

Bart’s
Operating
System
Structure

Master thesis of B. Visscher
Delft University of Technology
Faculty of Information Technology and Systems
Section Knowledge Based Systems
July 2001

Author: Bart-Floris Visscher
Dorpsstraat 54
2636 CJ Schipluiden
The Netherlands
Tel: +31-(0)15-3808015
Email: B.Visscher@twi.tudelft.nl
Student number: 9890662

Thesis committee: Prof. dr. H. Koppelaar
Department of Information Technology and Systems
Knowledge Based Systems
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

dr. ir. E.J.H. Kerckhoffs
Department of Information Technology and Systems
Knowledge Based Systems
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

dr. drs. L.J.M. Rothkrantz
Department of Information Technology and Systems
Knowledge Based Systems
Mediamatics
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

Date: July 2001

Copyright 2001 , All rights reserved.
No part of this document may be reproduced in any form by any means without prior written authorization of B. Visscher.

Preface BOSS July 2001

B. Visscher Page 1

1 Preface

Wouldn’t it be nice, to have just one language in the world, no more misunderstandings, no miscommuni-
cation, an efficient language with short sentences, no exceptions on the syntax, no exceptions on the
exceptions. In the real world, this will never be possible but in computer science? A language that may be
applied anywhere and at the same time, the most efficient language possible, efficient in designing programs
and efficient in running them, best possible security, reliability of 100%. The best of the best and the most
efficient on all fronts, the fastest, the cheapest. Wouldn’t that all be nice? Well, dream on!

It just is not possible to create a language that writes its own programs without using any memory and doing it
all in a blink of an eye at zero cost. The world has limitations and computers can only be built in the world
with those limitations. Computers are therefore also limited. Limited in speed, limited in reliability, limited in
any way you can imagine (and maybe even your imagination is limited). The best we could ever hope for is a
language that is only limited by the limitations of our imagination and a computer system that is limited by the
world.

I have tried to combine these two aspects of limitation into one system, BOSS. A computer system, language
and operating system all built into one and trying to keep the different aspects of various existing systems into
mind. With the best possible solutions of different aspects that exist, all combined into one and if something
better could be though up theoretically, allow room for it to be created and incorporated. What has resulted
from this exercise is a system that should be better, on all fronts, than anything that exists and on individual
fronts at least as good as something already thought up. I hope that this report convinces the reader that BOSS
is exactly what is promised.

1.1 Acknowledgements
The road to create this thesis and software was a bumpy road at best. The shock absorbers and springs were
nearly rundown but luckily, a garage was found that replaced them all. For this, I would like to give my
utmost thanks and gratitude to the one that is the solution to the paradox of existence.

I would further like to give thanks to Sacha, who’s continued support and attention to my well being, the love,
understanding and encouragement she gave me, and her very keen eye on English grammar were appreciated
greatly.

I would also like to give thanks to someone who inspired me greatly, Prof. T.R. Addis of the University of
Portsmouth who’s own struggles with a similar system, Clarity, made me aware of the many problems faced
with it.

Special thanks are due at the address of dr. drs. L.J.M. Rothkrantz, who was a road sign to me, always keeping
me on the right road and reminding me of the destination.

I would also like to thank my parents, F.A. Krijgsman and W.Visscher without whom I could not have done
this, my sister, M.M. Visscher and her fiancé, A. Ditmer.

Summary BOSS July 2001

B. Visscher Page 2

2 Summary
This thesis introduces a new computer system, programming model and operating system called BOSS,
Bart’s Operating System Structure. The structure consists of two layers. The first layer holds the dependency
driven machine and on top of this layer, an extension is built. The dependency driven machine defines how
the different resources of a computer system may communicate with each other. The extension defines what
the resources can communicate to each other.

The dependency driven machine, DDM, models three different aspects of a computer system:
communication, storage and processing. Communication is done via channels that connect pieces of memory
to each other. Sockets are used to process memory. Ports are used to distinguish pieces of memory. Channels,
ports and sockets combined form the dependency flow networks, DFN, which are all processed on the
dependency driven machine.

All processes together with their memory have to be mapped onto the resources of the computer system. The
construction of the DDM and DFNs makes this task much easier than in existing systems. Scheduling
algorithms specially designed and optimized for a specific resource may be used. The resource itself can use
conventional optimization techniques like pipelining, cache memory and RISC for maximum processing
speed.

The heart of BOSS is the LinkLoader. This resource has the ability to transform dependency data, DD, into a
dependency flow network. This process is called link loading a DD. For the LinkLoader to do this, it needs
detailed information about other resources and a standardized way of communicating with them. This BOSS
extension on every resource together with the LinkLoader and several processes form the basis of a
programming language, which is an intrinsic part of BOSS.

To show that BOSS works, a simulation of the dependency driven machine, the LinkLoader and several
resources with their processes, is implemented. This simulation is implemented in C++ of DJGPP for DOS. A
DD that models a perceptron is created for the simulation to show that the BOSS language can be used as an
attractive alternative to existing languages. The designing of the DD showed many advantages of BOSS over
existing systems.

The advantages of BOSS over existing systems include its inherent parallel nature, guaranteed autonomy of
every process and the explicit mentioning of all dependencies between processes. These advantages make
dependency flow networks faster in executing, more reliable, faster to develop, easier to test and debug than
any conventional system.

Contents BOSS July 2001

B. Visscher Page 3

3 Contents
1 Preface..1

1.1 Acknowledgements ..1

2 Summary...2

3 Contents..3

4 Introduction..8

5 Programming model..10

5.1 The dependency flow model, DFM...10

5.1.1 Sockets..11

5.1.2 Ports ..11

5.1.3 Channels ...11

5.2 Dependency flow networks, DFN...12

5.2.1 Building blocks of dependency flow diagrams ..14

5.3 Owners ..15

5.4 Relationship with communication models ..16

6 DDM, Specification ...17

6.1 Channel ...17

6.2 Port ..17

6.3 Socket..18

6.3.1 Socket statuses..18

6.3.2 Owner socket statuses..19

6.4 Resource..19

6.5 The complete system, the Dependency Driven Machine ...20

6.5.1 Resource ...20

6.5.2 DDM...20

7 Choosing implementation..22

7.1 Level of evaluation of the DDM..22

Contents BOSS July 2001

B. Visscher Page 4

7.1.1 Hardware ..22

7.1.2 Numerical codes...22

7.1.3 Assembler...22

7.1.4 Higher programming language..22

7.1.5 Interpreter ...23

7.2 Choice of evaluation level of the DDM...23

7.3 Evaluation level of the DFN ..23

7.3.1 Compiler...23

7.3.2 Interpreter ...23

7.4 Implementation choice of the DDM and DFN ...23

7.4.1 Implementation language ..23

8 Implementation of the DDM..25

8.1 Differences between specification and implementation ...25

8.1.1 Thread structure..25

8.1.2 External event...25

8.1.3 Classes ..25

8.2 General data types ..26

8.3 Memory...26

8.4 Classes...26

9 Extension on the DDM ..39

9.1 The resource..39

9.2 Problems ...39

9.2.1 Finding a resource index..39

9.2.2 Multiple processes on a resource...39

9.2.3 Loading a program...40

9.2.4 Abstraction (subroutines)...40

9.2.5 Constants ..40

9.2.6 Security and scheduling...40

Contents BOSS July 2001

B. Visscher Page 5

9.3 Solution ...40

9.3.1 LinkLoader...40

9.3.2 Extension..44

10 BOSS specification...46

10.1 Dynamic Data Structure..46

10.2 General message expressed in DDS...46

10.3 Making all processes of a resource known to the LinkLoader..46

10.4 Dependency Driven programs, DD programs ...47

10.5 Resolving socket names in a DD..48

10.5.1 Primary namespace..48

10.5.2 Secondary namespace..48

10.5.3 Global namespace ..48

10.6 Link Loading a DD program..48

10.7 The complete system, BOSS ..49

11 Implementation of BOSS ...51

11.1 Class hierarchy ..51

11.2 Dynamic Data type..51

11.3 BOSS extension of the resource class ..53

11.4 LinkLoader resource class ..57

12 BOSS Resources...61

12.1 Naming of a resource process...61

12.2 Reference data type ...61

12.3 Resources...61

12.3.1 Signal ..61

12.3.2 Boolean...62

12.3.3 Byte...63

12.3.4 Integer...63

12.3.5 Float ..64

Contents BOSS July 2001

B. Visscher Page 6

12.3.6 Double ..65

12.3.7 Converter ..65

12.3.8 Flow..66

12.3.9 Text User Interface...67

13 Application design, perceptron ...71

13.1 Design ..71

13.1.1 Perceptron...71

13.1.2 Perceptron weight ..72

13.1.3 Perceptron base ..73

13.1.4 Resource for reading from / writing to a file...73

13.2 Results of AND, OR and XOR ..74

13.3 Discussion of the results..75

13.4 Evaluation of the design process in BOSS...75

13.4.1 Design and implementation of a dependency flow network..75

13.4.2 Implementation of a resource process...76

13.4.3 Testing dependency flow networks...76

14 Comparison..78

14.1 Universal programming language theorem..78

14.2 Comparison to other paradigms..78

14.2.1 Iterative paradigm ..78

14.2.2 Functional paradigm ..79

14.2.3 Dataflow paradigm...80

14.3 Speed..81

14.3.1 Time versus Work..81

14.3.2 Costs ...82

14.4 The simulation...82

15 Conclusion..83

16 Recommendations and future developments ..84

Contents BOSS July 2001

B. Visscher Page 7

16.1 Resources...84

16.1.1 LinkLoader processes ..84

16.1.2 Security processes in the BOSS extension..84

16.1.3 Information processes in the BOSS extension..84

16.1.4 Resource to process graphics...84

16.1.5 Resource for user input ..84

16.1.6 Resource to handle time processes..85

16.1.7 Resource to handle memory requests..85

16.1.8 Resource to handle files ...85

16.1.9 Resource to communicate with serial / parallel / USB ports..85

16.1.10 Resource to communicate with a network...85

16.2 Current and future problems ...86

16.3 Road ahead ..86

16.4 Ideas for a development and test environment...87

16.4.1 Draw area ...87

16.4.2 Documentation...87

16.4.3 Channels and sockets in multiple layer...87

16.4.4 Process repository ..88

16.4.5 Process creator..88

16.4.6 Program overview..88

16.4.7 Testing and debugging...88

16.4.8 Dialog creator...88

17 Bibliography...89

18 Appendixes ...91

Introduction BOSS July 2001

B. Visscher Page 8

4 Introduction
The field of computer science has seen some major advantages over the past decades. One of the first areas of
focus has been the way a computer system was built. In the early years of computer science, machines were
created for a specific task and could do nothing else. This idea of special purpose machines changed and
computers were built to be general purpose. A program was used for these computers to specify the task it had
to perform. The program was stored in a part of the memory as instructions and the processor interpreted this
data and executed the instructions. With this new ability, a new field in computer science was created with its
primary interest on how to program these instructions.

The focus in programming was on how the processor processed the instructions and how this control flow can
be used to perform a task. This research resulted in the development from 1st generation languages to 3rd
generation languages. In the 1960ies, this concept of iterative programming was reviewed and two new
models were introduced, the data flow model and functional programming. Both of them changed focus from
how the processor changed data to what has to be done to create the data. The functional model did this by
creating expressions with the firing rule that only the expressions, which yield necessary data, has to be
evaluated (also known as lazy evaluation) or evaluating all expressions (eager evaluation). The dataflow
model did almost the same but used the firing rule that when all data was present in an expression, the
expression was evaluated which can best be described as a short form of eager evaluation. In the 70ies a
fourth model was introduced that was based on constrain based reasoning, the logical programming model.
Between the various groups that insisted that their approach was the best, a lot of energy was used to show
that all the other approached could be reduced to it and that therefore, theirs was the most fundamental.

As time progressed, all models where developed further and tools and languages for each of them where
created, implemented and extended. The iterative model was extended and object oriented models where
created. When object-oriented programming was fashionable, the other streams also adapted their model to
incorporate some or all object-oriented features but despite this, the underlying battle between the groups
remained.

The costs of memory and processors dropped rapidly with the wide introduction of PC’s and with this, the
popularity of the iterative programming paradigm grew. Development environments were created and tools to
create graphical dialogs, multimedia applications etc. The hardware for the PC’s still develops but the physical
limitations are almost reached. These problems were already found in the mainframe machines and to deal
with this, parallel extensions on the iterative programming language were introduced in the form of message
passing systems and shared memory systems that have been available for some years now for the PC’s. The
functional paradigm and dataflow paradigm did not need such an extension because they are not focused on
the instruction stream but on the data stream and are therefore inherently parallel.

The stream that is the most popular now, is the stream of iterative programming. The most popular languages
of this steam are JAVA and C++. Most research in computer science is therefore done in optimizing the
designing and compilers for these types of languages. Processors are being optimized to process the
instruction stream as fast as possible. Techniques like pipelining, dataflow analyses on the instruction stream
and branch prediction are examples of how the processors are adapted. The compilers are optimizing the
instruction stream by using data flow analyses to deal with problems for register assignment and loop
optimization.

This thesis describes the design and implementation of a simulation for a new programming model, BOSS.
The first question that arises after a statement like this, would be why? Why is a new programming model
required? Current models have the ability to be successfully applied in every environment and are applicable
for any tasks that we can ever encounter. So why design a new programming model? To answer this
question, several different aspects of programming models are given and related to BOSS.

Programming is always a complex task. This is because programming is combining several different building
blocks and arranging them in such a way that a specific task is performed. This task may be anything ranging
from adding two numbers to controlling a nuclear power plant.

Introduction BOSS July 2001

B. Visscher Page 9

At the basis of programming is the programming model. This model defines the arrangements of the building
blocks and what those building blocks are. The complexity in designing programs is combining them. The
more building blocks are required, the more complex the program becomes. If a programming model only has
nand ports for its building blocks, adding two integers would become a complex task due to the amount of
nand ports needed and how to arrange them. If however control-mechanisms were part of the programming
models building blocks, writing a program to control a nuclear power plant would be a simple matter.

A programming model provides standard building blocks and a method of combining them through its syntax.
New building blocks may be created in the form of subroutines or functions but these functions and
subroutines always use the original building blocks in the end. With this construction, the speed of the
program depends for a great deal on the building blocks provided and the versatility to arrange them.

BOSS does not provide standard building blocks but it provides a way to create them and to combine them. If
new building blocks are required they can be made from existing ones just as in traditional models but if that
is not fast enough, specialized hardware may be introduced to perform the task as fast as possible without
having a specialized software library based upon the standard building blocks (device drivers) to slow it down.
With this construction, the programming model becomes more flexible and can be adapted to any field with
maximum efficiency.

Another mayor advantage of BOSS is the inherent parallel nature. Iterative languages only use one processor
and with a lot of communication overhead and problems like deadlock, critical code and synchronization
delays, it becomes possible to have multiple processors work on the same problem. BOSS uses a completely
different approach to the problem of parallel processing. This new approach makes it possible to distribute
problems without the extra overhead and execution of a program may be done in BOSS with extra efficiency.

The third mayor difference from traditional languages is the design process. BOSS provides an all-in solution.
It may be used to describe the most abstract specification to the final implementation. With the combination of
the different steps of the design process and describing them in the same diagrams, projects are made more
manageable, easier to understand and easier to alter at a later stage in the design. Alteration may be done at
any point in the program and at any time without the necessity to redesign the complete program or parts of it
as in traditional languages.

To give a detailed description of the different aspects of BOSS, the thesis is divided into three parts. The first
part introduces the programming model, the second part uses this model to create a language and the third part
discusses the designed and implemented of an application in the new programming language and future
developments. There is also a chapter incorporated that relates BOSS to existing paradigms.

In the first part, the fundamental principles of the dependency driven machine, the DDM, are introduced. This
begins in chapter five with a global introduction of the programming model. This introduction is then used to
make a specification in chapter six. In chapter seven, the choices that arise when implementing a simulation of
the system are discussed. The implementation is discussed in chapter eight.

The second part starts at chapter nine and discusses an extension on the resources of the dependency driven
machine. It starts by enumerating problems that arise and solving them all in one stoke with the introduction
of BOSS resources and the LinkLoader resource. This extension is then specified and implemented in chapter
ten and eleven. In chapter twelve, several BOSS resources are introduced to handle the work on boolean,
integers, floating point and to send data to the screen. There is also a resource presented that converts data
from one type into another and a resource that controls the dependency flow.

The third part will discuss different aspects of BOSS. It gives a case study of the design and implementation
of a perceptron in chapter 13. Chapter 14 discusses how BOSS relates to the existing paradigms.

Programming model BOSS July 2001

B. Visscher Page 10

5 Programming model
This chapter discusses the fundamental principles underlying the programming model, and how it compares
to two other existing models, shared-memory model and message passing model. The next chapters will make
a specification of the model and then the implementation is discussed.

5.1 The dependency flow model, DFM
The dependency flow model is a standard for communicating between different resources and is particularly
useful for parallel computers. A parallel computer can consist of many computers linked in a network or a
computer with more than one processor. Both of these have one thing in common, communication and
processing. In a distributed parallel computer the processing is done by a computer with its own memory and
I/O facilities, communication is done through a network like token ring or Ethernet. On a multi-processor
computer, the processors communicate with each other through common memory or an internal wired
network (but this depends very much on the type of computer).

This commonality between all computer systems gives a view of several resources linked together by some
form of communication network like bus, ring, hypercube, mesh etc. The dependency flow model uses this
linking of resources as the basis for programming. How communication between resources is achieved,
depends on the used hardware but for the modeling to work on every type of network, the following basics
can always be found.

Resource i
Resource j

Resource k

Figure 5-a computer system viewed as multiple resources linked together

Memory Processor(s)

Resource i

Input(s)

Output(s)

Figure 5-b construction of a resource

Programming model BOSS July 2001

B. Visscher Page 11

Every resource has its own memory to store data received from other resources and/or to store data that must
be sent to other resources. This memory can be located in a processor (register) or in shared memory by
several resources (main memory).

Besides memory to store data, every resource has a processor that transforms data. This transformation can be
very simple like a boolean nand or more complex like an interface to a nuclear power plant. The dependency
flow model focuses its attention on the process that occurs in the resources and how these processes are linked
together. It does so by creating sockets that gives all the different aspects of a process into a building block for
programs.

5.1.1 Sockets

A socket consists of four different elements, which are
all part of the resource. The input memory holds the
information that the resource received from other
resources. This memory is read-only for the process. The
output memory holds information that must be sent to
another resource and is write-only. The last piece of
memory is read-write memory and can be used by the
process to store its status or to share data between
processes on the same resource. The input-, output- and
local memories are all located in the memory of a
resource. This memory is used by the last piece of a
socket, the process. This process uses the input and local
memory and transforms this into output and local
memory. This process may then be mapped on the
processing elements of the resource in a variety of ways.

If a resource has for example a processor that is able to
perform four boolean ands concurrently and the resource
has enough memory to store the in/out/local memories for 1000 and sockets a total of 1000 and sockets can be
linked with other sockets. Concurrent execution of four and operations can take place and pipeline execution
of the instructions within the processor can be realized for maximum efficiency of the operation.

5.1.2 Ports

A socket uses memory from the resource to receive data from other resources or to send data to other
resources. This input and output memory is split into in-ports and out-ports to make a distinction between data
streams that go into a socket and streams that go out of a socket. If for example a process requires two input
variables and one output variable, like an addition, the socket will have two in-ports and one out-port. Each in-
/ out-port is independent of the other in- / out-ports and uses its own block of memory to store its data. The
process of the sockets keeps track of interdependencies between ports to determine if enough information is
present to start processing. In the process of the addition, both ports must have received data before the
addition can be calculated. In the case of a boolean and operation, sometimes only one port must have data to
calculate the result.

5.1.3 Channels

The last part of a dependency flow model is the link between ports. This is realized with channels. A channel
is a connection between two resources that links an out-port of one socket to an in-port of another (or the
same) socket and shows how data is transferred from one port to another. It effectively shows how the in-port
depends on the out-port.

L
ocal M

em
ory

Input Memory

Output Memory

Process

Figure 5-c construction of a socket

Programming model BOSS July 2001

B. Visscher Page 12

5.2 Dependency flow networks, DFN
The goal of the dependency flow model is to link sockets together. This creates a network structure, the
dependency flow network. The diagram method used to represent a dependency flow network is called a
dependency flow diagram or DFD for short. The diagram represents the dependencies between different
processes that are active on a resource. Three examples are given to give an idea of how a DFD looks like.

Example 1:

*

5 5

+

* log

9

+

72 3

2

-

Figure 5-d dependency flow diagram of the expression: 5 * 5 + log(9) – 72 * 3 + 2

Programming model BOSS July 2001

B. Visscher Page 13

Example 2:

As with all languages, it is possible to create two equivalent DFDs that use different elements. The two DFDs
in this example create the same sequence on the output channel. The sequence is equivalent to Fibonaci.

1 1 2 3 5 8 13 21 34 55 89 144 233 etc., (Xn = Xn-1 + Xn-2, X1 = 1, X2 = 1)

The Repeat socket repeats the value it has on the in-port and puts it on the out-port once. The constant values in
these diagrams are also communicated once.

Figure 5-e two DFDs that generate the Fibonaci sequence

1

+

Repeat

1

Repeat Repeat

+

Programming model BOSS July 2001

B. Visscher Page 14

5.2.1 Building blocks of dependency flow diagrams

A dependency flow diagram is made up out of three elements of the programming model, one part for
communication, one for storing data and one for processing. For communication, channels are used. For
storage and processing the socket is used with its in and out-ports. To make all of the part recognizable they
all have distinct shapes.

Socket:

A socket is depicted by a rounded square. A socket is one process that is active on a resource with all its
memory (in, out, local). Ports are connected to the socket to represent this memory. On the top are the in-ports
that receive data from a channel, on the bottom are out-ports that sent data to a channel.

Port :

A port is a temporary buffer that stores data. All communication is done with these ports. Ports that receive
data from other ports are called in-ports. Ports from where data is sent are called out-ports.

Process

Example 3:

The socket on the top compares two variables
and returns a boolean. The second socket uses
the boolean to decide which value will be
passed. If the boolean is TRUE then the value
above T is passed. If the boolean is FALSE,
the value above F is passed to the bottom.

The function of this DFD is equivalent to:
min(a, b)

A

<

? T F

B

Figure 5-f DFD of min(a.b)

Programming model BOSS July 2001

B. Visscher Page 15

Channels:

A channel depicts a dependency between ports. It always start at an out-port and ends in an in-port. Since data
from one port may go to many others, multiple channels may start at an out-port. It is also possible for
multiple channels to end in the same in-port. All the three possibilities are shown in figure 5-g. They are
equivalent to ‘one to one’ communication, ‘one to many (all)’ and ‘(all) many to one’. ‘Many (all) to many
(all)’ communication is accomplished by using ‘one to many (all)’ for every out port.

5.3 Owners
In a computer system there will be many DFNs active which are independent of each other (i.e. have no
channels between them) just as in a conventional computer system there may be many applications and
subroutines being executed at the same time without having any communication between them. To have all of
these DFNs operate at the same level would be very undesirable and complex to manage. To create a structure
between DFNs, a hierarchical owner structure is introduced. This owner structure assigns one socket, the
owner socket, to encapsulate an entire DFN. The socket at the top of the hierarchy is called the master owner
socket as shown in figure 5-h. This master owner socket holds a DFN and the sockets in this DFN may in turn
be owners of other DFNs.

1 : 1 1 : N
N : 1

Figure 5–g possible configurations with channels and ports

Master
Owner
socket

Owner
socket

Owner
socket

Owner
socket

DFN

DFN

DFN

D
FN

Figure 5-h encapsulation of dependency flow networks by its owners

 BOSS July 2001

B. Visscher Page 16

The owner sockets have some special abilities. As the name suggests, they are the owner of a DFN and may
therefore decide what happens with that DFN. The owner socket may open channels and reserve sockets to
create or modify the DFN. It may also close channels and free sockets when they are part of that DFN. The
owner also has the ability to suspend its DFN and resume it later or to terminate its DFN for good. Two
elements that are part of the same DFN have the same ownership level. If they are not part of the same DFN,
they are at different ownership levels.

5.4 Relationship with communication models
The dependency flow model can best be compared to both the message passing system and the shared
memory model. It has some commonalities with both of them. Both of these models present a way of making
processes communicate with each other. The message passing system does so by sending messages between
processes and the shared memory model does so by having common memory between the processes.

The dependency flow model uses an abstract of both of these principles. It uses ports and channels to establish
communication. Over the channels, messages are being sent between ports in order to share the memory and
status of the ports between sockets. This means that both principles of the communication models are active at
the same time. With this combination of both of them, it is possible to successfully build a dependency flow
system onto message passing systems and shared memory systems.

DDM, Specification BOSS July 2001

B. Visscher Page 17

6 DDM, Specification
This chapter will discuss the various parts of the programming model in more detail. Every part is taken apart
and interaction between the different parts is specified. All these parts are then put together and a total picture
is given. This will then be used in the next chapter as the basis for the implementation.

6.1 Channel
A channel depicts a data stream dependency. It copies the data from an out-port into an in-port. A channel
may have the following statuses:

Initialize: Before a channel exists is has to be connected into the system. Information must be passed to the
channel telling it, which out-port must be connect to which in-port. Creating a channel can only be done by
the owner socket of the DFN of which the channel is part. Furthermore, the in- and out-port both have to be at
the same ownership level.

Wait: The channel is ready to copy a dependency. During this status the channel waits for data to be put into
the out-port. As soon as this data is available, the channel changes its status to Blocked.

Blocked: In the blocked status the channel has data in the out-port and is trying to copy this data to an in-port.
This port however is not ready to receive data and the channel is therefore blocked in its operation and has to
wait until the in-port is ready to receive data. As soon as the in-port is ready to receive data, the channel
changes its status to Busy.

Busy: In the busy status, the channel is copying data from the out-port to the in-port. As soon as the data has
been copied, the channel changes its status to Done.

Done: When a channel is done it has copied all data from the out-port (source port) the in-port (target port). It
now waits until all channels connected to the source port have the status Done. As soon as this happens, the
channel changes its status back to Wait.

Terminate: From every status (Wait, Blocked, Busy and Done) the channel may get a command to
disconnect itself from the system. The terminate command may only be given by the owner socket of the
channel (i.e. the socket that opened the channel).

6.2 Port
The main function of a port is to temporarily store data and to communicate this data through a channel. It
uses its statuses to communicate to the channel if there is data that has to be transported. It also uses its status
to communicate with the socket if there exists data that has to be processed. An in-port is used to store data
that has arrived from a channel. The socket can use this data for processing by requesting it from the in-port.
An out-port is used to store data that has arrived from a process in socket. The information in the out-port will

Wait Blocked Busy Done

Figure 6-a status diagram of a channel

DDM, Specification BOSS July 2001

B. Visscher Page 18

in turn become available to all the channels that are connected to it. Both the in-ports and out-ports use the
same statuses.

Initialize: A port is created by the same socket that uses it. The socket specifies how many in-ports and how
many out-ports it requires. The socket also has to specify the size of each of these ports to determine how
much memory has to be reserved. The size may be fixed or it can be variable to use more dynamic data types.

Wait: The wait status tells the system it is ready to receive data. As soon as the socket or channel wants to
write data into the port, the socket / channel requests a write. This Wait->Write transition is used as a
semaphore to make sure there is never more than one channel / socket writing to the same port at the same
time.

Write: As soon as a port has the write status, data may be written to the buffer of the port. When this is done,
the port changes its status to Blocked.

Blocked: In the blocked status the memory buffer of the port is filled with data. It is not possible to change the
data but it can be accessed in a read-only mode. The data is in fact blocked for writing. As soon as the data
from the buffer may be changed, the port must be assigned the status Wait again.

Terminate: As soon as a socket is freed, all in-ports and out-ports of that socket have to be erased. This
terminate signal may be given from any status. If there are any channels connected to the port they have to be
disconnected when the port is terminated.

6.3 Socket
A socket makes the process of a resource available in a DFN. The socket maintains information about which
in-ports and out-ports are connected. It also has a piece of local memory, its environment, to store any data
that may be needed in the process.

The socket is part of three structures, the owner structure, a resource structure and a dependency flow
network. For two of these structures it has different statuses. First the statuses will be discussed that are part of
a socket within a DFN structure. After that, the statuses will be discussed when the socket is viewed upon as a
part of the owner structure.

6.3.1 Socket statuses

Initialize: A socket is always part of a dependency flow network. The owner socket of the DFN reserves the
socket with the resource. The owner socket may also send additional data to the socket used by the resource
for security, priority or process specification. The socket (not the owner) creates the necessary in- and out-
ports to which channels may be connected by the owner socket. After the socket is reserved, the socket
changes its status to wait.

Wait: While a socket has the status Wait, it waits until an in-port or an out-port changes its status. After this
has happens the socket changes its status to Active.

Wait Blocked Write

Figure 6-b status diagram of a port

DDM, Specification BOSS July 2001

B. Visscher Page 19

Active: When a socket has the status Active it is busy processing. The resource checks to see if there is
enough information available and verifies that if out-ports are waiting for data. If both are the case, the data is
processed and the socket returns to the Wait state so it able to process future data.

Terminate: During all of the previous phases a socket may be terminated. This command may be given by
the owner socket or by the resource. If the socket is itself an owner socket, it will command all its slave
sockets and channels to terminate. After this is done, it will terminate itself by deleting all in-ports, out-ports
and freeing the used memory.

6.3.2 Owner socket statuses

The owner statuses determine how the dependency flow network of which the socket is owner will react. The
channels, ports and sockets of the DFN are called slave channels, slave port, slave sockets. Resources are also
part of an owner socket. The owner socket may initialize and terminate all the objects of which it is owner.
The owner statuses are not part of the socket but they are part of the DFN that the socket owns.

Suspend: In the suspend status no slave channels may copy data from one port to another. When a DFN is in
this status, it will completely stop processing.

Active: When the DFN is active all slave components work normal.

Terminate: When a DFN has the states Terminate all slave components will terminate and no slave
components may be added in the future.

6.4 Resource
The basic function of a resource is to process data. This processing may be anything from simple arithmetic
functions to complex screen manipulation. The resources process data through sockets. Information is put into
in-port(s) of a socket and the resource processes this information and puts the result into the out-port(s) of the
socket. It is for resource designers very important to model a resource correctly so that no effects can occur
that are not modeled as dependencies in a socket.

Wait Active

Figure 6-c status diagram of a socket

Suspend Terminate Active

Figure 6-d status diagram of an owner socket

DDM, Specification BOSS July 2001

B. Visscher Page 20

A resource is added to the system by a socket. This socket will be the owner socket of the resource. As soon
as a resource is removed from the system by the owner socket or by the resource itself, all sockets that have
been reserved on the resource must be freed. All connected channels have to be disconnected and the ports
have to be removed.

Security of the system is handled by the resource. When a socket is reserved, additional information may be
sent to the resource by which it can determine what its rights are. This is being done during reserve time,
which means it does not affect the programs efficiency. Every resource may have its own security measures
that make it possible to maximize security for a specific type of resource.

A second important feature of a resource is to schedule the processes onto the processor. During the
reservation of a socket additional information may be sent along to notify the resource of the priority of the
socket. In general the evaluation rule to process a socket is: a socket needs processing when al least one in-
port changed status to Blocked or an out-port changed status to Wait. With this rule, it is possible that multiple
sockets require processing at the same time on the same processor. If this is the case, the scheduling
information may be used to determine the sequence in which to process the sockets. If the resource can
process more than one socket at a time scheduling will also have to be specific for the resource.

6.5 The complete system, the Dependency Driven Machine
In the previous section, all components of the system have been discussed. In this section, the interaction
between these components will be defined. This will be done by splitting the system into two sub sections,
one for processing and one for communication. The processing will be done by the resource. The resource
uses the socket, in-ports and out-ports to process and locate data. The second part will be called the
dependency driven machine, DDM. This part connects out-ports with in-ports and communicates the
dependencies en data between them. First the resource will be discussed, then the DDM.

6.5.1 Resource

As mentioned in section 6.4 the resource does the actual processing. It is the mapping of several requests for
processing (sockets) onto the processor(s). Highly specialized processors and scheduling methods for that task
makes resources as fast as possible without having to take the rest of the system into account.

6.5.2 DDM

The second part, the DDM, takes care of the communication between the processes. This is done with the use
of channels and ports. In the next section, a detailed explanation is given of the interaction between channels
and ports.

Figure 6-e shows how two ports are connected by one channel. It shows how their statuses change during the
course of time. The top port (square) is an out-port of a socket. The bottom port (square) is an in-port of a
socket. The arrow between the ports is a channel.

The next section explains figure 6-e. The numbers between brackets is the picture of figure 6-e associated
with that status.

DDM, Specification BOSS July 2001

B. Visscher Page 21

Whenever a port or channel is opened, it starts with the status Wait (1). Both ports and the channel are waiting
for data. When a socket want to write information into an out-port, it requests the status Write (2). If the socket
has written all data into the port, it changes the port status to Blocked (3). As soon as a channel has an out-port
in the Blocked status it will become Active and change its status to Blocked (4). It will then attempt to write to
the in-port by requesting the Write status (5). If the channel has been given the right to write to the port it will
start transferring the data from the out-port to the in-port by changing status to Busy (6). When all data has
been transferred, it changes status to Done (7). The out-port will in turn change status to Blocked to indicate it
holds information (8).

As soon as all channels connected to the out-port have the status Done, the out-port changes status to Wait (9).
When the out-port has the status Wait all connected channels change status from Done to Wait (10).
Situations 11 through 13 are the same as situations 1 trough 3 except that the in-port has status Blocked. In
(13) the channel tries to write to the in-port but it is Blocked and will have to wait until the port is waiting to
receive new data (14). The statuses at 14 are the same as in 4 and the loop will start over from there.

W

W

W

(1)

R

W

W

(2)

B

W

W

(3)

B

B

W

(4)

B

B

R

(5)

B

U

R

(6)

B

D

R

(7)

B

D

B

(8)

B

D

B

(8)

W

D

B

(9)

W

W

B

(10)

R

W

B

(11)

B

W

B

(12)

B

B

B

(13)

B

B

W

(14)

Figure 6-e two ports connected by one channel with their appropriate statuses: (W)ait, w(R)ite, (B)locked, b(U)sy, (D)one

Choosing implementation BOSS July 2001

B. Visscher Page 22

7 Choosing implementation
The previous chapters defined the building blocks of dependency flow networks and how each of the
elements behaves. One of the goals of this project is to create a system with these components capable of
evaluating dependency flow networks. This system, the dependency driven machine, is to be a demonstration
showing the capabilities and effectiveness of the system. Another goal of the implementation is to point out
any shortcomings in the model and determining which parts need to be developed further.

The first question that arises when implementing is deciding at what level the dependency flow networks need
to be evaluated. The second question is in what language will the system be programmed. Both of these
questions will be answered taking into account the limited time this projects has and the speed of the
implementation.

7.1 Level of evaluation of the DDM
The first aspect of the implementation is deciding at what level the DDM
will be evaluated. This will in turn determine the minimum level of
evaluation for the DFNs. The level of evaluation does not limit the DDM
but other aspects like readability, maintainability, portability and
evaluation speed must be carefully considered. In general, the higher the
level of evaluation, the slower the execution speed. , the faster the
designing and the higher the maintainability.

7.1.1 Hardware

The first level to realize the DDM is in electronic circuits. This form gives
the highest speed and although this implementation level is the ultimate
goal, it is not suitable for a first test. The components are too expensive to design and the designing is a very
time consuming process that well exceed the time constraints of this project.

7.1.2 Numerical codes

The method of programming used in the early years in computers was to program a system by directly writing
the numerical codes for the processor. This method is very difficult and error prone. The code created is
almost not portable over different platforms.

7.1.3 Assembler

Instead of writing the numerical codes directly, assembler programs use op-codes to represent the instructions
of the processor. The speed of evaluation is the same as writing in numerical codes directly but the code is
more readable and faster to develop. Is has however the same drawback as numerical codes in portability.

7.1.4 Higher programming language

Higher programming languages have one main characteristic, abstracting from the processor. Code written in
a higher programming language is therefore portable over more that one platform and less error prone than the
previous three levels. Because code written in a higher programming language is not processor dependent, the
code has to be translated or compiled and linked. The speed of a higher programming language is still very
high but slower than assembly.

Hardware

Numerical codes

Assembler

Higher prog. lang.

Interpreter

Figure 7-a levels of evaluation

Choosing implementation BOSS July 2001

B. Visscher Page 23

7.1.5 Interpreter

The last possibility of implementing is at the evaluation level of an interpreter. An interpreter translates the
program while the program is being evaluated. This makes interpreter languages the slowest possibility. The
code is usually very easy to design and the language itself handles many error situations.

7.2 Choice of evaluation level of the DDM
The most appropriate level of evaluation is the higher programming level. This level is the first level which
creates portable programs and still has a high evaluation speed, which of course is one of the most important
features of a language.

7.3 Evaluation level of the DFN
Having chosen the level of evaluation for the dependency driven machine, a choice has to be made about the
evaluation level of the DFNs that are being evaluated by the DDM. The DDM can be made in two ways, as a
compiler or as an interpreter. Both choices are explained and pro’s and cons are given.

7.3.1 Compiler

If the DDM is implemented as a compiler, the DFNs are translated to machine dependent code before they are
evaluated. The code given by the DDM can very efficiently be evaluated. The major drawback is that the code
will not be portable anymore and the DDM will generate code for a specific platform and therefore the DDM
will not be portable.

7.3.2 Interpreter

An interpreter translates the program as it is being evaluated. The execution speed of the DFNs will be slower
that in a compiler like DDM but the code can be transported in runtime to other types of processors without
having to make additional translations. For the system to be able to transfer DFNs in run time to other
platforms, the interpreter style implementation is preferred over the compiler like implementation. The
interpreter implementation also has the advantage to be more accurate with the programming model in that
resources may be added or removed in runtime.

7.4 Implementation choice of the DDM and DFN
The program being implemented is the DDM. The
function of the DDM is to evaluate dependency
flow networks. The DDM will be implemented in a
higher programming level to give it the maximum
speed without losing any portability. The DDM
program will in pre-run time be compiled and
linked. This program will, in run time evaluate the
DFN. The ultimate goal is to create a DDM directly
in hardware to make the DDM as fast as possible
but without the resources for such a huge
undertaking this form cannot be realized.

7.4.1 Implementation language

Within the domain of higher programming
languages, a variety of different languages is available. Each with its own pro’s and cons concerning

DDM

Compiler

Hardware

DFN

DDM

Hardware

Pre-run time Run time

Figure 7-b evaluation of the DDM and DFN

Choosing implementation BOSS July 2001

B. Visscher Page 24

development speed, maintainability, execution speed and readability. One of the most important reasons for
the creation of the dependency flow model is to create an alternative for these languages. Implementation
must therefore ideally be done in a DFN. However, this is not possible since that language is not yet available.
The choice has therefore fallen onto ANSI-C++. There exist a great number of compiler ports for this
language for almost every conceivable platform and the compiled programs evaluation speed is the highest of
all higher programming language.

Implementation of the DDM BOSS July 2001

B. Visscher Page 25

8 Implementation of the DDM
In this chapter, the implementation is described. The specification of chapter six is used as the bases and a
detailed summary of methods with their input and output variables are described. There is also a complexity
calculation given of the most fundamental data type to ensure an efficient program is created.

8.1 Differences between specification and implementation
The implementation is almost a direct implementation of the specification. It differs however on some minor
points. These differences are a direct consequence of the current computing models. All of the differences are
discussed in this section in detail and reasons why the implementation differed from the specification are
given.

8.1.1 Thread structure

The most prominent distinction from the dependency flow model is that the implementation uses only one
processor. The specification is based on the idea, that all elements are implemented using their own processes
independent of each other. This allows the processing time of all elements to be very small and independent of
each other. The implementation only has one processor so this concurrency must be simulated. This is done
using a thread class for the basis of all resources. The thread class is a class that divides the processor over
multiple threads. During the updating of the thread, the processor is assigned to an update method in the
resource. This created the illusion of a continuing process in the resource. Polling a mouse or keyboard is then
possible and with the use of an external event, processing a socket may be forced to introduce an event into
the DFNs.

8.1.2 External event

A resource may be used to interface with systems outside a DFN. It must be possible to model these so called
side effects into the network. This means that data may be introduced if a side effect happens or that based on
data of a socket a side effect is controlled. In the specification, it is the job of the resource to handle these two
but in the implementation, it would mean that an interrupt system must be present for the introduction. This
interrupt system is implemented as an external event. If an interrupt happens or a polling process has decided
that a socket must be processed, it is possible to send an external event to a socket. The socket will then be
processed and it can handle the side effect and introduce variables on its out-port.

8.1.3 Classes

The complete system is based on
two classes, the resource class
and the DDM class. The function
of both of these classes is
described in chapter six. The
other classes are used to create
multiple processes. This is done
by using the thread class as the
basis of both the DDM class and
all resources. The scheduler class assigns the processor to a thread and with this, processes in the resources
and the DDM are active after another. The DDM has the task of updating all the channels and sending
messages to the resources telling it which sockets need processing.

The resource class is the basis for a resource. It provides a variety of methods to communicate with the DDM
class and to manage socket, channels and ports. With the use of the resource class all aspects of the

Thread

DDM Resource Scheduler

Figure 8-a classes of the dependency driven machine

Implementation of the DDM BOSS July 2001

B. Visscher Page 26

specification are realized in a fast and efficient way. All functions of the DDM are accessed through the
resource and no direct communication between self made resources and the DDM is required.

8.2 General data types
File: datatype.h

The entire system is built on three different data types that are very specific for every computer system. Each
computer system has a limited size of memory and several different sizes may be used with the current
implementation.

boolean (unsigned char)

The first data type is the most elementary of all, the boolean or bit. It can be TRUE (-1) or FALSE (0).

base (unsigned char)

The second data type is base. This is the smallest amount of addressable memory. On most machines, the size
of base is eight bits; some have a sixteen bit base size. The ultimate goal is to create a DDM with a one bit
base size.

number (unsigned int)

The third type is number. The range of number is [0, n] in which n is the largest number to access the
complete memory. Home computers used to have a memory boundary of 65536 (2^16) bytes. Personal
computers started with a 20-bit address space. The current personal computers use 32 bit linear addresses and
future generations will probably use 40 bit or 64 bit addresses. To make the system totally system
independent, the sizes of data types are accessible via the macro base_size. If you want to know the size of the
number data type, it can be requested via base_size(number). The largest number (-1) is defined as NIL and
is used to return errors or failings.

8.3 Memory
Files: bmem.cpp, bmem.h

BOSS uses its own handlers for memory. These handlers call the standard malloc and free routines but this
may change in future releases.

8.4 Classes
Class: dynamic_list

File: dyntable.h

A common used way to store the same elements is in an array, or table. The class dynamic_table maintains a
double indexed table where elements may be stored. The class dynamic_list uses the class dynamic_table as
its basis and remembers the first and last element in that table. It is possible for more than one list to be stored
in one table but all the elements of one list must be stored in the same table. The sequence of the list is random
but all elements of a list may be requested with the guarantee that no two elements are repeated.

Variables:

number first_element

Implementation of the DDM BOSS July 2001

B. Visscher Page 27

This variable stores the first element of the list. The number is a reference to the index of the first element
stored in the dynamic_table. If the number is NIL, the list is empty.

number last_element

This variable stores the last element of the list. The number is a reference to the index of the last element
stored in the dynamic_table. If the number is NIL, the list is empty.

number total_elements

This variable stores the length of the list.

Method:

dynamic_list(void)

During initialization, the first_element and last_element are set to NIL. The variable total_elements is set to 0.
This is all done to create an empty list.

Template Class: dynamic_table

File: dyntable.h

The class dynamic_table maintains a table in the form of a double indexed array. When elements are added
and the table is full, the array doubles is size until a predetermined upper boundary. Actions like freeing,
adding or requesting elements take an average time of O(1). This time efficiency is achieved by having a
double indexed list. If an existing index in the table could not reserved the first index of the double indexed list
is used by the free list to determine the next free element. The second index is used to indicate if an element is
used in some list or that it is FREE by having a constant FREE (= NIL – 1).

Variables:

number first_free

First element that is free and will be reserved when a new element is requested.

number max

The variable max is how many elements may be present in the table. When an element is reserved but the
total elements are equal to max, the table will be doubled in size.

number max_total

The variable max_total stores the maximum size the table can ever get. When new elements are reserved, it
may be doubled until this size has been reached.

number used

This variable stores the amount of elements that have been reserved.

T* item_table

Array to all the elements

Implementation of the DDM BOSS July 2001

B. Visscher Page 28

number* prev_table

This variable stores an array to all previous indexes. It is also used to store the FREE variable to indicate that
an element is not used.

number* next_table

This variable stores an array to next indexes.

Methods:

dynamic_table(number _max = 1, number _max_total = NIL - 2)

During initialization, the size of the tables must be given by _max. The maximum size that the table will ever
have must also be given by _max_total.. This size is at most NIL – 2 because NIL – 1 is defined as a variable
FREE. Three tables are reserved, the item table the previous and the next table.

~dynamic_table()

The prev_table, next_table and item_table are freed.

number reserve_element(dynamic_list* list = NULL)

The method reserve_element returns the first free index that is stored in the free list. This index is removed
from the free list and added to the list that is passed to this method. If the next element in the free list is above
the pre allocated arrays, all arrays are doubled in size, older elements are copied and the previous arrays are
deleted. The doubling in size continues until the array has a size that equals max_total. If the method is unable
to return a free index, it will return NIL.

void free_element(number index, dynamic_list* list = NULL)

The free_element method places an index back in the free element list and removes it from the list passed to
this method.

void free_list(dynamic_list* list)

To free all elements in a list the method free_list is used. By passing the list to this method, all elements in the
list are freed and put into the free list. The list will then be reinitialized. (next = prev = NIL, total = 0)

void concat(dynamic_list* target, dynamic_list* source)

Two lists that use the same dynamic_table can be joined together. The source list will be reinitialized and all
elements will be put in the target list.

void change_list(dynamic_list* target, dynamic_list* source, number index)

This method changes an element from the source list to the target list. Both dynamic_lists must use the same
dynamic_table.

T& operator[](number index)

To access an element on an index, the operator[] is used. The reference allows for a construction of : table[5]
= element;. The time complexity of this method is O(1).

boolean in_use(number index)

Implementation of the DDM BOSS July 2001

B. Visscher Page 29

Returns TRUE if an index is in use. If the index is in the free list, this method returns FALSE;

number get_free(void) const

This method returns the total number of unused indexes until the list needs to be reallocated.

number get_max(void)const

This method returns the number of allocated indexes in the tables.

number get_max_total(void)

This method returns the maximum size of the table ever.

number get_used(void)const

This method returns the number of reserved elements in the table.

number get_next(number index)const

This method returns the index of the next element that follows the passed index. If there is none, NIL is
returned.

number get_prev(number index)const

This method returns the index of the previous element relative to the passed index. If there is none, NIL is
returned.

Complexity:

The class dynamic_table is the basis for the rest of the system. It is therefore very important to determine the
complexity and efficiency of this data type in more detail since the speed of the rest of the system depends on
it. The goal when designing this data type was that every action on single element like reserving, freeing,
changing list etc., takes on average O(1) time. Since none of the used methods are recursive or have loops in it
they have a complexity of O(1). This does not apply to the method reserve_element and free_list. Because
free_list is not an action that applies to a single element but to a collection it may at most be O(number of
elements in the list). Since the method free_list changes the next index of every element in the list to FREE it
satisfies this constrain.

The method reserve_element doubles the size of the list every log(N) times (N is the number of reserved
elements). When the array is filled, it doubles in size and all elements are copied to the new array. The array
starts with a size of 1 and when one element is reserved, it is full. When the next element is reserved, the array
is doubled and the element is copied to the new array. This means that in log(N) of the calls to the method
reserve_element the time complexity is O(n), the rest of the cases it is O(1). In total the algorithm is always
limited by the function 3*N-3 which is of course O(N). The average time complexity of a method call is
therefore O(N) / N = O(1) which is of the desired efficiency.

Implementation of the DDM BOSS July 2001

B. Visscher Page 30

The speed efficiency of dynamic_table is achieved at the expense of extra memory. For every element that is
added in the list, two indexes are maintained for the double indexed list. In addition to this overhead there
exists internal fragmentation because there must always be at least as many elements in the array as are
reserved. This loss due to internal fragmentation may become very expensive because the tables are not
automatically reduced in size. The data type is therefore most suited for growing lists. A reduction algorithm
may be built in when freeing elements but at the time of this project, it is not yet required.

Table 8-1 efficiency calculation of the dynamic_table class

Class: thread

File: thread.h

The class thread is the basis for evaluation. It is very simple in that it has only one method that allows all sub
classes to be evaluated. It is used to give the illusion of a multi-threaded system.

Variables :

_thread_status : enum {T_Active, T_Done}

The variable _thread_status maintains the status of a thread. T_Active means that processing may be
necessary. T_Done means that the thread will never need to be evaluated again and may be closed.

Methods:

virtual void update(void)

With the virtual update method, a thread may be updated. It is not a real thread because the update method
must be concluded after a while by the thread itself and cannot be interrupted by a scheduler.

Calls to
reserve

Size of the
array

copy Total copies Total
assignments

0 1 0 0 0
1 1 0 0 1
2 2 1 1 3
3 4 2 3 6
4 4 0 3 7
5 8 4 7 12
6 8 0 7 13
7 8 0 7 14
8 8 0 7 15
9 16 8 15 24
17 32 16 31 48
33 64 32 63 96
65 128 64 127 192
129 256 128 255 384
257 512 256 511 768
513 1024 512 1023 1536
1025 2048 1024 2047 3072

N 2^top(2log(N)) If N-1 is power of 2 then
N-1 else 0

<=2*N-3 <=3*N-3

Implementation of the DDM BOSS July 2001

B. Visscher Page 31

Class: scheduler

Files: schedul.h, schedul.cpp

The scheduler is a thread that calls other threads that needs to be processed. It therefore needs to maintain a list
of threads and update them. If a thread has the status of T_Done, it is removed from the list.

Variables:

dynamic_table<thread*> thread_table

This variable maintains a table of all threads that need to be updated.

dynamic_list service_list

This class is used to create a collection of threads that need to be serviced. The list is stored in thread_table.

Methods:

scheduler(number size = 4)

The constructor sets the standard size of the thread table to 4.

virtual void update(void)

During the updating of this thread, all threads that have been added in the service_list are updated. If a thread
in that list has the status T_Done, it is removed from the list. If, after removal, there exist no more threads in
the service_list the status of the scheduler is set to T_Done.

boolean add_thread(thread* _thread)

This method adds a tread to the scheduler. The thread may only be added if its status is T_Active.

number get_serviced_threads(void)

This method returns the number of threads in the service_list.

number get_max_thread(void)

This method returns the allocated size of thread_table.

Class: ddm

Files: ddm.h, ddm.cpp

The DDM class takes care of the entire simulation of the dependency driven machine. It is the heart of the
entire system but is never used directly. Interfacing for the programmer to the DDM class is done via the
resource class. The DDM maintains dynamic tables to store all resources, channels, ports and sockets. It is a
thread class and when updated it first processes all channels. After this is done, all sockets are processed.

Implementation of the DDM BOSS July 2001

B. Visscher Page 32

Class: resource

Files: resource.h, resource.cpp

The most important class of the DDM for the programmer is the resource class. This class makes it possible to
import other pieces of program into the DDM, which in turn can be used in the DFN. For efficiency reasons,
the resource does not maintain its own sockets, but they are maintained by the DDM class to minimize
overhead and fragmentation as described in the dynamic_table. The resource class is the programming
interface to the DDM that maintains the integrity of socket, channels and ports against possible malignant
usage by the programmer. The resource fulfills two lifecycles, the lifecycle of the resource and of the socket.
The lifecycle of the resource starts by adding it to the DDM, and ends when it is removed from the DDM.
When it is added, it may be updated. During the execution of these methods, the socket related methods return
errors. It is however possible to open channels, reserve other sockets or to give external events to other
sockets. It does so at the ownership level of the socket that added the resource to the system.

The methods of a resource can be divided into four categories. The first category contains the methods that
are called by the DDM and provide an interface between the DDM and the resource. When programming a
resource these methods are not used directly.

The second category contains the virtual methods that need to be programmed to create a resource. They are a
total of six methods. Three for the lifecycle of the resource (construct, destruct and update_resource) and three
for the lifecycle of a socket (reserve_socket, free_socket and update_socket)

The third category is used to change the configuration of a DFN. This includes methods to add or remove
other resources, reserve or free sockets or to open or close channels. It also includes three methods to control
the owner status. They are terminate_slave, suspend_slave and activate_slave.

The fourth and final category is a group of socket related methods. These methods are called only by methods
of the second category and provide all the necessary communication for the programmer to the DDM. They
include methods to request and change the status of a port, give external events to a socket or to read / write to
a port.

Variables:

ddm* _ddm (private, used by the DDM)

As soon as a resource is added to a DDM this variable will be set by the DDM to make sure the resource will
communicate with it.

number index (private, used by the DDM)

When the resource is added to a DDM, this variable will be set by the DDM. This number is called the
resource index and is used by other resources to identify and communicate with it.

socket* serviced_socket (private)

If a method is used for the socket lifecycle, a pointer to the socket is put in here to make access to the socket
possible. If a method is called for the resource lifecycle, this pointer will be set to the owner socket of the
resource. All socket related methods use this variable to determine which socket should be used.

number owner_socket (private, used by the DDM)

Implementation of the DDM BOSS July 2001

B. Visscher Page 33

This variable holds the index of the owner socket of the resource. This index is set by the DDM when the
resource is added to it.

number owner_socket_index (private , used by the DDM)

The owner socket maintains a list of all resources it owns. This variable holds the index in this list to
guarantee efficient removal of the resource from the system.

dynamic_list slave_sockets (private, used by the DDM)

The resource maintains a list of all sockets that have been reserved on the resource. When the resource is
removed from the DDM, all reserved sockets must be freed. The DDM maintains a dynamic_table with all
indexes and uses the dynamic_list to remove them efficiently.

The next five methods are called by the DDM to request different actions from the resource. The methods all
start with ddm_ to indicate that they are called by the DDM.

Methods:

boolean ddm_construct(socket* _socket) (private, used by the DDM)

As soon as the DDM gets a request to add a resource, the DDM calls this method. This method calls in turn
the virtual method construct. If that method is successful in execution, it must return TRUE. If FALSE is
returned the resource may not be added.

void ddm_destruct(socket* _socket) (private, used by the ddm)

When a resource is removed from the DDM, the DDM calls this method. It calls the virtual method destruct.
Removing a resource from the DDM must always succeed. If memory must be reserved for removal this must
be done during construction to guarantee a successful removal.

boolean ddm_reserve_socket(socket* _socket, base* data) (private, used by the DDM)

If the DDM gets a request to reserve a resource, an empty socket is created by the DDM and this method is
called on the resource. The serviced_socket variable is set and the virtual method reserve_socket is called. The
return value of this method is passed as the return value.

void ddm_free_socket (socket* _socket) (private, used by the DDM)

If the DDM gets a request to free a socket, this method is called on the appropriate resource. The
serviced_socket variable is set and a call is made to the virtual method free_socket. The free_socket method
may not fail.

void ddm_update_socket(socket* _socket) (private, used by the DDM)

If a socket received an external_event or an in-port changed status to Blocked or an out-port chanced status to
Wait an update of the socket is requested. This method is used to handle the request of the socket. It is called
by the DDM and sets the serviced_socket and requests the virtual method update_socket that handles the
processing of the socket.

void update(void)

The thread class is the base class of the resource class. The virtual method update may be used to handle
processes that do not depend on other resources but on side effects. This may be for example a polling process

Implementation of the DDM BOSS July 2001

B. Visscher Page 34

of the keyboard or code that must be executed after an interrupt. This method will set the serviced_socket to
the owner socket and start the update_resource method.

number get_resource_number(void)

This method returns the index that the resource has been given by the DDM.

The next sections of methods are used to request and change the statuses of the ports and to obtain read and
write access to the buffers.

boolean set_ports(number total_in_ports, const number in_sizes[], number total_out_ports, const number
out_sizes[])

When a socket is reserved on a resource, the configuration of the socket has to be passed to the DDM. This
method is used to describe the configuration. The variable total_in_ports and total_out_ports hold a number
that specifies how may in-ports and out-ports the socket must have. The arrays in_sizes and out_sizes describe
the size of each port. If a port has a dynamic size the variable in the array must be set to NIL. After the ports
have successfully been set, all ports that do not have a dynamic size must be assigned a memory portion.
Setting the ports may only be done during the execution of reserve_socket and may only be called once.

base*& in_port(number in_port)

base*& out_port(number out_port)

During the reservation of a socket, the ports need to be set. After they have been set to a specific size, memory
must be assigned to it to make sure the DDM can write data in it safely. The assigned memory must be as
least as big as the number that has been assigned to it in set_ports. Memory may be assigned to a port with the
use of the method in_port and out_port.

in_port(4) = balloc(base_size(int)); // in-port 4 is assigned memory

To gain read access to the memory the following statement is used.

 int j; j = ((int*)in_port(4))[0]; // j is assigned the value of in-port 4

To write to a port a similar construction is used.

 ((int*)out_port(1))[0] = 8; // writing an integer 8 to out-port 1

base*& environment_port(void)

Any socket may have local memory. The environment_port is used to access that memory. During any phase
of the socket lifecycle, the environment_port may be assigned or reassigned to memory and that memory may
be used to write or read data to.

boolean in_port_blocked(number in_port)

This method is used to check to see if data has been written to a specific in_port. If it returns TRUE data has
been written to the port by the DDM. If no data has been written to the port, the method returns FALSE.
When reading from an in-port, this in-port has to be Blocked. If this is not the case, the program will respond
undetermined.

Implementation of the DDM BOSS July 2001

B. Visscher Page 35

boolean out_port_waiting(number out_port)

This method is used to check if data may be written to an out_port. The method returns TRUE if that is the
case. If the method returns FALSE it means that the DDM still requires the information that has been written
in the out_port and data may therefore not be written to it. When writing to an out-port, this out-port has to be
Waiting. If this is not the case, the program will respond undetermined.

void read_from_in_port(number port_index)

After all information from an in-port is used by the socket, this method is used to change the port status to
Wait. The DDM can then write to the port again.

void write_to_out_port(number port_index)

As soon as the socket has written al information to an out-port this method is used to change its status to
Blocked. When this happens, the DDM will update all channels connected to the port.

The next group of methods is used to change the configuration of a DFN. There are also three methods to
change the owner socket status. These methods may only be used by the owner of the DFN.

boolean add_resource(resource* _resource)

This method is used to add a resource to the DDM. The owner socket of the resource will be the socket, which
is in the variable serviced_socket. The method returns TRUE if the resource has been added to the system.
Otherwise, it will return FALSE.

number reserve_socket(number resource_index, base* data)

A resource may reserve a socket on another resource. This method is used to reserve a socket on a specific
resource. The resource index must be passed together with additional data that the resource may use for
security, scheduling etc. If reservation of a socket is successful, the index of the newly created socket is
returned. If reservation fails, the return value is NIL. The owner socket of the newly reserved socket is the
socket held by the serviced_socket variable.

number open_channel(const class reference& source, const class reference& target)

The open_channels method needs two variables. Both of them are of the reference class. The reference class is
made up from three integers. The first integer is the resource index, the second is the socket index and the
third is the port on the socket. When all these values are correctly entered, a channel is opened between the
source port and the target port. Both ports must have the same owner socket and that owner socket must be
equal to the socket referred to in the serviced_socket variable. If a channel can be successfully opened, the
method returns the index of the channel. If opening fails the method returns NIL.

boolean remove_resource(number resource_index)

This method is used to remove a resource from the DDM. The index used by this method is the index returned
by the method add_resource. If the index is not in use or the current socket is not the owner socket of the
resource being removed, the method will return FALSE. It will otherwise always return TRUE.

boolean free_socket(number socket_index)

The method free_socket is used to free a specific socket. The socket index used by this method is returned by
the method reserve_socket. Freeing a socket may only be done by the owner socket of the socket being freed.
Otherwise, the method will return FALSE. If the serviced_socket is the owner socket of the socket index the
method will always return TRUE.

Implementation of the DDM BOSS July 2001

B. Visscher Page 36

boolean close_channel(number channel_index)

Closing a channel may only be done by the owner socket of the channel. The channel index is returned by the
method open_channel. The method will return TRUE if the channel is successfully freed. If the channel index
is not used or the serviced_socket is not the owner socket of the channel the method will return FALSE.

void terminate_slave(void)

The slave DFN of the serviced_socket is terminated. This means that slave resources are removed, slave
sockets are freed and slave channels are closed. After the slave DFN has been terminated no channels may be
opened, socket reserved or resources added to that DFN ever again.

void suspend_slave(void)

When the slave DFN of the serviced_socket is being put on hold, the channels will remain inactive. The
sockets however may continue processing but without active channels, no more messages are sent between
the resources.

void activate_slave(void)

The slave DFN of the serviced_socket is activated. This may only be done if the slave DFN has the status
Suspend. If this is the case, all slave channels, resources and sockets will be activated and normal operation
will be resumed.

boolean external_event(number socket_index)

This method is used to give a socket an external_event. This is the only way to force the execution of the
method update_socket without the use of channels. This external event may be necessary to handle an
interrupt request or to incorporate a side effect in the program. The socket index is returned by the method
reserve_socket or can be obtained with the method get_serviced_socket_index.

number get_serviced_socket_index(void)

Get_serviced_socket_index returns the index of the socket currently held by the serviced_socket variable.
During resource lifetime methods, the serviced_socket is the same as the owner socket of the resource. During
socket lifecycle methods, the serviced_socket variable holds the socket currently being serviced. This method
is mainly used in combination with the external_event method.

The next methods are abstract and have to be programmed to create a resource. It holds six methods. Three of
them are for the resource lifecycle and the other three are for the socket lifecycle.

virtual boolean construct(void)

When a resource is added to the system by another socket, this method is called by the DDM. Initialization
and construction of all sub parts of the resource may be done during this phase. When all actions are done
successfully, the method must return TRUE. If FALSE is returned, the DDM will not add the resource to the
system.

virtual void update_resource(void)

During the method update, the method update_resource will be called. Actions that do not require a socket
may be executed here as well as polling. If a socket needs to be started, the method external_event may be
called to start processing a socket.

Implementation of the DDM BOSS July 2001

B. Visscher Page 37

virtual void destruct(void)

If a resource is added to the system and a command is given to remove it, this method is eventually called by
the DDM. In this method, various tasks may be done to correctly remove the resource from the DDM. All
tasks in this method must be programmed in such a way that they cannot fail. If, for example, memory must
be reserved, this memory must be reserved in the construct method to ensure that destruct always succeeds.

virtual boolean reserve_socket(base* options)

When a resource gets the request to reserve a socket, the method ddm_reserve_socket is called and this will
call reserve_socket. The passed pointer of options is the data that has been passed during reservation by the
method reserve_socket(number resource, base* data). This gives the ability to communicate directly from
one socket to another. During the execution of the method reserve_socket(base* options) ports need to be
initialized and memory must be reserved and assigned to the in-ports, out-ports and the environment port if
necessary. There must also be actions undertaken to ensure that the freeing of the socket will always succeed.
If all went well, TRUE must be returned to indicate that the socket is reserved. If FALSE is returned all ports
that have been initialized will automatically be freed. If memory has been reserved during this method when it
fails, it must be freed within this method.

virtual void update_socket(event_description event)

The actual processing of a socket happens in this method. The serviced_socket variable will be set to the
socket that needs processing and an event is passed to indicate what triggered this method. The method will be
called if at least one of these three events has occurred.

1. An in-port changed status to Blocked.

2. An out-port changed status to Wait.

3. The socket received an external event.

With each of the tree possibilities, it becomes possible for the resource to have enough information to start
processing the socket. This method must check if that is the case with the use of methods like
in_port_blocked, out_port_waiting.

The event parameter is a bit field used to indicate what event or which events have taken place. Within the bit
field two bits reserved to indicate that all in_port have the status Blocked and that all out-ports have the status
Wait. The bits are defined with five constants to find the corresponding bits.

IN_PORT_EVENT (1), ALL_IN_BLOCKED (2), OUT_PORT_EVENT (4), ALL_OUT_WAITING (8)
and EXTERNAL_EVENT (16).

Many sockets need to check if all in-ports have the status Blocked and all out-ports have the status Wait. This
is for example necessary if within a socket a subroutine is called using all the variables and writing to all the
out-ports.

The following code handles the processing of a socket that adds two integers

update_socket(event_description event)
{
 event_description check_event = (ALL_IN_BLOCKED | ALL_OUT_WAITING);
 if ((event & check_event) == check_event)
 {
 ((int)out_port(0)) = *((int*)in_port(0)) + *((int*)in_port(1))
 read_from_in_port(0);
 read_from_in_port(1);

Implementation of the DDM BOSS July 2001

B. Visscher Page 38

 write_to_out_port(0);
 };
};

virtual void free_socket(void)

If a socket was successfully reserved it will be freed when the owner socket requests it. The parameter
serviced_socket will be set to the socket that is requested to free itself and this method is called. During this
method, all memory that has been reserved for this socket in update_socket or reserve_socket must be freed.
The ports will automatically be freed by the DDM but the assign memory of the port will not. A socket must
always successfully be freed so measures may have to be taken during the reservation of the socket to ensure
this requirement.

Extension on the DDM BOSS July 2001

B. Visscher Page 39

9 Extension on the DDM
In chapters 4 to 8, the DDM was introduced. The function of all its components was defined and an
implementation was realized. From this chapter onwards this basis is used to build an extension on. This
extension makes programming in dependency flow networks possible. In the chapter 10, the specification is
formalized and in chapter 11, the implementation is realized.

9.1 The resource
The resource class is the interface to the complete dependency driven machine. It has all the necessary
methods for handling the life cycle of the sockets and the resource. These are six virtual methods in total.

Methods for the resource life cycle

1. Adding the resource to the DDM (construct)

2. Updating the resource (update_resource)

3. Removing the resource from the DDM (destruct)

Methods for the socket life cycle

1. Reserving a socket on the resource (reserve_socket)

2. Updating the socket (update_socket)

3. Freeing the socket (free_socket)

When a resource is programmed, only these six functions have to be made. To better understand why an
extension is necessary, several problems that will arise with the current model will be discussed. The solution
to the problems will later be discussed until finally the extension can be implemented in the next chapters.

9.2 Problems
This section will discuss several problems with the DDM implementation. The solutions will be discussed in
the next section where the LinkLoader is introduced as a layer to communicate with the extended resources
and to solve many of these problems.

9.2.1 Finding a resource index

The first problem that arises is that of how to find a resource index. The index is assigned to a resource by the
DDM and in general, the assigned number is totally random. To reserve a socket on a resource in order to
create a DFN, the resource index must be known. Without this number, it is impossible to do.

9.2.2 Multiple processes on a resource

A resource may be anything. It may be memory, a hard disk, a keyboard, a screen, or even a production plant
or chemical factory. This makes a resource a very versatile object within the system. If we take for example a
resource that models a file system, we must have processes on it to create files, delete files, open files, create
directories, rename directories etc. This means that one resource may have many processes on it. To reserve a
socket on a resource that acts like a certain process, a message must be sent to the resource telling the resource

Extension on the DDM BOSS July 2001

B. Visscher Page 40

which process must be active in the socket. This means that to reserve a process, the message that describes to
the resource what process is requested must be found and sent to the resource.

9.2.3 Loading a program

In a computer system there must always be one part that is able to load a program into memory and make it
executable. The DDM has no such part but offers the ability to add resources, reserve sockets and open
channels to every resource. Therefore, a resource must be created to fulfill this process of transforming data
into a program.

9.2.4 Abstraction (subroutines)

When designing a program there is a variety of techniques to go from the request to the product. All these
different techniques have some things in common. It abstracts from reality. This means that certain
characteristics are not modeled because they do not have any influence on what is being designed. The design
of simple systems is a straightforward process but as wider as the problem is, the more complexity the
solution. The solution is therefore split into several different parts that interact with each other. In C,
programming this is done by creating subroutines. In C++, Eiffel or Java by creating classes. In the DFNs, this
must be done by creating sub DFNs. These sub DFNs then need to communicate with each other and
therefore, a resource must be created to communicate data over the ownership boundaries.

9.2.5 Constants

Every conventional program uses variables to communicate between subroutines. Before any variable is used,
it must be assigned a value, a constant. The DFN also uses constants and they must be introduced in the
system somewhere. The DDM does not provide facilities to carry out this task so a resource has to be made
that is able to introduce constants in the system.

9.2.6 Security and scheduling

Another problem in the system presented thus far, is the lack of any security measures whatsoever. In a
distributed computer, security and scheduling become major issues due cost associated with information
crimes and unauthorized borrowing of processor time, memory and hard disk space.

9.3 Solution
The solution to the above problem lies in the operating system structure, called BOSS. The LinkLoader is the
central part of BOSS and this special resource will be discussed in the next sub section. Other resources also
need to have an extension on it to make them compatible with BOSS. This extension will also discussed in the
next sub section together with the LinkLoader.

9.3.1 LinkLoader

The LinkLoader is a special resource at the heart of the operating system. Its main function is to convert data
that represents a DFN into a DFN (a socket that processes data). It does so by reserving all the necessary
sockets and linking them together with channels. It also provides a way of introducing constants into the
system. The next sections will discuss each function of the LinkLoader in more detail.

9.3.1.1 sub DFN (subroutines, abstraction, black box)

A program is a collection of DFNs. It has one DFN it starts with (like main() in C) and other DFNs are called
as subroutines and are called sub-DFNs. Figure 9-a shows a simple example of a sub-DFN that adds four
numbers. This sub-DFN has four input variables and one output variable. One function of the LinkLoader is

Extension on the DDM BOSS July 2001

B. Visscher Page 41

X1 X4

Y

Master socket

X2 X3

Figure 9-b master socket of figure 8-a as
a Black box

to copy these input and output variables between DFNs. The
LinkLoader uses a master-slave principle to accomplish this
task. The master socket integrates the sub-DFN as a black box
socket and is reserved within the DFN where the sub-DFN is
requested. In-ports and out-ports of the master socket may be
linked with other sockets of the DFN that requests the sub-
DFN. Next to the master socket, a slave socket is reserved. The
slave socket look just like the master socket except that in-ports
of the master socket are out-ports of the slave socket and the
out-ports of the master socket are in-ports of the slave socket.
The master socket uses the slave socket to communicate data
from the DFN to the sub-DFN. The slave socket and sub-DFN
are all reserved by the master socket, which is therefore owner
of all of them. Figure 9-b shows the master socket of figure 9-a.
Figure 9-c shows the linking of the slave socket with the sub-DFN of figure 9-a.

9.3.1.2 Communicating variables between a master and slave socket

Passing a variable from a DFN to the sub-DFN is done by the master and slave socket. When an in-port of the
master socket is Blocked, the corresponding out-port of the slave socket will also be Blocked. If the data has
been read from the slave out-port by all channels, it changes its status to Wait. When this happens, the master
in-port also changes its status to Wait.

+

+ +

Figure 9-a DFD representation of a DFN that adds four numbers, white box

Extension on the DDM BOSS July 2001

B. Visscher Page 42

Passing a variable from the sub-
DFN to the DFN happens in the
same way. When data has been
written to an in-port of the slave
socket, it changes its status to
Blocked. The corresponding out-
port of the master socket also
changes to Blocked. When all
channels have communicated the
data from the out-port of the
master socket, it changes to Wait
and the corresponding in-port of
the slave socket does the same.
Synchronization of the data
between the master and slave
socket is in this way guaranteed.

9.3.1.3 Constants

One of the other problems that exist is the introduction of constants in the system. Using the slave socket as a
window to pass variables from the master socket, the slave socket is also used to introduce constants. This is

realized by adding extra out-ports on the slave socket. When the sub-DFN is loaded and all connections have
been made with the slave socket, the ports containing the constants change their status to Blocked and by
doing so, the information of the constants is communicated to the desired place in the sub-DFN.

X1 X4

Y

Master

X2 X3

X1 X4

Y

Slave

X2 X3 C2 C1

Figure 9-d master / slave socket with constants C1 and C2

+
+

+

Slave socket

X1 X3 X4 X2

Y

Figure 9-c slave socket with sub-DFN of figure 8-a, contents of the black box

Extension on the DDM BOSS July 2001

B. Visscher Page 43

Figure 9-e resources communicate their processes to the LinkLoader

Resource5 Resource3

Resource2 Resource1

Link
Loader

(Resource0)

Resource4

9.3.1.4 Unlinking

When a DFN is not anymore needed in the program, it must be unlinked. This is the same as removing a
program from memory in normal programming languages. Due to the unique nature of a DFN, the time when
it may be unlinked cannot automatically be determined. For this reason a special port must be created in the
slave socket. When a signal is sent to this port, the LinkLoader must unlink the DFN. In-Port 0 of the slave
socket is used for this function and is called the unlink port.

9.3.1.5 Connection table of the ports

The following table shows how each in-port of the slave port is connected to each out-port of the master
socket, how in-ports of the master socket are connected to out-ports of the slave socket, how the constant ports
are mapped onto the out-ports of the slave socket and what port is the unlink port.

Table 9-1 connections of the master socket to the slave socket and vice verse

Port In master Out Master In Slave Out Slave

0 Out slave 0 In slave 0 Unlink port In master 0

n Out slave n In slave n Out slave n-1 In master n

n+1 Out slave n Const port 0

n + m Const port m

9.3.1.6 Global Namespace

To carry out the task of loading a (sub) DFN with all its sockets, it needs detailed information about other
resources, the processes that the resources provide and data on how to reserve them. In order for the
LinkLoader to do this, it needs a mapping from a process name used in the DFN to identify a socket to the
resource and data on how to reserve the
process. This mapping is called the global
namespace.

Global namespace:

process name -> resource, data process

During the process of Linking and
Loading a DFN, all resources and data is
looked up in the Global namespace. When
a process name is found, the resource is
accessed by sending a message requesting
a socket with data process. The resource
returns the socket index to the LinkLoader
so the LinkLoader can open channels to it.

The maintenance of the global namespace
is done by interaction between every
resource and the LinkLoader. The
extension on a resource takes care of this
job. It will be discussed in the next section.

Extension on the DDM BOSS July 2001

B. Visscher Page 44

9.3.2 Extension

The LinkLoader needs detailed information about every process on a resource in order to do its job correctly.
This information must be sent to the LinkLoader by every resource when it is added to the system. The
extension takes care of this job. As soon as a BOSS resource, that is a resource with an extension, is added to
the system it opens a small DFN connecting one of its own list processes sockets with a socket of the
LinkLoader with a channel between them. It then sends all the names of the processes and data on how to
reserve them over this channel to the LinkLoader. The LinkLoader must then store this data in an information
structure where it can look them up. The LinkLoader must also be notified when a resource is removed so it
can modify the global namespace accordingly.

Another function of the extension is to make all messages concerning the reservation of a socket standard.
This makes communicating with different resources easier for the LinkLoader. The message is sent to a
resource when a socket is reserved on it. This message will be called the general message.

9.3.2.1 General message

A general message is sent to a resource when a socket must be reserved. This information is needed by the
extension to determine how the resource should react on the request. The general message contains four fields
with information.

1. Action
The action is what action the extension should undertake. It may reserve a normal processing socket,
open a socket that lists all processes on the resource, request a socket that gives information about
the resource or request a socket that gives information about a specific process on the resource.

2. Security
When reserving a socket, security information may be sent with it to protect the resource from mal
use. Next to security information, scheduling information may also be put in this field.

3. Process
The process field is only necessary when the action to be taken is information about a process or the
normal reservation of a process.

4. Parameter
Some processes may need parameters for initialization or other options. Data in the parameter field
may be used for this purpose.

9.3.2.2 The LinkLoader and the general message

To start a program, a socket must be reserved on the LinkLoader. A general message is therefore sent to the
LinkLoader with in the process-field a description of the sub-DFNs. The parameter field is also used. It
contains the name of the sub-DFN that holds the startup code and information about when to load the DFN.
There exist three possibilities when to load a DFN.

1. Direct
With the direct parameter the LinkLoader loads the sub-DFN directly en starts processing it when
the socket is reserved.

2. When one in
The ‘when one in’ parameter may be used when a sub-DFN has at least one in-port. The master
socket is opened to create the interface to other DFNs but all the sockets and channels of the sub-
DFN are not yet reserved and opened. When data has been written to at least one in-port of the
master socket the sub-DFN is link loaded and processing of the sub-DFN starts.

Extension on the DDM BOSS July 2001

B. Visscher Page 45

3. When all in
The ‘when all in’ parameter may be used when a sub-DFN has at least one in-port. The master
socket is opened to create the interface to other DFNs but all the sockets and channels of the sub-
DFN are not yet reserved and opened. When data has been written to all in-ports of the master
socket the sub-DFN is link loaded and processing of the sub-DFN starts.

BOSS specification BOSS July 2001

B. Visscher Page 46

10 BOSS specification
The LinkLoader is the key resource in the operating system structure. It provides many functions to the
system and makes it a very flexible and versatile system to work with. The most important feature of an
operating system is to transform data into a program. This function is handled by the LinkLoader resource.

In order to load a DFN a structure must exist to represent a DFN. This structure must then be passed to the
LinkLoader during the reservation of a socket to create a socket with the desired function.

10.1 Dynamic Data Structure
The data structure of dynamic data type is used for the representation of any data type. Within the system, it is
used to represent DFNs, the general message and other elements of the extension. The structure is hierarchical
and recursive and uses the data type base as defined in chapter 9 to represent the most elemental elements.
The dynamic data structure, DDS for short, may be on of three things. It may be empty, it may be an array of
itself or it may be an array of base.

DDS = <empty>

DDS = DDS[len]

DDS = base[base_size(type) * len] = type [len]

(DDS is short for DDS[0])

When DDS is an array, it may be used to store elements larger then base. Size is the individual size of each
data element. To get the size of a data element expressed in base the macro base_size exists. Len is the total
number of elements that must be stored in the array, also called the length of the array.

The DDS is used by the LinkLoader and the extensions on a resource. It is used to represent the General
Message with all of its underlying data.

10.2 General message expressed in DDS
The general message is used to reserve a socket on a resource. It is sent to the resource during the reservation
by another socket. The message has in the basis 4 fields as described in 9.3.2.1.

DDSg = DDS[4] The general message has 4 fields
DDSg[0] = number[1] Field 0 holds the action
DDSg[1] = DDS security Field 1 holds the security
DDSg[2] = DDS process Field 2 holds the information to identify the process
DDSg[3] = DDS parameters Field 3 holds the parameters

Action: Reserve process = 0, Info resource = 1, Info process = 2, List sub process = 3.

10.3 Making all processes of a resource known to the LinkLoader
When a resource is added to the system, it must make all its processes known to the LinkLoader. To do this,
messages must be sent to the LinkLoader. The LinkLoader is always assigned the same number, namely zero.
When a resource is connected to the DDM, it opens a socket on the LinkLoader and with himself and sends
messages from himself to the LinkLoader. Each message contains the process name, the resource number and
data on how to reserve it. Name elements are built according to the following rules:

BOSS specification BOSS July 2001

B. Visscher Page 47

DDS ne = DDS[3] A name element contains 3 fields
DDS ne[0] = char[len(name)] Name of the process
DDS ne[1] = Number[1] Resource number
DDS ne[2] = DDS process Process data

The socket opened on the LinkLoader is called the add_process socket. This socket can be reserved by
sending a general message to the LinkLoader with in its action field the appropriate number. On the resource
that is added the list_processes socket is reserved. This can be done by sending a general message to itself
with in its action field the number 3. Between the two sockets, a channel must be opened. All these actions of
reserving sockets and opening a channel are done by the resource that is added to the system. The extension
on the BOSS resource must take care of these actions.

When the LinkLoader receives a name element, it is stored in the global namespace. When a program is link
loaded, it recalls the resource number and DDS process using the name and combines this information with DDS
parameter and DDS security from the DD to reserve a socket.

10.4 Dependency Driven programs, DD programs
A DD is the representation of a Dependency Flow Network in the Dynamic Data Structure. A DD program is
a collection of DD’s combined in a hierarchy. The LinkLoader can only load DD programs and to do this, a
general message is sent to the LinkLoader to reserve a socket with the one DD of the Dependency Driven
program, the DD program must be sent to the LinkLoader. This is done in the process field of the general
message. It uses the following building rules.

DDS process = DDS program = DDS Namespace The process that is being reserved is a DD program.

DDS Namespace = DDS[N] The namespace contains N fields(DD’s)
DDS Namespace[n] = DDS DD 0 � n < N Each field is a DDSDD (DD)

DDS DD = DDS[6] A DD contains 6 fields
DDS DD[0] = char[len(DDname)] Name of the DD
DDS DD[1] = Number[#In ports] Size of each in-port, NIL for variable size
DDS DD[2] = Number[#Out ports] Size of each out-port, NIL for variable size
DDS DD[3] = DDS const ports[#Const ports] Number of constant port
DDS DD[4] = DDS socket [#sockets] Number of sockets
DDS DD[5] = DDS channels [#channels] Number of channels
DDS DD[6] = DDS Namespace Sub Namespace

DDS const ports = base(size) Data that must be sent through the port

DDS socket = DDS[3] A socket contains three fields
DDS socket [0] = char [len(Socket name)] The name of the socket
DDS socket [1] = DDS parameter Parameters during reservation of a sockets
DDS socket [2] = DDS security Security information during reservation

DDS channel = number [4] A channel contains 4 numbers
DDS channel [0] relative source socket number(NIL for slave socket)
DDS channel [1] source port number
DDS channel [2] relative target socket number(NIL for slave socket)
DDS channel [3] target port number

A channel can only be connected in a DD between two of its sockets. The index the socket has in the DDS
socket is the relative socket number and is used by the channel. If a channel connects a socket with the slave
socket, the relative socket number is NIL.

BOSS specification BOSS July 2001

B. Visscher Page 48

The parameter field of the LinkLoader has the following syntax when reserving a DD program.

DDS parameters = DDS[2]
DDS parameter [0] = Base[len (DDname)] (Name startup routine, “startup” if empty)
DDS parameter [1] = Number[1] = { Ld_Now = 0, Ld_when_One = 1, Ld_when_All = 2 }

The first field of DDS parameter is the DD where the DD program has to start with. If the field is empty, the
default name is ‘startup’ but when desired, another name may be given. The second option is to decide when
to load the DD. When loading a DD, the default is Load now (Ld_Now) but, when used in combination with
other programs, it may differ to Load when one in (Ld_when_One) or Load when all in (Ld_when_All).

10.5 Resolving socket names in a DD
One of the most important features of the LinkLoader is to convert the names of the socket into the resource
and data on how to reserve the socket. This resolving of the name is done by searching for the name in a
namespace. A namespace is a mapping of process names to their resource and DDS process (Data to reserve a
specific socket).

Namespace: process name -> resource number, DDS process

Every DD has three namespaces, the primary namespace, the secondary namespace and the global
namespace. Each namespace is described in the next sections. The primary and secondary namespace depend
on the place of the DD in the program while the global namespace is the same for every DD.

10.5.1 Primary namespace

Recall from 10.4 that a DD is part of a namespace and a namespace contains several DD’s. Each of the DD’s
has it own name and these names combined form the primary namespace of the DD. When a socket name of a
DD must be resolved, the primary namespace is searched first. If the names mach, the DD will be link loaded.
This allows sockets to call itself and recursive algorithms may be programmed using this feature.

10.5.2 Secondary namespace

Recall from 10.4 that a DD contains a namespace (DDS DD[6]).This namespace contains other DD’s and
form the secondary namespace of that DD. When resolving a socket name, the secondary namespace is only
searched when the name could not be solved using the primary namespace. If the names mach, the DD will be
link loaded.

10.5.3 Global namespace

The third and last namespace of a DD is the global namespace. This namespace is contradictory to the
primary and secondary namespace, not dependent on the place of the DD in the DD program. The global
namespace holds the names of all the sockets that can be reserved on a resource over the entire system. The
global namespace is only searched if no match could be found in the primary or secondary namespace.

10.6 Link Loading a DD program
All the different functions of the LinkLoader have now been specified. This section describes the total
procedure using all these functions on how the LinkLoader link loads a DD program.

1. A request is received to reserve a socket.

BOSS specification BOSS July 2001

B. Visscher Page 49

This request comes in the form of a General message with a DDS program in the process field and the
parameter field as defined in 10.4.

2. The primary namespace is created.

The namespace is created using all the names of the DD’s that are in the first namespace of the DD program.

3. The name of the startup DD is searched in the primary namespace.

One of the DD’s in the DD program is the master socket. This DD is determined by the name in the parameter
field. If no name is give here, the DD called ‘startup’ will be used. If it can not be found, the procedure is
aborted.

4. The master and slave sockets are created based on the startup DD.

The in-ports and out-ports of the master socket are set and a slave socket is opened on the LinkLoader with
the unlink port and the constants-ports as described in the DD.

5. If requested the startup DD is link loaded.

If the parameter field indicates, the DD must be link loaded directly or no parameter is given, the secondary
namespace is created and all the names of the sockets in the DD are resolved and the sockets are reserved.
Next, the channels between the sockets are opened.

6. If all actions where successful, the reserve socket method on the LinkLoader returns TRUE, else
FALSE.

10.7 The complete system, BOSS
All different aspects of the system have now been introduced. The function of the LinkLoader is known and
the role of the extension on the resources. These together form the operating system structure, BOSS. The role
of BOSS can best be compared to the kernel in a traditional system. Because each resource acts independent
of each other, each resource must have its own kernel. The kernel takes care of the global namespace, security
of the resource and scheduling of the sockets on that resource. All these tasks of the kernel are active in the
form of different processes like: giving information about the resource, giving information about a specific
resource process or listing all processes that exist on a resource. A socket may be reserved to these extension
processes or to the other processes on the resource and with this, a standard interface to all different aspects of
the resource exists.

BOSS specification BOSS July 2001

B. Visscher Page 50

Figure 10-a the complete operating system structure

Channels

Resource 0

LinkLoader

Ports

Sockets

LinkLoader

processes

Resource M

Ports

Sockets

E
xtension processes

Process M
.N

Process M
.1

Extension

Resource 1

Ports

Sockets

E
xtension processes

Process 1.N

Process 1.1

Extension

Implementation of BOSS BOSS July 2001

B. Visscher Page 51

11 Implementation of BOSS

This chapter discusses the finer points of the implementation of the extension. It summarizes the extra
methods used on the resource class to make programming resource sockets as easy as it could possibly be.
The LinkLoader is also discussed and an efficiency analysis of the search algorithm is given.

11.1 Class hierarchy
The main class structure as presented in chapter 8 is used and three additional classes are added to it to create
BOSS. The first is the class that represents the LinkLoader. The second is the BOSS resource class and the
third is the process class that is closely associated with the BOSS resource class. The LinkLoader and BOSS
resource classes are derivatives of the resource class. The LinkLoader is a specialized resource and will be

discussed in 11.4. The BOSS resource class is a resource with the extension on it. Methods are added to
manage the processes and for processes, an easy programming interface is created to make programming a
process very easy. Chapter 12 shows some implementations of different BOSS resources and their processes
based on these classes.

With this new construction, all socket methods that exist in the resource class may only be accessed from the
process class. The three methods of reserve_socket, update_socket and free_socket only exist in the process.
The BOSS_resource uses the methods construct and destruct and for this reason, constuct_process and
destruct_process are introduced to maintain all the previous functionality.

11.2 Dynamic Data type
Class: dd

Files: dd.h, dd.cpp, dd_boss.h, dd_boss.cpp

The dynamic data structure is used to represent all data when a new socket is reserved. It is a general data
structure with dynamic memory allocation.

Variables:

Figure 11-a classes of BOSS

Thread

DDM Resource Scheduler

BOSS Resource LinkLoader Process

Implementation of BOSS BOSS July 2001

B. Visscher Page 52

number array_len

Size of the array stored by this dd.

number element_size

Size of each element. If the element_size is 0, the array contains dd.

base* array

Memory allocated to store maximum array_len elements of size element_size.

Methods:

boolean reserve(number len=1, number size = 0)

This method is used to reserve memory to store element. The first parameter defines the length of each
element, the second the size. If the size is equal to 0, the type is the class dd itself.

boolean write(<type> value)

To reserve a single element of a specific <type>, the method write may be used. It is the same as reserve (1,
base_size(type)); dd[0] = value. The method exists of the types : Boolean, integer, number, float and zero
terminated strings.

void free(void)

This method frees a dd and all sub dd’s.

boolean grow(const base* mem)
base* flat(void)const

The dd has a TREE structure. It is possible to flatten this tree into a single array of type base or to convert this
single array to a complete tree.

boolean exchange(dd* branch1, dd* branch2)

This method exchanges two branches of the same tree with each other.

 boolean copy(const dd& _dd)

Makes a duplicate of the dd. It reserves all necessary memory and copies the contents of each branch.

void* get(index)

Returns a pointer to array[indx * element_size]. It returns NULL if the index does not exist.

dd& operator[](number element)

Returns the element stored in the array at position element.

void make_double(dd* _dd)

Copies the contens of a dd (the pointer) to this dd. Use thid method in combination with clear to remove the
pointer from this dd.

Implementation of BOSS BOSS July 2001

B. Visscher Page 53

void clear()

This method sets the variables, array = NULL, array_len = 0, element_size = 0.

friend dd* mk_DD…(…….)

Creates a dd of type … Data may be passed as its parameters but this depends on the type of dd created.

boolean valid_DD…..()

Checks to see if this is a valid dd of the type …. It does so by checking the structure of the tree and the sizes of
the elements and lengths of the arrays.

A variety of dd types exists. They are all described in the file DD_BOSS.H. They are DDg (general message),
DeeDee (Dependency driven data) and DDne (name element).

The following example gives the code needed to create the structure of figure 11-b.

dd program;
program.reserve(3); // 3 branches
program[0].reserve(2); // 2 branches
program[0][0].write(1); // integer
program[0][1].write(2); // integer
program[1].reserve(100, base_size(double));
((*double)program[1].get(0))[1] = 2.67;
program[2].write(TRUE); // boolean

11.3 BOSS extension of the resource class
The BOSS extension takes care of the communication with the LinkLoader. It also provides an easy standard
way to create processes within a resource.

Class: r_boss

Files: r_boss.h, r_boss.cpp

A BOSS resource maintains a dynamic_list of all processes that exist on that resource. When the resource is
added to the DDM, it opens a DD, which sends data about the processes to the LinkLoader. Other processes
to list information are not implemented, neither are processes to deal with scheduling and security. This may
be done at a later stage.

Variables:

dynamic_table<process*> process_table, dynamic_list process_list

The table and list used to store processes.

number list_processes_index, number info_resource_index, number info_process_index

Indexes in the process_table that are used for the different kernel processes.

1 (int)

1 (int)

double[100]

TRUE (boolean)

Figure 11-b structure of the example dd

Implementation of BOSS BOSS July 2001

B. Visscher Page 54

Methods:

boolean construct(void)

This method adds the kernel processes to the process list of the resource and calls the method
process_constuct.

virtual void destruct(void)

The method process_destruct is called and all processes are removed from the process list.

virtual void update_resource(void)

This method may be used when a new resource is created to make external events possible.

virtual boolean reserve_socket(base* options)

This method reserves a process socket. The options parameter contains a general message and the
reserve_socket method of the appropriate process is opened with DD parameter in its option field. It does so by
calling the internal method reserve_process with the process index stored in DD process of the general message.

virtual void update_socket(event_description event)

This method will call the update_socket method of the process with which the socket interfaces. (The process
index is stored in the environment_port of the socket.)

virtual void free_socket(void)

This method will call the free_socket method of the process with which the socket interfaces. The process
index is stored in the environment_port of the socket.

virtual boolean process_construct(void)

When a BOSS resource is added to the DDM, this method is called by the construct method. Initialization of
devices and processes may be done. Processes are added to the system with the method add_process. This
may only be done at this time. If a new resource is created, this method must be programmed.

virtual void process_destruct(void)

This method is called when the resource is removed from the system. It is optional to program this method
because all processes are automatically removed but if a device must be closed, this method may be used.

boolean add_process(process* _process)

This method may only be called when the resource is being connected to the DDM in the method
process_construct. The process passed as its parameter is added in the process_list and an index is assigned to
the process. This index is called the process index. When the resource sends socket information to the
LinkLoader, this process index is sent in the DD process.

boolean reserve_process(number process_index, base* options)

This method reserved a specific process. The index is found in the process_table and the virtual method
reserve_socket of that process is called. DD parameter of the general message is then sent to it. All ports and
memory are allocated based on the description given in the process class. The process_index is stored in the
environment_port. If another environment must be stored by the process, this is put after it.

Implementation of BOSS BOSS July 2001

B. Visscher Page 55

inline base* environment_port(void)

This method returns the pointer to the environment_port. It adds the size of the process_index to it that is
stored in the beginning.

Class: process

Files: r_boss.h, r_boss.cpp

The process class is part of the operating system structure. It provides a standard way to describe sockets and
to automatically allocate ports and memory to it. For every process, a new instance of the class must be
created and this process must be added to the resource with the BOSS resource method add_process. The
process class consists of variables to make the connection to the resource and variables to describe the socket
configuration. The methods are divided into two categories, one for communicating with the ports of the
socket and the others for the lifecycle of the socket.

Variables:

r_boss* res (only used by the r_boss class)

This variable contains a pointer to the BOSS resource of where the process is a part. The process must be
added to the BOSS resource with the r_boss method add_process.

number index (only used by the r_boss class)

The index that the process has in the process_table of the BOSS resource to which it was added with the
r_boss method add_process.

const char* name

Hold a zero terminated string that represents the name of the process. This name will be sent to the
LinkLoader and is used by the LinkLoader to find the process in the system. This variable has to be set during
construction of the class.

number in_ports
const number* in_port_sizes

These two variables describe the configuration of the in_ports of the socket. The variable in_ports hold the
number of in-ports and the array in_port_sizes describes the individual size of each in-port. This size may be
NIL to indicate that the port has a dynamic size or a number. The size of the array must be the same as the
variable in_ports. These variables have to be set during construction of the class.

number out_ports
const number* out_port_sizes

These two variables describe the configuration of the out_ports of the socket. The variable out_ports hold the
number of out-ports and the array out_port_sizes describes the individual size of each in-port. This size may
be NIL to indicate that the port has a dynamic size or a number. The size of the array must be the same as the
variable in_ports. These variables have to be set during construction of the class.

number environment_size
base* initial_environment

Implementation of BOSS BOSS July 2001

B. Visscher Page 56

These two variables describe the environment port. The environment_size holds the size of the environment
expressed in base. The initial_environment hold the initial contents of that environment. The content is copied
to the environment port when a socket of the process is reserved.

Example of a socket description:

float_plus::float_plus()
{
 static number in[] = { base_size(float), base_size(float) };
 static number out[] = { base_size(float)};
 name = "float.+(float,float)(float)";
 in_ports = 2;
 in_port_sizes = in;
 out_ports = 1;
 out_port_sizes = out;
 environment_size = 0;
 initial_environment = NULL;
};

Methods:

The methods are divided into two categories. The first one are methods concerning the socket life-cycle. The
second are methods used to communicate with the socket ports.

virtual boolean reserve_socket(base* options)

When a socket of a process is reserved, this method is called by the resource before the socket and port are
reserved automatically. If any initialization procedure is needed, this may be done here. If the method returns
TRUE, the resource will reserve the ports and assign memory to them. The environment will also be
initialized with the data stored in the initial_environment variable.

virtual void free_socket(void)

This method is called when a socket of the process must be freed. Any memory assigned to NIL ports or to
the environment must be freed. If a procedure is needed to terminate the process, this must be done here. After
this method, the resource will free al memory assigned to the ports and remove the ports and socket from the
system.

virtual void update_socket(event_description event)

This method is the same as update_socket of the resource class as described in chapter 7.

base*& in_port(number in_port)
base*& out_port(number out_port)
base* environment_port(void)
boolean in_port_blocked(number in_port)
boolean out_port_waiting(number out_port)
void read_from_in_port(number port_index)
void write_to_out_port(number port_index)
number get_resource_number(void)
number get_serviced_socket_index(void)
void external_event(number socket_index)

Implementation of BOSS BOSS July 2001

B. Visscher Page 57

These methods are used to communicate with the ports of the socket. They use the variable res to determine
the resource and call their identical methods of the r_boss (resource) class via inline methods. Their
description can be found in chapter 7.

11.4 LinkLoader resource class
One of the LinkLoader main functions is to resolve names using the primary, secondary and global
namespaces. All the names are stored in a class called the dynamic_lookup class. This class provides all the
necessary methods for efficient adding, removing and searching (sorting) names.

Template class: dynamic_lookup_table

File: dynlook.h

The dynamic_lookup_list and dynamic_lookup_table classes are sub classes of the dynamic_table and
dynamic_list. The dynamic_lookup_table is used to store elements and the dynamic_lookup_list uses the table
to combine the elements in a search tree. It is possible to store more than one dynamic_lookup_list in one
dynamic_lookup_table but all elements of a dynamic_lookup_list must be stored in the same
dynamic_lookup_table.

Elements in a dynamic_lookup_list are sorted as opposed to the dynamic_list where they are unsorted. This
means that the methods to reserve, free and lookup an element are all newly implemented. There is also an
additional table present, the lookup_table, to store additional search information.

The data type of the elements that may be stored in the dynamic_lookup_table must have two operators, = and
<. When these two are defined, the data type may be used in this template class.

Methods:

dynamic_lookup_table(number _max = 1, number _max_total = NIL - 2)

The constructor uses two variables, the first, _max, defines the initial size of the arrays. The second,
_max_total, defines the maximum size of the arrays.

number reserve_element(T* _element, dynamic_lookup_list* dll)

To reserve an index, the list where the element is part of must be given and the element itself to determine its
position in the list. If the element can be added, the index is returned. If the element can not be added, NIL is
retuned.

void free_element(number index, dynamic_lookup_list* dll)

When an element must be removed, the method free_element is used. The dynamic_lookup_list where the
element is part of must be given to rearrange the search information for that list.

number lookup_element(const T& _element, const dynamic_lookup_list& dll)

To search for an element, the dynamic_lookup_list must be given. The search information is used to find the
index of the element.

Efficiency:

The goal of this class is to add, remove and recall all elements in an average time complexity of O(log N)
with N = total elements in a dynamic_lookup_list, the theoretical minimum. This is achieved with the use of a

Implementation of BOSS BOSS July 2001

B. Visscher Page 58

binary tree structure to represent the search data. This makes recalling data very easy but adding and removing
data more difficult because of the balancing of the tree. Balancing the tree is done with the use of a simple
rule:

for every element: ABS(depth(left branch) - depth(right branch)) � 1.

The number of elements in a minimum tree may then be calculated for every depth. The depth is the
maximum time it will take to find, add and remove an element.

Table 11-1 minimum and maximum number of elements in a tree with a specific depth

Depth Minimum Maximum
0 0 0
1 1 1
2 2 3
3 4 7
4 7 15
5 12 31
6 20 63
7 33 127
8 54 255
d X d = X d-1 + X d-2 + 1 X d = 2 * X d-1 + 1
 N > 1.6d N = 2d

 - 1

Since the number of elements in a minimum tree is above 1.6d, the requirement that any element may be
found in O(log N) is satisfied and this data storage is efficient enough to meet this requirement.

Class: LinkLoader

Files: linkloader.h, linkloader.cpp

 The LinkLoader class is never called directly. All communication with it is done via the DDM class. An
internal description of the class would therefore be superfluous. Some methods are described to give a simple
view of its internal working.

The LinkLoader maintains a dynamic_table of all processes that have been Link Loaded. This data is stored in
a ll_process (LinkLoader process) structure. This structure holds pointers to the primary namespace,
secondary namespace and indexes of the channels and sockets that have been reserved for that process and the
index of the master and slave socket. There are also variables present to indicate if the process has been Link
Loaded and a variable to indicate if the constant ports have sent their data.

The second important structure that is maintained by the LinkLoader is a dynamic_lookup_list of dd_llne,
name elements. These name elements are the building blocks of the global, primary and secondary
namespace. Each process that is added to the LinkLoader, by the resources or by a DD, is stored in a dd_llne
structure that contains its name, resource number and DD process. The dd_llne class is a derivative of the dd
class with the operator < added. This operator compares the name fields to determine if it is smaller.

Methods:

virtual boolean construct(void)
virtual void destruct(void)
virtual update_resource(void)

Implementation of BOSS BOSS July 2001

B. Visscher Page 59

virtual boolean reserve_socket(base* options)
virtual void update_socket(event_description event)
virtual void free_socket(void)

The six virtual methods that are inherited from the resource class, are used to call the other methods of the
LinkLoader class. They form the communication with the DDM. They are called when the LinkLoader must
undertake some action. The reserve_socket method reserved a program_socket or sub_program_socket to
create a new process. The update_socket method transfers data from the master socket of a process to the
slave socket and vice versa.

number find_name(const char* name, const dynamic_lookup_list& list)
number find_name(dd* name, const dynamic_lookup_list& list)

These two methods are used to find a name in the dynamic_lookup_table of the LinkLoader class. The
dynamic_lookup_list passed as its parameter determines the set in the table that is searched. The
name_elements will only be compared by their names, therefore only the name has to be passed. If the
element can be found, the number returned is the index in the table. If the name is not part of the specified list,
NIL is returned.

boolean create_namespace(dd* NameSpace, dynamic_lookup_list* list, boolean clear)
void delete_namespace(dynamic_lookup_list* list)
void free_namespace(dynamic_lookup_list* list)

These methods use the dynamic_lookup_table of the LinkLoader as their basis. Create namespace converts a
dynamic data type into individual name elements that are added in the list. This may be done by transferring
the data (clear = TRUE) or by copying the pointers to that data (clear = FALSE). If the namespace must then
be removed, either delete_namespace (clear = FALSE) of free_namespace (clear = TRUE) must be used,
depending on what the clear variable was when the namespace was created. The clear variable will only be
TRUE if the namespace created is the namespace of the program socket. If the socket is of a sub process, the
clear variable will always be FALSE.

boolean reserve_program_socket(dd* NameSpace, dd* Parameters)

This method called when the LinkLoader gets a request to reserve a socket of a DD program. The entire DD
program is passed as the first variable and the parameters used to determine the name of the startup DD is
passed in the parameter variable. This method will create the primary namespace, master socket, slave socket
and Link Load the DD.

boolean reserve_sub_program_socket(number namespace_index, dynamic_lookup_list*
primairy_namespace, dd* Parameters)

This method does the same as reserve_program_socket. The only difference is that the DD reserved is called
from within the DD program. This means that the primary namespace already exists in a process and does not
have to be made again. An index is used to indicate what DD must be loaded. The parameter variable
determines when the DD is link loaded.

boolean linkload_deedee(number process_index)
void unload_deedee(number process_index)

Loads or unloads the dependency driven network that forms a process. An index to the process structure is
passed to find all information. The secondary namespace is created / deleted, sockets are reserved and
channels opened. If something goes wrong during the Link Loading procedure, FALSE is retuned. Unloading
a DD always succeeds.

Implementation of BOSS BOSS July 2001

B. Visscher Page 60

number make_master_slave_socket(number namespace_index, dynamic_lookup_list*primary_NameSpace)

Creates the process structure of a DD. The DD is indicated by the index in the namespace and the primary
namespace. The process structure is then created and the index of it is retuned. This method also created the
master and slave socket of the process. If an error occurs, NIL is returned.

BOSS Resources BOSS July 2001

B. Visscher Page 61

12 BOSS Resources

 This chapter discusses the implementation of several different BOSS resources. The resources are split into
their processes and their socket configuration is given. The in-ports and out-ports of the sockets are explained
together with how the process processes them. There is also an extensive resource introduced that forms the
interface to the user. It holds processes write output to the screen and receive input from the keyboard.

12.1 Naming of a resource process
The number of resources that may exist in the DDM is virtually unlimited. Each resource may in turn hold
numerous processes with their own name. This makes the total names used on extensive systems, enormous.
To make programming easier, a standard way of naming a process on a resource is used. With this standard
naming, it is easier to locate the process.

<resource name>.<process name>(<in-port 0>,…,<in-port n>)(<out-port 1>,…,<out-port n>)
(<{in, out}-port x> means the data type of {in, out}-port x)

12.2 Reference data type
One of the most important structures that exist in a traditional programming language is the ability to use
pointers. In BOSS, pointers do not exist at all. This makes programming easier but far less efficient. To still
create efficient objects, a reference data type, @, is introduced. This data type means that data associated with
the reference is not transferred but is stored in a resource. The reference data structure gives access to that data
and allows manipulation of it. The reference structure contains three pieces of information. An index used by
the resource to locate the object, a random verify code stored in the object to check for all use and a time stamp
to determine if a process may occur.

12.3 Resources
This section describes various resources that are present in the system. The files that contain the resource
classes and their processes. The files all start with b_ to indicate that they are BOSS resources. Each section
will enumerate all processes on the resource and describe them. It will start by some simple resources and will
finish with a resource that processes a multi layered textual screen interface.

12.3.1 Signal

The signal resource is a resource that works with the data type signal. This data type is comparable to void in
C. It does not hold any value, but it exists.

Files: b_signal.h, b_signal.cpp

Process name: signal.and(signal,signal)(signal)

When both in-ports have received a signal (have the status Blocked), they return to the status Wait and a
signal is set on the out-port.

Process name: signal.or(signal,signal)(signal)

When one of the two in-ports receive a signal, a signal is sent to the out-port. The in-ports will be cleared
when both in-ports have received a signal to make sure the process stays synchronized.

BOSS Resources BOSS July 2001

B. Visscher Page 62

The code that handles the process of a signal or as described in the class signal_or:

signal_or::signal_or()
{
 static number in[] = { 0 , 0 };
 static number out[] = { 0 };
 static boolean env[] = { FALSE };
 name = "signal.or(signal,signal)(signal)";
 in_ports = 2;
 in_port_sizes = in;
 out_ports = 1;
 out_port_sizes = out;
 environment_size = base_size(boolean);
 initial_environment = (base*)env;
};

void signal_or::update_socket(event_description event)
{
 if((event & ALL_OUT_WAITING))
 {
 if(in_port_blocked(0) || in_port_blocked(1))
 {
 write_to_out_port(0);
 ((boolean*)environment_port())[0] = TRUE;
 };
 };
 if((event & ALL_IN_BLOCKED) && ((boolean*)environment_port())[0])
 {
 read_from_in_port(0);
 read_from_in_port(1);
 ((boolean*)environment_port())[0] = FALSE;
 };
};

12.3.2 Boolean

Files: b_bool.h, b_bool.cpp

The boolean resource handles the data type boolean than can get the value TRUE or FALSE.

Process name: boolean.and(boolean,boolean)(boolean)

If one of the in-ports has the value FALSE, FALSE is written to the out-port. When a data is written to the
other in-port, both in-ports are cleared. If TRUE has been written to an in-port, the value that is written to the
other in-port is written to the out-port and both in-ports will be cleared.

Process name: boolean.or(boolean,boolean)(boolean)

If one of the in-ports has the value TRUE, TRUE is written to the out-port. When data is written to the other
in-port, both in-ports are cleared. If FALSE has been written to an in-port, the value that is written to the other
in-port is written to the out-port and both in-ports will be cleared.

Process name: boolean.not(boolean)(boolean)

BOSS Resources BOSS July 2001

B. Visscher Page 63

Writes TRUE to the out-port if FALSE was received on the in-port. If FALSE was received, TRUE is written.

Process name: boolean.=(boolean,boolean)(boolean)

Returns TRUE if the value on both in-ports are equal.

12.3.3 Byte

Files: b_byte.h, b_byte.cpp

The Byte resource handles the data type byte, which can get the value of whole numbers from 0 to 255. A
variety of mathematical operands may be applied to it (all mod 256).

Process name: byte.+(byte,byte)(byte)
Process name: byte.-(byte,byte)(byte)
Process name: byte.*(byte,byte)(byte)
Process name: byte./(byte,byte)(byte)

Divisions by zero are ignored.

Process name: byte.mod(byte,byte)(byte)
Process name: byte.=(byte,byte)(boolean)

Returns TRUE if the value on the in-port(0) is equal to the value on in-port(1).

Process name: byte.!=(byte,byte)(boolean)
Process name: byte.<(byte,byte)(boolean)
Process name: byte.>(byte,byte)(boolean)
Process name: byte.<=(byte,byte)(boolean)
Process name: byte.>=(byte,byte)(boolean)
Process name: byte.inc(byte)(byte)

Increases the value on the in-port by one and writes it to the out-port

Process name: byte.dec(byte)(byte)

Decreases the value on the in-port by one and writes it to the out-port

12.3.4 Integer

Files: b_int.h, b_.int.cpp

The integer resource handles the data type int than can get the value of whole numbers from –2^31+1 to 2^31.
A variety of mathematical operands may be applied to it.

Process name: integer.+(integer,integer)(integer)
Process name: integer.-(integer,integer)(integer)
Process name: integer.*(integer,integer)(integer)
Process name: integer./(integer,integer)(integer)

Divisions by zero are ignored.

Process name: integer.mod(integer,integer)(integer)
Process name: integer.=(integer,integer)(boolean)

BOSS Resources BOSS July 2001

B. Visscher Page 64

Returns TRUE if the value on the in-port(0) is equal to the value on in-port(1).

Process name: integer.!=(integer,integer)(boolean)
Process name: integer.<(integer,integer)(boolean)
Process name: integer.>(integer,integer)(boolean)
Process name: integer.<=(integer,integer)(boolean)
Process name: integer.>=(integer,integer)(boolean)
Process name: integer.inc(integer)(integer)
Process name: integer.dec(integer)(integer)
Process name: integer.random()(integer)

Writes a random integers to the out-port. This process is repeated when the out-port is waiting.

Code for the random process on the integer resource:

integer_random::integer_random()
{
 static number out[] = { base_size(int)};
 name = "integer.random()(integer)";
 in_ports = 0;
 in_port_sizes = NULL;
 out_ports = 1;
 out_port_sizes = out;
 environment_size = 0;
 initial_environment = NULL;
};

void integer_random::update_socket(event_description event)
{
 if((event & ALL_OUT_WAITING))
 {
 ((int*)out_port(0))[0] = rand();
 write_to_out_port(0);
 };
};

boolean integer_random::reserve_socket(base* options)
{
 external_event(get_serviced_socket_index());
 return TRUE;
};

Process name: integer.random1()(integer)

Writes a random integer to the out-port. This is done only once.

12.3.5 Float

Files: b_float.h, b_.float.cpp

The float resource handles the c data type float.

Process name: float.+(float,float)(float)

BOSS Resources BOSS July 2001

B. Visscher Page 65

Process name: float.-(float,float)(float)
Process name: float.*(float,float)(float)
Process name: float./(float,float)(float)

Divisions by zero are ignored.

Process name: float.mod(float,float)(float)
Process name: float.=(float,float)(boolean)

Returns TRUE if the value on the in-port(0) is equal to the value on in-port(1).

Process name: float.!=(float,float)(boolean)
Process name: float.<(float,float)(boolean)
Process name: float.>(float,float)(boolean)
Process name: float.<=(float,float)(boolean)
Process name: float.>=(float,float)(boolean)
Process name: float.inc(float)(float)
Process name: float.dec(float)(float)

12.3.6 Double

Files: b_double.h, b_.double.cpp

The double resource handles the c data type double.

Process name: double.+(double,double)(double)
Process name: double.-(double,double)(double)
Process name: double.*(double,double)(double)
Process name: double./(double,double)(double)

Divisions by zero are ignored.

Process name: double.mod(double,double)(double)
Process name: double.=(double,double)(boolean)

Returns TRUE if the value on the in-port(0) is equal to the value on in-port(1).

Process name: double.!=(double,double)(boolean)
Process name: double.<(double,double)(boolean)
Process name: double.>(double,double)(boolean)
Process name: double.<=(double,double)(boolean)
Process name: double.>=(double,double)(boolean)
Process name: double.inc(double)(double)
Process name: double.dec(double)(double)

12.3.7 Converter

Files: b_convrt.h, b_.convrt.cpp

The converter resource handles the conversions from one data type to another.

Process name: converter(boolean)(signal)
Process name: converter(byte)(signal)
Process name: converter(integer)(signal)
Process name: converter(float)(signal)

BOSS Resources BOSS July 2001

B. Visscher Page 66

Process name: converter(double)(signal)
Process name: converter(@)(signal)
Process name: converter(nil)(signal)

These processes convert a specified type to the signal type (existence).

Process name: converter(byte)(boolean,boolean,boolean,boolean,boolean,boolean,boolean,boolean)

This process converts the byte to its eight booleans. Out-port n corresponds to bit n of the byte.

Process name: converter(int)(byte,byte,byte,byte) / converter(int)(byte,byte)

This process converts an integer to its two or four bytes. Which one is used, depends on the implementation
system of the DDM. This determines whether the integer is 16 or 32 bits.

12.3.8 Flow

Files: b_flow.h, b_.flow.cpp

The flow resource handles the dependency flow in dependency flow networks. It provides seven standard
flow processes applied on the data types: signal, boolean, byte, integer, float, double, @(reference) and nil
(dynamic types).

Process name: flow.repeat(<type>)(<type>)

This process repeats the value is has on the in-port once.

Process name: flow.hold(<type>)(<type>)

This process repeats the value it has on the in-port whenever the out-port is waiting. If a new value is sent to
the in-port, the old value is sent one more time and the process starts over with the new value.

Process name: flow.sync(signal,<type>)(<type>)

Sends the value of in-port 1 to the out-port when both in-ports are blocked. This synchronizes the <type> data
stream with the signal.

Process name: flow.switch(boolean,<type>)(<type><type>)

Sends the value it has on the in-port to either out-port 0 or out-port 1. Which
out-port is used, depends on in-port 0. If it is TRUE, the value of in-port 1 is
sent to out-port 0. If in-port 0 has the value FALSE, the value of in-port 1 is
sent to out-port 1.

Process name: flow.merge(boolean,<type>,<type>)(<type>)

This process sends either the value of in-port 1 to out-port 0 or the value of in-
port 2 to out-port 0. If in-port 0 holds the value TRUE, in-port 1 is sent to the
out-port. If in-port 0 holds the value FALSE, in-port 2 is sent to the out-port.

Process name: flow.last(signal,<type>)(<type>)

This process sends the last value it received on in-port 1 to out-port 0 when

? T F

Figure 12-a switch process socket

? T F

Figure 12-b merge process socket

BOSS Resources BOSS July 2001

B. Visscher Page 67

the signal is received. If no value has been written to in-port 1, it sends the first value it receives there. If a
signal is received without a value in in-port 1 but one has been written before, it uses the last value written and
sends it to out-port 0.

Process name: flow.after(<type>)(<type>,signal)

Repeats the value on in-port 0 once on out-port 0. When the value is read from out-port 0, a signal is sent to
out-port 1.

12.3.9 Text User Interface

Files: b_tui.h, b_.tui.cpp, tui.h, tui.cpp, allegro.h, allegro.a

The text user interface resource provides all the necessary processes to communicate with the user. This is
done in currently only supported in a text mode but may be adapted to be used in a graphical environment.
The difficulty with modeling the user interface is that all processes must be independent have their own video
memory. This is done with the introduction of layers.

The buffer that is sent to the monitor and forms the visible screen, is connected to a layer holder. This layer
holder is also connected to numerous layers. The layer holder sends al the layers to the buffer and sorts them
by depth. If more that one layer is active at a specific coordinate, only the layer with the smallest depth will be
shown. Figure 12-c demonstrates this principle.

Layers consist out of two elements, the layer view and the object connected to the layer. This object can be a
screen or another layer holder. The layer view determines what part of the object is shown. Every point in the
layer view may be activated to indicate a coordinate is shown. It may also be deactivated to indicate that the
layer does not exist there. The layer holder will project layers with a larger depth at the coordinates where the
view is deactivated. With this construction, a view does not have a fixed form anymore but is completely
adaptable to any needs. This is demonstrated in figure 12-d.

Layers may move in two independent coordinate systems. The first is the coordinate system of the object
connected to the layer. The second is the coordinate system of the layers themselves. The coordinate system
of the object determines the part of the object projected onto the layer. The size of the object must be at least
the size of the view and the view can never exceed the boundaries of the object.

The layer coordinate system determines the place on the layer where the object is projected. This coordinate
system is unbounded and only part of the coordinate system is used by the layer holder to send to a screen.

Layer N

Layer 2

Layer 1
Screen

Layer
holder

Layer 0

Figure 12-c layerholder copies layers sorted by their depth to a screen

BOSS Resources BOSS July 2001

B. Visscher Page 68

The part that is shown always starts at (0,0), the top left coordinate, and ends in text mode at (80,25). In
graphical mode, this could be (800,600), (1024,768) or even (4.000.000,3.000.000) with a maximum of 232.

The layer holder can create a virtually unlimited number of layers to which screens may be connected. These
screens contain the information that must eventually be displayed onto the monitor. The resource provides
several different processes to modify the screens like filling it with a color, writing a string to it etc. Since this
system is still under development, one screen is reserved for error messages. This screen is connected to a
layer that will always stay on the background of the layer holder that sends its information to the monitor.
This screen is called the error_screen and is used in the implementation to write messages to the screen.

Process name: tui.()(@layerholder)

This process returns a reference to the layer holder connected to the screen that is displayed onto the monitor.

Process name: tui.easy_connect(@layerholder,integer,integer)(@screen)

This method opens a layer with the width of in-port 1 and the height of in-port 2 in the center of the visible
part of the layer holder. It returns a reference to the screen. When the socket of this process is freed, the screen
and layer are disconnected and removed.

Process name: tui.connect(@layerholder,byte,integer,byte,integer,boolean,integer,integer,integer,integer,
integer,integer,integer,boolean,integer)(@layer,integer,integer,integer,integer)

This process opens a layer and controls different aspects of it. To create a layer, several in-ports must be
present. These are indicated in the table with a +/? under the create/control. The ports that are used to control
the object are indicated in the same column by ?/+.

Screen connected to the layer

 Layer view

Visible

Layer

Figure 12-d layer view selects visible part s of the screen and puts it into the layer

BOSS Resources BOSS July 2001

B. Visscher Page 69

Table 12-1 in-ports of the process tui.connect(…)(…)

In-
Port

Type create /
control

Name
Variable

Description

0 @layerholder +/- Reference to the layer holder to which this layer must be
connected

1 byte +/+ Align X Opening position of the layer. This may be in the Left(0),
Center(2) or Right(1) of the visible part of the layer
holder.

2 integer +/+ �x Changing the x coordinate of the view in the layer by �x
3 byte +/+ Align Y Opening position of the layer. This may be in the Top(0),

Center(2) or Bottom(1) of the visible part of the layer
holder.

4 integer +/+ �y Changing the y coordinate of the view in the layer by �y
5 boolean +/- Hold depth Fixing the layer to the background or foreground
6 integer +/- Width Width of the view
7 integer +/- Height Height of the view
8 integer +/+ Depth 0 to have the front most position, NIL to have the back

most position
9 integer +/+ object �x Changing the x coordinate of the view in the object by �x
10 integer +/+ object �y Changing the y coordinate of the view in the object by �y
11 integer +/- object width Width of the object (if this variable is smaller that Width,

width will be used)
12 integer +/- object height Height of the object (if this variable is smaller that height,

height will be used)
13 boolean +/+ visible Makes the layer visible to the layerholder or not
14 integer -/+ background Character and color to fill the background (only shown if

no object is connected to the layer) with a default of black

The process has five out-ports. The first contain a reference to the layer and may be used to connect an object
to it and determine what coordinates in the view may be activated or not. Out-port 1 and 2 contain the (x,y)
coordinates of the view in the layer. Out-port 3 and 4 contain the (x,y) coordinates of the view in the object. If
a coordinate changes, the new coordinate is sent to the appropriate port.

Process name: tui.activate_full(@layer)(@layer)
Process name: tui.deactivate_full(@layer)(@layer)

These processes activate / deactivate the complete view of the specified layer.

Process name: tui.activate(@layer,integer,integer,integer,integer)(@layer)
Process name: tui.deactivate(@layer,integer,integer,integer,integer)(@layer)

These processes activate / deactivate a square (x,y,width,height) in the view of the specified layer.

Process name: tui.activate(@layer,integer,integer)(@layer)
Process name: tui.deactivate(@layer,integer,integer)(@layer)

These processes activate / deactivate a coordinate (x,y) in the view of the specified layer.

Process name: tui.connect(@layer)(@layerholder)

This process creates a layer holder and connects it to the specified layer. A reference to the layer holder is
returned. When the socket of this process is freed, the layer holder and all layers attached are removed. The
visible part of the layerholder will be the object size given in the process that connects the layer to the
layerholder

BOSS Resources BOSS July 2001

B. Visscher Page 70

Process name: tui.connect(@layer)(@screen)

This process creates a screen and connects it to the specified layer. A reference to the screen is returned. If the
socket of this process is freed, the screen is removed and disconnected from the layer. The size of the screen
will be the object size given in the process that connects the layer to the layerholder.

Process name: tui.out(@screen,boolean)(@screen)
Process name: tui.out(@screen,byte)(@screen)
Process name: tui.out(@screen,integer)(@screen)
Process name: tui.out(@screen,float)(@screen)
Process name: tui.fill(@screen,integer)(@screen)
Process name: tui.out(@screen,string)(@screen)
Process name: tui.out_newline(@screen)(@screen)

These processes are used to write a specific data type to the specified screen.

Process name: tui.clear(@screen)(@screen)

Clears the specified screen.

Process name: tui.color(@screen,byte)(@screen)

Sets the color of the text written to the specified screen

Process name: tui.cursor(@screen,int,int)(@screen)

Sets the cursor at a specific (x,y) coordinates of the specified screen.

Process name: tui.scrolldown(@screen)(@screen)

Scrolls all text in the specified screen one line up.

Process name: tui.out_error(nil)()

Writes any data of the in-port as a byte sequence to the error screen, followed by a new line character.

Process name: tui.out_error(integer)()

Writes an integer followed by a new line to the error screen.

Process name: tui.keyboard()(byte[4])

This process may only be opened once. It returns the keyboard status and any key pressed. The lower two
bytes hold the ASCII code. The higher two bytes contain the status of the keyboard led and the status of the
shift, control and alt keys.

Application design, perceptron BOSS July 2001

B. Visscher Page 71

13 Application design, perceptron
The dependency flow model is designed to be applicable in any application domain. The model has some
strong resemblances to an existing model, the dataflow model. A sub section of this model is used for neural
networks. In theory, this subsection is also a subsection of the dependency flow model. This chapter discusses
the complete design, implementation and test results of a perceptron.

13.1 Design
The design process within BOSS
should lead directly to the
implementation. This section gives an
example of a design process of a
perceptron that leads to the
implementation.

13.1.1 Perceptron

At the highest level, a perceptron
looks like figure 13-a. Out-ports 1-3
contain the values of W. This value
must only be sent to the port when W is changed. Out-port 0 contains Y’ (= W0 + W1 * X1+ W2 * X2) which is
the output function of the neuron.

Perceptron

Figure 13–a perceptron as a black box process

X
1

X
2

W
0

W
1

W
2

T
ra

in
in

g

Y

Y
’

W
0

W
1

W
2

Weight

Weight Weight

Base

Hold

1

+

+

? T F

Hold

True

Figure 13–b perceptron as a white box process

Application design, perceptron BOSS July 2001

B. Visscher Page 72

The in ports of the perceptron socket are X1 and X2 (with Y if the network is training) to create Y’. In-ports 2-
5 are used to load specific W values (if they differ from the existing once, the are also sent to the out-ports. In-
port 6 is used to determine if the network is training or not. All ports use the integer type except Y, Y’ and
Training, which use the boolean type. Figure 13-b shows the detailed version of the perceptron of figure 13-a.
Two new sockets are introduced, the weight and base. Both of them are discussed in the sections below.

13.1.2 Perceptron weight

The weights socket has the following behavior. Wi is assigned a random
weight and is put on the out-port Wi. When a Wi is introduced at in-port 1,
this value is used and if it changes from the Wi that exists within, the new
value is put on out-port 1. If Xi is present at in-port 0, this value is
multiplied with Wi and sent to out-port 0. The process then waits for (Y-Y’)
to calculate a new Wi according to the formula: Wi new = Wi old + Xi * (Y-
Y’). If the new Wi value differs from the old, the new Wi value is written to
out-port 1.

Weight

X
i

W
i

(Y
-Y

’)

W
i *

 X
i

W
i

Figure 13–c perceptron
weight as black box

Repeat

? T F

Sync

Repeat

Wi * Xi Wi

Xi Wi (Y – Y’)

*

conv.

Last
!=

*

+

conv.

#1

#1

1

-123456

Figure 13–d perceptron weight as a white box

Application design, perceptron BOSS July 2001

B. Visscher Page 73

13.1.3 Perceptron base

The base of the perceptron holds a socket that determines the training factor
(Y-Y’) and Y’. To do this it needs the sum of all Xi*Wi, a Y value and a
boolean telling the process if the network is training or not.

13.1.4 Resource for reading from / writing to a file

BOSS does not provide facilities, to read from a file or to write to a file. To get the results from the perceptron,
a simple resource is created to handle these file operations. It consists of four different processes, a read
process and a write process for either integer or boolean. These processes are connected to the in-ports and
out-ports of the perceptron and with this, all data going into the perceptron are read from files and all data
coming from the perceptron are stored.

File: b_file.h, b_file.cpp

Process name: file.read(nil)(<T>,signal)

Opens a file with the name at in-port 0. It reads all the integers / booleans from that file and when the end file
is reached, a signal is sent at out-port 1. The file will automatically close when the socket is freed.

Process name: file.write(nil,<T>,signal)()

Opens a file with the name at in-port 0. When data is sent to in-port 1, this is added in that file. When the
socket is closed or when a signal is sent to in-port 2, the file is closed.

? T F

Hold

? T F

Hold

>

=

OR

Not

? T F

Hold Hold

0
-1 1

1

0

Y’ (Y – Y’)

∑Xi * Wi Training Y

Figure 13–f perceptron base as white box

Base

Σ
W

i *
 X

i

T
ra

in
in

g

Y

Y
’

(Y
 -

Y
’)

Figure 13–e perceptron base
as black box

Application design, perceptron BOSS July 2001

B. Visscher Page 74

13.2 Results of AND, OR and XOR
Three learning sets were created for three different functions. One training set for the AND, one for the OR
and one for the XOR. In table 13-1, each of these sets is given and if a W value changed, the new W value is
given.

Table 13-1 trainings sets and results

OR AND XOR

Table 13-2 weights to create a specific function in the perceptron

Function W0 W1 W2

Or 0 1 1

And -2 1 2

Xor - - -

X1 X2 Y Y’ W0 W1 W2
 0 0 0
1 1 1 0 1 1 1
1 0 1 1
0 1 1 1
0 0 0 1 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0

X1 X2 Y Y’ W0 W1 W2
 0 0 0
1 1 1 0 1 1 1
1 0 0 1 0 0
0 1 0 1 -1 0
0 0 0 0
1 1 1 0 0 1 1
1 0 0 1 -1 0
0 1 0 0
0 0 0 0
1 1 1 0 0 1 2
1 0 0 1 -1 0
0 1 0 1 -2 1
0 0 0 0
1 1 1 0 -1 1 2
1 0 0 0
0 1 0 1 -2 1
0 0 0 0
1 1 1 0 -1 2 2
1 0 0 1 -2 1
0 1 0 0
0 0 0 0
1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0
1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0
1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0
1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0

X1 X2 Y Y’ W0 W1 W2
 0 0 0
1 1 0 0
1 0 1 0 1 1
0 1 1 1
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0
1 1 0 1 -1 0 -1
1 0 1 0 0 1
0 1 1 0 1 0
0 0 0 1 0

Application design, perceptron BOSS July 2001

B. Visscher Page 75

13.3 Discussion of the results
The results that were obtained with this experiment have no distinction from the values found in literature. In
the training sets of the OR and AND function, the values of W do not change after correct values have been
found. For the XOR training set, no values are found and as the results show, never will be because of the
reoccurring sequence of the W0, W1 and W2 values in training. Since the XOR function is part of the non-
linear separable class, this function can never be learned by the perceptron that uses linear separation to
distinguish between TRUE and FALSE.

13.4 Evaluation of the design process in BOSS

13.4.1 Design and implementation of a dependency flow network

The implementation of a perceptron in BOSS is a good illustration of how designing a program looks like. It
starts at the top level by specifying how the complete process should work. This is done for the perceptron in
section 13.1.1 specifying how the perceptron process looks like by specifying the in-ports / out-ports and the
behavior the process should have with those data. In this stage of the design, the program is implicit and the
process itself is a black box process. The next phase is translating this implicit declaration of the process into
an explicit one by filling the black box with sockets, channels and constants. This white-box may in turn hold
sockets of either resource processes or sockets that are black box processes. For each of these black box
processes, the same design sequence is used until finally all processes are resource processes.

In the implementation of the perceptron, the white box process of the perceptron held two black processes, the
perceptron base and the perceptron weights. Both processes where implemented using the same approach as
for the perceptron. This simple way of designing a program proved in this simple case to be very straight
forward and very effective. For complex processes, it will be more difficult to describe the complete
interaction pattern however, due to the lack of side effects, all interaction is made visible and easier to manage
than in any other language.

Programming the dependency flow network would be an easy matter if a good design tool existed. This is
however not the case and programming a DFN is done by creating a dynamic data structure. This method of
programming is error encouraging and labor intensive. Connecting channels with the use of only the relative
index makes this a hard thing to do. When designing the perceptron, diagrams were first drawn on a piece of
paper. When the DFN looked right, numbers were assigned to each socket and each channel. These were then
entered into the dynamic data structure.

The perceptron base DFN represented in a dynamic data structure:

 test &= program[0].reserve(DeeDee_Size);
 test &= program[0][DeeDee_Name].write("base(integer,boolean,boolean)(boolean,integer)");

 test &= program[0][DeeDee_In_Ports].reserve(3, base_size(number)); // number of In ports Master (Out slave)
 ((number)program[0][DeeDee_In_Ports].get(0)) = base_size(int);
 ((number)program[0][DeeDee_In_Ports].get(1)) = base_size(boolean);
 ((number)program[0][DeeDee_In_Ports].get(2)) = base_size(boolean);

 test &= program[0][DeeDee_Out_Ports].reserve(2, base_size(number)); // number of Out ports Master (In slave)
 ((number)program[0][DeeDee_Out_Ports].get(0)) = base_size(boolean);
 ((number)program[0][DeeDee_Out_Ports].get(1)) = base_size(int);

 test &= program[0][DeeDee_Const_Ports].reserve(3); // Number of const ports Slave (Out slave)
 test &= program[0][DeeDee_Const_Ports][0].write((number) 0);
 test &= program[0][DeeDee_Const_Ports][1].write((number) 1);
 test &= program[0][DeeDee_Const_Ports][2].write((number) -1);

 test &= program[0][DeeDee_Sockets].reserve(11); // number of slave sockets
 test &= program[0][DeeDee_Sockets][0].reserve(DeeDee_Socket_Size);

Application design, perceptron BOSS July 2001

B. Visscher Page 76

 test &= program[0][DeeDee_Sockets][0][DeeDee_Socket_Name].write("integer.>(integer,integer)(boolean)");
 test &= program[0][DeeDee_Sockets][1].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][1][DeeDee_Socket_Name].write("flow.hold(integer)(integer)");
 test &= program[0][DeeDee_Sockets][2].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][2][DeeDee_Socket_Name].write("boolean.=(boolean,boolean)(boolean)");
 test &= program[0][DeeDee_Sockets][3].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][3][DeeDee_Socket_Name].write("boolean.or(boolean,boolean)(boolean)");
 test &= program[0][DeeDee_Sockets][4].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][4][DeeDee_Socket_Name].write("boolean.not(boolean)(boolean)");
 test &= program[0][DeeDee_Sockets][5].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][5][DeeDee_Socket_Name].write("flow.switch(boolean,integer)(integer,integer)");
 test &= program[0][DeeDee_Sockets][6].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][6][DeeDee_Socket_Name].write("flow.merge(boolean,integer,integer)(integer)");
 test &= program[0][DeeDee_Sockets][7].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][7][DeeDee_Socket_Name].write("flow.hold(integer)(integer)");
 test &= program[0][DeeDee_Sockets][8].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][8][DeeDee_Socket_Name].write("flow.hold(integer)(integer)");
 test &= program[0][DeeDee_Sockets][9].reserve(DeeDee_Socket_Size);
 test &= program[0][DeeDee_Sockets][9][DeeDee_Socket_Name].write("flow.hold(integer)(integer)");
 test &= program[0][DeeDee_Sockets][10].reserve(DeeDee_Socket_Size);
 test &=program[0][DeeDee_Sockets][10][DeeDee_Socket_Name].write("flow.switch(boolean,boolean)(boolean,boolean)");

 test &= program[0][DeeDee_Channels].reserve(21); // number of slave channels
 test &= program[0][DeeDee_Channels][0].channel(5,0,NIL,2); // merge -> o1
 test &= program[0][DeeDee_Channels][1].channel(NIL,0,0,0); // i0 -> >
 test &= program[0][DeeDee_Channels][2].channel(NIL,3,1,0); // c0 -> hold
 test &= program[0][DeeDee_Channels][3].channel(1,0,0,1); // hold -> >
 test &= program[0][DeeDee_Channels][4].channel(0,0,NIL,1); // > -> o0
 test &= program[0][DeeDee_Channels][5].channel(0,0,2,0); // > -> =
 test &= program[0][DeeDee_Channels][6].channel(NIL,2,2,1); // i2 -> =
 test &= program[0][DeeDee_Channels][7].channel(NIL,1,4,0); // i1 -> not
 test &= program[0][DeeDee_Channels][8].channel(10,1,6,0); // switch -> merge
 test &= program[0][DeeDee_Channels][9].channel(2,0,3,0); // = -> or
 test &= program[0][DeeDee_Channels][10].channel(4,0,3,1); // not -> or
 test &= program[0][DeeDee_Channels][11].channel(3,0,5,0); // or -> merge
 test &= program[0][DeeDee_Channels][12].channel(NIL,3,7,0); // c0 -> hold
 test &= program[0][DeeDee_Channels][13].channel(7,0,5,1); // hold -> merge
 test &= program[0][DeeDee_Channels][14].channel(NIL,4,8,0); // c1 -> hold
 test &= program[0][DeeDee_Channels][15].channel(8,0,6,1); // hold -> merge
 test &= program[0][DeeDee_Channels][16].channel(6,0,NIL,2); // merge -> o1
 test &= program[0][DeeDee_Channels][17].channel(NIL,5,9,0); // c2 -> hold
 test &= program[0][DeeDee_Channels][18].channel(9,0,6,2); // hold -> merge
 test &= program[0][DeeDee_Channels][19].channel(NIL,2,10,1); // y (i2) -> switch
 test &= program[0][DeeDee_Channels][20].channel(3,0,10,0); // or -> switch

13.4.2 Implementation of a resource process

One major problem that was uncovered with this application is the lack of certain resource processes. In the
case of the perceptron, it was necessary to write the output of the perceptron process into files and process it
further to be incorporated into this report. For this reason, four new resource processes were created as
described in 13.1.4. This was done in a very short time and no additional problems in the simulation software
were found. This shows that adding new resource processes to BOSS, is a simple matter and can be done in a
short time without having to take the rest of the system into account. This is true for the simulation as
implemented and should be true for the final system.

The implementation of the file resource was done in C++ as the rest of the simulation. It is however possible
to link any object file into the C++ code. With this construction, it is possible to incorporate any procedure
into BOSS to create maximum efficiency for that process.

13.4.3 Testing dependency flow networks

With all programs, it is important to test if the program does what is required. Dependency flow networks
provide an ideal testing ground to do this. Every process can be tested completely separate from other

Application design, perceptron BOSS July 2001

B. Visscher Page 77

processes without the risk of any interaction between them. The only interaction between processes is done by
channels.

Data that streams from one process to another over the channels can be made visible and debugging processes
can allow the user to control the data stream. This may be done by introduced specific test values at any point,
synchronizing a data stream with a button on the screen or writing the contents of a channel to the screen. By
having this complete control over the dependencies, every aspect of a process may be tested.

Other processes that check constraints between data streams may also be developed. This will make processes
more reliable and detect errors during programming and running. It may even be used for implicit
programming letting process automatically be created just by specifying the pre- and post- conditions.

Since a program consists out of many processes, searching for errors means finding a process. The previous
mentioned debugging processes can all be used to do this. Searching for the bad processes is a simple process
of elimination.

Comparison BOSS July 2001

B. Visscher Page 78

14 Comparison
This chapter discusses how the new programming model compares to other existing ones. It concentrates on
the aspects of completeness, evaluation speed, amount of side effects and simplicity. It is not an attempt to
show that the dependency flow paradigm is the most fundamental paradigm by reducing all other languages to
it but it will show that all programs can be executed on the DDM without losing any speed and in most cases
gain a significant amount. This chapter ends with a speed comparison of the implemented DDM to the
theoretical one.

14.1 Universal programming language theorem
A programming language is called a universal language if all problems that can be solved by a computer, can
be solved in the language. This theorem is one of the most important in programming languages. It shows that
one universal language can never solve problems that cannot be solved by another universal language. The
idea that one language can therefore be better or worse in that it can solve problems is only a figment of our
imagination.

To show that language A is universal, it is only necessary to reduce one other universal language B to
language A. With this reduction of B to A, it is shown that all problems that can be solved in that language B,
can also be solved in the language A and language A must therefore be universal because language B was
universal.

One of the problems with the universal programming theorem is to determine if a problem can be solved. As
far as our current knowledge goes, there is no way to prove that a language is universal other than to reduce
the lambda calculus to it. This calculus only has a substitution (mapping) and recursion (iteration + fifo queue)
in it. With the use of only these two operations, all current problems in computer science that can be solved
may be solved.

It would be a trivial exercise to show that the BOSS language allows resources for substitution and recursion.
It is therefore possible to reduce all universal language to BOSS (and vice versa). The BOSS language is
therefore a universal language that can solve any problem that is solvable by computers.

14.2 Comparison to other paradigms
This section discusses how BOSS relates to existing paradigms. It starts with the most popular paradigm of
iterative programming and ends with the paradigm that is most similar to the dependency flow networks, the
dataflow networks.

14.2.1 Iterative paradigm

The most popular language class, are languages based on the iterative paradigm. These languages focus on the
instruction stream. The program task is performed by instructions that change variables in memory. These
changed variables are then used in other pieces of the program that eventually send this data to the screen,
printer or storage media. Iterative languages are therefore completely based on side effects.

Managing side effects is a difficult task. Memory leakage, crashing programs by writing into code segments
are all examples of side effects that have gone wrong. When programs grow more complex and more side
effects are present, the stability and maintainability of the programs drops. Programming large programs with
iterative languages can therefore only be accomplished at tremendous costs.

The current way to manage the reliability and reduce cost is by the introduction of objects. Each object is a
collection of side effects acting on the same object (data structure). Despite this major advance, the older
problems of maintainability, reliability and the accompanying costs are reduced but not gone.

Comparison BOSS July 2001

B. Visscher Page 79

BOSS does not rely on side effects. Everything that needs to be done and every dependency between
processes are incorporated in the dependency flow networks. This lack of side effects solves the problems of
maintainability and reliability in one stroke without losing any ability. The costs to maintain a dependency
flow network should therefore be much lower than the cost to maintain a program made with an iterative
language. The current implementation does not support data structures like an object, but it can be created
with the reference data type. The creation process of an object can also be used for its terminated. When the
process is removed, the object automatically deleted thus creating a fail-safe system for garbage collection and
removing any chance of memory leakage.

14.2.2 Functional paradigm

The functional paradigm is an attempt to reduce side effects to a minimum. Variables that are used within the
function are passed as input variables and the function transforms these input variables into one output
variable. The evaluation of the function can happen in two different ways, lazy evaluation and eager
evaluation.

Evaluating the Expression: and(f(1),g(1))

Lazy evaluation

Evaluate(and(f(1),g(1))
Evaluate(f(1))
Evaluate(1)
Evaluate(and(FALSE,g(1)) Evaluate and(TRUE, g(1))
Evaluate(FALSE) Evaluate(g(1))
 Evaluate(1)
 Evaluate(and(TRUE,TRUE)) Evaluate(and(TRUE,FALSE))
 Evaluate(TRUE) Evaluate(FALSE)

Eager evaluation

Evaluate(and(f(1),g(1))
Evaluate(f(1),g(1)) (parallel evaluation of both f(1) and g(1))
Evaluate(1,1) (parallel evaluation of both 1 for f(1) and 1 for g(1))
Evaluate(f(1),g(1)) (parallel evaluation of both f(1) and g(1))
Evaluate(and(TRUE,TRUE)) Evaluate(and(TRUE,FALSE)) Evaluate(and(FALSE,TRUE)) Evaluate(and(FALSE,FALSE))
Evaluate(TRUE) Evaluate(FALSE) Evaluate(FALSE) Evaluate(FALSE)

The advantages of lazy evaluation over eager evaluation, is that less processor power is needed. This makes
lazy evaluation very suited for systems where processor time is expensive. Eager evaluation is more suited for
systems with multiple processors where the evaluation of different expressions may be done by different
processors. Eager evaluation will result in faster programs but at the expense of unnecessary use of processor
time therefore, if processor time is sparse, eager evaluation will result in slower programs than lazy evaluation
because it has to do less. If parallel evaluation exists, eager evaluation will result in faster programs than lazy
evaluation.

BOSS uses a short form of eager evaluation. It does not try to evaluate the complete expression in the
beginning but instead, it starts evaluating everything that has input variables present just like the dataflow
machines. In the case of the previous expression the evaluation would look like:

Evaluate(f(1),g(1))
Evaluate(and(TRUE,TRUE)) Evaluate(and(TRUE,FALSE)) Evaluate(and(FALSE,TRUE)) Evaluate(and(FALSE,FALSE))
Evaluate(TRUE) Evaluate(FALSE) Evaluate(FALSE) Evaluate(FALSE)

Note that the first step of evaluation the program expressions in functional languages is skipped in the
dependency flow evaluation and with this, the dependency flow language always use less evaluation steps
than functional languages. To show this, an evaluation of seven successor functions s(x) is made and eager
evaluation is compared to the BOSS evaluation. A functional language starts by evaluating the whole
expression and reduces the number of compounded functions by one until an expression is found that can be
evaluated. If this is the case, the previous expression is evaluated and by this, evaluating in the opposite and all

Comparison BOSS July 2001

B. Visscher Page 80

expressions that could not be evaluated are now being evaluated. BOSS starts immediately at the point where
expressions can be evaluated and with this reducing the total number of steps. In complete programs, this
reduction more than halves (n/2-1) the total number of evaluation steps as the example below demonstrates.

Function language BOSS

Evaluating the expression : s(s(s(s(s(s(s(0))))))) with s(x) = x+1

E(s(s(s(s(s(s(s(0)))))))) E(s(0))
 E(s(s(s(s(s(s(0))))))) E(s(1))
 E(s(s(s(s(s(0)))))) E(s(2))
 E(s(s(s(s(0))))) E(s(3))
 E(s(s(s(0))) E(s(4))
 E(s(s(0))) E(s(5))
 E(s(0)) E(s(6))
 E(0)
 E(s(0))
 E(s(1))
 E(s(2))
 E(s(3))
 E(s(4))
 E(s(5))
E(s(6))

Another major disadvantage a functional languages is the amount of brackets needed to program a function. A
graphical representation of the languages solves this, which is clearly demonstrated by the language Clarity.
Allegro still uses this brackets construction and is therefore very sensitive to errors with brackets. Since BOSS
does not use brackets, this is never a problem.

14.2.3 Dataflow paradigm

The dependency flow model has many similarities with the dataflow model. The diagrams look alike and
some processes are the same. There are, however, some differences that should make the dependency flow
model far more applicable than the data flow model and faster in designing and executing programs.

Dataflow languages always present a standard set of processes that are available in the system. If new
processes are desired, they may only be built with the use of existing ones, and thus creating the need for
device drivers without the possibility to communicate to hardware directly. This is because the process
Linking in current Dataflow systems, is done in pre-run time. This prevents the ability to adapt to the
environment with the available resources trough their processes and names. Without this runtime namespace
management, only standard building blocks can be used.

Dataflow models always use the following firing rule: a process is started when all variables of the process are
present at its input connections and all output connections are ready to receive the output data. With this rule,
it is not possible to create an object like the layer in 13.3.9. In the dependency flow model, a process is started
when at least one in-port or one out-port changes status. The process can determine for itself if all the
necessary variables are present. This makes the pass trough time in a for example, boolean OR operation
faster. The data flow model always needed both input variables, whilst the dependency flow model only needs
one TRUE at one of the inputs to create the output. This difference in firing rule makes a big impact on the
rest of the system and the ability to model programs.

A third major difference with dataflow models, is the ability to connect more than one channel to an in-port
and more that one channel to an out-port. Dataflow models only have the ability to connect one channel and
use switches and merges to accomplish the same task. These extra nodes created extra delays and less
readable programs.

Besides the differences, the dependency flow model also has two new structures. The first is the resource, a
collection of processes that are managed in the resource to create optimal usage of that specific resource. The
resource structure also provides a method of combining the existing methods and paradigms with the
dependency flow method. Existing computer systems can be used and integrated into BOSS as a resource and

Comparison BOSS July 2001

B. Visscher Page 81

by sending a complete program to that resource during socket reservation, all programs that exist on that
computer system can be incorporated into BOSS without losing any speed.

The second structure that is newly introduced with the DDM is the owner structure. This structure guarantees
a clean removal, creation and reshaping of processes and a clear basis on which to build a security system.
The integrity of individual processes is maintained but the versatility to arrange and rearrange processes is not
lost. This owner structure was never used and due to the lack of it, dataflow machines never had the ability to
reshape processes in run time, which made all dataflow programs static.

In the time the dataflow was introduced, many variants were thought up and implemented. The size of grain
(complexity of each nodes) was changed. Depending on the network, either large grains or small grains were
used. This eventually led to the current models of multi threading where one thread depends on the data of
others and waits for it. This idea is also called agent programming where a multitude of agents communicate
with each other but all having their own memory and tasks. These ideas can all be found in the dependency
flow model. An agent, thread (and even object) is a process that sends messages to other processes via a
channel. The use of processes allows for a variable grain that may be adapted to the underlying network to get
the best possible performance.

14.3 Speed
Speed has always been one of the most important aspects of computer science. Millions of dollars are invested
every month to create faster chips, faster memory and with these faster hardware, new time constrained
software can be created. To compare the different paradigms in speed to each other, two scales are used, the
amount of work that has to be done to evaluate a program and the number of evaluation steps.

14.3.1 Time versus Work

The work holds the number of evaluations that have to be done in total and equals the sum of all parallel
evaluations. The time holds the number of parallel evaluations. To compare the strategy of the different
programming paradigms a small program with the same function in all three paradigms. The number next to
the program is the number of parallel evaluations (work) at that evaluation step (time).

The following programs solve the sum: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

Iterative program

i = 1 1
i = i + 2 1
i = i + 3 1
i = i + 4 1
i = i + 5 1
i = i + 6 1
i = i + 7 1
i = i + 8 1

Functional program (Eager + Lazy)

+(+(+(1,2),+(3,4)),+(+(5,6),+(7,8))) 1
+(+(1,2),+(3,4)) +(+(5,6),+(7,8)) 2
+(1,2) +(3,4) +(5,6) +(7,8) 4
1 2 3 4 5 6 7 8 8
+(1,2) +(3,4) +(5,6) +(7,8) 4
+(3,7) +(11,15) 2
+(10,26) 1

Data / Dependency flow networks

+(1,2) +(3,4) +(5,6) +(7,8) 4
+(3,7) +(11,15) 2
+(10,26) 1

Table 14-1 work/steps analyses of adding numbers

Style Adding 8
Work

Adding 8
Time

Adding N
Work

Adding N
Time

Iterative 8 8 N N
Functional 22 7 2* N * 2log N 2 * 2log N + 1
Dependency flow 7 3 N – 1 2log N

Comparison BOSS July 2001

B. Visscher Page 82

The example shows that in this case the dataflow and dependency flow approach yields the result in the
shortest time and with the least amount of work. It can be shown that in general the dependency flow yields
the result just as fast as an iterative or functional program but in most cases give the result faster. How much
faster depends on how many evaluations may be done concurrently in the program and can be done
concurrently by the number of processors present.

Some algorithms exist that give results faster at the expense of extra work. Whether these algorithms are faster
than their sequential counterpart is determined by the amount of processors used. A parallel implementation of
the DDM would give a good testing ground to see where the parallel implementation is preferred over the
iterative implementation.

14.3.2 Costs

In the early years of computer science, memory and processors were very expensive. Every step was therefore
taken to reduce the amount of memory and processors needed. The current programming models still try to
reduce the total amount of processors and memory and with this, reduce costs. Nowadays, memory and
processors do not form such a costly barrier anymore. Memory is almost given away and processors are cheap
enough to be used for heating elements. Trying to reduce memory usage or reduce the amount of processors
are therefore foregone goals. The only goal that remains is to minimize the time it takes to calculate results.

BOSS was created to give results and give them fast. It uses more memory than conventional systems and,
due to the eager evaluation, more processing power. The processing power used, can be distributed over a
large number of processors to create a significant speedup. The eager evaluation results in extra unnecessary
work for the processors but since this extra work can always be done concurrently with other processes, no
time is lost in getting the actual results when enough processors are available.

14.4 The simulation
One of the main objectives with the dependency flow networks was to give results in the least amount of time.
The theory of 14.4.2 suggests that this is achieved. However, the simulation is implemented in an iterative
language. It uses therefore only one processor. Because of this, the extra processing time used to evaluate
unimportant expressions due to the eager evaluation rule is done at the cost of giving the result fast. This
results in an implementation that will always use more processing power, more memory and more time to
give a result than the same program in an iterative language or functional language with lazy evaluation. This
problem is due to the limitation of the iterative language in which the simulation of the DDM has been
implemented and in a hardware implementation of the DDM, this will not be the case and the actual speedup
of the DDM over the iterative and functional approach should be the same as the theory.

Conclusion BOSS July 2001

B. Visscher Page 83

15 Conclusion
The inspiration used to create BOSS may be found in a variety of other paradigms. The dependency flow
networks show a great resemblance to dataflow networks. The interest in these products started in the 60ies
and many manufacturers and universities are still active on the field of dataflow systems. Because of this
interest, a variety of dataflow machines and design tools has been developed and is being developed.

The simulation of BOSS provides a powerful and stable alternative. The lack of a design tool and the limited
number of implemented resource processes withhold the true performance of the system. The implemented
resource processes provide enough functionality to create a simple program as demonstrated by the
implementation of the perceptron but the absence of a resource to handle user interaction or network
communication is a major drawback that has to be solved in the near future.

Designing and implementing programs in dependency flow networks, makes it much easier to program for
BOSS than with the use of existing methods. The integration of various stages of the design process into one
diagram style, make programming easier to manage and faster to develop.

The total lack of side effects, the visualization of processes and the autonomy of each process, makes errors
easier to find. The ability to reshape processes into any form without any limitation on the input and output
makes the errors easier to correct. These two abilities combined make BOSS an excellent environment to
create stable and well designed applications.

The speed of a dependency flow network in the simulation is much slower than what can be achieved by
programming the same program in another languages. As with all simulations, it is not the finished product.
The implementation of the simulation was only the first step towards a dependency driven machine made with
hardware components and when this is implemented, a reasonable comparison can be made that will show,
based on theory, a significant speedup.

The complete autonomy of every resource and the ability to integrate information about the resource into the
resource and the standard interface toward the rest of the system, makes BOSS a good system for the basis of
true plug and play hot swappable hardware without the use of any device drivers. With the autonomy of the
hardware components guaranteed, the door is open to a variety of application domains where failure of any
type has to be avoided.

The simulation has great potential and with development tools and extra resource processes, this potential can
be further explored. The implementation of the DDM and resources into specialized hardware components
will probably create a very fast, easy, reliable and achievable computer system that may compete with existing
systems on all fronts.

Recommendations and future developments BOSS July 2001

B. Visscher Page 84

16 Recommendations and future developments
The implementation of BOSS is still in its infancy. To create a system that lives up to theory and uses the
potential fully, many more resources have to be implemented and problems solved before the system can be
made from hardware components. This chapter discusses the most important resources that need to be
implemented in the first section. The second section discusses the problems that are still open and have to be
addressed. The third section discusses a possible road to follow that ends with the hardware.

16.1 Resources
This section discusses some resources still needed in the BOSS system to make programming easy and
flexible. It also discusses several processes of the LinkLoader and the BOSS extension that also have to be
implemented in the future.

16.1.1 LinkLoader processes

The LinkLoader needs some processes to open / close channels, reserve / free / suspend / activate sockets or
link load DD’s directly. These processes are necessary if a process wants to open another process at the same
ownership level. These processes are needed for shell programs to create an operational operating system. It is
currently only possible to give the DD’s at startup as parameters on the command line.

16.1.2 Security processes in the BOSS extension

One important feature of the extension of the programming model is still unused. The system is still not secure
and no measures have been taken to protect the system against mall use. The security processes that must be
implemented on every resource are a part of the BOSS extension and room has been left to implement them.

16.1.3 Information processes in the BOSS extension

Next to security, no process in the extension exists to give information. This feature will become more and
more important as the system matures. The first processes that have been implemented are all discussed in this
thesis but to make future resources completely self contained, they should also hold a manual. This manual
must include a description of the resource and of every process socket with its ports and every bit of
information needed to work with the resource. This information process is also a part of the extension on the
programming model and may be implemented at any time.

16.1.4 Resource to process graphics

The text user interface resource as presented in chapter eleven, was only a first test in creating a graphical
interface with buttons, scrollbars, windows, menus etc. Screen objects are typically event driven (mouse click,
mouse over object etc.) and are therefore very easy to incorporate into the programming model in a very
natural way.

16.1.5 Resource for user input

The system presented thus far has very limited, almost no, interaction with the user. The only way for the user
to interact with a process was with the user of the tui.keyboard process (12.3.9). Of this keyboard process,
only one socket may be reserved and no scheme was thought up to share the keyboard among different
processes. This sharing will probably have to be done in some way together with the graphic resource
(16.1.4). Processes for other user input devices like a mouse, light pen or touch screen, also have to be
implemented to make programs that interact with users.

Recommendations and future developments BOSS July 2001

B. Visscher Page 85

16.1.6 Resource to handle time processes

The example DFNs given in this report were all time independent. In practice, programming languages must
have some timing processes. A resource to handle time events must still be implemented. This resource must
have processes that send a signal every several seconds, measure the time between two signals etc.

16.1.7 Resource to handle memory requests

One of the major differences between a DFN and a traditional language is the complete absence of pointers. It
is however, possible to create a memory object in a resource with the reference data type of a DFN and use
this memory object to store data in or to retrieve data from.

16.1.8 Resource to handle files

The current implementation for file management is very limited. New resource processes should be made to
open, close, read and write to files, together with processes to control the directory structure.

16.1.9 Resource to communicate with serial / parallel / USB ports

A resource that handles the communication to these ports is necessary if printers can ever be accessed in
DFNs or if a modem can ever be used.

16.1.10 Resource to communicate with a network

The final and one of the most important resources that still has to be made, is a resource that allows multiple
DDMs to be connected together into a communications network like Ethernet or Token ring. This may be
done on top of a TCP/IP, IPX/TPX or some other stack in two different ways.

One possibility is that the network resource hides all aspects of the network. This means that when reserving a
socket on the network resource, the target has to be known and sent along with the reservation message to the
network resource, figure 16-a.

The second approach is to model the communication network as a separate DDM. This approach is shown in
figure 16-b. The DDM provides enough facilities to be used as a communication layer in a network. The
BOSS extension may be implemented at every networking resource and all processes of the LinkLoader may
be implemented on every networking resource as the broadcast address.

DDM
L

inkL
oader R

esource

C
om

m
on resourcec

N
etw

ork R
esource

Special R
esources

DDM

L
inkL

oader R
esource

C
om

m
on resourcec

N
etw

ork R
esource

Special R
esources

DDM

L
inkL

oader R
esource

C
om

m
on resourcec

N
etw

ork R
esource

Special R
esources

Figure 16-a hiding the communications network

Recommendations and future developments BOSS July 2001

B. Visscher Page 86

16.2 Current and future problems
One of the problems that the LinkLoader faces is the mapping of a DFN onto the processes. This is currently
no problem because only one process exists with a specific name but in the future, it is possible that multiple
resources have the same processes or that the same processes may be found at different places in the network.
The LinkLoader will then have to decide what process to use to make processing as fast as possible. Topics
like data locality, scheduling, algorithm complexity, network timings, process timing all become important
aspects of this decision that all have to be incorporated into the mapping. Other aspects of availability of a
process socket, process starvation and socket migration may become part the scheduling processes occurring
on each resource.

16.3 Road ahead
The road to develop all different elements as described in 16.1 is a long one. This section provides a guideline
in that process. It may be altered at any point if problems arise or different aspects become more or less
important.

One of the first things that have to be made is a simple textual parser for dependency flow networks. This may
be very simple with no language feature other than a variable to represent a socket and channels connected
between those variables. It only has to transfer a DFN in readable text into a DD that can be sent to the
LinkLoader. This will make programming DFNs much easier and allow more complex DFNs to be created.

DDM

L
inkL

oader R
esource

C
om

m
on resourcec

N
etw

ork R
esource

Special R
esources

DDM

L
inkL

oader R
esource

C
om

m
on resourcec

N
etw

ork R
esource

Special R
esources

DDM

L
inkL

oader R
esource

C
om

m
on resourcec

N
etw

ork R
esource

Special R
esources

DDM

L
inkL

oader

Figure 16-b network implemented as a dependency driven machine

Recommendations and future developments BOSS July 2001

B. Visscher Page 87

When a simple text parser is created, the graphical user interface resource should be implemented to make
interaction with the user possible. Other resources for memory and file handling also have to be made at this
stage.

When all the resources have been implemented, it is time to use these resources and text parser to create a
development environment of DFN programs. This may be simple at first but as time goes by, evolves bit by
bit. Starting out simple but evolving into a process database (with the use of the information processes as
described in 16.1.3) that find the name of a process for you.

Concurrent at developing an environment is the development of a shell to manage the files, processes and
security features which also have to be implemented. This shell must be an interface of the DDM to the user
and allow for DD’s to be link loaded which means that the LinkLoader processes as described in 16.1.1 have
to be implemented.

The final step of the simulation is the implementation of the network resource. The adding of the network
resource will open up the problems of mapping processes by the LinkLoader, starvation and migration of the
processes by the BOSS extension.

If the simulation of the DDM proves to be a success, a hardware DDM should be constructed and at this point,
is should be faster, more efficient, cheaper and more manageable than anything that exists. The simulation
should provide a flexibility in programming that is undreamt of at this point in time and the inherent parallel
nature of the language should open up a whole new world of applications and solutions.

16.4 Ideas for a development and test environment
One step in the road ahead is the design of a complete design, development, test and debug environment. This
section discusses several ideas that may be incorporated into this application to make programming as easy as
possible.

16.4.1 Draw area

One of the most important things that the development tool should have is a place where dependency flow
diagrams can be drawn. Drag and dropping sockets into the draw area and drawing the channels between in-
ports and out-ports should all be done with the least amount of mouse movements and clicks to reduce
chances of suffering from RSI.

16.4.2 Documentation

An important aspect of software design is good documentation. This documentation should describe the
various aspects of each process in detail. With the integration of design steps into one environment,
documentation of each design step should also be included. For dependency flow networks, this can be done
relatively simple. Every process should be described, each in-port and out-port should have its own label
where information may be added. The channels between the processes should also have information
describing what flows trough it. With these information labels on every channel, port and socket, all aspects of
every system can be fully described without the need for additional documentation about the network.

16.4.3 Channels and sockets in multiple layer

If a process becomes more complex, the amount of channels and processes needed to create a process may
become so enormous that the program will look more like spaghetti than a program. The process will than be
very difficult to understand, test and maintain. To solve this problem, the designing tool should have the
ability to model a process into different layers and different colors per layer. If, for example a neural network
is implemented, one layer could be used for the forward phase in green and another layer for the backward
phase with a learning rule in yellow. This distinction in layers makes it possible to focus on the different

Recommendations and future developments BOSS July 2001

B. Visscher Page 88

aspects of the process. With these multiple layers and information in every element of the DFN as described
in 16.4.1, every aspects of any processes can be described fully without the need for additional documentation
about the process.

16.4.4 Process repository

One important aspect of software design is the reuse of existing code. With reusing code, developing time is
reduced and reliability increases. As tempting as this sounds, it does create another problem: finding a process.
For a development environment to be as efficient as possible, it must have some form of repository where all
processes are included and where processes may be added, removed and enhanced. Based on the name of the
process and its description, a search can be made searching for sockets with a certain amount of in-ports / out-
ports, size of ports and maybe even a implicit description of a network can be given to find the network.

The BOSS system provides one place where all processes are gathered. Each process has a unique name and
within the name, the resource, the in-ports and out-ports are described. This information is sent to the
LinkLoader and based upon this information, searches can be made to locate processes. Results from the
search can than be shown in a separate window and if a process is found, the process can be dragged to the
development area where the dependency flow networks are drawn.

16.4.5 Process creator

When designing a process, it is bound to happen that too much components are added and not even multiple
layers can order the network. In these cases, a process creator should be incorporated that works as follows.
When several sockets are selected, these sockets are put into a new process and changed in original network
into one black box socket. All channels connected to sockets in the new process and in the old one, should be
rerouted over in-ports and out-ports and with this, reducing the amount of channels and sockets in the original
process. This process creator should provide a big help in keeping the designs understandable.

16.4.6 Program overview

 All process together in a program form a hierarchical structure. Depending on the place in the hierarchy and
the place of the calling process in the program, a process is either Link Loaded directly or when one or all
parameters are present for that process. To make sure all sockets in a process can be reserved, check between
the different namespaces can be done showing consistent processes in a green color and inconsistent processes
in red.

16.4.7 Testing and debugging

An important step in programming is the testing and debugging of a program. During this phase, the program
is tested whether it does what is required or not. This approach may be done at any level. Processes that check
for constraints between data streams, processes that visualize data streams, processes that let you control the
data streams and processes that introduce a set of variables into the system are all examples of how a process
can be checked for errors.

16.4.8 Dialog creator

An important feature of development environments is the ability to create dialogs fast. The DDM is an
excellent basis on which to create dialogs since all dialogs are event driven. When a button is pressed,
something has to be done. When the mouse moves over an object, something has to be done. This event
driven architecture of dialogs makes it very easy to connect processes to specific events. A tool with the
ability to link the processes to the dialogs will reduce development time.

Bibliography BOSS July 2001

B. Visscher Page 89

17 Bibliography

Igor Aleksander and Helen Morton, “An Intruduction to Neural Computing”, 1995, ISBN 1-85032-167-1

Vipin Kumar, Ananth Grama, Ansul Gupta and George Karypis,”Introduction to Parallel Computing”, 1994,
ISBN 0-8053-3170-0

Roger S. Pressman,”Software Engineering, a practitioner’s approach”, 1994, ISBN 0-07-707936-1

 Robert Hecht-Nielsen,”Neurocomputing”,1991, ISBN 0-201-09355-3

Christos H. Papadimitriou,”Computational Complexity”,1994, ISBN 0-201-53082-1

David A. Watt,”Programming Language Concepts and Paradigms”,1990,ISBN 0-13-728866-2

H.X.Lin,”lecture notes Parallel mathematics Wi4017”, TU-Delft, 2000

Jurij Silc, Borut Robic and Theo Ungerer, ”Asynchrony in parallel computing: from dataflow to
multithreading”, Parall. Distr. compu 1, 1998

G.R. Gao, ”An efficient hybrid dataflow architecture model”, Parall. Distr. compu 19, 1993

J.P. Morrison, "Data Stream Linkage Mechanism", IBM Systems Journal Vol. 17, No. 4, 1978

J.P. Morrison, "Flow-Based Programming: A New Approach to Application Development", Von Nostrand
Reinhold, NY, 1994, ISBN 0-442-01771-5

W.P. Stevens, "How Data Flow can Improve Application Development Productivity", IBM System Journal,
Vol. 21, No. 2, 1982

W.P. Stevens, "Using Data Flow for Application Development", Byte, June 1985

K. Yoshida and T. Chikayama, “A'UM, A Stream-Based Concurrent Object- Oriented Language”,
Proceedings of the International Conference on Fifth Generation Computer Systems, 1988, ed. ICOT

P. Newton and J.C. Browne,”The CODE 2.0 Graphical Parallel Programming Language”, Proc. ACM Int.
Conf. on Supercomputing, July, 1992.

T. Kimura et al, “A Visual Language for Keyboardless Programming”, TR WUCS-86-6, 1986

Arvind and R. S. Nikhil, “Executiong a program on the MIT tagged-token dataflow architecture.”, IEEE
Trans. Comput., 39(3):300--318, 1990

Addis T. R. and Townsend Addis, ”The Clarity Manual”, Version 3.6.5, May 1996

Bibliography BOSS July 2001

B. Visscher Page 90

Selection of (Dataflow) languages and development environments

Sanscript http://www.hallogram.com/sanscript/
Cube http://www.research.compaq.com/SRC/personal/najork/cube.html
Telegraph http://telegraph.cs.berkeley.edu/
Sisal http://www.llnl.gov/sisal/
PROGRAPH http://www.prograph.it/
Labview http://www.ni.com/
Clarity http://www.sis.port.ac.uk/research/clarity/index.html

Selection of Dataflow machines

TIK http://www.tik.ee.ethz.ch/Projects/projects.html
Manchester dataflow machine http://www.cs.man.ac.uk/cnc/dataflow.html
Monsoon http://csg-www.lcs.mit.edu:8001/monsoon/index.html

Selection of active research groups

Manchester Data-Flow Project http://www.cs.man.ac.uk/cnc/dataflow.html
Ptolemy http://ptolemy.eecs.berkeley.edu/
Dataflow research website http://www.imvs.ru/Dataflow/Contents.html
Earth http://www.capsl.udel.edu/EARTH/
Pebles http://www.cs.colostate.edu/~dataflow/
Cheops http://cheops.www.media.mit.edu/projects/cheops/
Linda http://www.cs.yale.edu/Linda/linda.html

Appendixes BOSS July 2001

B. Visscher Page 91

18 Appendixes

Appendix A - Manual of simulation BOSS.EXE

Appendix B - DFDs of MOVERND1.DD

 i

Appendix A - Manual of simulation
BOSS.EXE

Minimum System requirements for BOSS.EXE

DOS 3.12
80386 processor
2 MB ram (configured as extended memory)
EGA display adapter
DPMI

Starting BOSS.EXE

To run BOSS, two things have to be present, the file BOOT.DD and a DPMI manager. When running under
windows (95,98,2000,NT), a DPMI manager is automatically available. When running under DOS, the DPMI
manager on the same floppy as BOSS.EXE must be put in the directory of BOSS.EXE.

BOOT.DD is a small program that connects the keyboard to the screen and lets you quit when you hit the Esc
key on the keyboard. If BOOT.DD cannot be found during startup, the simulation is terminated. If another DD is
used than BOOT.DD, there is no neat way to quit BOSS.EXE (only Ctrl-Break or Ctrl-Alt-Del).

BOSS has the ability to link load multiple DD’s at the same time. The DD’s are specified by the arguments on
the command line. The DD that is the first argument of BOSS, is link loaded first and executed for a short time,
then the DD that is second, third and so on. It is possible to link load the same DD more than once as the
examples shows.

Examples: boss movernd1.dd movescrx.dd fibo.dd percept.dd movernd1.dd

 boss movernd1.dd movernd1.dd movernd1.dd

 boss perc-t.dd random.dd

When BOSS is executed without any arguments,
only an error screen and a green background is
visible. BOOT.DD is loaded and if a key is
pressed, the code is sent to the screen.

DD Programs

boot.dd
Opens a keyboard socket and sends information
from the keyboard to the error screen. This
program is always needed to terminate
BOSS.EXE. This is done by pressing the Esc key. BOSS will then terminate all slaves of the master owner
socket.

Error screen

Figure a-1 BOSS without any other DD

 ii

random.dd
Sends a random integer to the error screen.

rndscr.dd
Creates a view in the center of the screen and fills it with a random color and character.

fibo.dd
This program opens a screen in the center and sends the fibonachi sequence to it.

movescry.dd
Moves a view over the y direction of the screen while filling the view with a random color and character.

movescrx.dd
Moves a view over the y direction of the screen while filling the view with a random color and character.

movernd1.dd
Moves a view over the x and y direction of the screen.

movernd2.dd
Moves a view over the x and y direction of the screen while filling the view with a random color and character.

Perceptron programs

When a perceptron is opened, W0, W1, W2 and the result
of the network (Y’) are displayed on the screen. If Y’ is
TRUE, a green color appears. If Y’ is FALSE, a red
color is used. When any of the variables are updated, the
perceptron window is also updated and the results shown
in the window are always the last results.
Four different programs have been created with the
perceptron. Each of them is described below.

perc-t.dd
This DD creates four independent perceptrons that
receive a random integer from –127 to 127 on its X1 and
X2 (bias is 1) connections. The perceptrons learn that it
always has to answer with TRUE.

perc-f.dd
This DD creates four independent perceptrons that receive a random integer from -127 to127 on its X1 and X2

(bias is 1) connections. The perceptrons learn that it always has to answer with FALSE.

perc-rnd.dd
This DD creates four independent perceptrons that receive a random integer from –127 to127 on its X1 and X2

(bias is 1) connections. The perceptrons tries to learn a random Y and is therefore unable to learn. As a result, the
weights will therefore always continue to change.

percept.dd
This program opens one perceptron. The various input data is read from files (w0.dat, w1.dat, w2.dat, x1.dat,
x2.dat, tr.dat and y.dat) and the output data is written to the screen and to files (w0.new, w1.new. w2.new and
y.new). Two data collections are available for the perceptron to learn the functions of AND and OR. Another
data collection of the XOR is available to show that data collections exist that the perceptron cannot learn.

W0

W1

W2

Figure a-2 appearance of a single perceptron

 i

Appendix B - DFDs of MOVERND1.DD

OpenScreen Full view

Layerholder

Fill

Center

Connect layer to layerholder

Random 1

Movebetween

80

Mod

Random 1

*

2

Movebetween

25

Mod

Random 1

*

2

0

Center

0

False
20

5
0

0
0

0
True

0xFF34

 ii

DFD of Process: Movebetween(integer,integer)(integer)

1

Hold Hold

-1

? T F

Inc

<

/

Hold Mod

2

Hold

Out(0)

In(1) In(0)

	Preface
	Summary
	Contents
	Introduction
	Programming model
	DDM, Specification
	Choosing implementation
	Implementation of the DDM
	Extension on the DDM
	BOSS specification
	Implementation of BOSS
	BOSS Resources
	Application design, perceptron
	Comparison
	Conclusion
	Recommendations and future developments
	Bibliography
	Appendixes
	Appendix A - Manual of simulation BOSS.EXE
	Appendix B - DFDs opf MOVERND1.DD

		2001-07-19T23:03:59+0100
	Delft
	B.Visscher
	<none>

