Opera
System
ructure

Master thesis of B. Vissch

Delft University of Technology
Faculty of Information Technology and Systems e

Section Knowledge Based Systems
July 2001

Author: Bart-Floris Visscher
Dorpsstraat 54
2636 CJ Schipluiden
The Netherlands
Tel: +31-(0)15-3808015
Email: B.Visscher@twi.tudelft.nl
Student number: 9890662

Thesis committee: Prof. dr. H. Koppelaar
Department of Information Technology and Systems
Knowledge Based Systems
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

dr. ir. E.J.H. Kerckhoffs

Department of Information Technology and Systems
Knowledge Based Systems

Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

dr. drs. L.J.M. Rothkrantz

Department of Information Technology and Systems
Knowledge Based Systems

Mediamatics

Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

Date: July 2001

Copyright 20010, All rights reserved.
No part of this document may be reproduced in any form by any means without prior written authorization of B. Visscher.

Preface BOSS July 2001

1 Preface

Wouldn't it be nice, to have just one language in the world, no more misunderstandings, no miscommuni-
cation, an efficient language with short sentences, no exceptions on the syntax, no exceptions on the
exceptions. In the real world, thiswill never be possible but in computer science? A language that may be
applied anywhere and at the same time, the most efficient language possible, efficient in designing programs
and efficient in running them, best possible security, reliability of 100%. The best of the best and the most
efficient on al fronts, the fastest, the cheapest. Wouldn’t that all be nice? Well, dream on!

It justisnot possible to create alanguage that writes its own programs without using any memory and doing it
dl inablink of an eye at zero cost. The world has limitations and computers can only be built in theworld
with those limitations. Computers are therefore also limited. Limited in speed, limited in reliability, limited in
any way you can imagine (and maybe even your imagination is limited). The best we could ever hopeforisa
language that is only limited by the limitations of our imagination and acomputer system that islimited by the
world.

| have tried to combine these two aspects of limitation into one system, BOSS. A computer system, language
and operating system all built into one and trying to keep the different aspects of various exigting systemsinto
mind. With the best possible solutions of different aspectsthat exist, all combined into one and if something
better could be though up theoretically, alow room for it to be created and incorporated. What has resulted
from thisexerciseis asystem that should be better, on al fronts, than anything that exists and on individual
fronts at least as good as something already thought up. | hope that this report convinces the reader that BOSS
isexactly what is promised.

11 Acknowledgements

The road to create thisthesis and software was abumpy road at best. The shock absorbers and springs were
nearly rundown but luckily, a garage was found that replaced them al. For this, | would like to give my
utmost thanks and gratitude to the one that is the solution to the paradox of existence.

| would further like to give thanks to Sacha, who' s continued support and attention to my well being, thelove,
understanding and encouragement she gave me, and her very keen eye on English grammar were appreciated
greetly.

| would also like to give thanks to someone who inspired me greatly, Prof. T.R. Addis of the University of
Portsmouth who' s own struggles with asmilar system, Clarity, made me aware of the many problems faced
withit.

Specid thanks are due at the address of dr. drs. L.J.M. Rothkrantz, who was aroad sign to me, dways keeping
me on the right road and reminding me of the destination.

| would also like to thank my parents, F.A. Krijgsman and W.Visscher without whom | could not have done
this, my sister, M.M. Visscher and her fiancé, A. Ditmer.

B. Visscher Page 1l

Summary BOSS July 2001

2 Summary

Thisthesisintroduces a new computer system, programming model and operating system cdled BOSS,
Bart's Operating System Structure. The structure consists of two layers. Thefirst layer holds the dependency
driven machine and on top of thislayer, an extension is built. The dependency driven machine defines how
the different resources of acomputer system may communicate with each other. The extension defines what
the resources can communicate to each other.

The dependency driven machine, DDM, models three different aspects of acomputer system:
communication, storage and processing. Communication is done via channels that connect pieces of memory
to each other. Sockets are used to process memory. Ports are used to distinguish pieces of memory. Channels,
ports and sockets combined form the dependency flow networks, DFN, which are al processed on the
dependency driven machine.

All processes together with their memory have to be mapped onto the resources of the computer system. The
construction of the DDM and DFNs makes thistask much easier than in existing systems. Scheduling
agorithms specialy designed and optimized for a specific resource may be used. The resource itsdlf can use
conventiona optimization techniqueslike pipelining, cache memory and RISC for maximum processing

Speed.

The heart of BOSSisthe LinkLoader. This resource has the ahility to transform dependency data, DD, into a
dependency flow network. This processis called link loading a DD. For the LinkL oader to do this, it needs
detailed information about other resources and a standardized way of communicating with them. ThisBOSS
extension on every resource together with the LinkL oader and several processes form the basisof a
programming language, which isan intrinsic part of BOSS.

To show that BOSS works, asimulation of the dependency driven machine, the LinkL oader and severd
resources with their processes, isimplemented. This simulation isimplemented in C++ of DJGPP for DOS. A
DD that models a perceptron is created for the smulation to show that the BOSS language can be used asan
attractive dternative to existing languages. The designing of the DD showed many advantages of BOSS over
exigting systems.

The advantages of BOSS over existing systemsincludeitsinherent parallel nature, guaranteed autonomy of
every process and the explicit mentioning of al dependencies between processes. These advantages make
dependency flow networks faster in executing, more reliable, faster to develop, easier to test and debug than
any conventiona system.

B. Visscher Page 2

Contents BOSS July 2001

3 Contents

1 PIEFACE. ... ettt bbb bbb bbb bbb bbbttt 1
L1 ACKNOWIEAGEMENLS.coceeiierierieereseireesesse s ses st bbb 1

2 SUITHTIEI Y. ...ttt st 2
3 COMLENES.... .ottt bbb 3
4 INEFOTUCTION. ...ttt bbb s 8
5 Programming MOUEcccccrcce ettt sttt s s 10
51 Thedependency flow MOGEl, DFIM ..ot 10
BULL SOCKELS.....cucueeeuetriseuetseneeetsesses e seas e e s b ese bbbt bbb s bbbt ee bbbt 11

512 POIES ...t 11

B.A3 ChBMNES ...ttt bbb 11

52 Dependency FlOW NEIWOIKS, DNc.oeririeeinirieeiineieeseineeeenss st sese et sesesse st sesesssssesessssssesnes 12
521 Building blocks of dependency flow diagrams ... 14

5.3 OWWNENS... ottt 15
54 Reationship with cOmMmMUNICALION MOELS..........cvieeiririerirerrere bbb seaeees 16

6 DDM, UECHTICALIONc.eveeireeeetrieeeirereis sttt bbb bbb bbb bbbt 17
B. 1 ChAMNE ...t 17
B.2 PO .. E AR R b A e bbb et 17
5.3 SOCKEL ..ottt bR bbbt 18
B.3. 1 SOCKEL SLAUSES.......cuvrereutreseeeereeasisesseeesesas s ee st ss bbbt b st b bbb s et s st et nnas 18

6.3.2 OWNES SOCKEL SLEUSES.......cecvriereeeereeseseeessesse s essss s 19

5.4 RESOUICE.......oeeeeeiet ettt et 19
6.5 Thecomplete system, the Dependency Driven Maching..........cverenneenenesneineeseeseeeesesseeees 20
B.5.1 RESOUICE....ueiectieeetre ettt 20

LT I | 1V OO 20

7 ChoOSING IMPIEMENTALION. ..o bbb bbb 22
7.1 Leve of evauaion Of t(NEDDIM ...ttt ses bbb ssse s sesesssssssesaes 22

B. Visscher Page 3

Contents BOSS July 2001

TLL HAOWEIE ..ottt 22
712 NUMENICE COOES.......ceeerieeeeeriereseesessessesessesseses s bbb 22
T.13 ASTIMDIES e bbb 22
7.14 Higher programming [aNQUBGE.crucurureueurereeirieesiseseisisessessessssssesssssse s ssessssesssssssssssssssenns 22
% ST 1 011 1 0 (= (= OO OO SO OSSOSO 23
7.2 Choiceof evaluation |evel Of t(NEDDM.......c.cccieenirneieereieieerer e ses s s s ssssennes 23
7.3 Evauation [evel Of tNE DN ...ttt bbb bbbt 23
T3L COMPILEN ottt 23
732 INEEIPIELES ...ttt 23
74 Implementation choice Of the DDM and DFNcccveineieninennineieeneiseieese e sesessesseseesssseseenes 23
741 IMPlementation [ANQUATEccreereririerierierieireisesi s 23

8 IMplementation Of tE DDIM.........c.ciiereiriresiee ettt bbbt 25
8.1 Differences between specification and implementation.............occevrerrrerensnncceeree e 25
811 THIEAH SIUCIUIE. ..ottt 25
812 EXIENA BVENL......coieeccce s 25

S G T O - 5. == OO T TPV 25
8.2 GENEIEl AALYPESvceeeeeectreeee ettt bbb 26
8.3 IMIEITIONY ...ttt 26
G - < 26
9 EXIENSION ONthE DDM ..ottt bbbt 39
.1 TREIESOUICE. .. ceereerieietseeeese bttt sebe bbb bbb bbb bbb bbbt bbbt 39
0.2 PHODIEIMS ...ttt bbb bbb bbbttt 39
921 FINAING ArESOUICEINUEX........overeererierereireereseeseesissisees sttt 39
922 MUItiPIE PrOCESSES ON @IESDUICE........cveaceeeurirereasiseeaseseseas b s s ssasssesss st sess s bssssssessnans 39
0.2.3 LOAING BPIOGIEIM.....ciuiertieereeueiressieeseses s b ss bbb bbbt bbb eae b e nans 40
924 ADSIraction (SUBIOULINES).......cccceeeeeririeicesise sttt se st annes 40
.25 CONTANES ...ttt st b b b E st b b s 40
926 Security and SChEAUIINGcvuececcce st 40

B. Visscher Page4

Contents BOSS July 2001

9.3 SOIULION w.vueerreeeeer ettt es bbb bbb bR 40
0.3 1 LINKLOBOEScveeeceeeeeet et 40

0.3.2 EXIENSION ..ottt s 44

10 BOSS GECHICALION. . ..cueureeuctrireeeerereaeiseeisesesesetsessis st sbs b sess e b st et e bt se bbb se bbbttt ees 46
10.1 DYNAMIC DAt SITUCIUFE........c.cveveeereiresese ettt ssss et ses e st st a s s s st esesesssnses 46
10.2 Genera message eXPreSSet iN DDS.........iieienes et 46
10.3 Making all processes of aresource KNown to the LinkLoadercveerereeneenecineeseeineenenes 46
104 Dependency Driven programs, DD PrOQIraMS.........c.eeereeeereereesesessesssnessssssssssesssssssesssssssssssssssssees 47
10.5 Res0lViNg SOCKEL NAMES TN A DD........cceeiereeeireireeiree s 48
1051 PrIMay NAMESDACE.cerceeeeereeeeretseseisetsessasessess s sess s ess s ess b sss b ss b es st sse b sse b saen 48
1052 SECONUAY NAMEIDECE. ... c.cvieeeriritrereiseiressisebsess s b sess s sess b ess b es bbb es bbb ss bt 48
10.5.3 GlObEl NAMESPACE......c.cerieeererierireeieererei ettt bbbt 48

10.6 Link LOAOING 8 DD PrOGIaIMccucureierireucerereasisesessteesessssesessssessssssesssessesessssesssessessssssesssessensssssesssnes 48
10.7 The complete SYSIEM, BOSS........c.orirecireree et 49

11 IMPlEmentation Of BOSS ...ttt bbb bbbttt 51
111 L0 S T = 17/ 51
11.2 DYNAMIC DAALYPE. ... eueeereeerireseieeseees ettt bbb bbb bbbt 51
113 BOSS extension Of the rESOUICE CIESSceueeerierereireeree st senes 53
114 LiNKLOBOES FESOUICE CLESSvuevrceeetreeeietreee ettt 57
12 BOSSRESDUICES.....coiueutteeiaessetssssestaessesssessesssessesssessesss e s st ses s se st s s s s ee s s e b st s s ee s b e r s nsnr s 61
121 NAMING Of QTESOUICE PIOCESS.o vreereeereereeseeesessaessessssessesssses s ses s sesssss s sess s ssss s sssssesssnes 61
12.2 REFEMENCE HAALYPE ... ettt bbb 61
12.3 RESOUICES.......cecucerrete ettt r e r e n e e 61
3 RS Te 3= OSSOSO 61
12.3.2 BOOIEAN......cccereeecirereie sttt bbb bbb bbbt 62
12,33 BYE.rvvovoroeeveeeeeeeeeeseseessesessssssssessesssssesssssssssssssssssssssssssssessssssssssssssssssssessssesssssssssssssssesessssssssssssssssssees 63
12,34 IMEOEN covvvvvvvveveeeeeeeeseeeseeeseesssesessessssssessssesesseseesssssssssssesesssssssssssssssssssssssssssssesssssssssssssesssssssesessssssseees 63
T2.35 FHOBL .ottt bbb 64

B. Visscher Page5

Contents BOSS July 2001

12.3.6 DOUDIE ...ttt 65
J2.3.7 CONVETEN ...ttt 65
T2.3:8 FlOW ettt bbb et 66
12319 TeXt USEN INEITACE. ...ttt e 67

13 Application AESIgN, PEICEPIIONccureeeeerereeeireeiei e eis ettt bbbt et s sttt 71
I R 0= T | WSSOSO 71
L3.1 L PEICEDIION...c.ceeeeteeeceet et sese st 71
1312 PerCEPrON WEIGNLouevceriierieeireiseeeisetsess et sesse s sess b ess b s bbbt 72
1313 PErCEPITON DESE ...ttt bbbttt 73
1314 Resourcefor reading from / Writing 10 @file.......c.oeuvererrircrr s 73

13.2 Results of AND, OR N0 XOR ..ottt ess e ssses st s s st b ess s ssssssssssessnnanes 74
133 DiSCUSSION Of TNETESUILS.......cecvuireeeeereeeeer e 75
134 Evaluation of the design proCessin BOSS..........oririnrinenes s ssss s sesssssesssees 75
13.4.1 Design and implementation of adependency flow NEtwWOrK...........cccevcennecnnecnenecneneeens 75
13.4.2 Implementation Of &rESOUMCE PrOCESS......c.curueurerureurerereaseressesesessssssessssssessssssessssssesssssssssssesssssens 76
13.4.3 Testing dependency flOW NEEWOIKS..........ccrirncnre et 76

T4 COIMPATTISON. ..cuteeriaeerireuetrereastseseastseseas b s b se st s b b s e b ee s b e e b A e b b e et e et b b e et b e b et et b b e b et ettt ees 78
141 Universal programming |anguage thEOTEM...........cririrrnineneisee e esessenes 78
14.2 CompariSoN t0 OthEr PArAdigIMS.......c.vueererieririreiree e bbb 78
I R 1 (= = Y/ o= = o[TP 78
1422 FUNCLONE PABOIGM ..ottt bbbt 79
1423 DA OW PAATIGM. ..ottt 80

T = 81
1431 TIMEVEISUSWOIK ..ottt 81
TA.3.2 COSS ...ttt bbb R bbb e e AR bR e 82

144 TRESIMUIBLION ...ttt s 82

15 CONCIUSION. ..ottt 83
16 Recommendationsand fUture deVEIOPIMENES.........courirecirereeiriree ettt 84

B. Visscher Page 6

Contents BOSS July 2001
16.1 RESOUICES......oouieiiii bbb 84
16.1.1 LiNKL OBOES PrOCESSES.cucureiutrerteeeresasesessteesessssassssseseasssessssssessssssesssesssssssssessssessssssssssessssssssens 84
16.1.2 Security processesin the BOSS EXENSION........coviurereriuririierireneisirensieeses e sens 84
16.1.3 Information processesin the BOSS EXIENSION.........ccuiriierereneeriresieeses e sens 84
16.1.4 ReSOUrCE O PrOCESS GraDNICS. ... cueveeerrerereuctrereastsiesseseseasasessssssessss s ee st ess bbb 84
16.1.5 RESOUICEFOr USE INPULoeietieceeereeiriseeciseses ettt bbb 84
16.1.6 Resourceto handletime PrOCESSES.c.cueuiurerrurierersireesessisessess s ssess st ss s sssssnes 85
16.1.7 Resourceto handle MEMONY FEOUESES. ...ttt sessess s s ssesssnes 85
16.1.8 ReSoUrCEtO haNUIE fIlES. ..o 85
16.1.9 Resourceto communicate with seria / pardlel / USB POIS........ceveereeneenesineeneeineeseseeneesenees 85
16.1.10 Resource to communicate With 8NEWOTK ... sesseseseesenes 85
16.2 Current and fULUrE ProblEMS.........ceirire ettt bbb 86
16.3 ROBO GNEAot bbbt 86
164 Ideas for adevelopment and test eNVIFONMENL.........c.ccvruererceireeieseeis e sesess e 87
T6.4.1 DA @I ...cecverieiriietrisie et 87
16.4.2 DOCUMENEEHION......couveerereeeererseseeserseseesessesssssseses s s ses s sss s s ss s sss bbb snaen 87
16.4.3 Channdsand SOCKEtSiN MUILIPIE LAYESc.ovicirieerirrereree e 87
16.4.4 PrOCESSTENOSTONY ...coovuiereeririeeeeieeseeseseesesseebsess s sess s ess b ess b es s s bbb es bbbt 88
T16.4.5 PIOCESS CIEAIOceueuereuteeereeeeesessseesesess st s ees s es s e e bbb e bbb 88
16.4.6 PrOQIaM OVENVIEW......c.cueeerieieeireiseeeeseesessssetsess s sess s sess bbb bbb ss s ssssesssnen 88
16.4.7 Testing and dEOUGQING.cceeeereiereeririerersireisessesessessesess s ses s s sss bbb ess s ass s sssssesssnen 88
16.4.8 DiBlOg CrEALONcueeeereereerereereeeisetsesseseasess b ses s sess bbb s bbb es bbbt 88
17 BIDHOGIADNY......coriereeeereirieeirireie sttt bRt 89
18 ADPENTIXES ...ttt bbbttt b bbb R bbb bbbttt a1
B. Visscher Page 7

Introduction BOSS July 2001

4 |ntroduction

Thefidd of computer science has seen some magjor advantages over the past decades. One of the first areas of
focus has been the way a computer system was built. In the early years of computer science, machines were
created for a specific task and could do nothing else. Thisideaof specia purpose machines changed and
computers were built to be general purpose. A program was used for these computers to specify the task it had
to perform. The program was stored in a part of the memory asinstructions and the processor interpreted this
data and executed the ingtructions. With this new ability, anew field in computer science was created with its
primary interest on how to program these instructions.

Thefocusin programming was on how the processor processed the instructions and how this control flow can
be used to perform atask. This research resulted in the development from 1% generation languages to 3
generation languages. In the 1960ies, this concept of iterative programming was reviewed and two new
modelswere introduced, the data flow model and functiona programming. Both of them changed focus from
how the processor changed data to what hasto be done to create the data. The functiona model did thisby
creating expressions with the firing rule that only the expressions, which yield necessary data, hasto be

eva uated (also known aslazy evauation) or evauating al expressions (eager evaluation). The dataflow
mode! did amost the same but used the firing rule that when al datawas present in an expression, the
expresson was eva uated which can best be described as a short form of eager evaluation. In the 70iesa
fourth model was introduced that was based on constrain based reasoning, the logical programming model.
Between the various groups that inssted that their approach was the best, alot of energy was used to show
that al the other approached could be reduced to it and that therefore, theirs was the most fundamental.

Astime progressed, dl models where developed further and tools and languages for each of them where
created, implemented and extended. The iterative model was extended and object oriented modelswhere
created. When object-oriented programming was fashionable, the other streams also adapted their model to
incorporate some or al object-oriented features but despite this, the underlying battle between the groups
remained.

The costs of memory and processors dropped rapidly with the wide introduction of PC’'sand with this, the
popularity of theiterative programming paradigm grew. Development environments were created and toolsto
creste graphical diaogs, multimedia applications etc. The hardware for the PC' s till develops but the physical
limitations are almost reached. These problems were already found in the mainframe machines and to desl
with this, parallel extensions on the iterative programming language were introduced in the form of message
passing systems and shared memory systems that have been available for some years now for the PC's. The
functiona paradigm and dataflow paradigm did not need such an extension because they are not focused on
the ingtruction stream but on the data stream and are therefore inherently parald.

The stream that isthe most popular now, isthe stream of iterative programming. The most popular languages
of thissteam are JAVA and C++. Most research in computer scienceis therefore done in optimizing the
designing and compilersfor these types of languages. Processors are being optimized to processthe
ingtruction stream as fast as possible. Techniques like pipelining, dataflow analyses on the instruction stream
and branch prediction are examples of how the processors are adapted. The compilers are optimizing the
ingtruction stream by using data flow analyses to dedl with problemsfor register assignment and loop
optimization.

Thisthesis describes the design and implementation of asimulation for anew programming model, BOSS.
Thefirgt question that arises after a statement like this, would be why? Why isanew programming model
required? Current models have the ability to be successfully applied in every environment and are applicable
for any tasksthat we can ever encounter. So why design anew programming model? To answer this
question, severa different agpects of programming models are given and related to BOSS.

Programming is always a complex task. Thisis because programming is combining severa different building
blocks and arranging them in such away that a specific task is performed. This task may be anything ranging
from adding two numbersto controlling anuclear power plant.

B. Visscher Page 8

Introduction BOSS July 2001

At the basis of programming is the programming model. Thismode defines the arrangements of the building
blocks and what those building blocks are. The complexity in designing programsis combining them. The
more building blocks are required, the more complex the program becomes. If aprogramming model only has
nand portsfor its building blocks, adding two integers would become a complex task due to the amount of
nand ports needed and how to arrange them. If however control-mechanisms were part of the programming
models building blocks, writing a program to control anuclear power plant would be asimple matter.

A programming model provides standard building blocks and amethod of combining them through its syntax.
New building blocks may be created in the form of subroutines or functions but these functions and
subroutines dways use the original building blocks in the end. With this construction, the speed of the
program depends for agreet dedl on the building blocks provided and the versatility to arrange them.

BOSS does not provide standard building blocks but it provides away to create them and to combine them. If
new building blocks are required they can be made from existing onesjust asin traditional models but if that
is not fast enough, speciaized hardware may be introduced to perform the task as fast as possble without
having a specialized software library based upon the standard building blocks (device drivers) to dow it down.
With this construction, the programming model becomes more flexible and can be adapted to any field with
maximum efficiency.

Another mayor advantage of BOSS is the inherent parallel nature. Iterative languages only use one processor
and with alot of communication overhead and problems like deadlock, critical code and synchronization
delays, it becomes possible to have multiple processors work on the same problem. BOSS uses a completely
different approach to the problem of parallel processing. This new approach makesit possible to distribute
problems without the extra overhead and execution of a program may be donein BOSS with extra efficiency.

Thethird mayor difference from traditional languagesis the design process. BOSS provides an al-in solution.
It may be used to describe the most abstract specification to the final implementation. With the combination of
the different steps of the design process and describing them in the same diagrams, projects are made more
manageable, easier to understand and easier to dlter at alater stagein the design. Alteration may be done at
any point in the program and at any time without the necessity to redesign the complete program or parts of it
asin traditiona languages.

To give adetailed description of the different aspects of BOSS, the thesisis divided into three parts. The first
part introduces the programming model, the second part uses this mode to create alanguage and the third part
discusses the designed and implemented of an gpplication in the new programming language and future
developments. There is aso a chapter incorporated that relates BOSS to existing paradigms.

Inthefirst part, the fundamental principles of the dependency driven machine, the DDM, areintroduced. This
beginsin chapter five with aglobal introduction of the programming model. Thisintroduction isthen used to
make a specification in chapter Six. In chapter seven, the choicesthat arise when implementing a simulation of
the system are discussed. The implementation is discussed in chapter eight.

The second part starts at chapter nine and discusses an extension on the resources of the dependency driven
machine. It starts by enumerating problems that arise and solving them al in one stoke with the introduction
of BOSS resources and the LinkL oader resource. This extension is then specified and implemented in chapter
ten and eleven. In chapter twelve, several BOSS resources are introduced to handle the work on boolean,
integers, floating point and to send datato the screen. Thereis also aresource presented that converts data
from one type into another and aresource that controls the dependency flow.

Thethird part will discuss different aspects of BOSS. It gives acase study of the design and implementation
of aperceptron in chapter 13. Chapter 14 discusses how BOSS relates to the existing paradigms.

B. Visscher Page 9

Programming model BOSS July 2001

5 Programming model

This chapter discusses the fundamenta principles underlying the programming model, and how it compares
to two other existing modds, shared-memory modd and message passing modd. The next chapters will make
a specification of the modd and then the implementation is discussed.

51 Thedependency flow modd, DFM

The dependency flow model isastandard for communicating between different resources and is particularly
useful for parallel computers. A parallel computer can consist of many computers linked in anetwork or a
computer with more than one processor. Both of these have one thing in common, communication and
processing. In adigtributed parallel computer the processing is done by a computer with its own memory and
1/O facilities, communication is done through a network like token ring or Ethernet. On a multi-processor
computer, the processors communicate with each other through common memory or an internal wired
network (but this depends very much on the type of computer).

Resource;
Resource;

Resourcey

Figure5-acomputer system viewed asmultipleresour ceslinked together

This commonality between al computer sysems gives aview of several resources linked together by some
form of communication network like bus, ring, hypercube, mesh etc. The dependency flow model usesthis
linking of resources asthe basis for programming. How communication between resourcesis achieved,
depends on the used hardware but for the modeling to work on every type of network, the following basics
can dways be found.

Input(s)

Processor(s)
Output(s)

Figure5-b construction of aresource

B. Visscher Page 10

Programming model BOSS July 2001

Every resource has its own memory to store data received from other resources and/or to store data that must
be sent to other resources. This memory can be located in a processor (register) or in shared memory by
several resources (main memory).

Besides memory to store data, every resource has a processor that transforms data. This transformation can be
very smple like aboolean nand or more complex like an interface to anuclear power plant. The dependency
flow model focuses its attention on the process that occurs in the resources and how these processes are linked
together. It does so by creating socketsthat givesall the different aspects of aprocessinto abuilding block for
programs.

511 Sockets

A socket consists of four different el ements, which are
al part of the resource. Theinput memory holdsthe Input Memory
information that the resource received from other
resources. Thismemory isread-only for the process. The
output memory holds information that must be sent to
another resource and iswrite-only. The last piece of
memory is read-write memory and can be used by the
processto store its status or to share data between
processes on the same resource. The input-, output- and
loca memoriesare al located in the memory of a
resource. Thismemory isused by the last piece of a
socket, the process. This process uses the input and local
memory and transforms thisinto output and local
memory. This process may then be mapped on the
processing elements of the resource in avariety of ways.

—

;

Qutput Memory /

Figure5-c congtruction of a socket

If aresource has for example a processor that isableto
perform four boolean ands concurrently and the resource
has enough memory to store the in/out/local memories for 2000 and sockets atotal of 1000 and sockets can be
linked with other sockets. Concurrent execution of four and operations can take place and pipeline execution
of theingtructions within the processor can be realized for maximum efficiency of the operation.

512 Ports

A socket uses memory from the resource to receive data from other resources or to send datato other
resources. Thisinput and output memory is split into in-ports and out-ports to make a distinction between data
sreamsthat go into a socket and streams that go out of a socket. If for example a process requires two input
variables and one output variable, like an addition, the socket will have two in-ports and one out-port. Each in-
/ out-port isindependent of the other in- / out-ports and usesits own block of memory to storeitsdata. The
process of the sockets keeps track of interdependencies between ports to determine if enough informationis
present to start processing. In the process of the addition, both ports must have received deta before the
addition can be calculated. In the case of aboolean and operation, sometimes only one port must have datato
calculate the result.

513 Channds

Thelast part of adependency flow mode isthe link between ports. Thisis redlized with channels. A channd
isaconnection between two resources that links an out-port of one socket to an in-port of another (or the
same) socket and shows how datais transferred from one port to another. It effectively shows how the in-port
depends on the out-port.

B. Visscher Page 11

Programming model BOSS July 2001

52 Dependency flow networks, DFN

The god of the dependency flow model isto link sockets together. This creates a network structure, the
dependency flow network. The diagram method used to represent a dependency flow network iscaled a
dependency flow diagram or DFD for short. The diagram represents the dependencies between different
processes that are active on aresource. Three examples are given to give an idea of how a DFD lookslike.

Example 1:
5 5 9 72 3
v VI[¥
* log *
2
"y P
+ +
/

v

Figure5-d dependency flow diagram of theexpresson: 5* 5+log(9) —72* 3+2

B. Visscher Page 12

Programming model BOSS July 2001

Example 2:

1
/ + -
Repesat
Repeat Repeat ®
.
\
- v v
+
+

1

Figure 5-etwo DFDsthat gener ate the Fibonaci sequence '

Aswith dl languages, it is possible to creste two equivalent DFDs that use different elements. The two DFDs
in this exampl e creste the same sequence on the output channel. The sequenceis equivaent to Fibonaci.

1123581321345589144 233 etc,, (Xp=Xp1+Xpn2X1=1,X,=1)

The Repest socket repests the value it has on the in-port and puts it on the out-port once. The constant valuesin
these diagrams are also communicated once.

B. Visscher Page 13

Programming model BOSS July 2001

Example 3:

The socket on the top compares two variables
and returns a boolean. The second socket uses

the boolean to decide which value will be A B
passed. If the boolean is TRUE then the value
above T ispassed. If the boolean isFALSE,
the value above F is passed to the bottom.
The function of this DFD is equivaent to:
min(a b)
<
v Y—V
? T F
|
Figure5-f DFD of min(ab)l

521 Buildingblocksof dependency flow diagrams

A dependency flow diagram is made up out of three elements of the programming model, one part for
communication, one for storing data.and one for processing. For communication, channels are used. For
storage and processing the socket is used with itsin and out-ports. To make dl of the part recognizable they
al have digtinct shapes.

Process
Socket:

A socket is depicted by arounded square. A socket is one processthat is active on aresource with al its
memory (in, out, local). Ports are connected to the socket to represent this memory. On the top are the in-ports
that receive data from achannel, on the bottom are out-ports that sent data to a channdl.

Port :

A port isatemporary buffer that stores data. All communication is done with these ports. Portsthat receive
datafrom other ports are called in-ports. Ports from where datais sent are called out-ports.

B. Visscher Page 14

Programming model BOSS July 2001

Channds ——»

A channd depicts a dependency between ports. It dways sart at an out-port and endsin an in-port. Since data
from one port may go to many others, multiple channels may start at an out-port. It isalso possible for

multiple channelsto end in the samein-port. All the three possbilities are shown in figure 5-g. They are
equivaent to ‘oneto one’ communication, ‘oneto many (all)’ and ‘ (dl) many to one'. ‘Many (al) to many
(al)y communiceation is accomplished by using ‘oneto many (all)’ for every out port.

| \ |

_ii 1:1 1:N
N:1
¥ [V

Figure 5—-g possible configur ationswith channelsand ports

53 Ownes

In acomputer system there will be many DFNs active which are independent of each other (i.e. have no
channels between them) just asin a conventiona computer system there may be many applications and
subroutines being executed at the same time without having any communication between them. To have dl of
these DFNs operate at the same level would be very undesirable and complex to manage. To creste a structure
between DFNs, ahierarchical owner structure isintroduced. This owner structure assigns one socket, the
owner socket, to encapsulate an entire DFN. The socket at the top of the hierarchy is called the master owner
socket as shown in figure 5-h. This master owner socket holdsa DFN and the socketsin this DFN may in turn
be owners of other DFNs.

Figure 5-h encapsulation of dependency flow networksby itsowners

B. Visscher Page 15

BOSS July 2001

The owner sockets have some specid ahilities. Asthe name suggedts, they are the owner of a DFN and may
therefore decide what happens with that DFN. The owner socket may open channdls and reserve socketsto
creste or modify the DFN. It may a so close channdls and free sockets when they are part of that DFN. The
owner aso hasthe ability to suspend its DFN and resumeit later or to terminate its DFN for good. Two
eementsthat are part of the same DFN have the same ownership level. If they are not part of the same DFN,
they are a different ownership levels.

54 Rdationship with communication models

The dependency flow mode can best be compared to both the message passing system and the shared
memory modd. It has some commonadities with both of them. Both of these models present away of making
processes communicate with each other. The message passing system does so by sending messages between
processes and the shared memory model does so by having common memory between the processes.

The dependency flow model uses an abstract of both of these principles. It uses ports and channelsto establish
communication. Over the channels, messages are being sent between portsin order to share the memory and
status of the ports between sockets. This meansthat both principles of the communication models are active at
the same time. With this combination of both of them, it is possible to successfully build a dependency flow
system onto message passing systems and shared memory systems.

B. Visscher Page 16

DDM, Specification BOSS July 2001

6 DDM, Specification

This chapter will discuss the various parts of the programming model in more detail. Every part is taken apart
and interaction between the different partsis specified. All these parts are then put together and atotal picture
isgiven. Thiswill then be used in the next chapter asthe basis for the implementation.

6.1 Channd

A channd depicts a data stream dependency. It copies the data from an out-port into an in-port. A channel
may have the following statuses:

Initialize: Before achannd exigtsis hasto be connected into the system. Information must be passed to the
channel telling it, which out-port must be connect to which in-port. Creating a channel can only be done by
the owner socket of the DFN of which the channdl is part. Furthermore, the in- and out-port both have to be at
the same ownership level.

Wait: The channel isready to copy adependency. During this status the channel waits for datato be put into
the out-port. As soon asthis datais available, the channel changesits statusto Blocked.

Blocked: Inthe blocked status the channel has datain the out-port and istrying to copy this datato anin-port.
This port however is not ready to receive dataand the channe istherefore blocked in its operation and hasto
wait until thein-port isready to receive data. As soon asthein-port is ready to receive data, the channel
changesits status to Busy.

Busy: Inthe busy status, the channd is copying data from the out-port to the in-port. As soon asthe data has
been copied, the channel changesits statusto Done.

Done: When achannel isdoneit has copied al data from the out-port (source port) the in-port (target port). It
now waits until al channels connected to the source port have the status Done. As soon as this happens, the
channel changes its status back to Wait.

Terminate: From every gatus (Wait, Blocked, Busy and Done) the channel may get acommand to

disconnect itself from the system. The terminate command may only be given by the owner socket of the
channel (i.e. the socket that opened the channdl).

(O)+

Figure 6-a status diagram of a channel

6.2 Port

The main function of aport isto temporarily store dataand to communicate this data through a channdl. It
usesits statuses to communicate to the channel if thereis data that has to be transported. It also usesits satus
to communicate with the socket if there exists data that hasto be processed. Anin-port is used to store data
that has arrived from a.channel. The socket can use this data for processing by requesting it from the in-port.
An out-port is used to store datathat has arrived from a processin socket. The information in the out-port will

B. Visscher Page 17

DDM, Specification BOSS July 2001

in turn become available to al the channelsthat are connected to it. Both the in-ports and out-ports use the
same statuses.

Initialize: A port is created by the same socket that usesit. The socket specifies how many in-ports and how
many out-portsit requires. The socket also has to specify the size of each of these portsto determine how
much memory hasto be reserved. The Sze may be fixed or it can be variable to use more dynamic data types.

Wait: The wait satustelsthe system it isready to receive data. As soon asthe socket or channe wantsto
write datainto the port, the socket / channel requests awrite. This Wait->Write trandtionisused asa
semaphore to make sure there is never more than one channel / socket writing to the same port at the same
time.

Write: Assoon asaport hasthe write status, data may be written to the buffer of the port. When thisis done,
the port changes its status to Blocked.

Blocked: In the blocked status the memory buffer of the port isfilled with data. It is not possible to change the
databut it can be accessed in aread-only mode. The dataisin fact blocked for writing. As soon asthe data
from the buffer may be changed, the port must be assigned the status Wait again.

Terminate: Assoon asasocket isfreed, al in-ports and out-ports of that socket have to be erased. This

terminate Signal may be given from any status. If there are any channels connected to the port they haveto be
disconnected when the port is terminated.

O~~~ (@)

Figure 6-b statusdiagram of a port

6.3 Socket

A socket makes the process of aresource available in a DFN. The socket maintains information about which
in-ports and out-ports are connected. It aso has a piece of local memory, its environment, to store any data
that may be needed in the process.

The socket is part of three structures, the owner structure, aresource structure and a dependency flow
network. For two of these structuresit has different statuses. First the statuses will be discussed that are part of
asocket within aDFN structure. After that, the statuses will be discussed when the socket is viewed upon asa
part of the owner structure.

631 Socket satuses

Initialize: A socket isaways part of adependency flow network. The owner socket of the DFN reservesthe
socket with the resource. The owner socket may also send additional data to the socket used by the resource
for security, priority or process specification. The socket (not the owner) creates the necessary in- and out-
ports to which channels may be connected by the owner socket. After the socket is reserved, the socket
changesits satusto wait.

Wait: While asocket has the status Wait, it waits until an in-port or an out-port changesiits atus. After this
has happens the socket changes its statusto Active.

B. Visscher Page 18

DDM, Specification BOSS July 2001

Active: When a socket hasthe status Activeit is busy processing. The resource checksto seeif thereis
enough information available and verifiesthat if out-ports are waiting for data. If both are the case, the datais
processed and the socket returnsto the Wait state so it able to process future data.

Terminate: During al of the previous phases a socket may be terminated. This command may be given by
the owner socket or by the resource. If the socket isitself an owner socket, it will command dl itsdave
sockets and channelsto terminate. After thisisdone, it will terminate itself by deleting al in-ports, out-ports
and freeing the used memory.

O <)) @

Figure6-c statusdiagram of a socket

6.32 Owner socket Satuses

The owner statuses determine how the dependency flow network of which the socket is owner will react. The
channels, ports and sockets of the DFN are called dave channels, dave port, dave sockets. Resources are also
part of an owner socket. The owner socket may initialize and terminate al the objects of which it is owner.
The owner statuses are not part of the socket but they are part of the DFN that the socket owns.

Suspend: In the suspend status no dave channd's may copy datafrom one port to another. When aDFN isin
this status, it will completely stop processing.

Active: When the DFN is active al dave components work normal.

Terminate: When aDFN hasthe states Terminate al dave componentswill terminate and no dave
components may be added in the future.

o

Figure6-d statusdiagram of an owner socket

64 Reource

The basic function of aresource isto process data. This processing may be anything from simple arithmetic
functions to complex screen manipulation. The resources process data through sockets. Information is put into
in-port(s) of a socket and the resource processes thisinformation and puts the result into the out-port(s) of the
socket. It isfor resource designers very important to model aresource correctly so that no effects can occur
that are not modeled as dependenciesin a socket.

B. Visscher Page 19

DDM, Specification BOSS July 2001

A resource is added to the system by asocket. This socket will be the owner socket of the resource. As soon
asaresource is removed from the system by the owner socket or by the resourceitself, al socketsthat have
been reserved on the resource must be freed. All connected channdls have to be disconnected and the ports
have to be removed.

Security of the system is handled by the resource. When a socket is reserved, additiona information may be
sent to the resource by which it can determine what itsrights are. Thisis being done during reservetime,
which meansit does not affect the programs efficiency. Every resource may have its own security measures
that make it possible to maximize security for aspecific type of resource.

A second important feature of aresourceisto schedule the processes onto the processor. During the
reservation of asocket additional information may be sent along to notify the resource of the priority of the
socket. In generd the evaluation rule to process asocket is: asocket needs processing when d least onein-
port changed status to Blocked or an out-port changed statusto Wait. With thisrule, it is possible that multiple
sockets require processing at the same time on the same processor. If thisis the case, the scheduling
information may be used to determine the sequence in which to process the sockets. If the resource can
process more than one socket at atime scheduling will also have to be specific for the resource.

6.5 Thecompletesystem, the Dependency Driven Machine

In the previous section, al components of the system have been discussed. In this section, the interaction
between these components will be defined. Thiswill be done by splitting the system into two sub sections,
onefor processing and one for communication. The processing will be done by the resource. The resource
uses the socket, in-ports and out-ports to process and locate data. The second part will be called the
dependency driven machine, DDM. This part connects out-ports with in-ports and communicates the
dependencies en data between them. First the resource will be discussed, then the DDM.

651 Reource

As mentioned in section 6.4 the resource does the actua processing. It isthe mapping of several requestsfor
processing (sockets) onto the processor(s). Highly specidized processors and scheduling methods for that task
makes resources as fast as possible without having to take the rest of the system into account.

652 DDM

The second part, the DDM, takes care of the communication between the processes. Thisis done with the use
of channels and ports. In the next section, adetailed explanation is given of the interaction between channels
and ports.

Figure 6-e shows how two ports are connected by one channdl. It shows how their statuses change during the
course of time. The top port (square) is an out-port of a socket. The bottom port (square) isan in-port of a
socket. The arrow between the portsisachannd.

The next section explains figure 6-e. The numbers between brackets is the picture of figure 6-e associated
with that satus.

B. Visscher Page 20

DDM, Specification BOSS July 2001

Whenever aport or channel is opened, it starts with the status Wait (1). Both ports and the channd are waiting
for data. When a socket want to write information into an out-port, it requests the status Write (2). If the socket
haswritten all datainto the port, it changes the port status to Blocked (3). As soon as achannd has an out-port
inthe Blocked statusit will become Active and change its status to Blocked (4). It will then attempt to write to
the in-port by requesting the Write status (5). If the channel has been given the right to write to the port it will
gart transferring the data from the out-port to the in-port by changing status to Busy (6). When all data has

been transferred, it changes statusto Done (7). The out-port will in turn change statusto Blocked to indicate it
holdsinformation (8).

|\/\/ ,,,,,,,,,,,,,,,,,,, > |R ,,,,,,,,,,,,,,,,,,, > |B |B |B |B |B |B

W W W ,,,,,,,,,,,,,, B B ,,,,,,,,,,,,,, U ,,,,,,,,,,,,,, D D

w w w W o » R R R | “

@ @ (€) @) ©) (6)) ®
(10) (11 (12 (13) (14

Figure 6-e two ports connected by one channe with their appropriate satuses: (W)ait, w(R)ite, (B)locked, b(U)sy, (D)one

As soon asdl channds connected to the out-port have the status Done, the out-port changes statusto Wait (9).
When the out-port has the status Wait al connected channels change status from Done to Wait (10).
Situations 11 through 13 are the same as Situations 1 trough 3 except that the in-port has status Blocked. In
(13) the channd triesto write to the in-port but it is Blocked and will have to wait until the port iswaiting to
receive new data (14). The statuses a 14 are the same asin 4 and the loop will start over from there.

B. Visscher Page 21

Choosing implementation BOSS July 2001

7 Choosing implementation

The previous chapters defined the building blocks of dependency flow networks and how each of the
elements behaves. One of the goals of this project isto create a system with these components capable of

evad uating dependency flow networks. This system, the dependency driven machine, isto be ademongtration
showing the capabilities and effectiveness of the system. Another goa of the implementation isto point out
any shortcomingsin the model and determining which parts need to be developed further.

Thefirgt question that arises when implementing is deciding at what level the dependency flow networks need
to be evaluated. The second question isin what language will the system be programmed. Both of these
questions will be answered taking into account the limited time this projects has and the speed of the
implementation.

7.1 Levd of evaluation of the DDM Hardware

Thefirst aspect of the implementation is deciding at what level the DDM Numerical codes
will be evauated. Thiswill inturn determine the minimum level of
evaluation for the DFNs. Theleve of evaluation does not limit the DDM
but other aspects like readability, maintainability, portability and

eva uation speed must be carefully considered. In genera, the higher the .
level of evaluation, the sower the execution speed. , the faster the Hi gher prog. Iang.
designing and the higher the maintainability.

Assembler

Interpreter

711 Hardware

. . .. L . . Figure 7-alevelsof evaluation
Thefirgt level to redize the DDM isin eectronic circuits. Thisform gives

the highest speed and athough thisimplementation level isthe ultimate
goal, it is not suitable for afirst test. The components are too expensive to design and the designing isa very
time consuming process that well exceed the time congtraints of this project.

7.1.2 Numerical codes

The method of programming used in the early yearsin computers was to program a system by directly writing
the numerical codes for the processor. This method is very difficult and error prone. The code created is
amost not portable over different platforms.

713 Asemble

Instead of writing the numerical codes directly, assembler programs use op-codes to represent the instructions
of the processor. The speed of evaluation isthe same aswriting in numerical codes directly but the codeis
more readable and faster to develop. |'s has however the same drawback as numerica codesin portability.

7.14 Higher programming language

Higher programming languages have one main characteristic, abstracting from the processor. Code written in
ahigher programming language is therefore portable over more that one platform and less error prone than the
previousthree levels. Because code written in a higher programming language is not processor dependent, the
code hasto be trandated or compiled and linked. The speed of ahigher programming language is il very
high but dower than assembly.

B. Visscher Page 22

Choosing implementation BOSS July 2001

715 Interpreter

Thelagt possibility of implementing is at the evaluation level of an interpreter. An interpreter trandates the
program while the program is being evaluated. This makes interpreter languages the dowest possibility. The
codeisusualy very easy to design and the language itsdlf handles many error Situations.

7.2 Choiceof evaluation leve of the DDM

The most appropriate level of evauation isthe higher programming level. Thislevd isthefirst level which
crestes portable programs and gtill has ahigh evaluation speed, which of courseis one of the most important
features of alanguage.

7.3 Evaluation levd of the DFN

Having chosen the level of evaluation for the dependency driven machine, a choice has to be made about the
evauation levd of the DFNsthat are being evaluated by the DDM. The DDM can be madein two ways, asa
compiler or asan interpreter. Both choices are explained and pro’ s and cons are given.

731 Compiler

If the DDM isimplemented as a compiler, the DFNs are trand ated to machine dependent code before they are
evaluated. The code given by the DDM can very efficiently be evaluated. The mgjor drawback isthat the code
will not be portable anymore and the DDM will generate code for a specific platform and therefore the DDM
will not be portable.

732 Interpreter

An interpreter trand ates the program asit is being evaluated. The execution speed of the DFNs will be dower
that in acompiler like DDM but the code can be transported in runtime to other types of processors without
having to make additiond trandations. For the system to be able to transfer DFNsin run time to other
platforms, theinterpreter style implementation is preferred over the compiler like implementation. The
interpreter implementation also has the advantage to be more accurate with the programming mode! in that
resources may be added or removed in runtime.

74 Implementation choice of the DDM and DFN

The program being implemented isthe DDM. The

function of the DDM isto evauate dependency DDM DFN
flow networks. The DDM will beimplemented ina

higher programming leve to giveit the maximum v L 4
speed without losing any portability. The DDM Compiler DDM
program will in pre-run time be compiled and

linked. This program will, in run time evauate the v v
DFN. The ultimate god isto create aDDM directly

in hardware to make the DDM asfast as possible Hardware Hardware

but without the resources for such ahuge
undertaking this form cannot be redized.

Pre-runtime Runtime

741 1 mplementatlon language Figure 7-b evaluation of the DDM and DFN

Within the domain of higher programming
languages, avariety of different languagesis available. Each with its own pro’s and cons concerning

B. Visscher Page 23

Choosing implementation BOSS July 2001

development speed, maintainability, execution speed and readability. One of the most important reasons for
the creation of the dependency flow model isto create an dternative for these languages. Implementation
must therefore ideally be donein aDFN. However, thisis not possible since that language is not yet available.
The choice hastherefore fallen onto ANSI-C++. There exist agreat number of compiler portsfor this
language for amost every conceivable platform and the compiled programs eval uation speed is the highest of
al higher programming language.

B. Visscher Page 24

Implementation of the DDM BOSS July 2001

8 Implementation of the DDM

In this chapter, theimplementation is described. The specification of chapter Six isused asthe basesand a
detailed summary of methods with their input and output variables are described. Thereis aso acomplexity
cd culation given of the most fundamental datatype to ensure an efficient program is created.

8.1 Differencesbetween specification and implementation

Theimplementation isadmost adirect implementation of the specification. It differs however on some minor
points. These differences are a direct consequence of the current computing models. All of the differencesare
discussed in this section in detail and reasons why the implementation differed from the specification are
given.

811 Thread dructure

The most prominent distinction from the dependency flow modd isthat the implementation uses only one
processor. The specification is based on the idea, that all elements areimplemented using their own processes
independent of each other. Thisallows the processing time of all eementsto be very smal and independent of
each other. Theimplementation only has one processor so this concurrency must be smulated. Thisis done
using athread class for the basis of dl resources. The thread classis aclassthat divides the processor over
multiple threads. During the updating of the thread, the processor is assigned to an update method in the
resource. This created theillusion of a continuing processin the resource. Polling amouse or keyboard isthen
possible and with the use of an external event, processing a socket may be forced to introduce an event into
the DFNs.

812 External event

A resource may be used to interface with systems outside a DFN. It must be possible to model these so called
side effectsinto the network. This means that data may be introduced if a side effect happens or that based on
data of asocket aside effect is controlled. In the specification, it isthe job of the resource to handle these two
but in the implementation, it would mean that an interrupt system must be present for the introduction. This
interrupt system isimplemented as an external event. If an interrupt happens or a polling process has decided
that a socket must be processed, it is possible to send an externd event to a socket. The socket will then be
processed and it can handle the side effect and introduce variables on its out-port.

813 Classes Thread

The complete system is based on
two classes, the resource class
and the DDM class. The function
of both of these classesis

described in chapter six. The

other classes are used to create Scheduler Resource DDM

multiple processes. Thisisdone

by using the threed class asthe Figure 8-a dasses of the dependency driven machine

basis of both the DDM classand

all resources. The scheduler class assigns the processor to athread and with this, processesin the resources
and the DDM are active after another. The DDM hasthe task of updeting al the channels and sending
messages to the resources telling it which sockets need processing.

The resource classisthe bassfor aresource. It provides avariety of methods to communicate with the DDM
class and to manage socket, channels and ports. With the use of the resource class all aspects of the

B. Visscher Page 25

Implementation of the DDM BOSS July 2001

specification areredlized in afast and efficient way. All functions of the DDM are accessed through the
resource and no direct communication between self made resources and the DDM isrequired.

82 General datatypes
File: datatype.h

The entire system is built on three different data typesthat are very specific for every computer system. Each
computer system has alimited size of memory and severa different sizes may be used with the current
implementation.

boolean (unsigned char)
Thefirg datatypeisthe most elementary of dl, the boolean or bit. It can be TRUE (-1) or FALSE (0).
base (unsigned char)

The second datatypeis base. Thisisthe smalest amount of addressable memory. On most machines, the size
of baseis eight bits, some have asixteen bit base size. The ultimate goa isto create aDDM with aone bit
base size.

number (unsigned int)

Thethird type is number. The range of number is[0, n] in which nisthelargest number to accessthe
complete memory. Home computers used to have amemory boundary of 65536 (2'16) bytes. Personal
computers started with a 20-bit address space. The current persona computers use 32 bit linear addresses and
future generations will probably use 40 bit or 64 bit addresses. To make the system totally system
independent, the sizes of data types are accessible viathe macro base_size. If you want to know the size of the
number datatype, it can be requested viabase size(number). The largest number (-1) isdefined as NIL and
isused to return errors or failings.

83 Memory

Files: bmem.cpp, bmem.h

BOSS usesits own handlers for memory. These handlers cdl the standard maloc and free routines but this
may changein future releases.

84 Classes

Class dynamic_list

File: dyntableh

A common used way to Store the same ementsisin an array, or table. The classdynamic_table maintainsa
double indexed table where elements may be stored. The class dynamic _list usesthe classdynamic tableas
its basis and remembersthe first and last element in that table. It is possible for more than one list to be stored

in onetable but al the elements of onelist must be stored in the same table. The sequence of thelist israndom
but all eements of alist may be requested with the guarantee that no two elements are repested.

Variables

number first_element

B. Visscher Page 26

Implementation of the DDM BOSS July 2001

Thisvariable stores the first dement of thelist. The number is areference to the index of thefirst e ement
stored in the dynamic_table. If the number isNIL, thelist isempty.

number last_element

Thisvariable stores the last element of the list. The number is areference to the index of the last dement
stored in the dynamic_table. If the number isNIL, thelist isempty.

number total_elements

Thisvariable stores the length of the list.
Method:

dynamic_list(void)

During initigization, the first_element and last_element are set to NIL. Thevariabletota_elementsisset to O.
Thisisdl doneto create an empty list.

TemplateClass dynamic_table

File: dyntable.h

The class dynamic_table maintains atable in the form of adouble indexed array. When elements are added
and the tableisfull, the array doublesis size until a predetermined upper boundary. Actionslike freging,
adding or requesting lements take an average time of O(1). Thistime efficiency is achieved by having a
double indexed list. If an exigting index in the table could not reserved thefirst index of the double indexed list
isused by the freeligt to determine the next free d ement. The second index is used to indicate if an element is
used in somelist or that it is FREE by having a constant FREE (= NIL —1).

Variables:

number first_free

First element that is free and will be reserved when anew dement isrequested.

number max

The variable max is how many elements may be present in the table. When an element is reserved but the
total elements are equal to max, the table will be doubled in size.

number max_total

The variable max_total storesthe maximum size the table can ever get. When new € ements are reserved, it
may be doubled until this size has been reached.

number used
This variable stores the amount of e ementsthat have been reserved.
T* item table

Array to dl the elements

B. Visscher Page 27

Implementation of the DDM BOSS July 2001

number* prev_table

Thisvariable stores an array to al previousindexes. It isaso used to store the FREE variable to indicate that
an element is not used.

number* next_table

This variable stores an array to next indexes.

Methods:

dynamic_table(number _max = 1, number _max total = NIL - 2)

During initiaization, the size of the tables must be given by _max. The maximum size that the table will ever

have must also begiven by _max_total.. Thissizeisat most NIL —2 because NIL — 1 isdefined asavariable
FREE. Threetables are reserved, the item table the previous and the next table.

~dynamic_table()

The prev_table, next_table and item_table are freed.

number reserve_dement(dynamic _list* liss = NULL)

The method reserve_eement returnsthefirst freeindex that is stored in the freelist. Thisindex isremoved
from the free list and added to thelist that is passed to this method. If the next eement in the freelist is above
the pre allocated arrays, al arrays are doubled in size, older elements are copied and the previous arrays are
deleted. The doubling in size continues until the array has a size that equals max_total. If the method is unable
to return afreeindex, it will return NIL.

void free_eement(number index, dynamic_list* list = NULL)

Thefree_element method places an index back in the free dement list and removesit from the list passed to
this method.

void free list(dynamic_list* list)

Tofreedl dementsin alist the method free list isused. By passing theligt to thismethod, dl elementsin the
list are freed and put into the freelist. Thelist will then be reinitialized. (next = prev = NIL, total =0)

void concat(dynamic_list* target, dynamic_list* source)

Two ligtsthat use the same dynamic_table can bejoined together. The sourcelist will berenitidized and al
edementswill be put in the target list.

void change list(dynamic_list* target, dynamic_list* source, nunmber index)

This method changes an element from the sourcelist to the target list. Both dynamic_lists must use the same
dynamic_teble.

T& operator[](number index)

To access an element on an index, the operator|] is used. The reference dlowsfor acongtruction of : table] 5]
= element;. Thetime complexity of thismethodisO(1).

boolean in_use(number index)

B. Visscher Page 28

Implementation of the DDM BOSS July 2001

Returns TRUE if anindex isin use. If theindex isin the freelist, this method returns FALSE;
number get free(void) const

This method returns the total number of unused indexes until the list needs to be reall ocated.
number get_ max(void)const

This method returns the number of alocated indexesin the tables.

number get_ max_total (void)

This method returns the maximum size of the table ever.

number get_used(void)const

This method returns the number of reserved elementsin the table.

number get_next(humber index)const

This method returns the index of the next element that follows the passed index. If thereisnone, NIL is
returned.

number get_prev(number index)const

This method returns the index of the previous element relative to the passed index. If thereisnone, NIL is
returned.

Complexity:

The classdynamic_tableisthe bassfor the rest of the system. It istherefore very important to determine the
complexity and efficiency of this datatype in more detail since the speed of the rest of the system depends on
it. The goa when designing this data type was that every action on single dement like reserving, freeing,
changing ligt etc., takes on average O(1) time. Since none of the used methods are recursive or have loopsin it
they have acomplexity of O(1). This does not apply to the method reserve_element and free list. Because
free list isnot an action that appliesto asingle element but to a callection it may at most be O(number of
edementsinthelist). Since the method free list changes the next index of every dement inthelist to FREE it
satisfiesthis congtrain.

The method reserve_element doubles the size of thelist every log(N) times (N is the number of reserved
elements). When the array isfilled, it doublesin size and dl elements are copied to the new array. The array
gartswith asize of 1 and when one eement isreserved, it isfull. When the next element is reserved, the array
isdoubled and the lement is copied to the new array. This meansthat in log(N) of the calls to the method
reserve_element the time complexity is O(n), the rest of the casesit is O(1). In tota the algorithm is aways
limited by the function 3*N-3 which is of course O(N). The aver age time complexity of amethod cdl is
therefore O(N) / N = O(1) which is of the desired efficiency.

B. Visscher Page 29

Implementation of the DDM BOSS July 2001

The speed efficiency of dynamic_tableis achieved at the expense of extramemory. For every eement that is
added in theligt, two indexes are maintained for the double indexed list. In addition to this overhead there
exigsinterna fragmentation because there must dways be a least as many dementsinthe array asare
reserved. Thisloss dueto interna fragmentation may become very expensive because the tables are not
automatically reduced in size. The datatypeistherefore most suited for growing lists. A reduction algorithm
may be built in when freeing elements but at the time of this project, it is not yet required.

Table 8-1 efficiency calculation of thedynamic_table class

Callsto Sizeof the copy Total copies Total
reserve array assgnments
0 1 0 0 0
1 1 0 0 1
2 2 1 1 3
3 4 2 3 6
4 4 0 3 7
5 8 4 7 12
6 8 0 7 13
7 8 0 7 14
8 8 0 7 15
9 16 8 15 24
17 32 16 31 48
33 64 32 63 9%
65 128 64 127 192
129 256 128 255 334
257 512 256 511 768
513 1024 512 1023 1536
1025 2048 1024 2047 3072
N 2°op(4og(N)) If N-1ispower of 2 then <=2*N-3 <=3*N-3
N-1ese0
Class: thread
File thread.h

The classthread isthe bassfor evaluation. It isvery smpleinthat it has only one method that alowsdl sub
classesto be evaluated. It is used to give theilluson of amulti-threaded system.

Variables:
_thread status: enum{T_Active, T_Done}

Thevariable _thread status maintains the status of athread. T_Active meansthat processing may be
necessary. T_Done means that the thread will never need to be evaluated again and may be closed.

Methods:
virtual void update(void)

With the virtuad update method, athread may be updated. It isnot area thread because the update method
must be concluded after awhile by the thread itself and cannot be interrupted by a scheduler.

B. Visscher Page 30

Implementation of the DDM BOSS July 2001

Class: scheduler
Files: schedul.h, schedul.cpp

The scheduler isathread that calls other threads that needs to be processed. It therefore needsto maintain alist
of threads and update them. If athread hasthe status of T_Done, it isremoved from thelist.

Variables:

dynamic_table<thread*> thread table

Thisvariable maintains atable of al threads that need to be updated.
dynamic list service ligt

Thisclassis used to create a collection of threads that need to be serviced. Thelist isstored in thread table.

Methods:

scheduler(number size = 4)

The constructor setsthe standard size of the thread tableto 4.

virtual void update(void)

During the updating of thisthread, al threads that have been added in the service list are updated. If athread
inthat list hasthe status T_Done, it isremoved from the list. If, after removal, there exist no more threadsin
the service list the status of the scheduler issetto T_Done.

boolean add_thread(thread* _thread)

This method adds a tread to the scheduler. The thread may only be added if its statusis T_Active.

number get serviced threads(void)

This method returns the number of threadsin the service list.

number get_max_thread(void)

This method returns the allocated size of thread table.

Class ddm
Files: ddm.h, ddm.cpp

The DDM classtakes care of the entire smulation of the dependency driven machine. It isthe heart of the
entire system but is never used directly. Interfacing for the programmer to the DDM classisdoneviathe
resource class. The DDM maintains dynamic tablesto store al resources, channdls, ports and sockets. Itisa
thread class and when updated it first processes al channels. After thisis done, all sockets are processed.

B. Visscher Page 31

Implementation of the DDM BOSS July 2001

Class resource
Files: resource.h, resource.cpp

The most important class of the DDM for the programmer is the resource class. This class makesit possible to
import other pieces of program into the DDM, which in turn can be used in the DFN. For efficiency reasons,
the resource does not maintain its own sockets, but they are maintained by the DDM classto minimize
overhead and fragmentation as described in the dynamic_table. The resource classis the programming
interface to the DDM that maintains the integrity of socket, channels and ports against possible malignant
usage by the programmer. The resource fulfillstwo lifecycles, thelifecycle of the resource and of the socket.
Thelifecycle of the resource starts by adding it to the DDM, and ends when it is removed from the DDM.
When it isadded, it may be updated. During the execution of these methods, the socket related methods return
errors. It ishowever possible to open channels, reserve other sockets or to give external eventsto other
sockets. It does so at the ownership level of the socket that added the resource to the system.

The methods of aresource can be divided into four categories. Thefirst category contains the methods that
are called by the DDM and provide an interface between the DDM and the resource. When programming a
resource these methods are not used directly.

The second category contains the virtual methods that need to be programmed to create aresource. They area
total of six methods. Three for the lifecycle of the resource (construct, destruct and update_resource) and three
for thelifecycle of asocket (reserve socket, free_socket and update socket)

Thethird category is used to change the configuration of a DFN. Thisincludes methods to add or remove

other resources, reserve or free sockets or to open or close channels. It dso includes three methods to control
the owner gtatus. They areterminate_dave, suspend dave and activate dave.

The fourth and final category isagroup of socket related methods. These methods are called only by methods

of the second category and provide al the necessary communication for the programmer to the DDM. They
include methods to request and change the status of a port, give external eventsto asocket or to read / writeto

aport.
Variables:
ddm* _ddm (private, used by the DDM)

Assoon asaresourceisadded to aDDM this variable will be set by the DDM to make sure the resource will
communicate with it.

number index (private, used by the DDM)

When the resource is added to aDDM, this variable will be set by the DDM. This number is caled the
resource index and is used by other resourcesto identify and communicate with it.

socket* serviced socket (private)

If amethod is used for the socket lifecycle, a pointer to the socket is put in here to make access to the socket
possible. If amethod is called for the resource lifecycle, this pointer will be set to the owner socket of the
resource. All socket rel ated methods use this variable to determine which socket should be used.

number owner_socket (private, used by the DDM)

B. Visscher Page 32

Implementation of the DDM BOSS July 2001

This variable holds the index of the owner socket of the resource. Thisindex is set by the DDM when the
resourceisadded to it.

number owner_socket_index (private , used by the DDM)

The owner socket maintains alist of dl resourcesit owns. This variable holdsthe index in thislist to
guarantee efficient remova of the resource from the system.

dynamic_list dave sockets (private, used by the DDM)
Theresource maintains alist of al sockets that have been reserved on the resource. When the resource is
removed from the DDM, d| reserved sockets must be freed. The DDM maintains adynamic_table with dl

indexes and uses the dynamic _list to remove them efficiently.

The next five methods are called by the DDM to request different actions from the resource. The methodsall
start with ddm_to indicate that they are called by the DDM.

Methods:

boolean ddm_construct(socket* _socket) (private, used by the DDM)

As soon asthe DDM gets arequest to add aresource, the DDM calls this method. This method callsin turn
the virtual method construct. If that method is successful in execution, it must return TRUE. If FALSE is
returned the resource may not be added.

void ddm_destruct(socket* _socket) (private, used by the ddm)

When aresource is removed from the DDM, the DDM calls this method. It calls the virtual method destruct.
Removing aresource from the DDM must always succeed. If memory must be reserved for removal this must
be done during construction to guarantee a successful removal.

boolean ddm reserve socket(socket* _socket, base* data) (private, used by the DDM)

If the DDM gets arequest to reserve aresource, an empty socket is created by the DDM and this method is
called on the resource. The serviced_socket variableis set and the virtual method reserve_socket is called. The
return value of thismethod is passed asthe return value.

void ddm free socket (' socket* _socket) (private, used by the DDM)

If the DDM gets arequest to free a socket, this method is called on the appropriate resource. The

serviced socket variableis set and acall is made to the virtua method free_socket. The free_socket method
may not fail.

void ddm_update socket(socket* _socket) (private, used by the DDM)

If asocket received an externd_event or an in-port changed status to Blocked or an out-port chanced statusto
Wait an update of the socket is requested. Thismethod is used to handle the request of the socket. It iscaled
by the DDM and setsthe serviced socket and requests the virtual method update socket that handlesthe
processing of the socket.

void update(void)

Thethread classisthe base class of the resource class. The virtual method update may be used to handle
processes that do not depend on other resources but on side effects. Thismay be for example a polling process

B. Visscher Page 33

Implementation of the DDM BOSS July 2001

of the keyboard or code that must be executed after an interrupt. This method will set the serviced socket to
the owner socket and start the update _resource method.

number get_resource_number (void)

This method returns the index that the resource has been given by the DDM.

The next sections of methods are used to request and change the statuses of the ports and to obtain read and
write accessto the buffers.

boolean set_ports(number total_in_ports, const number in_sizeq[], number total_out_ports, const number
out_sizeq])

When asocket is reserved on aresource, the configuration of the socket has to be passed to the DDM. This
method is used to describe the configuration. The variabletota _in portsand total_out _ports hold a number
that specifies how may in-ports and out-ports the socket must have. The arraysin_sizesand out_sizes describe
the size of each port. If aport has adynamic size the variable in the array must be set to NIL. After the ports
have successfully been s, all portsthat do not have adynamic size must be assigned a memory portion.
Setting the ports may only be done during the execution of reserve _socket and may only be called once.

base* & in_port(number in_port)

base* & out_port(number out_port)

During the reservation of a socket, the ports need to be set. After they have been set to a specific size, memory
must be assigned to it to make sure the DDM can write datain it safely. The assigned memory must be as

least as big asthe number that has been assigned toit in set_ports. Memory may be assigned to a port with the
use of the method in_port and out_port.

in_port(4) = balloc(base_size(int)); // in-port 4 isassigned memory

To gain read access to the memory the following statement is used.

int j; j = ((int*)in_port(4))[0]; //j is assigned the value of in-port 4

Towriteto aport asimilar construction is used.

((int*)out_port(1))[0] =8; // writing an integer 8 to out-port 1

base* & environment_port(void)

Any socket may havelocal memory. The environment_port is used to access that memory. During any phase
of the socket lifecycle, the environment_port may be assigned or reassigned to memory and that memory may
be used to write or read datato.

boolean in_port_blocked(number in_port)

Thismethod is used to check to seeif data has been written to aspecificin_port. If it returns TRUE datahas
been written to the port by the DDM. If no data has been written to the port, the method returns FAL SE.
When reading from an in-port, thisin-port hasto be Blocked. If thisis not the case, the program will respond
undetermined.

B. Visscher Page 34

Implementation of the DDM BOSS July 2001

boolean out_port_waiting(number out_port)

Thismethod is used to check if datamay be written to an out_port. The method returns TRUE if that isthe
case. If the method returns FAL SE it means that the DDM dtill requires the information that has been written
inthe out_port and datamay therefore not be written to it. When writing to an out-port, this out-port hasto be
Waiting. If thisis not the case, the program will respond undetermined.

void read _from in_port(number port_index)

After dl information from an in-port is used by the socket, this method is used to change the port statusto
Wait. The DDM can then write to the port again.

void write to_out_port(number port_index)

As soon asthe socket has written a information to an out-port this method is used to change its status to
Blocked. When this happens, the DDM will update al channdls connected to the port.

The next group of methods is used to change the configuration of a DFN. There are aso three methods to
change the owner socket status. These methods may only be used by the owner of the DFN.

boolean add_resource(resource* _resource)

This method is used to add aresource to the DDM. The owner socket of the resource will be the socket, which
isinthevariable serviced socket. The method returns TRUE if the resource has been added to the system.
Otherwisg, it will return FALSE.

number reserve socket(number resource index, base* data)

A resource may reserve asocket on another resource. This method is used to reserve a socket on a specific
resource. The resource index must be passed together with additional data that the resource may usefor
security, scheduling ete. If reservation of asocket is successful, theindex of the newly created socket is
returned. If reservation fails, the return value is NIL. The owner socket of the newly reserved socket isthe
socket held by the serviced_socket variable,

number open_channel(const classreference& source, congt classreference& target)

The open_channels method needs two variables. Both of them are of the reference class. The reference dlassis
made up from three integers. Thefirg integer isthe resource index, the second is the socket index and the
third isthe port on the socket. When al these values are correctly entered, a channel is opened between the
source port and the target port. Both ports must have the same owner socket and that owner socket must be
equa to the socket referred to in the serviced_socket variable. If achanne can be successfully opened, the
method returns the index of the channd. If opening fails the method returns NIL.

boolean remove_resource(number resource index)

Thismethod is used to remove aresource from the DDM. Theindex used by this method is the index returned
by the method add_resource. If theindex is not in use or the current socket is not the owner socket of the
resource being removed, the method will return FALSE. It will otherwise dways return TRUE.

boolean free_socket(number socket index)

The method free_socket is used to free a gpecific socket. The socket index used by this method is returned by
the method reserve_socket. Freeing a socket may only be done by the owner socket of the socket being freed.
Otherwise, the method will return FALSE. If the serviced socket isthe owner socket of the socket index the
method will dways return TRUE.

B. Visscher Page 35

Implementation of the DDM BOSS July 2001

boolean close_channel (number channd_index)

Closing achannel may only be done by the owner socket of the channd. The channdl index isreturned by the
method open_channel. The method will return TRUE if the channd is successfully freed. If the channd index
isnot used or the serviced socket is not the owner socket of the channel the method will return FALSE.

void terminate_dave(void)

The dave DFN of the serviced _socket isterminated. This meansthat dave resources are removed, dave
sockets are freed and dave channels are closed. After the dave DFN has been terminated no channels may be
opened, socket reserved or resources added to that DFN ever again.

void suspend _dave(void)

When the dave DFN of the serviced_socket isbeing put on hold, the channelswill remain inactive. The
sockets however may continue processing but without active channdls, no more messages are sent between
the resources.

void activate dave(void)

The dave DFN of the serviced socket is activated. Thismay only be doneif the dave DFN hasthe status
Suspend. If thisisthe case, al dave channdls, resources and sockets will be activated and normal operation
will be resumed.

boolean external_event(number socket_index)

Thismethod is used to give a socket an externa_event. Thisisthe only way to force the execution of the
method update_socket without the use of channels. This external event may be necessary to handle an
interrupt request or to incorporate a side effect in the program. The socket index is returned by the method
reserve_socket or can be obtained with the method get_serviced socket index.

number get serviced socket index(void)

Get_serviced socket_index returnsthe index of the socket currently held by the serviced socket variable.
During resource lifetime methods, the serviced socket isthe same as the owner socket of the resource. During
socket lifecycle methods, the serviced socket variable holds the socket currently being serviced. This method
ismainly used in combination with the externa_event method.

The next methods are abstract and have to be programmed to create aresource. It holds six methods. Three of
them are for the resource lifecycle and the other three are for the socket lifecycle.

virtual boolean construct(void)

When aresource is added to the system by another socket, this method is called by the DDM. Initidization
and congtruction of al sub parts of the resource may be done during this phase. When dl actions are done
successfully, the method must return TRUE. If FALSE isreturned, the DDM will not add the resource to the
system.

virtual void update _resource(void)
During the method update, the method update _resource will be called. Actionsthat do not require a socket

may be executed here aswell as polling. If a socket needs to be started, the method externa_event may be
called to dtart processing a socket.

B. Visscher Page 36

Implementation of the DDM BOSS July 2001

virtual void destruct(void)

If aresourceis added to the syster and a command is given to remove it, this method is eventualy cdled by
the DDM. In this method, various tasks may be done to correctly remove the resource from the DDM. Al
tasksin this method must be programmed in such away that they cannot fail. If, for example, memory must
be reserved, this memory must be reserved in the construct method to ensure that destruct always succeeds.

virtual boolean reserve_socket(base* options)

When aresource gets the request to reserve a socket, the method ddm_reserve socket is called and thiswill
cal reserve_socket. The passed pointer of optionsis the data that has been passed during reservation by the
method reserve_socket(number resource, base* data). This givesthe ability to communicate directly from
one socket to another. During the execution of the method reserve _socket(base* options) ports heed to be
initiaized and memory must be reserved and assigned to the in-ports, out-ports and the environment port if
necessary. There must also be actions undertaken to ensure that the freeing of the socket will always succeed.
If dl went well, TRUE must be returned to indicate that the socket is reserved. If FALSE isreturned all ports
that have been initialized will automaticaly be freed. If memory has been reserved during this method when it
fails, it must be freed within this method.

virtua void update_socket(event_description event)
The actual processing of a socket happensin this method. The serviced _socket variable will be set to the
socket that needs processing and an event is passed to indicate what triggered this method. The method will be
caled if at least one of these three events has occurred.

1. Anin-port changed statusto Blocked.

2. Anout-port changed statusto Wait.

3. The socket received an externd event.
With each of the tree possihilities, it becomes possible for the resource to have enough information to start
processing the socket. This method must check if that is the case with the use of methods like
in_port_blocked, out_port_waiting.
The event parameter isa bit field used to indicate what event or which events have taken place. Within the bit
field two bitsreserved to indicate that all in_port have the status Blocked and that all out-ports have the status
Wait. The bits are defined with five constants to find the corresponding bits.

IN_PORT_EVENT (1), ALL_IN_BLOCKED (2), OUT_PORT_EVENT (4), ALL_OUT_WAITING (8)
and EXTERNAL_EVENT (16).

Many sockets need to check if al in-ports have the status Blocked and al out-ports have the status Wait. This
isfor example necessary if within asocket asubroutineis called using dl the variables and writing to dl the
out-ports.

The following code handles the processing of asocket that adds two integers

update_socket(event_description event)
{
event_description check_event=(ALL_IN_BLOCKED |ALL_OUT WAITING);
if ((event & check_event) == check_event)
{
((int)out_port(0)) = *((int*)in_port(0)) + *((int*)in_port(1))
read from_in_port(0);
read from_in_port(1);

B. Visscher Page 37

Implementation of the DDM BOSS July 2001

write To_out_porf(0);
b
b

virtual void free_socket(void)

If asocket was successfully reserved it will be freed when the owner socket requestsit. The parameter
serviced socket will be set to the socket that is requested to freeitsdlf and this method is called. During this
method, all memory that has been reserved for this socket in update socket or reserve socket must be freed.
The portswill automatically be freed by the DDM but the assign memory of the port will not. A socket must

always successfully be freed so measures may have to be taken during the reservation of the socket to ensure
this requirement.

B. Visscher Page 38

Extension on the DDM BOSS July 2001

9 Extenson onthe DDM

In chapters 4 to 8, the DDM was introduced. The function of al its components was defined and an
implementation was realized. From this chapter onwards this basisis used to build an extension on. This
extension makes programming in dependency flow networks possible. In the chapter 10, the specification is
formalized and in chapter 11, theimplementation is realized.

9.1 Thereource

The resource classis the interface to the complete dependency driven machine. It has all the necessary
methods for handling the life cycle of the sockets and the resource. These are six virtual methodsin tota.

Methods for the resource life cycle

1. Adding the resource to the DDM (construct)
2. Updating the resource (update_resource)
3. Removing the resource from the DDM (destruct)

Methods for the socket life cycle

1. Reserving asocket on the resource (reserve_socket)
2. Updating the socket (update_socket)
3. Freeing the socket (free_socket)

When aresource is programmed, only these six functions have to be made. To better understand why an
extension is necessary, several problemsthat will arise with the current model will be discussed. The solution
to the problems will later be discussed until finally the extension can be implemented in the next chapters.

9.2 Problems

This section will discuss several problemswith the DDM implementation. The solutionswill be discussed in
the next section where the LinkL oader is introduced as alayer to communicate with the extended resources
and to solve many of these problems.

921 Findingaresourceindex

Thefirgt problem that arisesisthat of how to find aresource index. Theindex is assigned to aresource by the
DDM and in generd, the assigned number istotally random. To reserve a socket on aresourcein order to
creste a DFN, the resource index must be known. Without this number, it isimpossible to do.

922 Multipleprocesseson aresource

A resource may be anything. It may be memory, ahard disk, akeyboard, a screen, or even a production plant
or chemica factory. This makes aresource avery versatile object within the system. If we take for examplea
resource that moddls afile system, we must have processes on it to create files, deletefiles, openfiles, create
directories, rename directories etc. This meansthat one resource may have many processeson it. To reservea
socket on aresource that acts like a certain process, a message must be sent to the resource telling the resource

B. Visscher Page 39

Extension on the DDM BOSS July 2001

which process must be active in the socket. This meansthat to reserve a process, the message that describesto
the resource what processis requested must be found and sent to the resource.

923 Loadingaprogram

In acomputer system there must always be one part that is able to load a program into memory and make it
executable. The DDM has no such part but offers the ability to add resources, reserve sockets and open
channelsto every resource. Therefore, aresource must be crested to fulfill this process of transforming data
into aprogram.

924 Abdraction (ubroutines)

When designing a program thereisavariety of techniquesto go from the request to the product. All these
different techniques have some things in common. It abstracts from redlity. This meansthat certain
characteristics are not modeled because they do not have any influence on what is being designed. The design
of smple systemsis asraightforward process but as wider asthe problem is, the more complexity the
solution. The solution istherefore split into severd different partsthat interact with each other. In C,
programming thisis done by cresting subroutines. In C++, Eiffd or Javaby creating classes. In the DFN, this
must be done by creating sub DFNs. These sub DFNs then need to communi cate with each other and
therefore, aresource must be created to communicate data over the ownership boundaries.

925 Condants

Every conventiona program uses variables to communicate between subroutines. Before any variableis used,
it must be assigned avalue, aconstant. The DFN also uses congtants and they must be introduced in the
system somewhere. The DDM does not provide facilities to carry out thistask so aresource hasto be made
that is able to introduce congtants in the system.

926 Security and scheduling

Another problem in the system presented thusfar, isthe lack of any security measureswhatsoever. Ina
distributed computer, security and scheduling become major issues due cost associated with information
crimes and unauthorized borrowing of processor time, memory and hard disk space.

9.3 Solution

The solution to the above problem liesin the operating system structure, called BOSS. The LinkLoader isthe
central part of BOSS and this specid resource will be discussed in the next sub section. Other resources dso
need to have an extension on it to make them compatible with BOSS. This extension will also discussed in the
next sub section together with the LinkL oader.

931 LinkLoader

The LinkLoader isa specid resource a the heart of the operating system. Its main function isto convert data
that representsa DFN into a DFN (a socket that processes data). It does so by reserving al the necessary
sockets and linking them together with channels. It also provides away of introducing constantsinto the
system. The next sections will discuss each function of the LinkLoader in more detail.

9311 subDFN (subroutines, abstraction, black box)
A program isacollection of DFNs. It has one DFN it starts with (like main() in C) and other DFNs are called

as subroutines and are called sub-DFNs. Figure 9-a shows asmple example of a sub-DFN that adds four
numbers. This sub-DFN hasfour input variables and one output variable. One function of the LinkLoader is

B. Visscher Page 40

Extension on the DDM BOSS July 2001

/ol

S\
{

P// \\i
)
SN
o

N Il Y,

Figure 9-a DFD representation of aDFN that addsfour numbers, white box

to copy these input and output variables between DFNs. The

LinkL oader uses amaster-dave principle to accomplish this X X X X
task. The master socket integrates the sub-DFN as ablack box 1 2 < 4
socket and is reserved within the DFN where the sub-DFN is
requested. In-ports and out-ports of the master socket may be
linked with other sockets of the DFN that requests the sub- Master socket
DFN. Next to the master socket, a dave socket isreserved. The
dave socket ook just like the master socket except that in-ports
of the master socket are out-ports of the dave socket and the Y
out-ports of the master socket arein-ports of the dave socket.

The master socket uses the dave socket to communicate data

from the DFN to the sub-DFN. The dave socket and sub-DFN Figure9-b master socket of figure8-aas
are all reserved by the master socket, which istherefore owner aBlack box

of al of them. Figure 9-b shows the master socket of figure 9-a.

Figure 9-c showsthelinking of the dave socket with the sub-DFN of figure 9-a.

9312 Communicating variables between a master and dave socket

Passing avariable from a DFN to the sub-DFN is done by the master and dave socket. When an in-port of the
measter socket is Blocked, the corresponding out-port of the dave socket will also be Blocked. If the datahas
been read from the dave out-port by &l channdls, it changesits status to Wait. When this happens, the master
in-port also changesits status to Wait.

B. Visscher Page 41

Extension on the DDM BOSS July 2001

Passing avariable from the sub- l
DFN to the DFN happensin the Y
same way. When data has been

written to an in-port of the dave

socket, it changesits statusto Slave socket
Blocked. The corresponding out-
port of the master socket also X4 X5 Xa

changesto Blocked. When all
channdls have communicated the
data from the out-port of the
master socket, it changesto Wait X K
and the corresponding in-port of
the dave socket doesthe same.
Synchronization of the data

between the master and dave N
socket isin thisway guaranteed. \

X4
+ 1

Figure 9-c dave socket with sub-DFN of figure 8-a, contents of the black box

9313 Congtants

One of the other problemsthat exist isthe introduction of congtantsin the system. Using the dave socket asa
window to pass variables from the master socket, the dave socket isaso used to introduce constants. Thisis

X1 Xo Xz Xy Y

M aster Save

Y X 1 X 2 X 3 X4 C 1 Cz
Figure 9-d master / dave socket with constants C; and C,

realized by adding extra out-ports on the dave socket. When the sub-DFN isloaded and dl connections have
been made with the dave socket, the ports containing the constants change their status to Blocked and by
doing so, theinformation of the constants is communicated to the desired place in the sub-DFN.

B. Visscher Page 42

Extension on the DDM BOSS July 2001

9.3.14 Unlinking

When aDFN is not anymore needed in the program, it must be unlinked. Thisisthe same asremoving a
program from memory in normal programming languages. Due to the unique nature of a DFN, the time when
it may be unlinked cannot automatically be determined. For this reason aspecial port must be crested in the
dave socket. When asignal is sent to this port, the LinkL oader must unlink the DFN. In-Port O of the dave
socket is used for this function and is called the unlink port.

9315 Connection table of the ports
The following table shows how each in-port of the dave port is connected to each out-port of the master

socket, how in-ports of the master socket are connected to out-ports of the dave socket, how the constant ports
are mapped onto the out-ports of the dave socket and what port isthe unlink port.

Table9-1 connections of the master socket to the dave socket and vice verse

Port In master Out Master In Save Out Save
0 Out dave0 Indave0 Unlink port In master 0
n Outdaven Indaven Out daven-1 In master n
n+1 Out daven Const port 0
n+m Congt port m

9316 Global Namespace

To carry out the task of loading a (sub) DFN with all its sockets, it needs detailed information about other
resources, the processes that the resources provide and data on how to reserve them. In order for the
LinkLoader to do this, it needs amapping from aprocess name used in the DFN to identify a socket to the
resource and data on how to reservethe
process. Thismapping is called the global

namespace.
Global namespace:

Process name -> resource, data pocess

During the process of Linking and
Loading aDFN, dl resources and datais
looked up in the Global namespace. When
aprocess nameisfound, theresourceis
accessed by sending a message requesting
asocket with data yrcess: The resource
returns the socket index to the LinkL oader

:) Resour
so the LinkL oader can open channelstoit. .
The maintenance of the globa namespace
isdone by interaction between every _ _ _ _
resource and the LinkL oader. The Figure 9-eresour cescommunicate ther processesto the LinkL oader

extension on aresource takes care of this
job. 1t will be discussed in the next section.

B. Visscher Page 43

Extension on the DDM BOSS July 2001

032 Extendon

The LinkL oader needs detailed information about every process on aresource in order to doitsjob correctly.
Thisinformation must be sent to the LinkL oader by every resource when it is added to the system. The
extension takes care of thisjob. As soon asaBOSS resource, that is aresource with an extension, is added to
the system it opensasmall DFN connecting one of itsown list processes sockets with a socket of the

LinkL oader with a channel between them. It then sends all the names of the processes and data on how to
reserve them over this channd to the LinkL oader. The LinkLoader must then store this dataiin an information
structure where it can look them up. The LinkL oader must also be notified when aresourceis removed so it
can modify the global namespace accordingly.

Another function of the extension isto make al messages concerning the reservation of asocket standard.
This makes communicating with different resources easier for the LinkLoader. The messageissenttoa
resource when a socket is reserved on it. This message will be called the general message.

9321 Genera message

A general message is sent to aresource when a socket must be reserved. Thisinformation is needed by the
extension to determine how the resource should react on the request. The general message contains four fields
with information.

1. Action
The action iswhat action the extension should undertake. It may reserve anormal processing socket,
open asocket that lists all processes on the resource, request a socket that givesinformation about
the resource or request a socket that gives information about a specific process on the resource.

2. Security
When reserving a socket, security information may be sent with it to protect the resource from mal
use. Next to security information, scheduling information may aso be put in thisfield.

3. Process
The processfield is only necessary when the action to be taken isinformation about a process or the
normal reservation of aprocess.

4. Parameter
Some processes may need parameters for initidization or other options. Datain the parameter field
may be used for this purpose.

9322 TheLinkLoader and the general message

To dtart aprogram, a socket must be reserved on the LinkL oader. A generd message istherefore sent to the
LinkL oader with in the process-field a description of the sub-DFNs. The parameter field isaso used. It
contains the name of the sub-DFN that holds the startup code and information about when to load the DFN.
There exist three possibilitieswhen to load a DFN.

1. Direct
With the direct parameter the LinkL oader |oads the sub-DFN directly en starts processing it when
the socket is reserved.

2. Whenonein
The‘whenonein’ parameter may be used when asub-DFN has et least one in-port. The master
socket is opened to creste the interface to other DFNs but all the sockets and channels of the sub-
DFN are not yet reserved and opened. When data has been written to at least one in-port of the
measter socket the sub-DFN islink loaded and processing of the sub-DFN gtarts.

B. Visscher Page 44

Extension on the DDM BOSS July 2001

3. Whenallin
The‘when dl in" parameter may be used when a sub-DFN has at |east one in-port. The master
socket is opened to create the interface to other DFNs but all the sockets and channels of the sub-
DFN are not yet reserved and opened. When data has been written to al in-ports of the master
socket the sub-DFN islink loaded and processing of the sub-DFN starts.

B. Visscher Page 45

BOSS specification BOSS July 2001

10 BOSS specification

The LinkLoader isthe key resource in the operating system structure. It provides many functionsto the
system and makesit avery flexible and versatile system to work with. The most important feature of an
operating system isto transform datainto a program. This function is handled by the LinkL oader resource.

In order to load a DFN a structure must exist to represent a DFN. This structure must then be passed to the
LinkLoader during the reservation of a socket to create a socket with the desired function.

10.1 Dynamic Data Structure

The data structure of dynamic datatypeis used for the representation of any datatype. Within the system, it is
used to represent DFNIS, the general message and other eements of the extension. The structureis hierarchical
and recursive and uses the data type base as defined in chapter 9 to represent the most elemental elements.
The dynamic data structure, DDS for short, may be on of three things. It may be empty, it may be an array of
itself or it may be an array of base.

DDS = <empty>

DDS=DDY| len]

DDS = base] base size(type) * len] =type[len]

(DDSisshortfor DD 01])

When DDSisan array, it may be used to store dements larger then base. Sizeistheindividua size of each
data element. To get the Size of adata element expressed in base the macro base sizeexids. Lenisthetota

number of elementsthat must be stored in the array, also called the length of the array.

The DDSisused by the LinkL oader and the extensions on aresource. It is used to represent the Genera
Message with dl of its underlying data.

10.2 General messageexpressed in DDS

The general messageis used to reserve a socket on aresource. It is sent to the resource during the reservation
by another socket. The message hasin the basis 4 fields as described in 9.3.2.1.

DDS;=DDS 4] The general message has 4 fields

DDSJ 0] = number| 1] Field 0 holdsthe action

DDSJ 1] = DDS sty Field 1 holds the security

DDSJ 2] = DDS process Field 2 holds the information to identify the process
DDSJ[3] = DDS paameters Field 3 holdsthe parameters

Action: Reserve process = 0, Info resource = 1, Info process = 2, List sub process = 3.

10.3 Makingall processes of aresourceknown totheLinkL oader

When aresource is added to the system, it must make all its processes known to the LinkLoader. To do this,
messages must be sent to the LinkLoader. The LinkLoader is aways assigned the same number, namely zero.
When aresource is connected to the DDM, it opens a socket on the LinkLoader and with himself and sends
messages from himsdlf to the LinkL oader. Each message contains the process name, the resource number and
dataon how to reserveit. Name elements are built according to the following rules:

B. Visscher Page 46

BOSS specification BOSS July 2001

DDS,.=DDY3] A name element contains 3 fields
DDS,{ 0] = cha len(name)] Name of the process

DDS 1] = Number| 1] Resource number

DDS . 2] = DDS process Process data

The socket opened on the LinkLoader is called the add_process socket. This socket can be reserved by
sending agenerd message to the LinkLoader with in its action field the gppropriate number. On the resource
that is added the list_processes socket is reserved. This can be done by sending ageneral message to itself
with inits action field the number 3. Between the two sockets, achannel must be opened. All these actions of
reserving sockets and opening achannel are done by the resource that is added to the system. The extension
on the BOSS resource must teke care of these actions.

When the LinkL oader receives aname eement, it is stored in the global namespace. When aprogram islink
loaded, it recalls the resource number and DDS o USiNG the name and combines this information with DDS
parameter N0 DDS ity from the DD to reserve a socket.

10.4 Dependency Driven programs, DD programs

A DD isthe representation of a Dependency Fow Network in the Dynamic Data Structure. A DD program is
acoallection of DD’ s combined in ahierarchy. The LinkLoader can only load DD programs and to do this, a
general message is sent to the LinkL oader to reserve a socket with the one DD of the Dependency Driven
program, the DD program must be sent to the LinkL oader. Thisis donein the processfield of the genera
message. It uses the following building rules.

DDS process = DDS pyrogram = DDS Namespace The processthat is being reserved isa DD program.
DDS Namespae = DDS[N] The namespace contains N fieldg(DD’s)

DDS namespad N] =DDSpp 00 N<N Each fieldisaDDSyp (DD)

DDSpp = DDS6] A DD contains 6 fields

DDS pp[0] = char| len(DDname) | Name of the DD

DDSpp[1] = Number[#n ports] Sizeof eachin-port, NIL for variable size

DDS pp[2] = Number[#Out ports] Size of each out-port, NIL for variable size

DDS pp[3] = DDS gonet pord #Const ports] Number of constant port

DDSpp[4] = DDS get [#s0ckets] Number of sockets

DDS pp[5] = DDS gamess [#channels] Number of channels

DDS pp[6] = DDS Namespece Sub Namespace

DDS const ports = base(size) Datathat must be sent through the port

DDS ot = DDY 3] A socket containsthreefields

DDS get [0] = char [len(Socket name)] The name of the socket

DDS g [1] = DDS paameer Parameters during reservation of asockets

DDS goet [2] = DDS sy Security information during reservation

DDS e = NUumber [4] A channd contains 4 numbers

DDS giana [0] relative source socket number(NIL for dave socket)
DDS game [1] source port number

DDS game [2] relative target socket number(NIL for dave socket)
DDS yame [3] target port number

A channd can only be connected in aDD between two of its sockets. The index the socket hasin the DDS
oxke 1Sthe relative socket number and is used by the channdl. If achannel connects a socket with the dave
socket, the relative socket number isNIL.

B. Visscher Page 47

BOSS specification BOSS July 2001

The parameter field of the LinkL oader has the following syntax when reserving aDD program.

DDS parameters = DDY| 2]
DDS paamaer [0] = Base] len (DDname) | (Name startup routine, “ startup” if empty)
DDS paamaer[11 =Number[1] ={ Ld_Now =0, Ld_ when One=1,Ld when All=2}

Thefirst field of DDS pyameer IS the DD where the DD program hasto start with. If the field is empty, the
default nameis‘startup’ but when desired, another name may be given. The second option isto decide when
to load the DD. When loading a DD, the default is Load now (Ld_Now) but, when used in combination with
other programs, it may differ to Load when onein (Ld_when_One) or Load when dl in (Ld_when_All).

10.5 Resolving socket namesin aDD

One of the most important features of the LinkLoader isto convert the names of the socket into the resource
and data on how to reserve the socket. This resolving of the nameis done by searching for thenameina
namespace. A namespace is amapping of process names to their resource and DDS s (Datato reserve a
specific socket).

Namespace: process name -> resource numMber, DDS process

Every DD has three namespaces, the primary namespace, the secondary namespace and the global
namespace. Each namespace is described in the next sections. The primary and secondary namespace depend
on the place of the DD in the program while the global namespace isthe samefor every DD.

1051 Primary namespace

Recall from 10.4 that aDD is part of a namespace and a namespace contains several DD’s. Each of theDD'’s
hasit own name and these names combined form the primary namespace of the DD. When a socket name of a
DD must be resolved, the primary namespace is searched firgt. If the names mach, the DD will be link loaded.
Thisdlows socketsto call itself and recursive agorithms may be programmed using this festure.

1052 Secondary namespace

Recall from 10.4 that a DD contains a namespace (DDS pp[6]). This namespace contains other DD’sand
form the secondary namespace of that DD. When resolving a socket name, the secondary namespaceisonly
searched when the name could not be solved using the primary namespace. If the names mach, the DD will be
link loaded.

1053 Global namespace

Thethird and last namespace of aDD isthe global namespace. This namespace is contradictory to the
primary and secondary namespace, not dependent on the place of the DD in the DD program. The global
namespace holds the names of al the sockets that can be reserved on aresource over the entire system. The
globa namespaceis only searched if no match could be found in the primary or secondary namespace.

10.6 Link Loadinga DD program

All the different functions of the LinkLoader have now been specified. This section describesthe total
procedure using al these functions on how the LinkLoader link loadsa DD program.

1. A requestisreceived to reserve a socket.

B. Visscher Page 48

BOSS specification BOSS July 2001

Thisreguest comesin the form of a General message with aDDS program in the process field and the
parameter field as defined in 10.4.

2. Theprimary namespace s crested.
The namespaceis created using all the names of the DD’ sthat arein the first namespace of the DD program.
3. Thename of the startup DD is searched in the primary namespace.

One of the DD’sin the DD program is the master socket. This DD is determined by the name in the parameter
fidd. If no nameisgive here, the DD called ‘ startup’ will be used. If it can not be found, the procedureis
aborted.

4. Themaster and dave sockets are created based on the startup DD.

Thein-ports and out-ports of the master socket are set and a dave socket is opened on the LinkL oader with
the unlink port and the constants-ports as described in the DD.

5. If requested the startup DD islink loaded.

If the parameter field indicates, the DD must be link loaded directly or no parameter is given, the secondary
namespaceis created and al the names of the socketsin the DD are resolved and the sockets are reserved.
Next, the channels between the sockets are opened.

6. If dl actions where successful, the reserve socket method on the LinkL oader returns TRUE, else
FALSE.

10.7 The complete sysem, BOSS

All different aspects of the system have now been introduced. The function of the LinkL oader is known and
the role of the extension on the resources. These together form the operating system structure, BOSS., Therole
of BOSS can best be compared to the kernel in atraditiona system. Because each resource acts independent
of each other, each resource must have its own kernel. The kernel takes care of the global namespace, security
of the resource and scheduling of the sockets on that resource. All thesetasks of the kernedl are activein the
form of different processeslike: giving information about the resource, giving information about a specific
resource process or listing al processes that exist on aresource. A socket may be reserved to these extension
processes or to the other processes on the resource and with this, a standard interface to al different aspects of
the resource exists.

B. Visscher Page 49

BOSS specification BOSS July 2001
ResourceO Resource 1l Resource M
LinkL oader g g g g
Y P P @ 2 Z
Q < - o) =z .
LinkLoader ‘ga' ‘ga'
- -
processes
))
3 3
Extension Extension
Sockets Sockets Sockets
| Ports)L Ports L Ports B
Channéls

Figure 10-a the complete oper ating system structure

B. Visscher Page 50

Implementation of BOSS BOSS July 2001

11 Implementation of BOSS

This chapter discussesthe finer points of the implementation of the extension. It summarizesthe extra
methods used on the resource class to make programming resource sockets as easy asit could possibly be.
The LinkLoader is aso discussed and an efficiency analysis of the search agorithm is given.

11.1 Classhierarchy

The main class structure as presented in chapter 8 is used and three additiona classes are added to it to create
BOSS. Thefirgt isthe classthat represents the LinkL oader. The second is the BOSS resource class and the
third isthe process classthat is closdly associated with the BOSS resource class. The LinkLoader and BOSS
resource classes are derivatives of the resource class. The LinkLoader is aspecialized resource and will be

Thread
Scheduler Resource DDM
Process BOSS Resource LinkLoader

Figure1l-aclassesof BOSS

discussed in 11.4. The BOSS resource classis aresource with the extension on it. Methods are added to
manage the processes and for processes, an easy programming interface is created to make programming a
process very easy. Chapter 12 shows some implementations of different BOSS resources and their processes
based on these classes.

With this new congtruction, al socket methods that exist in the resource class may only be accessed from the
process class. The three methods of reserve_socket, update socket and free_socket only exist in the process.

The BOSS resource uses the methods construct and destruct and for this reason, constuct_process and
destruct_process are introduced to maintain al the previous functionality.

11.2 Dynamic Datatype
Class dd

Files: dd.h, dd.cpp, dd_boss.h, dd_boss.cpp

The dynamic data structure is used to represent al datawhen anew socket isreserved. It isagenerd data
structure with dynamic memory alocation.

Variables,

B. Visscher Page 51

Implementation of BOSS BOSS July 2001

number array len

Size of the array stored by thisdd.

number element_size

Size of each dement. If the dlement_sizeis0, thearray contains dd.

base* array

Memory alocated to store maximum array _len elements of size element_size.
M ethods:

boolean reserve(number len=1, number size= 0)

Thismethod is used to reserve memory to store element. The first parameter defines the length of each
element, the second the size. If the sizeisequal to 0, thetypeisthe class dd itself.

boolean write(<type> value)

Toreserve asingle dement of a specific <type>, the method write may be used. It isthe same asreserve (1,
base size(type)); dd[0] = value. The method exists of the types : Boolean, integer, number, float and zero
terminated strings.

void freg(void)

Thismethod freesadd and all sub dd's.

boolean grow(const base* mem)
base* flat(void)const

The dd hasa TREE gtructure. It is possible to flatten thistree into asingle array of type base or to convert this
single array to acomplete tree.

boolean exchange(dd* branchl, dd* branch?2)
This method exchanges two branches of the same tree with each other.
boolean copy(const dd& _dd)
Makes aduplicate of the dd. It reserves dl necessary memory and copies the contents of each branch.
void* get(index)
Returns a pointer to array[indx * eement_size]. It returns NULL if theindex does not exist.
dd& operator[](number eement)
Returns the element stored in the array at position element.
void make_double(dd* _dd)

Copiesthe contens of add (the pointer) to thisdd. Use thid method in combination with clear to remove the
pointer from this dd.

B. Visscher Page 52

Implementation of BOSS BOSS July 2001

void clear()

This method setsthe variables, array = NULL, array_len=0, dement_size=0.

friend dd* mk DD...(.......)

Createsadd of type ... Datamay be passed asits parameters but this depends on the type of dd created.
boolean valid_DD.....()

Checksto seeif thisisavalid dd of thetype..... It does so by checking the structure of the tree and the sizes of
the dements and lengths of the arrays.

A variety of dd typesexists. They aredl described inthe file DD_BOSSH. They are DDg (general message),
DeeDee (Dependency driven deta) and DDne (name el ement).

Thefollowing example gives the code needed to create the structure of figure 11-b.

dd program;)
program.reserve(3); // 3 branches 1 (int)
program[0].reserve(2); // 2 branches 1 (int)
program[O][O].write(1); // integer

program[O][1] .write(2); // integer doublel 1001
program[1].reserve(100, base size(double));

((*double)program{1].get(0))[1] = 2.67: TRUE (boolean)
program(2].write(TRUE); // boolean Figure 11-b structure of the example dd

11.3 BOSS extenson of theresourceclass

The BOSS extension takes care of the communication with the LinkL oader. It also provides an easy standard
way to create processes within aresource.

Class. r_boss

Files. r_bossh, r_boss.cpp

A BOSS resource maintains adynamic_list of dl processesthat exist on that resource. When theresourceis
added to the DDM, it opens a DD, which sends data about the processes to the LinkL oader. Other processes
to list information are not implemented, neither are processesto deal with scheduling and security. This may
be done at alater stage.

Variables:

dynamic_table<process*> process table, dynamic list process list

Thetable and list used to store processes.

number list_processes index, number info_resource_index, number info_process index

Indexesin the process table that are used for the different kernel processes.

B. Visscher Page 53

Implementation of BOSS BOSS July 2001

Methods:
boolean congtruct(void)

This method adds the kerndl processesto the process|list of the resource and cdls the method
process_constuct.

virtual void destruct(void)

The method process destruct is called and al processes are removed from the processlist.

virtual void update _resource(void)

This method may be used when anew resource is created to make externd events possible.

virtual boolean reserve _socket(base* options)

This method reserves a process socket. The options parameter contains a general message and the
reserve_socket method of the appropriate processis opened with DD pyaneer iNits option field. It does so by
calling theinternal method reserve_process with the processindex stored in DD e 0f the general message.

virtual void update socket(event_description event)

Thismethod will call the update_socket method of the process with which the socket interfaces. (The process
index is stored in the environment_port of the socket.)

virtual void free_socket(void)

Thismethod will call the free_socket method of the process with which the socket interfaces. The process
index is stored in the environment_port of the socket.

virtual boolean process construct(void)

When aBOSS resource is added to the DDM, this method is called by the construct method. Initialization of
devices and processes may be done. Processes are added to the system with the method add_process. This
may only be done at thistime. If anew resourceis created, this method must be programmed.

virtual void process_destruct(void)

Thismethod is called when the resource is removed from the system. It is optional to program this method
because al processes are automatically removed but if a device must be closed, this method may be used.

boolean add_process(processt _process)

This method may only be called when the resource is being connected to the DDM in the method
process_congtruct. The process passed as its parameter is added in the process list and an index isassigned to
the process. Thisindex is called the process index. When the resource sends socket information to the

LinkL oader, this processindex is sent in the DD process

boolean reserve_process(number process index, base* options)

This method reserved a specific process. Theindex isfound in the process table and the virtual method
reserve_socket of that processis called. DD paaneer OF the general message is then sent to it. All portsand
memory are alocated based on the description given in the process class. The process index is stored in the
environment_port. If another environment must be stored by the process, thisis put &fter it.

B. Visscher Page 54

Implementation of BOSS BOSS July 2001

inline base* environment_port(void)

This method returns the pointer to the environment_port. It adds the size of the process index toiit that is
gtored in the beginning.

Class: process
Files: r_bossh, r_boss.cpp

The process classis part of the operating system structure. It provides a standard way to describe sockets and
to automatically allocate ports and memory to it. For every process, anew instance of the class must be
created and this process must be added to the resource with the BOSS resource method add_process. The
process class consists of variables to make the connection to the resource and variables to describe the socket
configuration. The methods are divided into two categories, one for communicating with the ports of the
socket and the othersfor the lifecycle of the socket.

Variables:
r_boss* res (only used by ther_boss class)

This variable contains a pointer to the BOSS resource of where the processisa part. The process must be
added to the BOSS resource with the r_boss method add_process.

number index (only used by ther_boss class)

Theindex that the process hasin the process _table of the BOSS resource to which it was added with the
r_boss method add_process.

const char* name

Hold azero terminated string that represents the name of the process. This name will be sent to the
LinkLoader and is used by the LinkL oader to find the processin the system. This variable hasto be set during
construction of the class.

number in_ports
const number* in_port_sizes

These two variables describe the configuration of thein_ports of the socket. The variablein_portshold the
number of in-portsand the array in_port_sizes describesthe individua size of each in-port. Thissize may be
NIL to indicate that the port has adynamic Sze or anumber. The size of the array must be the same asthe
variablein_ports. These variables have to be set during construction of the class.

number out_ports
const number* out_port_sizes

These two variables describe the configuration of the out_ports of the socket. The variable out_ports hold the
number of out-ports and the array out_port_sizes describestheindividua size of each in-port. Thissze may
be NIL to indicate that the port has a dynamic size or anumber. The size of the array must be the same asthe
variablein_ports. These variables have to be set during construction of the class.

number environment_size
base* initid_environment

B. Visscher Page 55

Implementation of BOSS BOSS July 2001

These two variables describe the environment port. The environment_size holds the size of the environment
expressed in base. Theinitid_environment hold the initial contents of that environment. The content is copied
to the environment port when a socket of the processisreserved.

Example of asocket description:

float_plus:float_plus()
{

static number in[] = { base_size(float), base size(float) };
static number out[] = { base size(float)} ;

name = "float.+(float,float)(float)";

in_ports=2;

in_port szes=in;

out_ports= 1,

out_port_sizes= out;

environment_size=0;

initial_environment = NULL;

Methods:

The methods are divided into two categories. The first one are methods concerning the socket life-cycle. The
second are methods used to communicate with the socket ports.

virtual boolean reserve socket(base* options)

When a socket of aprocessis reserved, thismethod is called by the resource before the socket and port are
reserved automatically. If any initialization procedure is needed, this may be done here. If the method returns
TRUE, the resource will reserve the ports and assign memory to them. The environment will also be
initialized with the datastored in the initia_environment variable.

virtual void free_socket(void)

Thismethod is called when a socket of the process must be freed. Any memory assigned to NIL portsor to
the environment must be freed. If a procedure is needed to terminate the process, this must be done here. After
this method, the resource will free d memory assigned to the ports and remove the ports and socket from the
system.

virtual void update socket(event_description event)
Thismethod is the same as update_socket of the resource class as described in chapter 7.

base* & in_port(number in_port)

base* & out_port(number out_port)

base* environment_port(void)

boolean in_port_blocked(number in_port)
boolean out_port_waiting(number out_port)
void read_from in_port(number port_index)
void write to_out_port(number port_index)
number get_resource_number (void)

number get_serviced socket index(void)
void external_event(number socket_index)

B. Visscher Page 56

Implementation of BOSS BOSS July 2001

These methods are used to communicate with the ports of the socket. They use the variable resto determine
the resource and call their identica methods of ther_boss (resource) class viainline methods. Their
description can be found in chapter 7.

114 LinkL oader resourceclass

One of the LinkLoader main functionsis to resolve names using the primary, secondary and global
namespaces. All the names are stored in aclass called the dynamic_lookup class. This class providesal the
necessary methods for efficient adding, removing and searching (sorting) names.

Templateclass dynamic_lookup_table

File: dynlook.h

Thedynamic_lookup_list and dynamic_lookup_table classes are sub classes of the dynamic_table and
dynamic_list. Thedynamic_lookup_tableis used to store dements and the dynamic_lookup_list usesthetable
to combine the elementsin asearch tree. It is possible to store more than one dynamic_lookup_listin one
dynamic_lookup_table but al elements of adynamic_lookup_list must be stored in the same
dynamic_lookup_table.

Elementsin adynamic_lookup _list are sorted as opposed to the dynamic_list where they are unsorted. This
means that the methods to reserve, free and lookup an eement are al newly implemented. Thereisaso an
additional table present, the lookup_table, to store additional search information.

The datatype of the eementsthat may be stored in the dynamic_lookup_table must have two operators, = and
<. When these two are defined, the data type may be used in this template class.

Methods:.
dynamic_lookup_table(number _max = 1, number _max total = NIL - 2)

The congtructor uses two variables, thefirgt, _max, definestheinitial size of the arrays. The second,
_max_tota, defines the maximum size of the arrays.

number reserve_element(T* _element, dynamic_lookup_list* dil)

Toreserve an index, the list where the element is part of must be given and the element itself to determineits
position in theligt. If the element can be added, the index is returned. If the element can not be added, NIL is
retuned.

void free_element(number index, dynamic_lookup list* dil)

When an e ement must be removed, the method free_element is used. The dynamic_lookup_list where the
element is part of must be given to rearrange the search information for that list.

number lookup_element(const T& _element, const dynamic_lookup list& dll)

To search for an element, the dynamic_lookup_list must be given. The search information is used to find the
index of the element.

Efficiency:

Thegoa of thisclassisto add, remove and recall al e ementsin an average time complexity of O(log N)
with N = total dementsin adynamic_lookup_list, the theoreticad minimum. Thisis achieved with the use of a

B. Visscher Page 57

Implementation of BOSS BOSS July 2001

binary tree structure to represent the search data. This makes recalling data very easy but adding and removing
data more difficult because of the balancing of the tree. Balancing the tree is done with the use of asmple
rule

for every dement: ABS(depth(left branch) - depth(right branch)) O 1.

The number of elementsin aminimum tree may then be calculated for every depth. The depth isthe
maximum time it will take to find, add and remove an element.

Table 11-1 minimum and maximum number of elementsin atreewith a specific depth

Depth Minimum Maximum
0o | 0 0
1 1 1
2 | 2 3
3 4 7
4 7 15
5 12 31
6 | 20 63
7 33 127
8 | 54 255
d Xg=Xg1+tXgot1 Xg=2*Xg1+1
| N> 16 N=2-1

Since the number of eementsin aminimum treeis above 1.6°, the requirement that any element may be
found in O(log N) is satisfied and this data storage is efficient enough to meet this requirement.

Class LinkLoader
Files: linkloader.h, linkloader.cpp

The LinkLoader classis never called directly. All communication with it is done viathe DDM class. An
internal description of the class would therefore be superfluous. Some methods are described to giveasimple
view of itsinternal working.

The LinkLoader maintains adynamic_table of al processesthat have been Link Loaded. Thisdatais stored in
all_process (LinkLoader process) structure. This structure holds pointers to the primary namespace,
secondary namespace and indexes of the channels and sockets that have been reserved for that process and the
index of the master and dave socket. There are aso variables present to indicateif the process has been Link
Loaded and avariableto indicate if the congtant ports have sent their data.

The second important structure that is maintained by the LinkLoader isadynamic_lookup list of dd_lIne,
name e ements. These name elements are the building blocks of the global, primary and secondary
namespace. Each processthat is added to the LinkL oader, by the resources or by aDD, isstored inadd_lIne
structure that contains its name, resource number and DD o The dd_lIne classis aderivative of the dd
classwith the operator < added. This operator compares the name fields to determineif it issmaller.

Methods:
virtual boolean construct(void)

virtual void destruct(void)
virtual update resource(void)

B. Visscher Page 58

Implementation of BOSS BOSS July 2001

virtual boolean reserve_socket(base* options)
virtual void update socket(event_description event)
virtual void free_socket(void)

The six virtual methods that are inherited from the resource class, are used to cal the other methods of the
LinkLoader class. They form the communication with the DDM. They are called when the LinkL oader must
undertake some action. The reserve_socket method reserved a program_socket or sub_program_socket to
creste anew process. The update socket method transfers data from the master socket of aprocessto the
dave socket and vice versa.

number find_name(const char* name, const dynamic_lookup _list& list)
number find_name(dd* name, const dynamic_lookup _list& list)

These two methods are used to find anamein the dynamic_lookup_table of the LinkLoader class. The
dynamic_lookup_list passed asits parameter determinesthe set in the table that is searched. The
name_elementswill only be compared by their names, therefore only the name has to be passed. If the
element can be found, the number returned istheindex in the table. If the nameis not part of the specified li<t,
NIL isreturned.

boolean create_namespace(dd* NameSpace, dynamic_lookup_list* list, boolean clear)
void delete_namespace(dynamic_lookup_list* list)
void free_namespace(dynamic_lookup list* list)

These methods use the dynamic_lookup_table of the LinkL oader astheir basis. Create namespace convertsa
dynamic datatype into individual name elementsthat are added in the list. This may be done by transferring
the data (clear = TRUE) or by copying the pointersto that data (clear = FALSE). If the namespace must then
be removed, either delete_ namespace (clear = FALSE) of free_namespace (clear = TRUE) must be used,
depending on what the clear variable was when the namespace was crested. The clear variable will only be
TRUE if the namespace created is the namespace of the program socket. If the socket is of a sub process, the
clear variable will dwaysbe FALSE.

boolean reserve program_socket(dd* NameSpace, dd* Parameters)

Thismethod called when the LinkL oader gets arequest to reserve asocket of aDD program. The entire DD
program is passed as the first variable and the parameters used to determine the name of the startup DD is
passed in the parameter variable. This method will create the primary namespace, master socket, dave socket
and Link Load the DD.

boolean reserve sub_program socket(humber namespace index, dynamic_lookup_list*
primairy_namespace, dd* Parameters)

This method does the same asreserve_program_socket. The only differenceisthat the DD reserved iscalled
from within the DD program. This means that the primary namespace aready existsin a process and does not
have to be made again. An index is used to indicate what DD must be loaded. The parameter variable
determineswhen the DD islink loaded.

boolean linkload_deedee(number process index)
void unload_deedeg(number process_index)

Loads or unloads the dependency driven network that forms a process. An index to the process structure is
passed to find al information. The secondary namespace is created / deleted, sockets are reserved and
channds opened. If something goes wrong during the Link Loading procedure, FALSE isretuned. Unloading
aDD aways succeeds.

B. Visscher Page 59

Implementation of BOSS BOSS July 2001

number make master dave socket(number namespace _index, dynamic_lookup_list* primary NameSpace)

Creates the process structure of aDD. The DD isindicated by the index in the namespace and the primary
namespace. The process structureis then created and the index of it is retuned. This method also created the
measter and dave socket of the process. If an error occurs, NIL isreturned.

B. Visscher Page 60

BOSS Resources BOSS July 2001

12 BOSS Resour ces

This chapter discusses the implementation of severd different BOSS resources. The resources are split into
their processes and their socket configuration is given. The in-ports and out-ports of the sockets are explained
together with how the process processes them. Thereis also an extensive resource introduced that formsthe
interface to the user. It holds processes write output to the screen and receive input from the keyboard.

12.1 Naming of aresour ce process

The number of resourcesthat may exist inthe DDM isvirtudly unlimited. Each resource may in turn hold
numerous processes with their own name. This makes the total names used on extensive systems, enormous.
To make programming easer, a standard way of naming a process on aresource is used. With this standard
naming, it is easer to locate the process.

<resource name>.<process hame> (<in-port 0>,...,<in-port n>)(<out-port 1>,...,.<out-port n>)
(<{in, out}-port x> means the data type of {in, out}-port x)

12.2 Referencedatatype

One of the most important structures that exist in atraditional programming language isthe ability to use
pointers. In BOSS, pointers do not exist at al. This makes programming easier but far less efficient. To ill
creste efficient objects, areference datatype, @, isintroduced. This datatype meansthat data associated with
thereference is not transferred but is stored in aresource. The reference data structure gives access to that data
and allows manipulation of it. The reference structure contains three pieces of information. An index used by
the resource to locate the object, arandom verify code stored in the object to check for al use and atime stamp
to determineif a process may occur.

12.3 Resources

This section describes various resources that are present in the system. The filesthat contain the resource
classes and their processes. Thefilesall start with b to indicate that they are BOSS resources. Each section
will enumerate al processes on the resource and describe them. 1t will start by some simple resources and will
finish with aresource that processes amulti layered textua screen interface.

1231 Sgna

The signal resource is aresource that works with the data type signal. This datatypeis comparableto void in
C. It does not hold any vaue, but it exists.

Files. b_signal.h, b_signd.cpp
Processname: signd.and(signa,signa)(signa)

When both in-ports have received asignal (have the status Blocked), they return to the status Wait and a
signal is set on the out-port.

Processname: signd.or(signa,signa)(signal)

When one of thetwo in-ports receiveasignd, asigna is sent to the out-port. The in-portswill be cleared
when both in-ports have received asignal to make sure the process stays synchronized.

B. Visscher Page 61

BOSS Resources BOSS July 2001

The code that handles the process of asigna or as described in the classsignal_or:

signal_or::signd_or()

{
gatic number in[] ={ 0,0};
static number out[] ={ 0};
static boolean env[] ={ FALSE};
name = "signal.or(signal,signa)(signd)";
in_ports=2;
in_port szes=in;
out_ports=1;
out_port sizes=out;
environment_size = base size(boolean);
initia_environment = (base*)env;
b

void signa_or::update_socket(event_description event)

if((event & ALL_OUT_ WAITING))

{
if(in_port_blocked(0) ||in_port_blocked(1))
{
write to_out_port(0);
((boolean*)environment_port())[0] = TRUE;
It
)
if((event & ALL_IN_BLOCKED) & & ((boolean*)environment_port())[0])
{
read from_in_port(0);
read from_in_port(1);
((boolean*)environment_port())[0] = FALSE;
H
H
1232 Boolean

Files: b_bool.h, b_bool.cpp

The boolean resource handles the data type boolean than can get the value TRUE or FALSE.

Process name: boolean.and(bool ean,bool ean)(bool ean)

If one of the in-ports has the value FALSE, FAL SE iswritten to the out-port. When adatais written to the
other in-port, both in-ports are cleared. If TRUE has been written to an in-port, the value that iswritten to the
other in-port iswritten to the out-port and both in-ports will be cleared.

Process name: boolean.or(boolean,boolean)(bool ean)

If one of the in-ports has the value TRUE, TRUE iswritten to the out-port. When datais written to the other
in-port, both in-ports are cleared. If FAL SE has been written to an in-port, the value that is written to the other
in-port is written to the out-port and both in-portswill be cleared.

Process name: boolean.not(bool ean)(bool ean)

B. Visscher Page 62

BOSS Resources BOSS July 2001

Writes TRUE to the out-port if FALSE was received on thein-port. If FALSE was received, TRUE iswritten.
Process name: boolean.=(bool ean,bool ean)(bool ean)

Returns TRUE if the value on both in-ports are equal.

1233 Byte
Files. b_byteh, b_byte.cpp

The Byte resource handles the data type byte, which can get the value of whole numbersfrom 0 to 255. A
variety of mathematical operands may be applied to it (all mod 256).

Processname: byte.+(byte byte)(byte)
Processname: byte.-(byte byte)(byte)
Processname: byte* (byte byte)(byte)
Process name: byte/(byte byte)(byte)

Divisons by zero areignored.

Process name: bytemod(byte byte)(byte)
Processname: byte=(byte byte)(boolean)

Returns TRUE if the value on the in-port(0) is equal to the vaue on in-port(1).
Processname: byte.!=(byte byte)(boolean)

Processname: byte.<(byte,byte)(boolean)

Process name: byte.>(byte,byte)(boolean)

Process name: byte.<=(byte byte)(boolean)

Process name: byte.>=(byte byte)(boolean)

Processname: byte.inc(byte)(byte)

Increases the value on the in-port by one and writes it to the out-port

Process name: byte.dec(byte)(byte)

Decreases the vaue on the in-port by one and writesit to the out-port
1234 Integer

Files: b_int.h, b_.int.cpp

Theinteger resource handles the data typeint than can get the value of whole numbers from —2"31+1 to 2°31.
A variety of mathematical operands may be applied to it.

Process name: integer.+(integer,integer)(integer)
Process name: integer.-(integer,integer)(integer)
Process name: integer.* (integer,integer)(integer)
Process name: integer./(integer,integer)(integer)

Divisions by zero areignored.

Process name: integer.mod(integer,integer)(integer)
Process name: integer.=(integer,integer)(boolean)

B. Visscher Page 63

BOSS Resources BOSS July 2001

Returns TRUE if the value on the in-port(0) is equd to the value on in-port(1).

Process name: integer.!=(integer,integer)(boolean)
Process name: integer.<(integer,integer)(boolean)
Process name: integer.>(integer,integer)(boolean)
Process name: integer.<=(integer,integer)(boolean)
Process name: integer.>=(integer,integer)(boolean)
Process name: integer.inc(integer)(integer)
Process name: integer.dec(integer)(integer)
Process name: integer.random()(integer)

Writes arandom integersto the out-port. This processis repeated when the out-port is waiting.

Code for the random process on the integer resource:

Process name: integer.random()(integer)

Writes arandom integer to the out-port. Thisis done only once.
1235 Float

Files: b_float.h, b_.float.cpp

The float resource handles the ¢ data type float.

Process name: float.+(float,float)(float)

B. Visscher Page 64

BOSS Resources BOSS

July 2001

Processname: float.-(float,float)(float)
Processname: float.* (float,float)(float)
Processname: float./(float,float)(float)

Divisions by zero areignored.

Processname: float.mod(float,float)(float)
Processname: float.=(fl oat,fl oat)(boolean)

Returns TRUE if the value on the in-port(0) is equal to the vaue on in-port(1).

Process name: float.!=(float,fl oat)(bool ean)
Process name: float.<(float,fl oat) (boolean)
Process name: float.>(float,fl oat) (boolean)
Process name: float.<=(float,float)(boolean)
Processname: float.>=(float,float)(boolean)
Processname: float.inc(float)(float)
Processname: float.dec(float)(float)

1236 Double

Files. b_doubleh, b_.double.cpp

The double resource handles the ¢ data type double.
Process name: double.+(double,double)(doubl€)
Process name: double.-(double,double)(double)
Process name: double.* (double,double)(doubl€)
Process name: double./(double,double)(double)

Divisions by zero areignored.

Process name: double.mod(double,doubl€)(doubl€)
Process name: double.=(double,double)(boolean)

Returns TRUE if the value on the in-port(0) is equal to the vaue on in-port(1).

Process name: double.!=(double,double)(boolean)
Process name: double.<(double,double)(boolean)
Process name: double.>(double,double)(boolean)
Process name: double.<=(double,double)(bool ean)
Process name: double.>=(double,double)(boolean)
Process name: double.inc(double)(double)
Processname: double.dec(double)(double)

1237 Converter

Files: b_convrt.h, b_.convrt.cpp

The converter resource handles the conversions from one data type to another.

Processname: converter(boolean)(signal)
Processname: converter(byte)(signa)
Processname: converter(integer)(signd)
Processname: converter(float)(sgnal)

B. Visscher Page 65

BOSS Resources BOSS July 2001

Processname: converter(double)(signal)

Processname: converter(@)(signa)

Processname: converter(nil)(signa)

These processes convert a specified type to the signal type (existence).

Processname: converter(byte)(bool ean,bool ean,bool ean,bool ean,bool ean,bool ean,bool ean,bool ean)
This process converts the byte to its eight booleans. Out-port n corresponds to hit n of the byte.
Processname: converter(int)(byte byte bytebyte) / converter(int)(byte,byte)

This process converts an integer to itstwo or four bytes. Which oneis used, depends on the implementation
system of the DDM. This determines whether the integer is 16 or 32 bits.

1238 Flow
Files: b_flow.h, b_.flow.cpp

The flow resource handles the dependency flow in dependency flow networks. It provides seven standard
flow processes applied on the datatypes: signal, boolean, byte, integer, float, double, @(reference) and nil

(dynamic types).

Process name: flow.repeat(<type>)(<type>)

This process repesats the value is has on the in-port once.
Processname: flow.hold(<type>)(<type>)

This process repests the value it has on the in-port whenever the out-port iswaiting. If anew valueis sent to
the in-port, the old value is sent one more time and the process starts over with the new value.

Process name: flow.sync(sgna ,<type>)(<type>)

Sendsthe value of in-port 1 to the out-port when both in-ports are blocked. This synchronizes the <type> data
sream with the signd.

Process name: flow.switch(bool ean,<type>)(<type><type>)

Sendsthe value it has on thein-port to either out-port O or out-port 1. Which
out-port is used, depends on in-port O. If it is TRUE, the value of in-port 1is

sent to out-port O. If in-port 0 hasthe vaue FALSE, the value of in-port 1is
sent to out-port 1. Figure 12-a switch process socket

Process name: flow.merge(boolean,<type>,<type>)(<type>)

This process sends either the value of in-port 1 to out-port O or the value of in- 2 T F
port 2 to out-port 0. If in-port 0 holds the value TRUE, in-port 1 is sent to the)
out-port. If in-port 0 holdsthe value FALSE, in-port 2 is sent to the out-port.

Process name: flow.last(signal ,<type>)(<type>) Figure 12-b mer ge pr ocess socket

This process sendsthelast valueit received on in-port 1 to out-port O when

B. Visscher Page 66

BOSS Resources BOSS July 2001

the signd isreceived. If no value has been written to in-port 1, it sendsthefirst valueit receivesthere. If a
signal isreceived without avalueinin-port 1 but one has been written before, it usesthe last value written and
sendsit to out-port O.

Process name: flow.after(<type>)(<type>,sgna)

Repests the value on in-port 0 once on out-port 0. When the value is read from out-port 0, asignal is sent to
out-port 1.

1239 Text User Interface

Files: b_tui.h, b_.tui.cpp, tui.h, tui.cpp, alegro.h, alegro.a

The text user interface resource provides al the necessary processes to communicate with the user. Thisis
donein currently only supported in atext mode but may be adapted to be used in agraphical environment.

The difficulty with modeling the user interfaceis that dl processes must be independent have their own video
memory. Thisis done with the introduction of layers.

Layer N

Layer 2

Screen

Layer
holder

Figure 12-clayerholder copieslayerssorted by their depth to a screen

The buffer that is sent to the monitor and formsthe visible screen, is connected to alayer holder. Thislayer
holder is also connected to numerous layers. The layer holder sends al the layersto the buffer and sortsthem
by depth. If morethat one layer is active at a specific coordinate, only the layer with the smallest depth will be
shown. Figure 12-c demonstrates this principle.

Layersconsist out of two eements, the layer view and the object connected to the layer. Thisobject can bea
screen or another layer holder. The layer view determineswhat part of the object is shown. Every point in the
layer view may be activated to indicate a coordinate is shown. It may aso be deactivated to indicate that the
layer does not exist there. The layer holder will project layerswith alarger depth at the coordinates where the
view is deactivated. With this construction, aview does not have afixed form anymore but is completely
adaptable to any needs. Thisisdemonstrated in figure 12-d.

Layers may move in two independent coordinate systems. The first is the coordinate system of the object
connected to the layer. The second isthe coordinate system of the layers themselves. The coordinate system
of the object determinesthe part of the object projected onto the layer. The size of the object must be at least
the size of the view and the view can never exceed the boundaries of the object.

Thelayer coordinate system determines the place on the layer where the object is projected. This coordinate
system is unbounded and only part of the coordinate system is used by the layer holder to send to a screen.

B. Visscher Page 67

BOSS Resources BOSS July 2001

The part that is shown always starts at (0,0), the top | eft coordinate, and ends in text mode at (80,25). In
graphical mode, this could be (800,600), (1024,768) or even (4.000.000,3.000.000) with a maximum of 2%,

Figure 12-d layer view sdlectsvisible part sof the screen and putsit into the layer

Thelayer holder can create avirtually unlimited number of layersto which screens may be connected. These
screens contain the information that must eventualy be displayed onto the monitor. The resource provides
severd different processesto modify the screenslikefilling it with acolor, writing astring to it etc. Since this
system is ill under development, one screen isreserved for error messages. This screen is connected to a
layer that will always stay on the background of the layer holder that sendsitsinformation to the monitor.
Thisscreenis called the error_screen and is used in the implementation to write messages to the screen.

Process name: tui.()(@layerholder)

This process returns areference to the layer holder connected to the screen that is displayed onto the monitor.
Process name: tui.easy_connect(@layerholder,integer,integer)(@screen)

This method opens alayer with the width of in-port 1 and the height of in-port 2 in the center of thevisible
part of the layer holder. It returns a reference to the screen. When the socket of this processis freed, the screen

and layer are disconnected and removed.

Processname: tui.connect(@layerholder,byte,integer,byte,integer,boolean,integer,integer,integer,integer,
integer,integer,integer,bool ean,integer)(@layer,integer,integer,integer,integer)

This process opens alayer and controls different aspects of it. To create alayer, severd in-ports must be
present. These are indicated in the table with a+/? under the create/control. The ports that are used to control
the object areindicated in the same column by ?/+.

B. Visscher Page 68

BOSS Resources BOSS July 2001
Table 12-1 in-portsof the processtui.connect(...)(...)
In- Type creste/ Name Description
Port control Varidble
0 @layerholder +- Reference to the layer holder to which thislayer must be
connected
1 byte ++ Align X | Opening position of the layer. Thismay bein the Left(0),
Center(2) or Right(1) of thevisible part of the layer
holder.
2 integer +/+ ax Changing the x coordinate of the view in the layer by O0x
3 byte ++ AlignY | Opening position of the layer. Thismay bein the Top(0),
Center(2) or Bottom(1) of thevisible part of the layer
holder.
4 integer +/+ dy Changing they coordinate of the view in thelayer by Oy
5 boolean +/- Hold depth | Fixing the layer to the background or foreground
6 integer +/- Width Width of the view
7 integer +/- Height Height of the view
8 integer ++ Depth 0 to have the front most position, NIL to have the back
mogt position
9 integer +/+ object O0x | Changing the x coordinate of the view in the object by O0x
10 integer +/+ object Oy | Changing they coordinate of the view in the object by Oy
11 integer +- object width | Width of the object (if thisvariableis smaler that Width,
width will be used)
12 integer +- object height | Height of the object (if thisvariableis smaller that height,
height will be used)
13 boolean ++ vishle Makes the layer visible to the layerholder or not
14 integer -1+ background | Character and color to fill the background (only shown if
no object is connected to the layer) with adefault of black

The process has five out-ports. Thefirgt contain areference to the layer and may be used to connect an object
to it and determine what coordinatesin the view may be activated or not. Out-port 1 and 2 contain the (X,y)
coordinates of the view in the layer. Out-port 3 and 4 contain the (X,y) coordinates of the view in the object. If
acoordinate changes, the new coordinate is sent to the appropriate port.

Processname: tui.activate full(@layer)(@layer)
Processname: tui.deactivate full(@layer)(@layer)

These processes activate / deactivate the complete view of the specified layer.

Processname: tui.activate(@layer,integer,integer,integer,integer) (@l ayer)
Processname: tui.deactivate(@layer,integer,integer,integer,integer) (@l ayer)

These processes activate / deactivate a square (x,y,width,height) in the view of the specified layer.

Process name: tui.activate(@layer,integer,integer) (@l ayer)
Process name: tui.deactivate(@layer,integer,integer)(@layer)

These processes activate / deactivate a coordinate (x,y) in the view of the specified layer.

Process name: tui.connect(@layer)(@layerholder)

This process creates alayer holder and connectsit to the specified layer. A referenceto thelayer holder is
returned. When the socket of this processisfreed, thelayer holder and dl layers attached are removed. The
visible part of the layerholder will be the object size given in the process that connectsthe layer to the
layerholder

B. Visscher

Page 69

BOSS Resources BOSS July 2001

Process name: tui.connect(@layer)(@screen)

This process creates a screen and connectsiit to the specified layer. A reference to the screen isreturned. If the
socket of this processisfreed, the screen isremoved and disconnected from the layer. The size of the screen
will be the object size given in the process that connects the layer to the layerholder.

Process name: tui.out(@screen,bool ean)(@screen)

Process name: tui.out(@screen,byte)(@screen)

Process name: tui.out(@screen,integer)(@screen)

Process name: tui.out(@screen,float)(@screen)

Process name: tui.fill(@screen,integer)(@screen)

Process hame: tui.out(@screen,string)(@screen)

Process name: tui.out_newline(@screen)(@screen)

These processes are used to write a specific data type to the specified screen.

Process name: tui.clear(@screen)(@screen)

Clears the pecified screen.

Process name: tui.color(@screen,byte)(@screen)

Setsthe color of the text written to the specified screen

Process name: tui.cursor(@screen,int,int)(@screen)

Setsthe cursor at a specific (x,y) coordinates of the specified screen.

Process name: tui.scrolldown(@screen)(@screen)

Scrollsdl text in the specified screen oneline up.

Process name: tui.out_error(nil)()

Writes any data of the in-port as a byte sequence to the error screen, followed by anew line character.
Process name: tui.out_error(integer)()

Writes an integer followed by anew line to the error screen.

Process name: tui.keyboard()(byte[4])

This process may only be opened once. It returns the keyboard status and any key pressed. The lower two

bytes hold the ASCII code. The higher two bytes contain the status of the keyboard led and the status of the
shift, control and alt keys.

B. Visscher Page 70

Application design, perceptron BOSS July 2001

13 Application design, perceptron

The dependency flow model is designed to be applicable in any application domain. The mode has some
strong resemblances to an existing model, the dataflow model. A sub section of thismodel is used for neural
networks. In theory, this subsection is dso a subsection of the dependency flow model. This chapter discusses
the complete design, implementation and test results of a perceptron.

13.1 Design

The design process within BOSS
should lead directly to the
implementation. This section givesan
example of adesign processof a
perceptron that leads to the Per ceptron
implementation.

Training

Xi

X5
Wy
W,
W,

13.1.1 Perceptron - = - ~
P R

Atthe highei level, aperceptron Figure 13-a perceptron asa black box process

lookslikefigure 13-a. Out-ports 1-3

contain thevalues of W. Thisvaue

must only be sent to the port when W is changed. Out-port O contains Y’ (= Wo + Wy * X+ W, * X,)whichis
the output function of the neuron.

£

] Y,

Figure 13-b perceptron as a white box process

B. Visscher Page 71

Application design, perceptron BOSS July 2001

Thein ports of the perceptron socket are X; and X, (with Y if the network istraining) to create Y’ . In-ports 2-
5 are used to load specific W values (if they differ from the existing once, the are also sent to the out-ports. In-
port 6 is used to determine if the network istraining or not. All ports use the integer type except Y, Y’ and
Training, which use the boolean type. Figure 13-b shows the detailed version of the perceptron of figure 13-a.
Two new sockets are introduced, the weight and base. Both of them are discussed in the sections below.

13.1.2 Perceptron weght

The weights socket has the following behavior. W, is assigned arandom - = i
weight and is put on the out-port W,. When aW, isintroduced at in-port 1, x <
thisvalueisused and if it changes from the W, that exists within, the new
vaueisput on out-port 1. If X; ispresent at in-port 0, thisvalueis :
multiplied with W, and sent to out-port 0. The process then waitsfor (Y-Y’) We ght
to cdculate anew W; according to the formula: Wi pey = Wi ga + X; * (Y-
Y’). If the new W; vaue differs from the old, the new W; vaue is written to
out-port 1. Z =
*
Xi Wi Y=Y") g
I
Figure 13—c perceptron
weight asblack box

v
w

Figure 13—d perceptron weight asa white box

B. Visscher Page 72

Application design, perceptron BOSS July 2001

13.1.3 Perceptron base

X g
The base of the perceptron holds a socket that determines the training factor ;_ =
(Y-Y")and Y'. Todothisit needsthe sum of al Xi*Wi, aY vaueand a N 8 5
boolean telling the processif the network istraining or not. F
AXi* Wi Training Y Ba_%
> 3
>z
Figure 13—e perceptron base
asblack box

(Y-y)

<

Figure 13 perceptron base aswhite box

1314 Resourcefor reading from/writingtoafile

BOSS does not provide facilities, to read from afile or to write to afile. To get the results from the perceptron,
asmpleresourceis created to handle these file operations. It consists of four different processes, aread
process and awrite process for ether integer or boolean. These processes are connected to the in-ports and

out-ports of the perceptron and with this, all data going into the perceptron are read from filesand al data
coming from the perceptron are stored.

File b fileh, b_filecpp
Process name: fileread(nil)(<T>,sgnd)

Opensafilewith thenameat in-port O. It reads all the integers/ booleans from that file and when the end file
isreached, asigna is sent at out-port 1. Thefilewill automaticaly close when the socket is freed.

Process name: filewrite(nil, <T>,sgna)()

Opensafilewith the name at in-port 0. When datais sent to in-port 1, thisis added in that file. When the
socket is closed or when asignd is sent toin-port 2, thefileis closed.

B. Visscher Page 73

July 2001

BOSS

Application design, perceptron

and one for the XOR. In table 13-1, each of these setsis given and if aW vaue changed, the new W vdueis

Three learning sets were crested for three different functions. One training set for the AND, one for the OR
given.

13.2 Resultsof AND, OR and XOR

Table 13-1 trainings sstsand results

AND

XOR

OR

Wo Wi W,

-1

-1

-1

X2 Y |Y

X1

Wo W; W,

-1
-2

-2

X2 Y |Y

X1

Wo W; W,

Y (Y

X2

X1

Table 13-2 weightsto create a specific function in the per ceptron

Function | WO | W1 | W2

Or

And

Xor

Page 74

B. Visscher

Application design, perceptron BOSS July 2001

13.3 Discusson of theresults

The results that were obtained with this experiment have no distinction from the valuesfound in literature. In
thetraining sets of the OR and AND function, the values of W do not change after correct values have been
found. For the XOR training s&t, no vaues are found and as the results show, never will be because of the
reoccurring sequence of the Wy, W; and W, valuesin training. Since the XOR function is part of the non-
linear separable class, this function can never be learned by the perceptron that uses linear separation to
distinguish between TRUE and FALSE.

134 Evaluation of thedesgn processin BOSS
134.1 Desgn and implementation of a dependency flow networ k

Theimplementation of a perceptron in BOSSisagood illustration of how designing a program looks like. It
garts at the top level by specifying how the complete process should work. Thisis done for the perceptron in
section 13.1.1 specifying how the perceptron process looks like by specifying the in-ports/ out-ports and the
behavior the process should have with those data. In this stage of the design, the program isimplicit and the
processitsalf isablack box process. The next phaseistrandating thisimplicit declaration of the processinto
an explicit one by filling the black box with sockets, channels and congtants. This white-box may in turn hold
sockets of elther resource processes or sockets that are black box processes. For each of these black box
processes, the same design sequenceis used until finally all processes are resource processes.

In the implementation of the perceptron, the white box process of the perceptron held two black processes, the
perceptron base and the perceptron weights. Both processes where implemented using the same approach as
for the perceptron. This smple way of designing aprogram proved in this simple case to be very straight
forward and very effective. For complex processes, it will be more difficult to describe the complete
interaction pattern however, dueto the lack of side effects, dl interaction is made visible and easier to manage
than in any other language.

Programming the dependency flow network would be an easy matter if agood design tool existed. Thisis
however not the case and programming a DFN is done by cresting a dynamic data structure. This method of
programming is error encouraging and labor intensive. Connecting channels with the use of only the relative
index makes this a hard thing to do. When designing the perceptron, diagrams werefirst drawn on a piece of
paper. When the DFN |ooked right, numbers were assigned to each socket and each channel. These were then
entered into the dynamic data structure.

The perceptron base DFN represented in a dynamic data structure:

test &= program[0] .reserve(DeeDee Size);
test &= program[0][DeeDee_Name].write(base(integer,bool ean,bool ean) (bool ean,integer)");

test &= program[0][DeeDee In_Ports].reserve(3, base_sze(number)); // number of In ports Master (Out dave)
((number)program[0][DeeDee_In_Ports].get(0)) = base_size(int);

((number)program[O][DeeDee _In_Ports].get(1)) = base_size(boolean);

((number)program[0][DeeDee _In_Ports].get(2)) = base sze(boolean);

test &= program[0][DeeDee_Out_Ports].reserve(2, base size(number)); // number of Out ports Master (In dave)
((number)program[0][DeeDee_Out_Ports].get(0)) = base_size(boolean);
((number)program[0][DeeDee_Out_Ports].get(1)) = base_size(int);

test &= program[0][DeeDee_Const_Ports].reserve(3); // Number of congt ports Save (Out dave)
test &= program[0][DeeDee_Const_Ports][0].write((number) 0);

test &= program[0][DeeDee_Congt_Ports][1].write((number) 1);

test &= program[0][DeeDee_Const_Ports|[2].write((number) -1);

test &= program[0][DeeDee_Sockets].reserve(11); // number of dave sockets
test &= program[0][DeeDee_Sockets]|[0].reserve(DeeDee_Socket Size);

B. Visscher Page 75

Application design, perceptron BOSS July 2001

test &= program[0][DeeDee_Sockets][O][DeeDee_Socket Name].write("integer.>(integer,integer)(boolean)");

test &= program[0][DeeDee_Sockets|[1].reserve(DeeDee_Socket_Size);

test &= program[0][DeeDee_Sockets|[1][DeeDee Socket Name].write("flow.hold(integer)(integer)");

test &= program[0][DeeDee_Sockets][2].reserve(DeeDee Socket Size);

test &= program[0][DeeDee_Sockets|[2][DeeDee_Socket Name].write(*boolean.=(bool ean,bool ean) (boolean)™);

test &= program[0][DeeDee_Sockets][3].reserve(DeeDee _Socket Size);

test &= program[0][DeeDee_Sockets][3][DeeDee_Socket Name].write(*bool ean.or(bool ean,boolean) (boolean)™);

test &= program[0][DeeDee_Sockets]|[4].reserve(DeeDee_Socket_Size);

test &= program[0][DeeDee_Sockets|[4][DeeDee_Socket Name].write(" boolean.not(boolean)(boolean)™);

test &= program[0][DeeDee_Sockets][5].reserve(DeeDee _Socket Size);

test &= program[0][DeeDee_Sockets|[5][DeeDee_Socket Name].write(*flow.switch(boolean,integer)(integer,integer)");
test &= program[0][DeeDee_Sockets][6].reserve(DeeDee Socket Size);

test &= program[0][DeeDee_Sockets][6][DeeDee_Socket Name].write(flow.merge(boolean,integer,integer)(integer)");
test &= program[0][DeeDee_Sockets]|[7].reserve(DeeDee_Socket_Size);

test &= program[0][DeeDee_Sockets|[7][DeeDee_Socket Name].write("flow.hold(integer)(integer)");

test &= program[0][DeeDee_Sockets][8].reserve(DeeDee _Socket Size);

test &= program[0][DeeDee_Sockets|[8][DeeDee_Socket_Name].write("flow.hold(integer)(integer)");

test &= program[0][DeeDee_Sockets]|[9].reserve(DeeDee _Socket Size);

test &= program[0][DeeDee_Sockets|[9][DeeDee_Socket Name].write("flow.hold(integer)(integer)");

test &= program[0][DeeDee_Sockets|[10].reserve(DeeDee_Socket_Size);

test & =program[0][DeeDee_Sockets|[10][DeeDee_Socket Name].write("flow.switch(bool ean,bool ean) (bool ean,boolean)");

test &= program[0][DeeDee_Channels].reserve(21); // number of dave channels
test &= program[0][DeeDee_Channels][0].channel (5,0,NIL,2); // merge -> o1
test &= program[0][DeeDee_Channels][1].channe (NIL,0,0,0); //i0->>

test &= program[0][DeeDee_Channels][2].channel (NIL,3,1,0); // c0 -> hold

test &= program[0][DeeDee_Channel§|[3].channel(1,0,0,1); // hold -> >

test &= program[0][DeeDee_Channels][4].channel(0,0,NIL,1); // > -> 00

test &= program[0][DeeDee_Channels|[5].channel(0,0,2,0); // > -> =

test &= program[0][DeeDee_Channels][6].channd (NIL,2,2,1); // i2-> =

test &= program[0][DeeDee_Channels][7].channel (NIL,1,4,0); // i1 -> not

test &= program[0][DeeDee_Channels|[8].channel(10,1,6,0); // switch -> merge
test &= program[0][DeeDee_Channel§|[9].channel(2,0,3,0); // =-> or

test &= program[0][DeeDee_Channels|[10].channel(4,0,3,1); // not -> or

test &= program[0][DeeDee_Channd s][11].channel(3,0,5,0); // or -> merge

test &= program[0][DeeDee_Channels][12].channel (NIL,3,7,0); // cO -> hold
test &= program[0][DeeDee_Channelg|[13].channel(7,0,5,1); // hold -> merge
test &= program[0][DeeDee_Channels][14].channel (NIL,4,8,0); // c1 -> hold
test &= program[0][DeeDee_Channels|[15].channel(8,0,6,1); // hold -> merge
test &= program[0][DeeDee_Channels|[16].channel(6,0,NIL,2); // merge -> ol
test &= program[0][DeeDee_Channel|[17].channel (NIL,5,9,0); // c2 -> hold
test &= program[0][DeeDee_Channels|[18].channel(9,0,6,2); // hold -> merge
test &= program[0][DeeDee_Channels][19].channel(NIL,2,10,2); //'y (i2) -> switch
test &= program[0][DeeDee_Channels|[20].channel(3,0,10,0); // or -> switch

134.2 Implementation of aresource process

Onemajor problem that was uncovered with this application is the lack of certain resource processes. In the
case of the perceptron, it was hecessary to write the output of the perceptron processinto files and processit
further to be incorporated into this report. For this reason, four new resource processes were created as
described in 13.1.4. Thiswasdonein avery short time and no additiona problemsin the smulation software
were found. This shows that adding new resource processesto BOSS, isasimple matter and can bedoneina
short time without having to take the rest of the system into account. Thisistrue for the smulation as
implemented and should betruefor thefind system.

Theimplementation of the file resource was donein C++ asthe rest of the smulation. It is however possible

to link any object file into the C++ code. With this construction, it is possible to incorporate any procedure
into BOSS to create maximum efficiency for that process.

134.3 Teding dependency flow networks

With all programs, it isimportant to test if the program doeswhat is required. Dependency flow networks
provide an idedl testing ground to do this. Every process can be tested completely separate from other

B. Visscher Page 76

Application design, perceptron BOSS July 2001

processes without the risk of any interaction between them. The only interaction between processesis done by
channels.

Datathat streams from one process to another over the channels can be made visible and debugging processes
can dlow the user to control the data stream. This may be done by introduced specific test values at any point,
synchronizing a data stream with a button on the screen or writing the contents of achannd to the screen. By
having this complete control over the dependencies, every aspect of a process may be tested.

Other processes that check congtraints between data streams may aso be developed. Thiswill make processes
more reliable and detect errors during programming and running. It may even be used for implicit
programming | etting process automatically be created just by specifying the pre- and post- conditions.

Since aprogram consists out of many processes, searching for errors means finding a process. The previous
mentioned debugging processes can dl be used to do this. Searching for the bad processesis a smple process
of eimination.

B. Visscher Page 77

Comparison BOSS July 2001

14 Comparison

This chapter discusses how the new programming model compares to other existing ones. It concentrates on
the aspects of completeness, evaluation speed, amount of side effects and simplicity. It is not an attempt to
show that the dependency flow paradigm isthe most fundamental paradigm by reducing al other languagesto
it but it will show that all programs can be executed on the DDM without losing any speed and in most cases
gain asgnificant amount. This chapter ends with a speed comparison of the implemented DDM to the
theoretical one.

14.1 Universal programming languagetheorem

A programming language is called auniversal language if al problemsthat can be solved by acomputer, can
be solved in the language. This theorem is one of the most important in programming languages. It shows that
one universal language can never solve problemsthat cannot be solved by another universal language. The
ideathat one language can therefore be better or worsein that it can solve problemsis only afigment of our
imagination.

To show that language A isuniversd, it isonly necessary to reduce one other universal language B to
language A. With this reduction of B to A, it is shown that al problemsthat can be solved in that language B,
can aso be solved in the language A and language A must therefore be universa because language B was
universal.

One of the problemswith the universal programming theorem isto determineif a problem can be solved. As
far as our current knowledge goes, there is no way to prove that alanguageis universal other than to reduce
the lambda calculusto it. This calculus only has a substitution (mapping) and recursion (iteration + fifo queue)
init. With the use of only these two operations, al current problemsin computer science that can be solved
may be solved.

It would be atrivia exercise to show that the BOSS language allows resources for substitution and recursion.
It istherefore possible to reduce al universa language to BOSS (and vice versa). The BOSS languageis
therefore auniversa language that can solve any problem that is solvable by computers.

14.2 Comparison to other paradigms

This section discusses how BOSS relates to existing paradigms. It starts with the most popular paradigm of
iterative programming and ends with the paradigm that is most similar to the dependency flow networks, the
dataflow networks.

1421 Iterativeparadigm

The most popular language class, are languages based on the iterative paradigm. These languages focus on the
ingtruction stream. The program task is performed by instructions that change variablesin memory. These
changed variables are then used in other pieces of the program that eventually send this data to the screen,
printer or storage media. Iterative languages are therefore completely based on side effects.

Managing side effectsis adifficult task. Memory leskage, crashing programs by writing into code segments
are dl examples of side effects that have gone wrong. When programs grow more complex and more side
effects are present, the stability and maintainability of the programs drops. Programming large programs with
iterative languages can therefore only be accomplished at tremendous costs.

The current way to manage the reliability and reduce cost is by the introduction of objects. Each objectisa
collection of side effects acting on the same object (data structure). Despite this major advance, the older
problems of maintainability, reliability and the accompanying costs are reduced but not gone.

B. Visscher Page 78

Comparison BOSS July 2001

BOSS does not rely on side effects. Everything that needs to be done and every dependency between
processes are incorporated in the dependency flow networks. Thislack of side effects solves the problems of
maintai nability and rdiability in one stroke without losing any ability. The costs to maintain a dependency
flow network should therefore be much lower than the cost to maintain a program made with an iterative
language. The current implementation does not support data structures like an object, but it can be crested
with the reference data type. The crestion process of an object can also be used for itsterminated. When the
processis removed, the object automatically deleted thus creating a fail-safe system for garbage collection and
removing any chance of memory leskage.

14.2.2 Functional paradigm

The functional paradigm is an attempt to reduce side effects to aminimum. Variables that are used within the
function are passed asinput variables and the function transforms these input variables into one output
variable. The evauation of the function can happen in two different ways, lazy evaluation and eager
evaluation.

Evaluating the Expression: and(f(1),0(2))

Lazy evaluation
Evauate(and(f(1),9(1))
Evauate(f(1))
Evaluate(1)
Evauate(and(FALSE,g(1) Evauate and(TRUE, g(1))
Evauate(FALSE) Evauate(g(1))
Evauate(1)
Evaluate(and(TRUE,TRUE)) Evauate(and(TRUE,FALSE))
Evauae(TRUE) Evauate(FALSE)
Eager evaluation
Evaluate(and(f(1),9(1))
Evauae(f(1),9(1)) (pardle evauation of both f(1) and g(1))
Evauate(1,1) (paralld evauation of both 1 for f(1) and 1 for g(1))
Evduate(f(1),9(1)) (paralld evauation of both f(1) and g(1))
Evauate(and(TRUE,TRUE)) Evaluate(and(TRUE,FALSE)) Evauae(and(FALSE,TRUE)) Evauate(and(FAL SE,FALSE))
Evauae(TRUE) Evaluae(FALSE) Evauate(FAL SE) Evauate(FALSE)

The advantages of lazy evaluation over eager evaluation, isthat less processor power is heeded. This makes
lazy evaluation very suited for systems where processor time is expensive. Eager evaluation is more suited for
systems with multiple processors where the evauation of different expressions may be done by different
processors. Eager evaluation will result in faster programs but at the expense of unnecessary use of processor
time therefore, if processor timeis sparse, eager evauation will result in dower programsthan lazy evaluation
becauseit hasto do less. If paralel evaluation exists, eager evaluation will result in faster programs than lazy
evauation.

BOSS uses a short form of eager evauation. It does not try to eval uate the complete expression in the
beginning but instead, it starts evaluating everything that hasinput variables present just like the dataflow
machines. In the case of the previous expression the eva uation would look like:

Evauae(f(1),9(1))
Evauate(and(TRUE,TRUE)) Evaluate(and(TRUE,FALSE)) Evauate(and(FALSE,TRUE)) Evaluate(and(FAL SE,FALSE))
Evauae(TRUE) Evauate(FALSE) Evauate(FALSE) Evauate(FALSE)

Note that the first step of evaluation the program expressionsin functional languagesis skipped in the
dependency flow eva uation and with this, the dependency flow language dway's use less eval uation steps
than functiond languages. To show this, an evauation of seven successor functions §(x) is made and eager
evauation is compared to the BOSS eva uation. A functiona language starts by evaluating the whole
expression and reduces the number of compounded functions by one until an expression isfound that can be
evaluated. If thisisthe case, the previous expression is eva uated and by this, evaluating in the opposite and all

B. Visscher Page 79

Comparison BOSS July 2001

expressons that could not be evaluated are now being evaluated. BOSS starts immediately at the point where
expressions can be evaluated and with this reducing the total number of steps. In complete programs, this
reduction more than halves (n/2-1) the total number of evaluation steps as the example below demonstrates.

Function language BOSS
Evauating the expression : (S(S(SI(YS0))))))) with (x) =x+1
E((S(SSLSLSOMN)) E(0)
SEEECEEW)))) E(«(1)
SECCECL))) E(«(2)
E((s(s(s(0))) E(«3)
E((«(s(0)) E(s(4)
E(=0) E(«9)
E(«(0) E(«(6))
E(©)
E(«(0))
E(«(1)
E(s2)
E(3))
E(«(4)
E(s(5)
E(«(6))

Another mgjor disadvantage afunctiona languagesisthe amount of brackets needed to program afunction. A
graphical representation of the languages solves this, which is clearly demonstrated by the language Clarity.
Allegro il usesthis brackets congtruction and is therefore very sengtive to errors with brackets. Since BOSS
does not use brackets, thisis never aproblem.

14.2.3 Dataflow paradigm

The dependency flow modd has many similarities with the dataflow model. The diagramslook aike and
some processes are the same. There are, however, some differences that should make the dependency flow
model far more applicable than the data flow model and faster in designing and executing programs.

Dataflow languages dways present a standard set of processesthat are available in the system. If new
processes are desired, they may only be built with the use of exigting ones, and thus creating the need for
device driverswithout the possibility to communicate to hardware directly. Thisis because the process
Linking in current Dataflow systems, isdonein pre-run time. This prevents the ability to adapt to the
environment with the available resources trough their processes and names. Without this runtime namespace
management, only standard building blocks can be used.

Dataflow models dways use the following firing rule; a processis started when all variables of the processare
present at itsinput connections and dl output connections are ready to receive the output data. With thisrule,
it isnot possible to creste an object like the layer in 13.3.9. In the dependency flow model, a processis started
when at least one in-port or one out-port changes status. The process can determine for itsdlf if dl the
necessary variables are present. This makes the passtrough timein afor example, boolean OR operation
fagter. The dataflow model always needed both input variables, whilst the dependency flow mode only needs
one TRUE at one of the inputsto create the output. This differencein firing rule makes abig impact on the
rest of the system and the ability to model programs.

A third mgjor difference with dataflow modds, isthe ability to connect more than one channdl to an in-port
and more that one channd to an out-port. Dataflow modds only have the ahility to connect one channel and
use switches and merges to accomplish the same task. These extranodes created extradelays and less
readable programs.

Besides the differences, the dependency flow model aso hastwo new structures. The first isthe resource, a
collection of processesthat are managed in the resource to create optimal usage of that specific resource. The
resource structure a so provides amethod of combining the existing methods and paradigms with the
dependency flow method. Existing computer systems can be used and integrated into BOSS as a resource and

B. Visscher Page 80

Comparison BOSS July 2001

by sending a complete program to that resource during socket reservation, al programsthat exist on that
computer system can be incorporated into BOSS without losing any speed.

The second structure that is newly introduced with the DDM isthe owner structure. This structure guarantees
aclean removal, crestion and reshaping of processes and aclear basis on which to build a security system.
Theintegrity of individual processesis maintained but the versatility to arrange and rearrange processesis not
lost. Thisowner structure was never used and due to the lack of it, dataflow machines never had the ability to
reshape processes in run time, which made dl dataflow programs static.

In the time the dataflow was introduced, many variants were thought up and implemented. The size of grain
(complexity of each nodes) was changed. Depending on the network, either large grains or small grainswere
used. Thiseventualy led to the current models of multi threading where one thread depends on the data of
othersand waitsfor it. Thisideais dso called agent programming where amultitude of agents communicate
with each other but dl having their own memory and tasks. These ideas can al be found in the dependency
flow model. An agent, thread (and even object) is a process that sends messages to other processesviaa
channel. The use of processes allows for avariable grain that may be adapted to the underlying network to get
the best possible performance.

14.3 Speed

Speed has aways been one of the most important aspects of computer science. Millions of dollars areinvested
every month to create faster chips, faster memory and with these faster hardware, new time constrained
software can be creasted. To compare the different paradigmsin speed to each other, two scales are used, the
amount of work that has to be done to evaluate a program and the number of evauation steps.

1431 TimeversusWork

Thework holds the number of evauations that have to be donein total and equalsthe sum of all parallel
evauations. Thetime holds the number of parallel evaluations. To compare the strategy of the different
programming paradigms asmall program with the same function in al three paradigms. The number next to
the program isthe number of parale evauations (work) at that evaluation step (time).

Thefollowing programssolvethesum: 1+2+3+4+5+6+7+8

Iterative program Functional program (Eager + Lazy) Data/ Dependency flow networks
i=1 1 +(+(+(1,2),+(3,4)),+(+(5,6),+(7,8))) 1 +(1,2) +(3,4) +(5,6) +(7,8) 4
i=i+2 1 +(+(1,2),+(34) +(+(56),+(7,8) 2 +(3,7) +(11,15) 2
i=i+3 1 +12) +(384) +(56) +(7.9 4 +(10,26) 1
i=i+4 1 12345678 8
i=i+5 1 +1,2) +(384) +(56) +(7.8 4
i=i+6 1 +(37) +(11,15) 2
i=i+7 1 +(10,26) 1
i=Zi+8 1
Table 14-1 work/steps analyses of adding numbers

Syle Adding 8 Adding 8 Adding N Adding N

Work Time Work Time
Iterative 8 8 N N
Functional 2 7 2*N*“ogN [2* qogN +1
Dependency flow 7 3 N—1 ZogN

B. Visscher Page 81

Comparison BOSS July 2001

The example showsthat in this case the dataflow and dependency flow approach yields the result in the
shortest time and with the least amount of work. It can be shown that in general the dependency flow yields
theresult just asfast as an iterative or functiona program but in most cases give the result faster. How much
faster depends on how many evaluations may be done concurrently in the program and can be done
concurrently by the number of processors present.

Some agorithms exist that give results fagter at the expense of extrawork. Whether these algorithms are faster
than their sequentia counterpart is determined by the amount of processors used. A pardlée implementation of
the DDM would give agood testing ground to see where the paralldl implementation is preferred over the
iterative implementation.

1432 Cods

In the early years of computer science, memory and processors were very expensive. Every step wastherefore
taken to reduce the amount of memory and processors needed. The current programming models ill try to
reduce the total amount of processors and memory and with this, reduce costs. Nowadays, memory and
processors do not form such a costly barrier anymore. Memory isalmost given away and processors are chegp
enough to be used for heeting elements. Trying to reduce memory usage or reduce the amount of processors
are therefore foregone goas. The only goal that remainsisto minimize thetime it takesto calculate results.

BOSS was created to give results and give them fast. It uses more memory than conventiona systems and,
due to the eager evaluation, more processing power. The processing power used, can be distributed over a
large number of processorsto create a significant peedup. The eager evaluation resultsin extra unnecessary
work for the processors but since this extrawork can always be done concurrently with other processes, no
timeislost in getting the actual results when enough processors are available.

14.4 Thesdmulation

One of the main objectives with the dependency flow networks wasto give resultsin the least amount of time.
Thetheory of 14.4.2 suggeststhat thisis achieved. However, the smulation isimplemented in an iterative
language. It uses therefore only one processor. Because of this, the extra processing time used to evduate
unimportant expressions due to the eager evauation ruleis done at the cost of giving the result fast. This
resultsin an implementation that will always use more processing power, more memory and moretimeto
give aresult than the same program in an iterative language or functiond language with lazy evauation. This
problem is due to the limitation of the iterative language in which the smulation of the DDM has been
implemented and in ahardware implementation of the DDM, thiswill not be the case and the actua speedup
of the DDM over theiterative and functiona approach should be the same as the theory.

B. Visscher Page 82

Conclusion BOSS July 2001

15 Concluson

Theinspiration used to create BOSS may be found in avariety of other paradigms. The dependency flow
networks show a great resemblance to dataflow networks. The interest in these products started in the 60ies
and many manufacturers and universities are &ill active on the field of dataflow systems. Because of this
interest, avariety of dataflow machines and design tools has been developed and is being devel oped.

The smulation of BOSS provides a powerful and stable dternative. Thelack of adesign tool and the limited
number of implemented resource processes withhold the true performance of the system. The implemented
resource processes provide enough functionality to creste a Smple program as demonstrated by the
implementation of the perceptron but the absence of aresource to handle user interaction or network
communication isamajor drawback that hasto be solved in the near future.

Designing and implementing programs in dependency flow networks, makesit much eesier to program for
BOSS than with the use of existing methods. The integration of various stages of the design processinto one
diagram style, make programming easier to manage and faster to develop.

Thetota lack of side effects, the visualization of processes and the autonomy of each process, makes errors
easier to find. The ability to reshape processesinto any form without any limitation on the input and output
makes the errors easier to correct. These two abilities combined make BOSS an excellent environment to
creste stable and well designed applications.

The speed of adependency flow network in the smulation is much dower than what can be achieved by
programming the same program in another languages. Aswith al smulations, it is not the finished product.
Theimplementation of the simulation was only the first step towards a dependency driven machine made with
hardware components and when thisisimplemented, a reasonable comparison can be made that will show,
based on theory, a significant speedup.

The complete autonomy of every resource and the ability to integrate information about the resource into the
resource and the standard interface toward the rest of the system, makes BOSS agood system for the basis of
true plug and play hot swappable hardware without the use of any device drivers. With the autonomy of the
hardware components guaranteed, the door is open to avariety of gpplication domains where failure of any
type has to be avoided.

The smulation has great potential and with development tools and extra resource processes, this potential can
be further explored. The implementation of the DDM and resources into speciaized hardware components
will probably creste avery fadt, easy, reliable and achievable computer system that may compete with existing
sysemson al fronts.

B. Visscher Page 83

Recommendations and future developments ~ BOSS July 2001

16 Recommendations and futur e developments

Theimplementation of BOSSistill initsinfancy. To creste asystem that lives up to theory and usesthe
potentia fully, many more resources have to be implemented and problems solved before the system can be
made from hardware components. This chapter discusses the most important resources that need to be
implemented in the first section. The second section discusses the problemsthat are still open and have to be
addressed. The third section discusses a possible road to follow that ends with the hardware.

16.1 Resources

This section discusses some resources still needed in the BOSS system to make programming easy and
flexible. 1t also discusses severd processes of the LinkLoader and the BOSS extension that also haveto be
implemented in the future.

16.1.1 LinkLoader processes

The LinkL oader needs some processes to open / close channds, reserve / free / suspend / activate sockets or
link load DD’ sdirectly. These processes are necessary if a process wants to open another process a the same
ownership level. These processes are needed for shell programsto create an operationa operating system. It is
currently only possible to give the DD’ s at startup as parameters on the command line.

16.1.2 Security procesesin theBOSS extenson

Oneimportant festure of the extension of the programming mode is still unused. The system is still not secure
and no measures have been taken to protect the system against mall use. The security processes that must be
implemented on every resource are apart of the BOSS extension and room has been Ieft to implement them.

16.1.3 Information processesin the BOSS extenson

Next to security, no processin the extension exists to give information. This feature will become more and
more important as the system matures. Thefirst processes that have been implemented are all discussed in this
thesis but to make future resources completely salf contained, they should also hold a manual. This manual
must include a description of the resource and of every process socket with its ports and every bit of
information needed to work with the resource. Thisinformation processis aso apart of the extension on the
programming model and may be implemented at any time.

16.1.4 Resourceto processgraphics

The text user interface resource as presented in chapter eleven, was only afirst test in cresting agraphical
interface with buttons, scrollbars, windows, menus etc. Screen objects are typicaly event driven (mouse click,
mouse over object etc.) and are therefore very easy to incorporate into the programming model in avery
naturd way.

16.1.5 Resourcefor user input

The system presented thus far has very limited, almost no, interaction with the user. The only way for the user
to interact with a process was with the user of the tui.keyboard process (12.3.9). Of this keyboard process,
only one socket may be reserved and no scheme was thought up to share the keyboard among different
processes. This sharing will probably have to be done in some way together with the graphic resource
(16.1.4). Processes for other user input devices like amouse, light pen or touch screen, aso haveto be
implemented to make programs that interact with users.

B. Visscher Page 84

Recommendations and future developments ~ BOSS July 2001

16.1.6 Resourceto handletime processes
The example DFNs given in this report were al time independent. In practice, programming languages must

have some timing processes. A resource to handle time events must il be implemented. This resource must
have processes that send asignal every severd seconds, measure the time between two signals etc.

16.1.7 Resourceto handlememory requests
One of the mgjor differences between a DFN and atraditional language is the complete absence of pointers. It

is however, possible to create amemory object in aresource with the reference data type of aDFN and use
this memory object to store datain or to retrieve data from.

16.1.8 Resourceto handlefiles

The current implementation for file management is very limited. New resource processes should be made to
open, close, read and write to files, together with processes to control the directory structure.

16.1.9 Resourcetocommunicatewith serial / paralld / USB ports

A resource that handles the communication to these portsis necessary if printers can ever be accessed in
DFNsor if amodem can ever be used.

16.1.10 Resour ceto communicate with a networ k

Thefind and one of the most important resources that <till hasto be made, is aresource that alows multiple
DDMsto be connected together into a communi cations network like Ethernet or Token ring. Thismay be
done on top of aTCP/IP, IPX/TPX or some other stack in two different ways.

One possibility isthat the network resource hides dl aspects of the network. This meansthat when reserving a
socket on the network resource, the target has to be known and sent aong with the reservation message to the
network resource, figure 16-a.

DDM DDM DDM

C z C z C z
| £| 4| 8 | 9| ¥ 8 = 5 %) ¢
g 3 o 5] g 3 o o] g 3 o 5]
251 > Py z 251 > Py z 251 > Py z
2 g & i 2 g & i 2 g & i
» | 8 g g 559 g S g é? : S ¢
gi 8 B 8 g 8 B 8 g 8 B 8
8 8 8

The second approach isto modd the communication network as a separate DDM. This approach isshownin
figure 16-b. The DDM provides enough facilities to be used as a communication layer in anetwork. The
BOSS extension may be implemented at every networking resource and al processes of the LinkLoader may
be implemented on every networking resource as the broadcast address.

Figure 16-a hiding the communications network

B. Visscher Page 85

Recommendations and future developments ~ BOSS July 2001

DDM DDM DDM
[[[
3 o [y 3 o [y 3 o

;i > i z ;i = & z ‘% - i g

- B £ & 5| B| £ & 5| B| £ &

Sl B 2| 28 B 8| 28 8¢

@ i @ i @ i
= = =
8 8 8

DDM

PRI

Figure 16-b network implemented as a dependency driven machine

16.2 Current and future problems

One of the problemsthat the LinkL oader faces is the mapping of aDFN onto the processes. Thisis currently
no problem because only one process exists with a specific name but in the future, it is possible that multiple
resources have the same processes or that the same processes may be found at different placesin the network.
The LinkLoader will then have to decide what process to use to make processing asfast as possible. Topics
like datalocality, scheduling, algorithm complexity, network timings, processtiming all become important
aspects of this decision that dl have to be incorporated into the mapping. Other aspects of availability of a
process socket, process starvation and socket migration may become part the scheduling processes occurring
on each resource.

16.3 Road ahead

Theroad to develop dl different eements as described in 16.1 isalong one. This section provides a guiddline
inthat process. It may be atered at any point if problems arise or different aspects become more or less
important.

One of thefirgt things that have to be made isasmple textual parser for dependency flow networks. This may
be very smple with no language feature other than a variable to represent a socket and channels connected
between those variables. It only hasto transfer aDFN in readable text into a DD that can be sent to the
LinkLoader. Thiswill make programming DFNs much easier and allow more complex DFNsto be created.

B. Visscher Page 86

Recommendations and future developments ~ BOSS July 2001

When asmpletext parser is created, the graphical user interface resource should be implemented to make
interaction with the user possible. Other resources for memory and file handling also have to be made at this
stage.

When all the resources have been implemented, it istime to use these resources and text parser to create a
development environment of DFN programs. Thismay be smpleat first but astime goes by, evolves bit by
bit. Starting out smple but evolving into a process database (with the use of the information processes as
described in 16.1.3) that find the name of a processfor you.

Concurrent a developing an environment is the development of a shell to manage the files, processes and
security features which also have to be implemented. This shell must be an interface of the DDM to the user
and dlow for DD’ sto belink loaded which means that the LinkLoader processes as described in 16.1.1 have
to be implemented.

Thefind step of the smulation is the implementation of the network resource. The adding of the network
resource will open up the problems of mapping processes by the LinkL oader, starvation and migration of the
processes by the BOSS extension.

If the smulation of the DDM proves to be a success, a hardware DDM should be constructed and at this point,
isshould be faster, more efficient, cheaper and more manageabl e than anything that exists. The smulation
should provide aflexibility in programming that is undreamt of at this point in time and the inherent paralle
nature of the language should open up awhole new world of gpplications and solutions.

16.4 Ideasfor a development and test environment

One step in the road ahead is the design of a complete design, devel opment, test and debug environment. This
section discusses severd ideas that may be incorporated into this application to make programming as essy as
possible.

1641 Draw area

One of the most important things that the development tool should haveis a place where dependency flow
diagrams can be drawn. Drag and dropping sockets into the draw area and drawing the channels between in-
ports and out-ports should al be done with the least amount of mouse movements and clicksto reduce
chances of suffering from RSI.

16.4.2 Documentation

Animportant aspect of software design is good documentation. This documentation should describe the
various aspects of each processin detail. With the integration of design stepsinto one environment,
documentation of each design step should aso be included. For dependency flow networks, this can be done
relatively smple. Every process should be described, each in-port and out-port should have its own label
where information may be added. The channels between the processes should dso have information
describing what flows trough it. With these information labels on every channel, port and socket, dl aspects of
every system can be fully described without the need for additional documentation about the network.

1643 Channdsand socketsin multiplelayer

If aprocess becomes more complex, the amount of channels and processes needed to create a process may
become so enormous that the program will look more like spaghetti than a program. The process will than be
very difficult to understand, test and maintain. To solve this problem, the designing tool should have the
ability to model a processinto different layers and different colors per layer. If, for example aneura network
isimplemented, one layer could be used for the forward phase in green and another layer for the backward
phase with alearning rulein yellow. Thisdigtinction in layers makesit possible to focus on the different

B. Visscher Page 87

Recommendations and future developments ~ BOSS July 2001

agpects of the process. With these multiple layers and information in every eement of the DFN as described
in 16.4.1, every aspects of any processes can be described fully without the need for additional documentation
about the process.

16.4.4 Processrepostory

Oneimportant aspect of software design isthe reuse of existing code. With reusing code, developing timeis
reduced and rdliability increases. Astempting asthis sounds, it does create another problem: finding a process.
For a development environment to be as efficient as possible, it must have some form of repository where dl
processes are included and where processes may be added, removed and enhanced. Based on the name of the
process and its description, a search can be made searching for sockets with a certain amount of in-ports/ out-
ports, size of ports and maybe even aimplicit description of anetwork can be given to find the network.

The BOSS system provides one place where al processes are gathered. Each process has a unique name and
within the name, the resource, the in-ports and out-ports are described. Thisinformation is sent to the
LinkLoader and based upon thisinformation, searches can be made to locate processes. Results from the
search can than be shown in a separate window and if a processis found, the process can be dragged to the
development area where the dependency flow networks are drawn.

1645 Processcreator

When designing a process, it isbound to happen that too much components are added and not even multiple
layers can order the network. In these cases, aprocess creator should be incorporated that works asfollows.
When several sockets are selected, these sockets are put into a new process and changed in origina network
into one black box socket. All channels connected to socketsin the new process and in the old one, should be
rerouted over in-ports and out-ports and with this, reducing the amount of channels and socketsin the original
process. This process creator should provide abig help in keeping the designs understandable.

16.4.6 Program overview

All processtogether in aprogram form ahierarchical structure. Depending on the placein the hierarchy and
the place of the calling processin the program, a processis either Link Loaded directly or when oneor all
parameters are present for that process. To make sure al socketsin a process can be reserved, check between
the different namespaces can be done showing cons stent processesin agreen color and inconsi stent processes
inred.

16.4.7 Tedingand debugging

Animportant step in programming is the testing and debugging of a program. During this phase, the program
istested whether it doeswhat isrequired or not. This approach may be done at any level. Processesthat check
for congtraints between data streams, processes that visualize data streams, processesthat let you control the
data streams and processes that introduce a set of variablesinto the system are dl examples of how a process
can be checked for errors.

16.4.8 Dialog creator

An important festure of development environmentsisthe ahility to create didogsfast. The DDM isan
excedllent basis on which to create dialogs since dl dialogs are event driven. When abutton is pressed,
something has to be done. When the mouse moves over an object, something hasto be done. This event
driven architecture of didlogs makesit very easy to connect processesto specific events. A tool with the
ahility to link the processesto the dialogs will reduce development time.

B. Visscher Page 88

Bibliography BOSS July 2001

17 Bibliography

Igor Aleksander and Helen Morton, “An Intruduction to Neural Computing”, 1995, ISBN 1-85032-167-1

Vipin Kumar, Ananth Grama, Ansul Guptaand George Karypis,” Introduction to Parallel Computing”, 1994,
ISBN 0-8053-3170-0

Roger S. Pressman,” Software Engineering, a practitioner’ s approach”, 1994, ISBN 0-07-707936-1
Robert Hecht-Nielsen,” Neurocomputing”,1991, ISBN 0-201-09355-3

Chrigtos H. Papadimitriou,” Computational Complexity”,1994, ISBN 0-201-53082-1

David A. Watt,” Programming Language Concepts and Paradigms’,1990,1 SBN 0-13-728866-2
H.X.Lin,"lecture notes Parallel mathematics Wi4017", TU-Ddft, 2000

Jurij Silc, Borut Robic and Theo Ungerer, " Asynchrony in parallel computing: from dataflow to
multithreading”, Parall. Distr. compu 1, 1998

G.R. Gao, " An efficient hybrid dataflow architecture modd”, Parall. Distr. compu 19, 1993
JP. Morrison, "Data Stream Linkage Mechanism”, IBM Systems Journd Vol. 17, No. 4, 1978

JP. Morrison, "Flow-Based Programming: A New Approach to Application Development”, Von Nostrand
Reinhold, NY, 1994, ISBN 0-442-01771-5

W.P. Stevens, "How Data Flow can Improve Application Development Productivity”, IBM System Journdl,
Voal. 21, No. 2, 1982

W.P. Stevens, "Using Data Flow for Application Development”, Byte, June 1985

K. Yoshidaand T. Chikayama, “A'UM, A Stream-Based Concurrent Object- Oriented Language’,
Proceedings of the International Conference on Fifth Generation Computer Systems, 1988, ed. ICOT

P. Newton and J.C. Browne,” The CODE 2.0 Graphical Parallel Programming Language’, Proc. ACM Int.
Conf. on Supercomputing, July, 1992.

T.Kimuraet d, “A Visud Language for Keyboardless Programming”, TR WUCS-86-6, 1986

Arvind and R. S. Nikhil, “ Executiong a program on the MIT tagged-token dataflow architecture.”, IEEE
Trans. Comput., 39(3):300--318, 1990

AddisT. R. and Townsend Addis, " The Clarity Manual” , Version 3.6.5, May 1996

B. Visscher Page 89

Bibliography BOSS July 2001

Sdlection of (Dataflow) languages and development environments

Sanscript http:/Aww.hallogram.com/sanscript/

Cube http://Amww.research.compag.com/SRC/personal/ng ork/cube.html
Telegraph http://telegraph.cs.berkeley.edu/

S« http:/Aww.lInl.gov/sisal/

PROGRAPH http:/Aww.prograph.it/

Labview http://www.ni.com/

Clarity http://www.sis.port.ac.uk/research/clarity/index.html

Sdlection of Dataflow machines

TIK http://mww.tik.ee.ethz.ch/Projects/proj ects.html
Manchester dataflow machine http://www.cs.man.ac.uk/cnc/dataf ow.html
Monsoon http://csg-www.|cs.mit.edu:8001/monsoon/index.html

Selection of activeresearch groups

Manchester Data-Flow Project http://www.cs.man.ac.uk/cnc/datafl ow.html
Ptolemy http://ptolemy.eecs berkeley.edu/

Dataflow research website http://www.imvs.ru/Dataflow/Contents.html

Earth http://www.capd .udel.edWEARTH/

Pebles http://www.cs.col ostate.edu/~dataflow/

Cheops http://cheopswww.mediamit.edu/projects/cheops/
Linda http://www.csyae.edu/Lindallinda.html

B. Visscher Page 90

Appendixes BOSS July 2001

18 Appendixes

Appendix A - Manual of smulation BOSS.EXE
Appendix B - DFDsof MOVERND1.DD

B. Visscher Page 91

Appendix A - Manual of smulation
BOSS.EXE

Minimum System requirementsfor BOSS.EXE

D0OS3.12

80386 processor

2 MB ram (configured as extended memory)
EGA display adapter

DPMI

Starting BOSS.EXE

To run BOSS, two things have to be present, the file BOOT.DD and a DPMI manager. When running under
windows (95,98,2000,NT), a DPMI manager is automatically available. When running under DOS, the DPMI
manager on the same floppy as BOSS.EXE must be put in the directory of BOSS.EXE.

BOOT.DD isasmall program that connects the keyboard to the screen and lets you quit when you hit the Esc
key on the keyboard. If BOOT.DD cannot be found during startup, the simulation is terminated. If another DD is
used than BOOT.DD, thereis no neat way to quit BOSS.EXE (only Ctrl-Break or Ctrl-Alt-Del).

BOSS has the ability to link load multiple DD’ s at the sametime. The DD’ s are specified by the arguments on
the command line. The DD that isthe first argument of BOSS, islink loaded first and executed for a short time,
then the DD that is second, third and so on. It is possible to link load the same DD more than once as the
examples shows.

Examples: boss moverndl1.dd movescrx.dd fibo.dd percept.dd moverndl.dd
boss moverndl.dd moverndl.dd moverndl.dd

boss perc-t.dd random.dd

When BOSS is executed without any arguments,
only an error screen and a green background is
visible. BOOT.DD isloaded and if akey is
pressed, the code is sent to the screen.

Error screen

DD Programs

boot.dd
Opens a keyboard socket and sends information Figurea-1 BOSSwithout any other DD
from the keyboard to the error screen. This

program is always needed to terminate

BOSS.EXE. Thisisdone by pressing the Esc key. BOSS will then terminate all slaves of the master owner
socket.

random.dd
Sends arandom integer to the error screen.

rndscr.dd
Creates aview in the center of the screen and fills it with arandom color and character.

fibo.dd
This program opens a screen in the center and sends the fibonachi sequence to it.

movescry.dd
Moves aview over they direction of the screen while filling the view with a random color and character.

movescrx.dd
Moves aview over they direction of the screen while filling the view with a random color and character.

moverndl.dd
Moves aview over the x and y direction of the screen.

movernd2.dd
Moves aview over the x and y direction of the screen while filling the view with a random color and character.

Per ceptron programs

When a perceptron is opened, Wy, W1, W, and the result
of the network (Y") are displayed on the screen. If Y’ is
TRUE, agreen color appears. If Y’ iSFALSE, ared
color is used. When any of the variables are updated, the
perceptron window is also updated and the results shown
in the window are always the last resuilts.

Four different programs have been created with the
perceptron. Each of them is described below.

perc-t.dd

This DD creates four independent perceptrons that
receive arandom integer from —127 to 127 on its X, and
X, (biasis 1) connections. The perceptrons learn that it Figurea-2 appearance of a single perceptron
aways hasto answer with TRUE.

perc-f.dd
This DD creates four independent perceptrons that receive arandom integer from -127 t0127 on its X; and X,
(biasis 1) connections. The perceptrons learn that it always has to answer with FALSE.

perc-rnd.dd

This DD creates four independent perceptrons that receive arandom integer from —127 to127 on its X; and X,
(biasis 1) connections. The perceptronstriesto learn arandom Y and is therefore unable to learn. As aresult, the
weights will therefore always continue to change.

per cept.dd

This program opens one perceptron. The various input datais read from files (w0.dat, wl.dat, w2.dat, x1.dat,
x2.dat, tr.dat and y.dat) and the output data is written to the screen and to files (w0.new, wl.new. w2.new and
y.new). Two data collections are available for the perceptron to learn the functions of AND and OR. Another
data collection of the XOR is available to show that data collections exist that the perceptron cannot learn.

Appendix B - DFDsof MOVERND1.DD

{ Random 1 }

N 80 N 25

—/
4+
—/
4+

(
[L ayer holder J v / v /
/ { Morebetmeen } { Movebetmeen }

0
0 True
Center l ter ‘ 0 OXFF34
| |
v VLV
Connect layer to layerholder J
/\

E-S|cacs

| L~

/
J

Fill

/-

Out(0)

	Preface
	Summary
	Contents
	Introduction
	Programming model
	DDM, Specification
	Choosing implementation
	Implementation of the DDM
	Extension on the DDM
	BOSS specification
	Implementation of BOSS
	BOSS Resources
	Application design, perceptron
	Comparison
	Conclusion
	Recommendations and future developments
	Bibliography
	Appendixes
	Appendix A - Manual of simulation BOSS.EXE
	Appendix B - DFDs opf MOVERND1.DD

		2001-07-19T23:03:59+0100
	Delft
	B.Visscher
	<none>

