topic and focus, and determines the referent of the noun phrase using the
plausibility of the estimated referential property that is a definite noun phrase, the
weight of a possible referent in the case of topic or focus and the distance between the
estimated noun phrase and a possible referent.

2. Modifier constraint: When two noun phrase's have different modifiers they
commonly do not refer to each other.

3. Possessor constraint: For example a part of abody can only refer to a human or
animal.

Referents of noun phrases are determined by rules, which state the probability of a
referent.

* When anoun phraseis like the following: { (Next sentences, 50)}

* When anoun phrase is the word oneself { (The subject in the sentence, 25)}

32 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

* When anoun phraseis estimated to be a definite noun phrase, and satisfies modifier
constraint and possessor constraint, and the same noun phrase X has already appeared
{(Then NP X, 30)}

* When aNPisestimated to be a generic NP { (Generic, 10)}

When aNPisliketogether and true, which is used as an adverb or an adjective { (no
referent, 30)}

* When aNP X isnot estimated to be adefinite NP { (A NP X which satisfies modifier
constraint and possessor constraint, W —D + P + 4)}

W = weight of topic and focus, D = distance between estimated NP and the possible referent, P=
plausibility.

Similar type of rules are defined for pronoun resolution and references to properties of

entities (indirect anaphora).

In [Byr99] a combination is used of fixed rules and heuristic rules. The fixed rules are

used to filter out the entities which are incompatible. The heuristic rules are used to

calculate the salience of the entities. Determination of the probabilities of the heuristic
rules are done with genetic algorithms or data mining.

In [Ken96] a combination of 10 contextual, grammatical, and syntactic constraints are

used to calculate the salience. The algorithm presented here is unique in that it does not

need a parser, but uses atagger instead (see section 2.1.4).

2.2.4.3. Experimenting with different configurations of rules

In [Mar00] an experiment is done with different configurations of rules. These rules are
based, intuitively, on the following three steps:
a) anaphoric accessibility space definition,
b) application of constraint system, and
c) application of preference system.
The experiments were conducted using 40 spoken dialogues that have been obtained by
means of the transcription of conversations between a telephone operator of arailway
company and users of the company. The adjacency pair (apair of turnsin a conversation,
each by different speakers, the first requiring an answer) [Fox87] [Sac74] and the topic of
the dialogue were used in order to define the anaphoric accessibility space. Concretely,
an anaphoric accessibility space is defined by means of the adjacency pair of the anaphor,
the previous adjacency pair of the anaphor, adjacency pairs containing the adjacency pair
of the anaphor, and finally, the main topic of the dialogue.
Morphological agreement constraints and C-command constraints (see [AlI95] for more
on C-Command constraints) and the following preferences were used in the experiments:
» Preferencesin the case of pronominal anaphora:
1. Candidatesthat are in the same adjacency pair as the anaphor
2. Candidates that are in the previous adjacency pair to the anaphor
3. Candidatesthat are in some adjacency pair containing the adjacency pair of the
anaphor
Candidates that are in the topic
Candidates that are proper nouns or indefinite NPs
If the anaphor is a personal pronoun, then preference for proper nouns
Candidates that have been repeated more than once
Candidates that have appeared with the verb of the anaphor more than once

N O A

33 J.L.R.D Woei-A-Jin, 2001

Lary

- .
)

EET HE
EEoid 'i'

Al
L% L |

PH S

—

9. Candidatesthat are in the same position as the anaphor with reference to the verb
(before or after)

10. Candidates that are in the same syntactic constituent (they have the same number
of parsed constituent as the anaphor)

11. Candidates that are not in CC

12. Candidates most repeated in the text

13. Candidates most appeared with the verb of the anaphor

14. The closest candidate to the anaphor

» Preferencesin the case of adjectival anaphora:

1. Candidatesthat are in the same adjacency pair as the anaphor

2. Candidates that are in the previous adjacency pair to the anaphor

3. Candidates that are in some adjacency pair containing the adjacency pair of the
anaphor

4. Candidatesthat arein the topic

5. Candidates that share the same kind of modifier (e.g. a prepositional phrase)

6. Candidates that share the same modifier (e.g. the same adjective ‘red’)

7. Candidates that agree in number

8. Candidates more repeated in the text

9. Candidates appearing more with the verb of the anaphor

10. The closest candidate of the anaphor

Different preference configurations were tested on the corpus. Depending on the result of

the test, some preferences were disabled and other were enabled. These experiments,

where is attempted to find the configuration of preferences which has the highest

performance, demonstrate that:

» the definition of an anaphoric accessibility space based on dialogue structure, and the
set of preference according to this structure, hel ps anaphora resolution.

» traditional anaphora resolution systems are not easily transferable to other kinds of
texts.

» anaphoraresolution in dialogues requires an hybrid system able to combine linguistic
information plus main topic information. In this case, the task that requires a greater
effort isto find amethod that combines both approaches.

2.2.5. Summary of resolution methods

In the previous sections four different principles to determine the preferred referent are
discussed: the recency constraint, the centering model, the given-new principle, and
heuristics.

The recency constraint is avery simplistic model. While the model is quite intuitive, the
performanceis not very high (except for the simpler type of references), because the
focus of attention is not taken in account. What the recency constraint basically doesis
look up the most recent compatible object, and returns it as the referent.

The centering model goes a step further, and is based on the theory that most discourse is
organized around an object that the discourse is about. It assumes that references are most
likely to refer to this object. Thismodel is very popular, but in [Pas96] it was found that

34 J.L.R.D Woei-A-Jin, 2001

e
«!
e

= - 1

--I k™
—
—

PH S

A T=Y
Wt L] |

centering transitions (from both the model discribed in [Al195] and the variant described
in [Kam93]) does not directly reflect the ssgmental structure of a discourse, meaning that
shiftsin the center of attention does not correspond well with shiftsin topic in the
discourse.

The model described in [Str98] is based on the given-new principle [Pri81]. The model
first started as an extension of the centering model [Hah96] [Stro5] [Str96] [Stro6b], but
slowly developed into a model which does not ook at what the discourse is about
anymore, but assumes the focus of attention is determined by using discourse old

objects.

Use of heuristics to determine the referent is very popular and is often actually
implemented, instead staying stuck on the theoretical basis, where the model is tested
with the assumption that the necessary datais actually available. The heuristic rules
which are implemented are usually application specific though, and cannot be used for
other applications.

The model described by Strube is very easy to understand, and no complex datais needed
to find the focus of attention. Thisin contrast to the centering model, which is more
complex and needs more information, which is more difficult to retrieve. Besides,
[Kam93] showed that the behavior of the centering model does not correlate well with
shiftsin topic. In addition performance tests from [Str98] show that the performance of
both centering models is lower than his. Heuristics can obtain good performance, and the
fact that they have often been implemented shows that they indeed work in a natural
language understanding application. The model described in [Mur96] can be used without
complex data, because probabilities are assigned by looking at the phrases used. It is
therefore suitable for use in a speech understanding application. Unfortunately the rules
specified are meant for the Japanese language, and cannot easily be ported for application
in English. For heuristic models to achieve very high results, it is necessary to use rules
which are very application specific [Mcc96], so when a different application is used, new
heuristics must be implemented.

2.3. Introduction to Ellipsis Resolution

Ellipsisisidentified when a syntactic treeis built for a sentence, and some nodes of this

tree are found to be empty. These empty nodes refer to an entity in a previous sentence.

In [Keh93b] an agorithm to solve elipsisis described. First the phrase which contains

the referent of the ellipsis must be identified (the source), and the structure of this phrase

with unfilled roles must be used. These roles are filled with entities from the phrase
containing the ellipsis (the target). Then the remaining empty roles must be copied from
the source:

a) Identify parallel elements, i.e. the objects in the source representation corresponding
to the empty rolesin the target.

b) All rolefillers may be (i) referred to, where the appropriate function is used to link
therolefiller to the corresponding object in the source representation. In the case that
therolefiller isafunction with a link to the source event, it may aso be (ii) copied,
where a new instantiation of the function is created and the source event variable is
replaced with its corresponding parallel target event variable.

35 J.L.R.D Woei-A-Jin, 2001

e
«!
e

= - 1

--I k™
—
—

PH S

A T=Y
Wt L] |

For example: John likes his mother and Bill does too has the possible readings: John likes
John’s mother and Bill likes John’s mother or John likes John’s mother and Bill likes
Bill’s mother.
The representation for the source clause (John likes his mother) is:
e [predicate: like

agent: John

theme: [obj: mother

poss: agent(ey) |]

The parallel event for the target is constructed (Step 1), and Bill is added as the agent
(Step 2):
e: [predicate:

agent: Bill

theme: |
Step 3b can only refer to the value of the predicate role. Since the theme of the source
event contains areferential link to the source event itself, Step 3b allows the theme to be
referred to with afunction copied by creating a new instantiation of the function
occupying the theme and replacing the event variable e; with its parallel event variable
e.
e: [predicate: like

agent: Bill

theme: [theme(ey) |
or
e: [predicate: like

agent: Bill

theme: [obj: mother

poss: agent(es)] |

The same applies to anaphora like: John got shot by his father. That happened to Bob too.
and John kissed his wife, and Bill followed his example. and Although John bought a
picture of his son, Bill snapped one himself.

36 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Chapter 3.

The Anaphora Resolution Module in the SPICE-
EPG

In this chapter the steps which are taken before the implementation of the reference
resolution module are described. First an analysisis made of the requirements for the
module. Because it is not possible to meet all requirements, the scope must be narrowed
down. For thisan analysisis made of what is feasible during the period of this project,
and within the constraints of the environment. Priorities will be set for certain tasks, so
that the most important parts of the anaphora resultion module can be implemented.
Once the scope of the project is defined, amodel is chosen which will be used for
anaphora resolution. Based on this model the information needs are determined, and
methods to provide for these information needs are discussed.

3.1. Requirements for the module: Must-haves and
Should-Haves

Since the SPICE-EPG prototype is the environment where the reference resolution
module will be running, the majority of the requirements are derived from the present
situation of the system and the view on how the system ideally should be. Other
regquirements are based on future use of the module, possibly in different contexts.

The requirements are divided into two different types. Requirements the reference
resolution module must have, and requirements the reference resol ution module should
have. These will be explained in the following subsections.

3.1.1. Must-haves

In this section an overview will be given of the requirements that are strictly necessary
for the reference resolution module. In short they are:

* Reference resolution.

e Operationa within SPICE.

* Operationa in real-time.

* Not dependent on an extensive lexicon.

3.1.1.1. Reference resolution

Naturally, the system should be able to resolve the references which are used in the
application. But in man-machine interaction, similar to the one encountered in adialogue
system like the SPICE-EPG, not al types of references will be used. In fact many types
of references which are found in written texts will not be used in this type of man-

37 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

machine interaction. On the other hand, references to entities in another modality can be

expected.

The types of utterances encountered are user requests for information on television

programming schedules and programs, and commands regarding searching, recording,

reminding, and switching to programs. No new information will be introduced by the

user, which is not already present in the database, and the entities used are limited to the

context of operating an electronic programming guide. In appendix A an overview is

given of what co-workers view as what should be possible in an ideal natural language

understanding EPG. Use of the following references can be extracted from this data:

» Definite descriptions. For example: Show me information about the first program.

* Pronouns. For example: Are there any other movies with her?

* Demongtratives. For example: Record that.

* Ellipsis. For example: Are there any movies with Robert Redford today? How about
tomorrow?

* One anaphora. For example: Remind me of the one on Channel 5.

* Deixis. Where the user for example pointsto a program in the list.

These references can refer to the following type of entities:

* an entity that was introduced into the discourse via a noun phrase. For example: What
ison CNN right now? Switch to that channel (CNN).

» aproperty of an entity that was introduced into the discourse via a noun phrase. For
example: Show me information on CNN world news. Are there any other programs at
the sametime (the time of CNN world news)?

* asuperset of individua entities from another modality. For example: Please record
the Mad Max movies (Mad Max 1, Mad Max 2, ...).

» world knowledge. For example: Isthere any news on the latest earthquake?

» fact. For example: Is she not beautiful? Oh, | forgot you are a computer, you do not
know anything about this (she being beautiful).

* an entity from another modality. For example: Can you show me more information
about this movie (movie user just pointed to)? or Record the second program
(program displayed on the screen).

3.1.1.2. Operational within SPICE

The reference resolution module must be able to operate within the SPICE-EPG context.
This meansthat it must be able to perform its tasks with the data provided by the system,
and not be dependent on technology which is not available within the SPICE-EPG.
Because of this the reference resolution module must be able to operate with the data
generated by the shallow parser, which means that no deep syntactic and semantic
information is available. A method must be found to compensate for this lack of
information.

The reference module will be part of the context interpretation module, and will only
perform actions locally. Ideally reference handling should also be part of the dialogue
management, but thiswill not be the case here, sinceit is not possible to access this part
of the system. It will therefore not be possible to handle references to things out of
context.

38 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Within SPICE-EPG communication between the different modulesis donein XML, and
as such the reference resolution modul e should be able to read datain XML format.

3.1.1.3. Operational in real-time

The reference resolution module will be used as part of a man-machine speech
understanding interface, and as such al data must be processed in real-time. The user
cannot wait very long for aresponse, so the chosen reference resolution algorithm must
be fast, and not too complex.

3.1.1.4. Not dependent on extensive lexicon

The module must not be dependent on an extensive lexicon of words, which specify their
syntactic, semantic, functional properties and all dependencies between the different
words. It must be able to operate with as little information as possible.

3.1.2. Should-haves

In this section an overview will be given of the requirements that are not strictly
necessary, but are still important for the reference resolution module to have. In short
they are:

* Robustness

» Adaptable for other applications

» Parameterized settings

* Noincrease in system requirements

» Littleincrease in processing time

e Writtenin C++

3.1.2.1. Robustness

Nowadays state-of-the-art speech recognizers are still far from perfect. As aresult,
speech recognition errors are still very common. The reference resolution module will

run in such an environment, and it can be expected that misrecognitions of the user by the
system will be processed by the reference resolution module. The module should be
robust for these cases, otherwise recognition errors may upset the entire system, and the
user may have to start al over again, before he can be understood correctly. To avoid this
kind of frustration, it would be best if the system would not be dependent on correct
information only, but is able to find the information needed, or recognize wrong
information. The parser uses a N-best list to find the set of phrases which matches the
user’ s utterance as best as possible. The reference resolution modul e should be able to
determine the references in the N-best list, aiding the dialogue manager in selecting the
best hypothesis.

3.1.2.2. Adaptable for other applications

Even though the SPICE-Electronic Programming Guide was designed as a prototype to
show the possibilities of current state-of-the-art technology within Philips Research, it
should not be the case that the reference resolution module will only work in the SPICE-

39 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

EPG environment. It should be possible to do some simple modificationsin order to
adapt the reference resolution module for other types of applications.

3.1.2.3. Parameterized settings

Because many things are still uncertain, about how entities from other modalities come
into focus, how this may differ depending on the combinations of modalities used as
input and output, and whether the user isin fact performing a monologue or a dialogue
with the system, it would be convenient if the settings which are expected to affect this
focus can easily be changed without the need to alter the code.

3.1.2.4. No increase in system requirements

In the end the EPG application should be able to run on a device with limited memory
and processing power. In addition the SPICE-EPG prototype is currently quite heavy, so
it isdesirable that system requirements will be kept to a minimum. Even though the
processing power double yearly, even for handhelds, and eventually it the system
requirements will not be any problem, it has been specifically stated that increase in
system requirements are undesirable, and no heavy third party software should be used.

3.1.2.5. Little increase in processing time

Since the user isin constant interaction with the system, it isimportant that information is
returned in aslittle time as soon as possible. Eventually machines will be fast enough to
perform the speech recognition in afraction of a second, but currently the user already
has to wait afew seconds before receiving information, and it has been specifically stated
that any increase in processing time is undesirable. Large increases in processing time
will also lead to problems during testing, because the processing time will alow only few
testsin acertain period of time.

3.1.2.6. Written in C++

Within Philipsit has been decided that the standard programming language is C++. Since
the program is written for Philips and other people must also be able to understand and
expand the program, the programming language should be C++.

3.2. Narrowing the scope

In order to meet all these requirements and build areally good system, many years of
work and research will be needed. Also, some of the requirements interfere with each
other. The fact that the module must be operational within SPICE-EPG and may not
depend on technology which is not available within SPICE-EPG, puts a severe limitation
on the types of references which can be solved. Most state-of-the-art anaphora resolution
algorithms depend heavily on deep parsing, which is not available within SPICE-EPG.
Also, the fact that it is not possible to use an extensive lexicon, which specify syntactic,
semantic, functional properties and all dependencies between all the words that are
expected to be encountered, is an additional limiting factor. On the other hand,
considering the time available for this project, it would not have been feasible to build
such alexicon anyway. Because of this the scope of the project must be narrowed, so the

40 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

most important and the most feasible requirements will be met within the predesignated
time for this project. In the next subsection an analysis is made of the references which
are expected to be encountered in this application. The final subsection will give an
overview of what can be included in the scope of this project. Once the reference
resolution model and the meansto provide for its information needs are established, the
general outline of the algorithm is determined. Based on this outline, the design for the
module is made, and this chapter ends with an overview of what each class in the module
does.

3.2.1. Solving references within the constraints

Determining which references will or will not be solved by the module is usually done by
examaning a corpus, and determine which references are used the most and which are
used the least, so that the references used most will at least be implemented.
Unfortunately no such corpus was available, because in the past references were carefully
avoided, when corperawere built. Therefore the co-workers at Philips were asked to
phrase several examples of the references which ideally should be solved (see appendix
A). This provides no information however, on how often these references will be used,
and how important they will be. Therefore the set of references which will be solved are
based on the information available and the authors thoughts on how important each
reference will be.

In this section a short overview will be given of each of the reference types which are
encountered in appendix A in order of appearance. For each type will be stated what kind
of information is needed, and how much of thisinformation will be availablein the
environment where the reference resolution module will be running.

3.2.1.1. Ellipsis

Ellipsisis commonly used in natural language and much research has been donein this
area. In general the resolution method for ellipsisis asfollows: When a parse tree is built,
either afull syntactic tree asis shown in figure 9. or a dependency tree asis shownin
figure 12, ellipsiswill be detected if an empty node is encountered. In the example:
SPICE, are there any movies starring Mel Gibson today? How about this week? The
second sentence is missing both a subject aswell as a predicate, or in the case of a
syntactic tree: both a noun phrase and a verb phrase are missing. To solve the elipsis, the
following steps must be taken: First the empty structure of the syntactic tree of the phrase
containing the referent of the elipsisis created. Then the nodes of thistree are filled with
the phrases of the referring sentence. Finally the remaining empty nodes are filled with
the phrases of the referential sentence.

In the SPICE-EPG environment, it is not possible to find any empty nodes, since the
shallow parser only returns meaningful concepts, which contain no information about its
function or place in the sentence. Detection of ellipsis will become very problematic and
isimpossible using the conventional method. An option would be to look for cluesin the
sentence like ‘How about,” ‘and so did,’ etc. But thisis no insurance that thereisindeed a
case of élipsis, and lack of these indictors certainly does not mean there is no case of
elipsis. Additionally, many so called indicators are of the form ‘ <indicator-part1> ...

41 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

<indicator- part2> ..., which isnot possible to extract as such, using the shallow parser.
Besides that, it will be hard to determine what is missing in the sentence, if it has been
decided that ellipsis occurs. It would be possible to assume that if thereisan indicator
for elipsis, and aslot is empty which contained datain the previous turn, that ellipsisis
encountered (the system uses adlot filling strategy, which means that attempts are made
to get all required datain order to fulfill arequest). But thisis hardly avery robust way to
handle ellipsis, since speech recognition errors may add or remove a concept which
indicates ellipsis or aglot value, which may result in avery strange behavior of the EPG.
On the other hand, the dialogue manager of the SPICE-EPG system already keeps slot
values, unless certain condition occur (e.g. the reset command), and as such it will
probably be not worth the time, effort and extra overhead to create a module which
fulfills afunction aready performed by the dialogue manager. Therefore this kind of
reference has low priority.

3.2.1.2. References to an entity from another modality

References to an entity from another modality are expected to be very common, since
most of the information presented to the user are displayed on a screen. The user can
refer to this information with speech only or use pointing input additionally. This can be
done with pronouns, demonstratives or definite descriptions. Pronouns and
demonstratives will usually be accompanied with pointing input if there are multiple
possibilities of what the pronoun or demonstrative can refer to. For example when there
are many programs on the selection list and the user wants to pick a single program for
recording, the user might say: Record this, while pointing to the appropriate program. If
thereisonly asingleitem on the display list, the user can say: Record it, without pointing
to any program. The user may use definite descriptions to specify objects which arein or
out of focus, or pick asingle entity when there are many entities on a selection list, for
example: Record the program, or Show me the previous list, or Record the fourth
program.

To solve these kinds of references, information is needed about what the system output
was, what the user has pointed to (if applicable), and what isin focus. To determine what
isin focus, information like the subject, or object of the sentence are needed for most
agorithms [All95] [Kam93]. Thisis not possible with a shallow parser alone, but there
are algorithms that do not need thisinformation directly [Stro8]. Otherwise, if this
information is needed, atagger may provide a solution to this problem [Ken99].

In the SPICE-EPG system it is already possible to determine what the user has pointed to,
and match it to the reference in the multimodal integration module. It is still necessary
though to find a method to solve references to an entity from another modality if no
pointing is done.

These kind of references are expected to be one of the most occurring types, and should
be the least what can be resolved.

3.2.1.3. References to a superset of individual entities from another
modality

It is possible that the user wants to refer to a group of entities which have been displayed
on the screen. Thisis usualy done with definite descriptions. For instance when the user
isa Star Trek fan and wants to record all the Star Trek episodes displayed on the screen,

42 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

- .
)

PH S

b

the user might say Record all the Star Trek episodes. To resolve these kind of references,
the system must know that the programs are part of the Star Trek series. The information
that aprogram is part of the Star Trek series might be part of the content description, or
the title, but is not provided as a seperate attribute by the system for each program. It will
therefore be very difficult to determine which programs belong to the Star Trek series
locally in during context interpretation. This would be more atask which should be
handled in the dialogue manager, but since no access is granted to modify this part, it will
be very hard to handle these kind of references. In the case that the user wants to select
multiple programs on the same channel or of the same genre, an attribute which is
provided by the system for each program, for instance in Record the programs on CNN,
or Record the sport programs, it will be easier to solve, since the information necessary is
readily available.

To refer to asuperset of individua entities from another modality it is not always
necessary to use definite descriptions. If the user wants to refer to every item, pronouns
and demonstratives can be used: Record them, or Record these.

To be able to refer to a superset of individual entities. information on the grouping
criteriais needed. In certain cases these are available, in other casesit will be very
difficult using the present database structure.

Even though it is possible to resolve references to a group of entitiesin certain cases, the
dialogue manager will not be able to handleit. This should not be a reason not to
implement it though, because future upgrades or applications might be able to handle
multiple selections.

3.2.1.4. References to a property of an entity from another modality

Sometimes the user may want to refer to a property of an entity. For example: Give me
information on the director of this movie. Again information is needed about the
properties of the entity, which in this caseis again part of the description. Inthiscaseit is
even harder to find the referent, because in the description there is no fixed tag to specify
who is the director of the movie. If the property is a date, time, channel or genre, it can be
recognized more easily.

Another possibility isthat the user wantsto refer to an item of alist. For example: Record
the fourth program. Here information is needed about what items arein the list and in
what order. In the current system, there are still some troubles because the display server
decides on its own how things are displayed. Thisisaminor problem, and will only cause
errors when there are more items on the list than can be displayed and the user is
counting from bottom upwards. For instance: Switch to the second program from below
refersto the program before the last displayed program, but will be resolved to the last
program on the list.

Being able to resolve references like the fourth program and the second program from
below is very important, because the system output consists most of the time of lists of
programs, and these references are very easy for the user to use.

3.2.1.5. References to an entity that was introduced into the discourse via a
noun phrase

These types of references are perhaps one of the most basic types of references
encountered. It iswell researched topic and there are algorithms which might work in an

43 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

environment with shallow parsing. With these types of references the user can refer back
to an entity which he said before. For example What is on CNN right now? Switch to that
channel. Because this type is one of the most basic types, it should be one of the least to
be implemented.

3.2.1.6. References to world knowledge not mentioned in the discourse

World knowledge includes the general knowledge about the structure of the world. In the
case of an electronic programming guide, one may think about events in the world which
may relate to certain programs, program schedules, and user properties. For example,
when an earthquake struck Turkey, the user may be interested in the latest earthquake, or
the user may want to schedule the next match after watching a baseball game, or requests
information about sports featuring his favorite baseball team.

These kind of references should be handled by the dialogue manager, because this part of
the system contains both world and local knowledge. Also the dialogue manager may
decide to ask for clarrification when it is not sure about the user’ sintents. It isvery
difficult to handle these kind of referece as part of context interpretation, since these
references are out of context. Sinceit isno accessis granted to modify the dialogue
manager, these references will not be part of the scope of the project.

3.2.1.7. References to a fact

In one of the examplesin appendix A, thereis areference to afact: Isthat Sandra
Bullock? Isn’t she beautiful? Oh, | forgot you are a computer, you do not know anything
about this. Here this refers to the fact that Sandra Bullock is beautiful. Even though there
isan example of auser conversation with the EPG using this kind of reference, it is not
expected that it will be used in this type of application. The current system uses a slot
filling strategy, and is only interested in finding the required information. Therefore it
will not engage in a conversation with the user. Instead it will try to direct the user to
provide the necessary information to fulfill a certain task, which in this case does not
include facts like Sandra Bullock being beautiful.

3.2.1.8. References to nothing at all

Although this type of referencesis not encountered in the examples, it isimportant that
pronouns and demonstratives not referring to anything are recognized. Attempts to
resolve these kind of references are a waste of processing power, and may even result in
upsetting the focus of attention, or frustrating the user.

To recognize these kind of referencesit is necessary to find the general form in which
they occur. For example: It seems ..., it appears ..., €tc...

3.2.2. The narrowed down scope

Considering the information presented in the previous section, the scope can be narrowed
down to the following requirements:

44 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Must haves

* Resolution of references to an entity from another modality.

* Resolution of references to an entity introduced previously via a noun phrase.
* Resolution of references to a property of an entity from another modality.

* Operational within SPICE-EPG.

* Operationa in real-time.

* Not dependent on an extensive lexicon.

Should haves

* Robustness.

» Adaptable for other applications.

» Parameterized settings.

* Resolution of references to a superset of individual entities from another modality.
» Filter out references to nothing at all.

* Noincrease in system requirements.

* Noincreasein processing time.

o Writtenin C++.

Note that resolution of references to a property of an entity asamust haveis limited to
the properties which are predefined, and do not include properties which have to be
extracted from thetitle or the description.

The same applies for references to a superset of individual entities. These entities can
only be grouped by predefined properties, and not by information which have to be
extracted from the title or the description. This type of reference is put under the should
haves, because the SPICE-EPG system is not capable of handling multiple selections.

3.3. Choosing the reference resolution method

In this section a comparison is made for the different reference resolution methods
described in section 2.2. Using this comparison a method is selected which is used for the
reference resolution module in the SPICE-EPG. Table 6. shows an overview of the
properties of the different reference resolution methods and some results obtained from
literature.

45 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Table 6. Overview of the properties and results of the different reference resolution

methods.
Section | Method Parse |Imp |Perf Corpus
2.2.1 Simple History List |phrase |easy |47% Y Train93
2.2.2 Centering struct/ |med |72,9% 2 |a)
Temporal Centering | seman 76,0% 2 |a)
2.2.3 Never Look Back phrase |med |85,4% 2 |a)
2.2.4 Heuristics [Byr99] synt/ |hard [69,1% 1 | Train93
[Mcc96] |seman 92,4% 3 | MUC-5 + 6
[Mur96] 78% 4 b)
[Mar00] 73,8% 5 | Basurde
[Ken96] 75% 27 random texts

Parse = parsing information needed, phrases, phrase structure, semantic information, syntactic information

Imp = difficulty of implementation

Perf = performance. Tested in ¥ [Byr99] 2 [Str98] @ [Mcc96] ¥ [Mur96] ® [Mar00]

a. textsfrom the information technology domain, text from the German news magazine ‘ Der Spiegel,” a
short story by ‘Heiner Miller’.

b. Grammar book “Usage of English articles’, “The Old Man with a Lump” “Tensal Jingo”.

Considering the sentences and types of references which are to be solved in the SPICE-
EPG (section 3.2), using the ssmple model for anaphora resolution (section 2.2.1) will
probably be quite adequate. It is easy to implement and no additional requirements on the
parser are needed, since the only information needed to resolve references are recency,
gender, person, and number. However, in other applications where the utterances go
beyond simple commands and more complex, but still simple constructions are used, the
performance of the performance of the algorithm will drop dramatically, and will become
quickly obsolete.

The centering model (section 2.2.2) is capable of handling more complex constructions
than simple commands, but in order to function properly it needs information about
sentence structure, syntax, and the role of the various phrases. For this a deep parser will
be needed, which will increase processing time, system requirements, and will not
operate robustly in an environment where speech recognition errors are common, and
where utterances are not grammatically correct, according to text grammar rules.

Never Look Back (section 2.2.3) is equally capable of handling more complex
constructions than simple commands, and according to [Str98] it performs even better
than the centering model. To calculate the most salient entity, no information about
sentence structure, syntax and the role of the various phrases are needed, so it is expected
to work well with a shallow parser. For intrasentential references, information about
sentence structure is still needed though, to determine whether a salient entity meets the
binding constraints (section 2.1.1.1). It is expected that this will occur rarely though.
With the heuristic approaches to solve references (section 2.2.4) alot of rules are needed
before good results are achieved. It is highly probable that satisfying results will not be
obtained within the specified period for this project, especially because most rules given
in the papers are not suitable for either English language or are too specific for acertain
domain. In addition, most rules for these heuristic approaches need information about
syntax and the role of the various phrases, which is not available with a shallow parser.
An interesting approach is described in [Ken96] though, where the parser is substituted
with a tagger, which provides information on the role of each word in the sentence.

46 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

Never Look Back achieves higher performances in resolving anaphora than the centering
model and the simple model based on a history list. It is difficult to compare it with the
heuristic approaches, but since it is easier to implement, and does not need information to
determine the most salient entity, which the shallow parser cannot provide, this method
will form the basis of the reference resolution module in SPICE-EPG. The simple model
based on a history list, may be adequate for the SPICE-EPG program, and is easier to
implement, but Never Look Back has more potential, and is expected to be usablein
more advanced applications as well. Therefore Never Look Back will form the basis for
the reference resolution module.

3.4. Grammar requirements for the solution

In this section the requirements for the grammar are specified so that the references
within the scope of the project can be solved. These requirements are based on the
examples from appendix A.

3.4.1. Recognition of references

Before references can be resolved they must first be recognized as such. The forms of the
references which are encountered are as follows:

 third person pronouns

* demonstratives

» definite descriptions modified by a definite article or ademonstrative

* oneanaphora

The pronouns |, me, my, mine, we, us, our, Ours, you, your, yours are not interesting in
this concept, because pronounsin the first person will always refer to the one speaking
and pronouns in the second person will always refer to the one spoken to. Besides that,
they do not add any information relevant for performing any task of the EPG.

Third person pronouns and demonstratives are easily recognized.

For definite descriptions and the descriptive form of one anaphora every possible noun
phrase must be specified. Thisis done by looking at the examples and extracting general
information on the forms which are expected to be encountered. In appendix B the part of
the grammar is listed which is used to recognize these forms.

One anaphorain its single form is more difficult to recognize with a shallow parser. With
a syntactic parser, the word ‘one’ will be recognized as such because it fillsthe role of a
subject or an object. With a shallow parser no such information is available and the word
‘one’ can be either a number, to specify an amount or time, or a reference. One anaphora
of this type does not refer to a specific object, but rather to a general class of objects. For
example: Are there any movies tonight? Is there maybe one with Robert Redford? In this
case ‘one’ refersto the class movie. In the SPICE-EPG system the category movie from
the first sentence will be kept, and in the second sentence the constraint ‘ Robert Redford’
will be added. Since the system is already capable of handling these kind of situations,
and these forms are difficult to recognize, attempts to device a solution to do so are set to
low priority.

47 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

3.4.2. Recognition of objects which can be referred to

In order to solve references, it is not only important that the references are recognized,
but naturally the objects which can be referred to must be recognized by the parser. In the
SPICE-EPG the following objects can be in principle referred to:

e (date

e time

e genre

e channd

o title

e actor

e director

e protagonist
» sdection list
e record list
e remindlist

From these objects the date, time, genre, and channel are already in the grammar. Actor,
director and protagonist are not part of the grammar, but it is not possible to put them
there. Thiswill cause a conflict in the system, because once put in the grammar, it cannot
be recognized as part of the content description anymore. The result is than that the
system will not look in the description for this information.

Date, time, genre, channel, title, selection list, record list and remind list are objects
which are displayed on the screen, and which can be referred to. Objects which are
displayed on the screen must therefore be known to the reference resolution module.

In addition to that, date, time, genre, channel and title are objects which can be pointed to
by the user. Therefore it is necessary that information is available about what is pointed
to, which is generally not an easy task, because pointing events are not synchronous with
the text, and it is often unclear what the user meant when something is pointed at. For
instance when the user points at atime on acertain linein the screen, the user may refer
to thistime, or to the program in the same line, or even the whole line. Fortunately thisis
already solved in a previous project [Phi0Q].

3.4.3. Recognition of phrases adding contextual constraints

It is often not enough to recognize the references only and select the most salient entity to
resolve the reference. Often words in the sentence provide a context which narrow down
the scope of possible referents, and the most salient entity may just be not in this scope.
Constraints from the context may come from verbs which object or subject specifies the
type of referent. For example: Record it! or Are there any other movies where she stars?.
Record can only apply to a program, so it probably refersto the program in focus. The
subject of stars must be an actor, so sheis probably the female actor in focus. Therefore

48 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

it is necessary to recognize the words which add information on the context, and where
these words apply to.

3.4.4. Recognition of expletives

One last thing which must be recognized are the expletives, uses of it and that which do
not refer to anything particular. Failure to recognize these expletives may cause the
system to put unwanted information in slots, disrupting the task the user does. Appendix
C shows alist of the forms in which expletives are encountered.

3.4.5. Adaptation of the SPICE-EPG Grammar

The grammar used in the SPICE-EPG system is a stochastic context-free grammer, based
on shallow parsing, in which only meaningful concepts are recognized [Kel0Q]. A
concept is a sequence of words or concepts and has a set of attributes. There are also no
dependencies between concepts. The following example shows what the grammar may
look like:

<PROGRAMME> ::= programme
<PROGRAMME> ::= programmes

<CATEGORY> ::= movie
genre := ‘movie’

<CATEGORY> ::= movies
genre := ‘movie’

<CATEGORY> ::= news
genre := ‘news’

<REFERENCE> ::= this
<REFERENCE> ::= that

<INDEX> ::= first
<INDEX> ::= second

<DEFINITE_DESCRIPTION> ::= the <PROGRAMME>
<DEFINITE_DESCIRPTION> ::= the <INDEX> <PROGRAMME>
<DEFINITE_DESCRIPTION> ::= <REFERENCE> <PROGRAMME>
<DEFINITE_DESCRIPTION> ::= the <CATEGORY>
<DEFINITE_DESCIRPTION> ::= the <INDEX> PROGRAMME
<DEFINITE_DESCRIPTION> ::= <REFERENCE> <CATEGORY>

A concept contains no information about the concepts it consists of, so the concept
RECORD_PROGRAMME := <RECORD> <PROGRAMME> Will not be recognized later as a
composite concept consisting of the concepts <RECORD> and <PROGRAMME>. It also
does not contain the attributes of these concepts, unless explicitly specified. With the

49 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

grammar it is also not possible to specify concepts of the form <concept_part1> ...
<concept_part2>.

The information gained from the shallow parser is quite limited, but is the only option
which isrobust enough to deal with badly recognized speech. Ideally there should be a
second parser which goes deeper into the sentence structure, so that binding constraints
can be used to determine incompatibilities in intrasentential references. This syntactic
parser should also be based on a stochastic grammar, so that probablistic information
about the concept graph from the shallow parser can be used to determine the most
probable syntax tree [Bod96]. Other options are use of the EngCG tagger described in
section 2.4.1 [Ken96], and/or a set of filtersto find as much information as possible about
the sentence structure. The tagger is able to provide syntactic information and
information about word function in the sentence, without parsing the sentence, but does
so by looking at the word forms and verbs. It isfaster than a parser, but unfortunately
also less accurate, and provides no information about sentence structure. A filter isa
simple routine which looks for certain specific phrases, in the utterance and either
modifies this phrase for later handling, or extracts information from this phrase.

The advantages of a second syntactic parser are:

» Information about sentence structure

» Information about dependencies

Information about word function

Might be robust parsing in combination with partial parsing

The disadvantages of a second syntactic parser are:
* Timeintensive to implement / Expensive

» Largeincreasein processing time

* Increase in system requirements

The advantages of atagger are:
* Information about word function
» Limited increase in processing time

The disadvantages of the tagger are:

No information about sentence structure

No information about dependencies

Time intensive to implement / Expensive

Increase in system requirements

Not very robust with textual grammatically incorrect sentences

The advantages of filters are:

» Easy to implement

» Littleincreasein processing time

» Littleincrease in system requirements

» Canwork with textual grammatically incorrect sentences

50 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

The disadvantages of filters are:

* Noinformation about sentence structure
» Little information about dependencies

e Noinformation about word function

Thisissummarized in table 7.

Table 7. Properties of methods to acquire syntactic information.

struct | depend | word func | proc time | sysreq | robust imp
Parser v v v high high high hard
Tagger x X v med med med hard
Filters x v x low low high easy

The problem of a second parser isthat there isalarge increase in processing time and
system requirements. It is expected though that in combination with the stochastical
partial parser, which is currently used, the syntactic parser is able to provide information
about sentence structure and dependencies adequately.

Use of the EngCG tagger is an interesting option, because it provides information on
word function, so that constraints for intrasentential anaphora can be used. A license for
this tagger is quite expensive though, and implementation will take quite along time. The
processing time of the tagger is acceptable (thisis tested with the demo on the website),
but the increase in system requirements, though not really a problem, is undesired. The
tagger has one problem though: when a very distorted sentence is processed, certain
phrases will be incorrectly tagged.

Use of filters alone provide very little information but may be adequate in the SPICE-
EPG environment. It is easy to implement, and requires little additional effort from the
system. Thefilters will not get confused when dealing with strange structured sentences,
which istraded off by the accuracy of the information it returns. Sinceit is expected that
the use of filters alone will be adequate, the reference resolution method will make use of
them. If thiswould prove to be inadequate, the tagger will have to be put into use.

3.4.6. Use of methods to compensate lack of syntactic
information

In the ideal case every meaningful concept and subconcept (concepts part of another
concept, like in the program on CNN, where CNN is a part of the concept the program on
CNN) and the dependencies between them are recognized as such. As mentioned before,
it isnot possible, and in many casesit is not strictly necessary, because dependencies can
be inferred by looking at the types of concepts. For instance in the phrase: Please record
it, it can be inferred that record appliesto it, and that it therefore must be a program. It is
clear that record does not apply to please. This can be done for example by specifying
that if a concept has the constraints gender = neutral and abstract = nonabstract, and the
concept record isfound in the utterance, which is of the concept type command, the
constraint type = program can be added. So by looking at the concept values and the

51 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

types some dependencies can be inferred. In the module this is actually done by looking
at the constraints of the concepts, to allow an even more accurate matching of
dependencies between concepts. Having two seperate concepts is especially useful when
the two phrases do not necessary follow each other immediately, but can have fillers or
other concepts between them.

In other casesit is better to group the concept and its subconcept into a single concept, for
instance in the phrase the six p.m. news, it would not be possible to recognize news as a
definite description, because the would be missing when the concepts are split up into six
p.m. and news. Therefore in order not to lose this information, it is necessary to have the
SiX p.m. news as a single concept. But because six p.m. is a concept which can be referred
to (for example: that time), it is necessary to have it recognized as a distinct concept, and
not just as a constraint for movie. For this reason, a special attribute subconcept is created
in the grammar for definite descriptions. In this attribute the concept type and value are
stated. For the subconcept attribute a concept is created, which is linked to the concept.
Because there is no secondary parser, it is difficult to determine whether some wordsin a
concept like channel and 5 in the one on channel 5 belong together, so that isindeed
recognized as channel 5 instead of two sepparate words. Thisis necessary to assign the
correct constraints to the concept (channel might introduce the constraint type =

channel). It would be possible to try to find all possible combinations of word groups, but
thiswould be essentially part of the parser and is very time consuming. To solve this
problem, words like channel 5 are modified during concept creation into something like
channel5. The information that the program is on channel 5 will be provided by the
subconcept. It aso would have been possible to split up the concept the one on channel 5
into two concepts, the one and channel 5, but in this case additional constraints must be
added to provide the context for the program. If the two concepts are separate, it is more
difficult to correctly match channel 5 as a constraint to the one, then having channel 5 be
a subconcept of the one. This already provides the needed data structure to work. Another
possibility would have been to remove the word channel 5 from the concept value instead
of replacing it with channel5, but this decreases the ease of understanding what happens
when debugging.

There is a case where dependencies are more difficult to handle. In for instance the
phrase: the second program of the previous list, it is necessary to recognize the previous
list and the second program seperately, because otherwise it is not possible to resolve the
previous list, but it is also necessary to recognize the dependencies between them. In
addition, the previous list must be resolved before the second program is handled.
Considering this, adilemmais created: recognize them as distinct concepts, and have
trouble finding the dependencies, or group them together as a single concept, and have
troubl e distinguishing the seperate concepts, which have to be resolved. If the this phrase
is handled as two distinct concepts, it is necessary to find a cue in the sentence, which
specifies the dependency and which concept should be resolved first. This may become
problematic, because for each modifier i.e. from, of, etc. must be specified which concept
must be handled first. Splitting the concepts al so increases the chance that the modifier is
not recognized, resulting into two seperate concepts with no relation at al. Thereforeit is
best to group them as a single concept, and specify information which concept must be
processed first. Because the second program is the topic of the concept, an attribute
concept will be created with the value the second program, and because the previous list

52 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

iswhat it is part of, an attribute will be created named superconcept with the value the
previous list. A filter will split this concept while transating grammar datainto the
internal data structure, and create two concepts with the needed dependency. The
superconcept is processed first before the concept is resolved.

The grammar is also inable to create a concept which forms a group for concepts
mentioned together. A filter is needed to find this summing of concepts and create a
container concept containing these concepts, so that the concepts as a group can be
referred to.

Another problem with the lack of syntactic grammar is that misrecognition of the
utterance can produce total garbage which will be processed by the system, resulting in
output which istotally out of context (for instance random noise, or smple
misrecognition will often result in the output of words like a, the, it, etc. which will be
matched to atitle starting with the or a, or resolution of it). Thisis very frustrating for the
user. To prevent this afilter is necessary to recognize and remove these kind of concepts.
This should be done in the info retrieval engine, where alist of ‘stop words' could be
applied to filter out these words from queries to the database.

One last problem of lacking a syntactic grammar is the absence of binding constraints.
Only one experimental constraint isimplemented: an accusative pronoun cannot refer to
the most recent concept. Thisisimplemented so that at least references in the following
most basic sentence structure can be resolved: ‘Bob and Bill met each other at the mall,
he gave him a book.” Using this binding constraint *him' cannot refer to ‘he'. Ofcourse
thiswill not work in more complex sentence structures.

3.4.7. Summary of grammar requirements

For the reference resolution module which is based on the model described by [Strog],
the following grammar must be able to do the following:

* Recognize the references.

» Recognize the objects which can be referred to.

» Recognize phrases which add contextual constraints.

» Recognize forms where expletives occur.

* Provide information on relationship between concepts.

Recognition of the various concepts can be entirely done by the grammar. To find the
information about the relationship between concepts, additional filters are required
though. Determining whether a concept has such arelationship with areference, that it
can add contextual constraintsto it is done by looking at the constraints of the concept. A
concept which modifies the concept and adds contextual constraintsto it, has some
requirements before the contextual constraints are assigned. These requirements are
tested against the constraints already found for the concept. Another method used to
determine the relationship between two concepts which follow each other, isto create a
single concept with both phrasesin it and specify the relationship between them in the
attributes.

53 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

3.5. General outline of the algorithm

Having determined the method to resolve the reference and the information provided by
the grammar, the general outline of the agorithm can be specified. In genera the
anaphora resolution model in SPICE-EPG consists of:

* asetof filters,

* adatabase,

* asdienceligt,

e ahistory list, and

» routinesto find the referent.

The database consists of information concerning constraints and properties of objects
which are expected to be encountered in the discourse and are used to determine the
compatibility of the reference and candidate referent.

The salience-list consists of the objects which are currently in focus and are sorted from

most salient to least salient according to [Str98]. Because the dialogue is infact a man-
machine interaction, the entities not used in an utterance are only removed in the user
turn, instead of each utterance as proposed by Strube.

The history list consists of al objects encountered in the discourse, which are grouped in

type lists according to type and sorted in order of recency of use, to increase accessibility.

The history list is used for references to entities out of focus.

Thefilters are used to filter out uninteresting phrases and limit the scope for searching

possible referents.

The processing of the information can be split into two parts, namely the system

information processing part and the user information processing part. The system
information processing part is as follows:

* The SPICE-EPG display providesinformation on the items on the screen.

* Theseitems are converted into an internal representation of concepts similar to the
concepts provided by the grammar.

» List concepts of the different types are created which contain the concepts of the
appropriate type. All non-program types are added as subconcept to the
corresponding program concept.

» Group concepts are created depending on several grouping criteria, so that the
concepts can be referred to as awhole.

» Concepts are sorted.

» Thegroup concepts are added to the salience list and all concepts are added to the
corresponding type list of the history list. Concepts are ordered so that the ones at the
top of the display will be accessed first.

The user information processing part is as follows:

» The SPICE-EPG grammar provides information on the phrases from the user’s
utterance and pointing events.

» Uninteresting phrases like fillers and expletives are filtered out.

» Actor, director and protagonist information is filtered out from the content type
concepts and appropriate concepts are created.

54 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

» Concepts created by pointing events are filtered out and tagged as SITUATIONALLY
EVOKED in the salience-list. The concept is aso added to the appropriate typelist in
the history list.

» For each phrase, except titles and content types, is determined whether itisa
reference or not.

» If the concept is not areference, it istagged in the salience list and added the
appropriate type list in the history list.

» If the phrase is areference, the form of the reference is determined: pronoun,
demonstrative, definite description or one anaphora.

* Alistof constraintsis created based on the implicit information of the phrase, which
is provided by a database.

» Alistof constraintsis created based on the information of other phrasesin the
utterance, which provide contextual constraints for the reference. Thisis provided by
a database.

» For each object inthe salience list alist of propertiesis created.

* Thislist of propertiesis compared to thelist of constraints for compatibility.

» Thefirst compatible object isreturned as the referent.

» If noreferent isfound, concepts which are out of focus, are compared with the
reference if the anaphorais of descriptive form (that movie at ten p.m., the second one
from below, the previous list). Otherwise no referent is returned.

* Typelistsfrom the history list which are not compatible with the reference are
filtered out.

» The most recent compatible referent islooked up in the remaining compatible groups.

» Thesalience and history lists are updated.

At the time the module was designed it was not clear where exactly the module would be
placed in the context interpretation module: before the best hypothesisis selected, or
after. The best hypothesisis chosen by determining the probability of a phrase based on
how well the acoustic data matches with the phrase, on how probable it is that the phrase
occurs. To make it possible to process the N-best hypothesis, the salience and history lists
are only temporary updated during the user turn. For each hypothesis a backup of the
update is made. During the system turn, the system should inform the reference
resolution module which hypothesis was chosen as the most probable, so that the update
of the best hypothesisis saved and the other updates discarded. The system may penalize
hypotheses which have references which could not be resolved, or have referents which
do not make sense in the context according to the dialogue manager.

In figure 14. the flow chart for this model is presented.

55 J.L.R.D Woei-A-Jin, 2001

PH S

Receive grammar data

v

Filter expletives & fillers

v

Filter actors, directors,
protagonists from
content type

v

Update salience list &
history list with pointing
events

v

Select first phrase

Yes
reference?

No

Receive display data]

v

Convert data

v

Create list concepts

v

Create group concepts

v

Determine reference
form

Sort concepts

v

v

Create list of constraints
from phrase

Update salience list &
history list

v

Create list of constraints
from context

v

Select first item in S-list

v

Create property list

compatible?

Assign referent

Select next item in S-list

Filter out incompatible
groups from history list

v

Get most recent

y

Update salience &
history list

Yes

No

Update salience list

compatible referent

Figure 14. The flowchart of the anaphora resolution module in SPICE.

56

JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

3.6. System Design

In this section the steps made to design the system are described. In the first subsection
an overview is given of the objects, how they relate to each other and how the
information flow is between these objects. In the second subsection an overview is given
of each of the classes and the tasks they perform.

3.6.1. Defining the objects

In appendix D several examples are used to illustrate the objects needed and the general
behavior of them. The following main objects can be defined:

» concept, thisobject is adata structure parallel to the concept produced by the
grammar. It is used to store information about the relevant parsed phrases from the
user utterance and items from the system display.

» saliencelist, thisobject isalist of concepts used to determine which concepts are
currently in focus. The concepts are ordered according to the algorithm described in
[Strog].

* history list, thisobject isagroup of lists of concepts which contain all concepts
encountered in the discourse which can be referred to. The concepts are grouped by
their type and ordered by recency. Thislist is used to find referents outside the direct
focus.

e constraint list, thisisalist of constraints mapped to the concept values and types.
Thisinformation is used to match constraints to references and candidate referents for
compatibility checks.

* main interface, this object is used to read the data produced by the grammar and,
convert them to concepts. Filtering of the datais also done here. The datais send to
the main engine.

» display reader, this object is used to read the data which is displayed on the screen,
and convert them to concepts. The datais send to the main interface.

e grouping module, this object is used to create lists and groups from the concepts
which are displayed on the screen, according to some grouping criteria.

* main engine, thisobject is the part of the program which decides on the course of
action given a concept. The main engine receives data from the main interface. The
grouping module, deixis filter, reference filter, constraint filter, resolution modules,
and update module are triggered by the main engine.

» daeixisfilter, thisobject is used to filter the concepts which are derived from deictic
input (pointing events) out from the list of concepts.

» referencefilter, this object is used to determine the referential property of a concept.

e constraints detection module, this object is used to determine the constraints and
properties for the references and candidate referents. In order to do thisit usesthe
constraint list.

e update module, thisobject is used to update the salience list and history list with
processed concepts.

» oneanaphora resolution module, this object is used to resolve one anaphora.

» demonstrativeresolution module, this object is used to resolve demonstratives.

57 J.L.R.D Woei-A-Jin, 2001

PH S

definite description resolution module, this object is used to resolve definite
descriptions. The concept type filter is used to limit the search of possible referents.
pronoun resolution module, this object is used to resolve pronouns.

concept typefilter, thisobject is used to determine which concept types are
compatible with a definite description.

Figure 15. shows the objects and their relations.

Grammar output Display output
main
interface
N/

main engine

display reader

output writer

update module

constraints
detection

reference
filter

deixis filter

definite .
s pronoun demonstrative one anaphora
description - . .
. resolution resolution resolution
resolution
module module module
module

concept type
filter

Figure 15. Objects and their relations.

The information flows between the objects are stated in the following subsections for
Several cases:

processing display data.

processing user utterance with areference to a concept in focus (pronoun).
processing user utterance with areference to a concept in focus (demonstrative).
processing user utterance with areference to a concept out of focus (definite

description).

processing user utterance with areference to a concept out of focus (one anaphora).

58

JL.R.D Woei-A-Jin, 2001

y

Frr)

'ai._"t

E M HE
B T
1

ai
el

- .
)

m
b

PH S

* processing user utterance with a compound reference (definite description). Thisisa
reference like the first movie fromthe previous list. In this phrase the previouslist isa
reference and the first movie is areference to a property of the previous list.

e processing user utterance with areference to a deictic concept.

e processing user utterance without a reference.

3.6.1.1. processing display data

Figure 16. shows the flow of the data between the objects for the processing of display
data.

main display main grouping update history salience
interface reader engine module module list list
request
display
data
return
display
data
display data
>
group
display
data
done
]
update
display
data
> update
display
data
done
]
update
display
data
>
done
n
d
done < one
n

Figure 16. Data flow between objects for the processing of display data.

To process display data the following steps are made:
* main interface requests display data from display reader
» display reader returns display datato display reader

59 J.L.R.D Woei-A-Jin, 2001

PH S

* maininterface sends display datato main engine

* main engine requests grouping module to group and add the display datato some lists
* grouping module returns the lists and the grouped data to main engine

* main engine requests update module to update the salience and history list

* update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tells update moduleit is done

» update module tells main engineit is done

* main enginetells main interfaceit is done

updating screen info
name of list: SELECTION_LIST
determ ning input :system
handl e system i nput
starting systemlist processor
System Li st Processor is ON
start processing
group added: progranmres 0
updat e
adding: list (SELECTION_LIST 0) to list
list (SELECTION_LIST 0) added to concept |ist
addi ng: programe (programres 0) to |ist
progranme (progranmes 0) added to concept |ist
progranme (progranmes 0) added to slist
list size =0
progranmes O put at the end of the Iist
S-list (1): programres O (deixis),
used size is now 1
S-list (0):
addi ng: programe (aninmal x) to list
progranme (ani mal x) added to concept |ist
addi ng: programme (working lunch) to |ist
progranme (working lunch) added to concept |ist
addi ng: programe (fortune) to |ist
progranme (fortune) added to concept |i st
addi ng: programme (famly affairs) to |list
programme (family affairs) added to concept I|ist
addi ng: programe (bewitched) to |ist
progranme (bew tched) added to concept |ist
addi ng: programe (real rooms) to |ist
progranme (real roons) added to concept |ist
addi ng: programe (last stand at saber river 1997) to list
progranme (last stand at saber river 1997) added to concept |ist
addi ng: programe (the front line) to |list
programme (the front line) added to concept |ist
adding: date list (date list 0) to list
date list (date list 0) added to concept |ist
adding: start tine list (start time list 0) to list
start tinme list (start tinme list 0) added to concept |ist
adding: end tinme list (end tine list 0) to |ist
end time list (end tine list 0) added to concept |ist
addi ng: channel list (channel list 0) to list
channel list (channel list 0) added to concept |ist
adding: category list (category list 0) to list
category list (category list 0) added to concept |ist
S-list (1): programres O (deixis),
slist finalized
lists are updated

Figure 17. Sample output from the reference resol ution module handling system data.

60 J.L.R.D Woei-A-Jin, 2001

PH S

Delft
3.6.1.2. processing user utterance with a reference to a concept in focus
(pronoun)
main main deixis update history salience
interface engine filter module list list
list of filter
concepts N
4p> deictic
concepts
g
no
deictic
concepts
reference
filter
first
concept
no
reference
update concept
P P update
concept
done
]
update concept >
done
done <
¢
reference
next flltel’
constraints
detection
module
pronoun
resolution
module
resolve reference > get
concept
constraints
return detection
concept module
return referent
done (...)
< Figure 18 dataflow between objects for the processing of user utterance

with reference to concept in focus (pronoun)
61 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Figure 18. shows the flow of the data between the objects for the processing of user

utterance with areference to a concept in focus using a pronoun.

To process user utterance with areference to a concept in focus (pronoun) the following

steps are made:

* maininterface sendslist of concepts from user utterance to main engine

* main engine requests deixis filter to filter out deictic concepts

» deixisfilter returns no deictic concepts

* main engine requests reference filter to determine referential property for the first
concept

» referencefilter returns no referentia property

* main engine requests update module to update history and salience list with concept

» update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

» update moduletells main engineit is done

* main engine requests reference filter to determine referential property for the next
concept.

» referencefilter returns referential property is pronoun

* main engine requests constraints detection modul e to find constraints for concept

* constraints detection module returns constraints

* main engine requests pronoun resolution module to resolve reference

» pronoun resolution module requests salience list for first concept

o sdiencelist returnsfirst concept

» pronoun resolution module requests constraint detection module to find constraints
for concept

* (... repeat looking for compatible concepts from s-list until compatible referent is
found ...)

» pronoun resolution module returns compatible referent

* main engine requests update module to update history and salience list with concept

e update module requests the history list to add data

» history list tells update module it is done

e update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

* update moduletells main engineit is done

* (... dothe samefor all meaningful conceptsin the user utterance ...)

* main enginetells main interfaceit is done

62 J.L.R.D Woei-A-Jin, 2001

PH S

CONCEPT: REFERENCE (he)
detect and classify
pronoun det ect ed
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
constraints in the concept |ist not found..
the follow ng constraints were determ ned for REFERENCE (he)
constrant: gender (male)
contraint: number (singular)
contraint: abstract (no)
end of constraints
constraints found, start resolving pronouns..
l ook up first conpatible entry. size of s-list:2
s-list is at position O, programes 1
| ooking for constraints within the concept
constraints within the concept as a whol e not found
l ook for each word in the string for constraints
progranmes has constraints to add, index = 253
constraint type added: type, progranme
constraint type added: person, nonperson
constraint type added: nunber, plural
constraint type added: abstract, no
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (progranmmes 1)
contraint: type (programe)
contraint: person (nonperson)
contraint: numnber (plural)
contraint: abstract (no)
end of constraints
checking for conpatibility, size of constraints is 2
constraint type: number
s-list is at position 1, robert redford
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determned for actor (robert redford)
contraint: type (actor)
contraint: person (person)
contraint: nunber (singular)
contraint: gender (nale)
contraint: abstract (no)
end of constraints
checking for conpatibility, size of constraints is 3
robert redfordis conpatible
referent value is: robert redford
tenp adding type: actor, value: robert redford
now t aggi ng
can it be tagged as deixis?
does it has a referent?
referent = robert redford
he evoked
S-list (3): robert redford (actor), programmes 1 (deixis), programmes 0 (deiXxis)
used size is now 3
S-list (3): robert redford (actor), programmes 1 (deixis), programes 0 (deixis)
added this to s-list, size is now 3

Figure 19. Sample output from the reference resolution module when handling a pronoun.

63 J.L.R.D Woei-A-Jin, 2001

PH S

3.6.1.3. processing user utterance with a reference to a concept in focus
(demonstrative)

main main deixis update history salience
interface engine filter module list list
list of filter
concepts .
4p> deictic
concepts
no
deictic
concepts
reference
filter

reference

update concept

update
concept
| g

done

b EE—
update concept >

done
done <
¢
reference
next flltel’

constraints

detection
module
demonstr.
resolution
module
resolve reference > get
concept)
constraints
return detection
concept module

< return referent

done (...) Figure 20 dataflow between objects for the processing of user utterance
] with reference to concept in focus (demonstrative)

64 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Figure 20. shows the flow of the data between the objects for the processing of user

utterance with areference to a concept in focus using demonstrative.

To process user utterance with areference to a concept in focus (demonstrative) the

following steps are made:

* maininterface sendslist of concepts from user utterance to main engine

* main engine requests deixis filter to filter out deictic concepts

» deixisfilter returns no deictic concepts

* main engine requests reference filter to determine referential property for the first
concept.

» referencefilter returns no referentia property

* main engine requests update module to update history and salience list with concept

» update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

» update moduletells main engineit is done

* main engine requests reference filter to determine referential property for the next
concept.

» referencefilter returns referential property is demonstrative

* main engine requests constraints detection modul e to find constraints for concept

* constraints detection module returns constraints

* main engine requests demonstrative resolution module to resolve reference

» demonstrative resolution module requests salience list for first concept

o sdiencelist returnsfirst concept

» demonstrative resolution modul e requests constraint detection module to find
constraints for concept

* (... repeat looking for compatible concepts from s-list until compatible referent is
found ...)

» demonstrative resolution module returns compatible referent

* main engine requests update module to update history and salience list with concept

e update module requests the history list to add data

» history list tells update module it is done

e update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

* update moduletells main engineit is done

* (... dothe samefor all meaningful conceptsin the user utterance ...)

* main enginetells main interfaceit is done

65 J.L.R.D Woei-A-Jin, 2001

PH S

CONCEPT: DEI CTI C (t hese)
detect and classify
denonstrative detected
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
wor ki ng on concept: record
done checki ng each of the prenisses
preni sses hol d
addi ng constraint type: type, progranme
the followi ng constraints were determ ned for DEICTIC (these)
contraint: number (plural)
contraint: abstract (no)
contraint: type(progranme)
end of constraints
constraints found, start resolving pronouns..
l ook up first conpatible entry. size of s-list:2
s-list is at position O, programes 4
| ooking for constraints within the concept
constraints within the concept as a whol e not found
|l ook for each word in the string for constraints
progranmes has constraints to add, index = 253
constraint type added: type, progranme
constraint type added: person, nonperson
constraint type added: nunber, plural
constraint type added: abstract, no
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (progranmmes 4)
contraint: type (programe)
contraint: person (nonperson)
contraint: number (plural)
contraint: abstract (no)
end of constraints
checking for conpatibility, size of constraints is 3
programes 4is conpatible
referent value is: programmes 4
tenp adding type: progranme, val ue: programmes 4
now t aggi ng
can it be tagged as deixis?
does it has a referent?
referent = programres 4
t hese evoked
S-list (2): programes 4 (evoked), programes 3 (deixis)
used size is now 2
S-list (2): programes 4 (evoked), programes 3 (deixis)
added this to s-list, size is now 2

Figure 21. Sample output from the reference resolution module when handling a demonstrative.

66 J.L.R.D Woei-A-Jin, 2001

PH S

3.6.1.4. processing user utterance with a reference to a concept out of

focus (definite description)

constraints

main][_elzference detection
engine ilter module
(-..)
next
concept
def. descr.
b E—
detect constraints >
‘[eturn constraints def. descr.
resolution
module
resolve reference get
concept
return
concept

return referent

request
compatible types

salience

constraints
detection
module

concept

type
filter

return

get concept

history
list

<

return concept

|
constraints
detection
module

n
Figure 22. dataflow between objects for the processing of user utterance
(..) with reference to concept out of focus (definite description)

67

JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Figure 22. shows the flow of the data between the objects for the processing of user

utterance with areference to a concept out of focus using a definite description.

To process user utterance with areference to a concept out of focus (definite description)

the following steps are made:

* maininterface sendslist of concepts from user utterance to main engine

* main engine requests deixis filter to filter out deictic concepts

» deixisfilter returns no deictic concepts

* main engine requests reference filter to determine referential property for the first
concept.

» referencefilter returns no referentia property

* main engine requests update module to update history and salience list with concept

» update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

» update moduletells main engineit is done

* main engine requests reference filter to determine referential property for the next
concept.

» referencefilter returns referential property is definite description

* main engine requests constraints detection modul e to find constraints for concept

* constraints detection module returns constraints

* main engine requests definite description resolution module to resolve reference

» definite description resolution module requests salience list for first concept

o sdiencelist returnsfirst concept

» definite description resolution module requests constraint detection module to find
constraints for concept

* (... repeat looking for compatible concepts from s-list ...)

» definite description resolution module requests concept type filter for alist with
compatible concept types

» concept typefilter returns alist with compatible concept types

» definite description resolution module request history list for most recent concept of
compatible concept type

» definite description resolution module requests constraint detection module to find
constraints for concept

* (... repeat looking for compatible concepts from history list until referent isfound ...)

» definite description resolution module returns most recent compatible referent

* main engine requests update module to update history and salience list with concept

e update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tells update moduleit is done

» update module tells main engineit is done

* (... dothe samefor all meaningful conceptsin the user utterance ...)

* main enginetells main interfaceit is done

68 J.L.R.D Woei-A-Jin, 2001

PH S

CONCEPT: DEFI NI TE_DESCRI PTI ON (t he second programe from bel ow)
detect and classify
definite description detected
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
wor ki ng on concept: record
done checki ng each of the prenisses
preni sses hol d
addi ng constraint type: type, progranme
the follow ng constraints were determ ned for DEFI N TE_DESCRI PTION (the second progranme
from bel ow) :
contraint: listentry (-2)
contraint: nunber (singular)
contraint: type (progranme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: type (progranme)
end of constraints
constraints found, start resolving definite description..
start determ ning concept types
referent is alist entry
concept types determned: list.listentries
looking at the listentries of : list
checking for conpatibility of: footbal
i sConpatible: detect constraints for candidate referent :footbal
| ooking for constraints within the concept
constraints within the concept as a whol e not found
l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (football)
contraint: type (programe)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (18:10)
contraint: end tine (20:25)
contraint: channel (Channel _5)
contraint: start time (18:10)
end of constraints
subconcepts detected
constraint: date (11-09-2000) added
constraint: start time (18:10) added
constraint: end tine (20:25) added
constraint: channel (Channel _5) added
constraint: start tinme (18:10) added
done checking constraints, constraint size = 6
football is conpatible, now checking for position
checking for conpatibility of: footbal
i sConpatible: detect constraints for candidate referent :footbal
| ooking for constraints within the concept
constraints within the concept as a whol e not found
l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
I ooking for constraints in the subconcept Ii st
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (football)
contraint: type (programme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (20:25)
contraint: end tine (23:00)
contraint: channel (Channel _5)

69 J.L.R.D Woei-A-Jin, 2001

PH S

contraint: start time (20:25)
end of constraints
subconcept s detect ed
constraint: date (11-09-2000) added
constraint: start tinme (20:25) added
constraint: end tine (23:00) added
constraint: channel (Channel _5) added
constraint: start time (20:25) added
done checking constraints, constraint size = 6
football is conpatible, now checking for position
checking for conpatibility of: world sport
i sConpati bl e: detect constraints for candidate referent :world sport
| ooking for constraints within the concept
constraints within the concept as a whole not found
l ook for each word in the string for constraints
sport has constraints to add, index = 244
constraint type added: nunber, singular
constraint type added: category, sport
constraint type added: type, programe
constraint type added: person, nonperson
constraint type added: abstract, no
| ooking for constraints in the subconcept |ist
| ooking for constraints in the concept Iist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (world sport)
contraint: nunber (singular)
contraint: category (sport)
contraint: type (programme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (23:30)
contraint: end tine (0:00)
contraint: channel (CNN)
contraint: start time (23:30)
end of constraints
subconcept s detected
constraint: date (11-09-2000) added
constraint: start time (23:30) added
constraint: end time (0:00) added
constraint: channel (CNN) added
constraint: start tinme (23:30) added
done checking constraints, constraint size = 6
worl d sport is conpatible, now checking for position
checking for conpatibility of: international match of the day
isConpatible: detect constraints for candidate referent :international match of the day
| ooking for constraints within the concept
constraints within the concept as a whol e not found
|l ook for each word in the string for constraints
day has constraints to add, index = 321
constraint type added: type, date
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determined for programme (international match of the day)

contraint: type (date)
contraint: date (11-09-2000)
contraint: start time (23:50)
contraint: end tine (0:45)
contraint: channel (BBCl)
contraint: start time (23:50)
end of constraints
subconcepts detected
constraint: date (11-09-2000) added
constraint: start time (23:50) added
constraint: end tinme (0:45) added
constraint: channel (BBCl) added
constraint: start time (23:50) added
done checking constraints, constraint size = 6
not conpati bl e because: programe! =date

70 J.L.R.D Woei-A-Jin, 2001

PH S

checking for conpatibility of: world sport

checking for conpatibility of: football

footbal lis conpatible

referent value is: football

tenp addi ng type: programme, value: football

now t aggi ng

can it be tagged as deixis?

does it has a referent?

referent = football

referent not found in the |ist

t he second programme from bel ow evoked

list size = 2

football put at position0O

S-list (3): football (evoked), programmes 18 (deixis), programmes 17 (deixis),
used size is now 3

S-list (3): football (evoked), programmes 18 (deixis), programes 17 (deixis),
added the second programme frombelow to s-list, size is now 3
finalize tenp

hislist finalized

type history list finalized

usedSi ze = 3

tenmpList size =0

tenplLi st size after update = 1

size of last entry in tenmpList = 2

S-list (2): programmes 18 (deixis), programmes 17 (deixis),
slist tenp finalized

Figure 23. Sample output from the reference resolution modul e when handling a definite description.

71 J.L.R.D Woei-A-Jin, 2001

PH S

3.6.1.5. processing user utterance with a reference to a concept out of
focus (one anaphora)

. ¢ constraints I
main reference yotection salience

engine filter module list
(-..)
next
concept
one anap.
b E—
detect constraints >
LEWurn constraints one anap.
resolution
module
resolve reference > get
concept
constraints
return detection
concept module

(-..) concept
type
request filter

compatible types

return

history
list

get concept

return concept
< |
constraints

detection
module

return referent

<

Figure 24. dataflow between objects for the processing of user utterance

with reference to concept out of focus (one anaphora)

(.-.)

12 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Figure 24. shows the flow of the data between the objects for the processing of user

utterance with areference to a concept out of focus using one anaphora.

To process user utterance with areference to a concept out of focus (one anaphora) the

following steps are made:

* maininterface sendslist of concepts from user utterance to main engine

* main engine requests deixis filter to filter out deictic concepts

» deixisfilter returns no deictic concepts

* main engine requests reference filter to determine referential property for the first
concept.

» referencefilter returns no referentia property

* main engine requests update module to update history and salience list with concept

» update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

» update moduletells main engineit is done

* main engine requests reference filter to determine referential property for the next
concept.

» referencefilter returns referential property is one anaphora

* main engine requests constraints detection modul e to find constraints for concept

* constraints detection module returns constraints

* main engine requests one anaphora resol ution module to resolve reference

» one anaphora resolution module requests salience list for first concept

o sdiencelist returnsfirst concept

» one anaphora resolution module requests constraint detection module to find
constraints for concept

* (... repeat looking for compatible concepts from s-list ...)

» one anaphora resolution module requests concept type filter for alist with compatible
concept types

» concept typefilter returns alist with compatible concept types

» one anaphora resolution module request history list for most recent concept of
compatible concept type

» one anaphora resolution module requests constraint detection module to find
constraints for concept

* (... repeat looking for compatible concepts from history list until referent isfound ...)

» one anaphora resolution module returns most recent compatible referent

* main engine requests update module to update history and salience list with concept

e update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tells update moduleit is done

» update module tells main engineit is done

* (... dothe samefor all meaningful conceptsin the user utterance ...)

* main enginetells main interfaceit is done

73 J.L.R.D Woei-A-Jin, 2001

PH S

CONCEPT: DEFI NI TE_DESCRI PTI ON (t he second one from bel ow)
detect and classify
one anaphora detected
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
wor ki ng on concept: record
done checki ng each of the prenisses
preni sses hol d
addi ng constraint type: type, progranme
the followi ng constraints were determ ned for DEFI Nl TE_DESCRI PTI ON (the second one from
bel ow) :
contraint: listentry (-2)
contraint: nunber (singular)
contraint: type (progranme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: type (progranme)
end of constraints
constraints found, start resolving definite description..
start determ ning concept types
referent is alist entry
concept types determned: list.listentries
looking at the listentries of : list
checking for conpatibility of: footbal
i sConpatible: detect constraints for candidate referent :footbal
| ooking for constraints within the concept
constraints within the concept as a whol e not found
l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (football)
contraint: type (programe)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (18:10)
contraint: end tine (20:25)
contraint: channel (Channel _5)
contraint: start time (18:10)
end of constraints
subconcepts detected
constraint: date (11-09-2000) added
constraint: start time (18:10) added
constraint: end tine (20:25) added
constraint: channel (Channel _5) added
constraint: start tinme (18:10) added
done checking constraints, constraint size = 6
football is conpatible, now checking for position
checking for conpatibility of: footbal
i sConpatible: detect constraints for candidate referent :footbal
| ooking for constraints within the concept
constraints within the concept as a whol e not found
l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
I ooking for constraints in the subconcept Ii st
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (football)
contraint: type (programme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (20:25)
contraint: end tine (23:00)
contraint: channel (Channel _5)

74 J.L.R.D Woei-A-Jin, 2001

PH S

contraint: start time (20:25)
end of constraints
subconcept s detect ed
constraint: date (11-09-2000) added
constraint: start tinme (20:25) added
constraint: end tine (23:00) added
constraint: channel (Channel _5) added
constraint: start time (20:25) added
done checking constraints, constraint size = 6
football is conpatible, now checking for position
checking for conpatibility of: world sport
i sConpati bl e: detect constraints for candidate referent :world sport
| ooking for constraints within the concept
constraints within the concept as a whole not found
l ook for each word in the string for constraints
sport has constraints to add, index = 244
constraint type added: nunber, singular
constraint type added: category, sport
constraint type added: type, programe
constraint type added: person, nonperson
constraint type added: abstract, no
| ooking for constraints in the subconcept |ist
| ooking for constraints in the concept Iist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (world sport)
contraint: nunber (singular)
contraint: category (sport)
contraint: type (programme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (23:30)
contraint: end tine (0:00)
contraint: channel (CNN)
contraint: start time (23:30)
end of constraints
subconcept s detected
constraint: date (11-09-2000) added
constraint: start time (23:30) added
constraint: end time (0:00) added
constraint: channel (CNN) added
constraint: start tinme (23:30) added
done checking constraints, constraint size = 6
worl d sport is conpatible, now checking for position
checking for conpatibility of: international match of the day
isConpatible: detect constraints for candidate referent :international match of the day
| ooking for constraints within the concept
constraints within the concept as a whol e not found
|l ook for each word in the string for constraints
day has constraints to add, index = 321
constraint type added: type, date
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determined for programme (international match of the day)

contraint: type (date)
contraint: date (11-09-2000)
contraint: start time (23:50)
contraint: end tine (0:45)
contraint: channel (BBCl)
contraint: start time (23:50)
end of constraints
subconcepts detected
constraint: date (11-09-2000) added
constraint: start time (23:50) added
constraint: end tinme (0:45) added
constraint: channel (BBCl) added
constraint: start time (23:50) added
done checking constraints, constraint size = 6
not conpati bl e because: programe! =date

75 J.L.R.D Woei-A-Jin, 2001

PH S

checking for conpatibility of: world sport

checking for conpatibility of: football

footbal lis conpatible

referent value is: football

tenp addi ng type: programme, value: football

now t aggi ng

can it be tagged as deixis?

does it has a referent?

referent = football

referent not found in the |ist

the second one from bel ow evoked

list size = 2

football put at position0O

S-list (3): football (evoked), programmes 18 (deixis), programmes 17 (deixis),
used size is now 3

S-list (3): football (evoked), programmes 18 (deixis), programes 17 (deixis),
added the second one frombelowto s-list, size is now 3
finalize tenp

hislist finalized

type history list finalized

usedSi ze = 3

tenmpList size =0

tenplLi st size after update = 1

size of last entry in tenmpList = 2

S-list (2): programmes 18 (deixis), programmes 17 (deixis),
slist tenp finalized

Figure 25. Sample output from the reference resolution module when handling one anaphora.

76 J.L.R.D Woei-A-Jin, 2001

PH S

3.6.1.6. processing user utterance with a compound reference (definite
description)

. ¢ constraints I
main reference yotection salience

engine filter module list
(-..)
next
concept
def. descr.
b E—
detect constraints
super_concept >
4return constraints def. descr.
resolution
module
resolve reference > get
concept
constraints
return detection
concept module

(-..) concept
type
request filter

compatible types

return
< compatile tvpes

history
list

get concept

return concept
< |
constraints

detection
module

return referent
QlinAr cnneant

<

77 J.L.R.D Woei-A-Jin, 2001

PH S Ml
=il
. constraints I
main detection salience
engine module list
detect constraints
concept
4return constraints
| def. descr.
resolution
module
resolve reference get
concept)
: constraints
return detection
concept module

return referent

concept

type
filter

request
compatible types

return
< compatile tvpes

history
list

get concept

return concept
< |
constraints

detection
module

> concept

(..)

Figure 26. dataflow between objects for the processing of user utterance

with a compound reference.

78 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Figure 26. shows the flow of the data between the objects for the processing of user

utterance with a compound reference.

To process user utterance with a compound reference (definite description) (Thisisa

reference like the first movie fromthe previous list. In this phrase the previouslist isa

reference and the first movie is areference to a property of the previous list, which will be

called here the superconcept) the following steps are made:

* maininterface sendslist of concepts from user utterance to main engine

* main engine requests deixis filter to filter out deictic concepts

» deixisfilter returns no deictic concepts

* main engine requests reference filter to determine referential property for the first
concept.

» referencefilter returns no referentia property

* main engine requests update module to update history and salience list with concept

e update module requests the history list to add data

* history list tells update module it is done

e update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

» update module tells main engineit is done

* main engine requests reference filter to determine referential property for the next
concept.

» referencefilter returns referential property is definite description

* main engine requests constraints detection module to find constraints for
superconcept

» constraints detection module returns constraints

* main engine requests definite description resolution module to resolve reference

» definite description resolution module requests salience list for first concept

» sdiencelist returnsfirst concept

» definite description resolution module requests constraint detection module to find
constraints for concept

* (... repeat looking for compatible concepts from s-list ...)

» definite description resolution module requests concept type filter for alist with
compatible concept types

» concept type filter returns alist with compatible concept types

» definite description resolution module request history list for most recent concept of
compatible concept type

» definite description resolution module requests constraint detection module to find
constraints for concept

» (... repeat looking for compatible concepts from history list until referent isfound ...)

» definite description resolution module returns most recent compatible referent

* main engine requests update module to update history and salience list with
superconcept

e update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tells update moduleit is done

79 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

update module tells main engine it is done

main engine requests constraints detection module to find constraints for concept with
superconcept

constraints detection modul e returns constraints

main engine requests definite description resolution module to resolve reference
definite description resolution modul e requests salience list for first concept
salience list returns first concept

definite description resolution modul e requests constraint detection module to find
constraints for concept

(... repeat looking for compatible concepts from s-list ...)

definite description resolution modul e requests concept type filter for alist with
compatible concept types

concept type filter returns alist with compatible concept types

definite description resolution module request history list for most recent concept of
compatible concept type

definite description resolution modul e requests constraint detection module to find
constraints for concept

(... repeat looking for compatible concepts from history list until referent isfound ...)
definite description resolution module returns most recent compatible referent

main engine requests update module to update history and salience list with concept
update modul e requests the history list to add data

history list tells update moduleit is done

update modul e requests the salience list to add data

salience list tells update module it is done

update module tells main engine it is done

(... do the same for al meaningful concepts in the user utterance ...)

main engine tells main interface it is done

80 J.L.R.D Woei-A-Jin, 2001

PH S

CONCEPT: DEFI NI TE_DESCRI PTI ON (the previous |ist)
detect and classify
definite description detected
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
wor ki ng on concept: record
done checki ng each of the prenisses
preni sses do not hold
addi ng constraint type: type, progranme
the follow ng constraints were determ ned for DEFI NI TE_DESCRI PTI ON (the previous |ist)
contraint: nunber, singular, 1
contraint: person, nonperson, 1
contraint: type, list, 1
contraint: abstract, no, 1
contraint: recency, -1, 1
end of constraints
constraints found, start resolving definite description..
start determ ning concept types
concept types determned: |ist
checking for conpatibility of: SELECTION _LIST 78
i sConpati bl e: detect constraints for candidate referent : SELECTI ON LI ST 78
| ooking for constraints within the concept
constraints within the concept as a whol e not found
|l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determned for list (SELECTION_LIST 78)
contraint: type (list)
contraint: person (nonperson)
contraint: abstract (no)
end of constraints
done checking constraints, constraint size = 3
SELECTI ON_LI ST 78 is conpatible, now checking for recency
checking for conpatibility of: SELECTION_LIST 77
i sConpatible: detect constraints for candidate referent :SELECTION LI ST 77
| ooking for constraints within the concept
constraints within the concept as a whol e not found
|l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept Iist
constraints in the concept list not found..
the follow ng constraints were determned for |ist (SELECTION_LIST 77)
contraint: type (list)
contraint: person (nonperson)
contraint: abstract (no)
end of constraints
done checking constraints, constraint size = 3
SELECTI ON_LI ST 77 is conpatible, now checking for position
referent value is: SELECTION _LIST 77
tenp adding type: list, value: SELECTION_LIST 77
now t aggi ng
can it be tagged as deixis?
does it has a referent?
referent = SELECTI ON_LI ST 77
referent not found in the |ist
SELECTI ON_LI ST 77 evoked
list size = 2
SELECTI ON_LI ST 77 put at position0O
S-list (3): SELECTION_LIST 77 (evoked), programres 18 (deixis), programmes 17 (deiXxis)
used size is now 3
S-list (3): SELECTION LIST 77 (evoked), progranmes 18 (deixis), programes 17 (deiXis)
added the second one frombelowto s-list, size is now 3
CONCEPT: DEFI NI TE_DESCRI PTI ON (t he second one from bel ow)
detect and classify

81 J.L.R.D Woei-A-Jin, 2001

PH S

one anaphora detected
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
wor ki ng on concept: record
done checking each of the prenisses
preni sses hol d
addi ng constraint type: type, progranme
the followi ng constraints were determ ned for DEFI N TE_DESCRI PTI ON (the second one from
bel ow)
contraint: listentry (-2)
contraint: nunber (singular)
contraint: type (progranme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: type (progranme)
end of constraints
constraints found, start resolving definite description..
start determ ning concept types
referent is alist entry
concept types determ ned: SELECTION LIST 77.1listentries
looking at the listentries of : SELECTION_LIST 77
checking for conpatibility of: footbal
i sConpati bl e: detect constraints for candidate referent :footbal
| ooking for constraints within the concept
constraints within the concept as a whol e not found
l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept |ist
constraints in the concept list not found.
the follow ng constraints were determ ned for programre (football)
contraint: type (programe)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (18:10)
contraint: end tine (20:25)
contraint: channel (Channel _5)
contraint: start time (18:10)
end of constraints
subconcepts detected
constraint: date (11-09-2000) added
constraint: start time (18:10) added
constraint: end tine (20:25) added
constraint: channel (Channel _5) added
constraint: start time (18:10) added
done checking constraints, constraint size = 6
football is conpatible, now checking for position
checking for conpatibility of: footbal
i sConpatible: detect constraints for candi date referent :footbal
| ooking for constraints within the concept
constraints within the concept as a whol e not found
l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
I ooking for constraints in the subconcept Ii st
| ooking for constraints in the concept |ist
constraints in the concept list not found.
the follow ng constraints were determ ned for progranme (football)
contraint: type (programme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (20:25)
contraint: end tine (23:00)
contraint: channel (Channel _5)
contraint: start time (20:25)
end of constraints
subconcept s detected
constraint: date (11-09-2000) added

82 J.L.R.D Woei-A-Jin, 2001

PH S

constraint: start tinme (20:25) added
constraint: end tine (23:00) added
constraint: channel (Channel _5) added
constraint: start time (20:25) added
done checking constraints, constraint size = 6
football is conpatible, now checking for position
checking for conpatibility of: world sport
i sConpatible: detect constraints for candidate referent :world sport
| ooking for constraints within the concept
constraints within the concept as a whole not found
|l ook for each word in the string for constraints
sport has constraints to add, index = 244
constraint type added: nunber, singular
constraint type added: category, sport
constraint type added: type, programe
constraint type added: person, nonperson
constraint type added: abstract, no
| ooking for constraints in the subconcept |ist
| ooking for constraints in the concept |ist
constraints in the concept list not found..
the follow ng constraints were determ ned for programe (world sport)
contraint: nunber (singular)
contraint: category (sport)
contraint: type (programme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (23:30)
contraint: end tine (0:00)
contraint: channel (CNN)
contraint: start time (23:30)
end of constraints
subconcept s detected
constraint: date (11-09-2000) added
constraint: start time (23:30) added
constraint: end time (0:00) added
constraint: channel (CNN) added
constraint: start tinme (23:30) added
done checking constraints, constraint size = 6
worl d sport is conpatible, now checking for position
checking for conpatibility of: international match of the day
isConpatible: detect constraints for candidate referent :international match of the day
| ooking for constraints within the concept
constraints within the concept as a whol e not found
|l ook for each word in the string for constraints
day has constraints to add, index = 321
constraint type added: type, date
| ooking for constraints in the subconcept Iist
| ooking for constraints in the concept Iist
constraints in the concept list not found..
the follow ng constraints were determned for programme (international match of the day)

contraint: type (date)
contraint: date (11-09-2000)
contraint: start tinme (23:50)
contraint: end tine (0:45)
contraint: channel (BBCl)
contraint: start time (23:50)
end of constraints
subconcepts detected
constraint: date (11-09-2000) added
constraint: start time (23:50) added
constraint: end tinme (0:45) added
constraint: channel (BBCl) added
constraint: start time (23:50) added
done checking constraints, constraint size = 6
not conpati bl e because: programe! =date
checking for conpatibility of: world sport
checking for conpatibility of: footbal
footbal lis conpatible
referent value is: footbal

83 J.L.R.D Woei-A-Jin, 2001

PH S

tenp addi ng type: progranmme, value: football

now t aggi ng

can it be tagged as deixis?

does it has a referent?

referent = football

referent not found in the |ist

the second one from bel ow evoked

list size = 3

football put at position0O

S-list (4): football (evoked), SELECTION_LIST 77 (evoked), progranmes 18 (deixis),
programes 17 (deixis),

used size is now 4

S-list (4): football (evoked), SELECTION_LIST 77 (evoked), progranmes 18 (deixis),
progranmmes 17 (deixis),

added the second one frombelowto s-list, size is now 4

Figure 27. Sample output from the reference resol ution module when handling a compound reference

84 J.L.R.D Woei-A-Jin, 2001

PH S

3.6.1.7. processing user utterance with a reference to a deictic concept

main main deixis update history salience
interface engine filter module list list
list of filter
concepts .
4p> deictic
concepts
return
deictic
concepts

update concept

q update
concept
done
¢
update concept >
done
done <
¢
reference
first flltel’

constraints

detection
module
demonstr.
resolution
module
resolve reference > get
concept)
constraints
return detection
concept module

< return referent

done (...)
47

Figure 28. dataflow between objects for the processing of user utterance
with areference to a deictic concept.

85 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

Figure 28. shows the flow of the data between the objects for the processing of user

utterance with areference to a deictic concept.

To process user utterance with areference to a deictic concept the following steps are

made:

* maininterface sendslist of concepts from user utterance to main engine

* main engine requests deixis filter to filter out deictic concepts

» deixisfilter returns the deictic concept

* main engine requests update module to update history and salience list with concept

* update module requests the history list to add data

» history list tells update module it is done

» update module requests the salience list to add data

» sdiencelist tells update moduleit is done

» update module tells main engineit is done

* main engine requests reference filter to determine referential property for the first
concept.

» referencefilter returns referential property is demonstrative

* main engine requests constraints detection module to find constraints for concept

» constraints detection module returns constraints

* main engine requests demonstrative resolution module to resolve reference

» demonstrative resolution module requests salience list for first concept

» sdiencelist returnsfirst concept

» demonstrative resolution module requests constraint detection module to find
constraints for concept

* (... repeat looking for compatible concepts from s-list ...)

» demonstrative resolution module returns compatible referent

* main engine requests update module to update history and salience list with concept

* update module requests the history list to add data

» history list tells update module it is done

e update module requests the salience list to add data

» sdiencelist tellsupdate moduleit is done

* update moduletells main engineit is done

* (... dothe samefor all meaningful conceptsin the user utterance ...)

* main enginetells main interfaceit is done

86 J.L.R.D Woei-A-Jin, 2001

PH S

detect deixis, size = 2

dei xi s detected: footbal

dei xi s detected: 11-09-2000
dei xi s detected: 18:10

dei xi s detected: 20:25

dei xi s detected: channel 5
dei xi s present, updated

tenp addi ng type: programme, value: footbal

now t aggi ng

can it be tagged as deixis?

football deixis

list size = 2

football put at position0

S-list (3): football (deixis), programes 4 (deixis), programes 3 (deixis)
used size is now 2

tenp addi ng type: date, value: 11-09-2000

now t aggi ng

can it be tagged as deixis?

11- 09- 2000 dei xi s

list size = 3

11- 09- 2000 put at positionl

S-list (4): football (deixis), 11-09-2000 (deixis), programres 4 (deixis), programes 3
(deixis),

used size is now 3

tenp adding type: start time, value: 18:10

now t aggi ng

can it be tagged as deixis?

18:10 deixis

list size = 4

18: 10 put at position2

S-list (5): football (deixis), 11-09-2000 (deixis), 18:10 (deixis), programes 4
(dei xis), programmes 3 (deixis),

used size is now 4

tenp adding type: end time, value: 20:25

now t aggi ng

can it be tagged as deixis?

20: 25 deixis

list size = 5

20: 25 put at position3

S-list (6): football (deixis), 11-09-2000 (deixis), 18:10 (deixis), 20:25 (deixis)
programmes 4 (deixis), programmes 3 (deixis),

used size is now 5

tenp adding type: channel, value: channel 5

now t aggi ng

can it be tagged as deixis?

channel 5 dei xi s

list size = 6

channel 5 put at position4

S-list (7): football (deixis), 11-09-2000 (deixis), 18:10 (deixis), 20:25 (deixis)
channel 5 (dei xis), programes 4 (deixis), programes 3 (deixis)

used size is now 6

CONCEPT: DEI CTI C (this)
detect and classify
denonstrative detected
| ooking for constraints within the concept
constraints within the concept as a whol e found
no subconcepts to | ook constraints for
| ooking for constraints in the concept |ist
wor ki ng on concept: record
done checking each of the prenisses
preni sses hol d
addi ng constraint type: type, progranme
the followi ng constraints were determ ned for DEICTIC (this)
contraint: nunber (singular)
contraint: abstract (no)
contraint: type(programe)
end of constraints
constraints found, start resolving pronouns..

87 J.L.R.D Woei-A-Jin, 2001

PH S

l ook up first conpatible entry. size of s-list:7
s-list is at position 0, footbal
| ooking for constraints within the concept
checking for conpatibility of: footbal
constraints within the concept as a whole not found
l ook for each word in the string for constraints
no constraints found in concept value, search in concept type
I ooking for constraints in the subconcept Iist
| ooking for constraints in the concept |ist
constraints in the concept |ist not found..
the follow ng constraints were determ ned for programe (football)
contraint: type (programme)
contraint: person (nonperson)
contraint: abstract (no)
contraint: date (11-09-2000)
contraint: start time (18:10)
contraint: end tine (20:25)
contraint: channel (Channel _5)
contraint: start time (18:10)
end of constraints
subconcepts detected
constraint: date (11-09-2000) added
constraint: start time (18:10) added
constraint: end tinme (20:25) added
constraint: channel (Channel _5) added
constraint: start time (18:10) added
done checking constraints, constraint size = 6
checking for conpatibility, size of constraints is 3
footbal lis conpatible
referent value is: footbal
tenp adding type: programme, val ue: footbal
now t aggi ng
can it be tagged as deixis?
does it has a referent?
referent = footbal
this evoked
S-list (7): football (deixis), 11-09-2000 (deixis), 18:10 (deixis), 20:25 (deixis)
channel 5 (dei xis), programes 4 (deixis), programes 3 (deixis)
used size is now 7
S-list (7): football (evoked), 11-09-2000 (deixis), 18:10 (deixis), 20:25 (deixis)
channel 5 (dei xis), programmes 4 (deixis), programes 3 (deixis)
added this to s-list, size is now 7

Figure 29. Sample output from the reference resolution module when handling a deictic reference.

88 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

3.6.1.8. Processing user utterance without a reference

main main deixis update history salience
interface engine filter module list list
list of filter
concepts .
4p> deictic
concepts
no
deictic
concepts
reference
filter

reference

update concept update

concept

done
47

update concept >

done

done <

done
47

Figure 30. dataflow between objects for the processing of user utterance
without areference.

Figure 30. shows the flow of the data between the objects for the processing of user
utterance with areference to a concept in focus using a pronoun.

To process user utterance with areference to a concept in focus (pronoun) the following
steps are made:

main interface sends list of concepts from user utterance to main engine

main engine requests deixis filter to filter out deictic concepts

deixisfilter returns no deictic concepts

main engine requests reference filter to determine referential property for the first
concept

reference filter returns no referential property

main engine requests update module to update history and salience list with concept
update modul e requests the history list to add data

history list tells update moduleit is done

89 J.L.R.D Woei-A-Jin, 2001

PH S

update modul e requests the salience list to add data
salience list tells update module it is done
update module tells main engine it is done
(... do the same for all meaningful conceptsin the user utterance ...)
main engine tells main interface it is done

readi ng concept graph

BEG N_LATTI CE
done filtering noise
1 112 @ontents 514.3000 1 112
first concept read
concept type 'contents' read
done filtering noise
text robert redford
tag is: text
concept value: robert redford
END_LATTI CE
starting main engine
determ ni ng i nput :user
handl e user input
i ncreasi ng sentence nunber
removi ng not used entities fromlist, new size will be: 1
S-list (1): programmes 0 (deiXxis)
set next sentence
detect deixis, size =1

CONCEPT: actor (robert redford)

detect and classify

no referential property detected

tenp adding type: actor, value: robert redford

now t aggi ng

can it be tagged as deixis?

does it has a referent?

is it an inferrable?

check for indicators

is the concept already in the list?

is the concept value already in the list?

is a substring already in the list, or is it a substring of a value already in the list?
isit anane or atitle?

robert redford unused

S-list (1): robert redford (actor), programmes O (deixis)
used size is now 2

S-list (1): robert redford (actor), programmes O (deixis)
added robert redford to s-list, size is now 2

finalize tenp

hislist finalized

type history list finalized

usedSi ze = 2

tenpList size = 0

tenpLi st size after update = 2

size of last entry in tenmpList = 2

slist tenp finalized

Figure 31. Sample output from the reference resol ution module when handling a concept
without referential properties.

90 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

3.6.2. Overview of the classes

In this section a detailed overview will be given of the different classes used in the
reference resolution module. In appendix E the actual implementation of these classes are
given.

3.6.2.1. Main Interface
The main interface performs the following operations:

1.

our®

Initialize: load data about which information must be extracted from the data
presented by the parser and how. Open input stream. Load filter data. Create display
reader object.
Process data: extract information from the data presented by the parser, and trandate
them into concepts. Some filtering is also done here.
a) Find begin of next grammar data or user input.
b) Find begin of next concept, ignore fillers and expletives.
¢) Read and filter attributes.

» Filter out noise.

* Read attributes.

» Ignore attributes not specific to the resolution module.

» Filter content_type concepts for actors, directors, and protagonists.

» Filter concept values for ambiguous information.

» Create sub- and superconcepts if necessary.
d) Create concept object.
€) assign index number to concept
f) Repeat b) —d) until all concepts are read.
Call Main Engine: request Main Engine to handle the concepts from the grammar.
Call Display Reader: request Display Reader for display information.
Call Main Engine: request Main Engine to handle the concepts from the display.
Repeat 2 till 5.

3.6.2.2. Display Reader
The display reader performs the following operations:

1
2.

I nitialize: open the input stream

Read display data: extract information from the data presented by the parser, and
trandate them into concepts. Each concept is assigned the same index number. The
concepts are put in the list of the appropriate concept type and the non-program
concepts are also set as subconcept of the corresponding program concepts.

Return data.

91 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

3.6.2.3. Main Engine
The main engine performs the following operations:

1.

b)
c)

d)

e)

Initialize: create deixis filter object, reference detection & classification module,

update module, one anaphora resolution module, demonstrative resolution module,

definite description resolution module, pronoun resolution module.

Determineinput: determines whether the concepts originate from the user, or the

display.

Handle system input: save the updates from the best hypothesis, update the salience

and history list with display data.

a) find concept indicating the best hypothesis.

b) request Update Module to save the updates from the best hypothesis.

C) request Grouping Module to create groups for the concepts.

d) request Update Module to add the concepts to the salience and history list

Handle user input: find and resolve references if applicable.

request Deixis Filter to find deictic input.

request Update Module to add deictic input to salience and history list.

for each object:

» request Reference Detection and Classification Module to determine the
referential property.

» if thereference isacompound reference, find the constraints for the superconcept
and resolve and update the salience and history list with it.

* request Constraints Detection Module to determine constraints for the reference.

* request appropriate resolution module to solve reference.

* request Update Module to add concept to salience and history list.

request Update Module to finalize the salience and history list: remove unused

concepts from the salience list and backup the updates for this hypothesis.

request Output Module to generate output.

3.6.2.4. Update Module
The update module performs the following operations:

SAE A

Save: save the temporary updates from the right hypothesis, and discard the rest.
Update: updates the salience and the history list.

Temporarily Update: updates atemporary salience and history list.

Finalize: removes unused concepts from the salience list.

Temporarily Finalize: removes unused concepts from the temporary salience list and
creates a backup of the temporary salience and history list.

3.6.2.5. Salience List
The salience list performs the following operations:

1
2.

Save: save the temporary updates from the right hypothesis, and discard the rest.

Add: adds the concept to the salience list.

a) Tag the concept as OLD, MED, or NEW, according to the tagging criteria described
in section 2.2.4.

b) Insert the concept to the salience list according to the sorting criteria described in
section 2.2.4.

92 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

3. Temporarily Update: adds the concept to the temporary salience list.
a) Tag the concept as OLD, MED, or NEW, according to the tagging criteria described
in section 2.2.4.
b) Insert the concept to the temporary salience list according to the sorting criteria
described in section 2.2.4.
4. Finalize: removes unused concepts from the salience list.
5. Temporarily Finalize: removes unused concepts from the temporary salience list and
creates a backup of the temporary list.

3.6.2.6. History List

The history list performs the following operations:
1. Save: savethe temporary updates from the right hypothesis, and discard the rest.
2. Add: adds the concept to the history list.
a) Determine the type of the concept.
b) Determine whether alist for the type exists. Create if necessary.
c) Add the concept to the type list.
d) Remove oldest concept if the number of concepts exceeds the maximum (sliding
window technique).
3. Temporarily Update: adds the concept to the temporary salience list.
a) Determine the type of the concept.
b) Determine whether alist for the type exists. Create if necessary.
¢) Add the concept temporary to the type list.
d) Remove oldest concept if the number of concepts exceeds the maximum (sliding
window technique).

3.6.2.7. Grouping Module
The grouping module performs the following operations:
1. Create groups: groups are created as follows:
a) Find thelist concept containing the programsin the list of concepts.
b) Create groups of programs using the itemsin the list concept.
» for each concept get the subconcepts.
» for each subconcept create a group based on it if it does not already exist.
* add the concept to the group.
» assign the subconcepts to the group.
» when al concepts are done, remove the groups with only one concept.
» create agroup which contains every concept.
¢) Add the groupsto thelist of concepts.
d) Addtheindividual programsto thelist of programs, so that the concepts at the top
of the display will be accessed first from the history list.

3.6.2.8. Deixis filter

The deixis filter performs the following operations:

1. Find deixis: the following is done during this operation:
a) For each concept in thelist of concepts.
b) Check if theinput originisdeixis.

93 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delft

c)
d)
€)

Remove the deictic concept from the list of concepts.
Add the deictic concept to the list of deictic concepts
Return the list of deictic concepts.

3.6.2.9. Reference Detection & Classification Module

The Reference Detection and Classification Modul e performs the following operations:
1. Detect & Classify: to determine whether a concept has arefential property the
following is done:

a)
b)
c)

d)

Look at the type whether it indicates the referential property.

Filter out titles and concept_types

Look at the value for clues about the referential property. Thisis done because
certain concepts have a higher preference than the reference concept, and
otherwise will not be recognized as such.

return the referential property.

3.6.2.10. Constraint Detection Module

The Constraint Detection Module performs the following operations:
1. Detect Constraints: in order to find the constraints the following is done:

a)
b)
c)
d)

€)
f)
Q)
h)

Try to detect constraints for complete value.

If failed, test whether the concept is a compound reference.

In case of a compound referent, add the superconcept as a constraint.

Try to detect constraints for each word of the concept value. In case of conflict,
select the one with the highest priority, in case of equal priority, assign value
‘mixed’.

Look at the subconcepts for constraints.

If still no constraints found, ook at type for constraints.

Look at the complete sentence (list of concepts) for contextual constraints.
return constraints.

3.6.2.11. Pronoun Resolution Module

The Pronoun Resolution Module performs the following operations:
1. Resolve: the following steps are taken to resolve a pronominal reference:

a)
b)
c)

d)
€)

Determine whether the pronoun is reflexive, possessive or personal.

Request the salience list for the most salient concept, until referent is found.
Reguest Constraint Detection Module to determine constraints for the salient
concept.

Check whether the concepts are compatible according to the constraints.

Check whether the concepts are compatible according to binding constraints
(lacking a grammar to provide binding constraints, only one experimental
constraint isimplemented: a non-reflexive, non-possesive and non-personal
pronoun cannot refer to the most recent concept. Thisisimplemented so that at
least references in the following most basic sentence structure can be resol ved:
‘Bob and Bill met each other at the mall, he gave him abook.” Using this binding
constraint ‘him’ cannot refer to “he’. Thiswill not work in more complex sentence
structures. Should the tagger be used, then the following binding constraints
should be used: 1) A pronoun which has the function of subject or direct object,

94 J.L.R.D Woei-A-Jin, 2001

PH S

Fry
PRI e S 1Y
el TT

I

|r‘1:
LS L |

--I 2; "

f)

cannot co-refer with a direct object, indirect object or oblique item, which follow
the pronoun, without an intervening subject. 2) A pronoun with a non-nil embed
value cannot refer to an object which precedesit, if there is no object in between
with the embed value of nil).

Return the most salient compatible concept.

3.6.2.12. Demonstrative Resolution Module

The Demonstrative Resolution Module performs the following operations:
1. Resolve: the following steps are taken to resolve a demonstrative reference:

a)
b)

c)
d)

Request the salience list for the most salient concept, until referent is found.
Request Constraint Detection Module to determine constraints for the salient
concept.

Check whether the concepts are compatible according to the constraints.
Return the most salient compatible concept.

3.6.2.13. Definite Description Resolution Module

The Definite Description Resolution Module performs the following operations:
1. Resolve: the following steps are taken to resolve a definite description:

a)
b)

f)

Q)

Request Concept Type Filter to determine the compatible concept types.

If the concept type is part of the list of a concept, and the referent must be the
earliest or latest start time in the list. Return the earliest or latest compatible
concept. Lookup of the start timeisdonein the list of subconcepts of the
concept(Compatibility is checked by requesting the Constraint Detection Module
to determine the constraints for the candidate referent and compare themwith the
constraints of the reference).

If the concept type is a subconcept of a concept, find the compatible subconcept.
If the concept type is part of the list of a concept, and the referent must be the n™
concept of the (sub)list, find the n™ compatible concept (The referent can be the
n™ program of the list, or the n™ movie of the list, in which case the list of movies
isa sublist of the entire list).

Else request the salience list for the most salient concept, and find the first
compatible concept.

If no compatible concept isfound, look at the compatible concept types for the
most recent compatible concepts.

Return the referent.

3.6.2.14. One Anaphora Resolution module

The Definite Description Resolution Module performs the following operations:
2. Resolve: the following steps are taken to resolve a definite description:

h)
i)

Request Concept Type Filter to determine the compatible concept types.

If the concept type is part of the list of a concept, and the referent must be the
earliest or latest start time in the list. Return the earliest or latest compatible
concept. Lookup of the start timeis done in the list of subconcepts of the concept
(Compatibility is checked by requesting the Constraint Detection Module to
determine the constraints for the candidate referent and compare them with the
constraints of the reference).

95 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

J) 1If the concept typeis a subconcept of a concept, find the compatible subconcept.

k) If the concept typeis part of the list of a concept, and the referent must be the n
concept of the (sub)list, find the ™ compatible concept (The referent can be the
n™ program of the list, or the n™ movie of the list, in which case the list of movies
isa sublist of the entire list).

|) Elserequest the salience list for the most salient concept, and find the first
compatible concept.

m) If no compatible concept isfound, look at the compatible concept types for the
most recent compatible concepts.

n) Return the referent.

3.7. Summary

In this chapter the requirements of the reference resolution module were specified. These
were narrowed down to the following:

Must haves

* Resolution of references to an entity from another modality.

* Resolution of references to an entity introduced previously via a noun phrase.
* Resolution of references to a property of an entity from another modality.

* Operational within SPICE-EPG.

* Operational in real-time.

* Not dependent on an extensive lexicon.

Should haves

* Robustness

» Adaptable for other applications

» Parameterized settings

* Resolution of references to a superset of individual entities from another modality.
» Filter out references to nothing at al

* Noincrease in system requirements

* Noincreasein processing time

e Writtenin C++

Based on these requirements the reference resolution model from [Str98] was choosen,
and the grammar requirements for the reference resol ution module were specified:

* Recognize the references.

» Recognize the objects which can be referred to.

* Recognize phrases which add contextual constraints.

» Recognize forms where expletives occur.

* Provide information on relationship between concepts.

Recognition of the various concepts can be entirely done by the grammar. To find the
information about the relationship between concepts, additional filters are required

96 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

though. Determining whether a concept has such arelationship with areference, that it

can add contextual constraintsto it is done by looking at the constraints of the concept. A

concept which modifies the concept and adds contextual constraintsto it, has some

requirements before the contextual constraints are assigned. These requirements are

tested against the constraints already found for the concept. Another method to determine

the relationship between two concepts which follow each other, isto create asingle

concept with both phrases in it and specify the relationship between them in the

attributes.

Having determined the method to resolve the reference and the information provided by

the grammar, the general outline of the algorithm can be specified. In genera the

anaphora resolution model in SPICE-EPG consists of a set of filters, adatabase, a

salience-list, ahistory list and routines to find the referent. The processing of the

information can be split into two parts, namely the system information processing part

and the user information processing part. The system information processing part in short

isasfollows:

» The SPICE-EPG display providesinformation on the items on the screen.

» Theseitems are converted into an internal representation

» Lists containing the concepts are created. Dependencies between concepts are set.

» Group concepts are created depending on several grouping criteria.

» Concepts are sorted.

» Concepts are added to the lists.

The user information processing part isin short as follows:

» The SPICE-EPG grammar provides information on the phrases from the user’s
utterance and pointing events.

» Uninteresting phrases like fillers and expletives are filtered out.

» Actor, director and protagonist information is filtered out.

» Concepts created by pointing events are filtered out and added to the lists.

» For each phrase is determined whether it is areference or not.

» If the concept is not areference, it is added to thelists.

» If the phrase is areference, the form of the reference is determined.

» Alistof constraintsis created based on the implicit information of the phrase.

* Alist of constraintsis created based on the context.

» For each object inthe salience list alist of propertiesis created.

* Thislist of propertiesis compared to the list of constraints for compatibility.

* Thefirst compatible object isreturned as the referent.

» If noreferent isfound, concepts which are out of focus, are compared with the
reference if the anaphorais of descriptive form. Otherwise no referent is returned.

* Typelistsfrom the history list which are not compatible with the reference are
filtered out.

* Themost recent compatible referent islooked up in the remaining compatible groups.

» Thesdience and history lists are updated.

97 J.L.R.D Woei-A-Jin, 2001

PHI S TU Delf

Chapter 4.

Evaluation

In this chapter the evaluation of the reference resolution module and the problems
encountered during the evaluation are discussed. The reference resolution moduleis
tested both offline as well as online. With offline testing is meant that the input is
received from typed text which has been manually parsed into concepts, which mirror the
structure produced by the grammar. With online testing is meant that the input is received
from spoken text which has been parsed by the SPICE-EPG grammar. During offline
testing the examples in appendix A were used, which are within the scope of the
program. During online testing a set of tasks were used, which were developed to test the
usability of the SPICE-EPG system by a student from Nijmegen Catholic University
[Goe01]. These tasks can be found in appendix F. Evaluation of the reference moduleis
in principle performed the same way for offline and online testing, although for offline
testing more complex sentence structures could be used. Also during offline testing, no
system processing is done, so the display output consisted of some dummy program
information. For online evaluation the system had to be voice trained before testing could
be done, otherwise recognition would be too bad to get any results.

4.1. Evaluation method

In general iterative implementation was used as the evaluation method for both offline
and online testing:

Process the training corpus.

Note the reference resolution errors.

Analyze the steps taken by the reference resolution module.

Isolate the source of the reference resolution errors.

Modify the source of the reference resolution errors.

Perform step 1 through 6 until al errors which can be corrected are solved.
Determine the number of correctly resolved references and the number of incorrectly
resolved references based on the test corpus.

Nook~wdPE

4.2. Choice of the corpus

Before the testing can be done, a suitable corpus or set of suitable corpera must be
choosen. Preferably this corpus consists of spoken or transcribed text from a conversation
in which information is requested and assignments for tasks are given. The most obvious
choice would have been the test corpus aready used to test the SPICE-EPG functionality.
Unfortunately, since the SPICE-EPG was not able to solve references at that time, any
form of reference was consciously avoided in that corpus. Another available corpus was

98 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

- .
)

PH S

b

the REIS corpus. This corpus consists of conversations between a caller and a public
transportation travel information service, where the caller asks for directions with public
transportation. Although the corpus does contain some references, very few suitable
references are found in the text.

A possibility would have been to create a corpus, trying to use as many references as
possible for testing, but these examples would be very artificial. To find a compromise
between thinking out a corpus with artificial examples and performing natural tasks
within the environment, the task descriptions for the usahility test for the SPICE-EPG
was taken (see appendix F), and performed using references where they would naturally
occur.

In addition, because the set of examples from appendix A, which fall within the scope.
formed the basis for the design of the reference resolution module, these examples were
tested too in the offline evaluation.

4.3. Errors and problems encountered during testing

Severa errors were found during offline or online testing. Most errors were related to the
lack of syntactic information and the filters used. Some of these are already described in
section 3.4.6.

4.3.1. Conflicting constraints

In certain cases some constraints from different words in a single concept conflict whith
each other. For instance in the phrase, Billy Crystal and Meg Ryan the name Billy Crystal
and Meg Ryan add the constraint singular, while and add the constraint plural. It is
necessary to check for conflicts, because if thisis not done, and the constraints smply
added, references cannot be resolved. For example when they is encountered and tried to
resolveto Billy Crystal and Meg Ryan, it encounters both the constraint singular as well
asplural, resulting in an incompatibility of the concepts. And will always indicate that the
concept isaplural, it should have higher precedence then the constraint singular derived
from Billy Crystal and Meg Ryan, and it is not really handy to cal cul ate the sum of
different constraints, i.e. singular + singular = plural, it has been decided that each
constraint should have a number indicating its precedence, so that in case of conflicting
constraints, the one with the highest value takes precedence.

In the same exampl e there is another conflict, namely male and female. When constraints
of the same type are encountered, and there is no precedence for either constraint, the
constraint value is set to mixed to indicate two different constraints apply.

Conflicting constraints can also occur from outside the concept, from the context. It may
be possible that the constraint from the context has a higher or lower precedence than the
constraints derived from the concept itself.

4.3.2. Constraints differ for different concept types

99 J.L.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

There are cases where the contextual constraints will differ for the different concept types
encountered, for example in the program where she stars. the verb stars indicates that she
is an actor, whereas for the programit indicates that it isamovie. It is possible to let the
concept add constraints to just one concept type, but in some cases the extrainformation
may be necessary to resolve the reference correctly. Therefore the possibility to specify
the contextual constraints depending on the different concept typesisimplemented.

The same applies for contraints for certain concept values. In certain cases, the
constraints will depend on the concept types, because the concept value is ambigues. For
example movie may refer to the category movie, or refer to a program of the category
movie. The constraints for these two possibilities differ, and thus the possibility to
specify the constraints depending on the concept typesis implemented.

4.3.3. Display contains less than actual data

Because the SPICE-EPG system consists of many more or less independent modules,
which often do not contain information about each other status, other than waiting for
input, and transmitting output, no information is available on how much of the datato be
displayed is actually displayed. This caused some errors where a reference to an item on
the screen resulted in areferent not on the screen. To remedy this problem, the ordering
of the data had to be reversed, so that the items on top of the screen are accessed first,
instead of the items which are at the end, and maybe off screen. However, thisisonly a
temporary problem, asin afuture version it would be possible to limit the information to
the programs displayed.

4.3.4. Grammar conflicts with content description

The content description concept is a special concept, which matches part of a phrase
which is not recognized in the grammar to part of the content description of a program.
The problem hereliesin the fact that the SPICE-EPG system can only process the
content description concept for alookup of the program. If the grammar creates a non-
content description concept of a phrase referring to the content description, no content
descrition concept is created, and the content description cannot be matched to the
program. Actor, director and protagonist are part of the content description, and in order
to solve references to them they must be recognized from the text by the grammar. This
resultsin that the SPICE-EPG system cannot find programs with these persons. The
solution lies in removing them from the grammar and creating a filter wich searches the
content description concepts for actors, directors and protagonist, and create a concept for
the reference resolution module. A problem still unsolved is that references to the actor,
director or protagonist will not be recognized as a content description by the SPICE-EPG
system. This must be solved in the SPICE-EPG system, which is only accessible by the
co-workers of the group.

100 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

4.3.5. Misassignment of constraints

The lack of asyntactic parser sometimes resulted in a misassignment of constraints. This
was caused when a concept consisted of multiple words and this concept was part of a
larger concept. For example in the concept the program on channel 5, the concept
channel 5 consists of two words and is part of the concept the program on channel 5.
When constraints are assigned, the constraint detection modul e recognizes program and
assigns the constraints for program, i.e. type=program, gender=neutral, number=single,
abstract=no, when channel is encountered, the constraints for channel are added instead
of channel 5. To solvethisafilter is built to replace the words channel 5 with channel5.

4.3.6. Empty concept graph

Sometimes the system returns an empty concept graph. Thisis the case when nothing the
user said was recognized. Because the reference resol ution module assumes that during
the user turn always something is said, no checks were implemented for this situation.
Naturally this resulted in a crash of the module. To solve this, adummy concept is
created with only dummy values, so that it will not interfere with the other data.

4.3.7. Misrecognition causing to look for lists

Sometimes the system misrecognizes the user, and returns areference to aprogram at a
certain position on the list, while the list is empty. For example: the last program, while
nothing is on the screen. To avoid system crashes, checks must be made before items of
thelist are accessed.

4.3.8. Concepts overriding reference concepts

Because the grammar is trained on tasks to be performed by the system, some concepts
are given a higher probability. For example the second movie would be split up into
(date) the second, and (category) movie, instead of (definite description) the second
movie. Attempts to increase the probability for definite descriptions of thisform initially
failed. Thiswasthe result of a preference for short concepts over longer concepts.
Changing this preference resulted in a preference for long filler concepts. Lowering the
preference for filler concepts finally remedied this problem.

4.3.9. Misrecognition of pronouns

Sometimes when noise is present, when the system stops listening to the user to soon, or
when the system simply misrecognizes the user, pronouns are returned. This may cause
in unwanted shiftsin focus. Thisis not really problematic, since the user is interacting

101 JL.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

- .
)

PH S

b

with the system, and has the option to lead the system into the correct direction when
things go wrong. Still it is annoying, and certain situations can be avoided. Often when
pronouns are wrongfully recognized, they are the only meaningful concept. For instance
the system recognizes only it. The system cannot do anything with this information, and
it causes only an unintentional shift in focus in the reference resolution system. In these
casesit isbest if the reference is ssmply ignored. The same applies of recoginition of
single articles. Sometimes the articles the and a are recognized, and some titles are
matched to these articles. Thisisreally annoying, and it would be best if these are filtered
out also, sinceit is highly improbable that the user actually meant the titles which are
matched to the articles.

4.3.10. Non-recognition of articles

For the reference resolution model it is very important to recognize whether a definite or
indefinite article is used, since a definite article means a concept isin focus, while an
indefinite article meansit is out of focus. Recognition of the definite articleis aso
important for recognition of a definite description. The movie indicates areferenceto a
movie, while movie will be recognized as a category. The SPICE-EPG system sometimes
has a problem with recognizing articles, and as such references are not recognized. In
certain casesit is possible to infer that a definite article should have been present, for
instance second movie aimost certain should have been the second movie. Relaxing the
criteriafor recognizing definite description will solve some of the problems. In the other
cases better training of the system would have to do.

4.3.11. Two different input streams

This problem was not directly related to the reference resolution model, but surfaced
when the reference resolution module was integrated and tested in the SPICE-EPG
system, and caused some errors. Originally it was assumed that both the display data as
well as the parsed sentences would be received using the same stream and that the data
representation would be the same. This was not the case, so an additional object had to be
implemented to read the display data. The problem which caused some strange errors was
that concept types were not called the same in both data streams, so that referencesto
items of the display data were not matched correctly. A filter was implemented to find the
non-matching concept type names and match them accordingly.

4.4. Perfomance of the reference resolution module

During offline evaluation, the examples from appendix A were tested. Not all examples
were tested though, because many of them are not solvable in the environmental
constraints from SPICE-EPG. It should be noted that not all references were correctly
resolved on the first try, but after modificating the code severa times most references
could be resolved correctly.

102 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

During online evaluation, several tasks from [Goe01] were used to test the online
performance of the reference resolution module. These tasks were meant to test the
usability of the SPICE-EPG system in general.

103 JL.R.D Woei-A-Jin, 2001

PHI S TU Delf

4.4.1. Test results

Considering the number of tests performed it is hard to really give a performance ratio.
The reason that the number of testsislow, isthat no suitable corpus was available, and
the SPICE-EPG system and the grammar only alow alimited set of possibilities and
constructions which can be tested. In addition, testing is very time consuming, especially
the online testing, because recognition is slow and performance poor. Commands must be
repeated very often before the utterance is correctly recognized, and often in a sequence
of utterances, one of the utterancesis recognized very badly, resulting in multiple
incorrectly filled dlots, which conflict with the user task. Often the slots must be reset,
and the process can start over again. The input data can be saved for later test runs, but
often the grammar had to be adapted, in which case the old input data becomes obsolete
and the whole process of inputting speech commands to the SPICE-EPG system must be
done over again. It is not possible to use the wave files, because the recognition and
behaviour of the EPG will differ each time the grammar has been changed. In the end all
correctly recognized references were resolved correctly.

Offline testing is not as tedious as online testing, but still takes much time, because the
parsing and display information had to be manually simulated. Once the simulation data
ispresent, it is possible to reuse it over and over again, after each adaptation, though.
Most errors caused by bugs in the reference resolution model could be corrected during
offline testing. In the end 33 of the 35 references in the corpus were resolved correctly.
The incorrectly resolved references are discussed in section 4.4.1.1.

4.4.1.1. Offline evaluation

In the offline tests aimost al references were finally correctly resolved to its referent. In
only one case it failed. Thiswas when a definite description was not resolved correctly
due to the lack of information, which was necessary, and a pronoun referred to it later. In
the utterance The serial | saw last night, when will it be continued? the definite
description the serial 1 saw last night refers to an action or state of the user, which might
or might not be stored in the knowledge of the dialogue manager. The anaphora
resolution module in any case does not have any access to this information, so the serial |
saw last night could not be resolved to any concept in the salience or history list of the
module. Because the definite description could not be resolved, an error occured when an
attempt was made to tag the definite description as oLD, MED, or NEW. Thisis the result
of the fact that no information is present how to deal with unresolved references. Due to
this error, the definite description was tagged as UNTAGGED, atag reserved for concepts
which should not be put in the salience list. So when the pronoun it was encountered, the
salience list contained no concept which was compatible, resulting in another failure of
correct resolution of areferent. It could be argued that rules must be introduced to
correctly tag afailed reference, so that later references can be resolved to the failed
reference. On the other hand afailed reference does not contain any information, and is
thus useless to the system for the purpose of performing tasks. Any reference to the failed
reference will be equally useless.

104 JL.R.D Woei-A-Jin, 2001

PHI S TU Delf

So the following references were succesfully tested during offline evaluation:

» reference to an entity from another modality in focus,

» reference to an entity from another modality out of focus,

» reference to an entity introduced into the discourse with a noun phrase in focus,

» referenceto an entity introduced into the discourse with a noun phrase out of focus,
» reference to asuperset of an entity,

» referenceto aproperty of an entity.

4.4.1.2. Online evaluation

In the online tests reference resolution is much more difficult, because recognition errors
introduce concepts which are not in the utterance. Also, less complex senteces are used,
because this increases the chance that the systems does not understand what is said. The
speech recognizer has trouble recognizing certain words, of which some are important for
reference resolution. Words like he, she, and the definite article the are not often
recognized. Another problem is that certain concepts which can be referred to are badly
recognized. Thisis the case with names of actors and other persons. For instance the
guestion whether a movie with Robert de Niro would be running this night, was not
recognized in the twenty attempts made, and other actors fared little better. In the few
cases where the actor was indeed recognized, the reference he or she was not or
misrecognized, causing the actor to leave the focus of attention of the reference resolution
module. It is not possible to solve this problem in the reference resolution module
directly, because the module has no way to determine whether a shift in focus was due
misrecognition of the user or because the user shifted his focus. Because of this
pronominal anaphorato persons was not tested in the online evaluation. However,
considering the fact these kind of references were succesfully resolved in the offline test,
it is expected to work correctly should the referent and reference be recognized.
Sometimes during online testing when a misrecognition occurs, arefence is wrongfully
introduced, usually the pronounsit and its or the demonstratives that, this, and them.
When this happens three things may occur: the reference is not resolved to anything, the
reference is resolved to a concept currently in the focus of the user, or a concept out of
the focus of the user.

Referenceresolved to nothing

In the online tests there were six instances where a misrecognition of the user’s utterance

resulted in areference to nothing:

* reset was misrecognized asthat : in the previous turn, there was no user utterance, but
the system started recognizing. Apparently this silence was matched to the word ok.
Ok is not a noun phrase and as such is not put into the salience list. After the turn, the
everything which was not used during the turn is removed from the salience list.
Since nothing is used, the salience list is empty, except for the group of movies from
the display. When the reference that was encountered, alook up is donein the
salience list for a compatible concept, but since non is found, no referent is assigned
to that.

* reset was misrecognized as eight that: in the previous turn, reset was misrecognized
as that, which did not have areferent. Consequently, nothing was put in the salience

105 JL.R.D Woei-A-Jin, 2001

PH S

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

list. When the reference that was encountered, alook up is done in the salience list for
a compatible concept, but since none is found, no referent is assigned to that.

record the second program was misrecognized as record this: in the previous turn,
the utterance are there any sports tonight was correctly recognized. In this utterance
no relevant noun phrases are encountered, which can be put in the salience list. So
when the reference this was encountered, alook up is donein the salience list for a
compatible concept. The only concept in the salience list is the group of news
programs which are displayed on the screen. Because the group of programs has the
constraint number = plural and the reference this has the constraint number =
singular, so no compatible referent is found.

record the ten 0’ clock news was misrecognized asrecord it that o’ clock news: in the
previous turn, the utterance what news is on tonight was correctly recognized. In this
utterance no relevant noun phrases are encountered, which can be put in the salience
list. So when the reference it was encountered, alook up is donein the salience list
for a compatible concept. The only concept in the salience list is the group of news
programs which are displayed on the screen. Because the group of programs has the
constraint number = plural and the reference it has the constraint number = singular,
so no compatible referent is found.

record the ten o’ clock news was misrecognized as record it them o’ clock news: in the
previous turn, the utterance what news is on tonight was correctly recognized. In this
utterance no relevant noun phrases are encountered, which can be put in the salience
list. So when the reference it was encountered, alook up is donein the salience list
for a compatible concept, but since noneis found, no referent is assigned to it.

record the last shows program was misrecognized as record the last shows program:
in the previous turn, the utterance what news is on tonight was correctly recognized.
Thisresulted in alist of news programs to be displayed on the screen. Thislist was
added to the history of lists. When the reference the last shows program was
encountered, the constraints detection module detected the word last and added the
constraint listentry = -1, indicating that the referent is part of alist. Becausenolist is
specified, the most recent list is used as default to lookup the last shows program.
The reference also has the constraint category = show, so the last program in the list
with the constraint show must be found. Since only programs with the constraint
category = news are in the list, no referent can be assigned to the last shows program.

Reference resolved to something in focus
In the online test there were two instances where a misrecognition resulted in areference
to something in focus:

switch to that channel misrecognized as this the a channel: in the previous turn, the
utterance what’ s on cnn right now was correctly recognized. Since cnn is arelevant
noun phrase, it is added at the front of the salience list. When the salience list is
cleaned up from the concepts which were not used during the turn, the concept cnn
remains. So when the reference this is encountered, alook up in the saliencelist is
done, and the channel cnn is encountered first. Since cnn and this are compatible, the
reference resol ution module assumes this refersto cnn.

switch to that channel misrecognized asits that a channel: Since cnnis arelevant
noun phrase, it is added at the front of the salience list. When the salience list is

106 JL.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

cleaned up from the concepts which were not used during the turn, the concept cnn
remains. So when the reference its is encountered, alook up in the saliencelist is
done, and the channel cnn is encountered first. Since cnn and this are compatible, the
reference resolution module assumes this refers to cnn.

Reference to something out of focus

In the online test there were two instances where a misrecognition resulted in areference

to something not in the user’ s focus:

» record the ten 0’ clock news was misrecognized asrecord it that o’ clock news: in the
previous turn, the utterance what news is on tonight was correctly recognized. In this
utterance no relevant noun phrases are encountered, which can be put in the salience
list. So when the reference it was encountered, alook up is donein the salience list
for a compatible concept. The only concept in the salience list is the group of news
programs which are displayed on the screen. Because the group of programs has the
constraint number = plural and the reference it has the constraint number = singular,
so no compatible referent is found. Because the reference it does not contain a
referent, it isincorrectly tagged, and added to the salience list. When the reference
that is encountered, the only concept in the salience list isit, and as such is assigned
to the concept that.

» record the ten 0’ clock news was misrecognized as record it them o’ clock news: in the
previous turn, the utterance what news is on tonight was correctly recognized. During
system turn, the group of news programsis put on the salience list, sinceit is possible
to refer to them as awhole. When the reference it is encountered, no compatible
referent is found. Because the reference it does not contain areferent, it isincorrectly
tagged, and added to the salience list. When the reference them is encountered, the
reference resol ution module assigns the constraint number = plural to the reference,
so when alookup is done in the salience list, the first and only compatible concept is
the group of programs.

It was found however that recognition errors do not really create strange shiftsin the
focus of attention of the system, which would cause correctly recognized references to be
resolved wrongly. During the tests, some misrecognitions contained references, which
were resolved to the concept in focus, so no shiftsin focus occured. Also when the
system would move away from the desired task, for example display atotally different
topic, the user will try to move back to the task at hand, rather than just relentlessly trying
to have the system recogni ze the utterance.

107 JL.R.D Woei-A-Jin, 2001

PHI S TU Delf

Chapter 5.

Conclusion

In section 1.1 the goals of the second part of the project are stated. These goals were:

* Find amethod to compensate for the lack of syntactic datain a shallow parsing
environment.

» Implement the proposed model for operation in a speech recognition environment.

» Test the proposed model in a speech recognition environment.

5.1. Finding a method to compensate for lack of
syntactic data

It isfound that syntactic data is very important in reference resolution. While it is not
necessary to determine the focus of attention using the model described in [Str98] (most
other models do depend on syntactic information [Kam93] [All95] [Ken96] [Mcc96]
[Mur96]), it isimportant to have syntactic information to determine dependencies
between concepts. These dependencies are very important to determine syntactic and
contextual constraints.

Thereis no single method to compensate for the lack of syntactic data, rather a group of
methods to provide information to fill in some of the blanks left by the lack of syntactic
data. Some problems can be overcome using a set of filters or a set of rules, which mirror
adowngraded version of the rules when syntactic data is available. These are usually
much less accurate than the rules with syntactic data though.

Three methods are used to determine the dependencies between phrases: phrases are split
up and constraints determine whether a phrase modifies another or not, phrases are
grouped together and use of a subconcept determines the relationship, and phrases are
grouped together and use of a superconcept determines the relationship.

Splitting up phrases into seperate concepts and use constraints to determine whether a
phrase modifies another or not, is especially useful when two concepts do not necessarily
follow each other (for example show me it and show it), but it is expected that other
concepts or fillers can come in between. In the example show it, show indicatesthat it isa
program. Thisisimplemented by looking at the constraints of the reference when the
command show is encountered when looking for additional constraints from the context.
If the reference has the constraints gender = neutral and abstract = nonabstract, then the
constraint type = programis added.

Sometimesit is easier to group phrases together, especially when the relationship is
crucial for correct resolution of the reference, and no or very few different concepts can
come between them. For example the news program on cnn. Sometimesiit is even
necessary that this construction is used, because the phrases cannot be split up, without
compromising the recognition of the reference, for example the eight p.m. news. The
consequence of splitting this phrase into eight p.m. and news would be that news can no

108 JL.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

longer be recognized as areference. Therefore the eight p.m. news is grouped together
and an attribute subconcept = start_time : eight p.m. is assigned to the concept. This way
the two concepts can still be recognized as two seperate concepts, while it they are il
recognized as a reference and information about their relation is available.

Another construct which is similar to the previous one was necessary for phraseslike
from the previous list the second program and the second program of the previous list.
Again therelationship is very crucial to correctly resolve the reference, but in addition to
this, the previous list must be resolved before the second program. In the second phrase,
the previous list comes after the second program, while the algorithm used resolves
references in the order they are encountered. This is again done by including information
about their relationships in the attribute. In this example the attributes concept = the
second program and superconcept = the previous list are added. The attribute
superconcept indicates that it should be resolved first, and the attribute concept indicates
that its referent is the one which is needed. With this construct both the information
which concept must be resolved first and the information about the relationship is known.
Finally a set of binding constraints must be defined. Because no syntactic information is
available only one simple binding constraint is defined, which has the purpose of
preventing the object and the subject to co-refer: a pronoun in its accusative form cannot
refer to the most recent noun phrase in the same sentence. Thiswill only work in
utterances like: Bob gave him a present, where the object directly follows the subject. In
the application, this constraint is never used, because descriptive phrases like this are
irrelevant to the application.

5.2. Implementation of the proposed model

In the nine months for this project a functional reference resolution prototype was
implemented, with the following properties:

* Resolution of references to an entity from another modality.

» Resolution of references to an entity introduced previously viaa noun phrase
* Resolution of referencesto a property of an entity from another modality.

» Resolution of referencesto asuperset of individual entities from another modality.
» Filtersout references to nothing at all

* Operational within SPICE-EPG

* Operational in real-time

* Not dependent on an extensive lexicon

» Adaptable for other applications

» Parameterized settings

* Noincrease in system requirements

* Noincreasein processing time

e Writtenin C++

The code can be found in appendix E.

109 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

5.3. Test results.

Considering the number of tests performed it is hard to really give a performance ratio.
The reason that the number of testsislow, isthat no suitable corpus was available, and
the SPICE-EPG system and the grammar only alow alimited set of possibilities and
constructions which can be tested. In addition, testing is very time consuming, especially
the online testing, because recognition is very slow and very bad. Commands must be
repeated very often before the utterance is correctly recognized, and often in a sequence
of utterances, one of the utterancesis recognized very badly, resulting in multiple
incorrectly filled slots, which conflict with the user task. Often the slots must be reset
again, and the process can start over again. The input data can be saved for later test runs,
but often the grammar had to be adapted, in which case the old input data becomes
obsolete and the whol e process of inputting speech commands to the SPICE-EPG system
must be done over again. It is not possible to use the wave files, because the recognition
and behaviour of the EPG will differ.

Offline testing is not as tedious as online testing, but still takes awhile, because the
parsing and display information had to be manually simulated. Once the simulation data
ispresent, it is possible to reuse it over and over again, after each adaptation, though.
Most errors caused by bugs in the reference resolution model could be corrected during
offline testing.

In the offline tests aimost al references were finally correctly resolved its referent. In
only one case it failed. This was when a definite description was not resolved correctly
due to the lack information, which was necessary, and a pronoun referred to it | ater.

So the following references were succesfully tested during offline evaluation:

» reference to an entity from another modality in focus,

» reference to an entity from another modality out of focus,

» reference to an entity introduced into the discourse with a noun phrase in focus,

» referenceto an entity introduced into the discourse with a noun phrase out of focus,
» reference to asuperset of an entity,

» referenceto aproperty of an entity.

In the online tests reference resolution is much more difficult, because recognition errors
introduce concepts which are not in the utterance. Also, less complex senteces are used,
because this increases the chance that the systems does not understand what is said. The
speech recognizer has trouble recognizing certain words, of which some are important for
reference resolution. Words like he, she, and the definite article the are not often
recognized. Another problem isthat certain concepts which can be referred to are badly
recognized. Thisisthe case with names of actors and other persons. For instance the
guestion whether a movie with Robert de Niro would be running this night, was not
recognized in the twenty attempts made, and other actors fared little better. In the few
cases where the actor was indeed recognized, the reference he or she was not or
misrecognized, causing the actor to leave the focus of attention of the reference resolution
module. It is not possible to solve this problem in the reference resolution module
directly, because the module has no way to determine whether a shift in focus was due
misrecognition of the user or because the user shifted his focus. Because of this
pronominal anaphorato persons was not tested in the online evaluation. However,

110 JL.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

--I 2; "
)
-

PH S

considering the fact that these kind of references were succesfully resolved in the online
test, it is expected to work correctly should the referent and reference be recogni zed.
Sometimes during online testing when a misrecognition occurs, arefence is wrongfully
introduced, usually the pronounsit and its or the demonstratives that, this, and them.
When this happens three things may occur: the reference is not resolved to anything, the
reference is resolved to a concept currently in the focus of the user, or a concept out of
the focus of the user.

It was found however that recognition errors do not really create strange shiftsin the
focus of attention of the system, which would cause correctly recognized references to be
resolved wrongly. During the tests, some misrecognitions contained references which
were resolved to the concept in focus, so no shiftsin focus occured. Also when the
system would move away from the desired task, for example display atotally different
topic, the user will try to move back to the task at hand, rather than just relentlessly trying
to have the system recogni ze the utterance.

111 JL.R.D Woei-A-Jin, 2001

PHI S TU Delf

Chapter 6.

Recommendations

Having spent a few months working with the SPICE-EPG and the working prototype of
the reference resolution module, part of which was for the purpose of testing the
reference resolution module, several recommendations can be made to improve the
performance of the SPICE-EPG with the integrated reference resolution module. Also
recommendations can be done about things to try out with reference resolution for which
no time was available in during this project.

Recommendations to increase the performance are:

» Filter out non-filler concepts which make no sense.

* Relax the grammar for reference recognition.

e Useasecond parser to allow more complex concepts.

» Determine referencesfor all hypothesis.

» Penalize hypotheses with unresolved reference.

* Find away to process references to content description.

* Find away to tag content description and add the tagged information to the concept.

Recommendations for things to try out are:
* Useafilter to determine when to skip the salience list.
» Solve one anaphora using the salience list.

6.1. Filter out non-filler concepts which make no sense

During the testing of the system, it often occured that misrecognition of an utterance
resulted in non-filler concepts, which made absolutely no sense. Often concepts of the
type title or content description were created with only the value a or the. Thisresulted in
the system looking for programs starting with an a (a and €) and programs with thein
the content description. It is very unlikely that when these words are encountered, the
programs returned are indeed meant by the user. It is therefore recommended to filter out
concepts like these. Other concepts encountered due to misrecognitions are references
likeit, them, that, and this. Sometimes these references are the only conceptsin the
utterance, sometimes they are in combination with other concepts. If the referenceis the
only concept in the utterance, it is certain that misrecognition has occured, either of the
reference or another important word in the sentence. Either way the system cannot do
anything with the information, because no new information is provided to perform atask.
Thereforeit is recommended that references are filtered out, if no command or additional
information is presented, like record it, or are there any movies with that actor
tomorrow? where tomorrow and movies for example are classified as additional
information. A method should be implemented though to prevent the system loosing

112 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

focus, when filtering occurs. It is expected that this will improve the general performance
of the system.

6.2. Relax the grammar for reference recognition

The definite article the and the demonstratives this, that, these, and those are important
indicators that descriptive references are indeed references. For example without thisin
this movie the concept would just be movie, and does not contain any information about
being areference, it ismore likely to be a category of a program. For this reason these
indicators were used to determine whether a concept is areference or not. Currently the
grammar isto strict to correctly recognize these descriptive references when they occur
most of the time. Thisis because speech recognition is till not 100%, and often the
definite article the and demonstratives this and that are not recognized. In some casesit is
possible to infer that the indicator was not recognized though, and the concept could still
be recognized as areference. For examplein record last movie, it is clear that last movie
isareference to the last movie, so the grammar specification should be relaxed, so that in
caseswhereit is still clear that areference is meant, the concept is till recognized as a
reference.

6.3. Use a second parser to allow more complex
concepts

Currently certain relationships between concepts are specified by assigning one of these
concepts as a subconcept of the other. For example in the six p.m. news contains the
subconcept start time: six p.m. In the grammar thisis done by assigning the attribute
subconcept with the value start time: six p.m. and later this attribute is translated into a
concept. This method works fine most of the time, but it does not allow specification of
really complex relations, such as the subconcept having a subconcept, which aso hasa
subconcept or a superconcept (see section 3.4.6 for explanation about the relationship
subconcept and superconcept). A second parser which processes the partially parsed
phrases would be able to solve this problem.

6.4. Determine references for all hypothesis

In the current system only the references of the best hypothesis are resolved. However,
the dialogue manager does not have to accept the best hypothesis from the context
interpretation module and can select a different hypothesis based on its own knowledge.
During testing this did not happen, but when this happens, the salience and the history list
might contain incorrect information, and the dialogue manager may have to work with
unresolved references. The reference resolution module already has the ability to work
with different hypotheses without gettng confused. The only problem may be the increase
in processing time and memory usage.

113 JL.R.D Woei-A-Jin, 2001

e
«!
e

--I k™
—
—

R T=Y
el

PH S

6.5. Penalize hypotheses with unresolved reference

Should be decided that the reference resolution module has to determine the references
for al hypotheses, than the result of the reference resolution may be used to determine
which hypothesisis better. Hypotheses which contain references which are not resolved
to any concept, can be penalized, because it can be expected that thisis aresult of
misrecognition.

6.6. Find a way to process references to content
description

During online testing, it was found that if a concept which is part of the content
description is specified in the grammar, it would not be processed as part of the content
description. For example when Mel Gibson was recognized as an actor by the grammar,
the SPICE-EPG would not look for programs with Mel Gibson in the content description.
This problem was solved by removing these concepts from the grammar, and when a
content description is encountered, checked whether it contains actor information.
However, considering the way the SPICE-EPG works, references to an actor will not
result in alook up of programs with that actor. So even though areference to Mel Gibson
is correctly resolved, the SPICE-EPG is not able to search for movies with Mel Gibson.
Therefore away must be found to process references to content descriptions.

6.7. Find a way to tag content description and add the
tagged information to the concept

Currently the only information given with the programs are the category, the channel, the
date, the end time, the start time, and thetitle. So it is not possible to refer to the program
with parts of the content description, for example: record the science fiction movies. If a
way could be found to extract the interesting information from the content description
and add them as subconcepts to the programs on the list, it would be possible to refer to
programs with references like switch to the serie with Ross Kemp.

6.8. Use a filter to determine when to skip the salience
list

In [Byr99] it is stated that descriptive anaphorais usually used to refer to something
which is currently not in focus, in contrast to pronominal anaphora which always referes
to something in focus. It is however not impossible or even uncommon for descriptive
anaphorato refer to something in focus, for example: Yesterday we went to the cinema to
see Shrek. The movie was very funny. However, when additional modifiers are used, for
examplein Last week' smovie left a much deeper impression though, it is very probable

114 JL.R.D Woei-A-Jin, 2001

ey
EE M= HE
BRI 'i'

ai
el

- .
)

PH S

b

that it refers to something which is currently out of focus. To decrease processing time,
although it currently is not an issue, it could be possible to use afilter to determine when
additional modifiers are used, so that the concepts out of focus can be directly accessed,
instead of checking each concept in the salience list first.

6.9. Solve one anaphora using the salience list

Even though it is difficult with the current grammar to recognize one anaphoralike |
would like to see one tomorrow too, because no definite article or demonstrativeis
present to identify one as one anaphora, some thought is given how one anaphora could
be resolved. One anaphorain cases like thiswill refer to a general type, rather than a
specific concept which was introduced via noun phrase into the discourse before. It can
be expected that the referent is currently in focus, because very little information is
present to find a concept out of focus. Therefore it can be expected that the referent isin
the salience list. So the first compatible referent in the salience list can be used to create a
new concept. |s there a movie with Robert de Niro today? How about one tomorrow? the
reference one would refer to the general type movie with Robert de Niro, so a copy of the
concept a movie of Robert de Niro can be used to create the referent for one. Conflicting
constraints from the one anaphora should override the properties of the copy, for example
in Are there any movies with Robert de Niro? How about one with Al Pacino? the
reference oneis singular, while movies is plural, so movies should become movie. Also
the concept movies would have the subconcept actor: Robert de Niro, which should be
replaced with Al Pacino. Compatibility of the concepts in the salience list, can be
determined by looking at contextual constraints and perhaps some filters to compensate
for the lack of syntactic constraints. An example of afilter might be that the referent must
have a subconcept type in common with the reference, like in a movie with Robert de
Niro and one with Al Pacino both have a subconcept of the type actor. Another filter
might be that the referent cannot be of atype which is already in the utterance, for
examplein Bob has a beautiful girlfriend. Bill wants one too, one does not refer to Bob or
Bill, which precede a beautiful girlfriend in the salience list. Because Bob would be of
type guy and Bill istoo, according to this filter one cannot refer to a general type of Bob
or Bill. Whether this would really work is something which can be tested in the future.

115 JL.R.D Woei-A-Jin, 2001

PH S

Bibliography

[All95]

[Aus95]

[Beagg]

[Blagg]

[Bodoe]

[Bre7]

[Byr99]

[Cho81]

[Cohgsg]

[Dal92]

[Eck99)]

JF. Allen. Natural Language Understanding — 2™ Edition. The
Benjamin/Cummings Publishing Company, 1995.

H. Aust, M. Oerder, F. Seide, and V. Steinbiss. The Philips automatic
train timetable information system. Speech Communication, 17(3-4):249-
262, Nov. 1995.

D.L. Bean, E. Rillof. Corpus-Based Identification of Non-Anaphoric Noun
Phrases. In Proceedings of the 37" Annual Meeting of the Association for
Computational Linguistics (ACL-99). 1999.

C.A. Black. A step-by-step introduction to the Government and Binding
theory of syntax. http://www.sil.org/americas/mexico/ling/E002-
IntroGB.pdf. Summer Institute of Linguistics. February 1999.

R. Bod & R. Scha. Data-oriented language processing: An overview.
Technical report, ILLC, University of Amsterdam, Amsterdam, The
Netherlands. 1996.

S.E. Brennan, M.W. Friedman & C.J. Pollard. A centering approach to
pronouns. In Proceedings of the Association for Computational
Linguistics, pp. 155-162. July 1987.

D.K. Byron. Resolving Pronominal Reference to Abstract Entities. Ph.D.
thesis, University of Rochester Department of Computer Science. June
1999.

N. Chomsky. Lectures on Government and Binding. Dordrecht: Foris.
1981.

P. Cohen, M. Johnston, S. Oviatt, J. Clow, & I. Smith. The efficiency of
multimodal interaction: a case study. In Proceedings of the International
Conference on Sooken Language, 1998.

R. Dale. Generating Referring Expressions: Constructing Descriptionsin a
Domain of Objects and Processes. Cambridge, MA: MIT Press. 1992.

M. Eckert & M. Strube. Resolving Discourse Deictic Anaphorain

Dialogues. In Proceedings of the 9" Conference of the European Chapter
of the Association of Computational Linguistics, pages 37-44, 1999.

116 JL.R.D Woei-A-Jin, 2001

http://www.sil.org/americas/mexico/ling/E002-IntroGB.pdf
http://www.sil.org/americas/mexico/ling/E002-IntroGB.pdf

PH S

[Eck99b]

[Eck99c]

[Fer00]

[Fox87]

[Gar97]

[Goe01]

[Hahos]

[Hob86]

[Kam93]

[Kap93]

[Kar9s]

[Keho3]

[Keho3b]

M. Eckert & M. Strube. Dialogue Acts, Synchronizing Units and
Anaphora Resolution. To appear in Journal of Semantics 2001 (not the
final version), 1999.

M. Eckert & M. Strube. Dialogue Acts, Synchronizing Units and
Anaphora Resolution. In Amstelogue '99: Workshop on Dialogue.
Amsterdam, The Netherlands, May 5-7, 1999.

A. Ferrandez & J. Peral. A computational Approach to Zero-pronounsin
Spanish. 2000.

B. Fox. Discourse Structure and Anaphora. Written and conversational
English. Cambridge Studies in Linguistics. Cambridge University Press,
Cambridge, 1987.

S. Garnsey, N. Pearlmutter, E. Myers & M. Lotocky. Contributions of verb
bias and plausiblity to the comprehension of temporarily ambiguous
sentences. Journal of Memory and Language, 37:58-93. 1997.

C. Goetheer. No information about title is available yet. Katholieke
Universiteit Nijmegen. Publication date is expected at the end of 2001.

U. Hahn & M. Strube. Incremental Centering and Center Ambiguity. In
Proceedings of the 18" Annual Meeting of the Cogpnitive Science Society.
Lalolla, CA, 1996.

J. Hobbs. Resolving pronoun reference. In Readings in Natural Language
Processing. Morgan Kaufmann, 1986.

M. Kameyama, R. Passonneau, and M. Poesio. Temporal centering. In:
Proceedings of the 31% Annual Meeting of the Association for
Computational Linguistics, pages 70-77, Columbus, OH, June 1993.

H. Kamp & U. Reyle. From Discourseto Logic. Dordrecht: Kluwer. 1993.
F. Karlsson, A. Voutilainen, J. Heikkila, & A. Antilla. Constraint
grammar: A language-independent system for parsing free text. Mouton de
Gruyter, Berlin/New Y ork, 1995.

A. Kehler. Intrasentential Constraints on Intersentential Anaphorain
Centering theory. Workshop on Centering Theory in Natural Occurring
Discourse, University of Pennsylvania, 1993.

A. Kehler. A discourse copying agorithm for ellipsis and anaphora
resolution. In Proceedings of the Sxth Conference of the European

117 JL.R.D Woei-A-Jin, 2001

PH S

[Ken9g]

[Kel00]

[Mar00]

[Maso0]

[Mcco6]

[Mit9g]

[Mur96]

[Pass9)]

[Pas93]

[Pas96]

[PhiOO]

Chapter of the Association for Computational Linguistics (EACL-93),
pages 203--212, April 1993.

C. Kennedy, B. Boguraev - Anaphorafor everyone: pronomina anaphora
resolution without a parser. Proceedings of the 16th International
Conference on Computational Linguistics COLING'96, Copenhagen,
Denmark, 5-9 August 1996.

A. Kédlner, S. Martin, P. Philips, T. Portele & B. Souvignier. SPICE - a
first research prototype. Conversational User Interfaces, PFL-Aachen
Report 1463/00, July 2000.

P. Martinez-Barco, & M. Palomar. Dialogue structure influence over
anaphoraresolution. In MICAI 2000: Advancesin Artificial Intelligence,
Lecture Notes in Artificial Intelligence, vol.1793. O. Cairo, L.E. Sucar and
F.J. Cantu Eds. Acapulco (Mexico). Springer-Verlag. pp. 515-525. ISBN:
3-540-67354-7, April 2000.

S. Martin, B. Souvignier. Problems in Grammar Design, Technical Report
PFL-Aachen 1452/00 April 2000]

J. McCarthy. A Trainable Approach to Coreference Resolution for
Information Extraction. University of Massachusetts Amherst Department
of Computer Science. September 2000.

R. Mitkov. Robust pronoun resolution with limited knowledge. In
Proceedings of ACL ’ 98, pages 869-875, 1998.

M. Murata. Anaphora Resolution in Japanese Sentences Using Surface
Expressions and Examples. Ph.D. thesis, Kyoto University. December
1996.

R.J. Passonneau. Getting at discourse referents. In: Proceedings of the 27"
Annual Meeting of the Association for Computational Linguistics, pages
51-59, Vancouver, BC, 1989.

R. J. Passonneau. Getting and keeping the center of attention. Challenges
in Natural Language Understanding, M. Bates & R.M. Weischedel, pages
179-227. Cambridge University Press. 1993.

R.J. Passonneau. Interaction of Discourse Structure with Explicitness of
Discourse Anaphoric Noun Phrases. Computational Linguist, 17(1): 21-48.

Philips, P. Multimodal Integration — A stochastic Framework for the

Integration of Speech recognition and Pointing Input. Technical Report
PFL-Aachen 1442/00 February 2000.]

118 JL.R.D Woei-A-Jin, 2001

PH S

[Pin00]

[Prigl]

[Ramo3]

[Sac74]

[Sidg3]

[Sou00]

[SVMOQ]

[Stro5]

[Stro6]

[Stro6b)]

[Strog]

[Val9o]

[Val96]

L. Pineda. A Model for Multimodal Reference Resolution. Computational
Linguistics Volume 26, Number 2, 2000.

E. F. Prince. Toward a taxonomy of given-new information. In P. Cole
(Ed.), Radical Pragmatics, pp. 223-255. New York, N.Y.: Academic
Press, 1981.

O. Rambow. Pragmatic aspects of scrambling and topicalization in
German. Workshop on Centering Theory in Naturally-Occuring
Discourse. Institute of Research in Cognitive Science, Philadelphia, Penn,
University of Pennsylvania, May 1993.

H. Sacks, E. Schegloff & G. Jefferson. A simplest systematic for the
organization of turn taking for conversation. Language, 50(4):696-735,
1974.

Candace L. Sidner. Focusing in the comprehension of definite anaphora. In
M. Brady and R.C. Berwick, editors, Computational Models of Discourse,
pages 267-330. The MIT Press, Cambridge, Massachusetts, 1983.

B. Souvignier, A. Kellner, B. Reuber, H. Schramm & F. Seide. The

thoughtful elephant: Strategies for spoken dialogueue systems. |IEEE
Transactions on Speech and Audio Processing, 8(1):51-62, January 2000.

Sound& Vision Magazine Feb/Mar 1999 pp73.

M. Strube, U. Hahn. ParseTalk about sentence- and text-level anaphora. In
Proceedings of EACL-95, pp. 291-296. 1995.

M. Strube, U. Hahn. Functional centering. In Proceedings of ACL-96.
pages 270-277, 1996.

M. Strube. Processing Complex Sentences in the Centering Framework. In
Proceedings of ACL-96, pages 378-380, 1996.

M. Strube. Never Look Back: An Alternative to Centering. In Proceedings
of ACL-98, pages 1251-1257, 1998.

E. Valduvi. The informational Component. University of Pennsylvania,
Department of Linguistics. 1990.

E. Vallduvi & E. Engdahl. The linguistic realization of information
packaging. In Linguistics, 34:459-519, 1996.

119 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Appendix A

Examples of references to be solved in the ideal
case

In this appendix an overview is given of what co-workers at Philips think the EPG should
be able to handle. Note that for many example applies that even if the reference
resolution module would able to solve the references, the dialogue manager would not be
able to understand the situation.

SPICE, are there any movies starring Mel Gibson today?

How about this week?

- References: ellipsis

Can you show me more information about this movie? <Pointsto amoviein the list>

- References. demonstrative, entity from another modality.

Could you show methelist again?

- References: definite description, entity from another modality.

Please record the Mad Max movies

- References: definite description, superset of individual entities from another modality.

Are there any samurai movies today?

Who is the director of this one? <Pointsto amoviein the list>

- References: definite description, a property of an entity from another modality, entity
from another modality.

Are there any other movies directed by him this month?

- References: pronoun, entity that was introduced into the discourse via a noun phrase.
Is there any news on the latest earthquake?

- References: definite description, world knowledge not mentioned in the discourse.
Any other news about that country?

- References. demonstrative, property of an entity that was introduced into the discourse
via a noun phrase.

Are there any movies by Roman Polansky?

In which of these does he stars himself?

- References: pronoun, entity that was introduced into the discourse via a noun phrase,
superset of individual entities from another modality.

Please record the most recent one.

- References: definite description, an entity from another modality.

Hello Computer...
Turnon TV!

120 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Which channel isthis?

- References. demonstrative, entity from another modality.

Will they bring some news after that series?

- References: pronoun, demonstrative, property of an entity, entity from another
modality.

When is the next news broadcast?

- References: definite description, world knowledge.

Okay, go there.

- References: entity that was introduced via a noun phrase.

Oh, I've missed the interesting part. Record the next repetition of it.

- References: definite description, property of an entity, world knowledge, entity
introduced via a noun phrase.

Show methe TV-guide for this channel.

- References: definite description, world knowledge, property of an entity.
Which station shows a movie tonight?

Has it started already?

- References: pronoun, entity introduced via a noun phrase.

Ok, then show it.

- References: pronoun, entity introduced via a noun phrase.

When will it end?

- References: pronoun, entity introduced via a noun phrase.

Isthat Sandra Bullock?

- References. demonstrative, entity from another modality.

Isn't she beautiful ?

- References: pronoun, entity introduced via a noun phrase.

Oh, | forgot you're a computer, you don't know anything about this.

- References: demonstrative, fact

Will she marry that guy in the end?

- References: pronoun, entity introduced via a noun phrase, entity from another modality,
world knowledge.

Oh, what a surprise.... Don't you have another film with her in your
database?

- References: pronoun, entity introduced via a noun phrase.

What a pity. Turn of TV and play that radio station | heard yesterday!

- References. demonstrative, world knowledge.

Gimme info about the fourth movie?
- References: definite description, entity from another modality.

Can | seethelast one?
- References: definite description description, entity from another modality.

| want to see a James Bond movie.

Do you have other movies with him?
- References: pronoun, entity introduced via a noun phrase.

121 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Gimme info on that movie.
- References. demonstrative, entity introduced via a noun phrase/entity from another
modality.

When are the next news showing?

- References: definite description, world knowledge

And the one after that?

- References: definite description, demonstrative, world knowledge, entity introduced via
a noun phrase

Do you have more information about the last thing.
- References: definite description, entity introduced via a noun phrase/entity from
another modality.

Show me more about the film in the line with the cursor.

- References: definite description, entity from another modality.

The same for the film in the green-displayed line.

- References: definite description, action, entity from another modality.

Oh, not that one, the previous one, please.

- References: definite description, definite description, entity from another modality.
Can you repeat the last words.

- References: definite description, entity from another modality.

What is that about?

- References. demonstrative, entity from another modality/entity introduced via a noun
phrase.

What time does it start?

- References: pronoun, entity introduced via a noun phrase.

Can you remove that film from the list?

- References. demonstrative, definite description, entity from another modality/entity
introduced via a noun phrase.

Can you add the previous one to the list?

- References: definite description, entity from another modality.

No, not that one, the other one.

- References. demonstrative, definite description, entity from another modality.

Arethere any movies with X next week?
Which of them is together with Y?
- References. demonstrative, superset of individual entities from another modality.

122 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

No, | don't like this one (those).

- References: definite description, demonstrative, entity from another modality, super set
of individual entities from another modality.

With whom are the others?

- References: definite description, superset of individual entities from another modality.
O.k. so please record the first (second, etc.) one!

- References: definite description, entity from another modality.

Any basketball on TV tonight?

Could you record the second half of it (that).

- References: definite description, pronoun, demonstrative, property of an entity from
another modality, an entity from another modality.

When are the next newson TV?

- References: definite description, world knowledge.

| don't like them.(| hate those/these guys.) Any news after that?

-References: pronoun, demonstrative, superset of individual entities from another
modality, property of an entity from another modality.

Great, you can record that.

- References. demonstrative, entity from another modality.

<user>: "Can you record the next game of my favorite Baseball team?"

- References: definite description, world knowledge.

<system>: "Y our favorite Baseball team are the San Francisco Giants. Their next game
starts next Saturday at noon. | will record it."

<user>: "When is their next one [the game of the San Francisco Giants]?"

- References: pronoun, definite description, entity introduced via a noun phrase, world
knowledge.

<gystem>: "The following game of the San Francisco giants starts next Sunday at 5p.m."
<user>: "Can you record this one [the game] as well, please?”

- References: definite description, entity introduced via a noun phrase.

<system>: "| am sorry, there will not be enough space on the tape.”

<user>: "OK, let me exchange it [the tape]."

- References: pronoun, entity introduced via a noun phrase.

<gystem>: "Alright, please use a 600 minutes tape."

<user>: "Alright, | have done it [exchanging the tape]."

- References: pronoun, entity introduced via a noun phrase.

<system>: "Thank you, | will record the game on Sunday as well."

<user>: "On which channel will it [the game] be?"

- References: pronoun, entity introduced via a noun phrase.

<system>: "ESPN."

<user>: "Which baseball game is ABC showing on Sunday?"

<system>: "On Sunday, ABC shows Los Angeles Dodgers versus Arizona
Diamondbacks."

123 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

<user>: "When does this one [the game] start?’

- References: definite description, entity introduced via a noun phrase.

<gystem>: "The game on ABC on Sunday starts at 1pm."

<user>: "Will there be other games on Sunday?"

<system>: "Yes, there will be four other baseball games next Sunday."

<user>: "Isthere one [a game] with the New Y ork Y ankees?"

- References: definite description, entity introduced via a noun phrase.

<system>: "No. The New Y ork Y ankees do not play on Sunday."

<user>: "What about the other teamsin their [New Y ork Y ankees] division?"

- References: pronoun, entity introduced via a noun phrase.

<gystem>: "The Boston Red Sox are playing against the Chicago White Sox on Sunday at
3pm."

<user>: "Will this one [the game] beon TV ?'

- References: definite description, entity introduced via a noun phrase.

<gystem>: "Yes, Boston Red Sox versus Chicago White Sox will be broadcast on Fox
Sports Net."

<user>: "Excellent. How did they [Boston Red Sox and Chicago White Sox] play in their
[Boston Red Sox and Chicago White Sox] last games?’

- References: pronoun, entity introduced via a noun phrase.

<system>: "The Boston Red Sox are on a five game winning streak while the Chicago
White Sox lost their last two games.”

<user>: "What about the hockey teams in this area [Boston and Chicago] ?"

- References. demonstrative, entity introduced via a noun phrase.

<system>: "The Boston Bruins have lost three games in arow and the Chicago
Blackhawks have won the last two games."

| am looking for a movie with Kate Winslet where she plays an Australian girl.
- References: pronoun, entity introduced via a noun phrase.

From the last list of movies, the second one.
- References: definite description, entity from another modality, property of an entity
from another modality.

| said: amovie with Robert Redford! He does not act in these ones.
- References: pronoun, definite description, entity introduced via a noun phrase, super set
of entities from another modality.

The seria | saw last night, when will it be continued?
- References: definite description, pronoun, world knowledge, entity introduced via a
noun phrase.

Is this a science fiction movie?

- References. demonstrative, entity from another modality/entity introduced via a noun
phrase.

124 JL.R.D Woei-A-Jin, 2001

PHI S TU Delf

Thereisamovie with Billy Crystal and Meg Ryan where they play two singlesin New
York.
- References: pronoun, entity introduced via a noun phrase.

| am looking for amovie. It should start around 8pm.
- References: pronoun, entity introduced via a noun phrase.

Give more information on the last one.
- References: definite description, entity from another modality.

| want to remove that one.
- References: Definite description, entity from another modality/entity introduced via a
noun phrase.

Put it on my recording list.
- References: pronoun, entity from another modality/entity introduced via a noun phrase.

Remove the earlier one. (when two items overlap on the recordlist)
- References: Definite description, entity from another modality.

Show me the one that has Julia Robertsin it (when alist of moviesis displayed).
- References: Definite description, entity from another modality.

What about later?
- References: dlipsis.

125 JL.R.D Woei-A-Jin, 2001

PH S

Appendix B

Grammar to recognize reference forms

<REFERENCE> ::= (200) he

value :="'he’

number := 'singular’
<REFERENCE> ::= (200) she

value := 'she'

number := 'singular’
<REFERENCE> ::= (1) it

value :="it'

number := 'singular’
<REFERENCE> ::= (1) they

value := 'they'

number := 'plural’
<REFERENCE> ::= (200) his

value :='his’

number :='singular’
<REFERENCE> ::= (200) her

value :='her'

number := 'singular’
<REFERENCE> ::= (200) him

value :='his'

number :='singular’
<REFERENCE> ::= (1) its

value :="its'

number :='singular’
<REFERENCE> ::= (1) their

value := 'their'

number := 'plural’
<REFERENCE> ::= (1) that

value :='that'

number := 'singular’
<REFERENCE> ::= (1) this

value := 'this’

number := 'singular’
;;<REFERENCE> ::= (1) which
;7 number :='singular’
<REFERENCE> ::= (1) these

value := 'these’

number :='singular’
<REFERENCE> ::= (1) those

value := 'those'

number := 'plural’
<REFERENCE> ::= (1) himself

value :='himself'

number :='singular’
<REFERENCE> ::= (1) herself

value :='herself'

number :='singular’
<REFERENCE> ::= (1) itself

value :="itself'

number := 'singular’

<REFERENCE> ::= (1) themselves

value := 'themselves'
number :="plural’

<director_type> ::= (1) director
value :='director’

<director_type> ::= (1) directors
value :='directors'

126

<actor_type> ::= (1) actor
value := 'actor’

<actor_type> ::= (1) actors
value :='actors'

<actor_type> ::= (1) star
value :='star’

<actor_type> ::= (1) stars
value :='stars'

<actor_type> ::= (1) moviestar
value :='moviestar’

<actor_type> ::= (1) moviestars
value := 'moviestars'

<actor_type> ::= (1) actress
value :='actress’

<actor_type> ::= (1) actresses
value := 'actresses’

<person> ::= (1) guy
value :='guy’
<person> ::= (1) guys
value :='guys'
<person> ::= (1) man
value :='man’
<person> ::= (1) men
value :='men’
<person> ::= (1) mister
value := 'mister’
<person> ::= (1) misters
value := 'misters'
<person> ::= (1) boy
value :='boy'
<person> ::= (1) boys
value := 'boys’
<person> ::= (1) gentleman
value := 'gentleman’
<person> ::= (1) gentlemen
value :='gentlemen’
<person> ::= (1) hunk
value :='hunk’
<person> ::= (1) hunks
value :='hunks'
<person> ::= (1) lad
value :='lad'
<person> ::= (1) lads
value :='lads’
<person> ::= (1) gall
value :="'gall’
<person> ::= (1) galls
value :="'galls’
<person> ::= (1) woman
value := 'woman'
<person> ::= (1) women
value := 'women'
<person> ::= (1) lady
value :='lady’
<person> ::= (1) ladies
value :='ladies’

JL.R.D Woei-A-Jin, 2001

PH S

<person> ::= (1) girl
value :="'girl'
<person> ::= (1) girls
value :='girls’
<person> ::= (1) babe
value :='babe’
<person> ::= (1) babes
value :='babes’
<person> ::= (1) chick
value := 'chick’
<person> ::= (1) chicks
value := 'chicks'
<person> ::= (1) lass
value :="'lass’
<person> ::= (1) lasses
value :='lasses’
<person> ::= (1) person
value :='person’
<person> ::= (1) persons
value :='persons'

<constraint_adjective> ::= (1) australian

value :='australian’

possible_concept := '-none-'
<constraint_adjective> ::= (1) green

value :='green’

possible_concept :='-none-'
<constraint_adjective> ::= (1) red

value := 'red’

possible_concept :='-none-'
<constraint_adjective> ::= (1) james bond

value :='james bond'

possible_concept := 'protagonist, james bond'

<brand_new_description>

subconceptl :='-none-'
<brand_new_description>
subconceptl :='-none-'

<brand_new_description>
subconceptl :='-none-'

<brand_new_description>
subconceptl :='-none-'

<brand_new_description>
subconceptl :='-none-'

<brand_new_description> ::

<programme_s>
subconceptl :='-none-'

<brand_new_description>
subconceptl :='-none-'

<brand_new_description>

subconceptl :='-none-'
<brand_new_description>
subconceptl :='-none-'

<brand_new_description>
subconceptl :='-none-'

<brand_new_description>
subconceptl :='-none-'

<brand_new_description> ::

<specified_list>
subconceptl :='-none-'
<brand_new_description>
subconceptl :='-none-'
<brand_new_description>
subconceptl :='-none-'
<brand_new_description>

1= (1) a <person>

::= (1) an <person>

1= (1) a <channel_>

::= (1) an <channel_>
::= (1) a <programme_s>

=(1) an

1= (1) a <schedule>

::= (1) an <schedule>
::= (1) a <db_category>
::= (1) an <db_category>
1= (1) a <specified_list>

'=(1) an

::= (1) a <actor_type>
1= (1) an <actor_type>

=) a

<constraint_adjective> <person>
subconceptl := <2>.possible_concept

<brand_new_description>

z=(1) an

<constraint_adjective> <person>

127

subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) a
<constraint_adjective> <channel_>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) an
<constraint_adjective> <channel_>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) a
<constraint_adjective> <programme_s>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) an
<constraint_adjective> <programme_s>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) a
<constraint_adjective> <schedule>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) an
<constraint_adjective> <schedule>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) a
<constraint_adjective> <db_category>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) an
<constraint_adjective> <db_category>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) a
<constraint_adjective> <specified_list>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) an
<constraint_adjective> <specified_list>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) a
<constraint_adjective> <actor_type>
subconceptl := <2>.possible_concept
<brand_new_description> ::= (1) an
<constraint_adjective> <actor_type>
subconceptl := <2>.possible_concept

<constraint_modifier> ::= (1) directed
<constraint_modifier> ::= (1) directs
<constraint_modifier> ::= (1) acted
<constraint_modifier> ::= (1) acts
<constraint_modifier> ::= (1) starred
<constraint_modifier> ::= (1) stars
<constraint_modifier> ::= (1) played
<constraint_modifier> ::= (1) plays

<specified_list> ::= (1) <schedule> of
<programme_s>
value := <1>.value ~~ 'of' ~~ <3>.value

<DEFINITE_DESCRIPTION> ::= (1) the <channel_>

value := 'the' ~~ <2>.value
subconceptl :='-none-'

<DEFINITE_DESCRIPTION> ::= (1) the <channels>

value := 'the' ~~ <2>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION>
<programme_s>

value := 'the' ~~ <2>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION>

value := 'the' ~~ <2>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION>
<db_category>

value := 'the' ~~ <2>.value

subconceptl :='-none-'

= (1) the

1= (1) the

JL.R.D Woei-A-Jin, 2001

::= (1) the <schedule>

PH S

<DEFINITE_DESCRIPTION> ::= (1) the
<actor_type>

value := 'the' ~~ <2>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<director_type>

value :='the' ~~ <2>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the <person>

value :='the' ~~ <2>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION>

value := 'the one’

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<specified_list>

value :='the' ~~ <2>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> <programme_s>

value := 'the' ~~ <2>.value ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> one

value :='the' ~~ <2>.value ~~ 'one’

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> <db_category>

value := 'the' ~~ <2>.value ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> <db_category> <programme_s>

value :='the' ~~ <2>.value ~~ <3>.value ~~
<4>.value

subconceptl := 'category,’ ~~ <3>.value
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> <programme_s> from below

value := 'the' ~~ <2>.value ~~ <3>.value ~~ 'from
below'

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> from below

value := 'the' ~~ <2>.value ~~ 'from below'

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> one from below

value :='the' ~~ <2>.value ~~ 'one from below'

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> <db_category> from below

value := 'the' ~~ <2>.value ~~ <3>.value ~~ 'from
below'

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<day_ordinal> <db_category> <programme_s>
from below

value :='the' ~~ <2>.value ~~ <3>.value ~~
<4>.value ~~ 'from below'

subconceptl := 'category,’ ~~ <3>.value
<DEFINITE_DESCRIPTION> ::= (1) the last
<programme_s>

value :='the last' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the last

::= (1) the one

<schedule>
value := 'the last' ~~ <3>.value
subconceptl :='-none-'

<DEFINITE_DESCRIPTION> ::= (1) the last one
value := 'the last one'

128

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the last
<specified_list>

value := 'the last' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the previous
<programme_s>

value := 'the previous' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the previous
<schedule>

value := 'the previous' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the previous
<specified_list>

value := 'the previous' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the previous
one

value := 'the previous one'

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the earlier one

value := 'the earlier one'

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the earlier
<programme_s>

value := 'the earlier' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the earlier
<db_category>

value := 'the earlier' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the earlier
<specified_list>

value := 'the earlier' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the later one

value := 'the later one'

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the later
<programme_s>

value := 'the later' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the later
<db_category>

value := 'the later' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the later
<specified_list>

value := 'the later' ~~ <3>.value

subconceptl :='-none-'
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <channel_>

value := 'the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <channels>

value := 'the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <programme_s>

value := 'the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <schedule>

value := 'the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <db_category>

JL.R.D Woei-A-Jin, 2001

PH S

value :='the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <actor_type>

value := 'the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <director_type>

value :='the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <person>

value := 'the' ~~ <3>.value

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> one

value := 'the one'

subconceptl := <2>.possible_concept
<DEFINITE_DESCRIPTION> ::= (1) the
<constraint_adjective> <specified_list>

value := 'the' ~~ <3>.value

subconceptl := <2>.possible_concept

<DEFINITE_DESCRIPTION> ::= (200) the
<given_date> <programme_s>

value :='the' ~~ <3>.value

subconceptl :='date,' ~~ <2>.given_date.3 ~
(<2>.given_date.2 <107?'-0':'-") ~
<2>.given_date.2 ~ '-' ~ <2>.given_date.1
<DEFINITE_DESCRIPTION> ::= (200) the
<given_date> <db_category>

value :='the' ~~ <3>.value

subconceptl :='date,' ~~ <2>.given_date.3 ~
(<2>.given_date.2 <10 ?'-0': '-") ~
<2>.given_date.2 ~ '-' ~ <2>.given_date.1
<DEFINITE_DESCRIPTION> ::= (200) the
<given_date> one

value := 'the one'

subconceptl := 'date,' ~~ <2>.given_date.3 ~
(<2>.given_date.2 <10 ?'-0': '-") ~
<2>.given_date.2 ~ '-' ~ <2>.given_date.1
<DEFINITE_DESCRIPTION> ::= (200) the
<programme_s> on <given_date>

value := 'the' ~~ <2>.value

subconceptl :='date,' ~~ <4>.given_date.3 ~
(<4>.given_date.2 <107?'-0':'-") ~
<4>.given_date.2 ~ '-' ~ <4>.given_date.1
<DEFINITE_DESCRIPTION> ::= (200) the
<db_category> on <given_date>

value := 'the' ~~ <2>.value

subconceptl :='date,' ~~ <4>.given_date.3 ~
(<4>.given_date.2 <107?'-0':"'-") ~
<4>. given_date.2 ~ '-' ~ <4>.given_date.1
<DEFINITE_DESCRIPTION> ::= (200) the one on
<given_date>

value := 'the one'

subconceptl := 'date,' ~~ <4>.given_date.3 ~
(<4>.given_date.2 <107?'-0':"'-") ~
<4>. given_date.2 ~ '-' ~ <4>.given_date.1

<DEFINITE_DESCRIPTION> ::= (5000) the
<time_and_time_duration> <programme_s>
value :='the' ~~ <3>.value
subconceptl := 'start time,' ~~ <2>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<time_and_time_duration> <programme_s>
value := 'the' ~~ <3>.value
subconceptl :='start time,' ~~ <2>.time

129

<DEFINITE_DESCRIPTION> ::= (5000) the
<time_and_time_duration> <category>

value := 'the' ~~ <3>.value

subconceptl :='start time,' ~~ <2>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<time_and_time_duration> one

value := 'the one'

subconceptl := 'start time,' ~~ <2>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<programme_s> that starts at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<category> that starts at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the one
that starts at <time_and_time_duration>

value := 'the one’

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<programme_s> which starts at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<category> which starts at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the one
which starts at <time_and_time_duration>

value := 'the one’

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<programme_s> that starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<category> that starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the one
that starts on <time_and_time_duration>

value := 'the one'

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<programme_s> which starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<category> which starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the one
which starts on <time_and_time_duration>

value := 'the one'

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000) the
<programme_s> at <time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <4>.time

JL.R.D Woei-A-Jin, 2001

PH S

<DEFINITE_DESCRIPTION> ::= (5000) the
<category> at <time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <4>.time
<DEFINITE_DESCRIPTION> ::= (5000) the one at
<time_and_time_duration>

value := 'the one'

subconceptl := 'start time,' ~~ <4>.time
<DEFINITE_DESCRIPTION> ::= (1) the
<db_channel> <programme_s>

value := 'the' ~~ <3>.value

subconceptl := ‘channel,’ ~~ <2>.channel
<DEFINITE_DESCRIPTION> ::= (1) the
<db_channel> <category>

value :='the' ~~ <3>.value

subconceptl := ‘channel,' ~~ <2>.channel
<DEFINITE_DESCRIPTION> ::= (1) the
<db_channel> one

value := 'the one’

subconceptl :='start time,' ~~ <2>.channel
<DEFINITE_DESCRIPTION> ::= (1) the
<programme_s> on <db_channel>

value :='the' ~~ <2>.value

subconceptl := ‘channel,' ~~ <4>.channel
<DEFINITE_DESCRIPTION> ::= (1) the <category>
on <db_channel>

value := 'the' ~~ <2>.value

subconceptl := ‘channel,’ ~~ <4>.channel
<DEFINITE_DESCRIPTION> ::= (1) the one on
<db_channel>

value := 'the one'

subconceptl := ‘channel,' ~~ <4>.channel

<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <time_and_time_duration>
<programme_s>

value := 'the' ~~ <3>.value

subconceptl :='start time,' ~~ <2>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <time_and_time_duration>
<programme_s>

value :='the' ~~ <3>.value

subconceptl :='start time,' ~~ <2>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <time_and_time_duration>

<category>
value :='the' ~~ <3>.value
subconceptl := 'start time,' ~~ <2>.time

<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <time_and_time_duration> one

value := 'the one’

subconceptl :='start time,' ~~ <2>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <programme_s> that starts at
<time_and_time_duration>

value :='the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <category> that starts at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> one that starts at
<time_and_time_duration>

value := 'the one’

subconceptl :='start time,' ~~ <6>.time

130

<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <programme_s> which starts at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <category> which starts at
<time_and_time_duration>

value :='the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> one which starts at
<time_and_time_duration>

value := 'the one’

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <programme_s> that starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <category> that starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> one that starts on
<time_and_time_duration>

value := 'the one’

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <programme_s> which starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <category> which starts on
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> one which starts on
<time_and_time_duration>

value := 'the one'

subconceptl :='start time,' ~~ <6>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <programme_s> at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl :='start time,' ~~ <4>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <category> at
<time_and_time_duration>

value := 'the' ~~ <2>.value

subconceptl := 'start time,' ~~ <4>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> one at <time_and_time_duration>

value := 'the one’

subconceptl :='start time,' ~~ <4>.time
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <db_channel> <programme_s>

value := 'the' ~~ <3>.value

subconceptl := ‘channel,' ~~ <2>.channel
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <db_channel> <category>

value := 'the' ~~ <3>.value

subconceptl := ‘channel,’ ~~ <2>.channel
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <db_channel> one

JL.R.D Woei-A-Jin, 2001

PH S

value := 'the one'

subconceptl := ‘channel,' ~~ <2>.channel
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <programme_s> on <db_channel>

value := 'the' ~~ <2>.value

subconceptl := ‘channel,’ ~~ <4>.channel
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> <category> on <db_channel>

value :='the' ~~ <2>.value

subconceptl := ‘channel,' ~~ <4>.channel
<DEFINITE_DESCRIPTION> ::= (5000)
<REFERENCE> one on <db_channel>

value := 'the one’

subconceptl := ‘channel,’ ~~ <4>.channel

<COMPOUND_DEF_DESCR> ::= (10)
<DEFINITE_DESCRIPTION> ‘of'
<DEFINITE_DESCRIPTION>

super_concept := <3>.value

concept := <1>.value

subconceptl := <1>.subconceptl

subconcept2 := <3>.subconceptl
<COMPOUND_DEF_DESCR> ::= (10)
<DEFINITE_DESCRIPTION> 'of <REFERENCE>

super_concept := <3>.value

concept := <1>.value

subconceptl := <1>.subconceptl

subconcept?2 :='-none-'
<COMPOUND_DEF_DESCR> ::= (10) from
<DEFINITE_DESCRIPTION><DEFINITE_DESCRIP
TION>

super_concept := <2>.value

concept := <3>.value

subconceptl := <2>.subconceptl

subconcept?2 := <3>.subconceptl
<COMPOUND_DEF_DESCR> ::= (10) from
<REFERENCE> <DEFINITE_DESCRIPTION>

super_concept := <2>.value

concept := <3>.value

subconceptl :='-none-'

subconcept2 := <3>.subconceptl

<seem> ::= (1) seems

<seem> ::= (1) does seem
<seem> ::= (1) 'doesn\'t seem’
<seem> ::= (1) does not seem
<seem> ::= (1) seem

<seem> ::= (1) seemed

<seem> ::= (1) did seem
<seem> ::= (1) 'didn\'t seem’
<seem> ::= (1) not seem
<appear> ::= (1) appears
<appear> ::= (1) does appear
<appear> ::= (1) 'doesn\'t appear’
<appear> ::= (1) does not appear
<appear> ::= (1) appear
<appear> ::= (1) appeared
<appear> ::= (1) did appear
<appear> ::= (1) 'didn\'t appear’
<appear> ::= (1) not appear
<occur> ::= (1) occurs

<occur> ::= (1) does occur
<occur> ::= (1) 'doesn\'t occur’
<occur> ::= (1) does not occur
<occur> ::= (1) occur

<occur> ::= (1) occured

<occur> ::= (1) did occur

131

<occur>
<occur>

—_—

<confirm> ::
<confirm> ::
<confirm> ::
<confirm> :
<confirm> ::

<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
<EXPLETIVE>
meant'

<EXPLETIVE>
meant’

<EXPLETIVE>
meant

<EXPLETIVE> :
<EXPLETIVE> :

<EXPLETIVE>
<EXPLETIVE>
meant
<EXPLETIVE>
meant
<EXPLETIVE>
meant
<EXPLETIVE>

1) 'didn\'t occur'
1) not occur

good

it <seem>

did it <seem>

does it <seem>

it <seem> that

did it <seem> that

does it <seem> that
that <seem>

did that <seem>

does that <seem>

it <appear>

did it <appear>

does it <appear>

it <appear> that

did it <appear> that
does it <appear> that
that <appear>

did that <appear>

does that <appear>

it <occur>

did it <occur>

does it <occur>

it <occur> that

did it <occur> that

does it <occur> that
that <occur>

did that <occur>

does that <occur>

'it\'s' <confirm>

'it\'s not' <confirm>

it is <confirm>

it isn\'t' <confirm>

it is not <confirm>

is it <confirm>

'isn\'t it' <confirm>

is it not <confirm>
<I>'didn\'t mean that'
<I>'didn\'t mean it'
‘that\'s not what | meant'
‘that isn\'t what | meant’
that is not what | meant
'that\'s what | meant'
that is what | meant
that is exactly what | meant
‘that\'s not exactly what |

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
1)

1= (1) 'that is not exactly what |

::= (1) that is precisely what |
:= (1) that was not what | meant
(1) 'that wasn\'t what | meant'
(1) that was what | meant
(1) that was exactly what |

;1= (1) that was not exactly what |
::= (1) that was precisely what |

1= (1) is that what | meant

JL.R.D Woei-A-Jin, 2001

PH S

<EXPLETIVE>
<EXPLETIVE>

<EXPLETIVE> :

<EXPLETIVE>

—~ e~~~

E=EEE

was that what | meant
‘I didn\'t mean that'

'I didn\'t mean it'

'l didn\'t want that'

132

<EXPLETIVE> ::
<EXPLETIVE> ::
<EXPLETIVE> ::

=(1
=(1
:(1

) 'l didn\'t want it'
) 'l didn\'t specify that'
) 'l didn\'t specify it'

JL.R.D Woei-A-Jin, 2001

PH S

Appendix C

Phrases with expletives

it seens <that>

it does seem <t hat >

it doesn't seem <that>
it does not seem <that >
does it seem <that>
does it not seem <that >
it seened <that>

it did seem <t hat>

it didn't seem <t hat>
it did not seem <that>
did it seem <that>

did it not seem <that>

it appears <that>

it does appear <that>

it doesn't appear <that>
it does not appear <that>
does it appear <that>
does it not appear <that>
it appeared <that>

it did appear <that>

it didn't appear <that>
it did not appear <that>
did it appear <that>

did it not appear <that>

it occurs <that>

it does occur <that>

it doesn't occur <that>
it does not occur <that>
does it occur <that>
does it not occur <that>
it occured <that>

it did occur <that>

it didn't occur <that>
it did not occur <that>
did it occur <that>

did it not occur <that>

it's ok <that>
it is ok <that>
it's not ok <that>
it isn't ok <that>
it is not ok <that>
is it ok <that>
isn't it ok <that>
is it not ok <that>

it's alright <that>
it is alright <that>
it's not alright <that>
it isn't alright <that>
it is not alright <that>
is it alright <that>
isn't it alright <that>
is it not alright <that>

that seens

that does seem
that doesn't seem
that does not seem
does that seem

133

does that not seem
that seened

that did seem

that didn't seem
that did not seem
that it seem

that it not seem

t hat appears

t hat does appear
that doesn't appear
that does not appear
does that appear
does that not appear
t hat appeared

that did appear

that didn't appear
that did not appear
did that appear

did that not appear

that occurs

that does occur
that doesn't occur
t hat does not occur
does that occur
does that not occur
that occured

that did occur

that didn't occur
that did not occur
did that occur

did that not occur

that's ok
that is ok
that's not ok
that isn't ok
that is not ok
is that ok
isn't that ok
is that not ok

that's alright
that is alright
that's not alright
that isn't alright
that is not alright
is that alright
isn't that alright
is that not alright

that's not what |/you/he/she/etc. neant
that isn't what |/you/etc. neant

that is not what |/you/etc. neant
that's what |/you/etc. neant

that is what I/etc. neant

that is exactly what |/etc. neant
that's not exactly what | neant

that is precisely what | neant

that was ...

is that what | neant

JL.R.D Woei-A-Jin, 2001

PHI S TU Delit

was that what | neant that's all wong

| didn't nean that

I didn't nmean it it's nothing
wanted ... it's fine
specified ... that's nothing

that's fine
it's all wong

134 JL.R.D Woei-A-Jin, 2001

.
¥,

1
h i.‘_\

2

C
@

--I k™
L

—h

—

PH S

Appendix D

System tasks and information requirements based
on examples

U: SPICE, are there any movies starring Clint Eastwood today?

S

I nput: Concepts: (<input: user>) <genre: movie> <actor: Clint Eastwood> <date;: today>

Main I nterface: translates concepts into some internally used data structure.

Main Engine: detect deixis (<genre: movie> <actor: Clint Eastwood> <date; today>)

Deixis Detection M odule: no concept tagged as deixis found.

Main Engine: detect & classify reference (genre: movies)

Reference Detection & Classification M odule: looks up in database?(genre: movies; reference: NIL)
Main Engine: temporarily update (genre: movies)

Update M odule: temp update concept type ‘genre’ history, temp update S-list

Main Engine: detect & classify reference (actor: Clint Eastwood)

Reference Detection & Classification M odule: looks up in database? (actor: Clint Eastwood,; reference:
NIL)

Main Engine: temporarily update (actor: Clint Eastwood)

Update M odule; temp update concept type ‘actor’ history, temp update S-list

There should be a timestamp or some other tag to indicate when it is encountered, because when a
reference like ‘the guy’ is used, the algorithm should look into the different concept types with the attribute
‘person’ and find the most recent one.

Main Engine: detect & classify reference (date: today)

Reference Detection & Classification M odule: looks up in database? (date: today; reference: NIL)
Main Engine: temporarily update (date: today)

Update M odule: temp update concept type ‘date’ history, temp update S-list

Main Engine: trandate output (<genre: movies> <actor: Clint Eastwood> <date: today)

Output Module: trandlates data into SPICE readable concepts.

S: <Shows list with today’ s movies starring Clint Eastwood>

I nput: Concepts: (<input: system>) (<best: 1>) <list: info; programs. movies, genre: movie, date: today,
[moviey: ...], ..., [moviey: ...]> <programs. movies, genre: movie, date: today, [movie,; ...], ..., [moviey:
..]>, [moviey ...], ..., [movie, ...]

Main Interface: translates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

Main Engine: update (list: info; ...)

Update M odule: update concept type ‘list’ history, update S-list

Main Engine: update (genre: movies; ...)

Update M odule: update concept type ‘genre’ history, update S-list

Main Engine: update (actor: Clint Eastwood)

Update M odule: update concept type ‘actor’ history, update S-list

Main Engine: update (date: today)

Update M odule; update concept type ‘date’ history, update S-list

U: Can you show me more information about this movie? <Points to amovie in the list>

S

I nput: Concepts: (<input: user>) <info: information> <ref: this movie> <deixis: movie>>

Main Interface: translates concepts into some internally used data structure.

Main Engine: detect deixis (<info: information> <ref: this movie> <deixis: movie>>)

Deixis Detection M odule: movie, found.

Main Engine: temporarily update (deixis: moviey)

Update M odule; temporarily update concept type ‘ programs’ history, temporarily update S-list

135 JL.R.D Woei-A-Jin, 2001

.
¥,

1
h i.‘_\

2

C
@

--I k™
L

—h

—

PH S

Main Engine: detect & classify reference (info: information)

Reference Detection & Classification M odule: looks up in database? (info: information; reference: NIL)
Main Engine: temporarily update (info: information)

Update M odule: temp update concept type ‘info’ history, temp update S-list

Main Engine: detect & classify reference (ref: thismovie)

Reference Detection & Classification M odule: looks up in database? (ref: this movie; reference:
demonstrative)

Main Engine: detect constraints (<info: information> <ref: this movie> <deixis. movie,>)

Constraints Detection M odule: constraints: number: singular, genre: movie

Main Engine: resolve demonstrative (ref: this movie; constraints: number: singular, genre: movie)
Demonstrative Resolution M odule: detected definite description properties, resolve definite description
(ref: thismovie, constraints: number singular, genre: movie)

Definite Description Resolution Module: determine concept types (ref: this movie, constraints: number:
singular, genre: movie)

Concept Determiner Module: concept type: programs

Definite Description Resolution Module: look up first compatiblein s- list with constraints: number:
singular. (programs: this movie; referent: movie,, genre: movie)

Main Engine: temporarily update (programs: this movie)

Update M odule: temp update concept type ‘programs’ history, temp update S-list

Main Engine: trandate output (<info: information> <programs: this movie; referent: movie.>)

Output M odule: trand ates data into SPICE readable concepts.

S: Shows information about the movie pointed to by the user

I nput: Concepts: (<input: system>) (<best: 1>) <info: information; movie: movies> Main Interface:
trand ates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

Main Engine: update (...)

Update M odule: update concept type “..." history, (update S-list)

U: Could you show me the list again?

S

Input: Concepts: (<input: user>) <ref: the list>

Main Interface: translates concepts into some internally used data structure.

Main Engine: detect deixis (<ref: the list>)

Deixis Detection M odule: no deixis found.

Main Engine: detect & classify reference (ref: the list)

Reference Detection & Classification M odule: looks up in database? (ref: the list; reference: definite
description)

Main Engine: detect constraints (<ref: the list>)

Constraints Detection M odule: constraints: number: singular, type: list

Main Engine: resolve definite description (ref: the list; constraints: number: singular, type: list)

Definite Description Resolution M odule: determine concept types (ref: the list, constraints: number:
singular, type: list)

Concept Determiner M odule: concept type: list

Definite Description Resolution Module: look up first compatiblein s-list, then in history of concept ‘list’
with constraints: number: singular, type: list. (list: the list; referent: list 2)

Main Engine: temporarily update (movie: the list)

Update M odule: temp update concept type ‘movie’ history, temp update S-list

Main Engine: trandate output (<list: the list; referent: list 2:

Output Module: trandlates data into SPICE readable concepts.

S: <Shows list with today’ s movies starring Clint Eastwood>

Input: Concepts: (<input: system>) (<best: 1>) <list: info; programs. movies, genre: movie, date: today >
<programs: movies; genre: movie, date: today, [movie;: ...], ..., [moviey: ...]> <genre: movie> <[movie:
>, <[moviey: ..]>

Main Interface: translates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

136 JL.R.D Woei-A-Jin, 2001

.
¥,

1
h i.‘_\

2

C
@

--I k™
L

—h

—

PH S

Main Engine: update (list: info; ...)

Update M odule; update concept type ‘list’ history, (update S-list)
Main Engine: update (programs. movies, ...)

Update M odule: update concept type ‘ programs’ history, update S-list
Main Engine: update (genre: movie)

Update M odule: update concept type ‘genre’ history, (update S-ist)
Main Engine: update (date: this week)

Update M odule: update concept type ‘date’ history, (update S-list)

U: Arethere any samurai movies today?

S

I nput: Concepts: (<input: user>) <genre: movie> <topic: samurai> <date: today>

Main I nterface: translates concepts into some internally used data structure.

Main Engine: detect deixis (<genre: movie> <topic: samurai> <date: today>)

Deixis Detection M odule: no concept tagged as deixis found.

Main Engine: detect & classify reference (genre: movie)

Reference Detection & Classification M odule: looks up in database? (genre: movie; reference: NIL)
Main Engine: temporarily update (genre: movie)

Update M odule: temp update concept type ‘genre’ history, temp update S-list

Main Engine: detect & classify reference (topic: samurai)

Reference Detection & Classification M odule: looks up in database? (topic: samurai; reference: NIL)
Main Engine: temporarily update (topic: samurai)

Update M odule; temp update concept type ‘topic’ history, temp update S-list

Main Engine: detect & classify reference (date: today)

Reference Detection & Classification M odule: looks up in database? (date: today; reference: NIL)
Update M odule: temp update concept type ‘date’ history, temp update S-list

Main Engine: trandate output (<programs. movies> <genre: movie> <topic: samurai> <date: today;>)
Output Module: trand ates data into SPICE readable concepts.

S: <Shows list with samurai movies today>

I nput: Concepts: (<input: system>) (<best: 1>) <list: info; programs. movies, genre: movie, topic: samurai,
date: today, [moviey: ...], ..., [movie,: ...]> <programs: movies, genre: movie, topic: samurai, date: today,
[moviey ...], ..., [movie,: ...]> <genre: movie> <[movie,: ...]>, ..., <[movie,: ...]>

Main Interface: translates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

Main Engine: update (list: info; ...)

Update M odule; update concept type ‘list’ history, (update S-list)

Main Engine: update (programs. movies, ...)

Update M odule: update concept type ‘ programs’ history, update S-list

Main Engine: update (genre: movie)

Update M odule: update concept type ‘genre’ history, (update S-ist)

Main Engine: update (topic:)

Update M odule: update concept type ‘actor’ history, (update S-list)

Main Engine: update (date: today)

Update M odule; update concept type ‘date’ history, (update S-list)

U: Who is the director of this one? <Points to amoviein the list>

S

I nput: Concepts: (<input: user>) <ref: the director of this one> <deixis. movies>>

Main Interface: translates concepts into some internally used data structure.

Main Engine: detect deixis (<ref: the director> <ref: this one> <deixis: movie>)

Deixis Detection M odule: movie, found.

Main Engine: temporarily update (deixis: moviey)

Update M odule: temp update concept type ‘programs’ history, temp update S-list

Main Engine: detect & classify reference (ref: the director of this one)

Reference Detection & Classification M odule: looks up in database? (ref: the director; reference: definite
description)

137 JL.R.D Woei-A-Jin, 2001

PH S

Main Engine: detect constraints: (<ref: the director> <ref: this one>)

Constraint Detection M odule: constraints: number: singular should ‘thisone’ be a constraint and as such
be solved first?

Main Engine: resolve definite description (ref: the director; constraints: number singular)

Definite Description Resolution Module: determine concept types (ref: the director; constraints: number:
singular)

Concept Determiner M odule: concept types: director, programs.director

Definite Description Resolution M odule: found as most recent director movie..director: Akira Kurasowa,
(director: the director; referent: Akira Kurasowa)

Main Engine: temporarily update (director: the director)

Update M odule; temp update concept type ‘director’ history, temp update S-list

Main Engine: detect & classify reference (ref: this one)

Reference Detection & Classification M odule: looks up in database? (ref: this movie; reference: definite
description)

Main Engine: detect constraints (<ref: this one> <ref: the director>)

Constraints Detection M odule: constraints: concept type: programs derived from the director, because
only programs have directors; number: singular

Main Engine: resolve definite description (ref: this one; constraints: concept type: programs; number:
singular)

Definite description Resolution M odule: detected definite description properties, because oneis limited
only to a program, but it is also arguable that it has pronominal properties asit refersto the programin
focus. (ref: this one, constraints: concept type: programs; number: singular)

Definite Description M odule: determine concept types (ref: this one, constraints. concept type: programs,
number singular)

Concept Determiner M odule: concept type: programs

Definite Description Module: look up first compatible in history of concept programs with constraints:
number: singular. (programs: this movie; referent: moviey)

Main Engine: temporarily update (programs: this movie)

Update M odule: temp update concept type ‘movi€’ history, temp update S-list

Main Engine: trandate output (<director: the director; referent: Akira Kurasowa> <movie: this one;
referent: movies>)

Output Module: trand ates data into SPICE readable concepts.

S: <Shows info on Akira Kurasowa>

I nput: Concepts: (<input: system>) (<best: 1>) <info: information; director: Akira Kurasowa> <director:
Akira Kurasowa>

Main Interface: translates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

Main Engine: update (...)

Update M odule: update concept type “..." history, (update S-list)

U: Arethere any other movies directed by him this month?

S

Input: Concepts: (<input: user>) <genre: movies> <constraint: directed> <ref: him> <date: this month>
Main Interface: translates concepts into some internally used data structure.

Main Engine: detect deixis (<programs. movies> <constraint: directed> <ref: him> <date: this month>)
Deixis Detection M odule: nothing found.

Main Engine: detect & classify reference (programs: movies)

Reference Detection & Classification M odule: looks up in database? (genre: movies; reference: NIL)
Main Engine: detect & classify reference (constraint: directed)

Reference Detection & Classification M odule: looks up in database? (constraint: directed; reference:
NIL)

Main Engine: detect & classify reference (programs: movies)

Reference Detection & Classification M odule: looks up in database? (ref: him; reference: pronoun)
Main Engine: detect constraints: (<programs: movies> <constraint: directed> <ref: him> <date: this
month>)

Constraint Detection M odule: constraints: number: singular, concept type: director derived from directed

138 JL.R.D Woei-A-Jin, 2001

.
¥,

1
h i.‘_\

2

C
@

--I k™
L

—h

—

PH S

Main Engine: resolve pronoun (ref: him; constraints: number singular, concept type: director)
Pronoun Resolution M odule: looks up fist compatible person within binding constraints up in the
Salience list: (director: him; referent: Akira Kurasowa).

Main Engine: temporarily update (director: him)

Update M odule: temp update concept type ‘director’ history, temp update S-list

Main Engine: detect & classify reference (date: this month)

Reference Detection & Classification M odule: looks up in database? (date: this month; reference: date)
Main Engine: detect constraints (<date: this month> <programs: movies> <constraint: directed> <ref:
him>)

Constraints Detection M odule: constraints: NIL

Main Engine: resolve date (date: this month; constraints: NIL)

Main Engine: temporarily update (date: this month)

Update M odule; temp update concept type ‘date’ history, temp update S-list

Main Engine: trandate output (<programs. movies> <director: him; referent: ...> <date: this month>)
Output Module: trandlates data into SPICE readable concepts.

S: <Shows list of movies this month directed by Akira Kurasowa>

Input: Concepts: (<input: system>) (<best: 1>) <list: info; programs. movies, genre: movie, date: this
month, [moviey: ...], ..., [movie,: ...]> <programs. movies, genre: movie, date: this month, [movie;: ...],
..., [moviey: ...]> <genre: movie> <[movigy ...], ..., <[movie,: ...]>

Main Interface: tranglates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

Main Engine: update (list: info; ...)

Update M odule; update concept type ‘list’ history, (update S-list)

Main Engine: update (programs. movies, ...)

Update M odule: update concept type ‘programs’ history, update S-list

Main Engine: update (genre: movie)

Update M odule: update concept type ‘genre’ history, (update S-list)

Main Engine: update (date: this week)

Update M odule: update concept type ‘date’ history, (update S-list)

U: Arethere any movies by Roman Polansky?

S

Input: Concepts: (<input: user>) <programs: movies> <genre: movie> <director: Roman Polansky>
Main I nterface: translates concepts into some internally used data structure.

Main Engine: detect deixis (<programs. movies> <genre: movie> <director; Roman Polansky >)
Deixis Detection M odule: no concept tagged as deixis found.

Main Engine: detect & classify reference (programs: movies)

Reference Detection & Classification M odule: looks up in database? (programs: movies; reference: NIL)
Main Engine: temporarily update (programs. movies)

Update M odule: temp update concept type ‘programs’ history, temp update S-list

Main Engine: detect & classify reference (genre: movie)

Reference Detection & Classification M odule: looks up in database? (genre: movie; reference: NIL)
Main Engine: temporarily update (genre: movie)

Update M odule; temp update concept type ‘genre’ history, temp update S-list

Main Engine: detect & classify reference (director: Roman Polansky)

Reference Detection & Classification M odule: looks up in database? (director; Roman Polansky;
reference: NIL)

Main Engine: temporarily update (director: Roman Polansky)

Update M odule: temp update concept type ‘director’ history, temp update S-list

Main Engine: translate output (<programs. movies> <genre: movie> <director: Roman Polansky>)
Output Module: trand ates data into SPICE readable concepts.

S: <Shows list with movies directed by Roman Polansky>

139 JL.R.D Woei-A-Jin, 2001

.
¥,

1
h i.‘_\

2

C
@

--I k™
L

—h

—

PH S

I nput: Concepts: (<input: system>) (<best: 1>) <list: info; programs. movies, genre: movie, [movie, ...],
..., [moviey: ...]> <programs. movies, genre: movie, [moviey: ...], ..., [movie,: ...]> <genre: movie>
<[movie; ...]>, ..., <[movie,: ...]>

Main Interface: translates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

Main Engine: update (list: info; ...)

Update M odule: update concept type ‘list’ history, (update S-list)

Main Engine: update (programs. movies, ...)

Update M odule: update concept type ‘programs’ history, update S-list

Main Engine: update (genre: movie)

Update M odule: update concept type ‘genre’ history, (update S-ist)

Main Engine: update (director: Roman Polansky)

Update M odule: update concept type ‘director’ history, (update S-list)

U: In which of these does he star himself?

S

Input: Concepts: (<input: user>) <ref: these> <ref: he> <actor: himself>

Main I nterface: tranglates concepts into some internally used data structure.

Main Engine: detect deixis (<ref: these> <ref: he> <actor: himself>)

Deixis Detection M odule: nothing found.

Main Engine: detect & classify reference (ref: these)

Reference Detection & Classification M odule: looks up in database? (ref: these; reference:
demonstrative)

Main Engine: detect constraints: (<ref: these> <ref: he> <actor: himself>)

Constraint Detection M odule: constraints: number: plural

Main Engine: resolve demonstrative (ref: these; constraints: number: plural)

Demonstrative Resolution M odule: pronominal properties detected (ref: these; constraints: number:
plural)

Pronoun Resolution M odule: looks up in the S-list. <programs: these; referent: programs. movies; genre:
movie, director: Roman Polansky, [movie;: ...], ..., [movie,: ...]> should be returned.

Main Engine: temporarily update <programs: movies>

Update M odule: temp update concept type ‘programs’ history, temp update S-list

Main Engine: detect & classify reference (ref: he)

Reference Detection & Classification M odule: looks up in database? (ref: he; reference: pronoun)
Main Engine: detect constraints: (<ref: these> <ref: he> <actor: himself>)

Constraint Detection M odule: constraints: number: singular, gender: male, person: person

Main Engine: resolve pronoun (ref: he; constraints: number: singular, gender: male, person: person)
Pronoun Resolution M odule: looks up in the S-list, should return (director: he; referent: director: Roman
Polansky)

Main Engine: temporarily update <director: he>

Update M odule: temp update concept type ‘director’ history, temp update S-list

Main Engine: detect & classify reference (actor: himself)

Reference Detection & Classification M odule: looks up in database? (actor: himself; reference: pronoun)
Main Engine: detect constraints: (<ref: these> <ref: he> <actor: himself>)

Constraint Detection M odule; constraints: number: singular, gender: male, person: person, mode:
reflective

Main Engine: resolve pronoun (actor: himself; constraints. number: singular, gender: male, person: person,
mode: reflective)

Pronoun Resolution M odule: Looks up in the S-list, should return (actor: himself; referent: director: he;
referent: Roman Polansky)

Main Engine: temporarily update (actor: himself)

Update M odule: temp update concept type ‘actor’ history, temp update S-list

Main Engine: trandate output (<programs:. these; referent: programs: movies> <director: he; referent:
director: Roman Polansky> <actor: himself; referent: director: Roman Polansky)

Output Module: trand ates data into SPICE readable concepts.

S: <Shows list with movies directed by Roman Polansky with actor Roman Polansky>

140 JL.R.D Woei-A-Jin, 2001

PH S

I nput: Concepts: (<input: system>) (<best: 1>) <list: info; programs. movies, genre: movie, [movie, ...],
..., [moviey: ...]> <programs. movies, genre: movie, [moviey: ...], ..., [movie,: ...]> <genre: movie>
<[movie; ...]>, ..., <[movie,: ...]>

Main Interface: translates concepts into some internally used data structure.

Main Engine: update (best: 1)

Update M odule: save updates from 1% try. Clear temporary updates.

Main Engine: update (list: info; ...)

Update M odule: update concept type ‘list’ history, (update S-list)

Main Engine: update (programs. movies, ...)

Update M odule: update concept type ‘programs’ history, update S-list

Main Engine: update (genre: movie)

Update M odule: update concept type ‘genre’ history, (update S-ist)

141 JL.R.D Woei-A-Jin, 2001

PH S

Appendix E

Source Code

This appendix lists the source code of each of the classes used in the reference resolution
module.

Main Interface

FECEEEEEE i r i e b rr g
1Hrrrrr

11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

R NN N N NN NN NNy
[rrrir

/1l File: pinterface.cc
/'l Last changed by:
/1 Last changed on

/Il Created by: Dimitri Wei-A-Jin
/!l Created on: May 10, 2001

/1 Description: This nodule reads and transl ates SPICE parse data into Anaphora Mdul e

NN N NN NN NNy
[rrrir

#i ncl ude <set>

#i ncl ude <fstreanr

#i ncl ude <i ostreanp

#i ncl ude <unistd. h>

#i ncl ude <errno. h>

#i nclude <fcntl. h>
#include "nmyUils. h"
#i ncl ude "mai neng. h"
#i ncl ude "displread. h"

usi ng nanmespace std

set <string> ignoreList; // list of concept types to ignore

set <string> subConceptlList; // list of subconcepts

set <string> listEntriesList; // list of list entries tags

set <string> valuelList; //list of value tags

set <string> superConceptList; //list of super concept tags

set <string> thisConceptList; //list of this concept tags

/1 FI LE *df;

vect or <DSConcept > screen

vector <string> newcontentvalue; //list of values to be filtered out
vector <string> newcontenttype; //list of types to replace the content_type
DSMai nEngi ne nmai nEngi ne

int reqg_reader;

ifstreamin;

/**

142 JL.R.D Woei-A-Jin, 2001

PH S

* Initialize all variables.
*/

void init()

myUtils util;

string tnp, type, value, strTime, inputOrigin;

int timestanp, subTi mestanp;

vect or <DSConcept > *subConLi st, *listEntries, *subSubConlLi st;

/1 load files which contain filter data.
/lifstreamin;

cout << "l oading concept types to ignore..." << endl;
in.open("ignore.txt", ios::in);
if (lin)
{ . . .
cerr << "Cannot open ignore |list data file" << endl;
exit;

}
while ('in.eof())

getline(in, tmp);
if (tnp.find("#")!=string::npos || tnp=="") // comment read.

//cout << "comment: " << tnp << endl;
}
el se
t .
ignorelList.insert(tnp);
}
in.close();
cout << "|oadi ng subconcept indicators..." << endl;
in.open("subCon.txt", ios::in);
if (lin)
{ .
cerr << "Cannot open subconcepts data file" << endl;
exit;
}
while (!in.eof())
{
getline(in, tnmp);
if (tnp.find("#")!=string::npos || tnp=="") // comment read.
//cout << "comment: " << tnp << endl;
}
el se
subConcept Li st.insert(tnp);
}
}
in.close();
cout << "loading list entry indicators..." << endl;
in.open("listEntries.txt", ios::in);
if (lin)
{
cerr << "Cannot open list entries data file" << endl;
exit;

}
while (!in.eof())

getline(in, tnp);
if (tmp.find("#")!=string::npos || tnmp=="") // comment read.

//cout << "comment: " << tnp << endl;
}
el se

listEntriesList.insert(tnp);
}

143 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

in.close();

cout << "|oadi ng superconcept indicators..." << endl;

i n.open("superconcept.txt", ios::in);

if (lin)

{
cerr << "Cannot open superconcept tag data file" << endl;
exit;

}
while ('in.eof())
{

getline(in, tmp);
if (tmp.find("#")!=string::npos || tnmp=="") // comment read.

//cout << "comment: " << tnp << endl;
}
el se
{ o
super Concept Li st.insert (tnp);
}
in.close();
cout << "loading this concept indicators..." << endl;
in.open("thisconcept.txt", ios::in);
if (lin)
{ . .
cerr << "Cannot open thisconcept tag data file" << endl;
exit;

}
while ('in.eof())

getline(in, tmp);

if (tnp.find("#")!=string::npos || tnp=="") // comment read.
//cout << "comment: " << tnp << endl;
}
el se
t hi sConcept List.insert(tmp);
}
in.close();
cout << "loading value indicators..." << endl;
in.open("value.txt", ios::in);
if (lin)
{
cerr << "Cannot open value list data file" << endl;
exit;
}
while (!in.eof())
{
getline(in, tnp);
if (tnp.find("#")!=string::npos || tnp=="") // comment read.
//cout << "comment: " << tnp << endl;
}
el se
val ueLi st.insert(tnp);
}
}
in.close();
/* cout << "loading pipe nunber..." << endl;
in.open("reqReader.txt", ios::in);
if (lin)
{ . .
cerr << "Cannot open required reader data file" << endl;
exit;
}
while (!in.eof())
{

144 J.L.R.D Woei-A-Jin, 2001

PH S

getline(in, tnmp);
if (tmp.find("#")!=string::npos || tnmp=="") // comment read.

//cout << "comment: " << tnp << endl;

}

el se

{
}

in.close();*/
in.open("actordirector.txt", ios::in);
if (lin)

{

req_reader = util.str2Int(tnp);

cerr << "Cannot open actor director data file" << endl;
exit;

}
while ('in.eof())

getline(in, tmp);
if (tmp.find("#")!=string::npos || tnmp=="") // comment read.

//cout << "comment: " << tnp << endl;
}
el se
{ .
newcont ent t ype. push_back(tnp. substr (0, tnmp.find(",")));
newcont ent val ue. push_back(t np. substr(tnp. find(",")+2));
}
}
in.close();
in.open("/tnp/dwoei/logfiles/log.lst", io0s::in);
if(lin)
{
cerr << "Cannot open user input data" << endl;
exit;
}

}

void filter AndRepl ace(string &value, string filter, string replace)

if (value.find(filter)!=string::npos)

{
cout << value << " is changed into "
val ue.repl ace(value.find(filter), value.find(filter) + filter.size(), replace);
cout << value << endl;
}
}
/**

* Read fromthe pipe, create a concept list and send it to the main engine.
*/

voi d processbDat a()
{
string tnp, tag, type, value, subconceptType, subconceptVal ue, pointingval ue,
super concept, thisconcept;
string text;
vect or <DSConcept > conLi st, *subConlLi st;
int conNr = -1;
int timestanp = O;
bool ignore, deixis;
vect or<DSConcept >::iterator it;
vect or <string> dei xi sval ue, dei xi stype;
DSDi spl ayReader di spl ayReader ;
vector<string> noi se;
myUtils util;

noi se. push_back("<3:>");
noi se. push_back("<3:r>");

145 JL.R.D Woei-A-Jin, 2001

PHI S TU Delit

noi se. push_back("<@>");
noi se. push_back("<@>");
noi se. push_back("<@@");
noi se. push_back("<@@>");
noi se. push_back(" <@A: >");
noi se. push_back(" <A >");
noi se. push_back(" <A: h>");
noi se. push_back(" <A hA: >");
noi se. push_back("");
noi se. push_back("<I>");
noi se. push_back(" <l k>");
noi se. push_back(" <O >");
noi se. push_back("<Q@");
noi se. push_back(" <Uf >");
noi se. push_back("<Vf>");
noi se. push_back("<vg>");
noi se. push_back(" <vh>");
noi se. push_back("<vhV>");
noi se. push_back(" <VhVvh>");
noi se. push_back(" <vm");
noi se. push_back(" <h@f >");
noi se. push_back(" <hV>");
noi se. push_back(" <hvnf >");
noi se. push_back(" <hm");
noi se. push_back("<i: k>");
noi se. push_back(" <mhnmp");
noi se. push_back(" <mmp");
noi se. push_back("<sh>");
noi se. push_back("<u: >");
noi se. push_back("<u: f>");
noi se. push_back(" <w@Js>");
noi se. push_back(" <waU>");
noi se. push_back("<w : >");
noi se. push_back(" <wu: >");
noi se. push_back(" #PAUSE#") ;
noi se. push_back("<dZu: I | Az >");

cout << "updating screen info" << endl
mai nEngi ne. handl eConcept s(di spl ayReader . readDi spl ayCont ent (ti nest anp))

subConLi st = NULL;

while (true)
{
cout << "readi ng conceptgraph" << endl
cerr << "waiting for user input..." << endl
whi | e(true)
{
//cerr << "waiting... " << endl
/1 if (lin.eof()) //wait until able to read fromfile
/14

getline(cin,tnm);
/lcerr << tnp << endl

if (tnp.find("BEA N_LATTICE") != string::npos)
{

cout << tnp << endl

br eak;
}
/1 }
}
cerr << "user input received..." << endl
whi | e(true)
/1if (lin.eof()) //wait until able to read fromfile
/14
getline(cin, tnp);
for(int i=0; i < noise.size(); i++)

while (tnp.find(noise[i]+" ")!=string::npos)

tnp.erase(tnp.find(noise[i]+" "), noise[i].size())

146 JL.R.D Woei-A-Jin, 2001

PH S TUD

}
while (tnp.find(noise[i])!=string::npos)
{

tnp.erase(tnp.find(noise[i]), noise[i].size());

cout << "done filtering noise" << endl;

for (int i=0; i < tnp.size(); i++) // renove all spaces in front
if (tp[i]!=" " && tnp[i]!l="\t")
{
tnp = tnp.substr(i);
br eak;
}
for (int i=tnp.size()-1;, i>0; i--) //renove all spaces at the end
if (tp[i]!="" && tnp[i]!="\t")
{
tnp = tnp.substr(0,i+1);
br eak;
}
}
while (tnmp.find(" ")!=string::npos) //renmove all doubl e spaces

tnp.erase (tnp.find(" "), 1);

cout << tnp << endl;
if (tnmp.find("@)!=string::npos) // concept type read
{

if (conNr !'=-1) // not first concept
{ if (!'ignore)
if (type == "contents")
for (int k=0; k < newcontentval ue.size(); k++)

if (value.find(newcontentval ue[k])!=string::npos)

if (value.find("and")!=string::npos)

{
for (int I=k+1; | < newcontentval ue.size(); |++)
if (value.find(newcontentvalue[l])!=string::npos)
{
val ue = newcontentvalue[k] + " and " + newcontentval ue[l];
type = newcontenttype[K];
br eak;
}
}
}
el se
{

val ue = newcont ent val ue[k] ;

type = newcontenttype[Kk];

br eak;

}
}
}
}
cout << conNr << ": adding concept type: (" << type << ") value: (" <<
value << ") tinestanp: (" << tinmestanp << ")" << endl;

conlLi st. push_back(DSConcept (type, val ue, ti mestanp));
ti mest anp++;
conLi st[conNr]. set Text (text);
conList[conNr].setlnputOrigin("user");
cout << conNr << ": " << conList[conNr].getlnputOrigin() << endl;
conLi st[conNr]. set SubConcept s(subConLi st) ;
subConLi st = NULL;
if (superconcept!="")

147 JL.R.D Woei-A-Jin, 2001

PH S

conLi st[conNr]. set Super Concept (super concept);
superconcept = "";

if (thisconcept!="")

conLi st[conNr]. set Concept (thi sconcept);
t hi sconcept = "";

}

conNr ++;

if (deixis)

for (int d=0; d < deixisvalue.size(); d++)

i f(dei xi stype[d]!=dei xi stype[0] &dei xi sval ue[d] ! =dei xi sval ue[0])
{

conLi st . push_back(DSConcept (dei xi stype[d], dei xi sval ue[d], ti mestanp));
conList[conNr].setlnputOigin("deixis");
conNr ++;

}
i f (dei xi sval ue[d] ==dei xi sval ue[0] &&dei xi stype[0] =="")
{

conLi st[0]. set Type(dei xi stype[d]);

}
}
}
ignore = fal se;
dei xis = fal se;
dei xi stype. clear();
dei xi sval ue. clear();

}

el se

{ .
cout << "first concept read" << endl;
conNr ++;

}

text = tnp + "\n";

tnp tnp.substr(tnmp.find("@)+1);

tnp tnp.substr (0, tnp.find(" "));

cout << "concept type '" << tnp << "' read" << endl;

if (ignoreList.count(tnp)==0) // do not ignore the concept type

type = tnp;

el se

{
cout << "ignore concept" << endl;
ignore = true;

}

Eel se if (tnp.find("END_LATTICE") != string::npos)
if (lignore & conNr!=-1)
if (type == "contents")
for (int k=0; k < newcontentval ue.size(); k++)
if (value.find(newcontentval ue[k])!=string::npos)
if (value.find("and")!=string::npos)
for (int I=k+1; | < newcontentval ue.size(); |++)
if (value.find(newcontentvalue[l])!=string::npos)
{ val ue = newcontentval ue[k] + " and " + newcontentval ue[l];

type = newcontenttype[Kk];
br eak;

148 JL.R.D Woei-A-Jin, 2001

PH S

}
}
}
el se
{

val ue = newcont ent val ue[k] ;
type = newcontenttype[K];
br eak;
}
}
}

cout << conNr << ": adding concept type: (" << type << ") value: (" << value
<< ") timestanp: (" << timestanp << ")" << endl;

conlLi st . push_back(DSConcept (type, val ue, ti mestanp));

conLi st[conNr]. set Text (text);

conLi st[conNr].setlnputOrigin("user");

cout << conNr << ": " << conList[conNr].getlnputOrigin() << endl;

conLi st[conNr]. set SubConcept s(subConLi st);

subConLi st = NULL;

if (superconcept!="")

conLi st[conNr] . set Super Concept (super concept);
superconcept = "";

if (thisconcept!="")

conLi st[conNr]. set Concept (thi sconcept);
t hi sconcept = "";

}
if (deixis)

for (int d=0; d < deixisvalue.size(); d++)

{
conNr ++;
conLi st. push_back(DSConcept (dei xi stype[d], dei xi sval ue[d], ti mestanp));
conList[conNr].setlnputOrigin("deixis");

}

dei xi stype. clear();

dei xi sval ue. clear();

}
b
timestanp++;
conNr = -1,
i gnore fal se;

dei xi s = fal se;
cout << "starting main engine" << endl;
if (conList.size() == 0)

conlLi st. push_back(DSConcept (" dunmmy”, "dunmmy", ti mestanp)); //create dummy
concept .
conList[0].setlnputOrigin("user");
}
mai nEngi ne. handl eConcept s(conLi st);
cout << "updating screen info" << endl;
mai nEngi ne. handl eConcept s(di spl ayReader . readDi spl ayCont ent (ti mestanp));
conList.clear();
br eak;

else if (lignore)

{
text = text + tnp +"\n";
for(int i=0; i < tnp.size(); i+4)
if (tnp[i] !'=" ' && tnp[i]!="\t") //renove all spaces add the begi nning of
the line
{
tnp = tnp.substr(i);
cout << tnp << endl;
br eak;
}

149 JL.R.D Woei-A-Jin, 2001

PH S

}
tag = tnp.substr(0,tnmp.find(" "));
if (tag == "title")
{
tag = "programme”;
}
cout << "tag is: " << tag << endl;

tnp = tnp.substr(tnmp.find(" ")+1);
for(int i=0; i < tnp.size(); i++)

if (tnp[i]!=""" && tnp[i]!="\t"') //renove all spaces add the begi nning of the
l'ine
{ .
tmp = tnp.substr(i);
br eak;
}
} .
if (subConceptList.count(tag) != 0)
{
cout << "subconcept tag" << endl;
bool subconceptfound = fal se;
/1 tmp = tnp.substr(tnp. find(" ")+1);
if (tnp!="-none-")
subconcept found = true;
if (subconceptfound)
{
cout << "subconcept found" << endl;
subconcept Type = tnp. substr (0, tnmp.find(","));
cout << "subconcept type: " << subconcept Type << endl;
tnp = tnp.substr(tnp.find(",")+2);
subconcept Val ue = tnp. substr (0, tnp.find(","));
cout << "subconcept value: " << subconcept Val ue << endl;
if (subconcept Type == "start tinme" || subconcept Type == "end tine")
{
subconcept Val ue =
util.int2Str(util.str2lnt(subconceptVal ue)/60)+":"+((util.str2lnt(subconceptVal ue)%0) <10
?"0"+util.int2Str(util.str2lnt(subconceptVal ue)%60):util.int2Str(util.str2lnt(subconceptV
al ue) 960)) ;
if (subConList == NULL)
subConLi st = new vect or <DSConcept >;
}
subConlLi st - >push_back(DSConcept (subconcept Type, subconcept Val ue,
tinmestanp));
cout << "added subconcept to the list" << endl;
it = subConList->end();
it--;
it->setlnputOrigin("user");
cout << "set subconcept input origin" << endl;
}
}
else if (listEntriesList.count(tag) != 0)
{
/Il create a listentry for the concept. Currently not inplenented in grammar.
}
el se if (superConceptlList.count(tag)!= 0)
{
if (tnmp !'= "-none-")

superconcept = tnp;
}
else if (thisConceptlList.count(tag)!= 0)

if (tnmp !'= "-none-")
t hi sconcept = tnp;

else if (valuelList.count(tag) !'= 0)
if (tnp.find("[")!=string::npos) // if deictic input

cout << "add deixis value" << endl;

150 JL.R.D Woei-A-Jin, 2001

PH S

dei xi sval ue. push_back(tnp. substr(tnp.find("[")+1
(trmp.find(":")!=string::npos?tnmp.find(":"):tmp.find("]")) - tmp.find("[") -1));
cout << "add deixis type" << endl
dei xi stype. push_back((tnp.find(":")!=string::npos ?
tp. substr(tmp. find(":")+1, tmp. find("]")-tmp.find(":")-21):""));
if (deixistype[deixistype.size()-1] == "title")
{

}

dei xis = true

poi ntingval ue = dei xi sval ue[dei xi sval ue. si ze()-1];

cout << "deixis type: " << deixistype[deixistype.size()-1] << " deixis
val ue: " << dei xi sval ue[dei xi sval ue. si ze()-1] << endl

tmp = tnp.substr (0, tnp. find("[")-1);

dei xi stype[dei xi stype. size()-1] = "prograni

[*tnmp = tnp.substr(tnp. find(" ")+1);
for(int i=0; i < tnp.size(); i++)

if (tnp[i]!="" && tnp[i]!="\t") //renove all spaces add the begi nning of
the line
{
tmp = tnp.substr(i);
br eak;
}
Pl
cout << "concept value: " << tnp << endl
val ue = tnp;
//filter out 'on channel 5'/'on channel 4'/'on discovery channel
filterAndRepl ace(val ue, "on channel 5", "on channel 5")
filter AndRepl ace(val ue, "on channel 4", "on channel 4")
filter AndRepl ace(val ue, "on discovery channel”, "on discoverychannel ")
else if (deixis)
/*tnp = tnp.substr(tnp. find(" ")+1);
for(int i=0; i < tnp.size(); i++)
{
if (tnp[i]!="" && tnp[i]!="\t"') //renpbve all spaces add the begi nning of
the line
{
tnp = tnp.substr(i);
br eak;
}
Pl
cout << "concept value: " << tnp << endl
if (pointingval ue==t np)
{
for (int i=0; i < deixisvalue.size(); i++)
if (deixisval ue[i]==pointingval ue)
if (tag != deixistype[i])
dei xi stype[i] =tag;
}
}
el se
{
dei xi sval ue. push_back(tnp);
dei xi st ype. push_back(tag);
}
}
}
/1 }
}
}
}
int main()
init();

processData();

151 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

152 JL.R.D Woei-A-Jin, 2001

PH S

Display Reader

Header file

FEEEEEEEEEEE i i bbb rrrr
1rrrnrr

/1

/1

11 Copyright (C 2001 Philips GrbH Di al og Systens

/1

/1 Al rights reserved

/1

/1

/1

FEEEEEEEE i i bbb rrr
1Hrrnrr

/1

/1 File: displread.h

/'l Last changed by:

/1 Last changed on

/1

/!l Created by: Dimtri Wei-A-Jin

/1 Created on: January 17, 2001

/1

/1 Description: This nmodul e reads the display infornation

/1

FEEEEEEEEE bbb rrr g
1Hrrnrr

#i f ndef DI SPLAYREADER H

#define DI SPLAYREADER H

#
#
#
#
#
#

c

{

ncl ude <set>

ncl ude <string>
ncl ude <vector>
ncl ude "concept. h"
ncl ude <fstreane
ncl ude <i ostreanp

ass DSDi spl ayReader

publi c:

pr

/**

* Constructor
*/

DSDi spl ayReader () ;

/**

* Destructor
*/

~DSDi spl ayReader () ;

/**
* Creates a concept froma list of concepts, which can be referred to pronomnally.
* @aram conlist Concept list, which contains the list of concepts, which can be
ononminally referred to
* @eturn A concept list, expanded with the concept, which can be pronomnally

referred to.

pr

*/
vect or <DSConcept > readDi spl ayContent (i nt &t i nestanp);

ot ect ed:

153 JL.R.D Woei-A-Jin, 2001

PH S

/1 none
private:

int timestanp;

ifstreamin;

}s
#endi f // Dl SPLAYREADER H

Implementation File

I N N N N NN NN NN NNy
[rrrir

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

NN N N NN NNy
1rrrir

/1 File: displread.cc
/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-A-Jin
/1 Created on: January 17, 2001

/1 Description: This nmodul e reads the display infornation

I N N N N NN NN NNy
1rrrir

#i ncl ude "di splread. h"
#include "nmyUils. h"

[/ public:
/**
* Constructor.
*/
DSDi spl ayReader : : DSDi spl ayReader ()
{
in.open("/tnp/philips/dispcont.log", ios::in);
if (lin)
{
cerr << "Cannot open file" << endl;
exit;
}
}
/**
* Destructor.
*/

DSDi spl ayReader : : ~DSDi spl ayReader ()

in.close();

}
/**

* Creates a concept froma list of concepts, which can be referred to pronomnally.
* @aramconlist Concept list, which contains the list of concepts, which can be
pronomnally referred to.

154 J.L.R.D Woei-A-Jin, 2001

PH S

* @eturn A concept |ist, expanded with the concept, which can be pronomnally
referred to.
*/

vect or <DSConcept > DSDi spl ayReader : : r eadDi spl ayCont ent (i nt &ti nestanp)

string tnp, substring;

vect or <DSConcept > res, *dateEntries, *startEntries, *endEntries, *channel Entries,
*titleEntries, *categoryEntries, *subConcepts;

DSConcept *date, *start_tine, *end_tine, *channel, *title, *category, list, datelist,
startlist, endlist, channellist, categorylist;

myUtils util;
dateEntries = NULL;
startEntries = NULL;
endEntries = NULL;
channel Entries = NULL;
titleEntries = NULL;
categoryEntries = NULL;
subConcepts = new vect or <DSConcept >;
date = NULL;
start_tinme = NULL;
end_time = NULL;
channel = NULL;

title = NULL;

category = NULL;

std::streanpos readpos = in.tellg();
if (timestanp !'=0) // no best when tinmestanp==0, because there is nothing to save
{
res. push_back(DSConcept ("best" , "1" ,timestanp));
res[0].setlnputOrigin("systent);

cerr << "waiting for screen info..." << endl;
while (true)

/lcerr << "waiting..." << endl;
if (in.beg == in.end)
{

else if (in.eof())

in.close();
in.open("/tnp/philips/dispcont.log", ios::in);
if (lin)
{

cerr << "Cannot open file" << endl;

exit;

/lin.clear(in.rdstate() & ~std::ios::eofbit); //clear the eofbit
/1if (lin.eof())

11 cerr << "eofbit cleared" << endl;

i n. seekg(readpos);

el se

{

readpos = in.tellg();
getline(in, tnp);
if (tnmp=="") // coment read.

//cout << "comment: " << tnp << endl;

}

el se
if (tnp.find("<ITEM.I ST")!=string::npos) //start of itenlist
{
tnp = tnp.substr(tnp.find(" name=") +7);
string nane = tnp.substr(0,tnp.find("\""));

cout << " nanme of list: " << nanme << endl;
list = DSConcept ("list", name+" " + util.int2Str(tinmestanp), tinestanp);

155 JL.R.D Woei-A-Jin, 2001

PH S

list.setlnputOrigin("systent);

datel i st = DSConcept("date list", "date list " + util.int2Str(ti mestanp),
ti mestanp);

datelist.setlnputOrigin("systent);

startlist = DSConcept("start time list", "start time list " +
util.int2Str(ti mestanp), tinmestanp);

startlist.setlnputOrigin("systen');

endl i st = DSConcept("end tinme list", "end tinme list " +
util.int2Str(ti mestanp), tinmestanp);

endlist.setlnputOrigin("systenl);

channel | i st = DSConcept ("channel list", "channel list " +
util.int2Str(timestanp), timestanp);

channel | i st.setlnputOrigin("systenl);

categorylist = DSConcept(“category list", "category list " +
util.int2Str(timestanp), timestanp);

categorylist.setlnputOrigin("systen');

//cout << "done processing itemist" << endl;

}
if (tnp.find("<PROG TEM>")!=string::npos) //start of a programitem
{

subConcepts = new vect or <DSConcept >;
date = NULL;

start_tinme = NULL;

end_time = NULL;

channel = NULL;

title = NULL;

category = NULL;

}
if (tnp.find("<DATE>")!=string::npos)
{

substring = tnp.substr(tnp.find("<DATE>") +6);

substring = substring.substr(0, substring.find("</DATE>"));
date = new DSConcept ("date", substring, tinestanp);

dat e->set I nput Ori gi n("systent');

//cout << "done processing date" << endl;

}
if (tnp.find("<START_TI ME>")!=string::npos)
{
substring = tnp.substr(tnp.find("<START_TI ME>") +12);
substring = substring.substr(0, substring.find("</START_TI ME>"));
start_tine = new DSConcept ("start time", substring, tinestanp);
start_time->setlnputOrigin("systent);
//cout << "done processing start tine" << endl;
}
if (tnp.find("<END_TIME>")!=string::npos)
{
substring = tnp.substr(tnp.find("<END_TI ME>") +10) ;
substring = substring.substr(0, substring.find("</END_TIME>"));

end_time = new DSConcept("end time", substring, tinestanp);
end_time->setlnputOrigin("systent');
//cout << "done processing end tine" << endl;

}
if (tnp.find("<CHANNEL>")!=string:: npos)
{

substring = tnp.substr(tnp.find("<CHANNEL>") +9);

substring = substring.substr(0, substring.find("</CHANNEL>"));
channel = new DSConcept ("channel ", substring, tinestanp);
channel - >set | nput Ori gi n("systent);

//cout << "done processing channel" << endl;

}

if (tnp.find("<TITLE>")!=string::npos)

{
substring = tnp.substr(tnp.find("<TITLE>")+7);
substring = substring.substr(0, substring.find("</TITLE>"));
title = new DSConcept (" programme”, substring, tinestanp);
title->setlnputOrigin("systent);
//cout << "done processing title" << endl;

}

if (tnp.find("<CATEGORY>")!=string:: npos)

{

substring = tnp.substr(tnp.find("<CATEGORY>") +10) ;

156 JL.R.D Woei-A-Jin, 2001

PH S

substring = substring. substr(0, substring.find("</CATEGORY>"));
category = new DSConcept ("category", substring, tinmestanp);
cat egory->setlnput Ori gi n("systent');

//cout << "done processing category" << endl;

if (tnmp.find("</PROG TEM>")!=string::npos) //end of programitem

//cout << "/progitemtag found" << endl;
if (date !'= NULL)
{

/1 cout << "date != NULL" << endl;

if (dateEntries == NULL)

//cout << "dateEntries == NULL" << endl;
dateEntri es = new vect or <DSConcept >;

//cout << "date going to be pushed back" << endl;
dat eEntri es- >push_back(*date);
//cout << "date pushed back" << endl;
if (date->getValue()!="--")
subConcept s- >push_back(*date);
//cout << "done updating date" << endl;

(start_tinme !'= NULL)

,_.,_.w_.
—h

if (startEntries == NULL)
startEntries = new vect or <DSConcept >;
startEntri es->push_back(*start_tine);
if (start_tinme->getValue()!="--")
subConcept s- >push_back(*start _time);
//cout << "done updating start tine" << endl;

(end_tinme !'= NULL)

,_.,_._,_.
-

if (endEntries == NULL)
endEntri es = new vect or <DSConcept >;
endEnt ri es->push_back(*end_ti ne);
if (end_tine->getValue()!="--")
subConcept s- >push_back(*end_ti ne);
//cout << "done updating end time" << endl;
if (channel !'= NULL)
if (channel Entries == NULL)
channel Entries = new vect or <DSConcept >;
channel Entri es- >push_back(* channel)
if (channel ->getVvalue()!= "--
subConcept s- >push_back(*channel) ;

//cout << "done updating channel" << endl;

(category != NULL)

,_.\,_._,_.
—h

if (categoryEntries == NULL)
{

cat egoryEntri es = new vect or <DSConcept >;

cat egor yEntri es- >push_back(*st art _tinme);
if (category->getVvalue()!="--")

subConcept s- >push_back(*start _time);
//cout << "done updating category" << endl;

(title !'= NULL)

,_.\,_.b,_.
-

if (titleEntries == NULL)
{

157 JL.R.D Woei-A-Jin, 2001

PH S

}
/1

/1

}
if
{

}

titleEntries = new vect or<DSConcept >;
}
title->set SubConcept s(subConcepts);
titleEntries->push_back(*title);
//cout << "done updating title" << endl;

}
(tmp. find("</1TEM.I ST>")!=string::npos) //end of itemnist

if (titleEntries !'= NULL)
list.setListEntries(titleEntries);

if (dateEntries !'= NULL)
datelist.setListEntries(dateEntries);

if (startEntries !'= NULL)
startlist.setListEntries(startEntries);

if (endEntries !'= NULL)
endlist.setListEntries(endEntries);

if (channel Entries != NULL)
channel |i st.setListEntries(channel Entri es)

if (categoryEntries != NULL)
categorylist.setListEntries(categoryEntries)

//cout << "end of itenmist" << endl

br eak;

res. push_back(list);

res. push_back(datelist);
res. push_back(startlist);
res. push_back(endlist);

res. push_back(channel list);
res. push_back(categorylist);

ti nmestanp++;

cerr << "screen info read" << endl

return res;
protected
/1 none

private:
/1 none

Main Engine

Header file

IR NN N N NN NN NNy

/1

1rrt

Copyright (C) 2001 Philips GrbH Di al og Systens

Al rights reserved

NN N N N NN NNy
1rrrir

/1
/1
/1
/1
/1

Fil e: mai neng. h
Last changed by:
Last changed on

158 JL.R.D Woei-A-Jin, 2001

PH S

/!l Created by: Dimtri Wei-AJin
/1 Created on: January 17, 2001

/1 Description: This is the main engi ne where the conmands are given to detect and sol ve

11 different types of references and update the different data |lists, which
are used

11 to solve them

11 The foll owi ng steps are taken depending on whether the data is fromthe
user or

11 fromthe system

/1 User input:

11 - Detect deictic input

11 - Tenporarily update the data lists with the information fromthe

dei ctic input

/1 - Detect and C assify each concept for referential properties

/1 - Detect constraints

/1 - Match referent with reference

/1 - Tenporarily update the datalists

11 - Cenerate output

/1 Syst em gener at ed out put

/1 - Save the correct data lists

/1 - Update the datalists with presented system out put

/1

FEEEEEEEEEr bbb rrd
[rrrir

#i f ndef MAI NENG NE_H
#defi ne MAI NENG NE_H

#i ncl ude "concept. h"
#i ncl ude "constr.h"

#i ncl ude "update. h"
#i ncl ude "dei xdet. h"
#i ncl ude "el |l det. h"
#include "ellres. h"
#i ncl ude "refdet.h"
#i ncl ude "condet. h"
#i ncl ude "pronres. h"
#i ncl ude "denres. h"
#i ncl ude "defres. h"
#i ncl ude "oneres. h"
#i ncl ude "dateres. h"
#include "listproc. h"

#i ncl ude <set>
#i ncl ude <i ostreanp
#i ncl ude <fstreanpr

/**

* Mai nEngi ne updates data lists, and resol ves references

* Here the commands are given to detect and solve the different types of references and
update the

* different data lists, which are used to solve them

* The follow ng steps are taken dependi ng on whether the data is fromthe user or from
the system

* User input:

- Detect deictic input

- Tenporarily update the data lists with the information fromthe deictic input

- Detect ellipsis

- Solve ellipsis

- Detect and C assify each concept for referential properties

- Detect constraints

- Match referent with reference

- Tenporarily update the datalists

- Cenerate output

Syst em gener at ed out put

- Save the correct data lists

- Update the datalists with presented system out put
/

L N . T

159 JL.R.D Woei-A-Jin, 2001

PH S

cl ass DSMai nEngi ne

publi c:

/**

* Constructor.
*/

DSMai nEngi ne() ;
~DSMai nEngi ne() ;

/**

* Detects and classifies the concept, using the info of the concept and the
conceptlist.

* @aram concept The concept.

* @aram concepts The concept |ist.

*/

voi d det ect AndResol ve(DSConcept &concept, DSConcept *superconcept, vector<DSConcept >
&concepts) ;

/**
* handl eConcpets divides input into user and systeminput. User input is handl ed
further by handl eUserl nput, systeminput by
* handl eSyst e nput .
* @aram concepts List of concepts to be handl ed.
*/

voi d handl eConcepts (vector<DSConcept > concepts);

/**
* Handl e system generated output.
* - Save the correct data |ists.
* - Update the datalists with presented system out put.
* @aram concepts List of concepts representing system generated output.
*/

voi d handl eSyst enl nput (vect or <DSConcept > concepts);

*

Handl e user input.

- Detect deictic input.

- Tenporarily update the data lists with the information fromthe deictic input.
- Detect and C assify each concept for referential properties.

- Detect constraints.

- Match referent with reference.

- Tenporarily update the datalists.

- Generate output.

@aram concepts List of concepts representing user input.

E N I T R R

~

voi d handl eUser | nput (vect or <DSConcept > concept s);

protected:
/I none
private:

/'l declare the different nodul es
DSUpdat e updat eModul e;
DSDei xi sDet ecti on dei xi sDet ecti onhodul e;
DSRef er enceDet ecti onAndd assi ficati on referenceDetecti onAndC assi fi cati onModul e;
DSPr onounResol uti on pronounResol uti onhModul g;
DSDenonst rati veResol uti on denonstrati veResol uti onModul e;
DSDef i ni t eDescri pti onResol uti on definiteDescriptionResol uti onMdul e;
DSOneAnaphor aResol uti on oneAnaphor aResol uti onMbdul €;
DSDat eResol uti on dat eResol uti onModul g;
DSConst rai nt Det ecti on constrai nt Det ecti onModul g;
DSSyst enli st Processor systenli st Processor;

160 JL.R.D Woei-A-Jin, 2001

PH S

/]l declare the lists

DS SList sList;

DSH st oryLi st historylList;
DSTypeH sLi st typeH sLi st;

/1 declare sets containing specific infornmation
set <string> best;
set<string> systeni nput;

/**

* Determi nes whether the concepts are derived fromuser input or system output. The
concept which contains this information

* is renoved fromthe list during this test.

* @aram concepts List of concepts, one concept contains information about the input.

* @eturn O = user, 1 = system

*/

int determ nel nput (vect or<DSConcept > concept s);

/**

* Determ nes the best hypothesis. This is derived froma concept in the concept
list. This concept is renpoved fromthe

* list during the test.

* @aram concepts List of concepts, one concept contains information about the
i nput .

* @eturn The best hypothesis.

*/

int getBest (vector<DSConcept> &concepts);
of stream out ;

b
#endi f // MAI NENGI NE_H

Implementation file

RN NN
IRy
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FECEEEEEE b r b i b rrr
1rrrnrr

/1 File: maineng.cc
/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-AJin
/1l Created on: January 17, 2001

/1 Description: This is the nain engine where the commands are given to detect and sol ve

/1 different types of references and update the different data lists, which
are used

/1 to solve them

11 The foll owi ng steps are taken dependi ng on whether the data is fromthe
user or

11 fromthe system

/1 User input:

/1 - Detect deictic input

11 - Tenporarily update the data lists with the information fromthe

dei ctic input

161 JL.R.D Woei-A-Jin, 2001

11 - Detect and C assify each concept for referential properties
/1 - Detect constraints

11 - Match referent with reference

11 - Tenporarily update the datalists

11 - Generate output

/1 Syst em gener at ed out put:

11 - Save the correct data lists

11 - Update the datalists with presented system out put

/1

N N N N NN NNy
1

#i ncl ude "nmai neng. h"
#i ncl ude <stdlib. h>

#i ncl ude <stddef. h>
/1 #include <math. h>

/1 publi c:
/**

* Constructor.
*/

DSMai nEngi ne: : DSMai nEngi ne()
{

/'l set the history lists for all the nodul es.

updat eModul e. set Li st s(&hi storyList, & ypeH sList, &sList);

el | i psi sResol uti onModul e. set Li st (&hi storylList);

pronounResol uti onModul e. set Li st (&sList);

defini teDescri ptionResol uti onMdul e. set Li st (& ypeHi sList);

/1 set the resolution nodules to access from ot her nodul es.

denonstrati veResol uti onModul e. set Modul es(&pr onounResol uti onModul e,
&defi ni teDescri pti onResol uti onModul e) ;

oneAnaphor aResol ut i onMbdul e. set Modul es(&denonstrati veResol uti onMbdul e,
&defi ni teDescri pti onResol uti onModul e);

defini teDescri pti onResol uti onMbdul e. set Modul es(&r onounResol uti onModul e,
&const rai nt Det ect i onModul e) ;

pronounResol uti onMbdul e. set Modul es(&onst rai nt Det ecti onivbdul e) ;

/Il initialize the | ookup sets used to | ook up specific information

best.insert("best");

systenml nput.insert("systent');

system nput.insert("slist");

out . open("resol ved.txt");

if (lout)

{

cerr << "Cannot open resolved references output file" << endl;
exit;
}
}

DSMai nEngi ne: : ~DSMai nEngi ne()
out.close();

/**

* Handl e system generated out put.

* - Save the correct data |ists.

* - Update the datalists with presented system output.

* @aram concepts List of concepts representing system generated output.
*/

voi d DSMai nEngi ne: : handl eSyst em nput (vect or <DSConcept > concept s)
{
int best;

cout << "handl e systeminput" << endl;

//cout << "set next sentence" << endl;

162 JL.R.D Woei-A-Jin, 2001

PH S

/I sLi st. next Sentence();

best = getBest(concepts); // identify the best hypothesis, used by the systemto
generate the current system output. The concept containing best information is renoved
fromthe list.

if (best = 0)

updat eModul e. save(best); // save the updated data lists fromthat hypothesis,
di scard the rest
cout << "best is saved" << endl;

}

cout << "starting systemlist processor" << endl;

concepts = systenlistProcessor. processLi st (concepts);

updat eModul e. updat e(concepts); // update the data lists with the concepts of the
current system out put

updat eModul e. finalize();

cout << "lists are updated" << endl;
}/ 1 end handl eSyst em nput

*

/
Handl e user i nput.

- Detect deictic input.

- Tenporarily update the data lists with the information fromthe deictic input.
- Detect and C assify each concept for referential properties.

- Detect constraints.

- Match referent with reference.

- Tenporarily update the datalists.

- Generate output.

@ar am concepts List of concepts representing user input.

EE I N R I N

-~

voi d DSMai nEngi ne: : handl eUser | nput (vect or <DSConcept > concept s)
{

vect or <DSConcept > dei xi sLi st ;

DSConcept referent;

cout << "handl e user input" << endl;

sLi st. next Sent ence() ;

cout << "set next sentence" << endl;

dei xi sLi st = dei xi sDet ecti onMbdul e. extract Dei xi s(concepts); // extract concepts
derived fromdeictic input and renpve the deictic concepts fromthe |ist.

if (deixisList.size() !=0)

{

cout << "deixis present, updated" << endl;

updat eModul e. t enpUpdat e(dei xi sList); // tenporarily update the data lists with
the deictic input

for (int i=0; i < concepts.size(); i++) // for each concept in the list of
concept s

if (concepts[i].getConcept()!="" && concepts[i].getSuperConcept()!="")
DSConcept tnpl = concepts[i];
string value = concepts[i].getValue();
tnpl. set Val ue(t npl. get Super Concept());
concepts[i].setVal ue(concepts[i].getConcept());
det ect AndResol ve(tnpl, NULL, concepts);
det ect AndResol ve(concepts[i], tnpl.getReferent(), concepts);
concepts[i].setVal ue(val ue);

}

el se

det ect AndResol ve(concepts[i], NULL, concepts);
}/ 1 end for

cout << "finalize temp" << endl;
updat eModul e. finalizeTenp();

163 JL.R.D Woei-A-Jin, 2001

PH S

for (int i = 0; i < concepts.size(); i++)
{
out << concepts[i].getType() << " (" << concepts[i].getValue() << "):
<< (concepts[i].getReferent()!=NULL? concepts[i].getReferent()->getType()
"NULL")
<< " (" << (concepts[i].getReferent()!=NULL? concepts[i].getReferent()-
>get Val ue() : "NULL")
<< ")" << endl;
cerr << concepts[i].getType() << " (" << concepts[i].getValue() << "):
<< (concepts[i].getReferent()!=NULL? concepts[i].getReferent()->getType()

"NULL")

<< " (" << (concepts[i].getReferent()!=NULL? concepts[i].getReferent()-
>get Val ue() : "NULL")

<< ")" << endl;

/1 DSCutput Transl ator.transl ate(concepts); // translate and send the concepts as
out put
}/ 1 end handl eUser | nput

/**
* handl eConcpets divides input into user and systeminput. User input is handled
further by handl eUserl nput, systeminput by
* handl eSyst em nput .
* @aram concepts List of concepts to be handl ed.

*/
voi d DSMai nEngi ne: : handl eConcepts (vect or <DSConcept > concept s)
{
int input; // used to indicate whether the input is fromthe user (0) or system
(1)

const int system=1; // systemis valued 1

input = determ nel nput(concepts); // determine fromthe concepts whether the input
is fromthe user (0) or the system (1)
if (input == system

handl eSyst em nput (concepts); // if the concepts are derived fromsystem
generated output, then save the correct
//data lists and update the data lists with the presented
syst em out put .
el se

handl eUser | nput (concepts); // if the concepts are derived fromuser input, then
detect and handl e deictic input,
} /1 ellipsis, and references.
}/ 1 end handl eConcepts

voi d DSMai nEngi ne: : det ect AndResol ve(DSConcept &concept, DSConcept *superconcept,
vect or <DSConcept > &concept s)
{

ref erenceType ref Type;

vect or <DSConst r ai nt > conlLi st ;

cout << "\ nCONCEPT:" << concept.getType() << " (" << concept.getValue() << ") " <<
endl ;

ref Type = referenceDet ecti onAndd assi fi cati onModul e. det ect Andd assi fy(concept); //
determ ne the referential property
switch (refType)
{
case none: // if no referential property
cout << "no referential property detected" << endl;

updat eModul e. t empUpdat e(concept); // sinply tenporarily update the data lists
br eak;

case pronoun: // if pronoun
cout << "pronoun detected" << endl;

conLi st = constraintDetecti onivbdul e. det ect Constrai nts(concept, superconcept,
concepts); // detect the constraints

164 JL.R.D Woei-A-Jin, 2001

PH S

cout << "constraints detected" << endl;
pronounResol uti onMdul e. resol ve(&concept, conList); // resolve the pronoun

if (concept.getReferent() != NULL)
cout << "pronoun resolved to: " << concept.getReferent()->getValue() << endl;

updat eModul e. t enpUpdat e(concept); // tenporarily update the data lists
br eak;

case denonstrative: // if denonstrative
cout << "denobnstrative detected" << endl;

conLi st = constraintDetecti onivbdul e. det ect Constrai nts(concept, superconcept,
concepts); // detect the constraints

denonstrati veResol uti onModul e. resol ve(&concept, conList); // resolve the
denonstrative

updat eModul e. t empUpdat e(concept); // tenporarily update the data lists

br eak;

case definite: // if definite description
cout << "definite description detected" << endl;

conlLi st = constraintDetecti onMddul e. det ect Constrai nts(concept, superconcept,
concepts); // detect the constraints

defini teDescri pti onResol uti onMbdul e. resol ve(&concept, conList); // resolve the
definite description

updat eModul e. t empUpdat e(concept); // tenporarily update the data lists

br eak;

case one: // if one anaphora
cout << "one anaphora detected" << endl;

conLi st = constraintDetecti onMbdul e. det ect Constrai nts(concept, superconcept,
concepts); // detect the constraints
oneAnaphor aResol ut i onMbdul e. resol ve(&oncept, conList); // resolve one anaphora
updat eModul e. t enmpUpdat e(concept); // tenporarily update the data lists
br eak;
case date: // if date
cout << "date detected" << endl;

conLi st = constraintDetecti onMbdul e. det ect Constrai nts(concept, superconcept,
concepts); // detect the constraints

dat eResol uti onModul e. resol ve(&oncept, conList); // resolve the date

updat eModul e. t enmpUpdat e(concept); // tenmporarily update the data lists

br eak;

/1 protected:
/'l none

/1 private:

/**

* Determi nes whether the concepts are derived fromuser input or system output. The
concept which contains this information

* is renoved fromthe list during this test.

* @aram concepts List of concepts, one concept contains information about the input.

* @eturn O = user, 1 = system

*/

int DSMai nEngi ne: : det er m nel nput (vect or <DSConcept > concept s)
{
cout << "determ ning input :" << concepts[0].getlnputOigin() << endl;
if (system nput.count(concepts[0].getlnputOrigin()) !=0)
return 1; // input is fromsystem
return O0; // input is fromuser.

/**
* Determines the best hypothesis. This is derived froma concept in the concept

list. This concept is renoved fromthe
* |ist during the test.

165 JL.R.D Woei-A-Jin, 2001

PH S

* @aram concepts List of concepts, one concept contains information about the

i nput.
* @eturn The best hypot hesis.
*/
i nt DSMai nEngi ne: : get Best (vect or <DSConcept > &concept s)
{
vect or <DSConcept >: :iterator pos = concepts. begin();
for (int i=0; i < concepts.size(); i++)

if (best.count(concepts[i].getType()) !'=10) // if the concept specifies which
previous hypothesis is used.

string tnp = concepts[i].getValue(); // get the val ue.
int val = 0;
for (int j=0; j < tnp.size(); j++) // transformit fromstring to integer.

val = 10*val + tnp[j]-(int)'0";
}

concepts. erase(pos);

cout << "best is: " << val << endl;
return val;
br eak;
}
pos++;
}
return O; //default val ue.

}

Update Module

Header file

IR NN
IRy
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FECEEEEEE b bbb b r
[rrrir

/1l File: update.h
/'l Revision:

/'l Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1 Created on: January 17, 2001

/1 Description: This is the update class, which is used to update the different data
lists. The data lists

/1 currently included are:

/1 - History of each concept, which is a history list of the values of each
concept, used to solve definite

11 descri ptions.

/1 - Salience List, which is a list of concepts ordered by salience, used
to solve pronom nal references.

11

166 JL.R.D Woei-A-Jin, 2001

[t
L

T
woLe

PHI S T

I NN N NN NN NNy
[rrrir

#i f ndef DSUPDATE_H
#defi ne DSUPDATE_H

#i ncl ude "concept. h"
#i nclude "typelist.h"
#i nclude "slist.h"

/**

* The update nodul e is used to update the different data lists. The data lists currently
included are:

* - Hstory of concepts

* - History of each concept

* - Salience |ist

*/

cl ass DSUpdat e

public:

/**

* Sets the lists for the nodul e.

* @aramtypehislist The type history list for the nodul e.
* @aramslist The s-list for the nodul e.

*/

voi d set Li sts(DSTypeH sList *typehislist, DS SList *slist);

/**

* Saves the tenporary data lists fromthe best hypothesis. The other tenporary data
lists are discarded.

* @aram best An integer, which indicates the best hypothesis to be saved.

*/

voi d save(int best);

/**

* Updates the data lists with the data fromthe concepts.
* @aram concepts List of concepts, to be added to the data lists.
*/

voi d updat e(vect or <DSConcept > concepts);

/**

* Tenporarily updates the data lists with the data fromthe concepts.
* @aram concepts List of concepts, to be added tenporarily to the data lists.
*/

voi d tenpUpdat e(vect or <DSConcept > concepts);

/**

* Temporarily updates the data lists with the data fromthe concept.

* @aram current Concept Current concept to be added tenporarily to the data list.
*/

voi d tenpUpdat e(DSConcept current Concept);

/**

* Finishes the tenmporary data lists. No further concepts can be added.
*
/

void finalizeTenp();

/**
* Finalizes the s-list. No further concepts can be added.
*/

void finalize();

167 JL.R.D Woei-A-Jin, 2001

PH S

private:
DSTypeHi sLi st *typeHi sLi st
DS SList *sList;
vect or <DSConcept > t enplLi st;
b
#endi f // DSUPDATE_H

Implementation file

IR NN
1Hrrnrr
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FEEEEEEEE e rrrrrr i i b r
1rrrrrr

/1 File: update.cc
/'l Revision

/1l Last changed by:
/1 Last changed on

/Il Created by: Dimitri Wei-A-Jin
/1 Created on: January 17, 2001

/1 Description: This is the update class, which is used to update the different data
lists. The data lists

/1 currently included are

11 - History of concepts, which is a history of the concepts used each
turn, used to solve ellipsis

11 - History of each concept, which is a history list of the values of each
concept, used to solve definite

/1 descri ptions

11 - Salience List, which is a list of concepts ordered by salience, used
to solve pronomi nal references

/1

IR N N NN NNy
[rrrie

#i ncl ude "update. h"

/**

* The update nodul e is used to update the different data lists. The data lists currently
included are:

* - History of concepts

* - History of each concept

* - Salience list

*/

/1 public:

/**
* Sets the lists for the nodul e
* @aramhislist The history list for the nodule. (for ellipsis resolution)
* @aramtypehislist The type history list for the nodule. (for definite description
resol ution)
* @aramslist The s-list for the nodule. (for pronoun resol ution)
*/

168 JL.R.D Woei-A-Jin, 2001

PH S

voi d DSUpdat e: : set Li st s(DSHi storyLi st *hislist, DSTypeH sList *typehislist, DS_SList
*slist)

{
/1 hisList = hislist;
typeH sLi st = typehislist;
sList = slist;

}

/**
* Saves the tenporary data lists fromthe best hypothesis. The other tenporary data
lists are discarded.

* @aram best An integer, which indicates the best hypothesis to be saved.
*/

voi d DSUpdat e: : save(int best)

{
//cout << "save hislist" << endl;
/] hisLi st->save(best);
cout << "save typehislist" << endl;
t ypeHi sLi st - >save(best-1);
cout << "save slist" << endl;
sLi st->save(best-1);

/**
* Updates the data lists with the data fromthe concepts.

* @aram concepts List of concepts, to be added to the data lists.
*/

voi d DSUpdat e: : updat e(vect or <DSConcept > concept s)
{

cout << "update" << endl;

/1 store the concepts in the history list. commented because |'munsure whether it
shoul d be added to

/1 the history list, because system output may possibly not be used for ellipsis.

/'l hisList->saveAdd(concepts);

for (int i=0; i<concepts.size(); i++)

/'l store the concepts in the type history lists.

t ypeHi sLi st - >add(concepts[i]);

cout << concepts[i].getType() << " (" << concepts[i].getValue() << ") added to
concept list" << endl;

/1 store the concepts in the s-1list.

if (concepts[i].getlnputOrigin() == "slist")

{

cout << concepts[i].getType() << " (" << concepts[i].getValue() << ") added to
slist" << endl;
sLi st ->add(concepts[i]);
}

/**

* Tenporarily updates the data lists with the data fromthe concepts.
* @aram concepts List of concepts, to be added tenporarily to the data lists.
*/

voi d DSUpdat e: : t enpUpdat e(vect or <DSConcept > concept s)
{

cout << "tenp update" << endl;

for (int i=0; i<concepts.size(); i++)
{
/1 store the concepts in the history list.
/'l check for deictic input if deixis is not to be stored in the history Iist
//tenplLi st. push_back(concepts[i]);
I/l store the concepts in the type history lists.

t ypeHi sLi st - >t npAdd(concepts[i]);
/1 store the concepts in the s-list.

169 JL.R.D Woei-A-Jin, 2001

PH S

sLi st - >t enpAdd(concepts[i]);
cout << "added " << concepts[i].getValue() << " to s-list, size is now " << slList-
>t enpSi ze() << endl;
}

}
/**
* Temporarily updates the data lists with the data fromthe concept.

* @aram current Concept Current concept to be added tenporarily to the data list.
*/

voi d DSUpdat e: : t enpUpdat e(DSConcept current Concept)
{
/1 store the concepts in the history Ilist.
/1 check for deictic input if deixis is not to be stored in the history Iist
/1t enpLi st. push_back(current Concept) ;
/1 store the concepts in the type history lists.

t ypeHi sLi st - >t npAdd(curr ent Concept) ;

/1 store the concepts in the s-list.

sLi st - >t empAdd(current Concept) ;

cout << "added " << currentConcept.getValue() << " to s-list, size is now " << slList-
>t enpSi ze() << endl;

/**

* Finishes the tenporary data lists. No further concepts can be added.
*/

voi d DSUpdate::finalizeTenp()
{
/1 hi sLi st ->t enpAdd(t enpLi st);
cout << "hislist finalized" << endl;
typeHi sList->finalize();
cout << "type history list finalized" << endl;
sList->finalizeTenp();
cout << "slist tenp finalized" << endl;

}
/**

* Finalizes the s-list. No further concepts can be added.

*/
voi d DSUpdate::finalize()
{

sList->finalize();

cout << "slist finalized" << endl;

}
/'l protected:

/'l none

/1 private:
/1 none

Salience List

Header file

FEEEEEEEEEr b r i r i e rr g
[rrrir

11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

170 JL.R.D Woei-A-Jin, 2001

PH S

/1

/1

FEEEEEEEE b r b i e rr g
1rrrrr

/1l File: slist.h
/1 Revision:

/1 Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/!l Created on: January 17, 2001

/1l Description: This is the salience list, used to order the concepts by discourse

ol d/ new

/1 and hearer ol d/ new.

/1

IR NN NN
Iy

#i fndef DS_SLIST_H
#def i ne DS_SLI ST_H

#include "listent.h"
#i ncl ude "concept. h"
#i ncl ude <deque>

#i ncl ude <vector>

#i ncl ude <set>

#i nclude <list>

/**

* This is the salience list, used to order the concepts by discourse ol d/ new and hearer
ol d/ new.
*/

class DS_SLi st

{
publi c:
/**
* Constructor.
*/
DS SList();

/**
* Returns the size of the s-list.

* @eturn The size of the s-1list.
*/

int size();

/**

* Returns the size of the tenporarily saved list.
* @eturn The size of the tenporarily saved list.
*/

int tempSize();

/**

* Saves tenporary s-list i. This overwites the previous s-list.
* The tenporary list is cleared.

* @arami The nunber of the list to be saved.

*/

voi d save(int i);

| **

* Adds a concept to the tenporary s-list.
* @aram concept The concept to be added to the tenporary s-list.

171 JL.R.D Woei-A-Jin, 2001

PH S

*/
voi d t enpAdd(DSConcept concept);

/**

* Adds a concept to the s-list.
* @aram concept The concept to be added to the s-1list.
*/

voi d add(DSConcept concept);

/**

* Finishes the s-list by renmoving the concepts not used this turn.
*/

void finalize();

/**

* Finishes the tenporary s-list by renmoving the concepts not used this turn and
adding it to the tenmporary s-lists.
*/

void finalizeTenp();

/**
* Returns the concept at position i in the s-list.
* @arami The index of the concept to be returned.
* @eturn The concept at position i in the s-list.
*/

DSConcept get(int i);

/**

* Returns the concept at position i in the tenmporary s-1list.
* @arami The index of the concept to be returned.

* @eturn The concept at position i in the tenporary s-list.
*/

DSConcept get Tenp(int i);

/**

* Returns the sentence nunber of the concept at positioni in the s-list.

* @arami The index of the sentence nunber of the concept to be returned.
eturn The sentence nunber o e concept at position i in the s-list.

* @et Th t nb f th pt at positi i inth list

*/

int getSentenceNr(int i);

/**

* Returns the sentence nunber of the concept at position i in the tenporary s-1list.
* @arami The index of the sentence nunber of the concept to be returned.

* @eturn The sentence nunber of the concept at position i in the tenporary s-1list.
*/

int getTenpSentenceNr(int i);

/**

* | ncreases the sentence nunber.
*/

voi d next Sentence();

/**
* Returns the sentence nunber.

* @eturn Rhe sentence nunber.
*/

int getSentence();

172 JL.R.D Woei-A-Jin, 2001

PH S

prot ect ed:
/I none

private:
int sentenceNr; //nunber of the current sentence, used for intrasentential resolution.
|ist<DSListEnt> sList; //the salience-list.
list<DSListEnt> tenp; //the tenporary s-1list
vector<list<DSListEnt> > tenpList; //list of tenporary salience-lists.
vect or<DSLi st Ent > used; //list of used entities this turn.

set <string> dei xi sTypes; //types which indicates deixis.

set <string> nanesAndTitles; //set of names and titles, used to determ ne 'unused’
concept s;

set<string> inferrablelnd; //indicators for definite descriptions that m ght have been
resolved. If not resolved than inferrable.

vector<string> infConlnd; // indicators for inferrable contained.

set<string> bnA_Ind; //set of indicators for bnA

set<string> bnind; //set of brand new indicators.

bool on; //indicates wether a sentence increase finalizes an utterance.

bool dialog; //indicates whether the interaction is a dialog or a nonol ogue.

vector<string> poshwod; //set of possesive nodifiers like 's.'

entTag slistTag; // predefined tag for concepts fromsystemforced on the slist.

/**

* Tags a concept with ol d-new i nformation.

* @aram concept The concept to be tagged.

* @aramlist The list according to which the concept nust be tagged.
* @eturn Alist entity, containing the concept and the tag.

*/

DSLi st Ent tag(DSConcept concept, |ist<DSListEnt> & st);

/**

* inserts an entity into an s-1list.

* @aramentity The entity to be inserted.

* @aramlist The s-list in which the entity nust be inserted.
*/

voi d insertEnt (DSListEnt entity, |ist<DSListEnt> & st);

/**

* Sends a representation of the list to std out.
* @aramlst The list to be presented.

*/

voi d printList(list<DSListEnt> |st);
b
#endi f

IR N N NN
1Hrnrrr
/1 Copyright (C) 2001 Philips GrbH Dial og Systens

11 Al rights reserved

FEEEEEEEE e r i b r g
[rrrir

/1 File: listent.h
/1 Revision:

/1 Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-A-Jin

173 JL.R.D Woei-A-Jin, 2001

PH S

/1 Created on: January 17, 2001

/1

/1 Description: This is an entity of the salience list, it consists of a concept and a
tag

/1 whi ch indicates whether it is new or old.

/1

FEEEEEEEEEr bbb rr g
1rrrrrr

#i f ndef DSLI STENT_H
#defi ne DSLI STENT_H

#i ncl ude "concept. h"

enum ent Tag {untagged, deixis, evoked, unused, inferrable, infcont, bna, bn};

/**

* This is an entity of the salience list, it consists of a concept and a tag which
indactes whether it is new or old.

*/

cl ass DSLi st Ent

{
publi c:

/**
* Constructor.
*/

DSLi stEnt ();

/**

* Constructor.

* @aram concept The concept.

* @aramtag Tag i nformati on about how new the concept is to the 'hearer'.
*/

DSLi st Ent (DSConcept concept, entTag tag);

/**

* Sets the concept of the list entity.
* @aram concept The new concept.

*/

/**

* Constructor.

* @aram concept The concept.

* @aramtag Tag i nformati on about how new the concept is to the 'hearer'.

* @aram sentence The nunmber of the sentence, needed for intrasentential constraints.
*/

DSLi st Ent (DSConcept concept, entTag tag, int sentence);

voi d set Concept (DSConcept concept);

/**

* Sets the tag of the list entity.
* @aramtag The new tag.

*/

voi d set Tag(ent Tag tag);

/**

* Sets the sentence nunber, needed for intrasentential constraints.
* @aram nr The sentence nunber.

*/

voi d setSentence(int nr);

/**

174 JL.R.D Woei-A-Jin, 2001

PH S

* Returns the concept.
* @eturn The concept.
*/

DSConcept get Concept ();

/**
* Returns the tag.
* @eturn The tag.
*/

ent Tag get Tag();

/**

* Gets the sentence nunber, needed for intrasentential constraints.
* @eturn The sentence nunber.

*/

int getSentence();

/**
* == operator for DSListEnt.
*/

bool operator==(DSLi st Ent);

prot ect ed:
/I none

private:
DSConcept concept ;
ent Tag tag;

int sentence;

b
#endi f

Implementation file

IR N N N N NN NN NNy
[rrrir

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

I N N N NN NNy
1rrrir

/1

/1l File: slist.cc
/'l Revision:

/1

/'l Last changed by:
/1 Last changed on:

/Il Created by: Dimitri Wei-A-Jin

/1l Created on: January 17, 2001

/1 Description: This is the salience list, used to order the concepts by discourse
ol d/ new

11 and hearer ol d/ new.

RN NN NNy
1rrrir

175 JL.R.D Woei-A-Jin, 2001

PH S

#i nclude "slist.h"
#i ncl ude <fstrean

[/ public:

/**

* Constructor.

*/

DS _SList:: DS SList()

{

sentenceNr = 0;

string tnp;

cout << "l|oading tag indicators" << endl;
ifstreamin;

in. open("names.txt", ios::in);

if (lin)

{

cerr << "Cannot open names and titles data file" << endl;
exit;

le (lin.eof ())

getline(in, tmp);
if (tnp.find("#") == string::npos && tnp!="")

namesAndTi tl es.insert(tnp);
}

.close();
.open("inferrable.txt", ios::in);

(lin)

cerr << "Cannot open inferrable data file" << endl;
exit;

le ('in.eof())

getline(in, tmp);
if (tnp.find("#") == string::npos && tnp!="")
{

inferrablelnd.insert(tnp);

}

.close();
.open("infCon.txt", ios::in);

(lin)

cerr << "Cannot open inferrable contained data file" << endl;
exit;

le (lin.eof())

getline(in, tnp);
if (tmp.find("#') == string::npos && tnp!="")
{

i nf Conl nd. push_back(t nmp);
}

.close();
.open("bn.txt", ios::in);

(Vin)

cerr << "Cannot open brand new data file" << endl;
exit;

le ('in.eof())

getline(in, tmp);
if (tmp.find("#") == string::npos && tnp!="")

176

JL.R.D Woei-A-Jin, 2001

PHI S TU Delit

in.
in.
if

z

on=

bnl nd. i nsert (tnp);
}

close();
open("bna.txt", ios::in);

(lin)

cerr << "Cannot open brand new anchored data file" << endl;
exit;

ile (lin.eof())

getline(in, tnp);
f (tmp.find("#") == string::npos && tmp!="")

bnA_Ind.insert(tnp);

}

.close();

.open("dei xi sTypes.txt", ios::in);

('in)

cerr << "Cannot open deixis types data file" << endl;
exit;

ile (lin.eof())

getline(in, tmp);
if (tmp.find("#") == string::npos && tnp!="")
{

dei xi sTypes.insert (tnp);
}

.close();
.open("slist.txt", ios::in);

(lin)

cerr << "Cannot open slist paraneter file" << endl;
exit;

fal se;

di al og=f al se;

whi

in.

le (lin.eof ())

getline(in, tnp);
if (tmp.find("#") == string::npos & tnp!="")

if (tnp == "on")
on=true;

if (tnmp == "dial og")
di al og=true;

else if (tnp == "untagged")
sl i st Tag=unt agged;

else if (tnp == "deixis")
sl i st Tag=dei xi s;

else if (t == "evoked")
sl i st Tag=evoked,;

else if (tnp == "unused")
sl i st Tag=unused,;

else if (tnp == "inferrable")
sli st Tag=i nferrabl e;

else if (tnp == "infcont")
sl i st Tag=i nf cont;

else if (t == "bna")
sl i st Tag=bna;

else if (tnp == "bn")
sl i st Tag=bn;

}
cl ose();

177 JL.R.D Woei-A-Jin, 2001

PH S

in. open("posnod.txt", ios::in);

if (lin)

{
cerr << "Cannot open possesive nodifier data file" << endl;
exit;

}
while (!in.eof())

getline(in, tnp);
if (tnp.find("#") == string::npos && tnp!="")
{

if (tmp !="")
posMod. push_back(t np);
}

in.close();

/**

* Returns the size of the tenporarily s-list.
* @eturn The size of the tenporarily s-1list.
*/

int DS SList::tenpSize()
{

return tenp.size();

/**

* Returns the size of the s-list.
* @eturn The size of the s-1list.

*/
int DS _SList::size()
{

return sList.size();
}

/**

* Saves tenporary s-list i. This overwites the previous s-list.
* The tenporary list is cleared.

* @arami The nunber of the list to be saved.

*/

void DS_SList::save(int i)
{
sList = tempList[i];
tenpList.clear();

tenp = sList;

printlList(tenp);
}

/**

* Adds a concept to the tenporary s-list.
* @aram concept The concept to be added to the tenporary s-list.
*/

voi d DS_SLi st: :tenpAdd(DSConcept concept)
{
DSLi st Ent t npEnt ;
cout << "now tagging" << endl;
tmpEnt = tag(concept, tenmp); // tag the concept according to the tenporary s-1list.
t npEnt . set Sent ence(sentenceNr); // sets the sentence nr of the concept.

string tnp;
switch (tnpEnt.getTag())
{

case untagged: tnp = " untagged"; break;
case deixis: tnp " deixis"; break;
case evoked: tnp " evoked"; break;

178 JL.R.D Woei-A-Jin, 2001

PH S

case unused: tnp = " unused"; break;
case inferrable: tnmp = " inferrable"; break;
case infcont: tnp = " infcont"; break;

case bna: tnp bna"; break;
case bn: tnmp =" bn"; break;

cout << concept.getValue() << tnp << endl;

insertEnt (tnpEnt, tenp); // insert the tagged concept into the tenporary s-1list.
used. push_back(tnmpEnt); // add the tagged concept to the set of used concepts.
cout << "used size is now " << used.size() << endl;

printList(tenmp);

/**

* Adds a concept to the s-list.

* @aram concept The concept to be added to the s-list.
*/

voi d DS_SLi st: : add(DSConcept concept)
{
DSLi st Ent t npEnt;

tnpEnt = tag(concept, sList); // tag the concept accordig to the s-list
t npEnt . set Sent ence(sentenceNr); // sets the sentence nr of the concept.

string tnp;

switch (tnpEnt.getTag())

{

case untagged: tnp = " untagged"; break;
case deixis: tnp = " deixis"; break;
case evoked: tnp = " evoked"; break;
case unused: tnp = " unused"; break;
case inferrable: tnp =" inferrable"; break;
case infcont: tnp = " infcont"; break;
case bna: tnp =" bna"; break;

case bn: tnp =" bn"; break;

//cout << concept.getValue() << tnp << endl;
if (tnpEnt.getTag()!=untagged)

insertEnt (tnpEnt, sList); // insert the tagged concept into the s-1list
used. push_back(tnpEnt); // add the tagged concept to the set of used concepts.

}

cout << "used size is now " << used.size() << endl;
printlList(tenp);

/**
* Finishes the s-1ist by renoving the concepts not used this turn.
*/

void DS _SList::finalize()
{

int size, usedSize;

i st<DSLi st Ent > t np;

if (dialog)
{

usedSi ze = used. size();
for (list<DSListEnt>::iterator i=sList.begin(); i!=sList.end() ; i++) // for every
elenent in the s-list
for (int j=0; j<usedSize; j++)

if (used[j] == *i) // check whether it is used
tnp. push_back(*i); // create a list of only used entities

sList =tnp; // the s-list consists only of used entities.
used.clear(); // clear the information of all used entities.

}
tenp = sList;

179 JL.R.D Woei-A-Jin, 2001

PH S

printList(tenp);
}
/**
* Finishes the tenmporary s-list by renmoving the concepts not used this turn and

adding it to the tenporary s-1lists.
*/

void DS _SList::finalizeTenp()
{

int size, usedSize;

i st <DSLi st Ent > t np;

usedSi ze = used. size();
cout << "usedSize = " << usedSize << endl;
for (list<DSListEnt>::iterator i=tenp.begin(); i!=tenp.end(); i++) // for every el ement
in the tenporary s-1ist
for (int j=0; j<usedSize; j++)

if (used[j] == *i) // check whether it is used
tmp. push_back(*i); // create a list of only used entities

cout << "tenpList size = " << tenplList.size() << endl;
t enpLi st. push_back(tnp); // save the tenporary s-list consisting only of used entities.
used.clear(); // clear the information of all used entities.

cout << "tenplList size after update = " << tenpList.size() << endl;
cout << "size of last entry in tenpList = " << tenpList[tenpList.size()-1].size() <<
endl ;

tenp = sList; // clear the tenporary s-1list.
printlList(tenp);

}
/**
* Returns the concept at positioni in the s-list.
* @arami The index of the concept to be returned.
* @eturn The concept at position i in the s-list.
*/

DSConcept DS SList::get(int i)
{
list<DSListEnt>::iterator pos;

pos = sList.begin();

int j=0;
while(j < i)
{
pos++;
j ++;
}
return pos->get Concept ();
}
/**
* Returns the concept at position i in the tenporary s-list.
* @arami The index of the concept to be returned.
* @eturn The concept at position i in the tenporary s-list.
*
/

DSConcept DS _SLi st::getTenp(int i)
{

|ist<DSListEnt>::iterator pos;
pos = tenp. begin();

int j=0;

while(j < i)

{

pos++;
j ++;

180 JL.R.D Woei-A-Jin, 2001

PH S

return pos->get Concept();

}
/**
* Returns the sentence nunber of the concept at positioni in the s-list.
* @arami The index of the sentence nunber of the concept to be returned.
* @eturn The sentence nunber of the concept at position i in the s-list.
*/
int DS_SList::getSentenceNr(int i)
{
|ist<DSListEnt>::iterator pos;
pos = sList.begin();
int j=0;
while(j < i)
{
poOS++;
j ++;
}
return pos->get Sentence();
}
/**
* Returns the sentence nunber of the concept at position i in the tenporary s-list.
* @arami The index of the sentence nunber of the concept to be returned.
* @eturn The sentence nunber of the concept at position i in the tenporary s-1list.
*/
int DS _SList::get TempSentenceNr(int i)
{
list<DSListEnt>::iterator pos;
pos = tenp. begin();
int j=0;
while(j < i)
{
poOS++;
j ++;
}
return pos->get Sentence();
}

/**

* | ncreases the sentence nunber.
*/

voi d DS_SLi st : : next Sent ence()

/1 first check whether there are entities with the current sentence nunber added to the
slist this sentence not equal to deixis.

/1 if not, only update sentence numnber

cout << "increasing sentence nunber" << endl;

if (used.size() != 0 && on)

{
cout <<
endl ;
for (int h=0; h<used.size(); h++)

removi ng not used entities fromlist, new size will be: << used. size() <<

if (used[h].getTag() != deixis)
{

int usedSi ze;
i st <DSLi st Ent > t np;

cout << "renoving not used entities fromlist, newsize will be: " <<
used. si ze() << endl;

usedSi ze = used. size();

for (list<DSListEnt>::iterator i=tenp.begin(); i!=tenp.end() ; i++) // for
every elenent in the tenporary s-1list

181 JL.R.D Woei-A-Jin, 2001

PH S

for (int j=0; j<usedSize; j++)

if (used[j] == *i) // check whether it is used
tnp. push_back(*i); // create a list of only used entities

temp = tnp; // the tenporary s-list consists only of used entities.
used.clear(); // clear the information of all used entities.
br eak;
}
}

}

sentenceN ++;

printList(tenp);

}

/**
* Returns the sentence nunber.

* @eturn Rhe sentence nunber.
*/

int DS _SList::getSentence()
{

return sentenceNr;

}

[protected:
/I none

[/ private:

/**

* Tags a concept with ol d-med-new information. If the concept is already in the list,
it will becone evoked

* and renoved fromthe list (it is expected that the concept will be inserted |ater
with the newtag) unless it is already new

* @aram concept The concept to be tagged.

* @aramlist The list according to which the concept nust be tagged.

* @eturn Alist entity, containing the concept and the tag.

*/

DSLi st Ent DS_SLi st: :tag(DSConcept concept, |ist<DSListEnt> & st)

/1 if input originis fromsystemand it is forced on the slist, then tag it according
to user set Tag.
if (concept.getlnputOrigin()=="slist")
return DSLi st Ent (concept, slistTag);

cout << "can it be tagged as dei xi s?" << endl;
/'l tag deixis
if (deixisTypes.count(concept.getlnputOrigin()) != 0) //check whether the input origin
of the concept is a deixis type
return DSLi stEnt(concept, deixis); // tag it as deixis

/1 a concept is evoked if it is co-referring with a concept already in the list.
Proni mi nal and nom nal anaphora,
/1 previous nentioned proper nanes, relative pronouns, appositives.
cout << "does it has a referent?" << endl;
list<DSListEnt>::iterator i;
if(concept.getReferent() !'= NULL) // if the concept has a referent, evoke the referent.

cout << "referent = " << concept.getReferent()->getValue() << endl;
if (Ist.size() > 0)
{

i =l st.begin();
while (i !'=Ist.end())

if (i->getConcept() == (*concept.getReferent()))
{

cout << "referent found in list" << endl;

182 JL.R.D Woei-A-Jin, 2001

PH S

if ((i->getTag() != evoked) && (i->getTag() !'= unused) && (i->getTag() !'=
deixis)) // if not already old, renove it to be replaced

string tnp;

switch (i->getTag())

{

case untagged: tnp = "untagged"; break;
case deixis: tnp "dei xi s"; break;
case evoked: tnp "evoked"; break;
case unused: tnp "unused"; break;

case inferrable: tnp = "inferrable"; break;

case infcont: tnp = "infcont"; break;

case bna: tnp = "bna"; break;

case bn: tnp = "bn"; break;

}

cout << "the referent isn't old, it is tagged as: " << tnp << endl;

| st.erase(i);

DSConcept referent = *concept.getReferent();

referent. set Ti mest anp(concept. get Tinestanp()); // update the tinestanp of
the referent.

return DSListEnt(referent, evoked, sentenceN);

else // else tag it as evoked if unused.

if (i->getTag() == unused)
i ->set Tag(evoked);

DSConcept tnp = i->get Concept ();

t np. set Ti mest anp(concept. get Ti mestanp()); // update the timestanp of the
concept .

i ->set Concept (tnp);

cout << "concept has been evoked, new tinestanmp: " <<

concept. get Ti mestanp() << endl;

i ->set Sent ence(sentenceNr); //update the sentence nunber of the entity.

used. push_back(*i);

return DSLi st Ent (concept, untagged, sentenceNr);

}
}/ 1 endif
i ++;
}/ 1 end while
cout << "referent not found in the list" << endl;
DSConcept referent = *concept.getRReferent();
referent. set Ti mnest anp(concept.get Tinestanp()); // update the tinestanp of the
referent.
return DSListEnt(referent, evoked, sentenceN);
} // end if list not enpty
el se
{
cout << "referent not found in the list, because |list was enpty" << endl;
DSConcept referent = *concept.get Referent();
referent. set Ti mest anp(concept . get Timestanp()); // update the tinestanp of the
referent.
return DSListEnt(referent, evoked, sentenceN);

} // end if has referent
cout << "is it an inferrable?" << endl;
/1 brand-new proper nanmes are usually acconpanied by a relative clause or an appositive
which relates themto the
/1 hearer's know edge.
string conceptVal = concept.getVal ue();
//check for 's.
// comment ed out because of ambiguity with abbreviation of "is".
/*for (int i=0; i < posMod.size(); i++)
if (conceptVal.find(poswbd[i]) != string::npos)

return DSLi st Ent (concept, inferrable, sentenceN);

}*l
for (int i=0; i< infConlnd.size(); i++)

183 JL.R.D Woei-A-Jin, 2001

PH S

if (conceptVal.find(infConlnd[i]) != string::npos)
return DSLi st Ent (concept, infcont, sentenceN);

}

cout << "check for indicators" << endl;

/1 check whet her indicators exist.
ent Tag concept Tag = untagged; // initialize conceptTag
int nextpos;

whi | e(concept Val . find(" ") != string::npos)
{
next pos = conceptVal.find(" ");
// cout << concept Val . substr (0, next pos) << endl;
if (inferrabl el nd. count(conceptVal . substr (0, nextpos))!=0)
return DSLi st Ent (concept, ((conceptTag == bn) ? bna : inferrable), sentenceNr);
i f (bnlnd. count (concept Val . substr (0, next pos))!=0)
concept Tag = bn;
if (bnA_l nd. count (concept Val . substr (0, nextpos))!=0)
return DSLi st Ent (concept, bna, sentenceNr); //perhaps check whether it is bn
first, though no problens are expected that can be solved with this.
/1 current word is not an indicator, so try next one.
concept Val = concept Val . subst r (next pos+1);

/1 check whether last word is an indicator.
next pos=concept Val . si ze();
if (bnA_l nd. count (concept Val . substr (0, next pos))!=0)
return DSLi st Ent (concept, bna, sentenceNr); //perhaps check whether it is bn first,
t hough no problens are expected that can be solved with this.if
(onel nd. count (concept . substr (0, next pos-1))!=0)
if (conceptTag != untagged)
return DSLi st Ent (concept, conceptTag, sentencelNr);
if (Ist.size() > 0)
{

/'l check whether the concept is already in the list.
cout << "is the concept already in the list?" << endl;

i =l st.begin();
while (i !'=Ist.end())
{

if ((i->getConcept() == concept)&&(i -
>get Concept (). get Ti mest anp() ! =concept.get Tinestanp())) // if so, then renove the concept
fromthe list and tag as evoked

if ((i->getTag() != evoked) && (i->getTag() !'= unused) && (i->getTag() !'=
deixis)) // not old

| st.erase(i); // remove the concept fromthe Iist
return DSLi st Ent (concept, evoked, sentenceNr); // so it can be inserted at
the right position
else // old
if (i->getTag() == unused)
i ->set Tag(evoked); // update the tag

i ->set Sentence(sentenceNr); // update the sentence Nr.
return DSLi st Ent (concept, untagged);

i ++;

}

cout << "is the concept value already in the list?" << endl;
/1 check whether the concept value is already in the list.
i =lst.begin();

while (i !'=1Ist.end())
{

184 JL.R.D Woei-A-Jin, 2001

PH S

if ((i->getConcept().getValue() == concept.getVal ue())&&(i -
>get Concept (). get Ti mest anp() ! =concept . get Timestanp())) // if so, then renove the concept
fromthe list and tag as evoked

if ((i->getTag() !'= evoked) && (i->getTag() !'= unused) && (i->getTag() !'=

dei xi s))
| st.erase(i);
return DSLi st Ent (concept, evoked, sentenceNr);
}
el se
if (i->getTag() == unused)
i ->set Tag(evoked);
i ->set Sentence(sentenceNr); // update the sentence Nr.
return DSLi st Ent (concept, untagged);
}
}
i ++;
}

cout << "is a substring already in the list, or is it a substring of a value already
inthe list?" << endl;

/1 check whether the concept value is a substring already in the list.

i =l st.begin();
while (i !'=Ist.end())

if ((i->getConcept().getValue().find(concept.getValue()) != string::npos)&&(i -
>get Concept (). get Ti mest anp() ! =concept . get Timestanp())) // if so, then renove the concept
fromthe list and tag as evoked

if ((i->getTag() !'= evoked) && (i->getTag() !'= unused) && (i->getTag() !'=
dei xi s))

I st.erase(i);
return DSLi st Ent (concept, evoked, sentenceNr);

}

el se

if (i->getTag() == unused)

i ->set Tag(evoked);
i ->set Sentence(sentenceNr); // update the sentence Nr.
return DSLi st Ent (concept, untagged);

} /] or vice versa
else if ((concept.getValue().find(i->getConcept().getValue()) !=
string: : npos) &&(i - >get Concept (). get Ti mest anp() ! =concept . get Ti mestanp())) // hopefully
doesn't lead to big/strange errors
/1 possible additional constraint:
type nust be the sane.
if ((i->getTag() != evoked) && (i->getTag() != unused) && (i->getTag() !=

dei xi s))
| st.erase(i);
return DSLi st Ent (concept, evoked, sentencelNr);
}
el se
if (i->getTag() == unused)
i - >set Tag(evoked);
i ->set Sentence(sentenceNr); // update the sentence Nr.
return DSLi st Ent (concept, untagged);
}
}
i ++;

} // end while
} /1 end if (Ist.size > 0)

/1 a concept is unused if it is a proper name or a title.

185 JL.R.D Woei-A-Jin, 2001

PH S

cout << "is it a name or a title?" << endl;

if (namesAndTitl es. count(concept.getValue()) !'= 0) // check whether the concept val ue
is aname or title

{
}

return DSLi st Ent (concept, concept Tag, sentenceNr);

return DSLi st Ent (concept, unused, sentenceN);

}
/**
* inserts an entity into an s-1list.
* @aramentity The entity to be inserted.
* @aramlist The s-list in which the entity nust be inserted.
*/

void DS_SList::insertEnt(DSLi stEnt entity, |ist<DSListEnt> & st)
if (entity.getTag()==bn) // new

cout << entity.getConcept().getValue() << " put at the end of the list, before bn's
from previous sentence" << endl;

if (Ist.size() == 0)

| st. push_back(entity); // place it at the end of the |ist
cout << entity.getConcept().getValue() << " put at end of the list" << endl;

}

el se
list<DSListEnt>::iterator pos = Ist.end();
pos--;
for (int i=lst.size()-1; i>=0; i--)

if (!((pos->getTag()==bn) &&(pos->get Sentence() != sentenceNr)))// put at the
end of the list, before bn's from previ ous sentence

{
poS++;
I st.insert(pos, entity);
cout << entity.getConcept().getValue() << " put at position" << i+l << endl;
br eak;
b
if (i==0) //
{
I st.push_front(entity);
cout << entity.getConcept().getValue() << " put in front of the list" <<
endl ;
}
pos--;

}
}

}
else if ((entity.getTag()==bna) || (entity.getTag()==infcont) ||
(entity.getTag()==inferrable)) //med

if (Ist.size() == 0)
| st. push_back(entity); // place it at the end of the |ist

el se
list<DSListEnt>::iterator pos = Ist.end();
pos--;
for (int i=lst.size()-1; i>=0; i--) //place it after the med of the same sentence

or any evoked entities

if ((((pos->getTag()==bna) || (pos->getTag()==infcont) || (pos-
>get Tag() ==i nferrabl e))
&&(pos- >get Sent ence() ==sent enceNr))
|| (pos->get Tag()==evoked) || (pos->getTag()==dei xis))

186 JL.R.D Woei-A-Jin, 2001

PH S

pos++;
I st.insert(pos, entity);

cout << entity.getConcept().getValue() << " put at position" << i+l << endl;

br eak;
if (i==0) //

| st. push_front(entity);

cout << entity.getConcept().getValue() << " put in front of the list"

endl ;

}
pos--;
}

}

else if (entity.getTag()==untagged) // already set as evoked
{ /1 do nothing

else // old

{
cout << "list size =" << |st.size() << endl;
if (Ist.size() == 0)
| st. push_back(entity);
cout << entity.getConcept().getValue() << " put at the end of the list" << endl;
}
el se
list<DSListEnt>::iterator pos = |st.begin();
for (int i=0; i <=Ist.size(); i++) // place it after the old entities
{
/* string tnp;
switch (pos->getTag())
{
case untagged: tnp = "untagged"; break;
case deixis: tnmp = "deixis"; break;
case evoked: tnp = "evoked"; break;
case unused: tnmp = "unused"; break;
case inferrable: tnp = "inferrable"; break;
case infcont: tnp = "infcont"; break;
case bna: tnp = "bna"; break;
case bn: tnp = "bn"; break;
}
cout << "currently at position " << i << " tag is: " << tnp << endl; */
if (i ==Ist.size())
{
| st. push_back(entity);
cout << entity.getConcept().getValue() << " put at the end of the list" <<
endl ;

br eak;

}
if (!'(((pos->getTag()==evoked)]| | (pos->get Tag()==dei xi s)|| (pos-
>get Tag() ==unused)) &&(pos- >get Sent ence() ==sent enceNr)))

I st.insert(pos,entity);

cout << entity.getConcept().getValue() << " put at position" << i << endl;

br eak;
}
if ((pos->getTag()==bna) || (pos->getTag()==infcont) || (pos-
>get Tag() ==i nferrabl e)
|l (pos->get Tag() ==bn))

I st.insert(pos, entity);

cout << entity.getConcept().getValue() << " put at position" << i << endl;

br eak;
}
pOS++;
}
}

187 JL.R.D Woei-A-Jin, 2001

PH S

I'st.unique(); // renove all duplicates
printList(lst);

/**
* Sends a representation of the list to std out.

* @aramlst The list to be presented.
*/

void DS_SList::printList(list<DSListEnt> |st)
{
cout << "S-list (" << Ist.size() << "): ";
list<DSListEnt>::iterator pos = |st.begin();

for (int i =0; i <|Ist.size(); i++)
{

string tnp;

switch (pos->getTag())

{

case untagged: tnp = "untagged"; break;
case deixis: tnmp = "deixis"; break;
case evoked: tnp = "evoked"; break;
case unused: tnmp = "unused"; break;

t

case inferrable: tnp = "inferrable"; break;
case infcont: tnp = "infcont"; break;
case bna: tnp = "bna"; break;
case bn: tnp = "bn"; break;
}
cout << pos->get Concept().getValue() << " (" << tnmp << "),
pos++;
}
cout << endl;

}
IR N N NN NN NNy

1Hrnnrr
/1 Copyright (C) 2001 Philips GrbH Dial og Systens

11 Al rights reserved

FEEEEEEEE b r i r e b rrrd
[rrrir

/1 File: listent.cc
/1 Revision:

/'l Last changed by:
/1l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1 Created on: January 17, 2001

/1

/1l Description: This is an entity of the salience list, it consists of a concept and a
tag

/1 whi ch indicates whether it is new or old.

/1

LEEEEEEEE b b i r g
1rrrrr

#include "listent.h"
// public:
/**
* Constructor.
*/

188 JL.R.D Woei-A-Jin, 2001

PH S

DSLi st Ent : : DSLi st Ent ()

// none

}

/**
* Constructor.
* @aram concept The concept.
@aramtag Tag infornation about how new the concept is to the 'hearer'.
*/

DSLi st Ent : : DSLi st Ent (DSConcept concept, entTag tag)

t hi s->concept = concept;
this->tag = tag;
}

/**
* Constructor.
* @aram concept The concept.
@aramtag Tag infornation about how new the concept is to the 'hearer'.
* @aram sentence The nunber of the sentence, needed for intrasentential constraints.
*/

DSLi st Ent : : DSLi st Ent (DSConcept concept, entTag tag, int sentence)

t hi s->concept = concept;
this->tag = tag;
t hi s- >sentence = sentence;

}
/**
* Sets the concept of the list entity.

* @aram concept The new concept.
*/

voi d DSLi st Ent : : set Concept (DSConcept concept)

t hi s->concept = concept;

}
/**

* Sets the tag of the list entity.
* @aramtag The new tag.
*/

voi d DSLi st Ent:: set Tag(ent Tag tag)

this->tag = tag;
}
/**

* Sets the sentence nunber, needed for intrasentential constraints.
* @aram nr The sentence nunber.

*/
voi d DSLi stEnt::set Sentence(int nr)
{
sentence = nr;
}

| **

* Returns the concept.
* @eturn The concept.

*/
DSConcept DSLi st Ent : : get Concept ()
{
return concept;
}

189 JL.R.D Woei-A-Jin, 2001

PH S

/**

* Returns the tag.
* @eturn The tag.
*/

ent Tag DSLi st Ent:: get Tag()
{

return tag;

}
/**

* CGets the sentence nunber, needed for intrasentential constraints.
* @eturn The sentence nunber.

*/
int DSListEnt::getSentence()
{
return sentence,;
}
/**
* == operator for DSListEnt.
*/

bool DSLi st Ent: : oper at or ==(DSLi st Ent a)

return (a.tag == tag)&&(a.concept == concept);

}

/I protected:
/I none

[/ private:
/I none

History List

Header file

IR NN NN
IRy
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FECEEEEEE b r e r i i r g
[rrrir

/1l File: typelist.h

/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimitri Wei-A-Jin
/!l Created on: January 17, 2001

/1 Description: Data structure which contains type histories.

FEEEEEEEE i i b r g
[rrrir

#i f ndef DSTYPEH SLI ST_H

190 JL.R.D Woei-A-Jin, 2001

PH S

#define DSTYPEH SLI ST_H

#i ncl ude "typehis. h"

#i ncl ude <nmap>

/**

* Data structure which contains type histories..

*/

cl ass DSTypeHi sLi st

public:

/**
* Constructor.
*/

DSTypeHi sLi st ();

/**

* Adds a concept to the oppropriate tenporary |ist.

* |f the concept

isn't used before,

a new history list is created.

* @aram concept Concept to be added.

*/

voi d t npAdd(DSConcept concept);

/**

* Adds a concept to the oppropriate list.
history list

is created.

If the concept isn't used before, a new

* @aram concept Concept to be added.

*/

voi d add(DSConcept concept);

/**

* Saves the tenporary history lists of hypothesis i
The index of the tenporary history lists to be saved.

* @aram i
*/
voi d save(int

i)

/**

* Finalizes the history lists.

tenporary history lists.

* The tenporary history |ist

*/
void finalize();

/**
* Returns the size of the
* @aramtype The type of
* @eturn The size of the
*/

int tempSize(string type);

/**
* Returns the size of the
* @aramtype The type of
* @eturn The size of the
*/

int size(string type);

/**

of each concept.

Each tenporary history list is added to the list of

is reseted to the saved |list.

tenporary history list of a certain type.
the history list, of which the size is requested.
tenporary history list of the specified type.

history list of a certain type.
the history list, of which the size is requested.
history list of the specified type.

* Returns the concept at a certain position fromthe tenporary history list of a
certain type.

* @aramtype The type of

t he concept.

191 JL.R.D Woei-A-Jin, 2001

PH S

* @arami The index of the concept.
* @eturn The concept at position i of the specified type.
*/

DSConcept get Tenp(string type, int i);

/**

* Returns the concept at a certain position fromthe history list of a certain type.
* @aramtype The type of the concept.

* @arami The index of the concept.

* @eturn The concept at position i of the specified type.

*/

DSConcept get(string type, int i);

/**

* Returns the list of keys.
* @eturn The list of keys.
*/

vector<string> getKeylList();

protected:
/1 none

private:
map<string, DSTypeH story> typehislist; //the type history list.
vector<string> keylist; // list of existing keys.
int hypothesis; // nunber of the hypothesis

#endif // DSTYPEH SLI ST_H

I N N N N N NN NN NNy
[rrrir

/1 Copyright (C) 2001 Philips GrbH Di al og Systens
/1 Al rights reserved

RN N N NN NNy
[rrrit

/1l File: typehis.h
/'l Revision:

/1l Last changed by:
/1 Last changed on:

/!l Created by: Dimtri Wei-AJin
/1 Created on: January 17, 2001

/1 Description: This is the history list of a concept type, used to determne the
referent of a definite description

/1

IR NN NN NN
Iy

#i f ndef DSTYPEH STORY_H
#def i ne DSTYPEHI STORY_H

#i ncl ude "concept. h"
#i ncl ude <deque>

/**

192 JL.R.D Woei-A-Jin, 2001

PH S

* This is the history list of a concept type, used to determne the referent of a
definite description
*/

cl ass DSTypeHi story

publi c:

/**
* Constructor.
*/

DSTypeHi story();

/**
* Constructor.
*/

DSTypeH story(string type);

/**

* Returns the size of the type history.
* @eturn The size of the type history.
*/

int size();

/**

* Returns the size of the tenporarily type history.
* @eturn The size of the tenporarily type history.
*/

int tempSize();

/**
* Saves tenporary type history i.
* The tenporary list is cleared.

* @arami The nunber of the list to be saved.
*/

voi d save(int i);

/**

* Adds a concept to the tenporary history. If the nunmber of concepts exceeds maxSize
then the ol dest is discarded.

* maxSize is defined in "typehis.cfg".

* @aram concept The concept to be added to the tenporary list.

*/

voi d t enpAdd(DSConcept concept);

/**

* Adds a concept list to the saved history. If the nunber of concepts exceeds maxSize
then the ol dest is discarde.

* maxSize is defined in "typehis.cfg".

* @aramclist The concept to be added to the saved list.

*/

voi d add(DSConcept concept);

/**
* Returns the saved concept i.
* @arami The index of the saved concept.
* @eturn The | ast saved concept i.
*
/
DSConcept get(int i);

| **

* Returns the tenporarily saved concept i.

193 JL.R.D Woei-A-Jin, 2001

PH S

* @arami The index of the tenporarily saved concept.
* @eturn The tenporarily saved concept i.
*/

DSConcept get Tenp(int i);

/**

* Finalizes the tenporary type history. This pushes the tenporary type history on the
list and resets the history.

*/

voi d finalize(int hypothesis);

/**

* Sets the type of the type history.

* @aramtype The type of the type history.
*/

voi d set Type(string type);

/**

* Returns the type of the type history.
* @eturn The type of the type history.
*/

string get Type();

protected:
/I none

private:
deque<DSConcept > saved; //saved type history.
deque<DSConcept > tenp; //tenporary type history
vect or <deque<DSConcept > > tenpList; //list of all tenporary type history.
int maxSi ze; //the maxSize of the saved conceptli sts.
int maxduration; // the timew ndow for saved conceptlists.
string type; //The type of the history.

b

#endi f

Implementation file

TEEEEEEEE bbb i
1rrrnrr
11 Copyright (C) 2001 Philips GrbH Dial og Systens

/1 Al rights reserved

N N N NN NNy
1rrrir

/1 File: typelist.h

/'l Last changed by:
/1l Last changed on:

/!l Created by: Dimitri Wei-AJin
/!l Created on: January 17, 2001

/1 Description: Data structure which contains type histories.

LEEEEEEEEE b r i i r
1rrnrr

194 JL.R.D Woei-A-Jin, 2001

#i nclude "typelist.h"
/1 public:
/**
* Constructor.
*/
DSTypeHi sLi st:: DSTypeHi sLi st ()
{
hypot hesis = 0;
/**
* Adds a concept to the oppropriate tenporary list.
* |f the concept isn't used before, a new history list is created.
* @aram concept Concept to be added.
*/
voi d DSTypeHi sLi st: : t npAdd(DSConcept concept)
DSConcept referent;
if (concept.getReferent() != NULL)
referent = *concept.getReferent();
referent. set Ti mest anp(concept. get Ti mestanp());
concept = referent;
}
cout << "tenp adding type: " << concept.getType() << ", value: " << concept. get Val ue()
<< endl;

if (typehislist.count(concept.getType()) == 0) // if there isn't a history list of the
type of the concept

DSTypeH story tnp(concept. get Type());
tnp. t enpAdd(concept); // create a new history list of the type of the concept and
add the concept.
typehislist[concept.getType()] = tnp; //add the new history list to the set of
history lists.
keyl i st. push_back(concept.get Type()); //add the key to the list of keys.
}

el se

typehi slist[concept.get Type()].tenpAdd(concept); // add the concept to the history
list of the type of the concept
}
}

/**

* Adds a concept to the oppropriate list. If the concept isn't used before, a new
history list is created.

* @aram concept Concept to be added.

*/

voi d DSTypeHi sLi st:: add(DSConcept concept)
{

DSConcept referent;
if (concept.getReferent() != NULL)

{
referent = *concept.getReferent();
referent. set Ti mest anp(concept . get Ti nestanp());
concept = referent;
}
cout << "adding: " << concept.getType() << " (" << concept.getValue() << ") to list" <<
endl ;

if (typehislist.count(concept.getType()) == 0) // if there isn't a history list of the
type of the concept

{
DSTypeH story tnp(concept. get Type());

195 JL.R.D Woei-A-Jin, 2001

PH S

t mp. add(conc
the concept.

typehislist]
history lists
keyl i st. push
}
el se

typehislist[c
of the type of th

/**
* Saves the t
* @arami Th
*/

voi d DSTypeHi sLi s

int size = keyl

_back(concept . get Type());

ept); // create a new history list of the type of the concept and add

concept . get Type()] /! add the new history list to the set of

:tn’p;
/! add the key to the list of keys.

oncept . get Type()] . add(concept);
e concept.

/1 add the concept to the history |ist
enporary history lists of hypothesis i of each concept.

e index of the tenporary history lists to be saved.

t::save(int i)

ist.size();

for(int j=0; j<size; j++) // for every concept type history

typehislist]
}
hypot hesis = 0;
0 again.
}
/**

* Finalizes t
tenporary history

* The tenporary history |ist

*/

voi d DSTypeHi sLi s
{

keylist[j]].save(i); // save hypothesis i

/'l reset the hypothesis nunber in order for the new round to start with

he history lists. is added to the list of

lists.

Each tenporary history list

is reseted to the saved Iist.

t::finalize()

int size = keylist.size();
for(int j=0; j<size; j++) // for every concept type history (read from keylist)
11 cout << "going to finalize type history of " << keylist[j] << ", whichis in
the list? " << typehislist.count(keylist[j]) << endl;
typehislist[keylist[j]].finalize(hypothesis); // finalize

hypot hesi s++;

/**
* Returns the

* @aramtype
* @eturn The

size of the tenporary history list of a certain type.
The type of the history list, of which the size is requested.
size of the tenporary history list of the specified type.

c:tenpSi ze(string type)

.count(type) != 0) //check whether the type is in the map.

return typehislist[type].tenpSize();

size of the history list of a certain type.
The type of the history list, of which the size is requested.
size of the history list of the specified type.

::size(string type)

.count(type) != 0) //check whether the type is in the map.

return typehislist[type].size();

*/
int DSTypeHi sLi st
if (typehislist
el se
return O;
}
/**
* Returns the
* @aramtype
* @eturn The
*/
int DSTypeHi sLi st
if (typehislist
el se

196 JL.R.D Woei-A-Jin, 2001

PH S

return O;

/**

* Returns the concept at a certain position fromthe tenporary history list of a
certain type.

* @aramtype The type of the concept.

* @arami The index of the concept.

* @eturn The concept at position i of the specified type.

*/

DSConcept DSTypeH sLi st::get Tenp(string type, int i)

if (typehislist.count(type) != 0) //check whether the type is in the map.
return typehislist[type].getTenp(i);
el se

DSConcept not hi ng;
return not hi ng;

/**

* Returns the concept at a certain position fromthe history list of a certain type.
* @aramtype The type of the concept.

* @arami The index of the concept.

* @eturn The concept at position i of the specified type.

*/

DSConcept DSTypeHi sList::get(string type, int i)
if (typehislist.count(type) != 0) //check whether the type is in the nap.
return typehislist[type].get(i);
el se

{
DSConcept not hi ng;

return nothing; // return nothing

/**
* Returns the list of keys.
* @eturn The list of keys.
*/
vector<string> DSTypeHi sLi st:: get KeyLi st ()

return keylist;

}

/1 protected:
/'l none

/1 private:
/1 none

11 Copyright (C 2001 Philips GrbH Di al og Systens
/1 Al rights reserved

FEEEEEEEEEr b r i r i r e b rrrr g
Trrrrrr

/1l File: typehis.cc
/1 Revision:

/1 Last changed by:

197 JL.R.D Woei-A-Jin, 2001

PH S

/1 Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1l Created on: January 17, 2001

/1 Description: This is the history list of a concept type, used to determ ne the
referent of a definite description

/1

PEEEEEEEE i r i i bbb rr g
1rrinrr

#i ncl ude "typehis. h"

//public:

/**

* Constructor.
*/

DSTypeHi story: : DSTypeHi st ory()

maxSi ze = 5000;
maxdur ation = 1000;

}
/**

* Constructor.
*/

DSTypeHi story: : DSTypeHi story(string type)
{

t hi s->type = type;

maxSi ze = 5000;

maxduration = 1000;

/**

* Returns the size of the type history.
* @eturn The size of the type history.

*/
int DSTypeH story::size()
{
return saved. si ze();
}

/**
* Returns the size of the tenporarily type history.
* @eturn The size of the tenporarily type history.

*/
int DSTypeH story::tenpSize()
{
return tenp.size();
}
/**

* Saves tenporary type history i.

* The tenporary list is cleared.

* @arami The nunber of the list to be saved.
*/

voi d DSTypeHi story::save(int i)
{
saved = tenmpList[i];
tenpList.clear();
tenp = saved;

| **

* Adds a concept to the tenporary history. If the number of concepts exceeds maxSize
then the ol dest is discarded.

198 JL.R.D Woei-A-Jin, 2001

PH S

* maxSize is defined in "typehis.cfg".
* @aram concept The concept to be added to the tenporary list.
*/

voi d DSTypeHi story::tenpAdd(DSConcept concept)
if (temp.size() !'=0)
whil e ((concept.getTinestanp() - tenp.front().getTinestanp()) > nmaxduration)

tenp. pop_front();

}
if (concept.getReferent() != NULL)

t enp. push_back(*(concept. getReferent()));
tenmp[tenp.size()-1].setTi mestanp(concept.getTi mestanp());

el se

{
t enp. push_back(concept);

if (tenmp.size() > nmaxSize)
tenp. pop_front();

/**

* Adds a concept list to the saved history. If the nunber of concepts exceeds maxSize
then the ol dest is discarde.

* maxSize is defined in "typehis.cfg".

* @aramclist The concept to be added to the saved list.

*/

voi d DSTypeHi story:: add(DSConcept concept)
{
if (temp.size() !'=0)
whil e ((concept.getTi mestanp() - saved.front().getTi nestanp()) > naxduration)

saved. pop_front();

}
}
if (concept.getReferent() != NULL)

saved. push_back(*(concept. get Referent()));
}

el se

{

saved. push_back(concept);

if (saved.size() > maxSize)
saved. pop_front();
tenp = saved;

/**

* Returns the saved concept i.
* @arami The index of the saved concept.
* @eturn The | ast saved concept i.

*/
DSConcept DSTypeHi story::get(int i)
{
return saved[i];
}

/**
* Returns the tenporarily saved concept i.
* @arami The index of the tenporarily saved concept.

* @eturn The tenporarily saved concept i.
*/

199 JL.R.D Woei-A-Jin, 2001

PH S

DSConcept DSTypeHi story::getTenp(int i)

{
return tenp[i];

}

/**

* Finalizes the tenporary type history. This pushes the tenporary type history on the
list and resets the history.

* @aram hypot hesis The nunber of the hypothesis to be finalized.
*/

voi d DSTypeH story::finalize(int hypothesis)
if (tenpList.size() == hypothesis)

t enpLi st . push_back(tenp);

}

el se
for (int i = tenpList.size(); i < hypothesis; i++)
{ t emplLi st . push_back(saved);

} ieani st. push_back(tenp);

/1 cout << "updated tenplist" << endl;
temp = saved;
/1 cout << "reassigned tenp" << endl;

/**

* Sets the type of the type history.
* @aramtype The type of the type history.
*/

voi d DSTypeHi story::set Type(string type)

t hi s->type = type;

/**

* Returns the type of the type history.
* @eturn The type of the type history.
*/

string DSTypeHi story::get Type()
{

return type;

}

/] protected:
/' none

[/ private:
/1 none

Grouping Module

Header file

THLLLT I irrrrririrrrrirrrrg
111111

/1

/1

200 JL.R.D Woei-A-Jin, 2001

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FEEEEEEEEEr bbb rr g
1rrrrrr

/1 File: listproc.h
/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-AJin
/1l Created on: January 17, 2001

/1 Description: This nodule, creates froma list a concept, which can be referred to
pronomi nal ly.

/1 For instance when a list of novies is shown, the user say sonething

i ke:

11 "ok, record thenf. In this case themwould refer to all novies presented
on the display.

/1 So a grouping concept nust be nade which can be referred to

pronom nal | y.

/1

I NN N N N NN NNy
[rrrir

#i f ndef LI STPROC_H
#def i ne LI STPROC_H

#i ncl ude "concept. h"
#i ncl ude <set>
#i ncl ude <string>

cl ass DSSyst enli st Processor

{
publi c:

/**
* Constructor.
*/

DSSyst enli st Processor () ;

/**

* Creates a concept froma list of concepts, which can be referred to pronomnally.

* @aram conlist Concept list, which contains the |list of concepts, which can be
pronomnally referred to.

* @eturn A concept list, expanded with the concept, which can be pronominally
referred to.

*/

vect or <DSConcept > processLi st (vect or <DSConcept > conli st);
private:

bool on; //switch this nodule on or off.

int nunmber; //nunber indicating the nunber of the processed list.

set<string> slistTypes; //set of types which nust be processed.

b
#endi f //LI STPROC_H

Implementation file

FEEEEEEEE b r e r i i rrr
1Hrrnrr

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

201 JL.R.D Woei-A-Jin, 2001

/1 Al rights reserved

I N N N NN NN NNy
[rrrir

/1 File: listproc.cc
/1 Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/!l Created on: January 17, 2001

/1 Description: This nodule, creates froma list a concept, which can be referred to
pronomi nal | y.

/1 For instance when a list of nobvies is shown, the user say sonething
l'ike:

/1 "ok, record them'. In this case themwould refer to all novies presented
on the display.

11 So a groupi ng concept nust be nmade which can be referred to

pronomi nal | y.

/1

FECEEEEEEEE b r e r i r e rr
1Hrrnrr

#i nclude "listproc. h"
#include "nmyUWils. h"

#i ncl ude <i ostreanp
#i ncl ude <fstreanp
#i ncl ude <string>
#i ncl ude <vector>

// public:
/**
* Constructor.
*/
DSSyst enli st Processor: : DSSyst enLi st Processor ()
{
ifstreamin;
string tnp;
in.open("listproc.txt");
if (lin)
{
cerr << "Cannot open SystenlistProcessor initiation file" << endl;
exit;

}
while ('in.eof())

getline(in,tmp);

if ((tp.find("#")!=string::npos)||(tmp==""))
/1 do not hing;

}

else if (tnp=="0")

{
cout << "System List Processor is OFF" << endl;
on = fal se;

}
else if (tnp=="1")

{
cout << "System List Processor is ON' << endl;
on = true;

}

el se

{ .
cout << "inserted: " << tnp << endl;

202 JL.R.D Woei-A-Jin, 2001

PH S

slistTypes.insert(tnp);

}

nunber = 0;

cout << "Done initiating SystenlistProcessor" << endl;
}

/**

* Creates a concept froma |list of concepts, which can be referred to pronomnally.

* @aram conlist Concept list, which contains the list of concepts, which can be
pronomnally referred to.

* @eturn A concept |ist, expanded with the concept, which can be pronom nally
referred to.

*/
vect or <DSConcept > DSSyst enLi st Processor: : processLi st (vect or <DSConcept > conl i st)
{
myUtils util;

vect or <DSConcept > | i stEntries, res;
if ('on)
{

cout << "System List Processor is OFF" << endl;
return conlist; // module is not on, so do nothing.

}

cout << "System List Processor is ON' << endl;
for (int i=0; i < conlist.size(); i++)

{

res. push_back(conlist[i]);
if (conlist[i].getListEntries()!= NULL)

vect or <DSConcept > concepts = *conlist[i].getListEntries();
vect or <DSConcept > subconcepts;
set <string> groups;
map <string, int> groupindex;
vect or <DSConcept > concept gr oups;
vector <DSConcept> *listentries;
vect or <DSConcept > *subconceptentri es;
for (x=0; x < conlist.size(); Xx++)
{
if (concepts.get SubConcepts() != NULL)
subconcepts = *concept s[x]. get SubConcepts();
el se
subconcepts. clear();
for (y=0; y < subconcepts.size(); y++)

i f (groups.count (subconcepts[y].getValue()) == 0)

groups.insert (subconcepts[y].getValue());
groupi ndex[subconcept s[y] . getValue()] =
concept groups. si ze();
concept groups. push_back(DSConcept (“pr ograns”,
subconcepts. getVal ue() + “s” , subconcepts[y].getTinestanp()));
listentries = new vector <DSConcept >;
listentries->push_back(concepts[x]);
*subconceptentries = *subconcepts;
concept groups[concept groups. si ze() -
1] .setListEntries(listentries);
concept gr oups[concept groups. si ze() -
1] . set SubConcept s(subconceptentries);

el se

203 JL.R.D Woei-A-Jin, 2001

PH S

{
listentries = conceptgroups[groupi ndex|
subconcepts[y].getValue()]].getListEntries();
concept groups[gr oupi ndex[subconcept s[y] . get Val ue()]]
.setListEntries(listentries);
subconceptentries =
concept groups| gr oupi ndex[subconcept s[y]. get Val ue()]]. get SubConce

pts ();
for (z=0; z <subconcepts.size(); z++)
{
subconcept entri es->push_back(subconcept s[z]);
}

concept gr oups[gr oupi ndex[subconcept s[y] . get Val ue()]]. set SubConce
pt (subconceptentries);

}
} _ _
for (x=0; x < conceptgroups.size(); x++) //renove groups wth
only 1 entry.

{
if (conceptgroups[x].getListEntries()->size() > 1)
{
res. push_back(concept groups[x]);
}
}
if (slistTypes.count(conlist[i].getType())!=0)
{
cout << "start processing" << endl;
listEntries = *conlist[i].getListEntries();
if (listEntries.size()>1)
{
res. push_back(conlist[i]);
res[res.size()-1].setValue(listEntries[0].getType()+"s
"+util.int2Str(nunber));
cout << "added: " << res[res.size()-1].getValue() << endl;
res[res.size()-1].setType(listEntries[0].getType());
res[res.size()-1].setlnputOrigin("slist");
nunber ++;
for (int j=listEntries.size()-1; j >=0; j--) // add the list entries as
separate itens, backwards, so that itenms higher in the list gain priority.
{
res. push_back(listEntries[j]);
}
}
el se
{
res. push_back(listEntries[0]); // only one.
res[res.size()-1].setlnputOrigin("slist"); // mark that it must be added to
the slist.
}
}
}
}
return res;

}

204 JL.R.D Woei-A-Jin, 2001

PH S

Deixis filter

Header file

I N N N N NN NN NN NNy
[rrrir

11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

NN N N NN NNy
1rrrir

/1

/1 File: deixdet.h
/'l Revision:

/1

/'l Last changed by:
/1 Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1l Created on: January 17, 2001

/1 Description: This is the deixis detection nodule. It |ooks up the concept type
string. e.g. deixis.

/1

FEEEEEEEE i i i
1rrrnrr

#i f ndef DSDEI XI SDETECTI ON_H
#def i ne DSDEI XI SDETECTI ON_H

#i ncl ude "concept. h"
#i ncl ude <set>
#i ncl ude <vector>

/**
* This class is used to find the concepts which are derived from dei xis.
*/

cl ass DSDei xi sDet ecti on

publi c:

/**
* Constructor.
*/

DSDei xi sDet ecti on();

/**

* Extract the concepts which are derived fromdeixis. These are renoved fromthe
list.

* @aram concepts List of concepts fromwhich the deictic input nust be extracted.

* @eturn List of concepts of deictic input.

*/

vect or <DSConcept > extract Dei xi s(vect or <DSConcept > &concepts);
protected:
/'l none

private:
set <string> dei xi sTypes; //types which indicates deixis.
b

205 JL.R.D Woei-A-Jin, 2001

PH S

#endi f // DSDElI XI SDETECTI ON_H

Implementation file

FECEEEEEEEr b bbb r g
1rrrrr

11 Copyright (C) 2001 Philips GrbH Dial og Systens

/1 Al rights reserved

R N N N NN NN NNy
[rrrir

/1 File: deixdet.cc
/'l Revision:

/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-AJin
/1 Created on: January 17, 2001

/1 Description: This is the deixis detection nodule. It |ooks up the concept type
string. e.g. deixis.

/1

IR NN NN NN
Iy

#i ncl ude "dei xdet. h"

/1 public:

/**
* Constructor.
*/

DSDei xi sDet ect i on: : DSDei xi sDet ecti on()
dei xi sTypes.insert("deixis"); // load the set of deixis types

/**

* Extract the concepts which are derived fromdeixis. These are renoved fromthe
list.

* @aram concepts List of concepts fromwhich the deictic input nust be extracted.

* @eturn List of concepts of deictic input.

*/

vect or <DSConcept > DSDei xi sDet ecti on: : extract Dei xi s(vect or <DSConcept > &concept s)

vect or <DSConcept > res;
vect or <DSConcept > t np;

cout << "detect deixis, size = " << concepts.size() << endl;
for (int i=0; i < concepts.size(); i++)
if (deixisTypes.count(concepts[i].getlnputOrigin()) '=0) // if the input origin of
the concept is a formof deixis.
{

cout << "deixis detected: " << concepts[i].getValue() << endl;

res. push_back(concepts[i]); // add it to the list of deictic concepts

}

206 JL.R.D Woei-A-Jin, 2001

PH S

else // create a |list without deictic concepts
{
t np. push_back(concepts[i]);
}

concepts = tnp; // concepts is the |list without deictic concepts
return res;

}

/1 protected:
/1 none

/1 private:
/I none

Reference Detection & Classification Module

Header file

IR NN
Iy
11 Copyright (C 2001 Philips GrbH Dial og Systens

/1 Al rights reserved

N NN N N NN NN NNy
[rrrir

/1 File: refdet.h
/'l Revision

/1l Last changed by:
/1 Last changed on

/!l Created by: Dimtri Wei-AJin
/1 Created on: January 17, 2001

/1 Description: This is the Reference Detection and C assification Mdule. It determ nes
the referential property

/1 and classifies themin one of these categories
11 - pronoun

/1 - definite description

11 - date

11 - denonstrative

11 - one-anaphora

11

IR N NN NN NNy
[rrrir

#i f ndef DSREFERENCECLASSI FI CATI ONANDDETECTI ON_H
#def i ne DSREFERENCECLASSI FI CATI ONANDDETECTI ON_H

#i ncl ude "conlist.h"
#i ncl ude "concept. h"
#i ncl ude <set>

#i nclude "string"

/**
* Enuneration type to indicate the referential property:
* - none,

* - a pronoun,
* - a denonstrative,

207 JL.R.D Woei-A-Jin, 2001

PH S

* - a definite description,
* - one anaphora, or

* - a date.

*/

enum r ef erenceType {none, pronoun, denonstrative, definite, one, date};

/**

* This class is used to determne the referential property of a concept and classify
themin the proper category.
*/

cl ass DSRef er enceDet ecti onAndd assi fication

{
publi c:

/**
* Constructor.
*/

DSRef er enceDet ecti onAndd assi fication();

/**

* This nmethod is used to determne the referential property of a concept and cl assify
themin the proper category.

* @aram current Concept The concept to be classified.

* @eturn The classification.

*/

ref erenceType detect Andd assify (DSConcept current Concept);
private:

set<string> pronouns; // types indicating a pronoun.

set<string> denonstratives; // types indicating a denonstrative.
set<string> definites; // types indicating a definite description.
set<string> ones; // types indicating one anaphora.

set<string> dates; // types indicating a date.

set<string> pronounlind; // set of words that indicate a pronoun.

set<string> denonstrativelnd; // set of words that indicate a denonstrative.
set<string> definitelnd; // set of words that indicate a definite description.
set<string> onelnd; // set of words that indicate one anaphora.

set<string> datelnd; // set of words that indicate a date.

vector<string> poshWd; //set of possesive nodifiers like 's.

b
#endi f // DSREFERENCECLASSI FI CATI ONANDDETECTI ON_H

Implementation file

FEEEEEEEEErr b r i i b r g
[rrrir

11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

NN N N NN NNy
1rrrir

/1

/Il File: refdet.cc
/'l Revision:

/1

/'l Last changed by:

208 JL.R.D Woei-A-Jin, 2001

PH S

/1 Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1l Created on: January 17, 2001

/1 Description: This is the Reference Detection and O assification Mdule. It determ nes
the referential property

11 and classifies themin one of these categories:
11 - pronoun

11 - definite description

I - date

I - denonstrative

11 - one-anaphora

/1

FEEEEEEEEEr b r e r i b b rrr g
1rrnrr

#i ncl ude "refdet.h"
#i ncl ude <fstreanpr

/1 public:

/**
* Constructor.
*/

DSRef er enceDet ect i onAndd assi fi cati on: : DSRef er enceDet ect i onAndd assi fi cati on()

{
pronouns.insert("Pronoun"); // initialize types indicating a pronoun.
denonstratives.insert("Denonstrative"); // initialize types indicating a denonstrati ve.
definites.insert("Definite"); //initialize types indicating a definite description.
ones.insert("One"); //initialize types indicating one anaphora.
dates.insert("Date"); //initialize types indicating a date.

string tnp;
cout << "l oading reference indicators" << endl;
ifstreamin;

in.open("pronouns.txt", ios::in);//initialize set of words that indicate a pronoun.
These words aren't acconpani ed by ot her words.

if (lin)

{

cerr << "Cannot open pronoun data file" << endl;
exit;

}
while (!in.eof())

getline(in, tnp);
if (tnp.find("#") == string::npos && tnp!="")
{

pronounl nd. i nsert (tnp);
}
}
in.close();
in.open("denonstratives.txt", ios::in); //initialize set of words that indicate a

denonstrative. Usually referring to a deictic input.
if (lin)
{

cerr << "Cannot open names and denonstratives data file" << endl;
exit;

}
while (!in.eof())

getline(in, tnp);
if (tmp.find("#") == string::npos && tnp!="")
{

denonstrativel nd.insert(tnp);

}

in.close();
in.open("definites.txt", ios::in);//initialize set of words that indicate a definite
description. These words occur in conjunction with other words

209 JL.R.D Woei-A-Jin, 2001

PH S

if (lin)

{ . . .
cerr << "Cannot open definite description data file" << endl
exit;

}
while ('in.eof())

getline(in, tmp);
if (tnp.find("#") == string::npos && tnp!="")

definitelnd.insert(tnp);
}

in.close();
in.open("one.txt", ios::in);//initialize set of words that indicate one anaphora. These
wi Il occur in conjunction with a denonstrative indicator, or a definite description
i ndi cat or.
if (lin)
{
cerr << "Cannot open one anaphora data file" << endl
exit;

}
while (!in.eof())

getline(in, tmp);
if (tnp.find("#") == string::npos && tnp!="")

onel nd.insert (tnp);
}
}
in.close();
in.open("date.txt", ios::in); //initialize set of words that indicate a date. These

words may occur in conjunction with other words
if (lin)
{

cerr << "Cannot open dates data file" << endl
exit;

5

ile (lin.eof())

getline(in, tmp);
if (tmp.find("#") == string::npos && tnp!="")

datel nd.insert(tnp);
}

}
in.close();
in.open("posnod.txt", ios::in);
if

{

(lin)

cerr << "Cannot open possesive nodifier data file" << endl
exit;

while (!in.eof())

getline(in, tnp);
if (tnp.find("#") == string::npos && tnp!="")

if (tnp 1="")
{

posMod. push_back(t) ;

}
}

in.close();

/**
* This nethod is used to determne the referential property of a concept and classify
themin the proper category.
* @aram current Concept The concept to be classified
* @eturn The classification.

210 JL.R.D Woei-A-Jin, 2001

PH S

*/

ref erenceType DSReferenceDet ecti onAndd assi fication:: detect Andd assify (DSConcept
current Concept)

{

int nextpos;
cout << "detect and classify" << endl;

if (currentConcept.getType()=="title" || currentConcept.get Type()=="contents" ||
current Concept. get Type()=="info_comand_title")

{

return none;

}
if (currentConcept.get Type()=="given_date" ||
current Concept . get Type()=="tine_and_ti me_duration")
return date;

string concept = current Concept. getVal ue();
/'l check for pronouns.
i f (pronounlnd. count (concept)! =0)
return pronoun;
//check for denonstratives.
if (demonstrativel nd. count (concept)! =0)
return denonstrative;
//check for sinple dates.
if (datelnd. count(concept)!=0)
return date;
//check for 's.
|/ corment ed because of anbiguity with abbreviation if "is".
[*for (int i=0; i < posMod.size(); i++)

if (concept.find(posMd[i]) != string::npos)
return definite;
pel

/1 check whet her indicators exist.
ref erenceType res = none;

whi | e(concept.find(" ") !'= string::npos)
{

next pos = concept.find(" ");
// cout << concept.substr (0, nextpos) << endl;

if (onel nd. count (concept. substr (0, nextpos))!=0)
return one;
if (definitelnd.count(concept.substr(0, nextpos))!=0)
res = definite;
if (datelnd.count(concept.substr (0, nextpos))!=0)
return date;
if (denmonstrativel nd. count (concept. substr (0, nextpos))!=0)
res = denonstrative;
/1 current word is not an indicator, so try next one.

concept = concept. substr(nextpos+1);

//cout << concept << endl;

/1 check whether last word is an indicator.

if (onel nd. count (concept)!=0)
return one;

if (definitelnd.count(concept)!=0)
return definite;

if (datelnd.count(concept)!=0)
return date;

if (denmpnstrativel nd. count (concept)! =0)
return denonstrative;

/1 cout << "return res" << endl;

return res;

211 JL.R.D Woei-A-Jin, 2001

PH S

/1 protected
/1 none

/1 private
/1 none

Constraint Detection Module

Header file

I NN N N NN NNy
1

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FECEEEEEEEr e r i b rrr g
[rrrir

/1 File: condet.h
/'l Revision

/'l Last changed by:
/1 Last changed on

/!l Created by: Dimtri Wei-AJin
/1 Created on: January 17, 2001

/1 Description: This is the Constraint Detection Mdule. It is used to detect
constraints for a reference

1 to narrow down the scope of possible referents

/1

IR NN NN NN
Iy

#i f ndef DSCONSTRAI NTDETECTI ON
#def i ne DSCONSTRAI NTDETECTI ON

#i ncl ude "concept. h"
#i ncl ude "constr. h"
#i ncl ude <vector>

#i ncl ude <map>

#i ncl ude <set>

#i ncl ude "typcons. h"

/**
* This class is used to detect constraints for a reference, to narrow down the scope of
possi bl e referents
*/
cl ass DSConstrai nt Det ecti on
publi c:
/**
* Constructor
*/
DSConstrai nt Det ection();

| **

212 JL.R.D Woei-A-Jin, 2001

PH S

* Detect the constraints froma list of concepts for a reference.

* @aramreference The reference for which the constraints nust be detected.

* @aram concepts List of concepts, fromwhich the constraints nmust be derived.
* @eturn List of constraints for the reference.

*/

vect or <DSConst r ai nt > det ect Constrai nts (DSConcept reference, DSConcept *superconcept,
vect or <DSConcept > concepts);

prot ect ed:
/'l none

private:

map<string, int> valueConstraintlndex; // index for the value - constraint nap.
vect or <vect or <DSConst rai nt > > val ueConstrai nt Map; // the value - constraint map.

map<string, int> nodifierConstraintlndex; // index for the nodifier - constraint
preni sses i ndex.

vect or<vector<int> > nmodConstrPrelndex; // index for nodifier constraint (prenisses)
map.

vect or <vect or <DSConstrai nt> > nodi fi erConstraint Map; // the nodifier - constraint map.
vect or <vect or <DSConst rai nt > > nodi fi er Constrai nt PreMap; // prem sses for the nodifier
constraints.

set <string> hasVal ueTypeConstraint; // are there constraints linked to a type for this
val ue?

vect or<map<string,int> > val ueTypeConstraintlndex; // constraint index for val ue
linked to a type

vect or <vect or <DSConstrai nt> > val ueTypeConstraint; // constraint for value linked to a

type.
set<string> listTypes; //set of list types.
vector<string> subConMddVal ; // string value of the nodifier.
vect or<i nt > subConMddArg; // nunber of the argument (1,2) that is the superconcept.
vector<string> subConMdPos; // position of the nodifier: F(ront), Mmiddle), B(ack).

voi d findSubVal Constrai nts(DSConcept reference, string subVal ue, vector<DSConstrai nt>
& es, map<string, int> & oundTypes, string &conType);

DSTypeConstrai nts typeConstraints;
b
#endi f // DSCONSTRAI NTDETECTI ON

Implementation file

IR NN
Iy
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FECEEEEEEE b r b bbb r
1rrrrrr

/1 File: condet.cc
/1 Revision:

/'l Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin

213 JL.R.D Woei-A-Jin, 2001

PH S

/1 Created on: January 17, 2001

/1

/1l Description: This is the Constraint Detection Mdule. It is used to detect
constraints for a reference,

11 to narrow down the scope of possible referents.

/1

IR NN NN NN
1Hrrnrr

#i ncl ude "condet. h"
#i ncl ude <fstreanpr
#include "nmyUWils.h"

/1 public:
/**
* Constructor.
*/

DSConst r ai nt Det ecti on: : DSConst r ai nt Det ecti on()

{

string conceptValue, tnp, type, value, prentype, prenval ue, conceptType, typConVal ue,
typConType;

int priority, typConPriority;

vect or<DSConstrai nt> tnpConstrai nts, tnpTypeConstraints;

vect or <DSConst r ai nt > t npPrem sses;

vect or <i nt > t npl ndex;

map<string,int> tnpVal ueTypeConstrai nt | ndex;

myUtils util;

/1 load file which contains constraint data.

cout << "l|oading constraint data, condet.cc" << endl;

ifstreamin;

in.open("constraints.txt", ios::in);

if (lin)

{
cerr << "Cannot open constraint data file" << endl;
exit;

cout << "l|oading constraints" << endl;
while (!in.eof())
{
getline(in, tnp);
if (tnp.find("#")!=string::npos || t == "") [/ conmment read.

/1 do not hing.
/1 cout << "comment: " << tnp << endl;

else if (tnp.find(">;")!=string::npos) // end of constraint |linked to concepttype
read.

hasVal ueTypeConstraint.insert(conceptValue); // there are constraints for this
val ue linked to the concept type

val ueTypeConstrai nt. push_back(t npTypeConstraints); // add the constraints |inked
to the concept type

t npVal ueTypeConst r ai nt | ndex[concept Type] =val ueTypeConstrai nt.size()-1; // note the
index of the constraints

t npTypeConstraints. clear();

else if (tnp.find(">")!=string::npos) // concept type to link constraint to read.
concept Type=t np. substr (tnp. find(">") +1);

else if (tnp.find(")")!=string::npos) // constraint |linked to concepttype read.
{

typConType = tnp.substr(1,tnp.find(",")-1);

tnp = tnp.substr(tnp.find(",")+2);

typConVal ue = tnp.substr (0, tnp.find(","));

typConPriority = util.str2Int(tnp.substr(tnp.find(",")+2));

t npTypeConst rai nts. push_back(DSConst rai nt (typConType, t ypConVal ue,

typConPriority));

214 JL.R.D Woei-A-Jin, 2001

PH S

else if (tnmp.find(":")!=string::npos) // concept val ue read.

concept Val ue = tnp.substr(0,tnp.find(":")); // save concept val ue.
//cout << "concept value: " << conceptVal ue << endl;

else if (tnp.find(";")!=string::npos) //end of constraints for a conceptval ue read.

val ueConst r ai nt Map. push_back(t npConstraints); // save the constraints.

val ueConstrai nt | ndex[concept Val ue] = val ueConstrai nt Map. si ze()-1;

tnpConstraints. clear();

val ueTypeConstrai nt | ndex. push_back(t mpVal ueTypeConstrai ntlndex); // save the index
for the constraints linked to a type.

t mpVal ueTypeConstrai nt I ndex. cl ear();

/*cout << "done adding constraints for concept value " << conceptValue << " at

index: " << val ueConstraintlndex[conceptVal ue] << endl;

cout << "number of constraints added: " <<
val ueConst r ai nt Map[val ueConst r ai nt | ndex[concept Val ue]] . si ze() << endl;

for (int i=0; i < valueConstraintMp[val ueConstraintl ndex[conceptVal ue]]. size();
i ++)

{

cout << "constraint value: " <<

val ueConst r ai nt Map[val ueConst rai nt | ndex[concept Val ue]][i].getValue() << " type: " <<
val ueConst r ai nt Map[val ueConst r ai nt | ndex[concept Val ue]][i].get Type() << endl;

)

else if (tnp.find(",")!=string::npos) // constraint type value pair.

{
type = tnp.substr(0,tnp.find(","));
tnp = tnp.substr(tnp.find(",")+2);
value = tnp.substr (0, tnmp.find(","));
priority = util.str2lnt(tnp.substr(tnp.find(",")+2));
t mpConstrai nts. push_back(DSConstrai nt (type, value, priority));
}
in.close();
/1 load file containing nodifier data.
in.open("nodifiers.txt", ios::in);
if (!lin)

{

cerr << "Cannot open nodifier constraint data file" << endl;
exit;

cout << "l|oading nodifiers" << endl;
while (!in.eof())
{

getline(in, tmp);

/[lin >> tnp;

if (tnp.find("#")!=string::npos || tnp =="") // conment read.

/1 do not hi ng.
//cout << "comment: " << tnp << endl;

else if (tnp.find(":")!=string::npos) // concept val ue read.

concept Val ue = tnp.substr(0,tnp.find(":")); // save concept val ue.
//cout << "nodifier value: " << conceptVal ue << endl;

else if (tnp.find(">;")!=string::npos) //end of prem sses for a nodifier value read.

modi fi er Const rai nt PreMap. push_back(t npPremni sses); // save the prem sses.

t npl ndex. push_back(nodi fi er Constrai nt PreMap. size()-1); // save the index of the
preni sses

//cout << "prem sses constraints size: " <<

modi fi er Constrai nt PreMap[t npl ndex. si ze()-1].size() << ", " << tnpPremnisses.size() <<
endl ;

t npPrem sses. clear();
//cout << "done adding prem sses for nodifier value " << conceptVal ue << endl;

}

215 JL.R.D Woei-A-Jin, 2001

PH S

else if ((tmp.find(">")!=string::npos)&&(tnmp.find(",")!=string::npos)) //premn sses
for a conceptval ue read.
{
prentype=tnp. substr(tnp.find(">")+1, tnp.find(",")-tmp.find(">")-1);
//cout << "prenisses type: " << prentype << endl;
premval ue=t np. substr(tnp.find(",")+2);
//cout << "prem sses value: " << prenval ue << endl;
t npPr em sses. push_back(DSConst r ai nt (prent ype, prenval ue));

}
else if (tnmp.find(");")!=string::npos) //end of constraints for a nodifier value
read.

nodi fi er Constrai nt Map. push_back(tmpConstraints); // save the constraints.

/1 tnplndex isn't used, since it should already be updated with the prem sses

//cout << "nodifier constraints size: " << nodifierConstraintMap[tnpl ndex. size()-
1] .size() << ", " << tnmpConstraints.size() << endl;

tmpConstraints. clear();

//cout << "done adding constraints for nodifier value " << conceptVal ue << endl;

}
else if ((tnp.find(")")!=string::npos)&&(tnp.find(",")!=string::npos)) //prem sses
for a conceptval ue read.
{
type=tnp. substr(tmp.find(")")+1, tnp.find(",")-tnp.find(")")-1);
//cout << "constraint type: " << type << endl;
tnp=t np. substr(tnp.find(",")+2);
value = tnp.substr (0, tnp.find(","));
priority = util.str2lnt(tnp.substr(tnmp.find(",")+2));
t npConstrai nts. push_back(DSConstraint (type, value, priority));
//cout << "constraint value: " << value << endl;

else if (tnp.find(";")!=string::npos) //end of conceptval ue read.

modConst r Pr el ndex. push_back(tnpl ndex); // save the index of prem sses and
constraints.

nodi fi er Constrai nt | ndex[concept Val ue] = nodConstr Prel ndex. si ze()-1;

t npl ndex. cl ear () ;

//cout << "done with concept value " << conceptVal ue << endl;

}

in.close();

in.open("listTypes.txt", ios::in);

if (lin)

{
cerr << "Cannot open list types data file" << endl;
exit;

cout << "loading list types" << endl;
while (!in.eof())

getline(in, tmp);
if (tmp.find("#")!=string::npos || tnmp =="") // comment read.
{

/1 do not hi ng.
/'l cout << "comment: " << tnp << endl;

}

el se

listTypes.insert(tnp);

in.close();

i n.open("subConMd.txt", ios::in);
if (lin)

{

cerr << "Cannot open subconcept nodifier data file" << endl;
exit;

}

cout << "Loadi ng subconcept nodifier data..." << endl;

while (!in.eof())

getline(in, tnp);

216 JL.R.D Woei-A-Jin, 2001

PH S

if (tmp.find("#")!=string::npos || tnmp == "") // comment read.
/1 do not hi ng.
// cout << "comment: " << tnp << endl;
}
el se
{
subConMbdVal . push_back(t np. substr (0, tnmp.find(":")));
cout << "sub concept nodifier: " << tnp.substr(O0,tnmp.find(":")) << " ";
subConModAr g. push_back(util.str2lnt(tnmp.substr(tmp.find(":")+2,1)));
cout << util.str2Int(tnp.substr(tnmp.find(":")+2,1)) << " ";
subConModPos. push_back(tnmp. substr(tnp.find(":")+5,1));
cout << tnp.substr(tnmp.find(":")+5,1) << endl;
}
in.close();
in. open("typeconstraints.txt", ios::in);
if (lin)
{
cerr << "Cannot open type constraint data file" << endl;
exit;
}

cout << "|oading type constraints" << endl;

while (!in.eof())

{
getline(in, tnmp);
if (tmp.find("#")!=string::npos || tnmp == "") // comment read.
{

/1 do not hi ng.
//cout << "comment: " << tnp << endl;

}
else if (tnp.find(":")!=string::npos) // concept type read.

concept Type = tnp.substr(0,tnp.find(":")); // save concept val ue.
//cout << "concept type: " << conceptType << endl;

else if (tnp.find(",")!=string::npos) // constraint type value pair.

type = tnp.substr (0, tnp.find(","));

//cout << "constraint type: " << type << endl;
val ue = tnp.substr(tnp.find(",")+2);
//cout << "constraint value: " << value << endl;

typeConstraints. set (concept Type, type, value); // save the concept type -
constraints

}

in.close();
}

/**
* Detect the constraints froma list of concepts for a reference.
* @aramreference The reference for which the constraints nust be detected.
* @aram concepts List of concepts, fromwhich the constraints nust be derived.
* @eturn List of constraints for the reference.
*/

vect or <DSConst r ai nt > DSConstrai nt Det ecti on: : det ect Constrai nts (DSConcept reference,
DSConcept *superconcept, vector<DSConcept> concepts)
{

vect or <DSConst rai nt > res;

string subVal ue, tnpVal ue, conType;

map<string, int> foundTypes;

/1 1ook for constraints within the concept.

cout << "looking for constraints within the concept" << endl;

Il first check whether there are constraints for the conplete val ue.

if (val ueConstraintlndex. count (reference.getValue())!=0) // check whether the val ue
exists in the map.

if (hasVal ueTypeConstraint. count (reference.getValue())!=0) // check whether there

are constraints linked to a type.

{

217 JL.R.D Woei-A-Jin, 2001

PH S

if
(val ueTypeConstrai nt | ndex[val ueConstrai nt| ndex[ref erence. get Val ue()]]. count (ref erence. get
TVDE())&=0)

res =
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConstr ai nt | ndex[ref erence. get Val ue()]][
reference. get Type()]];

cout << "constraints linked to type added" << endl;

}
el se
{
res = val ueConstrai nt Map[val ueConstrai ntl ndex[r ef erence. getVal ue()]];
}

}

res = val ueConstrai nt Map[val ueConstrai nt | ndex[r ef erence. getVal ue()]];
}
cout << "constraints within the concept as a whole " << ((res.size()==0)?"not
found": "found") << endl;
bool conLi nkedToTypeAdded = fal se;
if (res.size() == 0)

if (superconcept != NULL)
if (superconcept->getReferent()!= NULL)

cout << "constraint added: |istvalue, " << superconcept->getReferent()-
>get Val ue() << endl;
res. push_back(DSConstraint ("listval ue", superconcept->getReferent()-
>get Val ue() +": " +super concept - >get Ref erent () - >get Type()));
}

el se
{
cout << "constraint added: |istvalue, " << superconcept->getValue() << endl;
res. push_back(DSConstraint("listval ue", superconcept-
>get Val ue() +": " +super concept - >get Type()));

}

/1 1ook for each word in the string for constraints.
cout << "look for each word in the string for constraints" << endl;
if (reference.getValue().find(" ")!= string::npos) // then for parts of the val ue.
{
tnpVal ue = reference. getVal ue();
//cout << "tnpvalue: " << tnpVal ue << endl;
while (tnmpVal ue.find(" ")!= string::npos)

subVal ue = tnpVval ue. substr (0, tnpVval ue.find(" ")); // take first subval ue
t npVal ue = tnpVal ue. substr(tnpVal ue.find(" ")+1); // rest val ue
/1 cout << "subvalue: " << subValue << ", tnpvalue: " << tnpValue << endl;

fi ndSubVal Constrai nts(reference, subValue, res, foundTypes, conType);

} // end while

//cout << "tnpValue: " << tnpValue << endl;
fi ndSubVal Constrai nts(reference, tnpValue, res, foundTypes, conType);
} // end if
} // end if
else // constraints found for concept value as a whole, now printing them
[*for (int i=0; i < res.size(); i++)
{
cout << "constraint type: " << res[i].getType() << " constraint value: " <<

res[i].getValue() << endl;
foundTypes[res[i].get Type()]=i;
)
if (res.size()==0) // no constraints found in concept value, search in concept type

cout << "no constraints found in concept value, search in concept type" << endl;
res = typeConstraints. get(reference. get Type());

218 JL.R.D Woei-A-Jin, 2001

PH S

}

if (reference. get SubConcepts() != NULL) // look for constraints in the subconcept |ist.
{
cout << "looking for constraints in the subconcept list" << endl;
vect or <DSConcept > subConcepts = *reference. get SubConcepts();

for (int i=0; i < subConcepts.size(); i++)

/'l subconcept type and val ue becone constraint type and value for the concept.
res. push_back(DSConstrai nt (subConcepts[i].get Type(), subConcepts[i].getValue()));
foundTypes[subConcepts[i].get Type()]=res.size()-1;

}

el se

{

cout << "no subconcepts to | ook constraints for" << endl;
}

cout << "looking for constraints in the concept |ist" << endl;
bool prem = true;

vect or<i nt > i ndex;

int ressize = res.size();

/1 look for constraints in the concept Ilist.

for(int i=0; i < concepts.size(); i++) // for each concept in the concept |ist.
if (!(reference == concepts[i]))
cout << "working on concept: " << concepts[i].getValue() << endl;

string conltype;
if (concepts[i].getReferent()!=NULL)

conltype = concepts[i].getReferent()->getType();
cout << "referent Type = " << conltype << endl;

}

el se
conltype = concepts[i].getType();

/*if (listTypes.count(conltype) != 0)
if (concepts[i].getReferent()!=NULL)

cout << "constraint added: listvalue, " << concepts[i].getReferent()-

>get Val ue() << endl;
res. push_back(DSConstraint ("listvalue", concepts[i].getReferent()-

>get Val ue() +": " +super concept - >get Ref erent () - >get Type()));

el se

{

cout << "constraint added: listvalue, " << concepts[i].getValue() << endl;
res. push_back(DSConstraint ("listval ue",
concepts[i].getVal ue()+":"+superconcept->get Type()));

}
else */ if (nodifierConstraintlndex.count(concepts[i].getValue()) !'=0) // check
whet her the value exists in the nmap

{
for (int j=0; j <
nmodConst r Prel ndex[nodi fi er Constrai ntlndex[concepts[i].getValue()]].size(); j++)// for
each of the premisses - constraint pair.

{

/1 cout << "checking prem sses constraint pair " << | << endl;
i ndex = nodConstr Prel ndex[nodi fi er Constrai ntlndex[concepts[i].getValue()]];
for (int k=0; k < nodifierConstraintPreMap[index[j]].size(); k++) // check

each of the prenisses

/1 cout << "checking prem sses :

<<nodi fi erConstrai nt PreMap[index[j]][K].getType() << ", " <<
modi fi er Constrai nt PreMap[index[j]][K].getValue() << endl;
for (int 1=0; | <res.size(); |++) // with the constraints already in the

constraintlist.

{

/1 cout << "still working at |=" << | << ", size =" << res.size() <<
endl ;

219 JL.R.D Woei-A-Jin, 2001

PH S

if (res[l].getType() ==
nodi fierConstraintPreMap[index[j]][k].getType()) // if the types are the sane

/'l cout << "types are the same" << endl;

if ((res[l].getValue() != "none") &&
(res[1].getValue()!=nodifierConstraintPreMap[index[j]][k].getValue()))

{

prem= false; // but the values differ, then the additional
constraints can't be assigned.
break; // there's no need to check further.

else // the premi sses and constraints are fromthe sanme type and
val ue

break; // no need to look further for the constraint with the
same type.

}
} // end going through constraints already in the constraint Ilist.

/lcout << "still working at k=" << k << ", size= " <<
nmodi fi er Constrai nt PreMap[i ndex[j]].size() << endl;

if (!prem // one of the prenisses don't hold
break; // no need to | ook further
} // end checking each of the prenisses

cout << "done checki ng each of the prem sses" << endl;
if (prem) // the prem sses hold
{

cout << "prem sses hold" << endl;

//cout << "size of nodifier constraint nmap:
nmodi fi er Constrai nt Map[index[j]].size() << endl;

for(int k=0; k < nodifierConstraintMap[index[j]].size(); k++) // add the
addi tional constraints.

" <<

//cout << "adding additional constraints, currently at position " << k
<< endl;

cout << " adding constraint type: " <<
nodi fi erConstrai nt Map[index[j]][k].getType() << ", " <<
modi fi er Constrai nt Map[index[j]][k].getValue() << endl;

res. push_back(rodi fi erConstraint Map[index[j]][k]);

break; // no need to | ook further

} // end checking each of the nodifier - constraint pair

} // end if
} /] endif
} /1 end checking each concept in the |ist
if (res.size() == ressize)
cout << "constraints in the concept list not found..." << endl;
}
cout << "the follow ng constraints were determned for " << reference.getType() << " ("
<< reference.getValue() << ") :" << endl;
for (int i =0; i <res.size(); i++)
{
cout << " contraint: " << res[i].getType() << " (" << res[i].getValue() << ")" <<
endl ;
}

cout << "end of constraints" << endl;
return res;

}

voi d DSConstrai nt Det ecti on: : fi ndSubVal Const rai nt s(DSConcept reference, string subVal ue,
vect or <DSConstrai nt > & es, map<string, int> & oundTypes, string &onType)

{

220 JL.R.D Woei-A-Jin, 2001

PH S

bool conLi nkedToTypeAdded = fal se

if (val ueConstraintl ndex. count (subVal ue)!=0) // check whether the subValue exists in
t he map.

i f (hasVal ueTypeConstraint. count (subVal ue)!=0) // check whether there are
constraints linked to a type
{
if
(val ueTypeConstrai nt | ndex[val ueConst rai nt | ndex[subVal ue]] . count (ref erence. get Type())! =0)
/!l is the type in the list?

for (int j=0; j <
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [reference. ge
tT)/Ii)fé()]]-si{m(): j++)

conType =
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [reference. ge
tType()]1[j]. get Type();

if (foundTypes. count (conType)==0)

res. push_back(val ueTypeConstrai nt [val ueTypeConstrai nt | ndex[val ueConst r ai nt | ndex[subVal ue]
][reference.get Type()]1[j]);// add the constraint

cout << " constraint type added: " << res[res.size()-1].getType() << ",
" << res[res.size()-1].getValue() << endl

foundTypes[conType] =res. si ze()-1; //add constraint type to list of found
constraint types

}

else if (res[foundTypes[conType]].getValue() !'=
val ueTypeConstrai nt [val ueTypeConstrai nt | ndex[val ueConst rai nt | ndex[subVal ue]] [r ef erence. ge
tType()]]1[j].getValue()) // values conflict

if (res[foundTypes[conType]].getPriority() ==
val ueTypeConstrai nt [val ueTypeConstrai nt | ndex[val ueConst rai nt | ndex[subVal ue]] [r ef erence. ge
tType()]]1[j].getPriority())

res[foundTypes[conType]].setValue("m xed"); // priorities are the
same, set as m xed

}

el se

if (res[foundTypes[conType]].getPriority() <
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [r ef er ence. ge
tTleE()]][J']-getPriOgity())

res[foundTypes[conType]] =
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [r ef er ence. ge
tType()]1[jl; // new priority is higher, so replace
}

}/ 1 end else if (values conflict)
}/ 1 end for
cout << "constraints linked to type added" << endl
conLi nkedToTypeAdded = true
}// end is the type in the list?
} // end are there type related constraints?
if (!conLi nkedToTypeAdded)

{
cout << subValue << " has constraints to add, index =" <<
val ueConst rai nt | ndex[subVal ue] << endl
for (int j=0; j < valueConstraintMap[val ueConstrai ntl ndex[subVal ue]].size(); j++)

//cout << "adding constraint " << j << " of " <<
val ueConst r ai nt Map[val ueConst r ai nt | ndex[subVal ue]] . si ze() << endl
/1 maybe add rul es on assigni ng constraints???
conType = val ueConstrai nt Map[val ueConstrai nt | ndex[subVal ue]][j]. get Type()
if (foundTypes. count (conType)==0)

{
res. push_back(val ueConstrai nt Map[val ueConstrai nt | ndex[subVal ue]1[j]);// add
the constraint

221 JL.R.D Woei-A-Jin, 2001

e

L¥

HE
T
1

fay
L |

PH S

b

cout << "constraint type added: " << res[res.size()-1].getType() << ", " <<
res[res.size()-1].getValue() << endl;

foundTypes[conType] =res. si ze()-1; //add constraint type to list of found
constraint types.

}
else if (res[foundTypes[conType]].getValue() !=
val ueConst r ai nt Map[val ueConst rai nt | ndex[subVal ue]][j].getValue()) // values conflict

if (res[foundTypes[conType]].getPriority() ==
val ueConst r ai nt Map[val ueConstrai nt | ndex[subVal ue]][j].getPriority())

res[foundTypes[conType]].setVal ue("m xed"); // priorities are the sane,
set as m xed.

}

el se

if (res[foundTypes[conType]].getPriority() <
val ueConst r ai nt Map[val ueConstrai nt I ndex[subVal ue]][j].getPriority())

{
res[foundTypes[conType]] =
val ueConst r ai nt Map[val ueConst rai nt | ndex[subVval ue]1[j1];

}
}

}
} // end for
} // end if not type linked constraints added
} // end if subvalue is in the map

}

Pronoun Resolution Module

Header file

FECEEEEEE b r i i rrrd
[rrrir

11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

N N N NN NN NNy
1rrrir

/1

/1 File: pronres.h
/1 Revision:

/1

/'l Last changed by:
/1 Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1l Created on: January 17, 2001

/1 Description: This is the Pronoun Resolution Mdule. It is used to resolve pronom nal
ref erences.

/1

I NN NNy
1rrrir

#i f ndef DSPRONOUNRESOLUTI ON_H
#def i ne DSPRONOUNRESOLUTI ON_H

#i ncl ude "concept. h"
#i ncl ude "constr.h"

222 JL.R.D Woei-A-Jin, 2001

PH S

#i nclude "slist.h"
#i ncl ude "typcons. h"
#i ncl ude "condet. h"

#i
#i

ncl ude <vector>
ncl ude <string>

/**

*

The pronoun resolution class, used to resol ve pronom nal

*/

cl

b

ass DSPronounResol ution

public:

/**
* Constructor.
*/

DSPr onounResol ution();

/**
* Sets the constraintdetection nodul e
* @aram condet The constraint detection nodul e.
*/

voi d set Modul es(DSConst rai nt Det ecti on *condet);

/**

* Sets the s-list for the nodul e.

* @aramlist The s-list for the nodul e.
*/

voi d setList(DS_SList *list);

/**
* Resol ve the pronoun, using strubes algorithm
* @aramreference The pronoun to be resol ved.

ref erences.

* @aram conlist List of constraints to narrow the scope of possible referents.

*/

voi d resol ve (DSConcept *reference, vector<DSConstraint> &conlist);

private:

/**

* Determ ne whether a concept value is conpatible with the list of constraints.

* @aramtype The concept val ue.
* @aramconstraints The |list of constraints.

* @eturn The concept type is conpatible with the list of constraints.

*/

bool isConpati bl e(DSConcept concept, vector<DSConstraint> constraints);

DS SList *sList;

vector<string> reflexives; //list of reflexive pronoun patterns.

set<string> possesives; // list of possesives.
set<string> personals; //list of personals.
DSConstrai nt Det ecti on *constrai nt Det ecti onModul e;

/1 DSTypeConstrai nts val ueConstraints;

#endi f // DSPRONOUNRESOLUTI ON_H

Implementation file

223

JL.R.D Woei-A-Jin, 2001

PH S

I NN N NN NN NNy
[rrrir

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FEEEEEEEE b r i e rrr
1rrrnrr

/1 File: pronres.cc
/'l Revision:

/1l Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1 Created on: January 17, 2001

/1 Description: This is the Pronoun Resolution Mdule. It is used to resolve prononi nal
ref erences.

/1

FEEEEEEEEE i i i bbb i i
1rrinrr

#i ncl ude "pronres. h"
#i ncl ude <fstreanw
#i ncl ude <string>

/1 public:

/**
* Constructor.
*/

DSPr onounResol uti on: : DSPronounResol uti on()
{
string concept Val ue, tnp, type, val ue;
vect or <DSConstrai nt> tnpConstraints;

cout << "l|oading personals data" << endl;
ifstreamin;
in.open("personal .txt");
if(lin)
{
cerr << "Cannot open personals data file" << endl;
exit;

}
while ('in.eof())

getline(in,tmp);
if (tmp !="")
personal s.insert(tnp); // add personal.

}
in.close();
cout << "| oadi ng possessives data" << endl;
i n.open("possessives.txt");
if(lin)
{

cerr << "Cannot open possessives data file" << endl;
exit;

}
while (!in.eof())
getline(in,tnp);

if (tmp !1="")
possesives.insert(tnmp); // add possesive.

224 JL.R.D Woei-A-Jin, 2001

PH S

}

in.close();

cout << "loading reflexives data" << endl
in.open("reflexives.txt");

if(lin)

{

cerr << "Cannot open reflexives data file" << endl
exit;

}
while ('in.eof())
getline(in,tnp);
if (tnp t=""
refl exives. push_back(tnp); // add reflexive pronoun patterns

in.close();

voi d DSPronounResol uti on:: set Modul es(DSConstrai nt Det ecti on *condet)

{
}

constrai nt Det ecti onMbdul e = condet ;

/**
* Sets the s-list for the nodul e.

* @aramlist The s-list for the nodul e
*/

voi d DSPronounResol ution::setList(DS_SList *list)

}

sList = list;

/**
* Resol ve the pronoun, using strubes algorithm
* @aramreference The pronoun to be resol ved
* @aram conlList List of constraints to narrow the scope of possible referents
*/

voi d DSPronounResol ution::resolve (DSConcept *reference, vector<DSConstraint> &conli st)

{

/1

vector<string> concept Types
DSConcept *referent = NULL;
int type, concept;

int nostrecent = O;
bool reflexive = 0;
bool possesive = 0;
cout << "constraints found, start resolving pronouns..." << endl;
for (int i=0; i < reflexives.size(); i++)
if (reference->getValue().find(reflexives[i]) != string::npos)
{

cout << "pronoun is reflexive because it contains << reflexives[i] << endl

reflexive = 1; // check whether the reference is a reflexive pronoun

}
if (personals.count(reference->getValue()) != 0)

cout << "pronoun is personal" << endl

sLi st->next Sentence(); // a personal pronoun indicates a next sentence
?f (possesi ves. count (ref erence->getValue()) != 0)
{ cout << "pronoun is possesive" << endl

possesive = 1; // check whether the reference is a possesive

cout << "still working" << endl

225 JL.R.D Woei-A-Jin, 2001

PH S

for (int i=0; i < sList->tenpSize(); i++)

/1 cout << "getting nost recent timestanp, currently at pos " << i << endl;
sLi st ->get Tenp(i);
if (sList->getTenp(i).getTimestanp() > nostrecent)

if (sList->getTenp(i).getTinmestanp() < reference->getTinestanp()) // additional
constraint for cases of deixis.
{
1 cout << "timestanp " << i << " nore recent than previous" << endl;
nmostrecent = sList->getTenp(i).getTinestanp(); // assign the nost recent
timestanp to nostrecent.
}
}
}
/1 cout << "npbst recent timestanp = " << nostrecent << endl;
cout << "look up first conpatible entry. size of s-list:" << sList->tenpSize() << endl;
for (int i=0; i < sList->tenpSize(); i++) // look up the first conpatible entry from
the s-list.

{

endl ;
/1 cout << "s-list is at concept: " << sList->getTenp(i).getValue() << endl;

cout << "s-list is at position " << i << ", " << slList->getTenp(i).getValue() <<

if (isConpatible (sList->getTenp(i), conList)) // if conpatible
{
cout << "concept is conpatible according to constraints" << endl;

/1 if the reference is not a reflexive or possesive pronoun, it is unlikely that
it is the nbst recent entry.

if (((reflexive || possesive) &% (sList->getTenp(i).getTimestanp() == nostrecent))
|| (sList->getTenp(i).getTimestanp() != nostrecent) || (sList->getSentence()!=sList-
>get SentenceNr(i))) // also if not in the same sentence then nost recent entry is
possi bl e.

{

cout << "concept is conpatible according to position" << endl;

referent = new DSConcept; //(DSConcept *) namlloc (sizeof (DSConcept));
//allocate nmenory

11 cout << "nenory allocated" << endl;
(*referent) = sList->getTenmp(i); //assign the concept as referent
/1 cout << "values of the referent are assigned" << endl;
br eak;
}

/1 if none is found, may want to check for the nbst recent entry. Gve probability
according to this fact.

//cout << "still working" << endl;
if (referent != NULL)

if (referent->getReferent() != NULL)
{

referent = referent->getReferent();

}
reference->set Referent (referent);
cout << "referent =" << referent->getValue() << endl;

}

el se

{

}
}

/1 protected:
/'l none

cout << "no referent found" << endl;

/1 private:

| **

* Determ ne whether a concept value is conpatible with the list of constraints.

226 JL.R.D Woei-A-Jin, 2001

PH S

* @aramtype The concept val ue.

* @aram constraints The |list of constraints.

* @eturn The concept type is conpatible with the list of constraints.
*/

bool DSPronounResol ution::isConpati bl e(DSConcept concept, vector<DSConstraint>
constraints)
{

bool result = 1,

DSTypeConstrai nts concept Constraints; // = valueConstraints;

vect or <DSConst rai nt > constrLi st;

vect or <DSConcept > enpt yLi st ;

constrlList = constraintDetecti onMddul e- >det ect Constrai nts(concept, NULL, enptylist);
for (int i=0; i < constrList.size(); i++)

{
concept Constraints. set (concept. getVal ue(), constrList[i].getType(),
constrList[i].getValue());

cout << "checking for conpatibility, size of constraints is " << constraints.size() <<
endl ;

for (int i =0; i < constraints.size(); i++)
//cout << "still working at iteration " << i << endl;
cout << "constraint type: " << constraints[i].getType() << endl;

if ((conceptConstraints. get(concept.getValue(), constraints[i].getType()) !=
constraints[i].getValue())
&& concept Constrai nts. get (concept.getValue(), constraints[i].getType()) !=
"none")

{
result =0; // if the concept type it's constraint type's value isn't the sane as
the one fromthe constraint |ist

break; // and it isn't "none" then the concept type is not conpatible and fal se
nmust be returned.

}
}
return result;

}

Definite Description Resolution Module

Header file

RN NN
1Hrrnrr
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FEEEEEEEE b r e r i r e b rrr
1rrrrrr

/1l File: defres.h
/1 Revision:

/'l Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1 Created on: January 17, 2001

227 JL.R.D Woei-A-Jin, 2001

PH S

/1 Description: This is the Definite Description Resolution Mddule. It is used to

resol ve prononinal references.

/1

I NNy
1rrrir

#i f ndef DSDEFI NI TEDESCRI PTI ONRESOLUTI ON_H
#def i ne DSDEFI NI TEDESCRI PTI ONRESOLUTI ON_H

#i ncl ude "concept. h"
#i ncl ude "constr. h"
#i ncl ude "concdet. h"
#i ncl ude "condet. h"

#i nclude "typelist.h"
#i ncl ude "pronres. h"

/**
* The definite description resolution class, used to resolve definite descriptions.
*/

cl ass DSDefiniteDescriptionResol ution

{
publi c:

/**
* Constructor.
*/

DSDef i ni t eDescri pti onResol ution();

/**
* Sets the type history list for the nodul e.

* @aramlist The type history list for the nodule.
*/

voi d setList(DSTypeHi sList *list);

/**

* Sets the pronoun resolution nmodule, for use when words like "his', '"her', etc. are
encount er ed.

* @aram pronres The pronoun resol ution nodul e.

* @aram condet The constraint detection resolution nodule.

*/

voi d set Modul es(DSPronounResol ution *pronres, DSConstraintDetection *condet);

/**

* Resolve the definite description, |ooking up the nost recent conpatible concept
val ue of the concept type.

* @aramreference The definite description to be resol ved.

* @aram conli st List of constraints to narrow the scope of possible referents.

*/

voi d resol ve (DSConcept *reference, vector<DSConstraint> &conlist);

protected:
/1 none

private:

DSConcept Det er m ner concept Det er mi ner Modul g;
DSTypeHi sLi st *typeHi sLi st;

/| DSTypeConstrai nts val ueConstraints;

DSPr onounResol uti on *pronounResol uti onMbdul e;
DSConst r ai nt Det ecti on *constrai nt Det ect i onvbdul e;
int recency;

| **

* Determ ne whether a concept value is conpatible with the list of constraints.

228 JL.R.D Woei-A-Jin, 2001

PH S

* @aramtype The concept val ue.

* @aram constraints The |list of constraints.

* @eturn The concept type is conpatible with the list of constraints.
*/

bool isConpati bl e(DSConcept concept, vector<DSConstraint> constraints);

/**

* Determ ne whether a concept value is conpatible with the list of constraints.
* @aramtype The concept val ue.

* @aram posCons Positional constraints for the val ue.

* @aramconstraints The list of constraints.

* @eturn The concept type is conpatible with the list of constraints.

*/

bool isConpatibl e(DSConstrai nt posCons, vector<DSConstraint> constraints);
H
#endi f // DSDEFI NIl TEDESCRI PTI ONRESCLUTI ON_H

Implementation file

RN N N N NN NN NNy
[rrrir

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FECEEEEEE i r i r b i r g
1rrrnrr

/1 File: defres.cc
/1 Revision:

/'l Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1 Created on: January 17, 2001

/1 Description: This is the Definite Description Resolution Mdule. It is used to

resol ve pronom nal references.

/1

FEEETEEEE i i bbb
1rrrnrr

#i ncl ude "defres. h"
#include "nmyUils. h"
#i ncl ude <fstrean

/1 public:

/**
* Constructor
*/

DSDef i ni t eDescri pti onResol uti on:: DSDef i ni t eDescri pti onResol ution()
{

}
/**

* Sets the type history list for the nodul e.

229 JL.R.D Woei-A-Jin, 2001

PH S

* @aramlist The type history list for the nodul e.
*/

voi d DSDefi niteDescriptionResol ution::setList(DSTypeH sList *list)

typeH sList = list;

/**

* Sets the pronoun resolution nodule, for use when words like "his', '"her', etc. are
encount er ed.

* @aram pronres The pronoun resol ution nodul e.

* @aram condet The constraint detection resolution nodul e.

*/

voi d DSDefi niteDescriptionResol ution:: set Modul es(DSPronounResol uti on *pronres,
DSConstrai nt Det ecti on *condet)
{

pronounResol uti onvbdul e = pronres;

constraint Det ecti onModul e = condet;

}

/**

* Resolve the definite description, |ooking up the nost recent conpatible concept
val ue of the concept type.

* @aramreference The definite description to be resol ved.

* @aram conli st List of constraints to narrow the scope of possible referents.

*/

voi d DSDefi niteDescriptionResol ution::resolve (DSConcept *reference, vector<DSConstraint>
&conli st)
{

vect or<string> concept Types;

DSConcept *referent = NULL;

int type, concept;

/1 Todo: check for pronouns like '"his' 'her', etc.
/1 solve them

cout << "constraints found, start resolving definite description..." << endl;
concept Types = concept Det er mi ner Modul e. det er mi neConcept Type(*ref erence, conlLi st,
typeHi sLi st->get KeyList()); // determ ne the concept types which history has to be

accessed.

cout << "concept types determned: “;

for (int i=0; i < conceptTypes.size(); i++)

{ cout << concept Types[i] << " ";

Lout << endl ;

for (int i=0; i < conceptTypes.size(); i++) // for each possible concept type
/1 cout << "concept type " << i << ": " << conceptTypes[i] << endl;

recency = 0; // set the recency value of the concept. Wen should it be
i ncrenent ed???? every concept encoutered or when a conpatible concept is

if (conceptTypes[i].find(".relativetineposition") != string::npos) // look at the
listentries for a concept at a relative tine position, ie earlier, later, etc.

int substring = concept Types[i].find(".relativetineposition"); // find the index
of the substring to be renoved.

concept Types[i] = concept Types[i].erase(substring); // get the concept Type of
whi ch the subconcepts shoul d be accessed.

cout << "looking at the listentries of : " << conceptTypes[i] << "for a relative
tinme position" << endl;

230 JL.R.D Woei-A-Jin, 2001

PH S

int conceptPos = typeHi sList->tenpSi ze(concept Types[i])-1; // default |ast concept
type to search in

/'l before getting the listEntries, check for list value constraint. Wich
indicates the appropriate list to search in.

for (int j=0; j < conList.size(); j++) // look for constraint indicating the
concept to search for

if (conList[j].getType()=="1istval ue")

string listValue = conList[j].getValue(); // get the value of the concept to
search in.

for (int k=conceptPos; k >=0; k--) // find the position of the appropriate
list to search in.

if (typeH sList->get Tenp(concept Types[i],k).getValue() == listValue) //if
the concept is the one to be searched in
{
conceptPos = k; // remenber the position of the concept in the |ist
break; // done searching
}
break; // done searching constraints
}
string relativetinmeposition =""
for (int j=0; j < conList.size(); j++) // find the relative tinmeposition
constraint
{

if (conList[j].getType()=="relativetineposition")

rel ativetimeposition = conList[j].getValue(); // get the relative
tinmeposition constraint
break; // done searching
}

vect or <DSConcept > |listEntries;// get the listEntries of the last entry of the
appropriate type history |ist

if (typeHisList->get Tenp(concept Types[i], concept Pos).getListEntries() != NULL) //
get the list entries

listEntries=*(typeH sLi st -
>get Tenp(concept Types[i], concept Pos). getListEntries());
}

el se
{ o .
cerr << "warning listEntries not found!!!!" << endl;
exit;
for (int j=0; j < listEntries.size(); j++) // search for conpatible list entries.

if (isConmpatible (listEntries[j], conList)) // if conpatible

{
cout << listEntries[j].getValue() << "is conpatible" << endl;
if (referent == NULL) // if there is no previous referent, assign it
{
referent = new DSConcept ;
*referent = listEntries[i];
else // there's a previous referent
{
myUtils util;
vect or <DSConcept > newsubconcept s;
vect or <DSConcept > ref subconcept s;
if (listEntries[j].getSubConcepts() == NULL || referent->getSubConcepts()
== NULL)
{
cerr << "no subconcepts found while |ooking for relative tine
position!!!" << endl;

return;

}

231 JL.R.D Woei-A-Jin, 2001

PH S

el se

{
newsubconcepts = *listEntries[j].getSubConcepts(); // look at the
subconcepts for the tine concept
ref subconcepts = *(referent->get SubConcepts())

int reftinme, newtine;
for (int k=0; k < newsubconcepts.size(); k++)

if (newsubconcepts[k].getType() == "time")

{
newtime = util.str2lnt(newsubconcepts[k].getValue())
br eak;

}

for (int k=0; k < refsubconcepts.size(); k++) // and again for the
exi sting referent

if (refsubconcepts[k].getType() == "time")
reftime = util.str2lnt(refsubconcepts[k].getValue())
br eak;
}
if(newtime > reftinme) // conpare to get the earlier/later one
if (relativetimeposition == "max") // if |ooking for highest val ue
t hen change referent
{
*referent = listEntries[j];

} /1 else keep current referent

} /1 end else (there's a previous referent)

Y}/ end if
} // end for
} // end if relative tinme position
else if (conceptTypes[i].find(".subconcept") != string::npos) //if needed | ook at
t he subconcept of the concept type

{
int substring = concept Types[i].find(".subconcept");
concept Types[i] = concept Types[i].erase(substring);
cout << "looking at the subconcepts of : " << conceptTypes[i] << endl

int conceptPos = typeH sList->tempSi ze(concept Types[i])-1; // default |ast concept
type to search in

for (int j=0; j < conList.size(); j++) // look for constraints indicating the
concept to search for

if (conList[j].getType()=="1istval ue")

string listValue = conList[i].getValue(); // get the value of the concept to
search in.

for (int k=conceptPos; k >=0; k--) // find the position of the appropriate
list to search in.

if (typeH sList->get Tenp(concept Types[i], k).getValue() == listValue) //
if the concept is the on to be searched in
{
cout << "listValue " << listValue << " found." << endl

conceptPos = k; // remenber the position of the concept in the |ist
break; // done searching

}
}
break; // done searching for constraints

}

vect or <DSConcept > subConcepts;// get the subConcepts of the required concept

232 JL.R.D Woei-A-Jin, 2001

[t
L

T
woLe

PHI S T

if (typeHi sList->get Tenp(concept Types[i], concept Pos) . get SubConcepts() != NULL) //
get the subconcepts

subConcept s=*(t ypeH sLi st -
>get Tenp(concept Types[i], concept Pos) . get SubConcepts())
}

el se

{
cerr << "warning subConcepts not found!!!!" << endl
exit;

}

/1 look for conpatible subconcept

for (int j=0; j < subConcepts.size(); j++)

/1 cout << "checking for conpatibility" << endl
if (isConpatible (subConcepts[j], conList)) // if conpatible
cout << subConcepts[j].getValue() << "is conpatible" << endl
if (referent == NULL) // if there is no previous referent, assign it

{

referent = new DSConcept ;
*referent = subConcepts[j];
break; // go on with the next typeH sLi st

else // if the newreferent is nore recent than the previous referent

assign it
i f(subConcepts[j].getTinestanp() > referent->getTi nestanp())
*referent = subConcepts[j];
break; // go on with the next typeH sLi st
}
}
} // end if is conpatible
} /1 end for
} /1 end if subConcepts
el se if(concept Types[i].find(".listentries") != string::npos) //if needed | ook at
the listentries of the concept type
{
int substring = conceptTypes[i].find(".listentries"); // find the index of the

substring to be renoved

concept Types[i] = concept Types[i].erase(substring); // get the concept Type of
whi ch the subconcepts shoul d be accessed

cout << "looking at the listentries of : " << conceptTypes[i] << endl

int conceptPos = typeH sList->tenmpSi ze(concept Types[i])-1; // default |ast concept
type to be accessed

/1 before getting the listEntries, check for list value constraint.Wich
indicates the appropriate list to search in

for (int j=0; j < conList.size(); j++) // look for constraints indicating the
concept to search for

if (conList[j].getType()=="listvalue") // get the value of the concept to

{

search in

string listValue = conList[i].getValue()
for (int k=conceptPos; k >=0; k--) // find the position of the appropriate
list to search in.

if (typeHi sList->get Tenp(concept Types[i],k).getValue() == listValue) //
if the concept is the one to be searched in
{
cout << "listValue " << listValue << " found." << endl

conceptPos = k; // renmenber the position of the concept in the I|ist
break; // done searching

233 JL.R.D Woei-A-Jin, 2001

PH S

break; // done searching for constraints

}

vect or <DSConcept > listEntries;// get the listEntries of the appropriate concept
(last if none specified)

if (typeH sLi st->get Tenp(concept Types[i], concept Pos).getListEntries() != NULL) //
get the listentries

listEntries=*(typeH sLi st -
>get Tenp(concept Types[i], concept Pos) . getListEntries());
}

el se

{
cerr << "warning listEntries not found!!!!" << endl;
exit;

}

/'l maybe shoul d check first whether a title is nmeant?

myUtils util;

string pos;

DSConstrai nt posConstraint; //positional constraint
/1 1ook the xth concept up in the list.

int position = 1;

vector <int> conpati bl es;

bool done = fal se;

for (int j=0; j < listEntries.size(); j++)

pos = util.int2Str(position);
11 cout << pos << endl;

posConstraint = DSConstraint("listentry",pos); // add position counted from
above.

cout << "checking for conpatibility of: " << listEntries[j].getValue() << endl;
if (isConpatible (listEntries[j], conList)) // if conpatible
cout << listEntries[j].getValue() << " is conpatible, now checking for
position" << endl;
conpati bl es. push_back(j);
if (isConpatible(posConstraint, conList))
cout << listEntries[j].getValue() << " | S COVWPATI BLE" << endl;
if (referent == NULL) // if there is no previous referent, assign it
referent = new DSConcept ;
*referent = listEntries[j];
done = true;
break; // go on with the next typeHi sList.

else // if the newreferent is nore recent than the previous referent,

assign it
if(listEntries[j].getTinestanp() > referent->getTi nestanp())
*referent = listEntries[j];
done = true;
break; // go on with the next typeH sList.
}
}
}
posi tion++;
} // end if is conpatible
} /1 end for
if (!done)
{

position = 1;
for (int j = conpatibles.size()-1; j >0; j--)

234 JL.R.D Woei-A-Jin, 2001

PHI S Delft
cout << "checking for conpatibility of: " << listEntries[j].getValue() <<
endl ;
pos = "-" +util.int2Str(position);
posConstraint = DSConstraint ("listentry", pos);
if (isConpatible(posConstraint, conList))
cout << listEntries[j].getValue() << "is conpatible" << endl;
if (referent == NULL) // if there is no previous referent, assign it
{
referent = new DSConcept ;
*referent = listEntries[j];
done = true;
break; // go on with the next typeHi sList.
else // if the newreferent is nore recent than the previous referent,
assign it
if(listEntries[j].getTinestanp() > referent->getTi nestanp())
*referent = listEntries[j];
done = true;
break; // go on with the next typeH sList.
}
}
b
posi tion++;
}
}
} /lend if listentry
else // not an listentry
/1 look at slist first
pronounResol uti onMbdul e- >r esol ve(ref erence, conLi st);
if (reference->get Referent()!=NULL)
{
referent = reference->getReferent();
}
el se
for (int j=typeH sList->tenpSi ze(concept Types[i])-1; j >=0; j--) // look up

the nost recent conpatible entry fromthe conpati bl e concept types.

/'l cout << "check conpatibility" << endl;
if (isConpatible (typeHi sList->getTenp(conceptTypes[i],j), conList)) // if
conpati bl e
{
cout << typeHi sLi st->get Tenp(concept Types[i],j).getValue() << "is
conpati bl e" << endl;
if (referent == NULL) // if there is no previous referent, assign it
{
referent = new DSConcept ;
*referent = typeH sLi st->get Tenp(concept Types[i],j);
break; // go on with the next typeHi sList.

else // if the newreferent is nore recent than the previous referent,

{
i f (typeH sLi st->get Tenp(concept Types[i],j).getTinmestanp() > referent-
>get Ti mest anp())

assign it

*referent = typeH sLi st->get Tenp(concept Types[i],j);
break; // go on with the next typeHi sList.
}

}
Y1 oend if
}/ 1 end for
}/ 1 end el se
}/ 1 end for
}

235 JL.R.D Woei-A-Jin, 2001

PH S

/1l cout << "done searching for referent" << endl;
if (referent !'= NULL)

if (referent->getReferent() != NULL)
{

}

cout << "referent value is: " << referent->getValue() << endl;

}

reference->set Referent (referent);

referent = referent->getReferent();

}

/1 protected:
/1 none

/1 private:

/**

* Determi ne whether a concept value is conpatible with the list of constraints.
* @aramtype The concept val ue.

* @aram constraints The |list of constraints.

* @eturn The concept type is conpatible with the list of constraints.

*/

bool DSDefi niteDescriptionResol ution::isConpatibl e(DSConcept concept,
vect or <DSConstrai nt > constraints)
{

DSTypeConstrai nts concept Constraints;

vect or <DSConst r ai nt > conlLi st ;

vect or <DSConcept > enpt yLi st;

myUtils util;

cout << "isConpatible: detect constraints for candidate referent :" <<
concept . get Val ue() << endl;

conLi st = constraintDetecti onMbdul e->det ect Constrai nts(concept, NULL, emptyList); //
find the constraints of the concept.

for (int i=0; i < conList.size(); i++)

{
concept Constrai nts. set (concept. getVal ue(), conList[i].getType(),
conList[i].getValue());
}
concept Constrai nts. set(concept.getValue(), "recency", "-"+util.int2Str(recency)); //
add recency constraint of the concept.

if (concept.get SubConcepts() != NULL) // add subconcepts as constraint.

cout << "subconcepts detected" << endl;
vect or <DSConcept > subConcepts = *concept . get SubConcepts();
for (int i =0; i < subConcepts.size(); i++)

{
concept Constrai nts. set(concept. getVal ue(), subConcepts[i].getType(),
subConcepts[i].getValue());
cout << " constraint: " << subConcepts[i].getType() << " (" <<
subConcepts[i].getValue() << ") added" << endl;
}

cout << "done checking constraints, constraint size = " << constraints.size() << endl;
bool result = 1;
for (int i =0; i < constraints.size(); i++) // check for all constraints whether there

is a conflict or not.

if ((conceptConstraints. get(concept.getValue(), constraints[i].getType()) !=
constraints[i].getValue())
&& concept Constrai nts. get(concept.getValue(), constraints[i].getType()) !=

"none")
{
cout << "not conpatible because: " << constraints[i].getValue() << "I=" <<
concept Constrai nts. get (concept.getValue(), constraints[i].getType()) << endl;
if (constraints[i].getType() == "recency")
recency++;

236 JL.R.D Woei-A-Jin, 2001

™ HE
[T
1

iFat
L] |

L¥

PH S

b

result = 0; // if the concept type it's constraint type's value isn't the sanme as
the one fromthe constraint |ist
break; // and it isn't "none" then the concept type is not conpatible and fal se
must be returned.
}
}
return result;
}
/**
* Determine whether a concept value is conpatible with the list of constraints.
* @aramtype The concept val ue.
* @aram posCons Positional constraints for the val ue.
* @aram constraints The |list of constraints.

* @eturn The concept type is conpatible with the list of constraints.
*/

bool DSDefiniteDescriptionResol ution::isConpatibl e(DSConstraint posCons,
vect or <DSConst rai nt > constraints)

{
bool result = 1,
for (int i =0; i < constraints.size(); i++)
if (constraints[i].getType() == "listentry") // check positional constraint
if (constraints[i].getValue() != posCons. getVal ue())
{
11 cout << "not conpatible because of position: " << constraints[i].getValue() <<
"1=" << posCons. getVal ue() << endl;
result = 0; //positions don't match!!! // initialize valueConstraints.
br eak;
}
br eak;
}
}
return result;
}

Demonstrative Resolution Module

Header file

RN NN
1Hrrnrr
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FEEEEEEEE b r e r i r e b rrr
1rrrrrr

/!l File: denres.h
/1 Revision:

/'l Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1 Created on: January 17, 2001

237 JL.R.D Woei-A-Jin, 2001

PH S

/1 Description: This is the Denpnstrative Resolution Mdule. It is used to resolve
denonstrative references.

/1

I NNy
1rrrir

#i f ndef DSDEMONSTRATI VERESOLUTI ON_H
#def i ne DSDEMONSTRATI VERESOLUTI ON_H

#i ncl ude "concept. h"
#i ncl ude "constr. h"

#i ncl ude <vector>
#i ncl ude <string>
#i ncl ude <set>

#i ncl ude "defres. h"
#i ncl ude "pronres. h"

/**
* The denonstrative resolution class, used to resolve denpbnstrative references.
*/

cl ass DSDenonstrativeResol ution

public:

/**

* constructor.
*/

DSDenonst rati veResol ution();

/**

* Sets the resolution nodul es needed.

* @aram pronMd the pronoun resol ution nodul e.

* @aram def Mod the definite description resolution nodule.
*/

voi d set Modul es(DSPronounResol uti on *pronhod, DSDefi niteDescri ptionResol ution
*def Mod) ;

/**

* Resol ve the denonstrative, check for either pronom nal or definite description
properties, and let the respective nodul e

* handl e them |f needed, additional constraints can be added.

* @aramreference The denonstrative to be resol ved.

* @aram conli st List of constraints to narrow the scope of possible referents.

*/

voi d resol ve (DSConcept *reference, vector<DSConstraint> &conlist);
private:

DSDef i ni t eDescri pti onResol uti on *defi niteDescri pti onResol uti onhModul e;
DSPr onounResol uti on *pronounResol uti onModul g;

| **

* Checks whether the denpbnstrative has pronom nal properties or not.
* @aramreference The reference val ue.
* @eturn The denonstrative has pronom nal properties.
*/
bool pronom nal Prop(string reference);
set<string> denonstratives;

b
#endi f // DSDEMONSTRATI VERESCLUTI ON_H

238 JL.R.D Woei-A-Jin, 2001

PH S

Implementation file

RN N N N NN NN NNy
[rrrir

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

FECEEEEEE b r i b i rrr
1rrrrrr

/1 File: denres.cc
/1 Revision:

/1l Last changed by:
/'l Last changed on:

/Il Created by: Dimitri Wei-A-Jin
/1l Created on: January 17, 2001

/1 Description: This is the Denpbnstrative Resolution Mddule. It is used to resolve
denonstrative references.

/1

IR N NN NN NNy
1rrrnrr

#i ncl ude "denres. h"
#i ncl ude <fstrean

/**
* The denpbnstrative resolution class, used to resolve denonstrative references.
*/

/1 public:

/**
* Constructor
*/

DSDenonstrati veResol uti on: : DSDenponst rati veResol uti on()

{

ifstreamin;
string tnp;
in.open("denonstratives.txt", ios::in); //initialize set of words that indicate a
denonstrative. Usually referring to a deictic input.
if (!lin)
{
cerr << "Cannot open nanes and denonstratives data file" << endl;
exit;

}
while (!in.eof())

getline(in, tnp);
if (tnp.find("#") == string::npos && tnp!="")
{

denonstratives.insert(tnp);

}

in.close();

/**
* Sets the resolution nodul es needed.

* @aram pronMd the pronoun resol ution nodul e.
* @aram def Mod the definite description resolution nodule.

239 JL.R.D Woei-A-Jin, 2001

PH S

*/

voi d DSDenopnstrati veResol ution:: set Modul es(DSPronounResol uti on *pronhbd,
DSDef i ni t eDescri pti onResol uti on *def Mod)

{
pronounResol uti onMbdul e = pronhod;
definiteDescriptionResol uti onMbdul e = def Mod;

/**

* Resol ve the denonstrative, check for either pronom nal or definite description
properties, and let the respective nodul e

* handl e them |f needed, additional constraints can be added.

* @aramreference The denonstrative to be resol ved.

* @aram conLi st List of constraints to narrow the scope of possible referents.

*/

voi d DSDenpnstrativeResol ution::resolve (DSConcept *reference, vector<DSConstraint>
&conli st)

if (prononinal Prop(reference->getVal ue()))

pronounResol uti onModul e- >r esol ve(reference, conList);

}

el se

defini teDescri pti onResol uti onMbdul e- >resol ve(reference, conList);

}
}

/1 protected:
/1 none

/1 private:

/**

* Checks whether the denonstrative has pronom nal properties or not.
* @aramreference The reference val ue.

* @eturn The denobnstrative has pronom nal properties.

*/

bool DSDenonstrativeResol ution:: pronom nal Prop(string reference)
if (denmpnstratives.count(reference) != 0)

{

return true;
}
el se

return false;

}
}

One Anaphora Resolution Module

Header file

I NN N N NN NNy
111

/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

240 JL.R.D Woei-A-Jin, 2001

PHI S T

[t
L

T
woLe

I NN N NN NN NNy

1rrrnrr

/1

/1l File: oneres.h

/1 Revision:

/1

/'l Last changed by:

/1 Last changed on:

/1

/!l Created by: Dimtri Wei-AJin
/1l Created on: January 17, 2001
/1

/1 Description: This is the One Anaphora Resol ution Mdule. It is used to resolve one
anaphor a.

/1

FEEEEEEEE b r b i b rr
[rrrrir

#i f ndef DSONEANAPHORARESOLUTI ON_H
#def i ne DSONEANAPHORARESOLUTI ON_H

#i ncl ude "concept. h"
#i ncl ude "constr.h"
#i ncl ude <vector>

#i ncl ude "defres. h"
#i ncl ude "denres. h"

/**

* The one anaphora resol ution class, used to resolve one anaphora.

*/

cl ass DSOneAnaphor aResol uti on

publi c:

/**
* Constructor.
*/

DSOneAnaphor aResol uti on();

/**

* Sets the resolution nodul es needed.

* @aram pronMd the pronoun resol ution nodul e.

* @aram def Mod the definite description resolution nodule.
*/

voi d set Modul es(DSDenonstrati veResol uti on *demvbd, DSDefi niteDescriptionResol ution

*def Mod) ;

/**

* Resol ve one anaphora, check for either pronominal or definite description

properties, and let the respective nodul e

* handl e them |f needed, additional constraints can be added.

* @aramreference The one anaphora to be resol ved.

* @aram conli st List of constraints to narrow the scope of possible referents.
*/

voi d resol ve (DSConcept *reference, vector<DSConstraint> &conlist);

private:

DSDef i ni t eDescri pti onResol uti on *defi niteDescri pti onResol uti onhModul e;
DSDenonstrati veResol uti on *denonstrati veResol uti onModul e;

/**

* Determ nes whether the reference has pronomi nal properties or not.
* @aramreference The reference.

* @eturn The reference has pronoomni nal properties.

*/

241 JL.R.D Woei-A-Jin, 2001

PH S

bool denonstrativeProp (string reference);
set<string> denonstrativelnd; // set of words that indicate a denonstrative

b
#endi f // DSONEANAPHORARESCLUTI ON_H

Implementation file

IR NN NN
1Hrrnrr
11 Copyright (C 2001 Philips GrbH Dial og Systens

/1 Al rights reserved

I N N N N NN NNy
[rrrir

/1 File: oneres.cc
/'l Revision

/'l Last changed by:
/1 Last changed on

/!l Created by: Dimtri Wei-AJin
/1l Created on: January 17, 2001

/1

/1 Description: This is the One Anaphora Resol ution Mdule. It is used to resolve one
anaphor a

/1

FEEEEEEEE b r e r i bbb rd
[rrrir

#i ncl ude "oneres. h"
#i ncl ude <fstreanp

/1 public:

/**
* Constructor
*/

DSOneAnaphor aResol ut i on: : DSOneAnaphor aResol ut i on()

{
string tnp;
ifstreamin;

in.open("denonstratives.txt", ios::in); //initialize set of words that indicate a
denonstrative. Usually referring to a deictic input

if (lin)

{

cerr << "Cannot open names and denonstratives data file" << endl
exit;

}
while (!in.eof())

getline(in, tnp);
if (tmp.find("#') == string::npos & tnp!="")
{

denonstrativel nd.insert(tnp);

}

in.close();

}

242 JL.R.D Woei-A-Jin, 2001

PH S

/**
Sets the resol ution nodul es needed.
@ar am pronhbd the pronoun resol ution nodul e.
* @aram def Mod the definite description resolution nodul e.
*/

voi d DSOneAnaphor aResol uti on: : set Mbdul es(DSDenonstrati veResol uti on *demvbd,
DSDef i ni t eDescri pti onResol uti on *def Mbd)

denonstrati veResol uti onModul e = demniVbd;
definiteDescriptionResol uti onMbdul e = def Mod;
}
/**
* Resol ve one anaphora, check for either pronominal or definite description
properties, and let the respective nodul e
* handl e them |f needed, additional constraints can be added.
* @aramreference The one anaphora to be resol ved.

* @aram conli st List of constraints to narrow the scope of possible referents.
*/

voi d DSOneAnaphor aResol ution:: resol ve (DSConcept *reference, vector<DSConstraint>
&conli st)

if (denonstrativeProp(reference->getValue()))

{
denonstrati veResol uti onvbdul e->resol ve(reference, conList);
}
el se
defini teDescri ptionResol uti onvbdul e->resol ve(reference, conList);
}
}
/'l protected:
/1 none

/1 private:

/**
* Determ nes whether the reference has pronom nal properties or not.

* @aramreference The reference.
* @eturn The reference has pronoomi nal properties.

*/
bool DSOneAnaphor aResol ution: :denonstrativeProp(string reference)
{
i nt nextpos;
while(reference.find(" ") != string::npos)
{
nextpos = reference.find(" ");
if (demonstrativel nd. count (reference. substr (0, next pos))!=0)
return true;
/1 current word is not an indicator, so try next one.
ref erence = reference. substr(nextpos+1);
}

/1 check whether last word is an indicator.

if (denmpnstrativel nd. count (reference)! =0)
return true;

return false;

243 JL.R.D Woei-A-Jin, 2001

PH S

Concept Type Filter

Header file

I N N N N NN NN NN NNy
[rrrir

11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

NN N N NN NNy
1rrrir

/1

/1 File: concdet.h
/'l Revision

/1

/'l Last changed by:
/1 Last changed on

/Il Created by: Dimitri Wei-A-Jin
/1l Created on: January 17, 2001

/1 Description: This is the Concept Determiner Mdule. It is used to determ ne the
conpati bl e concept types

/1 of the reference

/1

FEEETEEEE i i b i i
1rrrnrr

#i f ndef DSCONCEPTDETERM NER_H
#def i ne DSCONCEPTDETERM NER_H

#i ncl ude <vector>
#i ncl ude <string>
#i ncl ude <map>

#i ncl ude "concept. h"
#i ncl ude "constr. h"
#i ncl ude "typcons. h"

/**
* This class is used to determ ne the conpatible concept types of the reference
*/

cl ass DSConcept Det er m ner

publi c:

/**
* Constructor
*/

DSConcept Det ermi ner () ;

/**
* Determ ne the conpatible concept types of the reference
* @aramreference The reference for which the concept types nust be determ ned
* @aram constraints List of constraints, fromwhich the concept types may be
det erm ned
* @aramtypes List of possible types
* @eturn List of conpatible types of the reference
*/

244 J.L.R.D Woei-A-Jin, 2001

PH S

vect or<string> detern neConcept Type (DSConcept reference, vector<DSConstraint>
&constraints, vector<string> types);

protected:
/1 none

private:

DSTypeConstrai nts typeConstraints;

/**

* Determnmine whether a concept type is conpatible with the list of constraints.
* @aramtype The concept type.

* @aramconstraints The |list of constraints.

* @eturn The concept type is conpatible with the list of constraints.

*/

bool isConpatible(string type, vector<DSConstraint> constraints);

/**

* Look for a concept type containing a concept type which is conpatible with the |ist
of constraints.

* @aramtypes List of possible concept type.

* @aramconstraints The |ist of constraints.

* @eturn Alist of concept types, conpatible with the list of constraints.

*/

vect or<string> get Conpati bl eLi st s(vector<string> types, vector<DSConstrai nt>
constraints);

b
#endi f // DSCONCEPTDETERM NER H

Implementation file

FEEEEEEEEEE b r i b r g
[rrrir

11 Copyright (C 2001 Philips GrbH Di al ogue Systens

/1 Al rights reserved

R NN NN N NN NN NNy
[rrrir

/1 File: condet.cc
/'l Revision:

/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-AJin
/1l Created on: January 17, 2001

/1 Description: This is the Constraint Detection Mdule. It is used to detect
constraints for a reference,

11 to narrow down the scope of possible referents.

/1

PEEEEEEEEEE bbb
1rrrnrr

#i ncl ude "condet. h"
#i ncl ude <fstreans
#include "nmyUils. h"

/1 public:

245 JL.R.D Woei-A-Jin, 2001

PH S

/**

* Constructor.
*/

DSConst rai nt Det ecti on: : DSConst r ai nt Det ecti on()
{

string conceptVal ue, tnp, type, value, prentype, prenval ue, conceptType, typConVal ue,
typConType;

int priority, typConPriority;

vect or <DSConstrai nt> tnmpConstrai nts, tnpTypeConstraints;

vect or <DSConst rai nt > t npPrem sses;

vect or <i nt > t npl ndex;

map<string,int> tnpVal ueTypeConstrai nt | ndex;

myUtils util;

/1 load file which contains constraint data.

cout << "loading constraint data, condet.cc" << endl;
ifstreamin;

in.open("constraints.txt", ios::in);

if (lin)

{

cerr << "Cannot open constraint data file" << endl;
exit;

cout << "l oading constraints" << endl;
while ('in.eof())

{
getline(in, tmp);
if (tmp.find("#")!=string::npos || tnmp =="") // comment read.
/1 do not hi ng.
/'l cout << "comment: " << tnp << endl;
else if (tnp.find(">;")!=string::npos) // end of constraint |linked to concepttype
read.

hasVal ueTypeConstrai nt.insert(conceptValue); // there are constraints for this
val ue linked to the concept type

val ueTypeConstrai nt. push_back(t npTypeConstraints); // add the constraints |inked
to the concept type

t npVal ueTypeConst r ai nt | ndex[concept Type] =val ueTypeConstraint.size()-1; // note the
index of the constraints

tnpTypeConstraints. clear();

else if (tnp.find(">")!=string::npos) // concept type to link constraint to read.
concept Type=t np. substr (tnp. find(">") +1);
else if (tnp.find(")")!=string::npos) // constraint |linked to concepttype read.

typConType = tnp.substr(1,tnp.find(",")-1);

tnp = tnp.substr(tnmp.find(",")+2);

typConVal ue = tnp.substr(0,tnp.find(","));

typConPriority = util.str2Int(tnp.substr(tnp.find(",")+2));

t npTypeConstrai nts. push_back(DSConstrai nt (typConType, t ypConVal ue,
typConPriority));

else if (tnp.find(":")!=string::npos) // concept val ue read.

{
concept Val ue = tnp.substr(0,tnp.find(":")); // save concept val ue.
//cout << "concept value: " << conceptValue << endl;

else if (tnp.find(";")!=string::npos) //end of constraints for a conceptval ue read.
{
val ueConst r ai nt Map. push_back(tmpConstraints); // save the constraints.
val ueConst rai nt | ndex[concept Val ue] = val ueConstrai nt Map. si ze()-1;
tnpConstraints.clear();
val ueTypeConstrai nt | ndex. push_back(t mpVal ueTypeConstrai ntlndex); // save the index
for the constraints linked to a type.
t npVal ueTypeConstrai nt | ndex. cl ear();

246 JL.R.D Woei-A-Jin, 2001

PH S

/*cout << "done adding constraints for concept value " << conceptValue << " at

index: " << val ueConstraintlndex[conceptVal ue] << endl;

cout << "nunber of constraints added: " <<
val ueConst r ai nt Map[val ueConst r ai nt | ndex[concept Val ue]] . si ze() << endl;

for (int i=0; i < valueConstraintMap[val ueConstraintlndex[conceptVal ue]].size();
i ++)

{

cout << "constraint value: " <<

val ueConst r ai nt Map[val ueConstrai nt | ndex[concept Val ue]][i].getValue() << " type: " <<
val ueConst r ai nt Map[val ueConst r ai nt | ndex[concept Val ue]][i].get Type() << endl;

Pl

else if (tnmp.find(",")!=string::npos) // constraint type value pair.

type = tnp.substr (0, tnp.find(","));

tmp = tnp.substr(tmp. find(",")+2);

value = tnp.substr(0,tnp.find(","));

priority = util.str2lnt(tnp.substr(tnp.find(",")+2));

t npConstrai nts. push_back(DSConstraint (type, value, priority));

}

in.close();

/1 load file containing nodifier data.

in.open("nodifiers.txt", ios::in);

if (lin)

{
cerr << "Cannot open nodifier constraint data file" << endl;
exit;

cout << "loading nodifiers" << endl;
while (!in.eof())

{
getline(in, tnp);
/lin >> tnp;
if (tnp.find("#")!=string::npos || t == "") // conmment read.
/1 do not hi ng.
//cout << "comment: " << tnp << endl;
else if (tnp.find(":")!=string::npos) // concept val ue read.
concept Val ue = tnp.substr(0,tnp.find(":")); // save concept val ue.
//cout << "nodifier value: " << conceptVal ue << endl;
else if (tnp.find(">;")!=string::npos) //end of prem sses for a nodifier value read.
modi fi er Const rai nt PreMap. push_back(t npPremi sses); // save the prem sses.
t npl ndex. push_back(modi fi er Constrai nt PreMap. si ze()-1); // save the index of the
preni sses
//cout << "prem sses constraints size: " <<
nodi fi er Constrai nt PreMap[t npl ndex. size()-1].size() << ", " << tnpPrem sses.size() <<
endl ;

t npPrem sses. clear();
//cout << "done adding prem sses for nodifier value " << conceptVal ue << endl;

}
else if ((tnp.find(">")!=string::npos)&&(tnp.find(",")!=string::npos)) //prem sses
for a conceptval ue read.
{
prentype=tnp. substr(tnp.find(">")+1, tnp.find(",")-tnmp.find(">")-1);
//cout << "prem sses type: " << prentype << endl;
prenval ue=t np. substr (tnp.find(",")+2);
//cout << "prem sses value: " << prenval ue << endl;
t npPr em sses. push_back(DSConst r ai nt (prentype, prenval ue));

else if (tnp.find(");")!=string::npos) //end of constraints for a nodifier val ue
read.

modi fi er Const rai nt Map. push_back(tmpConstraints); // save the constraints.
/1 trplndex isn't used, since it should al ready be updated with the prenisses

247 JL.R.D Woei-A-Jin, 2001

PH S

//cout << "nodifier constraints size: " << nodifierConstraintMap[tnpl ndex. size()-
1] .size() << ", " << tnpConstraints.size() << endl;

tnpConstraints. clear();

//cout << "done adding constraints for nodifier value " << conceptVal ue << endl;

}
else if ((tnmp.find(")")!=string::npos)&&(tnmp.find(",")!=string::npos)) //prem sses
for a conceptval ue read.

{
type=tnmp.substr(tmp.find(")")+1, tnmp. find(",")-tmp.find(")")-1);
//cout << "constraint type: " << type << endl;
tnp=t np. substr(tnp.find(",")+2);
val ue = tnp.substr(0,tnmp.find(","));
priority = util.str2Int(tnp.substr(tnmp.find(",")+2));
t mpConstrai nts. push_back(DSConstrai nt (type, value, priority));
//cout << "constraint value: " << value << endl;

else if (tnmp.find(";")!=string::npos) //end of conceptval ue read.

modConst r Pr el ndex. push_back(tnpl ndex); // save the index of prem sses and
constraints.

nodi fi er Constrai nt| ndex[concept Val ue] = nodConstr Prel ndex. si ze()-1;

t mpl ndex. cl ear () ;

//cout << "done with concept value " << conceptVal ue << endl;

}

in.close();

in. open("listTypes.txt", io0s::in);

if (lin)

{ . .
cerr << "Cannot open list types data file" << endl;
exit;

cout << "loading list types" << endl;
while ('in.eof())

getline(in, tmp);

if (tnp.find("#")!=string::npos || t == "") [/ comment read.
/1 do not hing.
/'l cout << "comment: " << tnp << endl;
}
el se
listTypes.insert(tnp);
in.close();
i n.open("subConMd.txt", ios::in);
if (lin)
{ . .
cerr << "Cannot open subconcept nodifier data file" << endl;
exit;
}
cout << "Loadi ng subconcept nodifier data..." << endl;
while ('in.eof())
{
getline(in, tmp);
if (tnp.find("#")!=string::npos || tnp =="") // conment read.
{
/1 do not hi ng.
/'l cout << "comment: " << tnp << endl;
}
el se
{
subConMbdVal . push_back(t np. substr (0, tnmp.find(":")));
cout << "sub concept nodifier: " << tnp.substr(O,tnp.find(":")) << " "
subConModAr g. push_back(util.str2lnt(tnp.substr(tnp.find(":")+2,1)));
cout << util.str2Int(tnp.substr(tnp.find(":")+2,1)) << " ";
subConMbdPos. push_back(tnmp. substr(tnp.find(":")+5,1));
cout << tnp.substr(tnp.find(":")+5,1) << endl;
}

248 JL.R.D Woei-A-Jin, 2001

PH S

in.close();

in.open("typeconstraints.txt", ios::in);

if (lin)

{ . .
cerr << "Cannot open type constraint data file" << endl;
exit;

cout << "loading type constraints" << endl;
while ('in.eof())
{
getline(in, tmp);
if (tmp.find("#")!=string::npos || tnmp == "") // comment read.

/1 do not hi ng.
//cout << "comment: " << tnp << endl;

else if (tnmp.find(":")!=string::npos) // concept type read.

concept Type = tnp.substr(0,tnp.find(":")); // save concept val ue.
//cout << "concept type: " << conceptType << endl;

else if (tnp.find(",")!=string::npos) // constraint type value pair.

{
type = tnp.substr (0, tnp.find(","));
//cout << "constraint type: " << type << endl;
value = tnp.substr(tnp.find(",")+2);
//cout << "constraint value: " << value << endl;

typeConstraints. set (concept Type, type, value); // save the concept type -
constraints

}

in.close();

/**

* Detect the constraints froma list of concepts for a reference.

* @aramreference The reference for which the constraints nust be detected.

* @aram concepts List of concepts, fromwhich the constraints nust be derived.
* @eturn List of constraints for the reference.

*/

vect or <DSConst r ai nt > DSConst rai nt Det ecti on: : det ect Constrai nts (DSConcept reference,
DSConcept *superconcept, vector<DSConcept> concepts)
{

vect or <DSConstrai nt > res;

string subVal ue, tnpVal ue, conType;

map<string, int> foundTypes;

/1 1ook for constraints within the concept.

cout << "looking for constraints within the concept" << endl;

/1 first check whether there are constraints for the conplete val ue.

if (val ueConstraintlndex. count(reference.getValue())!=0) // check whether the val ue
exists in the map.

if (hasVal ueTypeConstraint. count (reference.getValue())!=0) // check whether there
are constraints linked to a type.

{
if
(val ueTypeConstrai nt | ndex[val ueConstrai nt | ndex[ref erence. get Val ue()]]. count (reference. get
Type()) !{=0)

res =
val ueTypeConstrai nt [val ueTypeConstrai nt | ndex[val ueConstrai nt | ndex[ref erence. get Val ue()]][
reference. get Type()1];

cout << "constraints linked to type added" << endl;

}
el se
{
res = val ueConstrai nt Map[val ueConstrai nt | ndex[r ef erence. getVal ue()]];
}

}

249 JL.R.D Woei-A-Jin, 2001

PH S

res = val ueConstrai nt Map[val ueConstrai nt| ndex[ref erence. get Val ue()]1];
}
cout << "constraints within the concept as a whole " << ((res.size()==0)7?"not
found": "found") << endl;
bool conLi nkedToTypeAdded = fal se;
if (res.size() == 0)

if (superconcept != NULL)
if (superconcept->getReferent()!= NULL)
{

cout << "constraint added: |istvalue, " << superconcept->getReferent()-
>get Val ue() << endl;

res. push_back(DSConstraint ("listval ue", superconcept->getReferent()-
>get Val ue() +": " +super concept - >get Ref erent () - >get Type()));

el se
{
cout << "constraint added: |istvalue, " << superconcept->getValue() << endl;
res. push_back(DSConstraint ("listval ue", superconcept-
>get Val ue() +": " +super concept - >get Type()));

}

/1 1ook for each word in the string for constraints.
cout << "look for each word in the string for constraints" << endl;
if (reference.getValue().find(" ")!= string::npos) // then for parts of the val ue.
{
tnpVal ue = reference. getVal ue();
//cout << "tnpvalue: " << tnpValue << endl;
while (tnpValue.find(" ")!= string::npos)

subVal ue = tnpVal ue. substr (0, tnmpVal ue. find(" ")); // take first subval ue
tmpVal ue = tnpVal ue. substr(tnmpVal ue. find(" ")+1); // rest value
/1 cout << "subvalue: " << subValue << ", tnpvalue: " << tnpValue << endl;

fi ndSubVal Constrai nts(reference, subValue, res, foundTypes, conType);

} // end while

//cout << "tnpValue: " << tnmpValue << endl;
fi ndSubVal Constrai nts(reference, tnpValue, res, foundTypes, conType);
} /1l end if
} // end if
else // constraints found for concept value as a whole, now printing them
[*for (int i=0; i < res.size(); i++4)
{
cout << "constraint type: " << res[i].getType() << " constraint value: " <<

res[i].getValue() << endl;
foundTypes[res[i].get Type()]
Pl

if (res.size()==0) // no constraints found in concept value, search in concept type

cout << "no constraints found in concept value, search in concept type" << endl;
res = typeConstraints. get(reference. get Type());

if (reference. get SubConcepts() != NULL) // look for constraints in the subconcept |ist.
{
cout << "looking for constraints in the subconcept list" << endl;
vect or <DSConcept > subConcepts = *reference. get SubConcepts();
for (int i=0; i < subConcepts.size(); i++)
/'l subconcept type and val ue becone constraint type and value for the concept.

res. push_back(DSConstrai nt (subConcepts[i].get Type(), subConcepts[i].getValue()));
f oundTypes[subConcepts[i]. get Type()]=res.size()-1;

el se

250 JL.R.D Woei-A-Jin, 2001

PH S

cout << "no subconcepts to | ook constraints for" << endl;
}
cout << "looking for constraints in the concept list" << endl;
bool prem = true;
vect or <i nt> i ndex;
int ressize = res.size();
/1 look for constraints in the concept Ilist.

for(int i=0; i < concepts.size(); i++) // for each concept in the concept Ilist.
if (!(reference == concepts[i]))
cout << "working on concept: " << concepts[i].getValue() << endl;

string conltype;
if (concepts[i].getReferent()!=NULL)

conltype = concepts[i].getReferent()->getType();
cout << "referent Type = " << conltype << endl;
}
el se
conltype = concepts[i].getType();

/*if (listTypes.count(conltype) != 0)

{
if (concepts[i].getReferent()!=NULL)

cout << "constraint added: |istvalue, " << concepts[i].getReferent()-

>get Val ue() << endl;
res. push_back(DSConstraint ("listvalue", concepts[i].getReferent()-

>get Val ue() +": " +super concept - >get Ref erent () - >get Type()));
}

el se

{

cout << "constraint added: listvalue, " << concepts[i].getValue() << endl;
res. push_back(DSConstraint("listval ue",
concepts[i].getVal ue()+":"+superconcept->get Type()));

else */ if (nodifierConstraintlndex.count(concepts[i].getValue()) !'=0) // check
whet her the val ue exists in the nmap

{
for (int j=0; j <
nmodConst r Prel ndex[nodi fi er Constrai ntl ndex[concepts[i].getValue()]].size(); j++)// for
each of the premi sses - constraint pair.

{

11 cout << "checking prem sses constraint pair " << j << endl;
i ndex = nodConstr Prel ndex[nodi fi er Constrai ntlndex[concepts[i].getValue()]];
for (int k=0; k < nodifierConstraintPreMap[index[j]].size(); k++) // check
each of the prenisses

/'l cout << "checking prem sses :

<<nodi fi erConstrai nt PreMap[index[j]][K].getType() << ", " <<
nodi fi er Constrai nt PreMap[i ndex[j]][k].getValue() << endl;
for (int 1=0; | <res.size(); I++) // with the constraints already in the

constraintlist.

/1 cout << "still working at 1=" << | << ", size =" << res.size() <<

endl ;
if (res[l].getType() ==
nodi fi erConstraint PreMap[index[j]][k].getType()) // if the types are the sane

/'l cout << "types are the same" << endl;

if ((res[l].getValue() != "none") &&
(res[1].getValue()!=nodifierConstraintPreMap[index[j]][K].getValue()))

{

prem= false; // but the values differ, then the additional

constraints can't be assigned.
break; // there's no need to check further.

else // the premi sses and constraints are fromthe sanme type and
val ue

{

251 JL.R.D Woei-A-Jin, 2001

PH S

break; // no need to look further for the constraint with the
sanme type

}

} // end going through constraints already in the constraint |ist

/lcout << "still working at k=" << k << ", size=" <<
nodi fi er Constrai nt PreMap[index[j]].size() << endl

if (!prem // one of the prenisses don't hold
break; // no need to | ook further
} // end checking each of the prenisses

cout << "done checki ng each of the prem sses" << endl
if (prem) // the prem sses hold
{

cout << "prem sses hol d" << endl

//cout << "size of nodifier constraint map: " <<
nodi fi er Constrai nt Map[index[j]].size() << endl

for(int k=0; k < nodifierConstraintMap[index[j]].size(); k++) // add the
addi tional constraints

//cout << "adding additional constraints, currently at position " << k
<< endl;

cout << " adding constraint type: " <<
nmodi fi er Constrai nt Map[index[j]][k].getType() << ", " <<
nodi fi er Constrai nt Map[index[j]][k].getValue() << endl

res. push_back(nodi fi erConstrai nt Map[index[j]][k])

break; // no need to | ook further

} /1 end checking each of the nodifier - constraint pair

} // end if
} // end if
} /1 end checking each concept in the list
if (res.size() == ressize)
cout << "constraints in the concept list not found..." << endl
}
cout << "the follow ng constraints were deternmned for " << reference.get Type() << " ("
<< reference.getValue() << ") :" << endl
for (int i =0; i <res.size(); i++)
{
cout << " contraint: " << res[i].getType() << " (" << res[i].getValue() << ")" <<
endl ;
}

cout << "end of constraints" << endl
return res;

}

voi d DSConstraintDetection::findSubVal Constrai nts(DSConcept reference, string subVal ue
vect or<DSConstrai nt> & es, map<string, int> & oundTypes, string &onType)

{
bool conLi nkedToTypeAdded = fal se

if (val ueConstraintlndex. count (subValue)!=0) // check whether the subValue exists in
t he map.

i f (hasVal ueTypeConstraint. count (subVal ue)!=0) // check whether there are
constraints linked to a type

{
if

(val ueTypeConstrai nt | ndex[val ueConstrai nt | ndex[subVal ue]]. count (ref erence. get Type())! =0)
/!l is the type in the list?

252 JL.R.D Woei-A-Jin, 2001

PH S

for (int j=0; j <
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [reference. ge
tTerE()]]-Si{ZE(): j++)

conType =
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [reference. ge
tType()]1[j].get Type();

if (foundTypes. count (conType) ==0)

res. push_back(val ueTypeConstrai nt [val ueTypeConst rai nt | ndex[val ueConstr ai nt | ndex[subVal ue]
][reference.get Type()]1[j]);// add the constraint

cout << " constraint type added: " << res[res.size()-1].getType() << ",
" << res[res.size()-1].getValue() << endl

foundTypes[conType] =res. si ze()-1; //add constraint type to list of found
constraint types

}

else if (res[foundTypes[conType]].getValue() !=
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [r ef erence. ge
tType()]]1[j].getValue()) // values conflict

if (res[foundTypes[conType]].getPriority() ==
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [r ef erence. ge
tType()]1[j].getPriority())

res[foundTypes[conType]]. setVal ue("m xed"); // priorities are the
sanme, set as m xed

}

el se

if (res[foundTypes[conType]].getPriority() <
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [r ef er ence. ge
tTleE()]][J']-getF’riOgity())

res[foundTypes[conType]] =
val ueTypeConstrai nt [val ueTypeConst r ai nt | ndex[val ueConst r ai nt | ndex[subVal ue]] [r ef er ence. ge
tType()]1[j1; // new priority is higher, so replace
}

}/1 end else if (values conflict)
}/ 1 end for
cout << "constraints linked to type added" << endl
conLi nkedToTypeAdded = true
}// end is the type in the list?
} // end are there type related constraints?
if (!conLi nkedToTypeAdded)

{
cout << subValue << " has constraints to add, index =" <<
val ueConst r ai nt | ndex[subVal ue] << endl
for (int j=0; j < valueConstraintMap[val ueConstrai ntl ndex[subVal ue]].size(); j++)

//cout << "adding constraint " << j << " of " <<
val ueConst r ai nt Map[val ueConst r ai nt | ndex[subVal ue]] . si ze() << endl
/1 maybe add rul es on assigni ng constraints???
conType = val ueConstrai nt Map[val ueConstrai nt | ndex[subVal ue]][j]. get Type()
if (foundTypes. count (conType)==0)

{
res. push_back(val ueConstrai nt Map[val ueConstrai nt | ndex[subVal ue]1[j]);// add
the constraint
cout << "constraint type added: " << res[res.size()-1].getType() << ", " <<
res[res.size()-1].getValue() << endl
foundTypes[conType] =res. si ze()-1; //add constraint type to list of found
constraint types

}
else if (res[foundTypes[conType]]. getValue() !=
val ueConst r ai nt Map[val ueConst rai nt | ndex[subVal ue]][j].getValue()) // values conflict

if (res[foundTypes[conType]].getPriority() ==

val ueConst r ai nt Map[val ueConst rai nt | ndex[subValue]][j].getPriority())
{

253 JL.R.D Woei-A-Jin, 2001

PH S

res[foundTypes[conType]].setVal ue("m xed"); // priorities are the sane,
set as m xed

}

el se

if (res[foundTypes[conType]].getPriority() <
val ueConst r ai nt Map[val ueConst rai nt | ndex[subValue]]J[j].getPriority())

{
res[foundTypes[conType]] =
val ueConst r ai nt Map[val ueConstrai nt | ndex[subVval ue]1[j1];

}
}
}
} /1 end for

} // end if not type linked constraints added
} // end if subvalue is in the map

}

Concept

Header file
TLLETEEEEE i rirrrriririririrtg

Iy
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

N N N N NN NNy
1rrrir

/1 File: concept.h

/'l Last changed by:
/1 Last changed on

/!l Created by: Dimtri Wei-AJin
/1l Created on: January 17, 2001

/1

/1 Description: Datastructure for concept

11 A concept has the foll ow ng val ues
11 - type

11 - val ue

11 - timestanp

/1 - referent

/1

FEEEEEEEE b i i r
[rrrir

#i f ndef DSCONCEPT_H
#def i ne DSCONCEPT_H

#i ncl ude <string>
#i ncl ude <vector>

*

/
Data structure which represents a concept
A concept has the follow ng val ues

type

val ue

- tinestanp

- referent

- list of subconcepts

L I A

254 J.L.R.D Woei-A-Jin, 2001

PH S

* - list entries
*/

cl ass DSConcept
public:

static const DSConcept null;

/**
* Constructor.
*/

DSConcept ();

/**
* Constructor.
* @aram newType The type of the concept.
* @aram newal ue The val ue of the concept.
@ar am newTi nest anp The tinestanp of the val ue.
*/

DSConcept (string newlype, string newal ue, int newTi nestanp);

*

/
Constructor.

@ar am newType The type of the concept.

@ar am newal ue The val ue of the concept.

@ar am newTi nestanp The tinestanp of the concept.
@ar am newlLi st Concepts The list of list entries.
@ar am newSubConcepts The list of sub-concepts.

L R

-~

DSConcept (string newType, string newal ue, int newli nestanp, vector<DSConcept>
*newSubConcept's, vector <DSConcept > *newlLi st Concepts) ;

*

Constructor.

@ar am newType The type of the concept.

@ar am newal ue The val ue of the concept.

@ar am newTi nestanp The tinestanp of the concept.
@ar am newSubConcepts The list of sub-concepts.
@ar am newLi st Concepts The list of list entries.
@ar am newRef erent The referent of the concept.

E I T T I

~

DSConcept (string newlype, string newal ue, int newTi mestanp, vector<DSConcept>
*newSubConcept's, vector <DSConcept > *newlLi st Concepts, DSConcept *newReferent);

/**

* Returns the type of the concept.
* @eturn The type of the concept.
*/

string get Type();

/**

* Returns the val ue of the concept.
* @eturn The val ue of the concept.
*/

string getVal ue();

/**

* Returns the timestanp of the concept.
* @eturn The timestanp of the concept.
*/

255 JL.R.D Woei-A-Jin, 2001

PH S

int getTimestanp();

/**

* Returns the referent of the concept.
* @eturn The referent of the concept.
*/

DSConcept *get Referent();

/**

* Returns the list of sub-concepts.
* @eturn The |ist of sub-concepts.
*/

vect or <DSConcept > *get SubConcepts();

/**
* Returns the list entries.

* @eturn The list entries.
*/

vect or <DSConcept > *get Li stEntries();

/**

* Returns the input origin.
* @eturn The input origin.
*/

string getlnputOrigin();

/**
* Returns the text.

* @eturn The text.
*/

string get Text();

/**

* Returns the this concept val ue.
* @eturn The concept.
*/

string get Concept();

/**

* Returns the superconcept.
* @eturn The superconcept.
*/

string get Super Concept ();

/**

* Gets the function of the concept.
* @eturn the function.
*/

string get Function(string);

/**

* Sets the type of the concept.
* @aram newType The new type of the concept.
*/

voi d set Type(string newlype);

/**

* Sets the value of the concept.
* @aram newal ue The new val ue of the concept.
*/

256 JL.R.D Woei-A-Jin, 2001

PH S

voi d setVal ue(string newal ue);

/**

* Sets the timestanp of the concept.
* @aram newli mestanp The new timestanp of the concept.
*/

voi d setTinestanp(int newTi nestanp);

/**

* Sets the referent of the concept.
* @aram newRef erent The new referent of the concept.
*/

voi d set Ref erent (DSConcept *newReferent);

/**

* Sets the sub-concepts.
* @ar am newSubConcepts The new sub-concepts.
*/

voi d set SubConcept s(vect or <DSConcept > * newSubConcept s) ;

/**
* Sets the list entries.

* @aram newLi stEntries The new |ist entries.
*/

voi d setListEntries(vector<DSConcept> *newLi st Entries);

/**

* Sets the input origin.
* @araminput The input origin.
*/

voi d setlnputOrigin(string input);

/**
* Sets the text.

* @araminput The text.
*/

voi d set Text(string input);

/**

* Sets the this concept val ue.
* @aramthi sconcept The concept.
*/

voi d set Concept (string thisconcept);

/**

* Sets the superconcept.
* @ar am superconcept The superconcept.
*/

voi d set Super Concept (string superconcept);

/**

* Sets the function of the concept.
* @aram function The function.
*/

voi d setFunction(string function);

/**
* == ogperator for DSConcept.
*/

bool operat or ==(DSConcept a);

257 JL.R.D Woei-A-Jin, 2001

PH S

prot ect ed:
/1 none

private:

string type;

string val ue;

string thisconcept;

string superconcept;

int timestanp;

string i nputOrigin;

DSConcept *referent;

vect or <DSConcept > *subConcept s;

vect or <DSConcept > *li stEntri es;

string text; // the input received for this concept in text form
string function; //information on subject, object, etc

}s
#endi f // DSCONCEPT_H

Implementation file

IR NN
1Hrrnrr
11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

R NN N N NN NN NNy
[rrrir

/1 File: concept.cc

/'l Last changed by:
/1 Last changed on

/!l Created by: Dimtri Wei-AJin
/1 Created on: January 17, 2001

/1

/1 Description: Datastructure for concept

11 A concept has the foll ow ng val ues
1 - type

/1 - val ue

/1 - tinmestanp

I - referent

/1 - subConcepts

/1

FEEEEEEEE b r i e b r g
1rrrrr

#i nclude "conlist.h"
#i ncl ude "concept. h"

/**
* Constructor
*/
DSConcept : : DSConcept ()
{
referent = NULL;
subConcepts = NULL;
listEntries = NULL;
t hi sconcept = "";
superconcept = "";
}

258 JL.R.D Woei-A-Jin, 2001

PH S

/**

* Constructor.

* @aram newType The type of the concept.

* @aram newal ue The val ue of the concept.

* @aram newli mestanp The timestanp of the val ue.
*/

DSConcept : : DSConcept (string newlype, string newval ue, int newTi nestanp)
{

type = newlype,;

val ue = newval ue;

ti mestanmp = newTi mest anp;

referent = NULL;

subConcept s NULL;

listEntries NULL;

t hi sconcept "

superconcept = "";

}
/**
* Constructor.
* @aram newType The type of the concept.
* @aram newal ue The val ue of the concept.
* @aram newTi nestanp The tinestanp of the concept.
* @aram newSubConcepts The |ist of sub-concepts.
* @aram newli st Concepts The |list entries.
*

-~

DSConcept : : DSConcept (string newlype, string newval ue, int newTi nestanp, vector <DSConcept >
*newSubConcepts, vector<DSConcept > *newlLi st Concept s)
{

type = newlype;

val ue = newval ue;

ti mestanp = newTli mest anp;

referent = NULL;

subConcept s newSubConcept s;

listEntries newLi st Concept s;

t hi sconcept "

superconcept = "";

~
*

E I T

~

Constructor.

@ar am newType The type of the concept.

@ar am newal ue The val ue of the concept.

@ar am newTi nestanp The tinestanp of the concept.
@ar am newSubConcepts The list of sub-concepts.
@ar am newlLi st Concepts The list entries.

@ar am newRef erent The referent of the concept.

DSConcept : : DSConcept (string newlype, string newval ue, int newTi nestanp, vector<DSConcept >
*newSubConcept's, vector<DSConcept > *newlLi st Concepts, DSConcept *newReferent)
{

type = newlype;

val ue = newval ue;

ti mestanp = newTi mest anp;

subConcepts = newSubConcepts;

listEntries = newLi st Concepts;

referent = newReferent;

t hi sconcept = "";

superconcept = "";

/**

* Returns the type of the concept.
* @eturn The type of the concept.
*/

259 JL.R.D Woei-A-Jin, 2001

PH S

string DSConcept:: get Type()
{

return type;

}
/**

* Returns the val ue of the concept.
* @eturn The val ue of the concept.
*/

string DSConcept:: get Val ue()
{

return val ue;

}

/**

* Returns the timestanp of the concept.
* @eturn The tinmestanp of the concept.

*/

int DSConcept:: get Ti mest anp()
{

return timestanp;

}

/**

* Returns the referent of the concept.
* @eturn The referent of the concept.

*/
DSConcept *DSConcept: : get Referent ()
{
return referent;
}
/**

* Returns the input origin.
* @eturn The input origin.
*/

string DSConcept::getlnputOrigin()
{

return inputOrigin;

}
/**

* Returns the text.
* @eturn The text.
*/

string DSConcept:: get Text ()
{

return text;

}

| **

* Returns the this concept val ue.
* @eturn The concept.
*/

string DSConcept: : get Concept ()

return thisconcept;

}
/**

* Returns the superconcept.
* @eturn The superconcept.
*/

260

JL.R.D Woei-A-Jin, 2001

PH S

string DSConcept: : get Super Concept ()
{

return superconcept;

}
/**
* Returns the sub-concepts.

* @eturn The sub-concepts.
*/

vect or <DSConcept > *DSConcept : : get SubConcept s()
{

return subConcepts;
}
/**
* Returns the list-entries.

* @eturn The list-entries.
*/

vect or <DSConcept > *DSConcept: : get Li st Entri es()

return listEntries;

}
/**

* Gets the function of the concept.
* @eturn the function.
*/

string DSConcept:: get Function(string)

return function;

}
/**

* Sets the type of the concept.
* @aram newType The new type of the concept.
*/

voi d DSConcept:: set Type(string newType)

{
type = newlype;

/**

* Sets the value of the concept.
* @aram newal ue The new val ue of the concept.
*/

voi d DSConcept:: setVal ue(stri ng newal ue)
{

val ue = newval ue;

}
/**
* Sets the timestanp of the concept.

* @aram newTi nestanp The new timestanp of the concept.
*/

voi d DSConcept: : set Ti nest anp(i nt newTi mest anp)
{

ti mestanp = newTli mest anp;

}
| **

* Sets the referent of the concept.
* @aram newRef erent The new referent of the concept.
*/

voi d DSConcept: : set Ref erent (DSConcept *newRef er ent)

261

JL.R.D Woei-A-Jin, 2001

PH S

{

referent = newReferent;

}
/**

* Sets the new sub-concepts.
* @ar am newSubConcepts The new sub-concepts.

*/
voi d DSConcept: : set SubConcept s(vect or <DSConcept > *newSubConcept s)
{
subConcept s = newSubConcept s;
}
/**

* Sets the new list entries.
* @aram newLi stEntries The new |ist entries.
*/

voi d DSConcept:: setListEntries(vector<DSConcept> *newLi stEntri es)

listEntries = newListEntries;

}
/**
* Sets the input origin.

* @araminput The input origin.
*/

voi d DSConcept::setlnputOrigin(string input)

{
inputOrigin = input;

/**
* Sets the text.
* @araminput The text.

*/
voi d DSConcept: :set Text (string input)
{
text = input;
}

/**
* Sets the this concept val ue.

* @araminput The concept.
*/

voi d DSConcept: : set Concept (string thisconcept)

t hi s- >t hi sconcept = thi sconcept;

}
/**
* Sets the superconcept.
* @aram input The superconcept.
*/
voi d DSConcept : : set Super Concept (stri ng superconcept)

t hi s- >super concept = superconcept;

}

voi d DSConcept:: set Function(string function)

this->function = function;

}
| **

* == ogperator for DSConcept.

262 JL.R.D Woei-A-Jin, 2001

PH S

*/

/**

* == operator for DSConcept.

*/

bool DSConcept: : oper at or ==(DSConcept a)

return (a.value == value)&&(a.type == type);//&&(a.timestanp == ti mestanp);
}

/1 protected:
/1 none

/1 private:
/1 none

Constraint

Header file

IR N NN
Iy
/1 Copyright (C) 2001 Philips GrbH Di al og Systens

11 Al rights reserved

N N N N NN NNy
1rrrir

/1 File: constr.h

/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-AJin
/1l Created on: January 17, 2001

/1

/1 Description: Datastructure for constraint.

11 A concept has the foll ow ng val ues:
/1

I NN N NN NN NNy
[rrrir

#i f ndef DSCONSTRAI NT_H
#def i ne DSCONSTRAI NT_H

#i ncl ude <string>

/**
* Data structure which represents a constraint.
* A constraint has the follow ng val ues:

* - type
* - val ue
*/

cl ass DSConstrai nt

publi c:
static const DSConstraint null;

263 JL.R.D Woei-A-Jin, 2001

PH S

/**

* Constructor.
*/

DSConstraint();

/**
* Constructor.
* @aram newlype The type of the constraint.
* @aram newal ue The val ue of the constraint.
*/
DSConstraint(string newlType, string newval ue);

/**

* Constructor.

* @aram newType The type of the constraint.

* @aram newal ue The val ue of the constraint.
* @aramnewPriority The value of the priority.

DSConstraint(string newlType, string newvalue, int newPriority);

/**

* Returns the type of the constraint.
* @eturn The type of the constraint.
*/

string get Type();

/**
* Returns the value of the constraint.

* @eturn The value of the constraint.
*/

string getVal ue();

/**

* Returns the priority of the constraint.
* @eturn The priority of the constraint.
*/

int getPriority();

/**

* Sets the type of the constraint.
* @aram newType The new type of the constraint.
*/

voi d set Type(string newType);

/**
* Sets the value of the constraint.

* @aram newal ue The new val ue of the constraint.
*/

voi d setVal ue(string newal ue);

/**
* Sets the priority of the constraint.

* @aramnewPriority The new priority of the constraint.
*/

void setPriority(int newPriority);

protected:
/'l none

private:

string type;

string val ue;

int priority;
b

264 JL.R.D Woei-A-Jin, 2001

PH S

#endi f // DSCONSTRAI NT_H

Implementation file

IR NN NN NN
1Hrrnrr
11 Copyright (C 2001 Philips GrbH Di al og Systens

/1 Al rights reserved

NN NN NN NNy
1

/1l File: constr.cc

/'l Last changed by:
/'l Last changed on:

/!l Created by: Dimtri Wei-A-Jin
/1 Created on: January 17, 2001

/1

/1 Description: Datastructure for constraint.

/1 A constraint has the follow ng val ues:
11 -type

11 -val ue

/1

R NN N N NN NN NN NN NNy
[rrrir

#i ncl ude "constr. h"

/1 public:

/**
* Constructor.
*/

DSConstrai nt:: DSConstrai nt ()

/'l none

}

/**

* Constructor.

* @aram newType The type of the constraint.

* @aram newal ue The val ue of the constraint.
*/

DSConstraint:: DSConstraint (string newlype, string newval ue)
{
type = newlype;
val ue = newval ue;
priority = 1; //(default)
}
/**
* Constructor.
* @aram newType The type of the constraint.
* @aram newal ue The val ue of the constraint.

* @aramnewPriority The value of the priority.
*/

265 JL.R.D Woei-A-Jin, 2001

PH S

DSConstrai nt:: DSConstrai nt (string newlype, string newval ue,

{
type = newlype,;
val ue = newval ue;
priority = newPriority;
}

/**

* Returns the type of the constraint.
* @eturn The type of the constraint.

*/
string DSConstraint::get Type()
{
return type;
}

/**
* Returns the value of the constraint.
* @eturn The value of the constraint.

*/
string DSConstraint::getVal ue()
{
return val ue;
}

/**

* Returns the value of the priority.
* @eturn The value of the priority.

*/
int DSConstraint::getPriority()
{

return priority;
}

/**

* Sets the type of the constraint.
* @aram newType The new type of the constraint.
*/

voi d DSConstraint::setType(string newlype)

{
type = newlype,;

/**

* Sets the value of the constraint.

* @aram newal ue The new val ue of the constraint.

*/

voi d DSConstraint::setVal ue(string newval ue)

{
}

val ue = newval ue;

| **

* Sets the value of the constraint.

* @aram newal ue The new val ue of the constraint.

*/

voi d DSConstraint::setPriority(int newPriority)
{

}

/1 protected:
/'l none

priority = newPriority;

/1 private:

266

int newPriority)

JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

/1 none

267 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Appendix F

Usability test tasks

T11

T12

T12

T21

T22

T23

T31

T32

T33

Y ou have no appointments this evening and you decide to sit back, relax and
watch some sports on TV. Search for a sports program that is running tonight
around 8 PM and put in on your watch list.

Y ou just got home and wonder what is on CNN right now, so you switch to that
channel.

This whole week you have been busy and never got around to read the newspaper
or watch the news. And tonight you have another appointment. Y ou find the lat
night news compact and up to date, so you decide to record it.

Someone recommended a program about Science Frontiersto you. It airs on
Discovery Channel around 8 PM on Thursday. Y ou decide to record it.

Y ou want to watch alate night movie tonight. Y ou decide to put the one with
Robert de Niro on your watch list.

Ross Kemp is an actor you enjoy watching. On Wednesday around 6 PM thereis
aserie in which he stars. Y ou decide to record that serie.

Y our appointment for tomorrow evening is cancelled, so you would like to know
if thereis anything interesting on TV tomorrow night. Y ou search for an
entertainment show on Channel 5 and put it on your watch list.

Y our brother is curious what kind of movies Sky movie Premiere broadcasts at
prime time. Rather than lending him your programming guide, you decide to
record amovie for him on Friday that starts around 8 PM so he can see for
himself.

The other day, your best friend gave you some healthy advice: try to limit the time
you watch TV and exercise some more. Y ou decide to remove one program from
your watchlist for starters.

268 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Appendix G

Test Results

Offline tests

The following examples were tested offline with the following results:

- Smulation programlist 1 is ‘displayed on the screen’.

SPICE, are there any movies starring Mel Gibson today?

- Smulation programlist 2 is ‘displayed on the screen’.

Can you show me more information about this movie?

- Besides the parsed sentence, an extra concept deicticmoviel is added to the input,
with input origin value deixis. Thismovieis correctly resolved to deicticmoviel.

- Smulation program information is ‘ displayed on the screen’.

Could you show methelist again?

- Thelist iscorrectly resolved to program list 2.

Please record the Mad Max movies.

- The definite description the Mad M ax movies was resolved to the group of Mad
Max moviesin program list 2. This was possible because the movies had the
subconcept Mad Max.

- Smulation programlist 4 is ‘displayed on the screen’.

Please record the Mad Max movie.

- Thedefinite description the Mad Max movieis correctly resolved to the top most
movie Mad Max. Thisis because a movie in the list had the subconcept protagonist:
Mad Max, which was added specifically to test this situation.

Are there any samurai movies today?

- Smulation programlist 6 is‘displayed on the screen’.

Who is the director of this one?

- Besides the parsed sentence, an extra concept deicticmovie2 is added to the input,
with input origin value deixis. Thisoneis correctly resolved to deicticmovie2. The
director isresolved to Akira Kurasowa, which was added specifically asa
subconcept of deicticmovie? to test this case. The structure superconcept — concept
made it possible to solve this situation.

Are there any other movies directed by him this month?

- Himiscorrectly resolved to Akira Kurasowa.

Are there any movies by Roman Polansky?

- Smulation programlist 9 is‘displayed on the screen’.

In which of these does he star himself?

He and himself are correctly resolved to Roman Polansky.

- Smulation programlist 10 is‘displayed on the screen’.

Please record the most recent one.

269 JL.R.D Woei-A-Jin, 2001

PHI S TU Del

Snce no information about release dates of movies are present, this reference could
not be resolved.
Smulation program list 11 is ‘displayed on the screen’.

Gimme info on the fourth movie.

Thefourth movieis correctly resolved to the fourth movie in program list 11.
Smulation program list 12 is ‘displayed on the screen’.

Can | seethelast one?

Thelast oneis correctly resolved to the last program in program list 12.

Gimme info on that movie.

That movieis correctly resolved to the fourth movie.
Smulation program list 13 is‘displayed on the screen’.

| want to see a James Bond movie.

Smulation program list 007 is ‘ displayed on the screen’.

Do you have other movies with him?

Him correctly resolved to James Bond.
Smulation program list 15 is‘displayed on the screen’.

Do you have more information about the last thing?

Thelast thing correctly resolved to the last program in program list 15.
Smulation programlist 16 is‘displayed on the screen’.

What is that about?

That correctly resolved to thereferent of ‘thelast thing'.
Smulation program list 17 is ‘displayed on the screen’.

What time does it start?

It correctly resolved to thereferent of ‘that’.
Smulation program list 18 is‘displayed on the screen’.

Are there any movies with X next week?
Smulation program list 19 is ‘displayed on the screen’.
Which of them is together with Y?

Them correctly resolved to the moviesin thelist asa group.
Smulation program list 20 is *displayed on the screen’.

O.k. so please record the first one!

Thefirst one correctly resolved to the first program in program list 20.
Smulation program list 21 is *displayed on the screen’.

| am looking for a movie with Kate Winslet where she plays an Australian girl.

She correctly resolved to Kate Winglet.
Smulation program list 22 is *displayed on the screen’.

From the last list of movies, the second one.

Thelast list of movies correctly resolved to program list 21.
The second one correctly resolved to the second movie of program list 21.
Smulation program list 23 is ‘displayed on the screen’.

| said: a movie with Robert Redford! He does not act in these ones.

He correctly resolved to Robert redford.
These ones correctly resolved to the group of moviesin program list 23.
Smulation program list 24 is *displayed on the screen’.

The seria | saw last night, when will it be continued?

270 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

- Theserial | saw last night resolved to NUL L, because no such entry existsin the
history list.

- It resolved to NULL, because since ‘the serial | saw last night’ did not have a
referent, it was tagged incorrectly and was not put in the s-list. It was assumed that a
reference would always have a referent, so only a check is made for referents, and no
attempt is made to try to determine the newness for references.

- Smulation programlist 25 is‘ displayed on the screen’.

Is this a science fiction movie?

- Besides the parsed sentence, an extra concept deicticmovie3 is added to the input,
with input origin value deixis.T his correctly resolved to deicticmovie3.

- Smulation programlist 26 is‘ displayed on the screen’.

Thereisamovie with Billy Crystal and Meg Ryan where they play two singlesin New

Y ork.

- They correctly resolved to Billy Crystal and Meg Ryan.

- Smulation programlist 27 is‘ displayed on the screen’.

Are there any other movies with him or her?

- Him correctly resolved to Billy Crystal.

- Her correctly resolved to M eg Ryan.

- Smulation programlist 28 is‘displayed on the screen’.

| am looking for amovie. It should start around 8pm.

- It correctly resolved to a movie.

- Smulation programlist 29 is‘ displayed on the screen’.

Give more information on the last one.

- Thelast one correctly resolved to the last program in program list 29.

- Smulation programlist 30 is‘displayed on the screen’.

| want to remove that one.

- That one correctly resolved to thereferent of ‘thelast one'.

- Smulation programlist 31 is‘displayed on the screen’.

Put it on my recording list.

- It correctly resolved to the referent of ‘that one'.

- Smulation programlist 32 is‘displayed on the screen’.

Remove the earlier one.

- Theearlier one correctly resolved to the program with the lowest start timein
program list 32.

- Smulation programlist 33 is‘displayed on the screen’. One of the movies has the
subconcept actor = Julia Roberts.

Show me the one that has Julia Robertsin it.

- Theonethat hasJulia Robertsin it correctly resolved to the movie with
subconcept ‘actor = Julia Roberts in program list 33.

- It correctly resolved to the one that has Julia Robertsin it.

- Smulation program list 33 is‘displayed on the screen’.

Online tests

271 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

During online testing, a set of tasks described in appendix F was used to test the
references. In the following list is described what was said, what was understood during
the different attempts, and what was resolved :

what’ s on cnn right now

- what time cnn right now

- what'son

- oncnnright now

switch to that channel

- richard a program

- thistheachannel - thisresolved to cnn

- switch to a channel

- switchto

- itsthat a channel - itsresolvedtocnn

- whitch that channel - that channel correctly resolved to cnn

- switch to that channel — that channel correctly resolved to cnn

#sllencett

- ok

reset

- that- that resolved to NULL

- eightthat- that resolved to NUL L

are there any sports tonight

- arethereany sports

- arethereany sports

- (there) any sports tonight

- arethereany sports tonight

record the second program

- recordthis - thisresolved to NUL L

- record the second programs — the second programs correctly resolved to football

- record the second program — the second program correctly resolved to football

what news is on tonight

- what muses on tonight

- what newsthe

- what's uses on tonight

- what newsison

- what newsis on tonight

record the ten o’ clock news

- recorditthat o' clock news - it wasresolved to NULL and that was resolved to it.

- record it them o' clock news - it wasresolved to NULL and them was resolved to
the group of programs. programs 6

- record at ten 0’ clock news

record the eight p.m. news

- record at eight p.m. news

- record the eight p.m news — theeight p.m. news correctly resolved to world news.

record the last news program

272 JL.R.D Woei-A-Jin, 2001

PHI S TU Delft

Wt

- record the last shows program - thelast shows program resolved to NULL,
because no shows are on the list.

- record the last news program — thelast news program correctly resolved to cnn
news. This one was not the last on the displayed list, but the last on the list of
programs.

are there any programs on science frontiers on thursday

- arethereany programs on science frontiers today

science frontiers on thursday

- science frontiers on thursday

record it

- recordit - it correctly resolved to avalanche (a program about science frontiers)

are there any movies with robert de niro tonight

- arethere any movies this from the new tonight — thisresolved to avalanche

- arethereany movieswith thereal

- amovies

- After many retriesthis query was still not recognized, so finally it was just left
untested.

are there any entertainment tomorrow evening

- any entertainment tomorrow evening

record the one on channel 5

- record the one on channel 5 - the one on channel 5 correctly resolved to it’s only
tv but | likeit

any movies on friday

- any movieson friday

record the second one from below

- record the second one from below - the second one from below correctly resolved
tointimaterelations 1995.

show me the watch list

- show me the watch list (the watch list not resolved, because it is treated as a name)

remove the earlier program

- removetheearlier program — theearlier program correctly resolved to 100 per
cent

273 JL.R.D Woei-A-Jin, 2001

PH S

Appendix H

Constraints

This file is used for constraint detection

Priority value indicates whether a constraint value of a certain type overwites
another conflicting constraint value (if it is higher) or whether the constraint val ue
shoul d beconme m xed

format:

#

concept val uel

constraint typel, constraint valuel, priority value

>concept typel

)concept typel constraint typel, concept typel constraint valuel, concept typel

priority valuel

..

)concept typel constraint typen, concept typen constraint val uen, concept typen
priority val uen

>

..

constraint typen, constraint val uen

5

.

#

concept val ue:

.

#

#

note: 'listentry', 'recency' and 'relativetineposition' are special constraints. These

are reserved

#

dumy: novi estar:

nunber, dunmmy, 10 nunber, singular, 1

person, dunmmy, 10 person, person, 1

type, dumy, 10 type, actor, 1

abstract, dummy, 10 abstract, no, 1
nmovi estars:

director: nunber, plural, 1

nunber, singular, 1 person, person, 1

person, person, 1 type, actor, 1

type, director, 1 abstract, no, 1

abstract, no, 1 ;

; actor:

directors: nunber, singular, 1

nunber, plural, 1 person, person, 1

person, person, 1 gender, male, 1

type, director, 1 type, actor, 1

abstract, no, 1 abstract, no, 1
actors:

star: nunber, plural, 1

nunber, singular, 1 person, person, 1

person, person, 1 # gender, male, 1

type, actor, 1 type, actor, 1

abstract, no, 1 abstract, no, 1

stars: actress

nunber, plural, 1 nunber, singular, 1

person, person, 1 person, person, 1

type, actor, 1 gender, fenmale, 1

abstract, no, 1 type, actor, 1

; abstract, no

274 JL.R.D Woei-A-Jin, 2001

PH S

gender, male, 1

actresses: abstract, no, 1
nunber, plural, 1 ;

person, person, 1 hunks

gender, female, 1 nunber, plural, 1
type, actor, 1 person, person, 1
abstract, no, 1 gender, male, 1

; abstract, no, 1
guy: ;

nunber, singular, 1 | ad

person, person, 1 nunber, singular, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, male, 1

; abstract, no, 1
guys: ;

nunber, plural, 1 | ads

person, person, 1 nunber, plural, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, male, 1

; abstract, no, 1
man: ;

nunber, singular, 1 gal |

person, person, 1 nunber, singular, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, female, 1
; abstract, no, 1
nmen: ;

nunber, plural, 1 galls

person, person, 1 nunber, plural, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, female, 1
; abstract, no, 1

m ster: ;

nunber, singular, 1 wonan:

person, person, 1 nunber, singular, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, female, 1
; abstract, no, 1

m sters: ;

nunber, plural, 1 woren

person, person, 1 nunber, plural, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, female, 1
; abstract, no, 1
boy: ;

nunber, singular, 1 | ady

person, person, 1 nunber, singular, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, fenmale, 1
; abstract, no, 1
boys: ;

nunber, plural, 1 | adi es

person, person, 1 nunber, plural, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, fenmale, 1
; abstract, no, 1
gent | eman: ;

nunber, singular, 1 girl:

person, person, 1 nunber, singular, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, fenmale, 1
; abstract, no, 1
gent | enmen: ;

nunber, plural, 1 girls

person, person, 1 nunber, plural, 1
gender, male, 1 person, person, 1
abstract, no, 1 gender, fenmale, 1
; abstract, no, 1
hunk: ;

nunber, singular, 1 babe

person, person, 1 nunber, singular, 1

275 JL.R.D Woei-A-Jin, 2001

PH S

person,
gender,
abstract

babes:
nunber,
person,
gender,
abstract

chi ck:
nunber,
person,
gender,
abstract

chi cks:
nunber,
person,
gender,
abstract
| ass:
nunber,
person,
gender,
abstract
| asses:
nunber,
person,
gender,
abstract
person:
nunber,
person,
abstract
per sons:
nunber,
person,
abstract
He:
nunber,
person,
gender,
abstract

he:
nunber,
person,
gender,
abstract

H m
nunber,
person,
gender,
abstract

him
nunber,
person,
gender,
abstract

Hi nsel f:
nunber,
person,

person,
femal e,
, no, 1

plural,
person,
femal e,
, ho, 1

1
1

1
1
1

si ngul ar,

person,
femal e,
, no, 1

plural,
person,
femal e,
, ho, 1

1
1

1
1
1

si ngul ar,

person,
femal e,
, ho, 1

plural,
person,
femal e,
, no, 1

1
1

1
1
1

si ngul ar,

person,
, ho, 1

plural,
person,
, no, 1

1

1
1

si ngul ar,

person,
male, 1
, no, 1

1

si ngul ar,

person,
male, 1
, ho, 1

1

si ngul ar,

person,
male, 1
, no, 1

1

si ngul ar,

person,
male, 1
, ho, 1

1

si ngul ar,

per son,

1

1

1

1

1

1

276

gender, male, 1
abstract, no, 1

'hi nmsel f:

nunber, singul ar,

person, person,
gender, male, 1
abstract, no, 1

Hs:

1

nunber, singul ar,

person, person,
gender, male, 1
abstract, no, 1

'hi S:

1

nunber, singul ar,

person, person,
gender, male, 1
abstract, no, 1

i

She:

1

nunber, singul ar,

person, person,
gender, fenale,
abstract, no, 1

she:

1
1

nunber, singul ar,

person, person,
gender, fenale,
abstract, no, 1

Her :

1
1

nunber, singul ar,

person, person,
gender, fenale,
abstract, no, 1

1

her:

1
1

nunber, singul ar,

person, person,
gender, fenale,
abstract, no, 1

i—lerself:

1
1

nunber, singul ar,

person, person,
gender, fenale,
abstract, no, 1

’her sel f:

1
1

nunber, singul ar,

person, person,
gender, fenale,
abstract, no, 1

Her s:

1
1

nunber, singular,

person, person,
gender, fenale,
abstract, no, 1

i

hers:

1
1

nunmber, singul ar,

person, person,
gender, fenale,
abstract, no, 1

i

1
1

1

1

JL.R.D Woei-A-Jin, 2001

PH S

It

nunber, singul ar,
person, nonperson
abstract, no, 1

it:

nunber, singul ar,
person, nonperson
abstract, no, 1

Its

nunber, singul ar,
person, nonperson
abstract, no, 1

its:

nunber, singul ar,
person, nonperson
abstract, no, 1

Itsel f:

nunber, singul ar,
person, nonperson
abstract, no, 1

itsel f:

nunber, singul ar,
person, nonperson
abstract, no, 1

1

Them
nunber, plural, 1
abstract, no, 1

t hem
nunber, plural, 1
abstract, no, 1

Thensel ves
nunber, plural, 1
abstract, no, 1

t hensel ves
nunber, plural, 1
abstract, no, 1

They:
nunber, plural, 1
abstract, no, 1

t hey:
nunber, plural, 1
abstract, no, 1

Their:
nunber, plural, 1
abstract, no, 1

their:
nunber, plural, 1
abstract, no, 1

Theirs:
nunber, plural, 1
abstract, no, 1

theirs:
nunber, plural, 1
abstract, no, 1

1

1
1

1
1

1
1

1
1

1
1

1
1

277

Thi s:

nunber, singular, 2
#inputOrigin, deixis,
abstract, no, 1

t hi s:

nunber, singular, 2
#inputOrigin, deixis,
abstract, no, 1

That :

nunber, singular, 2
#inputOrigin, deixis,
abstract, no, 1

t hat:

nunber, singular, 2
#inputOrigin, deixis,
abstract, no, 1

i

These

nunber, plural, 1
#inputOrigin, deixis,
abstract, no, 1

t hese:

nunber, plural, 2
#inputOrigin, deixis,
abstract, no, 1

Those

nunber, plural, 2
#inputOrigin, deixis,
abstract, no, 1

t hose:

nunber, plural, 2
#inputOrigin, deixis,
abstract, no, 1

i

list:

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1

schedul e:

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1

sel ection

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1

pr ogr anme

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1

wat ch i st

nunber, singular, 1
person, nonperson, 1
type, list, 1

JL.R.D Woei-A-Jin, 2001

PH S

list, watch, 1
abstract, no, 1

show |ist:

nunber, singul ar,
person, nonperson,
type, list, 1
list, watch, 1
abstract, no, 1

wat ch schedul e:
nunber, singul ar,
person, nonperson,
type, list, 1
list, watch, 1
abstract, no, 1

show schedul e:
nunber, singul ar,
person, nonperson,
type, list, 1
list, watch, 1
abstract, no, 1

record list:
nunber, singul ar,
person, nonperson,
type, list, 1
list, record, 1
abstract, no, 1

recording list:
nunber, singul ar,
person, nonperson,
type, list, 1
list, record, 1
abstract, no, 1

ver list:

nunmber, singul ar,
person, nonperson,
type, list, 1
list, record, 1
abstract, no, 1

record schedul e:
nunber, singul ar,
person, nonperson,
type, list, 1
list, record, 1
abstract, no, 1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

recordi ng schedul e:

nunber, singul ar,
person, nonperson,
type, list, 1
list, record, 1
abstract, no, 1

vcr schedul e:
nunber, singul ar,
person, nonperson,
type, list, 1
list, record, 1
abstract, no, 1

3

recordi ng:
list, record, 1

1

1
1

1
1

278

i nfo:

type, info, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

information:

type, info, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

i nf os:

type, info, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

details:

type, info, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

expl anati on:

type, info, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

descri ption:

type, info, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

1

mel gi bson:
nunber, singul ar,
person, person, 1
type, actor, 1
gender, male, 1
abstract, no, 1

i

akira kurasowa:
nunber, singul ar,
person, person, 1
type, director, 1
gender, male, 1
abstract, no, 1

i

kate wi nslet:
nunber, singular,
person, person, 1
type, actor, 1
gender, female, 1
abstract, no, 1

i

billy crystal:
nunber, singular,
person, person, 1
type, actor, 1
gender, male, 1
abstract, no, 1

i

robert redford:
nunber, singular,

1

1
1

1
1

1
1

1
1

1
1

1
1

JL.R.D Woei-A-Jin, 2001

PH S

person,

person, 1

type, actor, 1

gender,

male, 1

abstract, no, 1

1

julia roberts

>act or
) nunber,
) person,

si ngul ar
person,

)type, actor, 1

) gender,

femal e,

)abstract, no, 1

>

1

1

1

nunber, singular, 1

person,

person, 1

type, actor, 1

gender,

female, 1

abstract, no, 1

i

meg ryan

nunber,
person,

si ngul ar,
person, 1

type, actor, 1

gender,

female, 1

abstract, no, 1

i

sandra bul | ock

nunber,
person,

si ngul ar,
person, 1

type, actor, 1

gender,

female, 1

abstract, no, 1

i

richard
nunber,
person,

crenna
si ngul ar,
person, 1

type, actor, 1

gender,
abstract

i

male, 1
, ho, 1

robert de niro

nunber, singul ar,
person, person, 1
type, actor, 1
gender, male, 1
abstract, no, 1
ross kenp
nunber, singul ar
person, person, 1
type, actor, 1
gender, male, 1
abstract, no, 1
paul bown:
nunber, singul ar
person, person, 1
type, actor, 1
gender, male, 1

, no, 1

abstract

i

hunmphr ey bogart

nunber,

si ngul ar,

1

1

279

person, person, 1
type, actor, 1
gender, male, 1
abstract, no, 1

i

paul newran:

nunber, singular, 1
person, person, 1
type, actor, 1
gender, male, 1
abstract, no, 1

1

j ames bond
nunber, singular, 1
person, person, 1

type, protagonist, 1

gender, male, 1
abstract, no, 1

i

new yor k yankees
nunber, plural, 1
type, team 1
abstract, no, 1
gane, baseball, 1

boston red sox
nunber, plural, 1
type, team 1
abstract, no, 1
ganme, baseball, 1

chi cago white sox
nunber, plural, 1
type, team 1
abstract, no, 1
gane, baseball, 1

bost on bruins
nunber, plural, 1
type, team 1
abstract, no, 1
ganme, hockey, 1

chi cago bl ackhawks:
nunber, plural, 1
type, team 1
abstract, no, 1
gane, hockey, 1

| os angel es dodgers
nunber, plural, 1
type, team 1
abstract, no, 1
ganme, baseball, 1

ari zona di anondbacks

nunber, plural, 1
type, team 1
abstract, no, 1
gane, baseball, 1

san fransisco giants:

nunber, plural, 1
type, team 1
abstract, no, 1
ganme, baseball, 1

i

JL.R.D Woei-A-Jin, 2001

PH S

and:
nunber, plural, 2

1

nunber, plural, 2

first
listentry, 1, 1
nunber, singular, 2

second
listentry, 2, 1
nunber, singular, 2

third:
listentry, 3, 1
nunber, singular, 2

fourth
listentry, 4, 1
nunber, singular, 2

fifth:
listentry, 5, 1
nunber, singular, 2

sixth
listentry, 6, 1
nunber, singular, 2

sevent h:
listentry, 7, 1
nunber, singular, 2

ei ght h:
listentry, 8, 1
nunber, singular, 2

| ast:
listentry, -1, 1
nunber, singular, 2

1

the first from bel ow
listentry, -1, 1
nunber, singular, 1

the second from bel ow
listentry, -2, 1
nunber, singular, 1

ihe third from bel ow
listentry, -3, 1
nunber, singular, 1

the fourth from bel ow
listentry, -4, 1
nunber, singular, 1

the fifth from bel ow
listentry, -5, 1
nunber, singular, 1

the sixth from bel ow
listentry, -6, 1
nunber, singular, 1

the seventh from bel ow
listentry, -7, 1
nunber, singular, 1

280

the ei ghth from bel ow
listentry, -8, 1
nunber, singular, 1

1

the first one from bel ow
listentry, -1, 1
nunber, singular, 1

the second one from bel ow
listentry, -2, 1
nunber, singular, 1

the third one from bel ow
listentry, -3, 1
nunber, singular, 1

the fourth one from bel ow
listentry, -4, 1
nunber, singular, 1

fifth one from bel ow
listentry, -5, 1
nunber, singular, 1

the sixth one from bel ow
listentry, -6, 1
nunber, singular, 1

the seventh one from bel ow
listentry, -7, 1
nunber, singular, 1

the ei ghth one from bel ow
listentry, -8, 1
nunber, singular, 1

i

the first entry from bel ow
listentry, -1, 1
nunber, singular, 1

the second entry from bel ow
listentry, -2, 1
nunber, singular, 1

the third entry from bel ow
listentry, -3, 1
nunber, singular, 1

the fourth entry from bel ow
listentry, -4, 1
nunber, singular, 1

the fifth entry from bel ow
listentry, -5, 1
nunber, singular, 1

the sixth entry from bel ow
listentry, -6, 1
nunber, singular, 1

the seventh entry from bel ow
listentry, -7, 1
nunber, singular, 1

the eighth entry from bel ow
listentry, -8, 1
nunber, singular, 1

i

JL.R.D Woei-A-Jin, 2001

PH S

the first program from bel ow
listentry, -1, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no

the second program from bel ow.
listentry, -2, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

the third program from bel ow
listentry, -3, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

the fourth program from bel ow
listentry, -4, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

the fifth program from bel ow
listentry, -5, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

the sixth program from bel ow
listentry, -6, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

t he seventh program from bel ow
listentry, -7, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

the ei ghth program from bel ow
listentry, -8, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

i

the first programme from bel ow
listentry, -1, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

t he second programre from bel ow
listentry, -2, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

281

the third programe from bel ow
listentry, -3, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

the fourth progranme from bel ow
listentry, -4, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

the fifth programme from bel ow
listentry, -5, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

the sixth programme from bel ow
listentry, -6, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

the seventh progranme from bel ow.
listentry, -7, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

the ei ghth programre from bel ow
listentry, -8, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1

abstract, no, 1

i

the first title from bel ow
listentry, -1, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

the second title from bel ow
listentry, -2, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

the third title from bel ow
listentry, -3, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

the fourth title from bel ow
listentry, -4, 1

nunber, singular, 1

type, programe, 1

person, nonperson, 1
abstract, no, 1

JL.R.D Woei-A-Jin, 2001

PH S

ihe fifth title from bel ow ihe seventh thing from bel ow

listentry, -5, 1 listentry, -7, 1

nunber, singular, 1 nunber, singular, 1

type, programe, 1 type, programe, 1

person, nonperson, 1 person, nonperson, 1
abstract, no, 1 abstract, no, 1

the sixth title from bel ow the eighth thing from bel ow
listentry, -6, 1 listentry, -8, 1

nunber, singular, 1 nunber, singular, 1

type, programe, 1 type, programe, 1

person, nonperson, 1 person, nonperson, 1

abstract, no, 1 abstract, no, 1

1

the seventh title from bel ow.

listentry, -7, 1 the first novie from bel ow
nunber, singular, 1 listentry, -1, 1

type, programe, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1
abstract, no, 1 category, novie, 1

; person, nonperson, 1

the eighth title from bel ow abstract, no, 1

listentry, -8, 1 ;

nunber, singular, 1 the second novie from bel ow
type, programme, 1 listentry, -2, 1

person, nonperson, 1 nunber, singular, 1
abstract, no, 1 type, programe, 1

; category, novie, 1
person, nonperson, 1

the first thing from bel ow abstract, no, 1

listentry, -1, 1 ;

nunber, singular, 1 the third novie from bel ow
type, programme, 1 listentry, -3, 1

person, nonperson, 1 nunber, singular, 1
abstract, no, 1 type, programe, 1

; category, novie, 1

the second thing from bel ow person, nonperson, 1
listentry, -2, 1 abstract, no, 1

nunber, singular, 1 ;

type, programe, 1 the fourth novie from bel ow
person, nonperson, 1 listentry, -4, 1

abstract, no, 1 nunber, singular, 1

; type, programe, 1

the third thing from bel ow category, novie, 1
listentry, -3, 1 person, nonperson, 1
nunber, singular, 1 abstract, no, 1

type, programe, 1 ;

person, nonperson, 1 the fifth novie from bel ow
abstract, no, 1 listentry, -5, 1

; nunber, singular, 1

the fourth thing from bel ow type, programme, 1
listentry, -4, 1 category, novie, 1

nunber, singular, 1 person, nonperson, 1

type, programe, 1 abstract, no, 1

person, nonperson, 1 ;

abstract, no, 1 the sixth novie from bel ow
; listentry, -6, 1

the fifth thing from bel ow nunber, singular, 1
listentry, -5, 1 type, programe, 1

nunber, singular, 1 category, novie, 1

type, programe, 1 person, nonperson, 1
person, nonperson, 1 abstract, no, 1

abstract, no, 1 ;
; the seventh novie from bel ow.

the sixth thing from bel ow listentry, -7, 1
listentry, -6, 1 nunber, singular, 1
nunber, singular, 1 type, programme, 1
type, programe, 1 category, novie, 1
person, nonperson, 1 person, nonperson, 1
abstract, no, 1 abstract, no, 1

282 JL.R.D Woei-A-Jin, 2001

PH S

; person, nonperson, 1
the ei ghth novie from bel ow abstract, no, 1
listentry, -8, 1 ;

nunber, singular, 1

type, programe, 1 the first emm ssion from bel ow
category, novie, 1 listentry, -1, 1

person, nonperson, 1 nunber, singular, 1

abstract, no, 1 type, programe, 1

; category, emmission, 1
person, nonperson, 1

the first filmfrom bel ow abstract, no, 1

listentry, -1, 1 ;

nunber, singular, 1 t he second enmi ssion from bel ow.
type, programe, 1 listentry, -2, 1

category, novie, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1

abstract, no, 1 category, emmission, 1

; person, nonperson, 1

the second filmfrom bel ow abstract, no, 1

listentry, -2, 1 ;

nunber, singular, 1 the third enm ssion from bel ow
type, programe, 1 listentry, -3, 1

category, novie, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1

abstract, no, 1 category, enmssion, 1

; person, nonperson, 1

the third filmfrom bel ow abstract, no, 1

listentry, -3, 1 ;

nunber, singular, 1 the fourth enm ssion from bel ow
type, programme, 1 listentry, -4, 1

category, novie, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1

abstract, no, 1 category, enmssion, 1

; person, nonperson, 1

the fourth filmfrom bel ow abstract, no, 1

listentry, -4, 1 ;

nunber, singular, 1 the fifth emm ssion from bel ow
type, programme, 1 listentry, -5, 1

category, novie, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1

abstract, no, 1 category, enmssion, 1

; person, nonperson, 1

the fifth filmfrom bel ow abstract, no, 1

listentry, -5, 1 ;

nunber, singular, 1 the sixth enmm ssion from bel ow
type, programe, 1 listentry, -6, 1

category, novie, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1

abstract, no, 1 category, enmssion, 1

; person, nonperson, 1

the sixth filmfrom bel ow abstract, no, 1

listentry, -6, 1 ;

nunber, singular, 1 the seventh emmi ssion from bel ow
type, programme, 1 listentry, -7, 1

category, novie, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1

abstract, no, 1 category, enmssion, 1

; person, nonperson, 1

the seventh filmfrom bel ow abstract, no, 1

listentry, -7, 1 ;

nunber, singular, 1 the ei ghth enm ssion from bel ow
type, programe, 1 listentry, -8, 1

category, novie, 1 nunber, singular, 1

person, nonperson, 1 type, programe, 1

abstract, no, 1 category, enmssion, 1

; person, nonperson, 1

the eighth filmfrom bel ow abstract, no, 1

listentry, -8, 1 ;

nunber, singular, 1

type, programme, 1 the first serie from bel ow
category, novie, 1 listentry, -1, 1

283 JL.R.D Woei-A-Jin, 2001

PH S

nunber, singular, 1
type, programe, 1
category, serie, 1
person, nonperson, 1
abstract, no, 1

the second serie from bel ow
listentry, -2, 1

nunber, singular, 1

type, programe, 1
category, serie, 1

person, nonperson, 1
abstract, no, 1

the third serie from bel ow
listentry, -3, 1

nunber, singular, 1

type, programe, 1
category, serie, 1

person, nonperson, 1
abstract, no, 1

the fourth serie from bel ow
listentry, -4, 1

nunber, singular, 1

type, programe, 1
category, serie, 1

person, nonperson, 1
abstract, no, 1

the fifth serie from bel ow
listentry, -5, 1

nunber, singular, 1

type, programe, 1
category, serie, 1

person, nonperson, 1
abstract, no, 1

the sixth serie from bel ow
listentry, -6, 1

nunber, singular, 1

type, programe, 1
category, serie, 1

person, nonperson, 1
abstract, no, 1

the seventh serie from bel ow
listentry, -7, 1

nunber, singular, 1

type, programe, 1

category, serie, 1

person, nonperson, 1
abstract, no, 1

the eighth serie from bel ow
listentry, -8, 1

nunber, singular, 1

type, programe, 1
category, serie, 1

person, nonperson, 1
abstract, no, 1

1

the first serial from bel ow
listentry, -1, 1

nunber, singular, 1

type, programe, 1
category, serie, 1

person, nonperson, 1
abstract, no, 1

1

284

the second serial f
listentry, -2, 1

nunber,

singular, 1

type, programe, 1
category, serie, 1

per son,

nonperson,

abstract, no, 1

rom bel ow.

1

ihe third serial from bel ow
listentry, -3, 1

nunber,

singular, 1

type, programe, 1
category, serie, 1

per son,

nonperson,

abstract, no, 1

1

the fourth serial from bel ow
listentry, -4, 1

nunber,

singular, 1

type, programe, 1
category, serie, 1

per son,

nonperson,

abstract, no, 1

1

ihe fifth serial from bel ow
listentry, -5, 1

nunber,

singular, 1

type, programe, 1
category, serie, 1

per son,

nonperson,

abstract, no, 1

1

the sixth serial from bel ow
listentry, -6, 1

nunber,

singular, 1

type, programe, 1
category, serie, 1

per son,

nonperson,

abstract, no, 1

1

the seventh serial from bel ow
listentry, -7, 1

nunber,

singular, 1

type, programe, 1
category, serie, 1

per son,

nonperson,

abstract, no, 1

1

the eighth serial from bel ow
listentry, -8, 1

nunber,

singular, 1

type, programme, 1
category, serie, 1

person,

nonperson,

abstract, no, 1

i

one:
nunber,

singular, 1

abstract, no, 1

1

ones
nunber,

plural, 1

abstract, no, 1

1

novi e:

>pr ogr amme
) nunber, singul ar
)category, movie, 1

)type,

programme, 2

1

1

JL.R.D Woei-A-Jin, 2001

PH S

) person, nonperson, 1 ;
)abstract, no, 1 serials

>; nunber, plural, 1
nunber, singular, 1 category, series, 1
category, novie, 1 type, programe, 2
type, programme, 2 person, nonperson, 1
person, nonperson, 1 abstract, no, 1
abstract, no, 1 ;

; sport:

novi es: nunber, singular, 1
nunber, plural, 1 category, sport, 1
category, novie, 1 type, programe, 2
type, programme, 2 person, nonperson, 1
person, nonperson, 1 abstract, no, 1
abstract, no, 1 ;

; sports

enmi ssi on: nunber, plural, 1
nunber, singular, 1 category, sports, 1
category, enmssion, 1 type, progranmme, 2
type, programe, 2 person, nonperson, 1
person, nonperson, 1 abstract, no, 1
abstract, no, 1 ;

; ki ds:

enmi ssi ons: category, kids, 1
nunber, plural, 1 type, progranmme, 2
category, enmmssion, 1 person, nonperson, 1
type, programme, 2 abstract, no, 1
person, nonperson, 1 nunber, sigular, 1
abstract, no, 1 ;

; children
entertainnent: category, kids, 1
nunber, singular, 1 type, progranmme, 2
category, emmssion, 1 person, nonperson, 1
type, programe, 2 abstract, no, 1
person, nonperson, 1 nunber, sigular, 1

abstract, no, 1 ;
; children's

film category, kids, 1
nunber, singular, 1 type, programme, 2
category, novie, 1 person, nonperson, 1
type, programe, 2 abstract, no, 1
person, nonperson, 1 nunber, sigular, 1
abstract, no, 1 ;

; news:

filns: category, news, 2
nunber, plural, 1 type, programe, 1
category, novie, 1 person, nonperson, 1
type, programme, 2 abstract, no, 1
person, nonperson, 1 nunber, singular, 1
abstract, no, 1 ;

serie

nunber, singular, 1 title:

category, serie, 1 type, programme, 2
type, programe, 1 person, nonperson, 1
person, nonperson, 1 nunber, singular, 1
abstract, no, 1 abstract, no, 1
series: titles:

nunber, plural, 1 type, programme, 2
category, series, 1 person, nonperson, 1
type, programe, 1 nunber, plural, 1
person, nonperson, 1 abstract, no, 1
abstract, no, 1 ;

; pr ogr anme

serial: type, progranmme, 2
nunber, singular, 1 person, nonperson, 1
category, serie, 1 nunber, singular, 1
type, programe, 2 abstract, no, 1
person, nonperson, 1 ;

abstract, no, 1 progr anmes:

285 JL.R.D Woei-A-Jin, 2001

PH S

type, programme, 2
person, nonperson,
nunber, plural, 2
abstract, no, 1
program

type, programe, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1
progr ans:

type, programe, 1
person, nonperson,
nunber, plural, 1
abstract, no, 1

1

channel :

type, channel, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

channel s:

type, channel, 1
person, nonperson,
nunber, plural, 1
abstract, no, 1

station:

type, channel, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

stations:

type, channel, 1
person, nonperson,
nunber, plural, 1
abstract, no, 1

net:

type, channel, 1
person, nonperson,
nunber, singul ar,
abstract, no, 1

net s:

type, channel, 1
person, nonperson,
nunber, plural, 1
abstract, no, 1

i

bbc:

>pr ogr anme

) nunber, singul ar,
)type, programe,
) person, nonperson
)abstract, no, 1

>

type, channel, 1

channel, bbcl, 1

person, nonperson,
nunber, singul ar,
abstract, no, 1

Bbcl:
>pr ogr anme
) nunber, singul ar,

2

1

1

1
1

1

1
1

1

1
1

1

1
1

1

1

1
1

1

)type, programe,

2

) person, nonperson,

)abstract, no, 1

>;

type, channel, 1

channel, bbcl, 1

person, nonperson,
nunber, singul ar,
abstract, no, 1

bbc2:

>pr ogr anme

) nunber, singul ar,
)type, programe,

2

) per son, nonperson,

)abstract, no, 1

>;

type, channel, 1

channel, bbc2, 1

person, nonperson,
nunber, singul ar,
abstract, no, 1

bbc pri me:
>pr ogr anme
) nunber, singul ar,
)type, programe,

2

) per son, nonperson,

)abstract, no, 1
>

type, channel, 1

channel, bbc prine,

person, nonperson,
nunber, singul ar,
abstract, no, 1

bbc worl d:
>pr ogr anme
) nunber, singul ar,
)type, programme,

2

) per son, nonperson,

)Jabstract, no, 1
>,
type, channel, 1

channel , bbc world,

person, nonperson,
nunber, singul ar,
abstract, no, 1
cnn:

>pr ogr ane

) nunber, singul ar,
)type, programme,

2

) per son, nonperson,

)abstract, no, 1
>;

type, channel, 1
channel, cnn, 1
person, nonperson,
nunber, singular,
abstract, no, 1

channel 4:
>pr ogr anre
) nunber, singul ar,
)type, programme,

2

) person, nonperson,

)abstract, no, 1
>

type, channel, 1

channel , channel 4,

1
1

1

1
1

1

1

1

1
1

1

JL.R.D Woei-A-Jin, 2001

1

1

1

1

1

1

1

1
1
1

1

1

1

PH S Deift
person, nonperson, 1 type, channel, 1

nunber, singular, 1 channel, sky novie premere, 1
abstract, no, 1 person, nonperson, 1

; nunber, singular, 1

channel 5: abstract, no, 1

>pr ogr amme ;

) nunber, singular, 1 sky movi e

)type, programme, 2 type, channel, 1

) person, nonperson, 1 channel, sky novie premere, 1
)abstract, no, 1 person, nonperson, 1

>; nunber, singular, 1

type, channel, 1 abstract, no, 1

channel, channel 5, 1 ;
person, nonperson, 1

nunber, singular, 1 BBC1

abstract, no, 1 >pr ogr anme

;) nunber, singular, 1
di scovery:)type, programe, 2
>pr ogr anme) person, nonperson, 1
) nunber, singular, 1)abstract, no, 1
)type, programe, 2 >;

) person, nonperson, 1 type, channel, 1
)abstract, no, 1 channel , bbcl, 1

>; person, nonperson, 1
type, channel, 1 nunber, singular, 1
channel , discorvery channel, 1 abstract, no, 1
person, nonperson, 1 ;

nunber, singular, 1 BBC2

abstract, no, 1 >pr ogr anme

;) nunber, singular, 1
di scovery channel :)type, programe, 2
type, channel, 1) person, nonperson, 1
channel, discorvery channel, 1)abstract, no, 1
person, nonperson, 1 >;

nunber, singular, 1 type, channel, 1
abstract, no, 1 channel , bbc2, 1

; person, nonperson, 1
nmv: nunber, singular, 1
>pr ogr amme abstract, no, 1

) nunber, singular, 1 ;

)type, programme, 2 BBC_PRI MVE

) person, nonperson, 1 >pr ogr amme

)abstract, no, 1) nunber, singular, 1
>;)type, programme, 2
type, channel, 1) person, nonperson, 1
channel, ntv, 1)abstract, no, 1
person, nonperson, 1 >;

nunber, singular, 1 type, channel, 1
abstract, no, 1 channel, bbc prinme, 1
; person, nonperson, 1
sky ci nema: nunber, singular, 1
type, channel, 1 abstract, no, 1
channel, sky cinema, 1 ;

person, nonperson, 1 BBC_WORLD:

nunber, singular, 1 >pr ogr anme

abstract, no, 1)nunber, singular, 1
;)type, programme, 2
sky:) person, nonperson, 1
>pr ogr amre)abstract, no, 1

) nunber, singular, 1 >;

)type, programme, 2 type, channel, 1

) person, nonperson, 1 channel, bbc world, 1
)abstract, no, 1 person, nonperson, 1
>; nunber, singular, 1
type, channel, 1 abstract, no, 1
channel, sky cinema, 1 ;

person, nonperson, 1 CNN:

nunber, singular, 1 >pr ogr anme

abstract, no, 1) nunber, singular, 1
;)type, programme, 2
sky novie prem ere:) person, nonperson, 1

287 JL.R.D Woei-A-Jin, 2001

PH S Deift
)abstract, no, 1 abstract, no, 1

>,)

type, channel, 1 SKY_Cl NENVA:

channel, cnn, 1 type, channel, 1
person, nonperson, 1 channel, sky cinema, 1
nunber, singular, 1 person, nonperson, 1
abstract, no, 1 nunber, singular, 1

; abstract, no, 1
CHANNEL _4: ;

>pr ogr amre SKY

) nunber, singular, 1 >pr ogr amre

)type, programme, 2) nunber, singular, 1

) person, nonperson, 1)type, programe, 2
)abstract, no, 1) person, nonperson, 1
>;)abstract, no, 1

type, channel, 1 >;

channel, channel 4, 1 type, channel, 1
person, nonperson, 1 channel, sky cinema, 1
nunber, singular, 1 person, nonperson, 1
abstract, no, 1 nunber, singular, 1

; abstract, no, 1
CHANNEL _5: ;

>progr anme SKY_MOVI E_PREM ERE!

) nunber, singular, 1 type, channel, 1
)type, programme, 2 channel, sky novie prenmiere, 1
) person, nonperson, 1 person, nonperson, 1
)abstract, no, 1 nunber, singular, 1

>; abstract, no, 1
type, channel, 1 ;
channel, channel 5, 1

person, nonperson, 1 the last list:
nunber, singular, 1 nunber, singular, 1
abstract, no, 1 person, nonperson, 1
; type, list, 1

DI SCOVERY: abstract, no, 1
>progr anme recency, -1, 1

) nunber, singular, 1 ;

)type, programe, 2 the previous list:

) person, nonperson, 1 nunber, singular, 1
)abstract, no, 1 person, nonperson, 1
>; type, list, 1

type, channel, 1 abstract, no, 1
channel , discorvery channel, 1 recency, -1, 1
person, nonperson, 1 ;

nunber, singular, 1 the | ast schedul e
abstract, no, 1 nunber, singular, 1
; person, nonperson, 1
Dl SCOVERY_CHANNEL: type, list, 1

>pr ogr anme abstract, no, 1

) nunber, singular, 1 recency, -1, 1
)type, programe, 2 ;

) person, nonperson, 1 t he previous schedul e
)abstract, no, 1 nunber, singular, 1
>; person, nonperson, 1
type, channel, 1 type, list, 1
channel, discorvery channel, 1 abstract, no, 1
person, nonperson, 1 recency, -1, 1

nunber, singular, 1 ;
abstract, no, 1
; the last show Ii st

MTV: nunber, singular, 1
>pr ogr anme person, nonperson, 1
)nunber, singular, 1 type, list, 1

)type, programe, 2 abstract, no, 1

) person, nonperson, 1 list, watch, 1
)abstract, no, 1 recency, -0, 1

>,)

type, channel, 1 the previous show |ist
channel, ntv, 1 nunber, singular, 1
person, nonperson, 1 person, nonperson, 1
nunber, singular, 1 type, list, 1

288 JL.R.D Woei-A-Jin, 2001

PH S

abstract, no, 1
list, watch, 1
recency, -1, 1

the last watch |ist
nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1
list, watch, 1
recency, -0, 1

the previous watch |ist
nunber, singular, 1
person, nonperson, 1
type, list, 1

abstract, no, 1

list, watch, 1

recency, -1, 1

the | ast show schedul e:
nunber, singular, 1
person, nonperson, 1
type, list, 1

abstract, no, 1

list, watch, 1

recency, -0, 1

t he previous show schedul e
nunber, singular, 1
person, nonperson, 1

type, list, 1

abstract, no, 1

list, watch, 1

recency, -1, 1

the [ast watch schedul e:
nunber, singular, 1
person, nonperson, 1
type, list, 1

abstract, no, 1

list, watch, 1

recency, -0, 1

the previous watch schedul e

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1
list, watch, 1
recency, -1, 1

1

the last recording list
nunber, singular, 1
person, nonperson, 1
type, list, 1

abstract, no, 1

list, record, 1
recency, -0, 1

the previous recording |ist

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1
list, record, 1
recency, -1, 1

the last record |ist
nunber, singular, 1

289

person, nonperson, 1
type, list, 1
abstract, no, 1
list, record, 1
recency, -0, 1

the previous record |ist
nunber, singular, 1
person, nonperson, 1
type, list, 1

abstract, no, 1

list, record, 1

recency, -1, 1

the | ast recording schedul e
nunber, singular, 1

person, nonperson, 1

type, list, 1

abstract, no, 1

list, record, 1

recency, -0, 1

t he previous recordi ng schedul e

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1
list, record, 1
recency, -1, 1

the last record schedul e:
nunber, singular, 1
person, nonperson, 1
type, list, 1

abstract, no, 1

list, record, 1

recency, -0, 1

the previous record schedul e

nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1
list, record, 1
recency, -1, 1

the last ver |ist:
nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1
list, record, 1
recency, -0, 1

the previous vecr list:
nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1

list, record, 1
recency, -1, 1

the last vcr schedul e:
nunber, singular, 1
person, nonperson, 1
type, list, 1
abstract, no, 1

list, record, 1
recency, -0, 1

the previous vcr schedul e:

JL.R.D Woei-A-Jin, 2001

PH S

nunber, singular, 1 ;

person, nonperson, 1

type, list, 1 tinme

abstract, no, 1 type, start time, 1
list, record, 1 ;

recency, -1, 1

; start tine:

type, start time, 1

earlier: ;
relativetimeposition, mn, 1

type, programe, 0O end time

; type, end time, 1
later:

rel ativetineposition, max, 1 date

type, programe, O type, date, 1
act: day:

type, abstract, 1 type, date, 1

abstract, yes, 1 ;
person, abstract, 1

This file is used for constraints inposed by concepts nodifying anot her concept
f or mat

concept val uel
>prem ssesl constraint typel, prem ssesl constraint val uel

>prem ssesl constraint typen, prem ssesl constraint val uen
>

)Jconstraintl typel, constraintl val uel

)Jconstraintl typen, constraintl val uen
)i

>prem sses2 constraint typel, prem sses2 constraint val uel

>prem sses2 constraint typen, prem sses2 constraint val uen
>
)Jconstraint2 typel, constraint2 val uel

)constraint2 typen, constraint2 val uen
)i

1

HHEHFHHFHHFFHEHFHHRFEHRREFRF SR

note: a list automaticaly nodifies a reference, in that it will be used to search for
the referent

#
record: >person, nonperson
>person, nonperson >abstract, no
>abstract, no >nunber, plura
>nunber, singul ar >;
>;)type, programes, 1
)type, programe, 2);
>person, nonperson
>abstract, no vi deo
>nunber, plural >person, nonperson
>; >abstract, no
)type, programmes, 2 >nunber, singul ar

. -

;')iype, programe, 1

1

t ape: >person, nonperson
>person, nonperson >abstract, no
>abstract, no >nunber, plura
>nunber, singular >;

>;)type, programes, 1

)iype, programme, 1)

i 1

290 JL.R.D Woei-A-Jin, 2001

PH S

directed

>person, person
>abstract, no
>nunber, singul ar
>
)type, director, 1
>person, person
>abstract, no
>nunber, plura

>;

)Jtype, directors, 1
)i

>person, nonperson
>abstract, no
>nunber, singular

>
)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>;
)type, programes, 1

i

directs

>person, person
>abstract, no
>nunber, singul ar
>;

)type, director, 1
>person, person
>abstract, no
>nunber, plura

>;
)type, directors, 1
)

>person, nonperson
>abstract, no
>nunber, singul ar

>;

)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>;

)type, programmes, 1

i

acted

>person, person
>abstract, no
>nunber, singular
>;

)type, actor, 1

>person, person
>abstract, no
>nunber, plura

>;

)type, actors, 1
>person, nonperson
>abstract, no
>nunber, singular

291

>

)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>;
)type, programes, 1

1

act s:

>person, person
>abstract, no
>nunber, singul ar
>;

)type, actor, 1
>person, person
>abstract, no
>nunber, plura

>;

)type, actors, 1
)

>person, nonperson
>abstract, no
>nunber, singular
>;
)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>
type, programes, 1

)
)i

starred

>person, person
>abstract, no
>nunber, singular
>;

)type, actor, 1

>person, person
>abstract, no
>nunber, plura

>,

)type, actors, 1
>person, nonperson
>abstract, no
>nunber, singul ar

>,

)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>,

)type, programes, 1

i

stars:

>person, person
>abstract, no
>nunber, singul ar
>,

)type, actor, 1

JL.R.D Woei-A-Jin, 2001

PH S

)i

>person, person
>abstract, no
>nunber, plura

>v

)type, actors, 1
)

>person, nonperson

>abstract, no
>nunber, singular
>;
)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>

)type, programmes, 1

i

pl ayed

>person, person
>abstract, no
>nunber, singul ar
>

)type, actor, 1
>person, person
>abstract, no
>nunber, plura
>

)type, actors, 1
>person, nonperson
>abstract, no
>nunber, singul ar

i

format:
concept typel

constraint typel, constraint valuel

constraint typen, constraint val uen

concept typen

HHHFEHHFEEHEER

#don' t
yes:
person, yes
type, yes
abstract, yes

1

refer to yes

#don' t
dumy:
person, dummy
type, dummy
abstract, dummy

i

refer to dummy

#don't refer to contents
contents

type, contents

person, contents
abstract, contents

1

292

>

)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>;
)type, programes, 1

1

pl ays:

>person, person
>abstract, no
>nunber, singul ar
>

)type, actor, 1
>person, person
>abstract, no

>nunber, plura

>)

)type, actors, 1
)

>person, nonperson

>abstract, no
>nunber, singular
>;
)type, programe, 1
>person, nonperson
>abstract, no
>nunber, plura

>;

)type, programes, 1

i

This file is used for type constraint detection

actor:

person, person
type, actor
abstract, no

director
person, person
type, director
abstract, no

list:

person, nonperson
type, list
abstract, no
list, genera

category list
person, nonperson
type, list
abstract, no
list, category

JL.R.D Woei-A-Jin, 2001

PH S

start tine list:
person, nonperson
type, list
abstract, no
list, start tine

end tinme |ist
person, nonperson
type, list
abstract, no
list, end tine

channel i st
person, nonperson
type, list
abstract, no
list, channel
date |ist:

person, nonperson
type, list
abstract, no
list, date

wat ch i st

person, nonperson
type, list

list, watch

abstract, no

record |ist
person, nonperson
type, list

list, record
abstract, no

i nfo:

type, info
person, nonperson
abstract, no

pr ogr anme
type, progranmre
person, nonperson
abstract, no

channel

type, channe
person, nonperson
abstract, no

dat e:

type, date
person, abstract
abstract, yes

gi ven_date

type, date
person, abstract
abstract, yes

comand

293

type, command
person, abstract
abstract, yes

t opi c:

type, topic
person, nonperson
abstract, no

title:

type, title
person, nonperson
abstract, no

start tine:

type, tine
person, nonperson
abstract, no

end tinme

type, tine
person, nonperson
abstract, no

start_tinme:

type, tine
person, nonperson
abstract, no

end_ti me:

type, tine
person, nonperson
abstract, no

cat egory:

type, category
person, nonperson
abstract, no

time

type, tine
person, nonperson
abstract, no

duration_tinme
type, tine
person, nonperson
abstract, no

time_duration
type, tine
person, nonperson
abstract, no

info_command_title:
type, command
person, abstract
abstract, yes

date_and_ti ne:
type, m xed
person, abstract
abstract, yes

JL.R.D Woei-A-Jin, 2001

&
PHI S U Deitt

Appendix |

Literature Survey

Reference Resolution

A literature survey

Dimitri Woei-A-Jin
November 2000

TU DELFT PH S

294 JL.R.D Woei-A-Jin, 2001

	Abstract
	Introduction
	The Problem Definition
	The SPICE-EPG System
	Motivation for the SPICE-EPG
	SPICE-EPG Design Goals
	Spontaneous speech input
	Direct access to content
	User-driven interaction
	Cooperative dialogue

	Features of SPICE-EPG
	The SPICE-EPG Architecture
	The Automated Speech Recognizer.
	The Natural Language Understanding Module
	The Multimodal Integration Module
	The Context Interpretation module
	The Dialogue Manager
	The Media Planner
	The Language Generation Module
	The Text-to-Speech Module

	An Introduction to References
	References in Natural Language
	Reference to an entity that was introduced into the discourse via a noun phrase.
	Reference to a subset of a group that was introduced into the discourse via a noun phrase
	Reference to a superset of individual entities that were introduced into the discourse via noun phrases.
	Reference to a general class of entities introduced into the discourse as a specific entity via a noun phrase.
	Reference to a property of an entity that was introduced into the discourse via a noun phrase.
	Reference to an event type.
	Reference to an action type.
	Reference to a property of an action.
	Reference to a fact or proposition.
	Reference to the general topic of the conversation.
	Reference to world/common knowledge not mentioned in the discourse.
	Reference to nothing at all.
	Reference to an entity from another modality.

	The Evaluation of Performance

	State of the Art in Anaphora Resolution
	Suitable Grammars for Anaphora Resolution
	Government and Binding
	Co-reference constraints in Government and Binding.

	Discourse Representation Theory
	ParseTalk
	Binding constraints in ParseTalk

	Tagger as substitute for parser.
	Binding constraints using the tagger

	Anaphora Resolution Algorithms
	A simple model of anaphora resolution based on history lists
	The Centering Model
	Technical Details of the Centering Model
	Interaction of Centering Preferences with Intrasentential Interpretations
	Solutions for Centering Ambiguity

	Never look back: An alternative to Centering
	Resolution of abstract entities

	Heuristic Algorithms
	Training a decision tree
	Stochastic model for heuristics
	Experimenting with different configurations of rules

	Summary of resolution methods

	Introduction to Ellipsis Resolution

	The Anaphora Resolution Module in the SPICE-EPG
	Requirements for the module: Must-haves and Should-Haves
	Must-haves
	Reference resolution
	Operational within SPICE
	Operational in real-time
	Not dependent on extensive lexicon

	Should-haves
	Robustness
	Adaptable for other applications
	Parameterized settings
	No increase in system requirements
	Little increase in processing time
	Written in C++

	Narrowing the scope
	Solving references within the constraints
	Ellipsis
	References to an entity from another modality
	References to a superset of individual entities from another modality
	References to a property of an entity from another modality
	References to an entity that was introduced into the discourse via a noun phrase
	References to world knowledge not mentioned in the discourse
	References to a fact
	References to nothing at all

	The narrowed down scope
	Must haves
	Should haves

	Choosing the reference resolution method
	Grammar requirements for the solution
	Recognition of references
	Recognition of objects which can be referred to
	Recognition of phrases adding contextual constraints
	Recognition of expletives
	Adaptation of the SPICE-EPG Grammar
	Use of methods to compensate lack of syntactic information
	Summary of grammar requirements

	General outline of the algorithm
	System Design
	Defining the objects
	processing display data
	processing user utterance with a reference to a concept in focus (pronoun)
	processing user utterance with a reference to a concept in focus (demonstrative)
	processing user utterance with a reference to a concept out of focus (definite description)
	processing user utterance with a reference to a concept out of focus (one anaphora)
	processing user utterance with a compound reference (definite description)
	processing user utterance with a reference to a deictic concept
	Processing user utterance without a reference

	Overview of the classes
	Main Interface
	Display Reader
	Main Engine
	Update Module
	Salience List
	History List
	Grouping Module
	Deixis filter
	Reference Detection & Classification Module
	Constraint Detection Module
	Pronoun Resolution Module
	Demonstrative Resolution Module
	Definite Description Resolution Module
	One Anaphora Resolution module

	Summary
	
	Must haves
	Should haves

	Evaluation
	Evaluation method
	Choice of the corpus
	Errors and problems encountered during testing
	Conflicting constraints
	Constraints differ for different concept types
	Display contains less than actual data
	Grammar conflicts with content description
	Misassignment of constraints
	Empty concept graph
	Misrecognition causing to look for lists
	Concepts overriding reference concepts
	Misrecognition of pronouns
	Non-recognition of articles
	Two different input streams

	Perfomance of the reference resolution module
	Test results
	Offline evaluation
	Online evaluation
	Reference resolved to nothing

	Conclusion
	Finding a method to compensate for lack of syntactic data
	Implementation of the proposed model
	Test results.

	Recommendations
	Filter out non-filler concepts which make no sense
	Relax the grammar for reference recognition
	Use a second parser to allow more complex concepts
	Determine references for all hypothesis
	Penalize hypotheses with unresolved reference
	Find a way to process references to content description
	Find a way to tag content description and add the tagged information to the concept
	Use a filter to determine when to skip the salience list
	Solve one anaphora using the salience list

	Bibliography
	Appendix A
	Examples of references to be solved in the ideal case
	Appendix B
	Grammar to recognize reference forms
	Appendix C
	Phrases with expletives
	Appendix D
	System tasks and information requirements based on examples
	Appendix E
	Source Code
	Main Interface
	Display Reader
	Header file
	Implementation File

	Main Engine
	Header file
	Implementation file

	Update Module
	Header file
	Implementation file

	Salience List
	Header file
	Implementation file

	History List
	Header file
	Implementation file

	Grouping Module
	Header file
	Implementation file

	Deixis filter
	Header file
	Implementation file

	Reference Detection & Classification Module
	Header file
	Implementation file

	Constraint Detection Module
	Header file
	Implementation file

	Pronoun Resolution Module
	Header file
	Implementation file

	Definite Description Resolution Module
	Header file
	Implementation file

	Demonstrative Resolution Module
	Header file
	Implementation file

	One Anaphora Resolution Module
	Header file
	Implementation file

	Concept Type Filter
	Header file
	Implementation file

	Concept
	Header file
	Implementation file

	Constraint
	Header file
	Implementation file

	Appendix F
	Usability test tasks
	Appendix G
	Test Results
	
	Offline tests
	Online tests

	Appendix H
	Constraints
	Appendix I
	Literature Survey

