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ABSTRACT 
 
State of the art automatic speech recognition systems reach acceptable levels of performance 
when used under laboratory conditions. In more realistic noisy environments however, their 
performance rapidly degrades. A possible solution to this problem lies in the use of multiple 
modalities for speech recognition; the audio signal is augmented by for example lipreading signals 
or information on facial expressions. 
Open question is how and at what point during the recognition process to integrate multiple 
modalities in a speech recognizer. 
This report describes the development of a large vocabulary speaker independent continuous 
speech recognizer for the Dutch language using Hidden Markov Toolkit and the Polyphone 
database of recorded Dutch speech. This recognizer can be used as a starting point for a 
multimodal recognizer based on multimodal Hidden Markov models. Furthermore a number of 
models for multimodal recognition are presented and a number of experiments on the 
incorporation of other modalities in the speech recognizer are described and tested. 
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1 INTRODUCTION 
 
Speech is the most natural means of communication between humans; it can be done without 
any tools or any explicit education. It is one of the first skills we learn to use. Babies quickly learn 
how to react to the voice of their mother and they even quicker learn to produce noise when they 
are in need. When speaking with somebody, one does not have to focus on this person; one can 
look in a different direction or even perform some other task while communicating. 
Speech is also the most important way of communicating. It has always been; before mankind 
invented writing, the spoken word was the only way of passing knowledge. Ancient poets like 
Homer and Ovidius originally wrote their still famous epic poems for recitation not for reading. 
Despite all our novel ways of communicating, like e-mail and chat, speech is still the number one 
means of communication, a fact once again proven by the immense popularity of cellular phones.  
 
So it is only logical that machine interface designers in their quest for a natural man-machine 
interface have turned to automatic speech recognition and speech production as one of the most 
promising interfaces. In the last 30 years researchers from areas like psychology, linguistics, 
electrical engineering and computer science have worked on this subject. While the first systems 
could only differentiate between 'yes' and 'no', currently, some professional tools for automatic 
speech recognition (ASR) are commercially available from leading companies like IBM, Lernhout 
& Hauspie and Philips.  
 
The Holy Grail of speech recognition is a speaker independent system that recognizes in real-
time natural, fluent, spontaneous, continuous speech and which is capable of telling speech and 
background noise apart. The current generation of systems is nowhere near this ideal. The state 
of the art in the field of speech recognition is defined by two types of systems. In the first place 
dictation systems that are capable of automatically transcribing dictated texts. These systems rely 
heavily on the fact that written texts adhere strictly to the rules of grammar and they do not allow 
for hesitations or mispronunciations. The second type of recognition system is the category of 
command recognizing and dialog based systems, like telephone inquiry applications that are 
commercially available now. In these systems the interaction between human and machine is 
guided by a dialog and at any point in time only a limited vocabulary is used. These systems 
usually try to spot some keywords from this vocabulary instead of trying to recognize complete 
sentences. Both types of systems perform well as long as they are used exactly by the book in a 
silent environment. However, performance rapidly degrades in (more realistic) noisy 
environments. 
 
Humans seem to recognize speech not only by listening, but also by using clues from other 
modalities, like gestures, facial expressions and lip movements. This becomes especially evident 
in noisy environments where people tend to look at the face of a speaker during a conversation. 
An open question is whether it would be possible to create better and more robust speech 
recognizing systems by integrating information from other modalities in the recognition system. 
Or more general how to build multimodal automatic communication systems. 
 
In the group knowledge based systems at Delft University of Technology there is a project 
running on the development of multimodal interfaces. A number of systems are being developed: 
 
• A system for automatic recognition of facial expressions. 
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• A system for automatic generation of facial expressions. 
• A system for automatic lipreading. 
 
To integrate unimodal systems, it's necessary to have unimodal systems. The group invested 
much research in Dialog Management but was lacking an ASR-system for the Dutch Language. 
Up to now an executable of Philips Speech Mania has been used, which is not very satisfactory 
since its source cannot be changed. 
There was a need to develop a speech recognizer and to find a way to integrate this recognizer 
with other modalities. The goal of the current thesis project is: 
 
• To conduct a literature study on automatic speech recognition in general and to determine 

how to develop an ASR-engine. 
• To study HTK (Hidden Markov Toolkit), a toolkit that supports the development of 

automatic recognition systems based on Hidden Markov Models. It had to be determined 
how the toolkit works and how it can be utilized in the development of an ASR-system. 

• To develop an ASR-engine, using HTK that can be used for future projects. 
• To develop a mixed Hidden Markov model for multimodal recognition. 
• To test the mixed HMM. 
 
This report describes the results of the master thesis project. The second chapter describes 
speech recognition in general. Chapter three gives an overview of the Hidden Markov toolkit that 
was used to develop an automatic speech recognition system. The development of this speech 
recognizer is described in chapter four. 
Chapter five describes the theory behind the integration of unimodal recognition systems in a 
multimodal recognition system. It presents a number of possible integration techniques. Chapter 
six describes a number of experiments that were conducted using the multimodal models.  
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Part I 

2 SPEECH RECOGNITION 
 

This chapter describes the theory of speech recognition. It starts with a description of the difficulties in recognizing speech. 
Next an overview of the entire process is given and the subsystems of a recognizer are identified. Each of these components 
is then described. Especially the Hidden Markov Model, which constitutes the core of the recognition process, is described 
in detail. 

 
2.1 INTRODUCTION 
 
Why is automatic speech recognition such a difficult problem that, after 30 years of research, it is 
still not solved? At first sight it may seem just a matter of classifying sounds using some typical 
characteristics of these sounds. This approach, called the acoustic approach was indeed tried, but 
only with limited results. Finding explicit characteristics of speech sounds that suffice to classify 
them proved extremely hard. 
A second approach to recognizing, that does not directly rely on a set of characteristics is the 
statistical pattern recognition approach, which has already been successfully been applied to 
problems like the automatic recognition of handwriting. The pattern recognition approach did 
prove to be fruitful, but only after advanced models were developed.  
 

a)               b)  
Figure 2.1 - The word ball spoken by two different speakers: (a) female and (b) male 

 
Figure 2.1 shows why the simple pattern recognition approach of classifying signals with a similar 
shape as the same sound, is not powerful enough to perform speech recognition. The figures 
show the word ball spoken by two different persons. The upper half of the figure shows the raw 
speech waveform, the lower half shows processed versions of the signal that highlight its 
formants, which are characteristic for a sound. So speech is person dependent, which is no 
surprise, as different voices sound different. Figure 2.2 shows the phoneme /e/ spoken by the 
same person in a number of words.  
 

a)  b)  c)  
Figure 2.2 - The phoneme /e/ in three different contexts: (a) let’s, (b) phonetic and (c) sentence. 
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These pictures look very different. In this case actually context is involved, the exact sound of a 
speech unit, called a phoneme, depends on its neighboring phonemes. The exact shape of the 
speech signals also depends on the speed with which is spoken and the mood and the temper of 
the speaker. 
 
2.2 FUNDAMENTALS OF SPEECH RECOGNITION 

2.2.1 Components of a speech recognizer 
 
Figure 2.3 schematically shows the speech recognition problem: someone produces some speech 
and we want to have a system (the box in the figure) that automatically translates this speech, a 
pressure waveform that is, to a written transcription. 

 
Figure 2.3 - overview of the speech recognition problem 

 
It is possible, after some preprocessing, to represent the speech signal as a sequence of 
observation symbols O = o1o2…oT that belong to a set O of symbols. If, in addition, we have a 
vocabulary V of all the words 1, ,i i Vw ≤ ≤ that can be uttered. Then mathematically the speech 
recognition problem comes down to finding the word sequence Ŵ having the highest probability 
of being spoken, given the acoustic evidence O, thus we want to solve 
 
 ˆ arg max ( )P=

W
W W O   (2.1) 

 
Unfortunately, this equation is not directly computable since the number of possible observation 
sequences is sheer inexhaustible, unless there is some limit on the duration of the utterances and 
there is a limited number of observation symbols. But Bayes formula gives: 
 

 
( ) ( )

( )
( )

P P
P

P
=

W O W
W O

O
 (2.2) 
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Where ( ),P W called the language model, is the probability that the word string W will be uttered 
and ( )P O W  is the probability that when word string W is uttered the acoustic evidence O will 
be observed, the latter is called the acoustic model. The probability ( )P O  is usually not known 
but for a given utterance it is of course just a normalizing constant and can be ignored. Thus to 
find a solution to formula (2.1) we have to find a solution to: 
 
 ˆ arg max ( ) ( )P P=

W
W W O W  (2.3) 

 
Consequently, a speech recognizer consists of three components: a preprocessing part that 
translates the speech signal into a sequence of observation symbols, a language model that tells us 
how likely a certain word string is to occur and an acoustic model that tells us how a word string 
is likely to be pronounced. In the next sections these three subsystems will be described. 

2.2.2 Acoustic processing 
 
The first step in speech recognizer design is to decide what acoustic data O will be observed. 
Therefore a front end is needed that will transform the original waveform into a sequence of 
symbols oi with which the recognizer will deal. Strictly speaking this is not necessary, speech 
recognition could be done by performing pattern recognition algorithms directly on the speech 
signal, as this signal contains all information. But as mentioned before there are many possible 
variations in a speech signal and visually similar waveforms do not necessarily indicate 
perceptually similar sounds. Therefore some preprocessing may be useful to reduce the amount 
of noise introduced by the environment and the recording hardware and to reduce correlation in 
the input signal and to extract relevant features. 
Many different ways to extract meaningful features have been developed, some based on acoustic 
concepts or knowledge of the human vocal tract and psychophysical knowledge of the human 
perception. Much work is done in the field of signal processing; the most important methods 
here are Linear Predictive Coding and Mel Frequency Cepstral Analysis. An impression of these 
two techniques is given below. 

 
Figure 2.4 - feature extraction 



 

 
 
 
 
 

10

Figure 2.4 illustrates the overall feature extraction process. A sampled waveform is converted into 
a sequence of parameter vectors at a certain frame rate. A framerate of 10 ms is usually taken, 
because a speech signal is assumed to be stationary for about 10 ms. The segment of a waveform 
that is used to determine each parameter vector is referred to as a window. The window size and 
the frame rate are independent. Normally, the window size will be larger than the frame rate, so 
that successive windows will overlap to make up for discontinuity in the signal introduced by the 
discrete sampling of the signal. 

2.2.2.1 Linear predictive coding 
 
Linear predictive coding is one of the most useful methods for encoding good quality speech at a 
low bit rate. LPC starts with the assumption that the speech signal is produced by a buzzer at the 
end of a tube. The space between the vocal chords, called the glottis, produces the buzz, which is 
characterized by its intensity (loudness) and frequency, which determines the pitch of the sound. 
The vocal tract, that is the combination of the throat and the mouth, forms a tube, which is 
characterized by its resonances, called formants.  
LPC analyzes the speech signal frames by estimating the formants, removing their effects from 
the speech signal, and estimating the intensity and frequency of the remaining buzz. The process 
of removing the formants is called inverse filtering, and the remaining signal is called the residue. 
The basic problem of LPC is to determine the formants from the speech signal. The solution is a 
difference equation, called a linear predictor, which expresses each sample of the signal as a linear 
combination of previous samples. The coefficients of the difference equation, the prediction 
coefficients, characterize the formants. These coefficients are estimated by minimizing the mean-
square error between the predicted signal and the actual signal. 

2.2.2.2 Mel-frequency cepstral analysis 
 
One of the more common techniques of studying a speech signal is via the power spectrum. The 
power spectrum of a speech signal describes the frequency content of the signal over time. The 
first step towards computing the power spectrum of the speech signal is to perform a Discrete 
Fourier Transform (DFT). A DFT computes the frequency information of the equivalent time 
domain signal. Since a speech signal contains only real point values, we can make use of this fact 
and use a real-point Fast Fourier Transform (FFT) for increased efficiency. The resulting output 
contains both the magnitude and phase information of the original time domain signal.  
Psychophysical studies have shown that human perception of the frequency content of sounds, 
either for pure tones or for speech signals, does not follow a linear scale. This research has led to 
the idea of defining subjective pitch of pure tones. Thus for each tone with an actual frequency f, 
measured in Hz, a subjective pitch is measured on a scale called ''Mel'' scale. As a reference point, 
the pitch of a 1kHz tone, 40 dB above the perceptual hearing threshold, is defined as 1000 Mels. 
Other subjective pitch values are obtained by adjusting the frequency of a tone such that it is half 
or twice the perceived pitch of a reference tone with a known Mel frequency. Feature extraction 
based on Mel Frequency Cepstral Coefficients (MFCC) utilizes the power spectrum of which 
center frequency and bandwidth are scaled by subjective measure, Mel. The cepstral coefficients 
are then computed by taking the logarithm of the power spectrum and transforming this log 
spectrum to the cepstral domain using an inverse Discrete Fourier Transform. This signal can be 
further decorrelated by taking the cosine of the signal. Usually, first and second derivatives are 
taken from the cepstral coefficients and added to the speech vector. 
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2.2.3 Language modeling 
 
Formula 2.3 requires that we are able to compute for every word string W the a priori probability 

( )P W that the speaker wishes to utter W. As W is a string, these probabilities can be decomposed 
as follows: 

 1 2 1
1

( ) ( , ,..., )
m

i i
i

P P w w w w −
=

=∏W  (2.4) 

 
Where 1 2 1( ), ,...,i iP w w w w −  is the probability that iw  will be spoken given that the words 

1 2 1... iw w w −  were said previously. The choice of iw thus depends on the entire history of the 
discourse sofar. In reality it is impossible to estimate these probabilities even for moderate values 
of i as most of these histories would be unique. For a vocabulary of size |V| there are |V|i-1 
different histories. for example even for a relatively small vocabulary of 1000 words and i=3 there 
would be one billion different histories. The number of probabilities to compute can be reduced 
drastically by considering only limited histories, for example using only the last three words, will 
effectively map the histories to a limited number of equivalence classes. Doing so will preserve 
most of the model's ability to predict the next word, as most words do not really depend on a 
large history. Besides, as every language has a grammar, which sets rules to the word order, for a 
large vocabulary most of the possible word strings will never occur. 
A simple but effective approach is the bigram, this model uses only one step histories. 
 
 ....1 2 1 1( ) ( ) ( ) ( )m mP P w P w w P w w −=W   (2.5) 
 
It is now easy to estimate the probabilities 1( )i iP w w − simply by counting the number of times 
each word pair occurs in a representative corpus of strings. One problem with this procedure is 
that the training corpus might be missing some words, which do occur in the vocabulary the 
recognizer uses. To these words would be assigned an estimated probability of zero. Therefore, 
usually a small portion of the probability distribution is reserved for words out of the vocabulary 
that do not occur in the training corpus. 
Most present-day speech recognizers take it one step further and use the trigram language model 
that has two word history equivalence classes. This language model is surprisingly powerful but 
requires large amounts of training data to provide values for all probabilities 1 2( , )i i iP w w w− −  as 
can be seen in the above example. Furthermore the model tends to get very large as all the words 
have to be listed and for each word all possible two-word histories must be provided. 
To circumvent these problems some extensions to the basic statistical language models are 
possible. To make up for data sparseness the trigram frequencies can be smoothed by 
interpolating trigram, bigram and unigram relative frequencies. 
 
 , 1 2 1 3 1 21 2( ) ( ) ( ) ( , )i i i i i i ii iP w w w f w f w w f w w wλ λ λ− − −− − = + +  (2.6) 

 
Where the weights satisfy λ1+λ2+λ3 = 1. 
Another, similar method to make up for the lack of training data used in many speech 
recognizers is backing-off. Arguing that if there is enough evidence the trigram frequency is a 
good estimate for the probability, if not the system should back-off and rely on bigrams and if 
there is not enough evidence even for those, unigrams should be used. Of course it is possible to 
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create any N-gram, N > 3, but with it comes a combinatorial increase in model complexity and 
size and an unsatisfiable hunger for training data. 
The big advantage of statistical language models is that they are relatively simple to obtain. All 
that is needed are some representative texts and for large vocabulary recognition tasks these 
models may be the only realistic option. However, creation of a representative corpus of text may 
be a difficult and time-consuming effort. If there is an existing human-human interface for the 
area of interest a vocabulary can be created using the transcriptions of these dialogs. If a new 
ASR application has to be designed for which there is no human counterpart we can simulate 
speech recognizing systems by using Wizard of Oz studies to create a corpus. For smaller, more 
specialized tasks or dialogs constraints on the form of the utterances can be found, that is a 
grammar can be defined. Within this grammar we can still use statistics to attach probabilities to 
the different paths through the grammar. These grammars offer a powerful language model 
because of the constraints they impose. However, it is important to note that there is no need for 
these grammars to be completely accurate. They can be open to counter examples, because their 
purpose is to distribute probability among different futures and not exact analysis of the 
utterances (as would be the case in for example speech synthesis). In the example below a 
grammar for a simple telebanking application, that can be used to manage one's bank account 
and make financial transactions by telephone, is defined, using EBNF notation.   

 
The appl
 
"Goede
opnemen

 
"Ik wil
twee dr
daytime ::= 'morgen' | 'middag' | 'avond'
greeting ::= 'goede' daytime
digit ::= 'een' | 'twee' | 'drie' | 'vier' | 'vijf' | 'zes' | 'zeven'

|'acht' | 'negen'
digit0 ::= 'nul' | digit
number ::= digit0 digit0 digit0 digit0 digit0 digit0 digit0 digit0
tenfolds ::= 'twintig' | 'dertig' | 'veertig' | 'vijftig' | 'zestig' |

'zeventig' | 'tachtig' | 'negentig'
hondreds ::= [ digit ] 'honderd'
amount ::= [hondreds] [ digit 'en' ] tenfolds
please ::= 'alstublieft' | 'alstjeblieft' | 'graag' | 'willen'
want ::= 'ik' ('wil' | 'wilde' | 'zou graag')
mine ::= ['van'] 'mijn'
account ::= ['prive'] ['bank'] rekening
specific ::= [mine] account [['nummer'] number]
money ::= ( ['wat'] 'geld' ) | (amount ('guldens' | 'piek'))

open ::= 'een nieuwe' account 'openen' [please]
close ::= specific 'sluiten'
deposit ::= money ( ( 'op' specific 'storten' ) |

( 'storten op' specific) ) ;
withdrawal ::= money ( ( 'van' specific 'opnemen' ) |

('opnemen van' specific) )
transfer ::= money 'van' specifict ['naar' specific] 'overmaken'
info ::= ( 'saldo van' specific 'opvragen') |

('naar het saldo van' specific 'informeren')
command ::= [greeting] want ( open | close | deposit | withdrawal |

transfer | info) [please]
Figure 2.5 - a EBNF grammar for a telebanking application 

ication is intended to recognize commands like: 

morgen, ik zou graag drieenveertig guldens van mijn priverekening
, alstublieft"

de honderdzevenentwintig guldens overmaken naar bankrekening een
ie vier vijf zes zeven acht"
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But a closer inspection of the grammar reveals that it also allows for sentences like: 
 
"Goede middag, ik graag nul piek op van mijn rekening storten, graag"
 
that do not conform to the rules of Dutch grammar. Semantically this sentence does not make 
much sense either. But the point is that this sentence is highly unlikely ever to be uttered, so there 
is no need to make the grammar overly complicated just to prevent this sentence from occurring. 
And actually, it is not even desirable, as spoken language does not adhere to grammar rules per 
se. Making them too restrictive may lead to even bigger problems, because the system then starts 
recognizing things that were never said. For example, in the telebanking application the following 
sentence is not unlikely to be spoken: 
 
"Goede morgen, uh…, goede middag, ik zou graag drieentwintig, nee toch maar
vijftig gulden naar de bank rekening van de TU Delft over willen maken."

 
Because of the hesitations and some unknown words the above grammar cannot recognize this 
sentence. It will, however, recognize parts of the sentence and may for example conclude that the 
caller wants to transfer twenty-three guilders to some bank account. It will then try to fit the 
sounds in TU Delft to some account number. Thus, the judgment whether a sentence makes 
sense is better left up to the application that uses the speech interface. 

2.2.4 Acoustic modeling 
The acoustic model determines what sounds will be produced when a given string of words is 
uttered. Thus for all possible combinations of word strings W and observation sequences O the 
probability ( )P O W must be available. This number of combinations is just too large to permit a 
lookup, in the case of continuous speech its even infinite. It follows that these probabilities must 
be computed on the fly, so a statistical acoustic model of the speakers' interaction with the 
recognizer is needed. The total process modeled involves the way the speaker pronounces the 
words of W, the ambience (room) noise, the microphone placement and characteristics and the 
acoustic processing performed by the signal processing front end. The most frequently used 
model these days is the Hidden Markov model but other models are possible, for instance 
artificial neural networks. The next paragraph describes the Hidden Markov model in detail. 
 
2.3 HIDDEN MARKOV MODELS 

2.3.1 Introduction 
The Hidden Markov model (HMM) is a very powerful mathematical tool for modeling time 
series. It provides efficient algorithms for state and parameter estimation, and it automatically 
performs dynamic time warping for signals that are locally squashed and stretched. It can be used 
for many purposes other than acoustic modeling. 
Hidden Markov models are based on the well-known Markov chains from probability theory that 
deal with a class of random processes having one-step memory. That is, they have the so-called 
Markov property: the probability that the system will be in a certain state at the next time step 
only depends on the current state. A Markov chain can be viewed as a finite state process with a 
probabilistic transition function. In the Markov model each state corresponds to one observable 
event. But this model is too restrictive, for a large number of observations the size of the model 
explodes, and the case where the range of observations is continuous is not covered at all. 
Therefore the Hidden Markov concept extends the model by making the observation a 
probabilistic function of the state, this allows more freedom to the random process while 
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avoiding a substantial complication to the basic structure of Markov chains. The resulting model 
is a doubly embedded stochastic process in which the underlying stochastic process is not directly 
observable but can be observed only through another set of stochastic processes that produce the 
sequence of observations. The Hidden Markov model is defined as follows: 
 
1. The number of states .N  
2. The number of distinct observation symbols .M   
3. An output alphabet 1 2{ , ,... }.M= O O OO  
4. A state space 1 2{ , ,... }.nq q q=Q   
5. A probability distribution of transitions between states { }ija=A where 

1( ) 1 ,ij t ta P q j q i i j N+= = = ≤ ≤  
6. An observation symbol probability distribution { ( )}jb k=B in which 

( ) ( ) 1 ,1j t k tb k P o q j k C j N= = = ≤ ≤ ≤ ≤O  
7. The initial state distribution { }iπ π= where 1( ) 1i P q i i Nπ = = ≤ ≤  
8. To indicate the complete parameter set of a model the notation ( , , )λ π= A B  is used. 
 
The observation probability distributions are usually all defined on the same domain, so in theory 
each state is capable of generating every possible observation symbol. 
 

b(o) = 0.6
b(1) = 0.4

b(o) = 0.8
b(1) = 0.2

1 2

3

1/3

1/3

1/3

1/2

1/2

1/2

1/2

b(o) = 0.3
b(1) = 0.7

π=(1/2, 1/2, 0)

 
Figure 2.6 - a simple discrete Hidden Markov model 

 
Figure 2.6 shows a three state HMM with discrete probability distributions attached to each state, 
capable of generating the symbols 0 and 1. 

2.3.2 HMM generator of observations 
 
Given appropriate values of N, M, A, B, π and an alphabet the HMM can be used as a generator 
to give an observation sequence O = o1o2…oT by performing the following steps: 
 
1. Choose an initial state 1q i= according to the initial state distribution π. 
2. Set t = 1.  
3. Choose t ko = O according to ( )jb k .  
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4. t = t + 1, transit to a new state 1tq j+ = according to ija . 
5. Return to step 3 if t < T. 
 
But if recognition is to be performed with a Hidden Markov model the observation sequence is 
already available and we want to know how well a given model matches a given observation 
sequence, that is we want to know the probability that the observation sequence was produced by 
the model λ. 
Now, when we have an observation sequence and know which model is most likely to generate 
the sequence, it is not clear how the model generates that sequence, because the underlying state 
sequence is hidden. Since practically any state sequence could generate each observation sequence 
there is no correct state sequence to be found here. All we can do is try to solve this problem as 
best as possible and seek the most likely state sequence given the observation sequence and the 
model.  
Another important issue that has to be addressed is how to obtain and optimize the model 
parameters to maximize ( ).P λO This is called the training problem. The next three sections 
discuss each of these fundamental questions concerning Hidden Markov models in turn. 

2.3.3 Forward algorithm 
 
When we consider a fixed state sequence q of length T, the probability of the observation 
sequence given the model λ and sequence q is stated by 
 

 
1 21 2

1
( , ) ( , ) ( ) ( )... ( )

T

T

t t q q q T
t

P P o q b o b o b oλ λ
=

= =∏O q  (2.7) 

(Assuming statistical independence of observations). 
 
There are NT possible state sequences q, each with probability: 
 
 

1 1 2 2 3 1
( ) ... T Tq q q q q q qP a a aλ π

−
=q  (2.8) 

 
The probability of the observation sequence O given the model is now obtained by taking the 
joint probability of 2.7 and 2.8 and summing over all possible state sequences, giving: 
 

 
1

( ) ( ) ( , )
T

t t
t

P O P P o qλ λ λ
∀ =

=� ∏
q

q  (2.9) 

 
 

1 1 1 2 2 1

1 2

1 2
, ,...,

( ) ( )... ( )
T T T

N

q q q q q q q q T
q q q

b o a b o a b oπ
−

= �    (2.10) 

 
As can be seen from equation 2.10 this calculation of ( )P λO  involves on the order of 2TNt 
calculations since at every time t=1, 2, ... T there are Nt possible state sequences and for each 
such state sequence about 2T calculations are required. So this calculation is computationally 
infeasible. Therefore a more efficient procedure is needed. Fortunately, such a procedure exists; it 
is called the forward procedure. For this procedure the probability ( )t iα is defined as the 
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probability of being in state i at time t and having observed the partial observation sequence 
o1o2…ot sofar, given the model λ. 
 
 1 2( ) ( ... , )t t ti P o o o q iα λ= =  (2.11) 
 
 
Now ( )t iα can be computed inductively, as follows: 
1. initialization 
 1 1( ) ( ) 1i ii b o i Nα π= ≤ ≤  (2.12) 
 
2. Induction 

 1 1
1

( ) ( ) ( ) 1 1,
N

t t ij j t
i

j i a b o t T t j Nα α+ +
=

� �= ≤ ≤ − ≤ ≤� �
� �
�  (2.13) 

3. Termination: 
 

 
1

( ) ( )
N

T
i

P O iλ α
=

=�  (2.14) 

 
Step one initializes the forward probabilities as the joint probability of state i and initial 
observation o1. The induction step follows from the fact that the product ( )i ijt aα  is the 
probability of the event that o1o2...ot are observed and state j is reached at time t+1 via state i at 
time i. Summing this product over all the N possible states, i 1 ,i N≤ ≤  at time t results in the 
probability of j at time t+1 with all of the accompanying previous partial observations. Now all 
that is left to do is to take account for observation ot+1 in state j, this is done by use of the 
probability 1( ).j tb o +  
 

Figure 2.7 - The forward algorithm visualized by a trellis 
 
The forward algorithm can be visualized by a trellis that shows the time evolution of the process. 
It consists of T time stages each having N nodes (the model states) connected by arcs that show 
the possible state sequences. Figure 2.7 shows a trellis for the output sequence 10110 generated 
by the HMM of figure 2.6. This figure shows the main thought behind the forward algorithm, 
because there are only N nodes at each time slot in the trellis all possible state sequences will 

t = 1 t = 2 t = 3 t = 4 t = 5
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remerge into these N nodes no matter how long the observation sequence. At time t each 
calculation only involves the N previous values of 1( )t iα − , because each of the N grid points van 
be reached from only the N grid points at the previous time slot. So this procedure only requires 
on the order of N2T calculations. Rather than 2TNt as required by the direct calculation. 
There is one practical remark to make on the forward procedure: the probabilities P(O|λ) may 
become extremely small, in particular if the observation sequence becomes longer or if the 
observation sequence is very unlikely for the model. To avoid underflow, usually the logarithm of 
P(O|λ) is computed. 

2.3.4 Viterbi algorithm  
 
Finding the most likely state sequence 1 2... Tq q q given an observation sequence O=o1o2...oT   boils 
down to maximizing ( , )P λq O which is equivalent to maximizing ( , )P λq O . Therefore we 
define ( )t iδ as the best score (highest probability) along a single path, at time t, which accounts 
for the first t observations and ends in state i. 
 
 

1 2 1
1 2 1 1 2, ,..

( ) max ( ... , , ... )
t

t t tq q q
i P q q q t i o o oδ λ

−
−= =  (2.15) 

 
We can calculate δt(i) using a recursive procedure similar to the forward algorithm, but this time 
using a maximization over previous states instead of a summing procedure. The optimal path can 
be found by keeping track of the argument i that maximized δt(j) in equation 2.15 
 
1. Initialization 
 
 1 1( ) ( ) 1i ii b o i Nδ π= ≤ ≤  (2.16) 

 1( ) 0iψ =  (2.17) 
2. Recursion 
 
 11

( ) max ( ) ( ) 2 ,1t t ij j ti N
j i a b o t T j Nδ δ −≤ ≤

� �= ≤ ≤ ≤ ≤� �  (2.18) 

 11
( ) arg max[ ( ) ]t t iji N

j i aψ δ −≤ ≤
=  (2.19) 

3. Termination 
 
 

1
max[ ( )]Ti N

P iδ
≤ ≤
=�  (2.20) 

 
1

arg max[ ( )]T Ti N
q iδ

≤ ≤
=�  (2.21) 

4. Path backtracking 
 
 1 1( ) 1, 2,...,1t t tq q t T Tψ + += = − −� �  (2.22) 
 
Once again the algorithm can be visualized using a trellis. Figure 2.8 shows the result of applying 
the Viterbi algorithm to the HMM of figure 2.6 to find the state sequence corresponding to       
O = 10110. 
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t = 1 t = 2 t = 3 t = 4 t = 5  
Figure 2.8 - The Viterbi algorithm visualized by a trellis 

 
The calculations below show how the Viterbi path through the trellis is found. 
 
At t = 1 the δ variables are initialized:          At t = 2: 

1 1 1 1 11

1 2 2 1 21

1 3 3 1 31

1 1(1) (1) 0.4 0.2 (1) 0.2 0.6667
2 3
1(2) (1) 0.7 0.35 (2) 0.35 0 0
2

1(3) (1) 0 0.8 0 (3) 0 0
2

b a

b a

b a

δ π δ

δ π δ

δ π δ

= = × = = × =

= = × = = × =

= = × = = × =

  

 
Thus 2 1 11 2(1) (1) (0) 0.02667a bδ δ= =   
 

3 2 31 1similarily: (1) (3) (1) 0.0037a bδ δ= =   

2 1 22 2 3 2 32 2(2) (2) (0) 0.0525 (2) (3) (1) 0.01715a b a bδ δ δ δ= = = =  

2 1 23 3 3 2 23 3(3) (2) (0) 0.14 (3) (2) (1) 0.0049a b a bδ δ δ δ= = = =  
 

4 3 31 1 5 4 31 1(1) (1) (1) 0.0037 (1) (3) (0) 0.00147a b a bδ δ δ δ= = = =  

4 3 22 2 5 4 22 2(2) (2) (1) 0.0715 (2) (2) (0) 0.0025725a b a bδ δ δ δ= = = =  

4 3 23 3 5 4 23 3(3) (2) (1) 0.0049 (2) (2) (0) 0.00686a b a bδ δ δ δ= = = =  
 
At t = 5 δ5(3) gives the highest probability, the trace back gives state sequence q = {2,3,2,2,3} as 
a solution. It should be clear from the trellis that the Viterbi algorithm takes O(N2T) calculations.  
By taking the logarithms of the model parameters, the Viterbi algorithm can be implemented 
without the need for any multiplications.  
As an aside it can be noted that the Viterbi algorithm is not the only possible way to find the 
optimal state sequence, since there are several possible optimality criteria. For example we could 
also decide to choose the states qt that are individually most likely at each time t, which would 
maximize the expected number of correct individual states but may result in an invalid state 
sequence. Furthermore the algorithm relies heavily on the Markov property of the underlying 
model. At each time step t it assumes that the most likely path into the current state will be part 
of the most likely path over the entire model through this state. 
 



 

 
 
 
 
 

19

The next section describes a way of estimating the parameters of a HMM, but the Viterbi 
algorithm can also be used to find an (initial) estimate of the models state distribution parameters, 
given an observation sequence O = o1o2…oT and a particular HMM whose parameters are to be 
estimated. The procedure that accomplishes this is called Viterbi alignment. It consists of two 
steps. . In the first step the Viterbi algorithm is used in the normal way, most likely sequence of 
states q = q1q2…qn that generated O is found. In the second step once again the concept of a 
HMM as generator of speech vectors is used. Each state qi is thought of as having generated the 
corresponding subset Oi from the observation sequence. Now q effectively segments  O = 
O1||O2||…||On.  These subsets can then be used to calculate the state means and variances. 

2.3.5 Baum-Welch algorithm 
 
The third problem of HMMs is to determine a method to obtain or adjust the model parameters 
λ = (A, B, π). We would like to have a method that has the following maximum likelihood 
property: 
 ˆ arg max ( )P

λ
λ λ= O  (2.23) 

λ̂ would allow the HMM to account best for the observed data O. What we really want is for λ̂  
is to account for as yet unseen data, so the best we can do here is try to use a training set that is 
as representative as possible. There is no known way to analytically solve for the model parameter 
set that maximizes the probability of the observation sequence. But we can choose 

( , , )λ π= A B such that its likelihood ( )P λO  is locally maximized using a sample of the type of 
data the model is supposed to generate. This can be done by using an iterative procedure known 
as the Baum-Welch algorithm or Forward-Backward algorithm. To get to this re-estimation 
algorithm we first have to define a backward variable ( )t iβ analogues to the forward variable 

( )t iα from section 2.3.3: 
 1 2( ) ( ... , )t t t T ti P o o o q iβ λ+ += =  (2.24) 
 
That is the conditional probability that ot+1ot+2…oT are observed and the system starts in state qj at 
time t, given the model λ. ( )t iβ can be computed inductively: 
 
1. Initialization 
 
 1 1T i Nβ = ≤ ≤  (2.25) 
2. induction 

 1 1
1

( ) ( ) ( ) 1
N

t ij j t t
j

i a b o j i Nβ β+ +
=

= ≤ ≤�  (2.26) 

 
The initialization step arbitrarily defines ( )t iβ to be 1 for all i. 
 
 
Now we can define the probability of being in state i at time t given the entire observation 
sequence and the model as: 

 
( ) ( )( )
( )

t t
t

i jj
P

α βγ
λ

=
O

 (2.27) 
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And the probability of being in state i at time t and state j at time t+1, given the model and the 
observation sequence by: 
 

 

1

1 1

( , , )
( , )

( )
( ) ( ) ( )

( )

t t

t ij j t t

P q i q j
i j

P
i a b o j

P

λ
ξ

λ
α β

λ

+

+ +

= =
=

=

O
O

O

 (2.28) 

 
If ξt(j) is summed over the time index t, the expected number of times that state i is visited is 
obtained or equivalently the number of transitions made from state i. Similarly, summation of  
ξt(i, j) over t can be interpreted as the expected number of transitions from state i to state j. 
Now, using the concept of counting event occurrences, we can estimate ija as the expected 
number of transitions from state i to state j normalized by the expected number of transitions 
from state i: 

 

1

1
1

1

( , )

( )

T

t
t

ij T

t
t

i j
a

i

ξ

γ

−

=
−

=

=
�

�

�  (2.29) 

 
And similarly, ( )jb k  can be estimated by dividing the expected number of times in state j at 
which symbol ok was observed by the expected number of times the system is in state j: 
 

 1,

1

( )
( )

( )

t k

T

t
t o

j T

t
t

j
b k

j

γ

γ

= =

=

=
�

�

o�  (2.30) 

  
The initial state distribution for state j is simply equal to the expected frequency with which state j 
is visited: 
 
 1( )j jπ γ=�  (2.31) 
 
Since the left hand side of these equations also appears on the right hand side we have to use an 
iterative procedure to improve the model parameters. After starting with an initial guess for A, B, 
and π, λ is used in place of λ in each iteration until the values stop changing within certain limits. 
 
Up to this point the algorithms were explained terms of a finite alphabet of observation symbols 
and thus discrete probability functions could be used to generate these observations. But as 
mentioned in section 2.2 in speech recognition continuous signal observation vectors are used. 
Older system, however, did use a limited codebook of observation symbols. During 
preprocessing vectors were then mapped to one of the observation symbols using a k-means 
segmentation. In modern state of the art systems the observation vectors are put directly into the 
Hidden Markov models, therefore multivariate continuous probability density functions are 
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needed to model the distribution of the observations. The form of the density functions then 
becomes 
 ( ) ( , , )j t t j jb o o µ= UN  (2.32) 
 
Where N  is an elliptical symmetric density (e.g. Gaussian) with mean vector µj and covariance 
matrix Uj for state j. It can be shown that the re-estimation formulas for these parameters are of 
the form: 
 

 1

1

( )

( )

T

t t
t

j T

t
t

j o

j

γ
µ

γ

=

=

=
�

�
 (2.33) 
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j T
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− −
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2.3.6 HMM topology for speech recognition 
Given a sufficiently large and representative training set, the parameters of a HMM can be 
estimated as described in the last section, but there is no (known) way to automatically estimate 
the transition structure of a HMM. Thus the topology of an HMM has to be designed using 
knowledge of the situation and to some extent, designer's intuition.  
The first question that requires an answer here is what kind of unit one HMM should represent. 
Many choices can be made, for example phrases, words, syllables, phonemes or other sub word 
units. In fact it is possible to use HMMs to model any unit of speech. Even if the speech units are 
poorly selected, HMMs have the ability to absorb the suboptimal characteristics within the model 
parameters; this might of course limit the performance of the system. 
Words seem to be the most natural units to model, because they are what we want to recognize 
and the language model also uses words as basic units. Indeed, recognizers that use word-level 
models perform rather well. Part of this success is due to the fact that they are able to capture 
within-word phoneme coarticulation effects. Actually it is shown [1] that because of these effects, 
the larger the unit, the better the recognition will be. However, as there are many unique words, 
training data is needed for each of these words, making this kind of system not easily extendible. 
So for large vocabulary natural speech recognition word units are not really an option. But for 
small well-defined vocabularies, for example a set of commands, they are well suited. Usually left-
to-right model topologies are used in which the number of states depends on the number of 
phonemes in the word. One state per phoneme is a good rule of thumb.  
If sub word units are used, data can be shared among words. This way not all the dictionary 
entries have to be present in the training phase, the vocabulary of the system is then easily 
extendible. There are many possible sub word units, typical models include syllable models or 
linguistically defined sub word units, such as phone models and acoustically defined sub word 
models, called fenone models. 
Linguistically defined sub word models use human specific knowledge for partitioning the 
parameter space. Acoustically defined sub word units use automatic algorithms to explore the 
acoustic similarities. Hybrid models, using both acoustic and linguistic knowledge also exist. 
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Phone models are the most used sub word units. Since there are only 40 to 50 phonemes in 
languages like Dutch and English, HMMs based on phone models can be adequately trained. 
Most topologies used in speech recognition are based on the assumption that there are three 
phases in the pronunciation of a phone. In the first phase the vocal tract is changing shape to 
pronounce the phone, this is called the on-glide of the phone. In this phase there may be some 
overlap with the preceding phone. In the second phase the sound of the phone is assumed to be 
pure and in the third phase the sound is released and the vocal tract starts to transit to the next 
phone. This is called the off-glide, some overlap with the next phone may occur here, the process 
is schematically shown in figure 2.9. 

on-glide off-glide

pure phoneme

 
Figure 2.9 – Three phases of a phone 

 
This suggests that at least three states should be used in a phone HMM. Furthermore as a word 
or even a sentence can be seen as a large string of phones, a left-to-right model structure seems 
to be necessary, back-loops do not fit very well in this picture. 
Adding more states means introducing more parameters and thus more degrees of freedom. 
Variations in a phoneme can be modeled more accurate but this also introduces a need for more 
training data to avoid undertraining. And a model should not be too large, a five state model does 
not work for phones that only occupy three time frames, so in larger models there should always 
be a ‘short-cut’ that can handle the shortest example in the training data. 
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Figure 2.10 - Model topologies for phoneme units 
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Figure 2.10 shows three model topologies that have successfully been used in various speech 
recognizers. The first model (2.10a) is a simple three state left-right model with state dependent 
output probabilities. The first and last smaller circles in the figure represent entry and exit states, 
these are so called null-states, they do not generate observations and are only used to concatenate 
the models. The second model (2.10b) has five states, but provides transitions that skip the 
succeeding state, therefore it is possible to pass through only three states. This model also has 
state dependent output probabilities. The last model (2.10c) has seven states and twelve 
transitions with transition dependent output probabilities. Three groups of output probabilities 
are tied, corresponding with the three phases in a phoneme. In the figure the begin phase is 
marked with B the middle phase with M and the end phase with E. As a consequence this model 
only has three different probability distribution functions. 

2.3.7 Fitting the pieces together 
 
When we have a language model and a set of word level or phone level HMMs how do these 
pieces fit together? To answer this question we have to notice that a language model can be seen 
as a network of states (the words) connected by transitions with probabilities attached to them. 
In other words a language model can be seen as a Hidden Markov Model. Taking advantage of 
the fact that embedding HMMs into an HMM leads to a new HMM we can replace the word 
states by the corresponding word or phone level HMMs resulting in one huge HMM. In case of 
phone level HMMs, the phone models have to be concatenated to form a word, before 
substituting.  
Now the Viterbi algorithm can be used to find the most likely path through this composite 
HMM. This path will then lead through a sequence of words that specify the recognized word 
string. Actually, this method is not guaranteed to find the most likely word sequence equation 2.3 
demands that for each candidate word string W the probability of the set of paths that 
correspond to that W is found, and then the word whose set of paths has the highest probability 
is identified. But in practice it is very rare that the word string corresponding to the most 
probable set of paths is the one actually spoken but the one corresponding to the most probable 
path is not. 

2.3.8 The Beam search 
 
Problem with this approach is that for practical vocabularies even simple grammars result in a 
large composite model that has just too many states, making the Viterbi algorithm very slow. But 
it is possible to reduce the state space without compromising the results too much. This is done 
by a beam search, hypotheses that are below a certain probability level are pruned. At each trellis 
stage i the maximum probability 1

m
iP−  of the states at stage i-1 is determined -1 1max ( )m

i iP qδ −= .  
This value serves as a basis for a dynamic threshold: 
 

 1
1

m
i

i
P
K

τ −
− =  (2.35) 

 
Where K is a suitable chosen constant. Then all states q' on trellis level i-1 are eliminated such 
that δi-1(q') = 0 for all states q' that satisfy δi-1(q') < τi-1. This purge of improbable paths reduces 
drastically the number of states entering the comparison implied by the max function in the 
recursion 2.15 without significantly affecting the values δi(q). 
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2.3.9 Token passing algorithm 
 
To find the recognized word sequence at the end of the Viterbi search more information is 
needed beyond the log probability of the path normally calculated by the Viterbi algorithm. An 
efficient alternative formulation of the algorithm called the token passing model allows for the 
incorporation of other (meta) information. 
In this algorithm each state i of the composite HMM at time t holds a single movable token 
which contains, amongst other information, the partial log probability δt(i). This token represents 
a partial match between the observation sequence o1o2…ot   and the model subject to the 
constraint that the model is in state j at time t. The recursion step of equation 2.18 is then 
replaced by the equivalent token passing step which is executed at each time frame t. The key 
steps in this algorithm are as follows: 
 

1. Pass a copy of every token in state i to all connecting states j, incrementing the log 
probability of the copy by log[ ] log[ ( )]ij j ta b o+  

2. Examine the token in every state and discard all but the token with the highest 
probability. 

 
The history of a token route through the network may be recovered efficiently as follows, for 
each word instance in the composite HMM a word end null-state is added and every token carries 
a pointer called a word end link. When a token is propagated from the exit state of a word 
(indicated by passing through a word end node) to the entry state of another, that transition 
represents a potential word boundary. Hence a record called a Word Link Record is generated in 
which is stored the identity of the word from which the token has just emerged and the current 
value of the token's link. A pointer to the newly created WLR then replaces the token's actual 
link, effectively creating a linked list of word boundaries.  
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Figure 2.11 token passing using Word Link records 

 
Once all of the unknown speech has been processed the WLRs attached to the link of the best 
matching token can be traced back to give the best matching sequence of words. At the same 
time the positions of the word boundaries can also be extracted if required. 
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2.3.10 N-best search 
 
The Viterbi algorithm finds the most likely single path through the word network. As mentioned 
before this is not guaranteed to be the optimal solution, and even if it were it still does not have 
to be the right solution. Therefore it is often desirable to find the N most likely word sequences 
given the observed acoustic data O. For instance, to reprocess the data using more refined 
models or to parse the alternate hypotheses using syntactic or semantic expert system rules. 
The required N-best search would differ from the Viterbi search in one aspect only: Instead of 
retaining only one path leading into each trellis state, each trellis state is split into N states, one 
for each of the N most likely paths leading into the unsplit state from the split state of the trellis' 
previous stage. 
The N-best search can be incorporated in the token passing algorithm by saving more than just 
the best token at each word boundary. The resulting lattice N-best algorithm is sub optimal, 
because the use of a single token per state limits the number of different token histories that can 
be maintained. This limitation can be avoided by allowing each model state to hold multiple 
tokens and regarding tokens as distinct if they come from different preceding words. This gives a 
class of algorithms called word N-best, which has been shown empirically to be comparable in 
performance to an optimal N-best algorithm [9]. 

2.3.11 Adaptive training 
 
Although the training and recognition techniques described in this chapter can produce high 
performance recognition systems when trained on a large corpus of speech data, these systems 
can be improved upon by customizing the HMMs to the characteristics of a particular speaker. 
By collecting data from a speaker and training a model set on this speaker's data alone, the 
speaker’s characteristics can be modeled more accurately. Such systems are known as speaker 
dependent systems, and on a typical word recognition task, may have half the errors of a speaker 
independent system. The drawback of speaker dependent systems is that a large amount of data 
(typically hours) must be collected in order to obtain sufficient model accuracy.  
Rather than training speaker dependent models, adaptation techniques can be applied. In this 
case, by using only a small amount of data from a new speaker, a good speaker independent 
model set can be adapted to better fit the characteristics of this new speaker. This can be done 
using maximum likelihood linear regression (MLLR), a technique that computes a set of linear 
transformations by solving a maximization problem using the Expectation-Maximization 
technique. These transformations will reduce the mismatch between an initial model set and the 
adaptation data by shifting the means and alter the variances in the initial system so that each 
state is more likely to generate the adaptation data.  
Model adaptation can also be done using a Bayesian approach, in which the speaker independent 
model parameters and the feature vectors in the adaptation evidence are combined to estimate a 
new model set. To know how much the model parameters should be changed by the evidence an 
occupation likelihood for the model state is needed. This can be obtained by running the Viterbi 
algorithm. Now the next logical step is of course to integrate the Bayesian adaptation approach in 
the Viterbi algorithm, this way the model set can be adapted on-line during recognition. Each 
time an utterance is recognized the system is adapted a little more, so the system incrementally 
gets tailored to the speaker's voice. 
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3 THE HIDDEN MARKOV TOOLKIT  
 

Subject of this chapter is the Hidden Markov Toolkit, a collection of software libraries and tools for manipulating Hidden 
Markov models. The architecture of the toolkit will be described and an overview of the tools will be given. 

 
3.1 INTRODUCTION 
 
It may be evident from the last chapter that implementing the algorithms needed to perform the 
different stages of speech recognition involves quite some work, especially since a lot of 
optimizations have to be realized to make the algorithms efficient enough for practical use. 
Fortunately, there are several toolkits available now that implement the algorithms needed in 
speech recognition, allowing a recognizer designer to focus on the important tasks involved in 
building a speech recognizer like data preparation, training and recognizers evaluation. One of 
these toolkits is the Hidden Markov Toolkit (HTK). 
 
HTK is a portable software toolkit for building and manipulating systems that use continuous 
density Hidden Markov models. It has been developed by the Speech Group at Cambridge 
University Engineering Department.  
HMMs can be used to model any time series and the core of HTK is similarly general purpose. 
However, HTK is primarily designed for building HMM based speech processing tools, in 
particular speech recognizers. In can be used to perform a wide range of tasks in this domain 
including isolated or connected speech recognition using models based on whole word or sub-
word units, but it is especially suitable for performing large vocabulary continuous speech 
recognition. 
HTK includes nineteen tools that perform tasks like manipulation of transcriptions, coding data, 
various styles of HMM training including Baum-Welch re-estimation, Viterbi decoding, results 
analysis and extensive editing of HMM definitions. HTK tools are designed to run with a 
traditional command-line style interface, each tool has a large number of required and optional 
arguments and most tools require one or more script files. Figure 3.1 shows some examples of 
HTK tools in action. 

Figure 3.1 - some HTK commands 
   
Although this style of command-line working results in complex commands, that actually have 
more resemblance with programming languages than with commands, it has the advantage of 
making it simple to write shell scripts or programs to control HTK tool execution. Furthermore 

Example A. a training iteration  

HERest -T 1 -p 8 -B -C d:\htk\P\config1.cfg -S d:\htk\P\train8.scr
-I d:\htk\P\plab\triph8.mlf -H ts1\hmms.mmf -M ts2 -d ts1
-t 250.0 150.0 1000.0 -s stat.txt triph.lst

 
Example B. recognition 

HVite -T 1 -n 3 3 -s 9 -C ..\wdnexp.cfg -H t17m3\hmms.mmf
-H t15m3\mono.mmf -l * -i rec.mlf -w d:\htk\P\wdsbi.lat
-S ..\test.scr d:\htk\P\poly2.dic ctriph4m.lst
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it allows the details of system construction or experimental procedure to be recorded and 
documented. 
 
3.2 HTK SOFTWARE ARCHITECTURE 
 
Much of the functionality of HTK is build into library modules, they ensure that every tool 
interfaces the outside world in exactly the same way and they provide a programming 
environment for the creation of custom tools or the integration of recognizer functionality in an 
application. Figure 3.2 shows the library modules and their purpose. User input/output and 
interaction with the operating system is controlled by the library module HShell and all memory 
management is controlled by HMem. General mathematical support is provided by Hmath and the 
signal processing operations needed for LPC and MFCC speech analysis are in HSigP.  
Each of the file types required by HTK has a dedicated interface module. HLabel provides the 
interface for label files, HLM for language model files, HNet for networks and lattices, HDict for 
dictionaries, HVQ for VQ codebooks and HModel for HMM definitions. 
All speech input and output at the waveform level is via HWave and at the parameterized level 
via HParm. As well as providing a consistent interface, HWave and HLabel support multiple 
file formats allowing data to be imported from other systems. Direct audio input is supported 
by HAudio and simple interactive graphics is provided by HGraf. HUtil provides a number of 
utility routines for manipulating HMMs while HTrain and HFB contain support for the various 
HTK training tools. HAdapt provides support for the various HTK adaptation tools. Finally, 
HRec contains the main recognition processing functions. 
 

HTK Tool

HLMHLabel

HDict

HMem
HMath

HNEt

HShell
HGraph

HRecHModel

HAudio
HWave
HParm
HVQ

HSigP

HRec
HFB

HAdapt

Speech data
formats

HMM
Definitions Model Training Recognition

I/O

Dictionary

Lattices /
Constraint

nework

Language
ModelsLabels

 
Figure 3.2 HTK libraries 

 
Fine control over the behavior of these library modules is provided by setting configuration 
variables or by configuration files that contain a complete list of configuration variables. 
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3.3 OVERVIEW OF THE HTK TOOLS 
Figure 3.3 gives an overview of the HTK tools subdivided into groups according to the 
processing stages in which they are used. These tools all have a similar interface, which is 
described, in the next subsection. A short description of each tool is given in the subsequent 
sections. 
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Figure 3.3 The HTK tools 

3.3.1 Generic Properties of a HTK Tool 
As was said in the introduction HTK tools are designed to run with a traditional command-line 
style interface. The layout of the commands is the same for all tools. Each tool has a number of 
required arguments plus optional arguments. The latter are always prefixed by a minus sign. As 
an example, the following command would invoke the mythical HTK tool called HFoo 
 

HFoo -T 1 -f 34.3 -a -s myfile file1 file2
 
This tool has two main arguments called file1 and file2 plus four optional arguments. Options 
are always introduced by a single letter option name followed where appropriate by the option 
value. The option value is always separated from the option name by a space. Thus in the 
example, the value of the -f option is a real number, the value of the -T option is an integer 
number and the value of the -s option is a string. The -a option has no following value and it is 
used as a simple flag to enable or disable some feature of the tool. Options whose names are a 
capital letter have the same meaning across all tools. For example, the -T option is always used to 
control the trace output of a HTK tool. 
In addition to command line arguments, the operation of a tool can be controlled by parameters 
stored in a configuration file. Configuration files are indicated by the -C option. For example, if 
the command 

HFoo -C config -f 34.3 -a -s myfile file1 file2
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is executed, the tool HFoo will load the parameters stored in the configuration file config during 
its initialization procedures. Configuration parameters can sometimes be used as an alternative to 
using command line arguments. Most tools, especially editing tools, like HHed which edits 
Hidden Markov models, or HLEd which edits transcription files also need a script that tells the 
tool which steps to perform and how to edit the data provided to it. The available scripting 
commands are tool specific. 

3.3.2 Data Preparation Tools 
 
HSLab is an interactive label editor for manipulating speech label files. It can be used both to 
record the speech and to manually annotate it with any required transcriptions. An example of 
using HSLab would be to load a sampled waveform file, determine the boundaries of the speech 
units of interest and assign labels to them. Alternatively, an existing label file can be loaded and 
edited by changing current label boundaries, deleting and creating new labels. HSLab is the only 
tool in the HTK package, which provides a graphical user interface. 
Although all HTK tools can parameterize waveforms on-the-fly, in practice it is usually better to 
parameterize the data just once. The tool HCopy is used for this. As the name suggests, HCopy is 
used to copy one or more source files to an output file. Normally, HCopy copies the whole file, 
but a variety of mechanisms are provided for extracting segments of files and concatenating files. 
By setting the appropriate configuration variables, all input files can be converted to parametric 
form as they are read-in. Thus, simply copying each file in this manner performs the required 
encoding. 
The tool HList can be used to check the contents of any speech file and since it can also convert 
input on-the-fly, it can be used to check the results of any conversions before processing large 
quantities of data. 
HLEd is a script-driven label editor which is designed to make transformations to label files, like 
translating word level label files to phone level label files, merging labels or creating triphone 
labels. HLEd can also output files to a single Master Label File MLF, which is usually more 
convenient for subsequent processing.  
HLStats can gather and display statistics on label files and where required, HQuant can be used to 
build a VQ codebook in preparation for building discrete probability HMM system. 

3.3.3 Training Tools 
 
HTK allows HMMs to be built with any desired topology. HMM definitions can be stored 
externally as simple text files and hence it is possible to edit them with any convenient text editor. 
With the exception of the transition probabilities, all of the HMM parameters given in the 
prototype definition are ignored. The purpose of the prototype definition is only to specify the 
overall characteristics and topology of the HMM. The actual parameters will be computed later 
by the training tools. Sensible values for the transition probabilities must be given but the training 
process is very insensitive to these. An acceptable and simple strategy for choosing these 
probabilities is to make all of the transitions out of any state equally likely.  
If segmented transcriptions are available the tools HInit and HRest provide isolated word style 
training using the fully labeled data as bootstrap data.  
HInit can be used to provide initial estimates of whole word models in which case the 
observation sequences are realizations of the corresponding vocabulary word. Alternatively, HInit 
can be used to generate initial estimates of seed HMMs for sub-unit based speech recognition. In 
this latter case, the observation sequences will consist of segments of continuously spoken 
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training material. HInit will cut these out of the training data automatically by simply giving it a 
segment label. In both of the above applications, HInit normally takes as input a prototype HMM 
definition, which defines the required HMM topology i.e. it has the form of the required HMM 
except that means, variances and mixture weights are ignored. The transition matrix of the 
prototype specifies both the allowed transitions and their initial probabilities. Transitions, which 
are assigned zero probability, will remain zero and hence denote non-allowed transitions. HInit 
estimates transition probabilities by counting the number of times each state is visited during the 
alignment process. 
HRest performs basic Baum-Welch re-estimation of the parameters of a single HMM using a set 
of observation sequences. HRest can be used for normal isolated word training in which the 
observation sequences are realizations of the corresponding vocabulary word or it can be used 
for isolated model training for sub-unit based speech recognition. In this latter case, the 
observation sequences will consist of segments of continuously spoken training material. HRest 
will cut these out of the training data automatically by simply giving it a segment label. In both of 
the above applications, HRest is intended to operate on HMMs with initial parameter values 
estimated by HInit. 
HERest is used to perform a single re-estimation of the parameters of a set of HMMs using 
an embedded training version of the Baum-Welch algorithm. Training data consists of one or 
more utterances each of which has a transcription in the form of a standard label file (segment 
boundaries are ignored). For each training utterance, a composite model is effectively synthesized 
by concatenating the phoneme models given by the transcription. Each phone model has the 
same set of accumulators allocated to it as are used in HRest but in HERest they are updated 
simultaneously by performing a standard Baum-Welch pass over each training utterance using the 
composite model.  
The tool HHEd is a HMM definition editor which will clone models into context-dependent sets, 
apply a variety of parameter tyings and increment the number of mixture components in 
specified distributions.  
To improve performance for specific speakers the tools HEAdapt and HVite can be used to 
adapt HMMs to better model the characteristics of particular speakers using a small amount of 
training or adaptation data. 

3.3.4 Recognition Tools 
 
HTK provides a single recognition tool called HVite, which uses a token passing algorithm like 
the one described in the previous chapter to perform Viterbi-based speech recognition. HVite 
takes as input a network describing the allowable word sequences, a dictionary defining how each 
word is pronounced and a set of HMMs. It operates by converting the word network to a phone 
network and then attaching the appropriate HMM definition to each phone instance. Recognition 
can then be performed on either a list of stored speech files or on direct audio input. HVite can 
support cross-word triphones and it can run with multiple tokens to generate lattices containing 
multiple hypotheses. It can also be configured to rescore lattices and perform forced alignments. 
The word networks needed to drive HVite are stored using the HTK standard lattice format. 
This is a text-based format and hence word networks can be created directly using a text-editor. 
However, this is rather tedious and hence HTK provides two tools to assist in creating word 
networks. Firstly, HBuild allows sub-networks to be created and used within higher level 
networks. Hence, although the same low level notation is used, much duplication is avoided. 
Also, HBuild can be used to generate word loops and it can also read in a backed-off bigram 
language model and modify the word loop transitions to incorporate the bigram probabilities.  
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As an alternative to specifying a word network directly, a higher level grammar notation can be 
used. This notation is based on the Extended Backus Naur Form (EBNF) used in compiler 
specification The tool HParse is supplied to convert this notation into the equivalent word 
network. Whichever method is chosen to generate a word network, it is useful to be able to see 
examples of the language that it defines. The tool HSGen is provided to do this. It takes as input a 
network and then randomly traverses the network outputting word strings. These strings can 
then be inspected to ensure that they correspond to what is required. HSGen can also compute 
the empirical perplexity of the task. 
Finally, the construction of large dictionaries can involve merging several sources and performing 
a variety of transformations on each sources. The dictionary management tool HDMan is 
supplied to assist with this process. 

3.3.5 Analysis Tool 
 
A tool called HResults compares recognition results with original transcriptions. It uses dynamic 
programming to align the two transcriptions and then counts substitution, deletion and insertion 
errors. Options are provided to ensure that the algorithms and output formats used by HResults 
are compatible with those used by the US National Institute of Standards and Technology 
(NIST). As well as global performance measures, HResults can also provide speaker-by-speaker 
breakdowns, confusion matrices and time-aligned transcriptions. For word spotting applications, 
it can also compute Figure of Merit (FOM) scores and Receiver Operating Curve (ROC) information.  
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4 DEVELOPMENT OF A SPEECH RECOGNIZER 
 

This chapter describes the design and construction of a speech recognizer for the Dutch language. First the requirements for 
the system are stated and the development platform and tools are described. Next an outline of the steps needed to build a 
speech recognizer is given. Subsequent sections explain how these steps were performed. For each step the actions that were 
actually taken are explained to ensure that this description can be used as a guide for similar projects. Whenever 
appropriate some background theory is also explained, the emphasis here is on the differences between practice and the 
theory described in chapter two. The final sections give an evaluation of the system.  

 
4.1 INTRODUCTION 
 
This chapter describes the design and construction of a speech recognizer for the Dutch language 
that is capable of recognizing sounds recorded by a normal desktop computer microphone.  
There are many possible types of speech recognizers, ranging from task-specific word recognizers 
or word spotting systems to large vocabulary recognizers for natural free speech. The system that 
was build here was intended to be as general as possible, so that it can be used, with slight 
modifications and some adaptive training, as a speech interface for many different, more specific 
tasks and applications. An example of such an application is the telebanking system introduced in 
2.2.3 that can be used to conduct financial transactions by telephone. Moreover the system 
should also provide a baseline system for further research on the subject of speech recognition. 
An example for this category, and the immediate cause for building this system, is the integration 
of multiple modalities in a Hidden Markov based speech recognizer as described in part II.  
To meet these requirements the recognizer is designed to recognize large vocabulary continuous 
speech and is speaker independent. To make sure that the systems vocabulary was not limited in 
any way to some fixed set of words it was decided to create a phoneme based recognizer. This 
way the system is easily extendible. A different vocabulary only involves a change of language 
model and possibly adding some words to the pronunciation dictionary. 
The final system uses context dependent models, but as this system was build and refined 
incrementally, actually a whole set of recognizers has been created, ranging from a simple 
monophone recognizer to a sophisticated multiple mixture triphone system. 
 
4.2 THE DEVELOPMENT ENVIRONMENT 
 
The system was developed on the Microsoft Windows platform using a variety of tools, 
programs and scripts. The first set of scripts that was written can be described as meta scripts, 
because they contain the calls to the different tools and provide these tools with their numerous 
attributes, scripts and with the output obtained from other tools. This approach was taken to 
make reproduction of the entire process easy. This is not just useful for future attempts to build 
similar systems, but it also turned out to be a necessity for keeping the process manageable and 
for recovering from errors.  
By far the largest set of tools and software libraries was taken from the HTK toolkit described in 
the last chapter. The choice of using HTK, rather than implementing the speech recognition 
algorithms in some general purpose programming language was based on two facts. 
 
1. Although implementing the basic algorithms, necessary for performing speech recognition, 

like the Viterbi algorithm, is straightforward, given the formulas in chapter two, it is much 
harder, and thus more time consuming, to create implementations efficient enough to be 
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useful in practice. As will be seen later on in this chapter training a system using the highly 
optimized HTK tools still takes vast amounts of time. 

 
2. HTK offers a nice and flexible data structure for defining and manipulating Hidden Markov 

models. The main advantage of this structure is that it uses a text based definition language, 
which allows for manual manipulation of the models or manipulation by custom made tools. 
A property that proved very valuable, not only during the construction of the speech 
recognizer, but also in later experiments that were concerned with the integration of models 
from different modalities in the speech recognizer. 

 
As was described in the last chapter most HTK tools are script-driven. More than 100 of these 
scripts were created to control the development process. A number of these scripts were created 
by programs written in C++ that filled the gaps in the development process not covered by one 
of the tools. This includes a program for data selection, some tools for creating a initial acoustic 
model set and a tool for creating scripts for triphone clustering. 
Further explains of the tools will be given in the next sections, when appropriate. 
 
4.3 OUTLINE OF THE DEVELOPMENT PROCESS 
 
As was described in Chapter two a Hidden Markov model based speech recognizer consists of 
three parts.  
 
1. A preprocessing part, which extracts relevant features from the speech signal.   
2. A language model that tells how likely a certain word string is to occur. 
3. An acoustic model, which computes how a word string is likely to be pronounced. 
 
This subdivision gives some clues on the decisions that have to be made and the steps that have 
to be performed to build a recognizer. In the case of the preprocessor decisions have to be made 
concerning the data format of the audio streams and on the type of preprocessor that is to be 
used. To build a language model a vocabulary has to be chosen and it should be decided what 
kind of grammatical structure of the language model should impose on the utterances. 
With regard to the acoustic model decisions have to be made concerning the unit of speech on 
model represents, the number of states in such a model, the way these states are connected and 
concerning the type of distribution functions. These acoustic models should then be trained and 
refined using a set of examples. So a training data set has to be prepared. 
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Figure 4.1 the development process 

 
As shown in figure 4.1 the overall development process can be divided in four stages. In the data 
preparation stage training data is collected and prepared and the design decisions concerning the 
models are taken. In the initial training stage, a simple, baseline speech recognition system is 
build. In the refinement stage this systems is then incrementally refined to make it more 
advanced and robust. In the final stage the performance of the system is evaluated. The next four 
sections describe how these four stages were performed to build the speech recognizer. 
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4.3 DATA PREPARATION 
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Figure 4.2 - Steps performed during data preparation 
 
The data preparation phase involves a number of inter-related tasks a shown in figure 4.2. 
Obviously speech data is needed for training, testing and evaluating the models in the process, 
therefore the first step involved selection of appropriate speech recordings. For each of these 
recordings a textual transcription was created. Further a language model was created and a HMM 
topology was defined. The exact steps and their relations are now described in detail. 

4.3.1 Data selection 
 
In order to build a robust large vocabulary speech recognizer it is crucial that all acoustic (sub-
word) models receive enough training examples, taking into account the many variations that can 
occur in speech, due to, for example, variation in speed of speech, different gender and different 
accents. It follows that a training corpus should be sufficiently large, consisting of speech samples 
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spoken by men and women from different dialect regions. Since the sound of a sub-word unit is 
also influenced by its context the speech samples should include all phonemes in as many 
different phonetic contexts as possible. In practice this means that, depending on the quality of 
the samples and the complexity of the acoustic models, about ten- to thirty-thousand 
(phonetically rich) sentences are necessary. 
Recording such a data set is a major undertaking involving sub-tasks like selection of participants, 
recording the data and the most time-consuming parts post-processing and transcribing the data. 
Fortunately, many of these speech corpora are now commercially available. One of the corpora 
available for the Dutch language is the Polyphone database, which is used to select the training 
data for the recognizer as it contains speech samples that fulfill the requirements stated above. It 
is rather large; it contains telephone speech from 5050 different speakers and 222075 speech files, 
based on 44 or in some cases 43 items per speaker. The speakers in the database were selected 
from all geographic regions. The ratio between male and female speakers is almost fifty-fifty.  
The utterances contain all Dutch phonemes in as many phonetic contexts as the designers of the 
database could find. But the set also has some disadvantages that all stem from the fact that the 
Polyphone database was recorded with automatic voice-interactive telephone services in mind. 
Most speech files therefore contain examples of phrases useful for this kind of applications, this 
includes street names, bank-accounts, numbers and answers to yes-no questions. Training a large 
vocabulary recognizer on these samples may result in a recognizer that performs well on 
recognizing numbers and 'yes' and 'no' but which generalizes very poor to other words. To avoid 
these problems only nine items per person were used, five phonetically rich sentences and four 
application sentences. The latter group consists of sentences that contain an application word, 
that is, a word that is often used in normal speech. Since the polyphone database is recorded over 
a telephone line many samples are of poor quality, or contain background noise or even 
background speech. To ensure well-trained models that can be used for recognizing speech using 
for example a PC microphone spoken by an average person, only sessions that fit the following 
profile were used: 
• Men and women from all regions. 
• Only native speakers that did not live abroad (this may be a bit rigorous, as not all foreigners 

have an accent, and a small accent shouldn't be a problem, but it avoids manually going 
through thousands of utterances). 

• No utterances that contain background noise or background speech. But mouth noises, like 
smacking, sniffing or loud breaths and verbal hesitations like uh are allowed. 

• Only sentences that are assessed to have quality level OK in the polyphone database, which 
means that the text can be clearly understood, i.e. no stuttering, no disturbing hesitations and 
no mispronunciations or foreign pronunciations. 

Manually selecting utterances that adhered to this profile is practically impossible. The data in the 
polyphone database is stored on 10 CD-roms each with about 500 directories, called sessions, 
with one speaker per session. Information concerning the speakers and the utterances is listed in 
three large plain text format tables. No data selection tools whatsoever are included in the 
database. 
To overcome this problem a program was written, called Poly2Htk, which automatically selects a 
subset of the polyphone database according to some selection criteria it is provided with.  
This program provides a command line interface, in a similar fashion as the HTK tools. At this 
command line a number of options can be specified: 
• A subset of the database that should be searched. 
• A caller profile: gender, age interval, dialect region, education level, foreign / lived abroad. 
• A subset of the utterances in each session. 



 

 
 
 
 
 

• A quality profile: Cordless phones allowed, allowed types of noise, allowed levels of quality. 
• A number of output options. 
The program creates based on the selected options a number of scripts needed by some HTK 
tools in later steps, which will be described in relevant sections. Furthermore it creates a list of all 
the words in the selected set and a either file containing all the transcriptions of the selected 
utterances index by the name of the utterances or one file per utterance with the same name as 
the utterance but a different file type. The program also creates unique filenames for the selected 
utterances.  
Three different data sets were extracted from the Polyphone database this way. A training set, a 
development set, which was used for testing and fine tuning during development of the system 
and an evaluation test set to evaluate the final performance of the system. The development set 
contained persons and sentences that did not occur in the training set. And the evaluation test set 
contained persons that did neither occur in the training or development set, but its phonetically 
rich sentences did also occur in the training set. 
TRAIN - PolyPhone to HTK Summary:

4022 sessions processed
2883 sessions OK
1139 sessions skipped

25954 utterances processed
22626 utterances OK
1632 utterances skipped because of bad transcriptions
1689 utterances skipped because of bad sound quality

7 utterances missing

DEVELOP - PolyPhone to HTK Summary:

500 sessions processed
340 sessions OK
160 sessions skipped

3060 utterances processed
2673 utterances OK
200 utterances skipped because of bad transcriptions
187 utterances skipped because of bad sound quality

EVAL - PolyPhone to HTK Summary:

528 sessions processed
368 sessions OK
160 sessions skipped

3313 utterances processed
2885 utterances OK
198 utterances skipped because of bad transcriptions
229 utterances skipped because of bad sound quality

1 utterances missing
37
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4.3.2 Feature vectors 
 
The audio files on the Polyphone CDs are saved as waveforms. In particular, they are stored in 
compressed CITT A-law format, the format used in telephone systems. The first step in speech 
recognition is the extraction of feature vectors. Theoretically this can be done on the fly during 
training, as is the case during real-time recognition. But for training purposes it makes sense to do 
this once and for all and save the feature vectors in a file, as each utterance is processed a number 
of times during training. 
Preprocessing of the data files was done in two stages. First, the original waveform files were 
translated to intermediate audio files in the SPHERE format. This was done by the Praat 
program, an audio analysis program developed at the University of Amsterdam, which provides 
extensive scripting possibilities. The scripts that guided this program were created by Poly2Htk 
during data selection. This first step was necessary, because the program used in the second step, 
the HTK tool HCopy, cannot read the A-law audio format. HCopy is a tool for translating audio 
files to feature vector files using one of the many variants of either linear predictive coding or 
Mel scale cepstral coefficients. It takes as its parameters a list summing all the files it has to copy 
and the new filenames they should be copied to and a script containing information on input and 
output formats. The filename list was provided also by Poly2Htk.  
The utterances were encoded to Mel-frequency cepstral coeffient vectors. This choice was based 
on literature and earlier experiments. Each vector contained twelve cepstral coefficients with log 
energy and delta and acceleration coefficients added, all scaled around zero by subtracting the 
cepstral mean from all vectors. Which resulted in 39 dimensional feature vectors. A sampling rate 
of 10 ms was used and a overlapping window of 25 ms. 

4.3.3 Phoneme set  
 
As was already mentioned in the introduction, the basic speech units in the system are phonemes. 
This implies that a phoneme set should be chosen. Unlike the situation for example with the 
characters in the alphabet, there is no such thing as the phoneme set for a given language. 
Existing sets differ in the number of details they provide. For example the so-called plosive 
sounds, like /p/ could be modeled as one sound or as two sounds. Namely a closure /cp/, that is 
a short period of silence because the mouth is closed before a plosive is uttered and the /p/ 
sound that is produced as soon as the mouth is opened. 
However, there are a few standard phoneme sets, used for example in dictionaries. One of those 
is the SAMPA notation, which covers all distinguishable phoneme sounds in the Dutch language. 
It provides 43 different phonemes, which is a fairly reasonable number for the use of a model set 
for speech recognition. 
The phonemes from the SAMPA set were adopted as phoneme set in this project, but they were 
renamed for convenience in later steps. Table 4.1 gives an overview of the phonemes including 
an example for each phoneme to show which sound it represents. 
Furthermore three other phonemes were added. The first, sil, models (longer periods) of silence, 
these silences occur between sentences or when a person is not speaking at all. The second 
phoneme, sp, also represents silence, but only periods of short duration. This is the kind of 
silence that occurs between words. The reason that a distinction was made between these two 
types of silence is that they really represent two different phenomena. One represents periods of 
pure silence (which in this context always means background and environment noise) that can 
greatly vary in length while the other represents optional periods of silence shorter than the 
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duration of a phoneme. Because these silences mainly occur between words there is a slight 
influence from the neighboring sounds on this phoneme. 
The reader may have noticed that utterances containing mouth noise were not excluded during 
data selection. This was done on purpose, to enable the creation of the final phone that was 
added, mn, which models all kinds of mouth noise and verbal hesitation. The idea behind the 
inclusion of this phone was that real, natural speech always contains mouth noise and modeling 
this may improve the results in real-life environments. 

Table 4.1 Phone set 
SAMPA
notation

used
notation

example phonetic
transcription

I i pit p i t
E e pet p e t
A a pat p a t
O o pot p o t
Y y put p y t
@ at gemakkelijk g at m a k at l at k
i ie vier v ie r
y yy vuur v yy r
u u voer v u r
a: aa naam n aa m
e: ee veer v ee r
2: eu deur d eu r
o: oo voor v oo r
Ei ei fijn f ei n
9y ui huis h ui s
Au ou goud x ou t
E: eh crème k r eh m
9: euh freule f r euh l at
O: oh roze r oh z at
p p pak p a k
b b bak b a k
t t tak t a k
d d dak d a k
k k kap k a p
g gg goal gg oo l
f f fel f e l
v v vel v e l
s s sein s ei n
z z zijn z ei n
x x toch t o x
G g goed g u t (also: x u t)
h h hand h a n t
Z zj bagage b a g aa z at
S sh show sh oo u
m m met m e t
n n net n e t
N nn bang b a nn
l l land l a n t
r r rand r a n t
w w wit w i t
j j ja j aa
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4.3.4 Transcriptions and pronunciation dictionary 
 
To monitor the progress that is made during training and to evaluate the performance of the final 
system textual transcriptions of what was really said in the test and evaluation utterances were 
needed. As was already mentioned these were created by Poly2Htk. But there is more to it, the 
acoustic models represent phones, so in the training phase examples of phones will be needed to 
adjust the parameters of these models. But the examples in the set of training files constitute 
complete sentences, that is, a string of phones. To ensure that the right part of an utterance is 
used to train a model a transcription of the utterance at the phone level is needed. These phone 
level transcriptions can be created from the word level transcriptions by using a pronunciation 
dictionary that gives for each word the sequence of phones that make up the pronunciation of 
this word. This is exactly the way it was done during this project. First of all a pronunciation 
dictionary had to be prepared. With the polyphone database comes a dictionary that includes 
almost all words used in the polyphone utterances. This dictionary was used as a starting point 
for the pronunciation dictionary. Some changes had to be made to the format of the dictionary 
because the HTK transcription editor HLEd needs a particular form of dictionary. 
First all characters were transformed to lowercase and punctuation symbols (\" and \') were 
changed and in some cases removed because HTK has difficulty with transcriptions containing 
certain non-alphanumeric characters. This resulted in some strange words  like ‘patient’, ‘reeel’, 
‘savonds’ but this is not really a problem, as there is no good reason why the spelling internal to 
the system should be the proper spelling (as it is output to a human reader). Next stress-markers 
and syllable information were removed from the dictionary and the phonetic transcriptions were 
transformed to the right format, using the new phone names. 
Having a phone set, a dictionary and word level transcription files the phone level transcriptions 
could be prepared. It turned out that the word level transcriptions contained words that did not 
occur in the dictionary. Words, for which the transcription was clear, because they were similar to 
word already in the dictionary, were added to the dictionary, otherwise the transcriptions and 
corresponding utterances were removed from the data set (in total 7 items were removed). 
Using the word level label files the phone set and the dictionary, the phone level label files were 
created, using the HLed tool. This tool takes a list of all label files that are to be processed, a 
dictionary and a script containing the commands that should be executed as its arguments. It this 
particular case it substituted each word in the label files with the first phonetic transcription it 
found for this word in the dictionary. The phone level transcriptions obtained this way were 
unsegmented, that is they did not contain any information on the time intervals at which a 
phoneme is spoken. This means that there is no way to know exactly which part of an utterance 
represents a certain phone and should be used to train this phones HMM. This makes model 
training a little harder, than when segmented data would be available, but not impossible as will 
be described in the sections on training. 

4.3.5 Language models 
 
The language model is a critical part of a speech recognition system. It tells the system how likely 
it is that a certain string of words is uttered. By doing so, it imposes a grammar onto the system. 
Furthermore, the language model is the glue that holds together the set of acoustic models in the 
word network that is ultimately used for recognition. In this project a number of language models 
at various levels of sophistication was created for each of the data sets.  
First simple wordlist grammars were generated, using the wordlists provided by Poly2Htk. These 
word networks are not really grammars at all, since every word is equally likely and a sentence is 
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just a string of these words. In order to put some grammatical constraints on the language model, 
the grammars were transformed to backed-off bigram language models. Using the word level 
transcriptions and statistics on the number of occurrences of each word and of each word 
combination were calculated according to the following formulas: 
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Where N(i,j) is the number of times word j follows word i and N(i) is the number of times that 
word i appears. D is the so-called discount constant, which is used to deduct a small part of the 
available probability mass from the higher bigram counts to and distribute it amongst the 
infrequent bigrams. 
When a bigram count falls below the threshold t, the bigram is backed-off to the unigram 
probability suitably scaled by a backed-off weight b(i) in order to ensure that all bigram 
probabilities for a given history sum to one. The unigram probability is computed using: 
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Where u is a constant called unigram floor count and N is the total number of words: 
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The backed-off weight follows from: 
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In which B is the set of all words for which p(i,j) has a bigram. 
 
These statistics were then used to create backed-off bigram language models for the training, test 
and evaluation sets, using the HDMan tools which translated the gathered statistics into HTK 
Standard Lattice Format, that are used for storing word models and multiple hypotheses from the 
output of a speech recognizer. For testing purposes a simple phoneme language model was also 
created. 

4.3.6 HMM prototype 
 
The last step in data preparation was the selection of a Hidden Markov Model topology for the 
acoustic models. Since a phoneme based recognizer was build a model represents a phoneme. A 
topology consisting start and end states states and three emitting states, using single Gaussian 
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density functions, was chosen. The states were connected in a left-to-right way, with no skip 
transitions. The model is shown in figure 4.4 
 

4321 5

 
Figure 4.4 - The acoustic HMM topology 

 
This is a rather simple model topology, but earlier experiments with three and five state models 
showed that the three state model performs as well, and in some cases even slightly better than 
the five state model, despite the fact that is has fewer parameters. These experiments showed that 
it works best to start with a simple model with only a few parameters and then increasing the 
complexity of the model as training progresses. So this is the approach that was also taken during 
this project. 
Another advantage of the simple model topology is, that it is easier to integrate with lipreading 
models, that are, due to the lower video frame rate, usually small. As described in part II such 
integration experiments were planned with the speech recognizer build here, that's why this 
argument did count at this stage. 
 
4.4 TRAINING 
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Figure 4.5 - Steps performed during training 
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With all data sources in place the actual training of the acoustic Hidden Markov Models could 
start. Figure 4.5 shows the steps that were taken to train a monophone speech recogizer. First, a 
set of acoustic models was created and trained. Next the system was made more robust by adding 
sophisticated silence models. Thereupon the system was trained a little more and Viterbi 
alignment was used to find the most likely transcriptions. These transcriptions were then used to 
train the monophone system. These steps will now be described in detail. 

4.4.1 Initial models 
 
As explained in chapter 2.5 training of HMMs can be done using the Baum-Welch algorithm, but 
to ensure proper and fast convergence of the models sensible initial values have to be calculated 
for the transitions parameters and the means and variances of the state density functions before 
the Baum-Welch algorithm can be used. HMMs are pretty sensitive to initial values so this stage 
is crucial for the entire process. 
Good initial models can be obtained by using the concept of a HMM as a generator of speech 
vectors. The training examples of the phones corresponding to the model whose parameters are 
to be estimated can be viewed as the output of this model. Thus if the state that generated each 
vector in the training data was know, then the unknown means and variances could be estimated 
by averaging all the vectors associated with each state.  
This principle can be implemented by using the Viterbi algorithm in an iterative scheme. In every 
iteration the Viterbi algorithm is used to find the most likely state sequence corresponding to 
each training example, then the HMM parameters are re-estimated. This process is repeated until 
no further increase in the log likelihood calculated by the Viterbi algorithm is obtained.  
Drawback of this algorithm is that it requires segmented transcription data to collect all examples 
corresponding to a certain model. As mentioned before, in the case of the Polyphone data 
segmented labels were not available, therefore an alternative initialization technique was used, 
called the flat start scheme. Which comes down to an uniform segmentation of the data, by 
computing the global mean and variance for each feature and setting all the Gaussians of all the 
models to have this mean and variance. For this purpose a tool called HCompVSet was written. 
This tool uses code from the HTK tool HcompV to compute the global mean and variance over 
the entire data set. Subsequently it creates definitions for each model in the set. 
Apart from the model set a variance floor vector was created which was equal to 0.01 times the 
global variance. This vector was used to set a floor on the variances estimated in subsequent 
steps. If a variance might fall below this floor it will be set equal to the floor variance. 

4.4.2 Embedded re-estimation 
 
Once the initial model set is available the re-estimation of the model parameters can start. 
Standard procedure would be to process each model in turn by selecting the training examples 
corresponding to the model and using the Baum-Welch re-estimation algorithm to update the 
models. The HTK tool HREst takes this approach. But this algorithm also requires segmented 
labels to locate the examples corresponding to a model and thus could not be used in the case of 
the polyphone recognizer. And actually, it was not even desirable to use the standard algorithm in 
this case, since the recognizer was supposed to recognize continuous speech and not isolated 
words or phonemes. Therefore an embedded re-estimation strategy was used, that simultaneously 
updated all of the HMMs in the system using all of the training data. In the embedded training 
algorithm each training utterance is processed in turn, the associated transcription is used to 
construct a composite HMM which spans the whole utterance. This composite HMM is made by 
concatenating instances of the phone HMMs corresponding to each label in the transcription. 
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The Forward-Backward algorithm is then applied and the sums needed to form the weighted 
averages are accumulated. When all of the training files have been processed, the new parameter 
estimates are formed from the weighted sums and the updated HMM set is created. 
This embedded procedure is implemented in the HTK tool HERest which performs exactly one 
iteration of the algorithm each time it is ran, in contrast to the standard procedure which iterates 
until convergence is reached. In the case of large data sets a single iteration of embedded training 
may take several hours to compute. Therefore, HERest provides many optimizations to speed up 
the training process. It is capable of pruning the A and B matrices using a beam search-like 
approach. By this means, a factor of 3 to 5 speed improvement and a similar reduction in 
memory requirements can be achieved. Furthermore HERest includes features to allow parallel 
operation where a network of processors is available. The training set can be split into separate 
chunks that are processed in parallel on multiple processors.  
For the initial models created in the last step the re-estimation process was performed twice. 
Pruning was not enabled during any of the re-estimation cycles in the entire process to ensure 
that all models were trained as optimal as possible given the data. But, although only one 
processor was used, the data set was split in eight subsets of about 2500 utterances each. This 
way the available processor time could better be utilized, as smaller continuous time spans were 
needed. Inspection of the source code of HERest revealed that it loaded its, rather large, scripts 
completely into memory. By splitting up the data sets the scripts were also split up in a number of 
smaller scripts. This reduced the memory usage of HERest and the time taken to load data in to 
memory, making it considerably faster. 

4.4.3 Fixing the silence models 
After the models received a little training and roughly started to take shape the system was 
adapted to make it more robust. One of the models created by HCompVSet, is the silence model 
sil. This model thus has the same topology as the other phones. But it is supposed to take care of 
periods of silence that can vary greatly in length, from a few milliseconds up to a few seconds, 
that is. Therefore a transition was added from the second state to the fourth and back from the 
fourth state back to the second. This had to be done after the system received some training 
during re-estimation, because otherwise the sil model might have absorbed a large part of the 
utterance.  
 

 
Figure 4.6 - the sp model is tied to the middle state of the sil model 
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Training sofar was done without the short pause model sp. This was done because of the special 
nature of the model. This model is meant to take care of optional silences between words, to 
make sure that these periods of silence are not assigned to other models during training, which 
would compromise these models. But if it were included right from the start in the training 
process exactly the opposite might happen. In some cases there may be no or not enough silence 
between words, then the sp model would pick up some vectors belonging to its neighboring 
phones. Since the sp model has a very short duration and practically all combinations of phones 
can occur as its neighbors. This may result in a very poor model that might suppress the 
performance of the whole system, as it is one of the most frequently occurring models. So in this 
particular case it is beneficial to explicitly define what type of data this model is supposed to 
represent. A nice way to do this, is to tell the system that the sp model resembles the silence 
model sil. This was realized by creating a one state sp model, which has a direct transition from 
entry to exit node, a so called tee-model. Its one and only state was then tied to the middle state of 
the silence model, so these two states now shared the same set of parameters, as shown in figure 
4.6. After fixing the silence models two re-estimation cycles were performed. 

4.4.4 Alignment 
 
Many words, particularly function words, have more than one pronunciation. In the construction 
of the phone level label files in the data preparation phase the first pronunciation encountered in 
the dictionary for each word was chosen. This was not necessarily the right pronunciation. To fix 
this problem the models created so far were used to create new transcriptions using 
pronunciations that fitted the acoustic data embodied in the models. This was done by 
performing Viterbi alignment. 
For each utterance a network including all alternative pronunciations in parallel was constructed, 
using the corresponding word level label file and the dictionary. The Viterbi decoder, 
implemented in the tool HVite then searched and segmented the best matching path through the 
network and constructed a lattice which included model alignment information. This lattice/path 
was then converted to a new segmented phone level transcription. Subsequently another two 
passes of the re-estimation procedure were performed. 

4.4.5 Monophone system 
 
Another final re-estimation cycle resulted in a set of models sufficiently trained to pass for a 
simple speech recognizer. To check the performance of this system the Viterbi decoding 
algorithm was used, implemented by the tool HVite, which uses a token passing approach similar 
to the one described in chapter two, to perform recognition on the development test set.  
The transcriptions output by the Viterbi algorithm were compared to the original word level 
transcription files using the HResult analysis tool, which uses a dynamic programming-based 
string alignment procedure that is fully interchangeable with the one used in the standard US 
NIST scoring package. The analysis tool computes the percentage of words correctly recognized 
as 

 100%HCorrect
N

= ×  (4.5) 

 
In which H is the number of labels recognized correct and N is the total number of labels. 
The word accuracy, which takes into account the fact that some of the words classified as correct 
may be in fact insertion errors, is computed by 
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 100%H IAccuracy
N
−= ×  (4.6) 

where I is the number of insertion errors. 
In this test and in all other tests conducted during development described below, the first half of 
the development test set was used. This comprises 240 utterances spoken by about 100 different 
persons. The subset contained 1060 different words, a bigram language model containing these 
words was used in these tests. 
 
Table 4.2 - recognition results monophone system 
System Percentage of words 

recognized 
Word accuracy 
percentage 

Initial model set after re-estimation (Ms2) 17.15% -77.17% 
System with fixed silence models (Ms6) 30.00% -48.75 
Final monophone system (Ms9) 38.34% -28.42% 
 
Table 4.2 shows the recognition results from the monophone system. To show the progress that 
has been made during the various steps the results from earlier steps are also included. Although 
the improvements made were considerable, the final systems recognized twice as much words as 
the initial system and the word accuracy has improved in a similar fashion, the overall results 
were very modest. The accuracy was even negative. Slight improvements could have been 
realized by further re-estimation cycles, but the bottleneck of this system is that it is a rather 
simple continuous speech recognizer. To obtain significant improvement in performance more 
advanced techniques to refine the system were necessary. These refinements are the subject of 
the next section. 
 
4.5  REFINEMENT 
The monophone system has a number of shortcomings. In the first place, all of the models have 
the same shape. Further, the system does not take into account linguistic effects like 
coarticulation, since it uses phoneme units, that are too fine grained to model these effects. 
Finally, the system does not make up for possible unbalances in the training data, some models 
may receive much training, while others may receive only little training because they only have a 
small number of examples. There are a number of ways to refine a speech recognizer system: 
mixture component splitting, HMM cloning, generalized parameter tying and data driven or tree 
based clustering. To improve the system a combination of several of these techniques was 
applied.  
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Figure 4.7 - Steps performed to refine the system 
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Figure 4.7 shows the sub-phases that were performed in this phase. Multiple mixture models 
were created to make up for model inaccuracies. Triphone models were created to better model 
coarticulation. These model sets were merged and the resulting model was fine-tuned to find the 
optimal combination of acoustic models and language model. 

4.5.1 Multiple Mixtures 
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Figure 4.9 Steps performed to create muliple mixture models 

 
The monophone system used Gaussian distributions to model the ‘observation functions’, but as 
a matter of fact these do not adequately reflect the speech process, They are not capable of 
modeling the variations in speech that are due to, for example, the difference in pitch between 
male and female voices. To overcome this problem more realistic density functions have to be 
found. Alternatively this can be achieved by using a large number of states based on simple 
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densities like the Gaussian density. The latter option implies that an appropriate topology for the 
phone models has to be found, which is not an easy task. The first option can be achieved by a 
range of techniques from multivariate statistics, but an interesting solution lies in the use of 
Gaussian mixture densities, which can approximate any continuous probability density function 
in the sense of minimizing the error between two density functions. The Gaussian mixture 
density function is composed by taking the superposition of a number of Gaussian densities each 
with its own mean and variation and its own mixture weight, as shown in figure 4.10. 
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Figure 4.10 - a multiple mixture Gaussian 
 
The observation probabilities are thus computed by 
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The big advantage of this approach is that with only some slight modifications the Baum-Welch 
algorithm can also estimate the mixture component weights cim, because each M-component 
Gaussian mixture state can be viewed as a set of single Gaussian substates. Each with its ingoing 
transitions weighted by the corresponding mixture weight and its outgoing transition parameter 
equal to one, as can be seen in the figure below. 
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Figure 4.11 - a Gaussian mixture represented as a set of single Gaussians 
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Different models and different states no longer have to have the same type of distribution. 
Therefore multiple mixture systems may improve recognition results considerably. However, 
mixture incrementing is not without dangers, the more mixtures are used the better the models fit 
to the training data, in the end this may result in models that overfit the training data and 
generalize poor to other data. During mixture incrementing some component weights may 
become very small, resulting in defunct mixture components. Defunct mixtures often indicate 
that not enough training data is available to further increase the mixtures of a model. 
So the best strategy to adopt here is to increment the mixture components in stages, by 
incrementing by one or two mixtures a time, then re-estimating, checking recognition results on a 
test data set and incrementing the mixtures again until the optimum is found. 
 
In figure 4.9 the steps that were performed to build a multiple mixture monophone system are 
shown. Taking the single Gaussian monophone system from the last section as a basis the 
mixtures were incremented in seven steps until a 15-mixture system was obtained. This was done 
by a script for the HMM editor HHEd. The script processes each state of the all the models one 
by one, for the distribution in a state it repeatedly splits the mixture with the largest weight until 
the required number of components is obtained. Splitting was performed by copying the mixture 
and dividing the weights of both copies by 2. The means were offset by plus or minus 0.2 times 
the variance to prevent that one component would be floored while the other would remain as 
before. To prevent defunct mixtures a floor mixture weight was defined, mixture weights were 
not allowed to fall below this floor. But during the first steps it turned out that the number of 
floored mixtures increased rapidly. To reduce this number and prevent overfitting the data the 
minimum number of examples necessary to allow for mixture incrementing of a model was also 
incremented in each step. 
 
Table 4.3 monophone mixture systems 
Number of 
mixtures 

Percentage of words recognized Word accuracy percentage 

2 40.11% -25.42% 
3 42.70% -16.33% 
5 45.74% -7.57% 
7 47.92% -1.81% 
10 51.54% 4.77% 
12 54.50% 9.54% 
15 56.81% 15.51% 
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4.5.2 Context dependent models (triphones) 
 

triphone
models

ts1

two training
iterations of
embedded

training

triphone
models

ts3

Data driven
clustering of

triphone models

tying of
transition
matrices

triphone
model

ts4

until desired
number of
clusters is
obtained

triphone
model

ts7

Increase
number of

mixtures to N

Iterate
(N=2,3,5,7,10,

   12,15,17)

two training
iterations of
embedded

training

Multiple
mixture
triphone
system
tNm3

Multiple
mixture
triphone
system
tNm1

creation of
triphone

transcriptions

two training
iterations of
embedded

training

Final set of
monophone

 models
ms9

clone
monophone
models into

triphone models

triphone
transcriptions

aligned
phone

transcriptions

 
Figure 4.12 - the creation of multiple mixture triphone models 
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The phone models described in the systems so far did not depend in any way on their context. A 
phoneme is assumed to sound more or less the same in every situation. Actually, this is not the 
case since in normal speech, articulations are made quickly and consecutively and therefore 
modified by neighboring articulations, as can be seen in figure 4.13. 
 

                          a)   b)  c)  
Figuur 4.13 - the phoneme b and corresponding closure bc in words (a) big, (b) rubber and (c) tube 

 
To capture these effects, called coarticulations, models are needed that take into account the 
context of a phone. There are many ways to model coarticulations, like for example, modeling all 
context dependent phones, called allophones by using linguistic theories. But most present-day 
recognizers have settled on using triphones. Triphones model the context by taking into 
consideration the left and right neighboring phones. If two phones have the same identity but 
different left or right context they are considered as different triphones. 
Before building a set of context dependent models it is necessary to decide whether cross-word 
triphones or word internal triphones are to be used. Cross-word triphones are more powerful, 
since they also take into account coarticulation between words, but because of the large number 
of possible different cross-word triphones they require large amounts of training data. There are 
far less word internal triphones, as words are not made up from random phone combinations, so 
their training data requirements are more modest, but still huge. 
In this project it was decided to use word internal triphones. First triphone transcriptions were 
created that were needed to train the triphone system. This was done by translating the aligned 
transcriptions created in section 4.4.4 and by replacing the start and end phone in a word by a bi-
phone and all other phones by triphones. The sp, sil and mn phones remained monophones. The 
triphone labels were of the form:  
 

<left context>-<phone name>-<right context> 
 
For example the transcription of the word het became:  
 

h+e h-e+t e-t. 
 
As a side effect of this process a list containing all triphones was created. This list was used to 
create a script for the HMM editor HHEd, that cloned each HMM as often as possible and 
renamed it to a triphone. So, at the end of this process all triphones were exact copies of the 
corresponding monophone. 
This system contained 8570 triphones, each with 3 states and transition matrix and state 
distributions belonging to it, the number of parameters in this system is thus enormous. To deal 
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with this problem the number of parameters in the system had to be reduced, to find the right 
balance between compactness and acoustic accuracy of the individual models. 
Parameter tying can do this, when two or more parameter sets are tied, all the owners of the tied 
set share the same set of parameter values. Figure 4.6 already showed how the states of two 
models were tied. The figure below shows at which points models can be tied. 
 

HMM

State 1 State nState2 Transition
matrix

Mixture 1 Mixture mMixture 2

Mean
vector

Covariance
Matrix  
Figure 4.14 - Potential tie points 

 
For context dependent models it can be beneficial to share one transition matrix across all 
variants of a phone rather than having a distinct transition matrix for each. And applying the 
argument that context will not greatly affect the center state of triphone models, one way to 
reduce the total number of parameters without significantly altering the models’ ability to 
represent the different contextual effects might be to tie all of the center states across all models 
derived from the same monophone. 
Although these explicit tyings can have some positive effect they are not very satisfactory. Tying 
all center states is too severe and the problem of undertraining for the left and right states 
remains. Therefore most triphone recognizers use a clustering technique to decide which states to 
tie. Basically there are two mechanisms: Data driven clustering and Tree-based clustering. 
Data driven clustering uses a top-down hierarchical clustering procedure: Initially all states are 
placed in individual clusters. The pair of clusters which when combined would form the smallest 
resultant cluster are merged. This proces repeats until the size of the largest cluster reaches a 
certain threshold. The size of the clusters is defined as the greatest distance between any two 
states. A weighted Euclidean distance between the means of the (single) Gaussians is used. 
On completion of the the clustering and tying procedures many of the models may be effectively 
identical, they are then, so-called generalized triphones. This effect can be exploited to reduce the 
number of physical HMM’s by tying complete models. The resulting models are examples of a 
hybrid acoustic / linguistic sub-word models, mentioned in chapter 2.3.6. 
 
Tree-based clustering uses phonetic knowledge to come to a clustering. A phonetic decision tree 
is constructed in which a yes/no question is attached to each node  
Initially all states are places at the root node of the tree. Depending on each answer, the pool of 
states  is successively split and this continues until the states have reached the leaf nodes. All 
states in the same leaf node are then tied. Figure 4.15 shows how the middle states of all 
triphones corresponding to phone /at/ are tied using a decision tree. 
Tree-based clustering may lead to better results than data-driven clustering, but this is only true 
when enough and the right phonetic questions are formulated. This requires a lot of linguistic 
knowledge and experience, as this was not the subject of this project it was decided to use data 
driven clustering, in combination with tying of the transition matrices to allow for model tying. 
To find the right balance between the number of models and their modeling accuracy about 15 
different clusterings were tried, using different clustering-thresholds to find the right number of 
triphones. Out of these clusterings five different systems were build and each of them was re-
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estimated twice. For each system first the transition matrices of the triphones that corresponded 
to the same monophone were tied. 

s-at+d

d-at+n

s-at+n
etc.

n y

y

yn

nn y

R=Consonant?

L=Nasal? R=Nasal?

L=Stop?

States in each leaf node are tied

Cluster centre states of phone /at/

 
Figure 4.15 - Decision tree-based clustering 

 
Then the models were clusters as described above and finally models that were effectively 
identical, because their states were in the same clusters and they had the same transition matrix, 
were tied. All this was done by a script for the HMM-editor HHEd. These scripts are rather long 
and complicated because all states and matrices that participate in the clustering have to be 
specified explicitly. Therefore a program, TriScr, was written that, given a list of triphone names 
and clustering parameters, automatically creates the script. 
 
Table 4.4 - triphone systems 
Triphone system Number of 

triphones 
Percentage of 
words recognized

Word accuracy 
percentage 

Ts7c1 101 40.44% -25.46% 
Ts7c2 563 46.48% -10.28% 
Ts7c3 1050 49.57% -4.77% 
Ts7c4 2526 54.92% 5.68% 
Ts7c5 8570 62.32% 18.59% 
 
As can be seen from table 4.4 the results get better as more triphones are used, but unfortunately 
this also means a larger model set. The size of Ts7c5 system, which used no clustering at all, was 
over 30 Mb, while the size of the Ts7c1 systems was only 518 Kb. Furthermore, in the Ts7c5 
system there were more than 1000 models which had only one example in the training data, so 
the risk of overtraining was quite real with this system. The Ts7c4, which booked fairly reasonable 
results, had at least three models per cluster and in most case more. Each cluster had at least four 
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examples in the training data. This system seemed to provide a good balance between the 
number of parameters and the modeling accuracy. It contained less than one third of the original 
triphones, but was still large enough to model different contexts, therefore it was chosen to be 
further developed during the subsequent steps. 
However, before these steps could be performed one problem had to be solved. A limitation of 
the data-driven clustering procedure is that it does not deal with triphones for which there are no 
examples in the training data, this may give rise to problems during recognition. This may be 
avoided by careful design of the training database (as long as word-internal triphones are used) 
but a little research showed that this was not an option in this case. The training data contained 
8570 triphones out of 10205 in the dictionary. Using parts of the testing or evaluation database or 
relaxing the data selection requirements would only partially solve the problem, as the evaluation 
data set and the test data set together only contained 394 additional triphones. And doing so 
would of course have introduced new problems, since the test results would then be biased. Even 
if this would have helped this solution is still not very satisfactory because there is always the 
possibility that one day in some recognition job a triphone may show up that is not even in the 
dictionary. Then it would not be reasonable to claim that the resulting recognizer would be a 
general continuous speech recognizer. 
To overcome these problems an approach that could be described as ‘backed-off triphone 
approach’ was thought out. In this approach the original monophone models augment the 
triphone models. During word network construction triphone models are used whenever 
available, otherwise the corresponding monophone is used. This is implemented by tying all 
triphones that have no model of their own to the corresponding monophone. This was done by 
manually manipulating the HMM definitions since there are no tools that support this particular 
type of tying. Essentially, the monophones became generalized triphones. But they are less 
specialized than the other generalized triphones because they contain all corresponding triphones 
that are now in other sets. Actually they are trained on all the triphones but the ones they 
represent, but being monophones they lack most context information, so they are general enough 
to cover the unseen triphones. This results in a robust recognizer that uses triphones most of the 
time and does not break down when an unknown triphone is encountered. 
As with the monophone system the modeling accuracy of the generalized triphone system can be 
improved by incrementing the mixture components to get better density functions. This was 
done for the Ts7c4 triphone system. Once again the mixtures were incremented by two or three 
at a time, with two re-estimation cycles between increments. The minimal number of examples 
needed to update a model was increased in each step to reduce the number of floored mixtures 
and prevent overfitting. 
 
Table 4.5 Multiple mixture triphone systems 
Number of mixtures Percentage of words recognized Word accuracy percentage 
2 56.27% 8.02% 
3 58.82% 15.63% 
5 61.00% 22.21% 
7 64.05% 26.82% 
10 66.64% 30.93% 
12 68.61% 34.92% 
15 70.55% 38.46% 
17 71.00% 39.57% 
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4.5.3 Fine tuning 
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Figure 4.16 Fine tuning of the final system 

 
Once the models were sufficiently trained the complete system was fine tuned using a held-out 
test set, the steps taken are shown in figure 4.16 . The relative levels of insertion and deletion 
errors can be controlled by adding a fixed word insertion penalty p. A negative value of p results 
in less word transitions. A large positive value of p would give many short words in the output.  
These kind of errors and substitution errors can be further controlled by using a grammar scale 
factor s. Every language model log probability x will be converted to sx-p before being added to 
the tokens emitted from the corresponding word-end node. The grammar scale factor regulates, 
in a way, the relative influences of the language model and the acoustic model. A grammar scale 
factor bigger than one reduces the number of insertion errors and tempers the relative influence 
of the language model with respect to the acoustic model. A grammar scale factor smaller than 
one increases the relative influence of the language model. 
The final acoustic model used was a combination of the 17-mixture generalized triphone set and 
the 15-mixture monophone set. Varying the word insertion penalty did not improve the overall 
recognition results, in fact the system proved rather insensitive to this value. Large positive or 
negative insertion penalties resulted in a decrease in performance of about 2%. The grammar 
scale factor had a more positive effect. Increasing the grammar scale factor improved the 
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recognition results considerably. Its maximum was found at s = 9, giving the following results, 
for the final system: 
 
Table 4.6 – recognition results  
Percentage of words correct 95.27% 
Word accuracy percentage 89.59% 
Percentage of sentences correct 38.43% 
 
4.6 EVALUATION 
As can be seen in the last section the generalized triphone multiple mixture system performs 
rather well. Its results improved from 17% word recognition in the first step of the development 
process to 95% in the final step. The improvements in word accuracy were even more dramatic; 
the fist set of trained models had a word accuracy of -77.17%, while the final systems reached 
89.59%. But all these results are based on a 1000 word test set, that was used during the process 
to decide which steps to take and to tune parameters like the cluster size in the triphone set, the 
number of mixtures and the grammar scale factor. So these results are in a way compromised and 
likely to be a bit too optimistic. To test the robustness of the system and to see how well it will 
perform on other data a number of evaluation tests was run. 
First recognition was performed on part of the evaluation test set created in the data selection 
step. This set contained 100 sentences, each of which was spoken by a different person. The 
bigram wordnetwork used contained 5017 different words. The test gave the following result: 
 
Table 4.7 – recognition results  
Percentage of words correct 93.55% 
Word accuracy percentage 88.76% 
Percentage of sentences correct 32.56% 
 
So the recognizer generalizes very well to speakers it was neither trained nor tuned on even when 
al larger word network is used.  

4.6.1 Using a different data test set 
Although the evaluation data did not occur in the training or development test set it also came 
from the Polyphone database, so it was recorded under similar conditions as the other two sets, 
in particular it was recorded over a telephone line. As mentioned in 4.1 the speech recognizer 
should recognize speech recorded by a PC microphone and it should be easily adaptable to 
specific tasks and applications. To test how well the recognizer generalizes to other data and 
other environments a small dataset was recorded at TU Delft using a digital video camera. This 
data set will be described in more detail in chapter 6, for the moment the following information 
is sufficient. The part of the data set used consisted of 5 different persons, all computer science 
students at TU Delft, four male students and one female student. From each person 4 or 5 
recording sessions were used. Each session contained 23 sentences, ten of which were 
phonetically rich sentences, similar to those in the Polyphone database. The other sentences 
contained a sequence of short words, a sequence numbers, a spelled word or a command from a 
telebanking application that adhered to the grammar of Figure 2.5. 
The dataset was split in a training set containing about 500 utterances, that is, about 100 per 
person and a test set containing 30 utterances. All utterances were stored in the CITT A-law 
audio format and subsequently MFCC feature vectors were extracted in the same way as 
described in section 4.3.2. First the system was tested without any further training, which gave 
the following results: 
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Table 4.8 – recognition results 
percentage of words correct: 87.30%    
word accuracy percentage 84.59% 
percentage of sentences correct 36.36% 
 
Although still reasonable, the performance clearly decreased in comparison to the performance 
obtained in the last two sections. These results were to be expected, since the data set was 
recorded using a video camera in a quiet laboratory, while the Polyphone on which the system 
was trained was recorded over a normal telephone line. So the ambient noise, which is modeled 
in the acoustic HMMs, will be quite different, which means that the acoustic vectors in the data 
set are still similar to those produced by the corresponding HMMs, but there is some distortion, 
causing some classification mistakes. 
To make up for this effect, the system was adapted to the new situation by re-estimating once, 
using the training part from the recorded data set. This time recognition produced the following 
results: 
 
Table 4.9 – recognition results 
percentage of words correct: 96.76%    
word accuracy percentage 95.41% 
percentage of sentences correct 60.61% 
 
The performance thus increased considerably. Actually, it is better than any of the results 
obtained in earlier tests, especially the word accuracy and percentage of correct sentences are very 
good. The explanation for these results lies in the fact that the system not only adapted to the 
background noise in this data set, but it also adapted to the voices of these five persons. In fact 
the system has become a speaker dependent system. the voices it is adapted to are recognized 
very well, but now recognition of other speakers might give some trouble. To show these effects 
two more tests were performed. In the first test the system was adapted using only 4 different 
persons. Recognition was then performed using data from the fifth person. The results below 
show that although the performance is not as good as the ones in the previous test, the system is 
still better than the unadapted system. So it adapted to the new environment. Since the person 
used in the test was not part of the training set, the system is still capable of generalizing and 
performing speaker independent recognition. 
 
Table 4.11 – recognition results 
percentage of words correct: 91.80%    
word accuracy percentage 93.44% 
percentage of sentences correct 47.62% 
 
 
To show that the system adapted to the new environment recognition was performed once again 
on the Polyphone test set using the system that was adapted to four persons, giving the following 
dramatic results: 
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Table 4.12 – recognition results 
percentage of words correct: 32.16%    
word accuracy percentage -21.44% 
percentage of sentences correct 36.36% 
 
 
Thus the system no longer recognizes the data it was developed with, it has completely adapted 
to the new environment. That the results are this bad is due to the fact that the polyphone data 
contains much more noise, since it is recorded over a telephone line, than the data set used here. 
Recognizing the PC recorded data with an unadapted Polyphone trained system worked because 
from the systems point of view these were just very high quality recordings. But from the point 
of view of the adapted system the polyphone data set contains very noisy recordings, indeed 
many sounds were classified as mouth noise. 
As was mentioned, this set also contained sentences that adhered to the telebanking grammar 
from chapter 2. Using the system that was adapted to four persons recognition was performed on 
these sentences. A word network that implements the grammar from figure 2.5. was used. This 
gave rise to the following results: 
 
Table 4.13 – recognition results 
percentage of words correct: 75.30%    
word accuracy percentage 72.59% 
percentage of sentences correct 68.00% 
 
One would expect the percentage of correct words to be higher as only a small vocabulary is used 
and the syntax of the sentences is constrained. A sentence by sentence inspection of the results 
showed what was going on here. In most cases the system did recognize the right sentence, but 
when it made a mistake it often recognized a completely wrong sentence in which only a few 
words were correct. So about 25 percent of all sentences are responsible for most word errors.
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PART II 

5 MODELS FOR MULTIMODAL RECOGNITION  
 
This chapter explains why the inclusion of multiple modalities in a speech recognizer may lead to a system 
that is more robust in noisy environments. The problems in combining multiple modalities are described 
and a number of ways to integrate data from different modalities in a Hidden Markov based speech 
recognizer is presented. 

 
5.1 INTRODUCTION 
 
The speech recognizer described in the last chapter performed quite well, but it was tested on 
audio recordings that did not contain any disturbing background noise or background speech. 
When there are additional audio sources the performance of the recognizer rapidly degrades. 
This behavior is common to all present-day ASR systems. The problem is that they have no way 
of separating the speech signal from other sounds. When speech from multiple persons is picked 
up it is treated as if it were spoken by one person. However, most real-life environments where 
speech recognizing applications would be useful are by nature very noisy. For example, currently, 
a number of speech recognizing telephone inquiry systems is running, these systems do not only 
have to cope with noise introduced by the telephone channels but as cellular phones become 
more common also with all kinds of background noises. 
To see how ASRs can be made more robust to noise we might want to take a look at the way 
humans process speech. This seems to be a multimodal process. For example, in a noisy 
environment people tend to look at the faces of their opponents to understand what is said. This 
suggests that humans are capable of lipreading. This is also shown by the fact that most people 
find it rather irritating to watch dubbed movies because the sounds produced do not match the 
lip movements. 
Research has shown that people do indeed use visual information on lip movements to 
understand speech. This is most clearly demonstrated by the McGurk effect, where a spoken 
sound /ga/ is superimposed on the video of a person uttering /ba/. Most people perceive the 
speaker as uttering sound /da/. The visual modality is known to contain some complementary 
information to the audio modality and what is more important it is not affected by any noise in 
the environment. 
This suggests that speech recognition may be improved by including information on lip 
movements, that is, by combining the speech recognizer with an automatic lip-tracker. It might 
also be beneficial to include information from other modalities as well, for example gestures, 
facial expressions or simply information produced by an other speech-preprocessing tool. 
The question that remains is how additional data streams from different modalities can be 
integrated in the Hidden Markov framework used in speech recognition. The second part of the 
report presents a number of models that are capable of handling multiple modalities. In chapter 
five the models are described and in the next chapter some experiments on multimodal 
integration are discussed. 
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5.2 PROBLEMS IN COMBINING MULTIPLE MODALITIES 
 
There are five main problems in combining multiple modalities: 
 
1. The signals may have different dynamic ranges. For example the duration of a sound of a 

phoneme is usually shorter than the duration of the corresponding lip movement. 
2. There may be a time offset between the signals. For example in lip reading the video signal 

usually start before the audio signal. This offset may be as large as 120 ms, almost the 
duration of a phoneme. 

3. There may be a different number of distinguishable classes and therefore different model 
topologies. For speech phonemes constitute a good set of classes but for other modalities 
syllables, words or even phrases may be natural classes, for example gestures. 

4. The signals may be sampled at different rates. In particular, video sample rates are usually 
slower than audio sample rates. 

5. Some modalities may be more reliable than others. For example audio contains much more 
information on a speech signal than does visual speech, even in a noisy environment. In some 
cases the reliability may change dynamically over time. e.g. If people start talking in the 
background audio recognition may become less reliable. 

 
5.3 CATEGORIES OF MULTIMODAL INTEGRATION 
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Figure 5.1 – possible integration points 

 
There are three categories of multimodal integration. They differ in the point of the process 
where integration takes place. These constitute: 
 
1. Feature fusion - features are extracted from the raw data and are combined before recognition. 
2. Decision fusion or model fusion - the integration takes place within the HMM, at various possible 

stages. For example state level, phone level or word level. 
3. Late integration - The different modalities are processed by different recognizers and 

subsequently their outputs are combined to get the final result. 
 
Each of these categories will now be discussed in detail. 
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5.4 FEATURE FUSION  
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Figure 5.2 – Feature fusion 

 
In feature fusion, features vectors from the different modalities are first extracted from the raw 
signals using appropriate preprocessors, like a LPC-decoder in the case of speech recognition, 
and then concatenated to generate a single vector on which an HMM based recognizer can be 
trained in the normal way. 
In many cases, the frame rates of the different modalities do not have to be the same. As pointed 
out above video frame rates are typically lower than audio frame rates. This is usually 
circumvented by inter-frame interpolation. 
A problem with this fusion technique is that it can lead to rather high dimensionalities, which can 
cause inadequate modeling because of the large number of parameters that are introduced this 
way. To avoid this problem more advanced methods seek to reduce the size of the concatenated 
vectors before training HMMs on it. This can be achieved by projecting the feature space to a 
lower dimension by means of statistical techniques like Linear Discriminant Analysis (LDA) or 
Principal Component Analysis (PCA). Alternatively a feature selection method from the field of 
pattern recognition can be used to find a subset of the features having the most discriminative 
power. 
Training of a model on concatenated feature vectors can be done in two ways. The system can be 
trained from scratch or separate systems for each modality can be trained and then integrated to 
form the multi-modal system. Which can then further be trained using the concatenated vectors. 
The latter approach only works if the separate systems have the same model topology and no 
dimension reduction is performed after concatenating the vectors. But in can be advantageous if 
recognizers for one or more modalities are already available or if one of the modalities needs far 
more training or more training data to produce adequate models than others. 
Feature fusion is a nice simple technique that uses the same type of models and algorithms as 
normal speech recognition. But is has some significant drawbacks.  First of all it assumes vector 
synchrony between all its input data streams. Therefore it is not very well suited to handle signals 
with different dynamic ranges or with a time offset. The HMM concept is capable of partially 
catching such effects, given enough training data, but this usually results in weak sub-optimal 
models as most variations will be modeled as noise. 
Secondly, the number of distinguishable classes and the model topology of the units in these 
classes have to be the same for each modality or the classes of one modality have to be 
superimposed on the others, possibly resulting in poor modeling. 
Thirdly, this approach does not explicitly model the reliability of each modality. The influence the 
modalities get is mostly based on the relative lengths of their vectors. 
Furthermore, the feature fusion technique cannot handle different classifications of different 
modalities as it uses a common recognizer for all of them. Whether this constitutes a problem 
depends of course on the application. The same is true for the property of the feature fusion 
algorithms, that they do not make any conditional independence assumptions between 
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modalities. The decision fusion techniques in the next section, on the other hand, do make this 
assumption. 
 
5.5 DECISION FUSION 
In decision fushion separate data streams are put into the recognizer. The integration takes place 
within the Hidden Markov models. This can be done at various levels, like the state level, the 
model level or for instance the phoneme or word level. 
 
There are two basic kinds of couplings obtainable by extending the HMM framework. The 
weakest is when two independent processes are nominally coupled at the output, superimposing 
their outputs in a single signal. This is called the source separation problem, signals with zero 
mutual information are overlaid in a single channel e.g. different voices at a cocktail party or 
different instruments in a symphony.  
 

?

b)
 

 
Figure 5.3 – a) nominally coupled b) dependent processes 

 
In stronger couplings, the processes are dependent and interact by influencing each others' states. 
In this situation, called sensor fusion, multiple channels carry complementary information about 
different components of a system, e.g. acoustic signals from speech and visual features from 
lipreading.    
Many problems tend to lie between the two extremes. Two processes may interact without wholy 
determining each other. Each process has its own internal dynamics and is influenced by others, 
possibly causally. A variety of architectures have been proposed in literature, differing in the way 
they model the influences of the processes on each other.  
In this section a number of these models will be presented. The Cartesian product Hidden 
Markov model is probably the most intuitive approach but unfortunately also the most naive 
approach. The Factorial Hidden Markov model is an example of a weak coupled system while the 
Linked Hidden Markov model, the Hierarchical Hidden Markov model and the Coupled Hidden 
Markov model exhibit much stronger couplings. The Multistream and Product Multistream 
Hidden Markov models lie somewhere in between, modeling processes that are independent 
between certain boundary points. 

5.5.1 The Cartesian product Hidden Markov model 
 
The first solution that comes to mind to integrate two or more data streams that can be modeled 
using HMMs is to build one large model having the Cartesian product of all the states of the 
separate models as its states. This is shown in figure 5.4 But this naive solution is rarely 
satisfactory. The size of the model explodes, leading to high computation costs and the huge 
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amount of parameters in this model leads to overfitting. Often there is insufficient data for a 
large number of states, usually resulting in oversampling. 
Even with the correct number of states and vast amounts of data, large HMMs often train poorly 
because the data is partitioned among states early and possibly incorrectly during training. The 
Markov independence structure then ensures that the data is not shared by states, thus 
reinforcing any mistakes in the initial partitioning. Systems with multiple processes have states 
that share properties and thus emit similar signals. The Markovian framework works against this 
systematically. 
 

321
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2,C2,B2,A

3,C3,B3,A

 
Figure 5.4 - two 3 states HMMs combined in a Product HMM 

 
To model K processes each with N states would result in a product HMM with NK composite 
states. The time complexity of the dynamic programming algorithm that lies at the heart of the 
forward-backward and Viterbi algorithms then becomes O(TN2K), thus exponential in the 
number of states of the separate models. This becomes quickly intractable as the number of 
datastreams increases. Things are made worse by the fact that product HMMs tend to be densely 
connected.  
 
All models in this category try to improve on the Cartesian Product HMM by placing constraints 
on the states or the transitions of this model. This results in models with compositional state 
representation that are more compact and clearer than the Cartesian Product HMM and which 
offer better modeling accuracy. Most techniques are only capable of improving on the 
computational costs of the Product HMM by resorting to approximations of the exact 
algorithms. 
 

5.5.2 The Factorial Hidden Markov model 
 
Factorial Hidden Markov models extent HMMs by allowing the modeling of several random 
processes that are loosely coupled. They were first described by Gharhamni and Jordan [28], who 
also provided several algorithms to efficiently learn the parameters of the models. In the original 
description FHMMs were mainly used as an advanced mathematical tool for modeling time 
series. But as the focus here is the applicability of FHMMs to multimodal speech recognition, 
they will be described as an extension to HMMs. To see how the Factorial Hidden Markov model 
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extents the HMM it is convenient to use a different representation of HMMs, that shows the 
evolution of the state sequence, and the accompanying observations, with time as depicted in 
figure 5.5. The circles in the picture represent states while the boxes represent the output a state. 
 

t=1 t=5t=4t=3t=2  
Figure 5.5 - HMM depicted rolled out in time - a dynamic belief network 

 
Essentially, this is a dynamic belief network. Each node only depends on its direct parents, as 
indicated by the arrows. Now the Factorial HMM arises by forming a dynamic belief network 
composed of several layers, shown in figure 5.6.  
 

 
Figure 5.6 - FHMM as DBN 

 
Each layer has independent dynamics but the output observation vector depends upon all the 
state variables of the current time step. This is achieved by letting the states be represented by a 
collection of state variables: 
 (1) (2) ( ), ,..., K

t t t tq q q q=  (5.1) 
 
Where the superscript is the layer index, with K being the number of layers. Each of these sub-
states q(i) can take on N(i) values. For simplicity assume that N(i) = n for all i, rather than assuming 
that the number of possible states within each layer is different, although the model can easily be 
generalized to include these cases. 
The complete state space now consists of the cross product of these sub-state variables, hence 
the name factorial Hidden Markov models. Placing no constraints on the state transition 
structure would result in a NMxNM transition matrix that would be equivalent to the naive 
cartesian product HMM, with the same exponential time complexity.  Therefore the underlying 
state transitions are constrained by letting a sub-state depend only on its direct predecessors in 
the same layer, as in simple HMMs, and letting it evolve independent of sub-states in other layers. 
Thus making the different layers completely independent. Each of them forms a basic HMM, as 
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was already shown in figure 5.6. The transition probabilities for the entire system are now 
computed by taking the product of the transition probabilities: 
 

 
1

( ) ( )
1 1

1
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The transition structure for this system can be represented as K distinct NxN matrices.  
In a factorial HMM the observation at time step t depends on all the state variables at that time 
step. For continuous observations a possible form of the distribution function, as proposed in 
the original paper by Jordan, is linear Gaussian, i.e. the observation function ( )tb o is a Gaussian 
whose mean is a linear combination of the state means. 
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In which ( )tk qµ is the mean of layer k given the meta-state qt and U is a common tied covariance 
matrix.  
A second method to compute the probability of the observation is simply the product of the 
Gaussian distributions of each layer. This is called the streamed method, as each layer of the 
FHMM now models a stream of the observation vector. 

 ( ) ( )

1
( ) ( , , )t t

K
k q k q

t t
k

b o o µ
=

=∏ UN  (5.4) 

 
Estimation of the parameters of a factorial HMM can be done via the expectation maximization 
algorithm, Baum-Welch algorithm in the case of HMMs, that fixes the current parameters and 
computes posterior probabilities over the hidden states (E step). And then uses these 
probabilities to maximize the expected loglikelihood of the observations as a function of the 
parameters in the M step. 
The M step for factorial HMMs is simple and tractable. The calculations for the initial values 
π and for the state transition matrices are even identical to the ones in the Baum-Welch 
algorithm. But, unfortunately, the exact E step for factorial HMMs is computationally intractable. 
This is due to the fact that the hidden state variables at one time step, although marginally 
independent, become conditionally dependent given the observation sequence. Since ( )tb o  is a 
function of all the state variables, the probability of a setting of one of the state variables will 
depend on the settings of the other state variables. The naive exact algorithm of translating the 
factorial HMM into an equivalent HMM with KN states and using the forward-backward 
algorithm, has time complexity O(TN2K) like the Product HMM and is thus intractable. 
The problems of finding the most likely model or the most likely path, which is really a set of 
sub-paths in this case, through a model, are intractable for the same reason. There are several 
approximations proposed in literature using for example a Monte Carlo sampling procedure or an 
approximating of the distribution function over the hidden variables ( )t tP q o by a tractable 
distribution ( )tQ q assuming that all state variables are independent. In the latter group of 
algorithms there exists an approximation that is both tractable and preserves much of the 
probabilistic structure of the original system. In this scheme the factorial HMM is simply 
approximated by K uncoupled HMMs. Within each HMM efficient and exact learning is 
implemented via the classical forward-backward algorithm. 
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A dynamic programming procedure to compute the Viterbi path using this approach still requires 
O(Tn2n) steps, because corresponding subpaths have to be found in each layer of substates. As a 
practical alternative an iterative approach can be used that returns a possibly suboptimal path in 
polynomial time. The iteration is based on a subroutine that finds the optimal path of hidden 
states through the nth layer given fixed values for the hidden states of others. The effective size 
of the state space collapses from nn to n and the optimization with respect to the remaining 
hidden states can be performed in O(TKn2) steps. 
The chainwise Viterbi algorithm for approximately computing the full Viterbi path of the 
factorial HMM is obtained by piecing these subroutines together in the obvious way. First an 
initial guess is made for the Viterbi path of each component HMM by ignoring the 
intercomponent correlations and computing a separate Viterbi path for each chain. Then the 
chainwise Viterbi algorithm is applied, in turn, to each of the component HMMs. After the 
Viterbi algorithm has been applied n times, or once to each chain, the cycle repeats. Each 
iterations results in a sequence of hidden states that is more probable than the preceding one. 
Hence, this process is guaranteed to converge to a final though possibly suboptimal path. The 
chainwise Viterbi algorithm is not guaranteed to find the truly optimal sequence of hidden states 
for the factorial HMM. The approximation is premised on the assumption that the model 
describes a set of weakly coupled time series, in particular, that the auto-correlations within each 
time series are stronger that the cross correlations between them. 
The Factorial HMM is an example of a nominal coupling of different data sources. Its separate 
streams evolve completely independent from each other, whether this is appropriate or not 
depends of course on the processes that are to be coupled. For example, in [29] it is shown that 
this model is not appropriate for integrating speech recognition and automatic lipreading, since 
there are too many causal dependencies between these signals. The layers of the Factorial Hidden 
Markov model do not have to contain the same number of states, but as the layers evolve in 
lockstep, they all have to contribute to the output signal at each time step the FHMM does not 
allow for different dynamic ranges. Furthermore the FMM has no way of modeling layer 
reliability. 

5.5.3 The Linked Hidden Markov model 
A possible way of coupling for dependent processes to address the sensor fusion problem is 
shown in figure 5.7. 

 
Figure 5.7 - The Linked HMM rolled out in time 

 
This architecture is called the Linked Hidden Markov model, it has joint probabilities between 
synchronous states, encoding which state pairs co-occur more or less frequently. Its 
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independence structure is suitable for expressing symmetrical synchronous constraints, like the 
fact that it is rare to hear a sound when someone's mouth is closed. The LHMM is equivalent to 
the Cartesian product HMM with a bias probability on each joint state as depicted in figure 5.8. 
The state of the first two-state chain are numbered A, B and the state of the second chain are 
numbered C,D in this figure. The states of the Product HMM are number 1 to 4, aij is the 
transition probability from state I to state j in the product HMM and CIJ is the probability of the 
coupling between state I in chain one and state J in chain 2. 
 

2=BC1=AC

4=BD3=AD
a34CBD

a12CAC

a31CAC

 
Figure 5.8 – the Linked HMM is equivalent to the Product HMM 

 
Contrary to the Factorial HMM this model can produce different outputs for each modality. It 
allows for processes with different time scales but does not model the reliability of the modalities. 
As a consequence the training and inference algorithms for the Linked HMM are intractable but 
there exists an O(TN3) exact algorithm for training the two chain structure based on methods 
from statistical mechanics. The model can also be viewed as a simplification of Coupled HMMs 
that are described in section 5.2.5. 

5.5.4 The Hierachical Hidden Markov model 
 
In some situations one process clearly imposes constraints on another process. For example the 
baseline of a song constrains the melody and both constrain the harmony. This kind of 
hierarchical structure in a signal can be modeled by the Hierarchical Hidden Markov model 
shown in figure 5.9.  
 

 
Figure 5.9 - HDTM rolled out in time 

 
This structure which consists of a cascade of synchronous conditional probabilities down an 
ordered hierarchy of HMMs arised by giving probabilistic decision trees a markovian temporal 
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structure. The model is intractable for exact calculations but there exist approximation algorithms 
that decompose the structure either in a number of HMMs or a number of probabilistic decision 
trees. 

5.5.5 The Coupled Hidden Markov model 
 
The previous two architectures have synchronous links and assume lockstep processes that do 
not have causal temporal influences on each other. To capture interprocess influences across 
time, the coupling must bridge time slices as shown by the crosswork of conditional probabilities 
in figure 5.10. This offers the strongest model of interprocess influences. It is appropriate for 
processes that influence each other assymetrically and possibly causally. The model that realizes 
this structure is called the Coupled Hidden Markov model. 
 
 

 
Figure 5.10 CHMM rolled out in time 

 
Inference in Coupled HMMs has, once again, the same time complexity as the Cartesian product 
HMM, thus the exact algorithms are not attractive. Brand [23] describes an O(T(KN)2) N-heads 
dynamic programming algorithm obtained by relaxing the assumption that every transition in the 
trellis must be visited. This algorithm still visits every component state so that statistics may be 
collected for re-estimating transition and output probabilities.  
 
The probability of a state sequence through a fully connected K chain given the multimodal 
observation sequence O is: 
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where superscripting indexes a chain. 

1
k l
t tq q

P
−

is the probability of a state in chain k given a previous 

state in chain l, when l = k, this probability represents a transition otherwise it represents a 
coupling. 
As was described in chapter one direct computation of these probabilities is intractable even for 
simple HMMs, therefore dynamic programming is used for the Viterbi and forward algorithms. 
 A coupled HMM of K chains has a joint state trellis that is in principle Nk states wide. The 
associated dynamic programming problem is O(TN2k). The N-heads dynamic programming 
algorithm closely approximates the full combinatorial approach. It uses a subset of all state 
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sequences consisting of paths with the greatest probability mass applying the argument that low-
probability sequences carry relatively little information for estimation problems. This is the same 
assumption as made by the beam search described in chapter 2.3.8. 
Each state sequence through the trellis is double tracked, having a head in one HMM hi,t as in the 
normal trellis algorithms and an associated sidekick ki,t in the other HMMs. A sequence of {head, 
sidekick} pairs is called a path. Coupling two HMMS of N and M states now takes N+M heads 
each with a sidekick. Three HMMs takes N+M+L heads each with two sidekicks etc. Figure 5.11 
shows a sub-path through a trellis with an associated sidekick sub-path through the trellis of the 
second chain. Arrows represent transitions, dashed arrows couplings. 
 

t = 1 t = 2 t = 3 t = 4 t = 5  
Figure 5.11 – a two level trellis showing a path and its sidekick 

 
In the forward algorithm at each time step every head in the chain sums over the same set of 
paths and thus shares the same sidekick. This sidekick is simple the maximum marginal forward 
variable in the other HMM. New path probabilities are calculated given the paths sofar and the 
sidekicks. To calculate the forward variable associated with each head, the sidekicks are 
marginalized out.  
For a CHMM with two chains the algorithm contains the steps below, where i and j denote states 
in the first chain and i' and j' denote states in the second chain. kj,t denotes the sidekick 
associated with state i in time step t and c denotes a coupling matrix. The transition matrix of the 
first chain is denoted by a and the transition matrix of the second chain by 'a . 
 
1. Calculate all partial forward variables 1( )tp i+ : 
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2. Choose one best sidekick from each chain: 
 
 ,

'
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i
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3. Calculate the full forward variables *α for each path in the entire model, this variable is used 
for propagating probabilities: 

 
 

, , 1 , 1 ,
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4. Marginalize out each head over all possible sidekicks to obtain the forward variable in each 
chain. This variable is used for re-estimating parameters. 
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The backward variables are calculated in a similar way using the sidekicks found in the forward 
algorithm. Viterbi analysis also works the same way but uses a maximization over previous paths 
instead of a summation. In this algorithm each head can have a different sidekick. If the 
dynamics within a chain dominate the interchain dynamics than the chainwise Viterbi algorithm 
described in section 5.3.3 can be used. In which a conventional Viterbi analysis is performed in 
one chain while holding state assignments constant in all others and is cycled through the chains 
until convergence to a local maximum is reached. 
 
After collecting statistics using the N-heads method, transition matrices within chains are re-
estimated according to the conventional HMM formulae. The formula for coupling matrices 
between HMMs is similar: 
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'
1

2
'

, 1 , 1
2

( , )
ˆ

T

t t
t

i j T

j t j t
t

P q i q j
c

α β

−
=

− −
=

= =
=
�

�

O
 (5.11) 

 
The approximation will of course weaken as more and more HMMs are coupled, since an 
exponentially small fraction of the paths are being sampled. The transition probabilities of a 
coupled HMM can be converted to and from those of a Cartesian product HMM. This forms the 
basis for an alternative training algorithm in which a Cartesian product HMM is factored and 
recoupled between each re-estimation. Compared to the N-heads method this algorithm has 
inferior complexity and accuracy, but it compares favorably to other algorithms. 
The CHMM runs considerably faster than the Cartesian product HMM. But it does not have any 
complexity advantages over these methods. Its main advantage is that it explicitly represents 
interactions between HMMs and thus can capture system dynamics in the data that product 
HMMs cannot. Because the CHMM has less parameters than the Product HMM it also requires 
far less training data. For example a fully connected two chain CHMM with N states per chain 
has 2N state distributions each with a mean and a covariance matrix and O(3N2) transition and 
coupling parameters, the corresponding Product HMM has N2 state distributions and O(N4) 
transition parameters. 
Conventional HMMs are quite sensitive to the initial values of the parameters. Experiments have 
showed that LHMMs are generally more robust and CHMMs are far less sensitive to initial 
conditions. 
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The dynamic programming algorithms used in conventional HMMs automatically handle 
variations in tempo. In CHMMs this extends to variations in process synchronization. 
All in all the Coupled Hidden Markov model is a pretty powerful model it can model a wide 
variety of couplings by making the coupling parameters stronger or weaker. By handling 
variations in process synchronization it allows for offsets between signals and it can handle 
different time scales. It also allows for different outputs from different modalities. Its only 
drawbacks are that it requires special algorithms that can only approximate the exact results 
instead of the regular HMM algorithms and it is not capable of modeling the reliability of the 
modalities. 

5.5.6 The Multistream Hidden Markov model 
 
The multistream approach processes several feature streams in parallel and independently of each 
other up to certain anchor points where they have to synchronize and recombine their partial 
segment-based likelihoods. Thus a certain level of asynchrony between the streams can be 
modeled. Furthermore the different streams are not restricted to the same frame rate and the 
underlying HMM models associated with each stream do necessarily have to have the same 
topology. 
The multistream statistical model assumes that the observation sequence O is composed of K 
input streams Ok from different sources representing the utterance to be recognized.  It further 
assumes that the a model M is composed of J sub-unit models Mj (j = 1,…,J) associated with the 
sub-unit level at which to perform the recombination of the input streams. To process each 
stream independently up to the defined sub-unit level, each sub-unit model Mj is composed of 
parallel models Mjk, possibly with different topologies, that are forced to recombine their 
respective segmental scores at some temporal anchor points. The model is shown in figure 5.12. 
To make things a little clearer imagine a combined speech, lipreading recognizer in which the 
models represent words and the sub-units represent phonemes. Now within the boundaries of a 
phoneme the signals are allowed to evolve independent of each other but at each phoneme 
boundary they have to evolve.  
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Figure 5.12 - The Multistream HMM 

 
 
The gray recombination states in the figure are not a regular HMM state, since it will be 
responsible for combining probabilities accumulated over a same temporal segment for all the 
streams according to the rules discussed below.  
The recognition problem for a likelihood based system can then be formulated in terms of 
finding the model M maximizing: 
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Where Oj represents the multiple stream subsequence associated with the sub-unit model Mj. 
In the case in which the streams are assumed to be statistically independent the full likelihood can 
be decomposed into a product of stream likelihoods for each sub-unit. For this we can simply 
compute: 
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This approach can be generalized to a weighted log likelihood approach to model the reliability of 
the different input streams. We have then: 
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where k

jw represents the reliability of input stream k. More generally, we may also use a non-linear 
system to recombine probabilities or log-likelihoods so as to relax the assumption of the 
independence of the streams. More generally, a nonlinear system to recombine probabilities or 
log-likelihoods so as to relax the assumption of independence of the streams. 
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where W is a global set of recombination parameters and f is a nonlinear function that combines 
the probabilities of all chains. 
The recombination of the input streams at a sub-unit level, e.g. word, syllable, phoneme, requires 
a significant adaptation of the recognizer algorithms, requiring a time synchronous Viterbi search 
that allows the decomposition of a single stream into independent components. 
On the other hand recombination at the HMM state level is pretty simple to implement and 
amounts to performing a standard Viterbi decoding in which local log probabilities are obtained 
from a linear or non-linear combination of the local stream probabilities. Of course this approach 
does not allow for asynchrony beyond the state level and requires therefore identical topologies 
for the sub models. Yet, it has been shown to be very promising in experiments conducted by a 
number of researchers. Some authors actually do refer to this particular instance of the model as 
the multistream model. The remainder of this section is devoted to this model. 
 
Training of the multistream HMM consists of two tasks. First, estimation of its stream 
component parameters, like mixture weights, means and variances, as well as, of the HMM state 
transition probabilities has to be performed. And second, appropriate exponents that sum to one 
have to be estimated. Maximum likelihood parameter estimation by means of the standard Baum-
Welch algorithm can be used in a straightforward manner to train the first set of parameters. This 
can be done in two ways: Either train each stream component parameters set separately, based on 
single-stream observations, and subsequently combine the resulting single-stream HMM as in 
5.12 or train the entire parameter set, excluding the exponents, at once using the multimodal 
observations. 
In the first case the Baum-Welch algorithm is involved to separately train two single-modality 
single-stream HMMs as described in part I. Thus assuming known stream exponents, the two 
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resulting HMMs can be easily combined using emission probabilities given by 5.12 and a linear 
combination of their two transition matrices, weighted by stream exponents that sum to one . An 
obvious drawback of this approach is that the two single modality HMMs are trained 
asynchronously, i.e. they are trained using different forced alignments, whereas 5.12 assumes that 
the HMM stream components are state synchronous. 
The alternative is to train the whole model at once, in order to enforce state synchrony. Due to 
the stream log-likelihood linear combination by means of 5.12 the EM-algorithm carries on in the 
Multistream HMM case with minor only minor changes. The only modification is that the state 
occupation probabilities are computed on basis of the joint observations, and the current set of 
Multistream HMM parameters. 
The stream exponents cannot be obtained by maximum likelihood estimation. Instead, 
discriminative training techniques have to be used, such as the generalized probabilistic descent 
(GPD) algorithm or maximum mutual information (MMI) training. The simple technique of 
directly minimizing the word error rate on a held out data set can also be used. Clearly, a number 
of HMM stream parameter and stream exponent training iterations can be alternated to improve 
both parameter sets. 
Finally, decoding using the Multistream HMM does not introduce additional complications, since 
5.12 allows a frame-level likelihood computation, like any typical HMM decoder. 
The great advantage of the Multistream HMM is that it is capable of modeling the reliability of 
the different streams. This becomes especially interesting if this reliability information is not 
global over the entire stream but is model dependent, it is for example well known that certain 
sounds are easier to distinguish using visual information while others are more reliably recognized 
using audio information.  
Things become even more interesting when dynamic reliability information, for example based 
on the amount of noise in a room, is used. Furthermore the Multistream model in its general 
form allows for different sub-model topologies for its streams and as it allows for independence 
between streams up to a certain point it is capable of handling duration and offset differences 
between the streams. The latter is of course not true for the state synchronous Multistream 
HMM, which has the advantage that it does not requires any special algorithms, contrary to the 
general modal that requires algorithms not unlike the ones used in the Coupled Hidden Markov 
Model.  

5.5.7 The Product Multistream Hidden Markov model 
 
An extension of the state synchronous Multistream HMM allows the single stream HMMs to be 
in asynchrony within a model but forces them to be in synchrony at the model boundaries, as is 
the case in the general Multistream approach, thereby dissolving the disadvantage of state 
synchrony of the simple Multistream HMM. Single stream log-likelihoods are linearly combined 
at such boundaries using weights similar to 5.14. For large vocabulary speech recognition, HMMs 
are typically phones, therefore a reasonable choice for forcing synchrony constitutes the phone 
boundary. 
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Figure 5.13 - Phone synchronous Multistream HMM 
 
The model can be formulated as a composite or product HMM. Decoding under such a model 
requires calculating a single best path. The product Multistream HMM consists of composite 
states that have multimodal emission probabilities of certain single modality HMM states. 
 

3,32,31,3

3,22,21,2

3,12,11,1

 
Figure 5.14 – The Product Multistream HMM 

 
These single stream emission probabilities are tied for states along the same row, or column 
depending on the modality, therefore the original number of mixture weights, mean and variance 
parameters is kept in the new model. The transition probabilities of the single modality HMMs 
are now shared by several transition probabilities in the composite model. The product HMM 
allows restricting the degree of asynchrony between the two streams by excluding certain 
composite states in the model topology. 
As the number of states in the composite HMM is the product of the number of states of all its 
individual streams, such restrictions can reduce this number considerably and speed up decoding. 
Figure 5.13 shows a phone synchronous Product Multistream HMM, that allows for limited 
asynchrony between its separate streams within phone boundaries. 
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Figure 5.15 – Stream tying in a Product Multistream HMM with limited state asynchrony 

 
In the extreme case, when only the states that lie in its diagonal are kept, the model becomes 
equivalent to the state synchronous multistream HMM, as is illustrated by the dashed ellipse in 
figure 5.14. Training of the product HMM can be done, similarly to the multistream HMM, either 
separately or jointly. This modal has all the properties of the synchronous Multistream HMM and 
it also allows for asynchrony between signals like the general Multistream approach. 
 
5.6 LATE INTEGRATION 
 
Late integration incorporates separate recognizers for the different modalities and then combines 
the outputs of these recognizers to get the final result. This approach can easily handle different 
classifications in different channels as the recognizers for them are separate and the combination 
is at the output level. In general, the model scores from the different modalities can be combined 
along with a language model score as independent sources of information. If ( | ) i iP W O denotes 
the probability provided by the model of modality i for a hypothesis W=w1w2…ww given the 
evidence Oi from the modalities. And ( )P W  denotes the language model probability, then the 
linear model that combines all the available information I can be defined as: 
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Where ZI  is a normalization factor such that the probabilities for all possible lattice hypotheses 

( )∈W V  add to one. The weights in this formulation are constant for every model although they 
could be dynamic, weighting each of the scores with different exponents for different segments 
of a hypothesis. 
Different recognizers may use a different number of distinguishable classes, for example audio 
recognizers typically use phonemes while video recognizers use visemes. A viseme can be seen as 
a set of phonemes with similar visual properties. Below the general method is adapted in a 
number of ways to this specific case, similar methods can be used to integrate other modalities. 
 
1. Phone based classification for both audio and video. Combined likelihood for a given phone 

hypothesis is computed in the following way: 
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 log ( | )  log ( | )  log ( | ) 1,2,...
iii a a v phonesP w P w P i Nv= + =W O W O W O  (5.17) 

 
Where ,

i ia vP P and iP  are the audio, video and combined likelihoods for phone i respectively. 

aw and vw are weights given to audio and video hypothesis with 1.a vw w+ =  
 
2. This method uses phone based classes for audio data and viseme based classes for video data. 

The equation for likelihood computation in this method is as follows: 
 
 
 log ( ) log ( ) log ( )

i ji a a v ij vP W w P W w M P W= +O O O  (5.18) 

 
Where 

jvP is the likelihood for viseme j given by video vector and ijM is the conditional 

probability of phone i given viseme j. ijM can be computed over part of the training set. 
Again 1.a vw w+ =  

 
3. This method computes the combined likelihood for a phone in two phases. In the first phase 

only viseme based classes are used for both audio and video. At the end of phase one, the 
most likely viseme based class is found. In the second phase, phone based models are used 
for both audio and video to get the most likely phone inside the viseme given by the first 
phase. 
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Where k is determined as the most likely viseme in the first phase j is a phoneme in the set of 
phonemes formed by this viseme. Here 1

L La vw w+ = ; different weights are used in the first 
and the second phase. Experiments by IBM [21] have shown that method three outperforms 
the other two methods and method one performs slightly better that method 2. Of course 
this was tested on the English language. Our goal was to use similar methods for the Dutch 
language. 

 
Another simple multiphase approach is to use the video recognizer to generate a lattice 
containing the most likely hypothesis and then use the audio recognizer to find one single 
hypothesis within this lattice. Disadvantage of this approach is of course that it is hard to 
implement in real time. 
In general this methods has a number of advantages. It is a relatively simple method, that allows 
for different classifications for different modalities, also different model topologies and different 
time scales are possible. The method uses normal Baum-Welch and Viterbi algorithms. Further it 
models the reliability of the separate streams. On the other hand it does not model any 
interaction among processes, information on process interaction is completely lost in the 
recognition phase. All processes have to generate the same hypothesis, thus N-best lists are 
needed. In continuous speech this method is a bit problematic since recombination is done at the 
end of a spoken utterance. 
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6 INTEGRATION EXPERIMENTS 
 

To test the multimodal models described in the last chapter a number of experiments was conducted to integrate additional 
modalities in the speech recognizer of chapter four. This chapter describes these experiments and their results. 

 
6.1 INTRODUCTION 
 
As was described in chapter 5 the use of multiple modalities in speech recognition may result in 
more robust systems. The problems that have to be solved in the integration of multiple 
modalities include asynchrony between signals and  different levels of reliability. A number of  
models for multimodal recognition was described in the last chapter. 
To test multimodal recognition using these models in practice a number of experiments were 
conducted. The results of these experiments are described in this chapter. Goal of these 
experiments was to integrate a second data stream in the speech recognizer described in chapter 
four. Two techniques described in the last chapter were evaluated. Feature fusion because of its 
conceptual simplicity and the Multistream HMM which is one of the more powerful integration 
techniques. The Multistream HMM allows for a certain level of asynchrony between signals and 
is capable of modeling the reliability of the separate streams. It also has the advantage that it can 
be realized using the conventional dynamic programming algorithms implemented for example in 
the Hidden Markov Toolkit that was used during these experiments. 
In our experiments, two kinds of additional data streams were used: feature vectors generated by 
an automatic lip-tracker that was build in the Knowledge Based Systems group at TU Delft and 
speech feature vectors generated by a Linear Predictive Coding preprocessor. The latter contain 
approximately the same information as the vectors of the unimodal speech recognizer so we do 
not expect them to give a substantial rise in performance levels. But on the other hand, exactly 
because they contain the same information as the original data stream the performance should 
not decrease. Therefore these vectors were used to validate the models. The integration of 
lipreading features is an actual example of multimodal speech recognition and shows the 
difficulties of multimodal integration.  
In the next section a short description of the lipreading vectors is given. Next a description of the 
data set used in these experiments is given followed by the description of the base-line 
recognition system that was used to compare the multi-modal systems to. Subsequently, the 
experiments will be described and finally, conclusions will be drawn.  
 
6.2 LIPREADING 
 
The visual part of the speech signal is processed so that it generates two distinct sets of features: 
geometric and the aerial ones. The geometric feature extraction starts from filtering the image 
using the lip-selective filter. The filter must map the given pixel color to the intensity value from 
[0,1] interval in such a way that it highlights only the lips in the image. Such filters are possible 
thanks to the fact that lips have usually more reddish color than the rest of the face. The actual 
form of the filter is not crucial for the way the data is processed further. For all our experiments 
we used the filter that incorporates a simple Artificial Neural Network (for details see [33]). 
 
As soon as the image filtering is done, the image is transformed into polar coordinates around the 
center of the mouth. This center point ,center centerX Y can be found by computing the center of 
gravity of the distribution obtained from filtering the image. The resulting intensity function 
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( , ) J rα is processed further. There are two interesting properties of this function; its conditional 
mean and variance for specific angle: 
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Those two values relate directly to the thickness of the lips and their distance from the center of 
the mouth in a given direction. They describe therefore the shape of the lips in a given video 
frame. Both of those values can be easily estimated from the filtered image. 
The shape of the lips is not the only determinant of the spoken utterance. There are some other 
important factors such as position of the tongue, teeth etc. Some of them can be directly 
observed in the video sequence, the others not. It is essential in case of lip-reading to extract 
from the visual channel as much information about the utterance being spoken as possible. 
 
It would probably be possible to track the actual positions of the teeth and tongue to some 
limited extent. Such a task would be however too complex and therefore infeasible for a lip-
reading application. There are however some easily tractable occurrences that can be measured in 
the image and which relate to the positions and movements of the crucial parts of the mouth. 
The teeth for example are much brighter than the rest of the face and can therefore be located 
using a simple filtering of the image intensity. We use here a filter with the steep-wise linear shape 
with a specified threshold for pixel brightness. It results in the image with only the teeth 
highlighted. 
 
The visibility and the position of the tongue cannot be assessed as easily as in case of the teeth, 
especially that the color of tongue is pretty much indistinguishable from the color of the lips. We 
can however easily assess the amount of the mouth cavity that is not obscured by the tongue. 
While teeth are distinctly bright, the whole area of the mouth behind the tongue is usually darker 
that the rest of the face. We can use therefore a filter analogue to the teeth filter but with the high 
response for the dark pixels. 
 
In order to use the information presented in the filtered images, we need to extract some 
quantitative descriptions of them. We chose to use the total area of the highlighted region and 
the position of its center of gravity relative to the center of the mouth as the main features. In 
total this amounts for a 6 dimensional feature vector. The earlier experiments prove that using 
those aerial features in addition to the geometric description of the lips results in better 
recognition results [34]. 
 
6.3 DATA COLLECTION 
 
To conduct these experiments training and testing data was needed, in particular to experiment 
with the integration of lip-reading and speech recognition audio-visual data sets were needed. As 
such a data set was not available we gathered our own data set. 
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To collect data a number of respondents were asked to read prompts showed on the screen of a 
laptop in front of a digital video camera. The respondent was seated in front of the laptop 
computer on which the prompts were displayed to her/him. The prompts were sequentially read 
from the prompt set and displayed using a simple PromptShow application. It allows for choosing 
the appropriate prompt set file, selecting the section from which it will start etc. The progress of 
the prompts was controlled by the experimentator, so that the subject's task was only to read the 
contents of the prompts. We did the recordings using a SONY TRV20E digital camcorder on 
standard DV tapes equipped with Cassette Memory chips. In this way we could digitally store the 
code of the recording session for further reference. In order to record an audio signal with a 
satisfactory quality, we had to use an external microphone, which was hung on the respondents' 
neck. We used a standard low-cost computer microphone because of its availability, light 
construction and satisfactory quality. 
 
The camera was placed on a tripod behind the laptop. During each recording, we used the 
camera's LCD screen to monitor the position of the subject's mouth in the field of view. It 
proved that the setup was comfortable enough so that most of the participants didn't move 
substantially during the recordings. The camera's direction was adjusted usually only in the 
beginning of each new section. 
Each of the recorded sessions was edited using a video editing software and cut into smaller 
sequences. The video sequences were then converted from a standard DV format to MPEG1 
stream. Moreover, from all of the scenes audio data was extracted and saved externally. Further, 
the proper transcriptions of the utterances were added. 
The audio was recorded at using a sampling of 44 kHz with 16 bit resolution. For use in these 
experiments the audio files were converted to 8 bit A-law format, the format used by the speech 
recognizer described in chapter 4. The video was sampled at 25 Hz.  
The set of prompts that is used in our recordings is derived from the prompts recorded for the 
Polyphone database and from the telebanking application grammar showed in chapter 2.2. 
Our prompts collection is divided in 24 sections, each of them with the same structure described 
later. Recording all of the 24 sections with each of the participants would not be really feasible as 
it would require almost a two-hour session. All of the subjects agreed that one hour of recordings 
is already a hard experience. We constrained ourselves to one-hour sessions, which resulted in 
recording between 10 and 14 sections of the prompt set. Because of the organizational issues 
such as introducing the subject, resetting the setup etc. during a single hour of recordings we 
gathered between 25 and 45 minutes of actual material. 
Each section of the prompt set contains a fixed number of different utterances. The example 
section can be seen in figure 6.1. The utterances in a section are: 
 
• 1 sentence containing 10 separate small words. 
• 10 phonetically rich sentences randomly chosen from the phonetically rich sentences from 

Polyphone. 
• 3 ten-digit sequences. These digits were randomly generated and have uniform distribution in 

the whole prompt set. 
• 4 spelled words.  
• 5 utterances from the telebanking application. 
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Figure 6.1 – example section 

 
At the current stage, we have recorded 8 sessions with 8 different subjects. This gives in total 
over 4 hours of constant recordings. The recorded subjects are all native Dutch speakers. There 
are 7 male subjects and one female. Data from five of these subjects was transcribed and used in 
these experiments. From each subject 4 or 5 sessions were used. This data set was split in a 
training set of approximately 500 utterances from all speakers and a test set containing 30 
utterances from all speakers. 
 
6.4 THE BASE-LINE SYSTEM  
 
As starting point in these experiments the monophone system from section 4.4 was used. This 
particular systems was chosen because it does not contain any complicating structures like 
multiple mixtures or context dependent models, making model integration easier. Further the 
modest results achieved by this model leave room for gains in performance. On the other hand 
its simple structure also limits the performance that can be reached by this model, therefore great 
leaps in performance are not to be expected, it is the relative performance that is of interest here. 
To provide a baseline system to which the multimodal systems could be compared the 
monophone system was re-estimated twice using the training set. This resulted in an adapted 
monophone recognizer showing the following results on the test set: 
 
Table 6.1 
Percentage of words correct: 45.14%    
Word accuracy percentage 2.70% 
Percentage of sentences correct 0.00% 
 
To perform feature fusion a program called cvf, which stands for concatenate vector files, was written. 
This program concatenates the vectors in a file from one set of HTK vector files to the 
corresponding vectors in a file from another set. The concatenated vectors are saved in a new 
file. The sample rate of this new file can be specified at the command line of the program. If the 
input files' sample rates differ or they differ from the output sample rate, then interframe 
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interpolation or copying of the current vector is used to obtain the right frame rate. If the input 
files have different file lengths the last vector of the shortest file is repeated until all vector from 
the other file are processed. 
The program can also add an offset to one of the input files. The first vector of this file is than 
repeated for the duration of the offset, as a result all other vectors are shifted in time. 
 
6.5 EXPERIMENT 1:  
 

FFT MFCC 39 MFCC features

12 LPC features

51 combined features

HMMs

FFT LPC

 
Figure 6.2 Experimental setup used in experiments 1 and 2 

6.5.1 Design 
 
To validate a fusion technique, data streams should be used that are known to have features that 
adequately reflect the data, to make sure that the results are not influenced by problems in the 
preprocessing phase. Linear Predictive Coding produces features that are known to represent the 
speech signal quite well. LPC is based on different aspects of human speech production than Mel 
scale filterbank analysis and therefore may provide some complementary information. And even 
if it does not, it should at least not have a negative influence on the overall recognition results. 
Therefore these features were used to validate our models before tests involving lipreading data 
were done. 
In this experiment the 12-dimensional LPC feature vectors were extracted from the utterances in 
the training set at a frame rate of 10 ms with a overlapping window of 25 ms. A simple 
recognizer was build using these feature vectors to see whether these relatively small vectors 
contain adequate information. Initial three state left-to-right LPC based model were created by 
setting the means and variances of all models to the global mean and variance calculated over 
these vectors.  
Subsequently a multimodal system was build using feature fusion. To do so, the LPC vectors 
were coupled to the MFCC audio vectors using cvf. As the two vector types were sampled at the 
same rate using the same window size there was no need for interpolation of frames. The Hidden 
Markov models from the unadapted audio-only system were altered to incorporate 51 instead of 
39 dimensional distribution functions and the means and variances of all models were extended 
by concatenating the global means and variances calculated over all LPC vectors to them.  
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6.5.2 Results  
 
The LPC-only models were re-estimated three times after which Viterbi alignment and two more 
re-estimation cycles were performed to obtain a simple monophone LPC based recognizer for 
the data set. Viterbi recognition of the test set on these models gave the following results: 
 
Table 6.2 
Percentage of words correct: 30.15%    
Word accuracy percentage -2.43% 
Percentage of sentences correct 0.00% 
 
The concatenated models the last section were re-estimated by performing three cycles of 
embedded re-estimation using the training set, the following results were obtained: 
 
Table 6.3 
Percentage of words correct: 47.84%    
Word accuracy percentage 3.51% 
Percentage of sentences correct 0.00% 
 
Further training cycles did not significantly change these values. 

6.5.3 Discussion 
 
The experiment with the LPC only vectors showed that these vectors do contain some 
information representing the speech signal, so they can be used to validate fusion techniques. 
Coupling of LPC and MFCC features does indeed improve the performance of the system. The 
feature fusion technique works for these two data streams. This was of course to be expected as 
they were sampled at the same frame rate and represent the same signal, so they actually are 
synchronous.  
 
6.6 EXPERIMENT 2  

6.6.1 Design 
 
Incorporating two preprocessors that sample the same signal at the same rate may not be very 
useful in practice. But things get interesting if the second stream is sampled at a different frame 
rate. This way contextual information can be incorporated in a vector and so the vectors may 
give a better representation of the continuous speech signal. This may be especially useful in case 
of a lossy channel or a noisy environment. The vectors in the second data stream can compensate 
for missing or distorted vectors in neighboring positions.   
In this experiment LPC vectors calculated using a larger window were computed and fused with 
the normal MFCC vectors to see whether vectors calculated over a longer time span do indeed 
exhibit the desired behavior.  
LPC cepstral coefficients, which are a bit more stable than normal LPC coefficients, were 
extracted from the audio files using a sampling rate of 10 ms, a 50 ms wide overlapping window. 
A second set of LPC cepstral coefficient vectors was calculated using a sampling rate of 10 ms 
and a 75 ms wide window.  For both vector sets a LPC only system was build and trained in the 
same as in the previous experiment. Fused systems were also build in both cases again by 
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concatenating the global means and variances calculated over a LPC vector set to the means and 
variances of all states from each model in the unadapted audio system. 

6.6.2 Results 
 
The LPC-only system with 50 ms windows was re-estimated 3 times. Viterbi recognition 
produced the following results: 
 
Table 6.4 
Percentage of words correct: 28.00%    
word accuracy percentage 1.08% 
Percentage of sentences correct 0.00% 
 
The fused system using these vectors was re-estimated three times. 
 
Table 6.5 
Percentage of words correct: 46.22%    
word accuracy percentage 2.70% 
Percentage of sentences correct 0.00% 
 
The LPC-only system with 75 ms windows was trained by 3 cycles of re-estimation, giving the 
following results: 
 
Table 6.6 
Percentage of words correct: 30.27%    
word accuracy percentage 13.24% 
Percentage of sentences correct 0.00% 
 
Its fused version was also re-estimated three times, giving: 
 
Table 6.7 
Percentage of words correct: 46.49%    
word accuracy percentage 3.55% 
Percentage of sentences correct 0.00% 

6.6.3 Discussion 
 
So, incorporating features sampled over longer time spans does indeed have a positive result on 
the performance. It is remarkable to see that the LPC feature vectors that are calculated over a 
window of 75 ms perform better than the ones calculated using a 50 ms window. The inclusion 
of more context information can apparently improve a recognizer. 
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6.7 EXPERIMENT 3 
 

FFT MFCC 39 MFCC features

12 LPC features

Stream 1

HMMs

FFT LPC

Stream 2

 
Figure 6.3 - Experimental setup 

6.7.1 Design 
Of all fusion techniques described in the last chapter the Multistream approach is one of the 
most attractive approaches. Depending on the model topology used it can cope with a certain 
amount of asynchrony between signals and it can model the reliability of the separate streams.  
In this experiment the state synchronous Multistream HMM was validated. Once again the LPC 
cepstral coeffient vectors with 75 ms window were used as second data stream. Multistream 
models were created by copying the means and variances of the models of the unadapted audio-
only system to the means and variances of the first stream of the corresponding Multistream 
model.  
The means and variances of each state in the second stream of every model were set to the global 
mean and variance calculated over the LPC feature vectors. 

6.7.2 Results 
The models were trained 3 times using embedded re-estimation. Both streams had the same 
global weights (1.0, 1.0). 
 
Table 6.8 
Percentage of words correct: 46.44%    
word accuracy percentage 3.51% 
Percentage of sentences correct 0.00% 
 
A second system was trained 3 times this time using a global weight of 1.2 for the first stream 
and a global weight 0.8 of  for the second stream: 
 
Table 6.9 
Percentage of words correct: 48.58%    
word accuracy percentage 3.61% 
Percentage of sentences correct 0.00% 
 
A third system was trained also 3 times this time using a global weight of 0.8 for the first stream 
and a global weight of 1.2 for the second stream: 
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Table 6.10 
Percentage of words correct: 46.23%    
word accuracy percentage 3.30% 
Percentage of sentences correct 0.00% 

6.7.3 Discussion 
The first system that does not weight its streams has practically the same results as the 75 ms 
window system from experiment 2, not only the percentages are similar, but also the same 
mistakes are made during recognition. This shows that the two datastreams are indeed 
synchronous and their combination can be adequately modeled by the feature fusion technique. 
No modeling power is added by the Multistream technique in this case. 
The second and third system show that the original audio stream is more reliable that the LPC 
stream. This is not a surprise as the original system uses 39 dimensional feature vectors that are 
well trained on a huge training set and subsequently adapted to the training set used here. The 
LPC vectors on the other hand are only 12-dimensional and do not include any delta or 
acceleration coefficients. They are trained only a few number of times on a limited data set. This 
suffices to capture the most important aspects of the underlying signal but not to give a reliable 
model of this data. 
 
6.8 EXPERIMENT 4   
 

FFT MFCC

Lip-tracking
Feature

extraction

39 MFCC features

36 geometry features

6 aerial features

81 combined features

HMMs  
figure 6.4 – Experimental setup 

6.8.1 Design 
The previous experiments showed that the feature fusion and Multistream models can be used 
for multimodal integration. But the question remains how well they perform when a data stream 
composed of two dependent but different data streams is used. In this and the following 
experiments lipreading features were integrated in the speech recognizer. As was already 
explained in the introduction of chapter one, lipreading provides some complementary 
information to the audio recognition process and is therefore a good candidate for improving 
speech recognition by multimodal fushion. 
 



 

 
 
 
 
 

86

In this experiment 42 dimensional lipreading feature vectors were concatenated to the 39 
dimensional MFCC speech vectors. The lipreading vectors were sampled every 40 ms, so the 
frame rate of the video vectors is 4 times lower than the audio vector frame rate. The vectors 
were concatenated using cvf, interframe interpolation was used to obtain output vectors at a 
framerate of 10 ms per frame. 
To create an initial set of HMMs first the gobal mean and variance were computed over the set 
of interpolated video vectors. These mean and variance vectors were then added to the means 
respectively the variances of ever state off all the models in the set of audio models and the 
definitions of the models were altered to incorporate these 81 dimensional feature vectors. 

6.8.2 Results 
The initial models were trained by two cycles of embedded training with the tool HERest using 
the concatenated vectors. Then recognition was performed on the test set using these multimodal 
models. The following results were obtained: 
 
Table 6.11 
Percentage of words correct: 6.22%    
word accuracy percentage -38.38% 
Percentage of sentences correct 0.00% 
 
Additional training cycles reduced the recognition percentages even more. 

6.8.3 Discussion 
 
These results show that the system was not capable of finding any pattern in the training data, the 
models randomly produce vectors. This is very likely due to the large dimensionality of the 
vectors and the relatively small training set. 
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6.9 EXPERIMENT 5   

FFT MFCC

Lip-tracking
Feature

extraction

39 MFCC features

36 geometry features

6 aerial features

50 combined features

HMMs

PCA

5 PCs

 
Figure 6.5 – Experimental setup 

6.9.1 Design 
 
Based on the conclusions of the first experiment the dimensionality of the lipreading vectors was 
reduced considerably by means of Principal Component Analysis (PCA). This is a common signal 
processing technique that can be used for dimension reduction and visualization of a highly 
dimensional data. Although performing PCA on large and complex datasets is no trivial task due 
to the fact that it involves inverting large matrices, its basic idea is very simple. The PCA 
performs in fact a projection on the principal components of the data so that the most data 
variation is concentrated in the first couple of the components. This is done by at first finding the 
direction in which data variance is the highest (first principal component). The second principal 
component (PC) is the direction that maximizes the data variation being also perpendicular to the 
first one. The third and all following components must be perpendicular to all of the previous 
ones. In this way, the PCs construct a coordinate system in the data-space that maximizes the 
variation of the data in the first couple of dimensions. Using only the first few of the components 
allows for reduction of data dimensionality without loosing too much of the information 
contained in the data. Moreover, in most cases, only the first few PCs relate to the real 
information contained in the data, the rest of them contains only noise-related variations. In this 
way PCA allows also for noise reduction. 
 
In our case we decided to perform the PCA on the geometrical part of the feature vector. Firstly, 
the data vectors G(i) have to be moved to the origin of the coordinate system: 
 

 
1

( )'( )  ( )   1..
N

k

G kG i G i i N
N=

= − =�  (6.3) 



 

 
 
 
 
 

88

Then the data vectors G'(i) are collected in a large matrix G in such a way that each row of this 
matrix contains just one vector G'(i). The PCA is further performed by doing a singular value 
decomposition of the G: 
 
  '   =U S V G  (6.4) 
 
Where the U and V matrices are unitary and S is a diagonal matrix with the nonnegative diagonal 
elements sorted in decreasing order. As the U S part of the decomposition contains the columns 
with the decreasing variance, the rotation V (inv(V) = V') is the transformation we were looking 
for. For each vector G'(i) we can now obtain its representation in the coordinates described by 
PCs: 
 
 ( )  '( )  g i G i= V  (6.5) 
 
A quick look at the variances in the transformed data shows that the variation of the data beyond 
5th PC is negligible (see Figure 6.6). We used therefore only the first 5 PCs as a feature vector. 
Using even smaller number of PCs we performed some visualization of the data (see Figure 6.7 
and 6.8) 

Figure 6.6 - The variance in the data after projection into the principal components. 
 
The five PCA features together with the 6 aerial features resulted in vectors with 11 features each. 
These vectors were concatenated to the audio vectors in the same way as in the first experiment. 
So now the concatenated vectors and the state distribution functions were of dimension 50.  

6.9.2 Results 
 
Re-estimation was performed with these models and these concatenated vectors twice, giving the 
following results. 
 
Table 6.12 
Percentage of words correct: 42.70%    
word accuracy percentage 0.81% 
Percentage of sentences correct 0.00% 

6.9.3 Discussion 
 
This result approaches the results of the audio only system, showing that the problems 
encountered in the first experiment were indeed caused by the high dimensionality of feature 
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space. However the performance of this multimodal system is still not better than the 
performance of the audio only system. 
To determine how these results came about the data was closely inspected. In order to facilitate 
the visualization of the high dimensional data-vectors we used the first two principal components 
and plotted them on the 2D plane. The full dataset can be seen as the background cloud of 
points in Figures 6.7 and 6.8. 
 
In the first attempt to visualize the dependencies between the feature vectors and the uttered 
speech, we used the speech recognizer to obtain the segmentation of the data using Viterbi 
alignment. After obtaining the segmented speech, we could map any video-frame to the 
appropriate phoneme being spoken at that time. Having this, we could plot the visual feature 
vectors for each specific phoneme separately. To our big surprise, there seemed to be absolutely 
no correlation between the phoneme and the values of the first two PCs. When plotting the 
feature vectors for a specific phoneme, the resulting points would be scattered all over the full 
dataset region. This clearly suggests that there is no trivial equivalency between the audio and 
video frames. 

 
Figure 6.7 – Selected visemes for one person in our dataset 

 
Figure 6.8 – Selected visemes for another person in our dataset 

 
In order to make the investigation into the visual features independent to the audio signal, we 
performed some manual labeling of the dataset. In a selected number of recorded video-
sequences we labeled the phonemes that had a clear point of occurrence in the video. For 
example, most of the vowels could be labeled by finding the video frame where the mouth is 
opened to the most extent for given phoneme. Some of the consonants, such as {p b m v w f}, 
are also easy to label because their point of articulation is clearly visible. The resulting vectors 
were once again plotted using the first two PCs. As it can be seen in Figures 6.6 and 6.7, the 
different phonemes gather in clusters corresponding to their visemes. Of course, the structure is 
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not absolutely clean and some person-dependency and noise remains, but clearly there is a 
correlation between the uttered sound and the extracted representation of the visual data. 
 
The reason for the completely different results when using automatically segmented labels and 
data labeled manually is that there is an inherent lack of synchronization between the audio and 
video signal. We decided to investigate in which part of the audio segment the viseme occurs. In 
order to do so, we used the automatically segmented phone ranges for the phonemes that were 
manually labeled. The phone ranges were normalized and the histogram of the positioning of 
manual label within the range was made (see Figure 6.9).  
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Figure 6.9 - The visibly distinguishable phoneme occurrence 

 with respect to the audibly segmented phoneme. 
 
As can be seen, although there is a clear preference for the viseme to appear at the beginning of 
the utterance, there is a substantial amount of the visemes that occur in the whole phoneme 
range and a small number of visemes preceding the utterance. As it was mentioned earlier, the 
HMMs could handle to some extent the variability of the viseme placement within the modeled 
time range. It is however absolutely impossible for a model to incorporate the observations that 
are not presented to it at all. The problem can be solved by either synchronizing the separate 
models for visual and auditory observations at some higher level speech blocks (such as words or 
sentences) or by a simple time-shifting of the datastreams so that the respective occurrences in 
both streams at least overlap each other. 
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6.10 EXPERIMENT 6 
 

FFT MFCC

Lip-tracking
Feature

extraction

39 MFCC features

36 geometry features

6 aerial features

50 combined features

HMMs

PCA

5 PCs

20ms delay

Figure 6.10 – experimental setup 
 

6.10.1 Design 
 
The conclusions of the last section suggest that if the video vectors are offset by 20 ms than most 
of the video vectors should now be approximately in the same time frame as the corresponding 
audio vector, so recognition results should improve compared to the earlier experiments. To test 
this hypothesis an experiment similar to the first two experiments was performed, but this time 
the video vectors were offset by 20 ms.  

6.10.2 Results 
 
After three re-estimation cycles the following results were obtained: 
 
Table 6.13 
Percentage of words correct: 45.95%    
word accuracy percentage 3.24% 
Percentage of sentences correct 0.00% 
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6.10.3 Discussion 
 
The performance of this system was similar to that of the audio-only system and better than the 
performance of the other audio-visual systems. The fact that offsetting the signal gave better 
recognition shows that the audio and video signals are indeed not synchronized. This implies that 
the feature fusion technique without a synchronization module is not the best fusion technique 
for combining lipreading and speech features, since this approach expects the signals to be 
synchronized. Using a fixed offset is of course not a very adequate solution as the interaction 
between the signals is a dynamic process. 
 
6.11 EXPERIMENT 7 
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Figure 6.11 – Experimental setup 

6.11.1 Design 
 
The results of the last test and the analysis performed on the data showed that there is a certain 
level of asynchrony between audio and visual vectors. Therefore an experiment with the 
multistream HMM that allows for a certain kind of asynchrony was conducted. This model is also 
capable of modeling reliability of the modalities. In the case of audio-visual speech recognition 
the audio data contains much more information than the video stream therefore the reliability of 
the audio stream should be set higher than the reliability of the video stream. 
In this experiment a state synchronous Multistream HMM was used, the means and variances in 
the first stream of the model were copied from the audio-only system. The means and variances 
of each state in the second stream of every model were set to the global mean and variance 
calculated over the video feature vectors. The same 11-dimensional video vectors as in the 
previous experiment were used. 
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6.11.2 Results 
Two training iterations with relative weight 1.2 for the audio stream and 0.8 for the video stream 
were performed, this resulted in: 
 
Table 6.12 
Percentage of words correct: 47.30%    
word accuracy percentage 6.76% 
Percentage of sentences correct 0.00% 
 

6.11.3 Discussion 
 
The limited asynchrony in this model resulted in a better performance than in the audio only 
system.  
Further inspections of the lipreading data revealed that the lipreading features used sofar were 
partially person dependent as can be seen in figure 6.7 and figure 6.8, were for example the 
viseme [a, aa] lies in to complete different regions in the projective plain. Although HMMs are 
capable of capturing such effects our dataset proved to be too small to build a robust lipreading 
recognizer that could handle the variations between lip movements of different persons and the 
variations in these signals introduced by visual coarticulation. As a consequence it was also 
impossible to build a robust audio-visual recognizer or to try more advanced couplings like the 
Coupled Hidden Markov model which requires a large data set that contains examples of all 
possible variations in audio and visual data and of the interaction between these modalities. 
 
6.12 OVERVIEW OF RESULTS 
Table 6.13 shows an overview of the results of all experiments described in this chapter. 
 
Table 6.13 
Experiment Percentage of words 

correct. 
Word accuracy 
percentage 

Base-line system 45.14% 2.70% 
LPC  47.84% 3.51% 
LPC 50ms  46.22% 2.70% 
LPC 75ms  46.49% 3.55% 
LPC 75 ms Multistream 48.58% 3.61% 
42 visual features 6.22% -38.38% 
11 visual PCA features 42.70% 0.81% 
11 visual PCA features 20 ms offset 45.95% 3.24% 
11 visual PCA features Multistream 47.30% 6.76% 
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7 CONCLUSIONS AND RECOMMENDATIONS 
 
Part I of this report focuses on the general theory of automatic speech recognition and the 
development of an automatic large vocabulary speech recognizer in particular. The theory of 
speech recognition, presented in chapter 2, is a theory of mathematical nature; most textbooks on 
this subject concentrate mainly on the Hidden Markov model and its dynamic programming 
algorithms. More practical aspects like the advantages or disadvantages of certain model 
topologies or the steps involved in data preparation and training are seldom covered. Many 
questions concerning these issues came up during the development of the speech recognizer 
described in chapter four.  
The first issue that has to be addressed is data preparation. This part of the process took much 
more time than initially expected. Data had to be selected that met the criteria posed for the 
recognizer. As huge data collections are needed for training of speaker independent speech 
recognizers a tool had to be created that could perform automatic data selection.  
One of the decisions that has to be made during data preparation is the topology of the acoustic 
models. In experiments with the English TIMIT speech corpus, preceding this project, we found 
that three-state left-to-right phoneme models had a similar performance as five state left-to-right 
models. Since the three-state model needs less parameters, it was chosen for this project. 
However it would be interesting to see how the five-state model performs when it is used to 
model advanced triphone models for the Polyphone data set. During training it was found that it 
is important to create good initial models, HMM are, due to their Markov property, very sensitive 
to initial values. Errors in the initial model set a limit to the performance of the final system. In 
case of the Polyphone data no segmented transcriptions were available, so initial isolated training 
of the phoneme models could not be done. This problem was solved by using global means and 
variances for all models based on the assumption that this are neutral values where the parameter 
values from all models are distributed around and which do not give an error bias. As segmented 
transcriptions can be created using Viterbi alignment, the recognizer build in this project can be 
used to segment the data in the Polyphone database. Training of a model set on this segmented 
data may result in a recognizer that performs better while using for example fewer mixtures. 
With respect to the initial models it is important that the silence models are not used in the first 
few  training phases, they may absorb data belonging to other phones.  
The monophone model built here booked limited results, we found that reasonable levels of 
performance could only be reached by using multiple mixture distributions and context 
dependent models. In case of segmented data fewer mixtures could have been used. The system 
really started to improve when triphones were introduced. They provided the system with the 
capability of modeling the variations introduced by coarticulation. Five different triphone 
clusterings were built and evaluated to find a good set of generalized triphones. One of these 
systems was chosen for further development. More research on this topic could be done to find 
an optimal set of triphones for this system. One of the problems that occurred when triphones 
were introduced was the problem of unseen triphones: there are many triphones in the Dutch 
language that are not in the training set used. This problem was solved by extending the set of 
triphone models with a set of multiple mixture triphone models that were used to represent all 
corresponding unseen triphones. It would be interesting to compare the results of this data-
driven approach to the results of a tree-based clustered triphone system that uses linguistic 
knowledge to assign unseen triphones to the right cluster. 
The language models used in this system are simple backed-off bigrams, they have limited 
modeling power and put only weak constraints on the syntax of the utterances. This is confirmed 



 

 
 
 
 
 

96

by the fact that the speech recognizer relies mainly on its acoustic models as was found during 
fine tuning of the system. State of the art systems use at least trigram language models, the 
performance of the recognizer might be improved by using this or even better language models, 
this is especially important to ensure good performance levels in case of larger vocabularies. 
The overall results of the final system are quite good, more than ninety percent of all words are 
recognized correctly. The errors that occur are usually small and typically involve wrong 
conjugations of a verb or hesitations by the speaker. This kind of errors could be reduced by a 
more powerful language model or a preprocessing module that check the syntax of a sentence. 
The system can cope with mouth noises like smacking or loud breathing and this system is 
speaker independent. It has been tested with vocabularies of more that 5000 words, the 
performance decreased only slightly in this case. The system can be adapted to other 
environments and performance can be further improved, especially on sentence recognition, by 
making it person dependent as was shown in 4.5.5. Because of its open source the system can be 
easily incorporated as a speech engine in applications or it can be used to build more advanced 
recognizers like multimodal recognizers. 
 
The emphasis in part II of the report is on the development of models for multimodal 
integration. The models presented have different properties, it depends on the processes that are 
to be integrated which method is most suitable. For dependent processes that evolve 
synchronously the feature fusion technique offers a simple way to integrate the signals. On the 
other extreme lie processes that evolve completely independent and possibly asynchronous, but 
all influence the outcome of the recognizer. This type of coupling can be realized using the 
Factorial Hidden Markov Model or late integration. In the case of multiple modalities that give 
information on what is spoken by a person, the signals will typically depend on each other and a 
limited amount of asynchrony can occur. For example, there is a clear dependence relationship 
between the shape of the mouth and the sound uttered. These processes and their relations can 
be modeled using the Coupled Hidden Markov model or the Multistream Hidden Markov model. 
The Multistream model requires more knowledge about the processes on the side of the model 
designer because model and sub-model units have to be chosen, but the advantage of the 
Multistream model is that if its topology is not too complicated, simple variations of the dynamic 
programming algorithms for speech recognition can be used and furthermore it models the 
reliability of the datastreams. 
The experiments in this chapter show that the feature fusion technique and the Multistream 
HMM can indeed be used to incorporate multiple modalities in a speech recognizer.  
We tried to incorporate context information in the feature vectors by using LPC vectors 
calculated over relatively long time spans. This showed some improvement in recognition 
performance, thereby confirming the correctness of our models, but the real power of this 
approach is likely to show in noisy environments, this would be an interesting subject for further 
research. 
The integration of lipreading features in the speech process may result in a recognizer that is 
much more robust to noise and ultimately may be capable of operation in a multispeaker 
environment. Our experiments showed that the feature fusion technique is not very well suited 
for integration of audio and visual features because of asynchrony in the speech signal. The 
Multistream approach seems to be able to cope with this problem and to improve on the 
performance of  audio-only recognition. Once again the improvements may be much larger than 
shown in the above experiments if noisy audio is used. In a noisy environment performance of 
the unimodal ASR is less or equal to the performance of the lipreading component. From fusion 
we might expect an improvement of ASR. On the other hand in a relatively silent environment 
the audio part of the recognizers is able to capture most of the dynamics of the speech itself, 
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when both recognition subsystems perform well they will come to the same conclusion most of 
the time, so fusion will not result in spectacular results in this case. 
The systems built in our experiments were only trained a small number of times and used only 
three states per model with single Gaussian distribution functions. This of course limits the 
performance of the systems. As was shown in chapter four, to create more advanced models that 
better model the dynamics within the audio and video signals and the dependencies between 
them, further training and the introduction of multiple mixtures and context dependent models is 
necessary. However these techniques require large amounts of training data to prevent 
overtraining. In our experiments we found that convergence of the models was already reached 
after a few training iterations, increasing the number of parameters in these models would 
certainly have resulted in overtrained models. This is no surprise as we used a training set 
containing only 500 utterances from 5 different persons while the database needed to build an 
audio-only recognizer already contained over 20000 utterances. 
Recording and preparing an audio-visual database is a time and effort-consuming task, creating a 
useful database with a scale comparable to Polyphone may take years. But it is certainly worth the 
cost as even the small dataset used in our experiments allows for improvements in recognition 
results. 
Furthermore we found that there are still many problems to be solved in the area of lipreading. 
The lipreading systems used in our experiments did not compensate (enough) for person 
dependent features and once again it was the lack of training data that limited the ability of the 
HMMs to capture the highly dynamic video signal. This problems should be solved first before 
the problem of integrating the speech recognition and lipreading systems is attacked. When 
robust lipreading features a large representative data collection are available couplings using more 
advanced models like the Multistream Product HMM and the Coupled Hidden Markov model 
could also be applied to integrate audio and video recognizers. 
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