Life Cycle Simulation using Bayesian Calculation

by Ferdinand Heru Utomo
Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices
Area of Application

Hybrid Distillation and Vapor Permeation Process

• Separation Process
• At a laboratory scale
• Pilot at Laboratory of Process Equipment, Delft University of Technology
Distillation Process

- Column
- Condenser
- Reboiler
- Container, water-rich
- Container, IPA-rich
Vapor Permeation
What is Life Cycle?

- Engineering
- Commissioning
- Production

Maintenance

Revamp?
- +Q
- +flexibility
- downtime
- -$ (+$)

Cause?
- +Q
- +flexibility
- downtime
- -$ (+$)

Production

Production
The Process Life Cycle

1. Process Design (using ASPEN)
2. Process Monitoring (using Honeywell, ERP, etc)
3. Costs, Maintenance and Effectiveness (using SAP)
Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices
Modeling Uncertainty

- Fuzzy Logic
- Statistical Probabilities (Bayesian Technique)
Why not Fuzzy Logic?

- Misunderstood the term ‘uncertain reasoning’
- No further facts examination
- Not wholly consistent
Bayesian Technique

in contrast…….

• Represents Conditional independence information naturally
• Represents joint probability distribution
• Use a well-known statistical formula, based on the formula:

\[P(E|H) = \frac{P(H,E)}{P(H)} \]
The Bayes’ Rule

\[P(E \mid H) = \frac{P(H \mid E) \cdot P(H)}{P(E)} \]

Finding the probability of the evidence based on the facts on the hypothesis when the conditional probabilities between the hypothesis and evidence is known.
Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- **Modeling a database for the process**
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices
Simulation Application

- simula database
- Bayesian model
- rules
- data handling
- Bayes network
- rule-based advice
- USER
Data Handling

ASPIEN
SAP
TestPoint

translator

simula
database
Coversion Example

<table>
<thead>
<tr>
<th></th>
<th>Display</th>
<th>PMIX</th>
<th>DIST1</th>
<th>DIST1</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Format:</td>
<td>MEM</td>
<td></td>
<td>PRHEAT</td>
<td>MIX</td>
</tr>
<tr>
<td>7</td>
<td>Substream:</td>
<td>MIXED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Mole Flow</td>
<td>KMOL/HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>IPA</td>
<td>0.000</td>
<td>0.000</td>
<td>31.641</td>
<td>30.829</td>
</tr>
<tr>
<td>12</td>
<td>WATER</td>
<td>0.000</td>
<td>174.498</td>
<td>25.888</td>
<td>174.700</td>
</tr>
<tr>
<td>13</td>
<td>Mole Frac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>IPA</td>
<td>0.100</td>
<td>0.000</td>
<td>0.550</td>
<td>0.150</td>
</tr>
<tr>
<td>15</td>
<td>WATER</td>
<td>0.900</td>
<td>1.000</td>
<td>0.450</td>
<td>0.850</td>
</tr>
<tr>
<td>16</td>
<td>Mass Flow</td>
<td>KG/HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>IPA</td>
<td>0.000</td>
<td>0.000</td>
<td>1901.479</td>
<td>1852.275</td>
</tr>
<tr>
<td>18</td>
<td>WATER</td>
<td>0.000</td>
<td>3143.634</td>
<td>466.377</td>
<td>3147.275</td>
</tr>
<tr>
<td>19</td>
<td>Mass Frac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IPA</td>
<td>0.270</td>
<td>0.000</td>
<td>0.803</td>
<td>0.371</td>
</tr>
<tr>
<td>21</td>
<td>WATER</td>
<td>0.730</td>
<td>1.000</td>
<td>0.197</td>
<td>0.629</td>
</tr>
<tr>
<td>22</td>
<td>Total Flow</td>
<td>KMOL/HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Total Flow</td>
<td>KG/HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Total Flow</td>
<td>CUM/HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Temperature C</td>
<td>116.058</td>
<td>100.000</td>
<td>111.053</td>
<td>111.521</td>
</tr>
<tr>
<td>26</td>
<td>Pressure</td>
<td>BAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Vapor Frac</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>Liquid Frac</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

- Column.Top.Temp = 111

Data from ASPEN
Simula Database

- Integration
- Standardization
- Uniformity
- Selected technique: Object-Oriented model
Database Model
Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

• Building Bayesian network model for a chemical process
• Modeling a database for the process
• **Implement the simulation application**
• Building a user interface for the application
• Add knowledge-rules for the decision advices
SmileX

- ActiveX component implementing Bayesian network
- Work with application GeNIe
- Basic Bayesian network operations
Enhancing SmileX(1)

- Restructuring the network into object classes
- Adding a conversion function
Enhancing SmileX(2)

Adding a conversion function

Temp = 100°C → conversion → Temp is OK

Reference:

if (Temp > 95) and (Temp < 105) then *Temp is OK*
if (Temp > 105) then *Temp is High*
if (Temp < 95) then *Temp is Low*
Applying
The Bayesian Network Model

Design steps:

• Understanding the process principles
• Finding the variables
• Constructing the network
• Validate the model
• Fine tuning
Distillation Process

Reboiler:
• degrades → bottom temperature lower
• lower temperature → less vapor
• less vapor → lower vapor flowrate

Condenser:
• degrades → more vapor exiting the process
• more vapor → less reflux
• less reflux → less/more purity
Vapor Permeation

Membrane Unit:

• Low permeate pressure \rightarrow high quality
• Low distillate flowrate \rightarrow high quality
Bayesian Network Variables

Inputs:
- Bottom Temperature
- Bottom Water Concentration
- Distillate Flowrate
- Retentate Concentration
- Permeate Pressure

Outputs:
- Reboiler Degradation
- Condenser Degradation
- Membrane Degradation
- Performance
Bayesian Network Model for the Process
Project Description

Initiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices
Simulation User Interface (1)

Main window
Simulation User Interface (2)

Data tabs

![Data sheet interface with temperature and pressure values]
Simulation User Interface (3)

Analysis Results
Simulation User Interface (4)

Action window

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Degrad. (%)</th>
<th>Maintenance ($)</th>
<th>Replacement ($)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE01</td>
<td>82</td>
<td>120</td>
<td>750</td>
<td>REPLACE</td>
</tr>
<tr>
<td>MEM</td>
<td>2</td>
<td>500</td>
<td>1200</td>
<td>OK</td>
</tr>
<tr>
<td>HE02</td>
<td>1</td>
<td>50</td>
<td>200</td>
<td>OK</td>
</tr>
</tbody>
</table>
Project Description

Initiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- **Add knowledge-rules for the decision advices**
Simulation Testing

Assumptions:
• All in good condition
• Stable state
• Quality as reported
• No process control
Test Results

Equipment Degradation

Data Set

Prob(OK)

0830mem.dat 1130mem.dat 1210mem.dat 1445mem.dat 1530mem.dat 1545mem.dat 1630mem.dat 1700mem.dat 1830mem.dat

Reboiler
Membrane Unit
Condenser
Reboiler Degrades?

- Against the assumption
- Analysing the data file:
 - very large record file
 - may includes start-up and shut-down data
Conclusions

• It was possible to apply Bayesian techniques to the Life Cycle simulation
• The tested model lacks of accuracy because of limited measurement
• Although measurements are few, preliminary result seems to be meaningfull
Further Research

• How to increase the accuracy for larger processes
• Supporting the Bayesian network with statistical correlation analysis (instead of expert review)
• Simulation based on online process data
• More compatible with commercial software packages