

Introduction

- Design Goals
- What is BOSS
- Hardware
- Dependency Flow Model
- Implementation resources BOSS
- Perceptron application
- Conclusion
- Questions

Design Goals

- Easy to understand and program
- Transparent Hardware / Software
- Fast
- Reliable
- Safe
- Free

Traditional v.s. BOSS

Applications

Operating System

Hardware

Dependency Flow Model

BOSS

Environment / Side Effects Resource Resource_i Network Memory Processors

Dependency Flow Model

- Dependency Flow Networks
 - Programming
- Owner structure
 - Abstraction
 - Process management
- Resource Structure
 - Scheduling
 - Information
 - Security

Dependency Flow Networks

- Sockets
 - Process
- Ports
 - Storage
- Channels
 - Communication

Owner structure

Abstraction Process management

Master Owner socket

- Owner holds DFN status
 - Suspend
 - Active
 - Terminate

Resource structure

- Socket : request for a process
- Resource : provider of processes

Scheduling Information Security

Socket

- Part of
 - DFN

- Owner structure
- Resource structure
- Represents
 - Resource process (atomic)
 - DFN (combined)

Abstraction

Subroutine

- Black Box = Owner
 - Behavioral description
 - Implicit

- ◆ White Box = DFN
 - Dependency description
 - Explicit

LinkLoader Resource

- Converts passive dependency data into working processes (DFN)
 - Manages Black box processes
 - Communicates variables
 - Introduces constants
 - Suspends / Activates / Terminates processes
 - Manages Namespaces
 - Primary namespace
 - Secondary namespace
 - Global namespace

Complete Structure: BOSS

Implemented processes

- Naming of resource processes
 - <resource>.<(in₀,in₁...in_n)(out₀,out₁...out_n)
- Resource: signal, boolean, byte, integer, float, double
 - Example: boolean.and(boolean,boolean)(boolean)
 - Example: integer.+(integer,integer)(integer)
- Resource: flow
 - Processes: repeat, hold, sync, switch, merge, last, after
 - All processes for data types : signal,boolean,...,@,NIL)
- Resource: text user interface, TUI

TUI Resource

Layer Holder

- Screen divided into multiple layers
- Background color

Perceptron

- Running
 - Y' = $(W_0 + W_1 * X_1 + W_2 * X_2) > 0$
- Training (Determining W)
 - Y = True, Y' = False -> (Y-Y')=1
 - Y = False, Y' = True -> (Y-Y')=-1
 - $W_i^{\text{new}} = W_i^{\text{old}} + (Y-Y')^*X_i^{\text{old}}$
- Y, Y': boolean {True, False}
- X, W: integer {-n...-2,-1,0,1,2...n}

- Random Value range: [-127, 127]
- ♦ W₀, W₁ W₂: 1
- Training: True
- Y: True, False, Random

Conclusion

- Easy to understand and program / Free
 - DFN
 - Owner structure / Abstraction
 - Information in resources
- Transparent Hardware / Software
 - Atomic processes
 - Combined processes
- Fast
 - Parallel execution of processes
- Reliable / Safe
 - Resource structure
 - Autonomy of resources