

Life Cycle Simulation using Bayesian Calculation

by Ferdinand Heru Utomo

Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices

Area of Application

Hybrid Distillation and

Vapor Permeation Process

- Separation Process
- At a laboratory scale
- Pilot at Laboratory of Process Equipment, Delft University of Technology

Distillation Process

What is Life Cycle?

The Process Life Cycle

1. Process Design (using ASPEN)

- 2. Process Monitoring (using Honeywell, ERP, etc)
- 3. Costs, Maintenance and Effectiveness (using SAP)

Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices

Modeling Uncertainty

- Fuzzy Logic
- Statistical Probabilities (Bayesian Technique)

Why not Fuzzy Logic?

- Misunderstood the term 'uncertain reasoning'
- No further facts examination
- Not wholy consistent

Bayesian Technique in contrast.....

- Represents Conditional independence information naturally
- Represents joint probability distribution
- Use a well-known statistical formula, based on the formula:

P(E|H) = P(H,E)/P(H)

The Bayes' Rule

$$P(E \mid H) = \frac{P(H \mid E).P(H)}{P(E)}$$

Finding the probability of the evidence based on the facts on the hypothesis when the conditional probabilities between the hypothesis en evidence is known.

Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices

Simulation Application

Data Handling

Coversion Example

4				~	
5	Display	17	B1 (01	E I
6		PMIX	DIST1	DIST1	
7	Format:	MEM	5.0° 0.000 000 000 000 000 000 000 000 00	PRHEAT	MIX I
8		VAPOR	LIQUID	VAPOR	LIQUID
9	Substream: MIXED				
10	Mole Flow KMOL/HR				
11	IPA	0.000	0.000	31.641	30.829
12	WATER	0.000	174.498	25.888	174.700
13	Mole Frac				
14	IPA	0.100	0.000	0.550	0.150
15	WATER	0.900	1.000	0.450	0.850
16	Mass Flow KG/HR				
17	IPA	0.000	0.000	1901.479	1852.725
18	WATER	0.000	3143.634	466.377	3147.275
19	Mass Frac				
20	IPA	0.270	0.000	0.803	0.371
21	WATER	0.730	1.000	0.197	0.629
22	Total Flow KMOL/HR	0.000	174.498	57.529	205,830
23	Total Flow KG/HR	0.000	3143.634	0.125	5000.000
24	Total Flow CUM/HR	0.000	3.567	612.571	6.163
25	Temperature C	116.058	100.000	111.059	111.521
26	Pressure BAR	0.150	3.000	0.970	3.000
27	Vapor Frac	1.000	0.000	1.000	0.000
28	Liquid Frac	0.000	1.000	0.000	1.000
- 20	loser-	0.000	0.000	0.000	0.000

Column.Top_Temp=111

data from ASPEN

Simula Database

- Integration
- Standardization
- Uniformity
- Selected technique: Object-Oriented model

Database Model

Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices

SmileX

- ActiveX component implementing Bayesian network
- Work with application GeNIe
- Basic Bayesian network operations

Enhanching SmileX(1)

- Restructuring the network into object classes
- Adding a conversion function

Enhanching SmileX(2)

Adding a conversion function

Applying The Bayesian Network Model

Design steps:

- Understanding the process principles
- Finding the variables
- Constructing the network
- Validate the model
- Fine tuning

Distillation Process

Reboiler:

- degrades \rightarrow bottom temperature lower
- lower temperature \rightarrow less vapor
- less vapor → lower vapor flowrate
 Condenser:
- degrades \rightarrow more vapor exiting the process
- more vapor \rightarrow less reflux
- less reflux \rightarrow less/more purity

Vapor Permeation

Membrane Unit:

- Low permeate pressure \rightarrow high quality
- Low distillate flowrate \rightarrow high quality

Bayesian Network Variables

Inputs:

- Bottom Temperature
- Bottom Water
 Concentration
- Distillate Flowrate
- Retentate Concentration
- Permeate Pressure

Outputs:

- Reboiler Degradation
- Condenser Degradation
- Membrane Degradation
- Performance

Bayesian Network Model for the Process

Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices

Simulation User Interface (1)

Main window

Simulation User Interface (2)

Data tabs

	Fields_1	Fields_2	Fields_3	Fields_4	Fields_5	Fields
	Steam Temp	Bottom Temp	Top Temp	Retent Temp	Top Press	Reter
1	116.42	100.73	87.51	21.83	0.97	-0.08
2	116.42	100.77	87.65	21.83	0.97	-0.06
3	116.16	100.59	87.51	21.74	0.97	-0.05
4	116.6	100.59	87.37	21.6	0.96	-0.14
5	116.52	100.91	87.33	21.74	0.97	-0.07
6	116.52	101.1	87.28	21.74	0.97	-0.08
7	116.6	101.15	87.33	22.11	0.98	-0.04

Simulation User Interface (3)

Analysis Results

Failure	Failure	Failure	Temperature	Temperature	Temperature	FlowRate	FlowRate	FlowRate	Concentratio	C.	AVERAGES :
ОК	Fail	Contaminate	ок	VeryLow	Lower	OK	Low	High	Good	F.	Failure: 0K=46.63%
			80.09322	80.09322	80.09322	5.582953	5.582953	5.582953			Failure: Fail=17.03% Failure: Contaminated=36.34%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	Temperature: UK=75.94% Temperature: VeryLow=12.7%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	FlowRate: OK=0%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	FlowHate: Low=100% FlowRate: High=0%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	Concentration_Water: Good=83.63% Concentration_Water: Fair=3.67%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	Concentration_Water: Poor=12.7% Membrane_Degradation: 0K=98%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	Membrane_Degradation: Degradated=2% Condensor_Degradation: 0K=98.83%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	Condensor_Degradation: Degradated=1.17% Permeate Pressure: 0K=99.73%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	Permeate_Pressure: Higher=0.27%
0.18	0.37	0.45	0.28	0.38	0.34	0	1	0	0.53	0.	ConcentrationIPA: Fair=1.01% ConcentrationIPA: Poor=1.03%
•										•	Performance: Good=74.97%
Data Shee	t Aspen Sh	eet SAP Sheet	t Analysis								

Simulation User Interface (4)

Action window

	There are a	There are a few pieces equipment that need maintenance job or replacement.								
Equipment	Degrad. (%)	Maintenance (\$)	Replacement (\$)	Action						
HE01	82	120	750	REPLACE						
МЕМ	2	500	1200	ок						
HE02	1	50	200	ок						

Project Description

Initiatiate the Life Cycle simulation using the Bayesian Calculation

- Building Bayesian network model for a chemical process
- Modeling a database for the process
- Implement the simulation application
- Building a user interface for the application
- Add knowledge-rules for the decision advices

Simulation Testing

Assumptions:

- All in good condition
- Stable state
- Quality as reported
- No process control

Test Results

Reboiler Degrades?

- Againts the assumption
- Analysing the data file:
 - very large record file
 - may includes start-up and shut-down data

Conclusions

- It was possible to apply Bayesian techniques to the Life Cycle simulation
- The tested model lacks of accuracy because of limited measurement
- Although measurements are few, prelimenary result seems to be meaningfull

Further Research

- How to increase the accuracy for larger processes
- Supporting the Bayesian network with statistical correlation analysis (instead of expert review)
- Simulation based on online process data
- More compatible with commercial software pakages