

The use of Artificial Intelligence
in autonomous mobile robots

Patrick A.M. Ehlert

Delft University of Technology
Faculty Information Technology and Systems
Delft, October 1999

Ehlert, Patrick A.M. (P.A.M.Ehlert@twi.tudelft.nl or PatrickEhlert@yahoo.com)
The use of Artificial intelligence in autonomous mobile robots

Report on research project
Delft University of Technology, The Netherlands
Faculty of Information Technology and Systems
Knowledge Based Systems Group

Keywords: Artificial intelligence, autonomous robots, behavior-based robotics, evolutionary robotics, genetic algorithms

© Copyright 1999, Patrick Ehlert

mailto:P.A.M.Ehlert@twi.tudelft.nl
mailto:PatrickEhlert@yahoo.com

 Preface

III

Preface
As far as I can remember I have always been fascinated about space. When I saw a documentary
about the Russian moon many years ago, I realized that robots are great tools for space exploration.
They can be operated from the earth without any risk to humans, or travel through space
autonomously. It was then that I became interested in robotics and my curiosity about the subject
would grow with the years. The android Data from the television sci-fi Star Trek, an article about the
robot Genghis that learnt itself to walk, a documentary about Luc Steels’ robot experiments, and
especially the deployment of the rover Sojourner on Mars, they all contributed to my interest in
robotics.
An obligatory part of the computer science Master’s program of the Delft University of Technology
(DUT) is the research project, usually done in the fourth or fifth year. The main goal of this project is
to gain experience in research. Since there is no course on intelligent robotics at the DUT, this was
the perfect opportunity for me to learn more about robotics and Artificial intelligence.
To get acquainted with the subject, I decided to start by reading some books and articles that gave a
general overview of the field. The results can be found in the first part of this report. The first books
and articles I read mentioned Rodney Brooks and his subsumption robot architecture quite often.
When I did further research on this topic I discovered the interesting subfield of behavior-based
robotics, described in the second part in this report. The third part deals with a fairly new subject
called evolutionary robotics that allowed me to combine robotics with another interest of mine, which
is genetic algorithms. During my search for information on robots I found that many papers on robots
can be found on the World Wide Web. The sites and pages I used in my research are included in the
appendix at the end of the report.
I would like to thank everyone who helped me with my research, especially Leon Rothkrantz for his
supervision and guidance during this project.

Patrick Ehlert
Gouda, September 1999

IV

 Abstract

V

Abstract
An autonomous robot is a machine able to extract information from its environment and use
knowledge about its world to move safely in a meaningful and purposive manner. It can operate on its
own without a human directly controlling it. Robots can use different kinds of sensors to view their
environment and have actuators to perform actions in that environment. Several techniques from the
field of Artificial intelligence, such as reinforcement learning, neural networks and genetic
algorithms, can be applied to autonomous robots in order to improve their performance. Common
tasks of mobile robots are mapping the environment, localization of the robot’s position within that
environment and navigating through it. Multiple robots can perform tasks more efficient because they
can work in parallel, but one has to be careful not to let the robots interfere in each other’s work.
The popular behavior-based robotics approach combines specific behaviors defined in the control
system of a robot to perform tasks. Animal behavior serves as an inspiration source for behavior-
based robotics. Pure behaviors consist of stimuli from the robots’ sensors that evoke a motor
response. Hybrid behaviors also include knowledge in the form of maps or use forms of deliberative
reasoning.
A new approach in robotic control is evolutionary robotics that uses evolution as a tool to create
increasingly better robot controllers. Genetic algorithms, which are search algorithms based on the
principles of natural selection and natural genetics, are applied to evolve the robot’s controller
program. Different programs are evolved and the best program is selected based on an evaluation of
its performance. A question that is still under debate is whether the evaluation of the control program
is more efficient when performed with real robots in real-time or in simulation. Recently research has
been done on the co-evolution of robot controller and body configuration.

 Table of Contents

VI

Table of Contents

PREFACE... III

ABSTRACT..V

PART I: AUTONOMOUS ROBOTS AND ARTIFICIAL INTELLIGENCE........................ 1

CHAPTER 1: WHAT IS A ROBOT? .. 2

1.1 TASKS .. 2
1.2 PARTS... 2
1.3 SENSORS... 3

CHAPTER 2: INTELLIGENCE IN ROBOTS ... 5

2.1 THE DEVELOPMENT OF AUTONOMOUS ROBOTS... 5
2.2 LEARNING .. 5
2.3 REINFORCEMENT LEARNING ... 7
2.4 ARTIFICIAL NEURAL NETWORKS ... 8
2.5 GENETIC ALGORITHMS.. 8
2.6 FUZZY CONTROL... 8
2.7 OTHER LEARNING METHODS... 9

CHAPTER 3: MAPPING, LOCALIZATION AND NAVIGATION.. 10

3.1 MAPPING .. 10
3.2 LOCALIZATION.. 11
3.3 NAVIGATION... 12

CHAPTER 4: MULTI-ROBOT SYSTEMS .. 13

4.1 TASKS .. 13
4.2 COMMUNICATION ... 13
4.3 SOCIAL LEARNING... 14
4.4 ADVANTAGES AND DISADVANTAGES .. 14

PART II: BEHAVIOR-BASED ROBOTICS .. 15

CHAPTER 5: HISTORY OF BEHAVIOR-BASED ROBOTICS... 16

5.1 EARLY DEVELOPMENTS .. 16
5.2 THE SENSE-PLAN-ACT PARADIGM ... 16
5.3 THE SUBSUMPTION ARCHITECTURE.. 16
5.4 ROBOTIC CONTROL... 17

CHAPTER 6: INSPIRATION SOURCES... 19

6.1 NEUROSCIENTIFIC AND PSYCHOLOGICAL BASIS FOR BEHAVIOR .. 19
6.2 ETHOLOGICAL BASIS FOR BEHAVIOR... 19

CHAPTER 7: DESIGNING ROBOT BEHAVIOR .. 21

7.1 DESIGN APPROACHES.. 21
7.2 BEHAVIORAL ENCODING... 21
7.3 USING MULTIPLE BEHAVIORS.. 22

 Table of Contents

VII

CHAPTER 8: BEHAVIOR-BASED ARCHITECTURES ... 24

8.1 COMMON FEATURES AND DIFFERENCES.. 24
8.2 SUBSUMPTION ARCHITECTURE ... 24
8.3 MOTOR SCHEMAS ... 25
8.4 OTHER ARCHITECTURES ... 25

CHAPTER 9: KNOWLEDGE REPRESENTATIONS .. 26

9.1 WHAT IS KNOWLEDGE?... 26
9.2 KNOWLEDGE IN BEHAVIOR-BASED SYSTEMS .. 26
9.3 HYBRID DELIBERATIVE-REACTIVE ARCHITECTURES ... 27

PART III: EVOLUTIONARY ROBOTICS .. 28

CHAPTER 10: GENETIC ALGORITHMS.. 29

10.1 THE HISTORY OF GENETIC ALGORITHMS ... 29
10.2 A SIMPLE GENETIC ALGORITHM .. 29
10.3 GENETIC OPERATORS.. 31
10.4 GENETIC PARAMETERS ... 31
10.5 GENETIC ALGORITHMS VERSUS TRADITIONAL SEARCH ALGORITHMS .. 32

CHAPTER 11: GENETIC ALGORITHM APPLICATIONS ... 33

11.1 CLASSIFIER SYSTEMS.. 33
11.2 GENETIC PROGRAMMING .. 33
11.3 OTHER APPROACHES .. 34

CHAPTER 12: RESEARCH QUESTIONS... 35

12.1 FITNESS EVALUATION: REAL TIME OR SIMULATION? ... 35
12.2 DESIGN ISSUES.. 35
12.3 FUTURE DIRECTIONS... 36

BIBLIOGRAPHY .. 38

APPENDIX: USED WWW-PAGES... 41

PART I:

Autonomous robots and
Artificial intelligence

Part I Chapter 1: What is a robot?

2

Chapter 1: What is a robot?
The Robot Institute of America defines a robot as “a programmable, multi-function manipulator
designed to move material, parts, tools or specific devices through variable programmed motions for
the performance of a variety of tasks” [Russell and Norvig 1995, p 773]. Another definition describes
robots as “the intelligent connection of perception to action” [Brady 1985]. Both definitions are not
very precise. The first does not include mobile robots and the second includes humans. However, the
second definition points out two very important aspects in robotic systems: perception and action.
In this study we will use the following definition. A robot is a machine able to extract information
from its environment and use knowledge about its world to move safely in a meaningful and
purposive manner. We will focus primarily on autonomous robots, robots that can operate on their
own without a human directly controlling them.

1.1 Tasks
The first industrial robots, developed in the late 1950s by George Engelberger and George Devol,
were used to automate repetitive tasks in manufacturing and material handling. These industrial
robots were very simple and even today most manufacturing robots are not very intelligent. Tasks for
robots that are used nowadays vary from transporting containers on and off ships to shaving sheep
and milking cows.
Although autonomous robots were already invented in the 1960s, it is not until recently that robots
are used for practical purposes. Autonomous robot applications are couriers in hospitals, security
guards and lawn mowers. Probably the most important application is the use of autonomous mobile
robots in hazardous environments like minefields or the inside of nuclear plants. During the cleanup
of the Chernobyl disaster, several Russian lunar explorer robots were used as cleaning vehicles and in
1997 the mobile robot Sojourner landed on Mars to explore the surface.

1.2 Parts
Robots are distinguished from each other by the effectors and sensors with which they are equipped.
For example, a mobile robot requires legs or wheels, and a teleoperated robot needs a camera. We
will assume that a robot has some sort of rigid body, with rigid links that can move about. Links meet
each other at joints, which allow motion. Examples of links are the arms or wheels of a robot.
Attached to the final links are end effectors, used by the robot to interact with the world. End
effectors can be squeeze grippers, screwdrivers, welding guns, paint sprayers, etc.

Effectors
An effector is any device under the control of the robot that affects the environment. Effectors are
used in two ways: to change the position of the robot within its environment (locomotion) and to
move other objects in the environment (manipulation). To have an impact on the physical world, an
effector must be equipped with an actuator that converts software commands into physical motion.
The actuators themselves are electric motors or hydraulic or pneumatic cylinders. The
correspondence between the actuator motions in a mechanism and the resulting motion in its various
parts can be described with kinematics, the study of motion. For more on kinematics, see [Craig
1989].
For simplicity, we will assume that each actuator determines one single motion or degree of
freedom. The number of degrees of freedom that a robot possesses is the number of independent
position variables that would have to be specified in order to locate all parts of the robot. For example
a car-like robot has three degrees of freedom, two for its x,y-position, and one for the direction it is
facing. However, there are only two actuators, namely driving and steering. Because the number of
controllable degrees of freedom (two) is less than the total degrees of freedom (three), this is a
nonholonomic robot. In general, a nonholonomic robot is limited in its movement, in this case
sideways. Robots that are not nonholonomic are holonomic robots, i.e. the number of total and
controllable degrees of freedom is the same. A truly holonomic robot can be treated as a massless

Part I Chapter 1: What is a robot?

3

point and is capable of moving in any direction instantaneously. Obviously, it is very difficult, if not
impossible, to build a robot that behaves like a true holonomic robot.

1.3 Sensors

One of the most important parts of a robot are its sensors. Sensors provide feedback to the robot
about its current condition and allow a robot to reason about the environment. Many different types
of sensors have been developed.

Proprioception
Like humans, robots have proprioceptive sense that tells them where their joints are. Encoders fitted
to the joints provide very accurate data about joint angles. Wheel encoders measure the revolution of
the robot’s wheels. Based on their measurement, odometry can provide an estimate of the robot’s
location that is very accurate when expressed relative to the robot’s previous location. This
localization technique is called dead reckoning. Unfortunately, because of slippage as the robot
moves, the position error from wheel motion increases.
Other proprioceptive sensors are accelerometers to detect changes in velocity and a magnetic
compass or gyroscope system to measure orientation.

Force sensing
Force can be regulated to some extent by controlling electric motor current, but accurate control
requires a force sensor. Force sensors are usually placed between the manipulator and end effector
and can sense forces and torques in different directions.

Tactile sensing
Tactile sensing is the robotic version of the human sense of touch. A robot's tactile sensor uses an
elastic material and sensing scheme that measures the distortion of the material under contact. By
understanding the physics of the deformation process, it is possible to derive algorithms that can
compute position information for the objects that the sensor touches. Most tactile sensors can also
sense vibration.

Sonar
Sonar stands for SOund NAvigation and Ranging. Sonar sensors measure approximate echo distances
to nearby obstacles. Sonar provides useful information about objects very close to the robot and is
often used for fast emergency collision avoidance. It can also be used to map the robot's environment
over a larger area. In the latter case, an array of a dozen or more sonar sensors is fitted around the
perimeter of the robot, each pointing in a different direction. This array is called a sonar ring.
Sonar works by measuring the time of flight of a sound pulse generated by the sensor that reflects on
an object. The pulse is typically about 50 kHz. The speed of sound is about 330 m/s, so the round-trip
time delay for an object 1 meter away is about 6 * 10-3 seconds. Although it is possible to measure the
time delay very accurately, it is very hard to produce reliable and precise data for mapping [Russell
and Norvig 1995]. The first problem is beam width. Rather than a narrow beam of sound, a typical
sensor produces a conical beam with a spread of 10 degrees or more. The second problem comes
from the relatively long wavelength (7 mm) of the sonar sound. Objects that are very smooth relative
to this wavelength look shiny or specular to the sensor. Sound will only be received back from
surfaces of objects that are at straight angles to the beam. Objects with flat surfaces and sharp edges
reflect very little sound in most directions and will probably not be noticed. This is the way stealth
aircraft work. Third, after being reflected back from a surface, the sound may strike another surface
and be reflected back to the sensor. The time delay will not correspond to a physical object, but to a
‘ghost’ object.

Vision
To supplement sonar information, a real-time vision or obstacle detection system is often used. As
yet, no robot performs complete scene recognition. Instead vision is used selectively and customized
to a specific task or problem. For example, structured light sensors can determine the shape of an

Part I Chapter 1: What is a robot?

4

object by projecting stripes of light on it and stereo cameras provide pairs of images recorded
simultaneously for depth calculations.
Computer vision requires knowledge of the field of computer graphics and image processing and will
not be addressed in this report. For more on computer vision see [Ballard and Brown 1982].

Part I Chapter 2: Intelligence in robots

5

Chapter 2: Intelligence in robots
Most Artificial intelligence researchers that study robotics are working on mobile robots. Mobile
robots pose a unique challenge to the Artificial intelligence community, since they are inherently
autonomous and force the researcher to deal with issues such as uncertainty in sensing and action,
planning, learning, reliability, and real-time response. By improving and expanding the knowledge of
how to successfully integrate these issues into one single system, fundamental contributions can be
made to Artificial intelligence research.

2.1 The development of autonomous robots
One of the first mobile robots, Shakey, was constructed in the late 1960s at the Stanford Research
Institute [Nilsson 1969]. The robot used the STRIPS planning system, two independently controlled
stepper motors and had a television camera and optical range finder mounted at the top. Shakey
demonstrated that general-purpose planning systems were not very efficient and much to slow for
practical use. Further research focused on faster processing and higher efficiency.
In the mid 1980s many researchers began to question the ‘classical’ planning view of intelligent agent
and robot design and started working on situated automata, finite-state-machines whose inputs are
directly linked to the outputs (reflex agent). The robot Flakey that was based on the situated automata
theory performed well and even won second place in the First American Association for Artificial
Intelligence (AAAI) robot competition and exhibition held in San Jose in 1992.
In 1986, Rodney Brooks published his paper [Brooks 1986] on the subsumption architecture, a robot
control system based on finite-state-machines, which lead to the development of a new approach in
robotics called behavior-based robotics.

2.2 Learning
The goal of learning in a robot is to prepare it to deal with unforeseen situations and circumstances in
its environment. The fact that even the simplest of animals seem to be adaptable suggests that
learning must be important for survival in the animal world.

When is learning useful?
There are two main benefits of learning in biological systems. First, learning lets the animal adapt to
different circumstances in the world, giving it a wider range of environmental conditions in which it
can operate effectively. Second, learning reduces the amount of genetic material and intermediate
structures required for building the complete functioning adult animal. In some circumstances, it is
simpler to build a small structure capable of constructing a larger one, than to specify the larger
structure directly.
The first aspect of learning in animals directly applies to robots as well. We would like our robots to
adapt to changing external circumstances (e.g. changes in terrain), adapt to changing internal
circumstances (e.g. drift in sensors and actuators, loss of power), and perform new tasks when
appropriate. The second aspect does not transfer directly to robot control, unless they are
programmed using genetic techniques.
We can distinguish three types of knowledge that would be useful for a robot to acquire:

1. Hard to program knowledge: information that is very difficult to program by hand may be

obtained by showing examples or guiding the robot.
2. Unknown information: the information necessary to program the robot is simply not available.

For example, a map of the terrain the robot will be working in.
3. Changing environments: the world is a dynamic place. Even if we had a complete model of the

environment to begin with, this knowledge could quickly become obsolete in a dynamic
environment. Also slower changes may occur, such as the calibration of the robot's own sensors
and effector.

Part I Chapter 2: Intelligence in robots

6

To determine what types of information should be learned and what should be built-in, we must
analyze the benefits and the costs of providing a robot with a learning capability. An important
question is: “is the robot is better off for having the learning capability?” To answer this question one
must take into account whether investing the same resources of research effort, runtime code size,
and computing power into a directly engineered solution would have resulted in an equally successful
and robust robot.

Learning approaches
Much research effort has been devoted to tabula rasa or strong learning techniques that assume no
built-in information. In this approach nothing is predefined and everything must be learned. Although
in theory robots should be able to learn everything, in practice it is difficult for them to learn anything
at all. Learning from scratch may be an interesting intellectual challenge, but many researchers feel
that this poses an unreasonably difficult problem [Brooks 1990].
So far, strong learning approaches have led to only weak results, while weak learning approaches,
where the robot has many built-in capabilities or much a priori knowledge, have been much more
successful. However, the problem with weak learning is that the structure of the built-in knowledge
restricts what the robot can learn. Reducing built-in structure eases the programming task and reduces
the learning bias, but it also slows down the learning process.
A compromise that combines the benefits of both is subsumable learning. With subsumable learning
the robot is influenced to learn certain classes of behaviors by the nature of its existing knowledge. It
uses the weak learning ability to adapt to its environment and has a more general strong learning
component, capable of overriding the weaker system. Based on the type of information that is
learned, we can divide robot learning approaches into four main categories:

1. Learning numerical functions for calibration or parameter adjustment. This type of learning
optimizes operational parameters in an existing behavioral structure. In many cases the
parameters of a robot can not be predicted. Due to sensor drift, environmental conditions, and
unmodeled properties of the mechanical system, choosing or computing these values has to
be done at run-time. Function learning is the weakest form of learning as the structure of the
behavior-producing programs is predetermined and does not change based on experience.
Rather than introducing new knowledge, it fine-tunes existing knowledge. Based on the
number of successful performing robots, the function approximation approach has been most
successful to date.

2. Learning about the world. This type of learning creates and alters some internal

representation of the world. The information usually is represented in some abstract symbolic
form that is used for computing actions. Learning about the world can vary from learning
maps of the environment to learning abstract concepts.

3. Learning to coordinate behaviors. This type of learning attempts to solve the action selection

problem, i.e. it tries to determine when particular actions or behaviors are to be executed.
Reinforcement learning methods have been shown to be well-suited for this type of learning,
since they produce precisely the kind of mapping between conditions and actions needed to
decide how to behave at each distinct point in the state space.

4. Learning new behaviors. This type of learning builds new behavioral structures (as opposed

to the three previous ones). Reinforcement learning techniques have been used to learn new
behaviors, but only in the sense that behaviors are constructed from arbitrary sequences of
actions. An entirely different approach to learning behaviors that holds some promise, is the
use of genetic programming. This type of learning has been tried in simulation [Koza
1990][Koza 1992] and has recently been used to create simple behaviors in real robots.

Part I Chapter 2: Intelligence in robots

7

2.3 Reinforcement learning
Reinforcement learning has been applied to learn new behaviors and to coordinate existing ones. At
the moment, it is probably the most popular way of learning in robots. Reinforcement learning
systems attempt to learn a behavior by exploring all of the actions in all of the available states (trail-
and-error) and rank them in the order of appropriateness. It uses rewards and/or punishments to alter
numerical values in a controller. A component capable of evaluating the response is needed to send
the necessary reinforcement signal to the control system. This component can be a human watching
the robot or a software module programmed to evaluate the robot’s actions. The first is called
supervised learning, the latter is unsupervised learning. The feedback to the control system provides
information about the quality of the behavioral response. It may be as simple as a binary pass/fail or a
more complex numeric evaluation. There is no specification as to what the correct response would be,
only how well the particular response worked.
The problem of learning an optimal strategy consists of searching for paths connecting the current
state with the goal in the state space. The longer the distance between a state and the goal, the longer
it takes to learn the strategy. Breaking the problem into modules effectively shortens the distance
between the reinforcement signal and the individual actions, but this requires built-in domain
information.
One of the major problems of reinforcement learning is credit assignment. It is hard to determine
which of the individual components is largely responsible for the success or failure of a response.
Another important weakness of reinforcement learning is the ‘unstructured’ use of the input. Since no
explicit domain information is used, the entire space of state-action pairs must be explored, but this
space grows exponentially with the number of sensors. Also, reinforcement learning depends on the
ability to detect in which state the robot is in to map it to the appropriate action. Sensor noise and
errors increase state uncertainty, which slows down the learning process even further.
In spite of its weaknesses, reinforcement learning appears to be a promising direction for learning
with real robots, in particular because it uses direct information from the world to improve the robot's
performance. Several reinforcement learning algorithms have been effectively used in robots:

• With Q-learning actions and states are evaluated together. A single utility Q-function is learned

to evaluate both actions and states. Reward actions are propagated across states so that rewards
from similar states aid the learning process. Different Q-learning forms use different ways to
detect similar states. Q-learning currently dominates robotic reinforcement learning approaches.

• Adaptive Heuristic Critic (AHC) methods are methods in which a decision policy for action is
learned independently from the utility cost function for state evaluation. AHC methods often are
implemented in neural network systems.

• Statistical correlation is used to associate rewards with actions.

Applications
Maes and Brooks [Maes and Brooks 1990] studied reinforcement learning with Genghis, a robot
hexapod. They used a rule-based subsumption architecture for the robot controller which consists of
thirteen high-level behaviors using two sensors for feedback. Two touch sensors were located on the
bottom of the robot (fore and aft) to determine when the body of the robot hits the floor, and a trailing
wheel was used to measure forward progress. Genghis’ task was to learn to move forward. Negative
feedback was given when both of its touch sensors made contact with the ground and positive
feedback was given when the trailing wheel indicated that the robot was moving forward.
At IBM, Mahadevan and Connell [Mahadevan and Connell 1991] used Q-learning to teach a
behavior-based robot how to push a box. The robot’s learning problem involved deciding which of
the five possible actions would enable it to find and push boxes around a room efficiently without
getting stuck. The robot’s performance was compared to its performance when controlled by a hand-
programmed controller.

Part I Chapter 2: Intelligence in robots

8

2.4 Artificial neural networks

In the real world, it is difficult to learn with hand-programmed algorithms. The continuously
changing environment and uncertainty caused by these changes requires a flexible learning system.
Artificial neural networks provide this. Learning in neural networks occurs through the adjustment of
synaptic weights by an error minimization procedure. The advantage of the use of neural networks is
the fact that the system does not need to have specific properties for specific problems. The system
tries to determine these properties itself. The only thing humans have to do is provide it with training
examples and the corresponding action or reinforcement.
Hebb developed one of the earliest training algorithms for neural networks [Hecht-Nielsen 1989].
Hebbian learning increases synaptic strength along the neural pathways associated with a stimulus
and a correct response, strengthening frequently used paths. The most used neural network model is
the feedforward, multilayer network with (different versions of) the backpropagation learning
algorithm. Other models like Kohonen, Hopfield or Grossberg recently are increasing in popularity.
For a more in-depth description of neural networks see [Aleksander and Morton 1995] or [Hecht-
Nielsen 1989].

ALVINN
An example of the use of neural networks in robots is ALVINN [Pomerleau 1993], which stands for
Autonomous Land Vehicle In a Neural Network. ALVINN is a system that uses neural networks for
autonomous robot navigation. The basic network architecture is a single hidden-layer feedforward
neural network, with 960 input neurons, 4 hidden layer neurons and 30 output neurons. The output
layer is a linear representation of the currently appropriate steering direction that may serve to keep
the vehicle on the road or to prevent it from colliding with nearby obstacles. The centermost output
unit represents the ‘travel straight ahead’ condition, while units to the left and right of center
represent sharper left and right turns. ALVINN is trained using the backpropagation algorithm with
images from a camera mounted on a driving vehicle and the corresponding actions taken by the
human driver. Once trained, ALVINN can drive autonomously at a speed of up to 55 mph in
environments varying from multilane paved roads to off-road environments.

2.5 Genetic algorithms
“Genetic algorithms form a class of gradient descent methods in which a high-quality solution is
found by applying a set of biologically inspired operators to individual points within a search space,
yielding better generations of solutions over an evolutionary timescale” [Goldberg 1989].
Each point in the search space (population) represents a solution (individual) and each member of the
population is given a fitness rating computed with an evaluation function. This fitness function
measures how well each individual performs with respect to the task. The best individuals of the
population are rewarded according to their fitness rating and poorly performing individuals are
punished or deleted from the population. New individuals are created using the good individuals and
over generations the population improves the quality of its set of solutions.
Although genetic algorithms are a powerful technique for developing control systems, they have
some restrictions compared to other learning methods. Genetic algorithm methods require a large
population of robots for fitness testing over many generations, so much of the learning in genetic
algorithms is conducted in simulation off line. Generally, the process is too slow to conduct real-time
learning. Fortunately, simulated learning can be performed at speeds orders of magnitude faster than
real-world learning. Assuming that a simulation has a reasonable degree of fidelity to the real robot
and environment, the control parameters from the most fit simulated individual can be transferred to
the actual robot for use. Genetic algorithms have been used to evolve complete computer programs
[Koza and Rice 1992], allowing the evolution of a robot controller program.

2.6 Fuzzy control
Fuzzy control systems produce actions using a set of fuzzy rules based on fuzzy logic. In
conventional logic, assertions about the world are either true or false (1 or 0); there is nothing in
between. Values such as true and false are referred to as crisp, that is, they have one exact meaning.

Part I Chapter 2: Intelligence in robots

9

Fuzzy logic allows variables to take on values between true and false, depending on how much they
belong to a particular fuzzy set. In fuzzy logic these variables have linguistic names, for example fast,
slow, far, big, etc. Membership functions measure the degree of similarity a variable has in its
associated fuzzy set. A fuzzy logic control system consists of the following:

• Fuzzifier: maps a set of crisp sensor readings onto a collection of fuzzy input sets.
• Fuzzy rule base: contains a collection of IF-THEN rules.
• Fuzzy inference engine: maps fuzzy sets onto other fuzzy sets according to the rule base

and membership functions.
• Defuzzifier: maps fuzzy output sets onto a set of crisp actuator commands.

Fuzzy systems are more flexible than conventional rule-based methods and allow more robust
integration of sensor-motor commands than conventional production systems. Learning can also be
used in fuzzy control systems and deals with learning the fuzzy rules of the rule base.

2.7 Other learning methods
Our description of learning methods used with robots is by no means complete and many other
powerful learning methods are just beginning to be explored for use in robotics. Some examples are
mentioned briefly below.
Case-based learning uses experiences are organized and stored as a case structure, then retrieved
and adapted as needed based on the current situation. The basic algorithm is as follows:

1. Classify the current problem.
2. Use the resulting problem description to retrieve similar case(s) from case memory.
3. Adapt the old case’s solution to the new situation’s specifics.
4. Apply the new solution and evaluate the results.
5. Learn by storing the new case and its results.

Memory-based learning goes one step further than case-based learning. Many individual records of
past experiences are used to derive function approximators for control laws. Complex control
functions are approximated by interpolation of related past successful experiences.
Explanation-based learning uses (symbolic) models of the domain to guide the generalization and
specialization of a concept by induction. Learning occurs on an instance-by-instance basis, with
refinement of the underlying model occurring at all steps in the process. Domain-specific knowledge
is crucial for this process to operate effectively.

Part I Chapter 3: Mapping, localization and navigation

10

Chapter 3: Mapping, localization and navigation
Navigation and mapping are crucial to all mobile robot systems. Navigation and mapping tasks
include sonar sensor interpretation, collision avoidance, localization and path planning.

3.1 Mapping
Mapping is the process of constructing a model of the environment based on sensor measurements.
There are different approaches to representing and using spatial information. On one side, there are
purely grid-based maps, also called geometric or metric maps. In these representations, the robot's
environment is defined by a single, global coordinate system in which all mapping and navigation
takes place. Typically, the map is a grid with each cell of the grid representing some amount of space
in the real world. These approaches work well within bounded environments where the robot has
opportunities to realign itself with the global coordinate system using external markers.
On the other side are topological maps, also called qualitative maps, in which the robot's
environment is represented as places and connections between places. This approach has the
advantage that it eliminates the inevitable problems of dealing with movement uncertainty.
Movement errors do not accumulate in topological maps as they do in maps with a global coordinate
system since the robot only navigates locally, between places. Topological maps are also more
compact in their representation of space because they only represent interesting places and not the
entire environment. The disadvantage of this approach is that the robot has to be able to make the
distinction between different places.

Creating and using grid-based maps
Each grid cell of a grid-based map contains a value that indicates the presence or absence of an
obstacle in the corresponding region of the environment. This value measures the robot's subjective
belief whether or not its center can be moved to the center of that cell. There are several ways to
construct grid-based maps, but the most popular methods use sonar sensors or stereo cameras. Sonar
sensor readings can be translated into occupancy values for each grid cell. For example, a neural
network with backpropagation can be used to map sonar measurements to occupancy values
[Kortenkamp et al 1998]. The training examples are obtained by operating a robot in a known
environment and recording and labeling its sensor readings. Once trained, the network generates
values that can be interpreted as a probability for occupancy. Neural networks can easily be adapted
to new circumstances (different walls reflect in different ways) and can process multiple sensor
readings simultaneously.
A second source of occupancy information can be gathered with a stereo camera system that provides
pairs of images recorded simultaneously from different spatial viewpoints. Much like vision done by
humans, stereo images can be used to compute depth information. Large unstructured obstacles such
as walls are ‘invisible’ to a camera and will not be mapped, therefore stereo vision alone can not be
sufficient for building accurate maps. On the other hand, stereo vision gives more accurate obstacle
information than sonar sensors, due to the higher resolution of cameras. It frequently detects
obstacles that are invisible to sonar sensors, such as objects that absorb sound. Maps built with sonar
and stereo vision can be integrated by taking the maximum occupancy value at each grid cell.

Creating and using topological maps
Topological maps represent robot environments by graphs. Nodes in these graphs correspond to
distinct situations, places or landmarks. A link connects two nodes if a direct path exists between
them. Topological maps are more compact than grid-based maps and thus allow faster planning. The
construction of topological maps can be done with the use of grid-based maps in the following way
[Kortenkamp et al 1998]:

Part I Chapter 3: Mapping, localization and navigation

11

1. Thresholding. Initially, each occupancy value in the occupancy grid is thresholded. Cells
whose occupancy value is below the threshold are considered free-space

2. Voronoi diagram. A Voronoi diagram is the set of points in free space that have at least
two different (equidistant) basis points. The Voronoi diagram can be seen as a form of
skeletonization.

3. Critical points. Critical points are points on the Voronoi diagram that minimize clearance
locally. In other words, each critical point has the following properties: (1) it is part of
the Voronoi diagram, and (2) there exists an e > 0 for which the clearance of all points in
an e-neighborhood of the point is not smaller.

4. Critical lines. Critical lines are obtained by connecting each critical point with its basis
points. Critical points have exactly two basis points (otherwise they would not be local
minima of the clearance function). Critical lines partition the free-space into disjoint
regions.

5. Topological graph. The partitioning is mapped into an isomorphic graph. Each region
corresponds to a node in the topological graph, and each critical line to a link.

The free-space of a grid-based map is partitioned into a small number of regions separated by critical
lines. Critical lines correspond to narrow passages such as doorways. The partitioned map is then
mapped into an isomorphic graph. This process is shown in Figure 1.

Figure 1: extracting a topological graph from a grid-based map

3.2 Localization
Localization is the process of aligning the robot's local coordinate system with the global coordinate
system of a map. Localization is particularly important and difficult for map-based approaches that
learn their maps, since the accuracy of a metric map depends on the alignment of the robot with its
map. Identifying and correcting for slippage and drift is an important issue in map building and
localization. Localization can be separated into two subproblems which are position tracking and
global localization.

Part I Chapter 3: Mapping, localization and navigation

12

Position tracking or position estimation refers to the problem of estimating the location of the robot
while it is moving. Drift and slippage reduces the precision of the robot position within its global
map. Global localization is the problem of determining the position of the robot under global
uncertainty. This problem arises, for example, when a robot uses a map that has been generated
previously and when it is not informed about its initial location within the map. Localization can be
done in several ways:

• With dead reckoning wheel encoders measure the revolution of the robot's wheels. This provides

a fairly accurate estimate of the robot's location relative to its previous location, but small errors
can accumulate to large displacements.

• Every sensor reading (sonar and/or vision) is converted into a ‘local’ map that is compared with
the global map. This is called map matching. The more correlated the two maps are, the more
likely is the corresponding location of the robot.

• Using robot maneuverability, the fact that a robot moves to a location makes it unlikely that this
location is occupied. Assuming the global map is correct, it can be used to derive further
probabilistic constraints on the robot's location.

• For correcting rotational errors in an indoor (office) environment the global wall orientation can
be used. This approach rests on the restrictive assumption that walls are either parallel or
orthogonal to each other.

• Landmarks are used in various approaches for mobile robot localization. Recently, mechanisms
that enable a robot to select its own landmarks, based on sonar and camera input, are explored.
Artificial neural networks have been trained to recognize landmarks by minimizing the average
localization error.

3.3 Navigation
A navigation system can usually be divided into two parts: a global planner and a reactive collision
avoidance module. The global path planner generates minimum-cost paths to the goal(s) using a map.
As a result, it provides intermediate goals to the collision avoidance routine that controls the velocity
and the exact direction of motion of the robot.

Planning
The idea of path planning is to let the robot always move on a minimum-cost path to the nearest goal.
The global planner, in contrast with the collision avoidance routine, does not suffer from a local
minimum problem, since it plans globally. With grid-based maps the minimum-cost path can be
computed with algorithms like dynamic programming or A*. Topological planning is more efficient
because of the compactness of topological maps. Topological planning is between three and four
orders of magnitude more efficient than planning with grid-based maps. This is despite the fact that
plans generated with topological maps are typically between one and four percent longer than plans
generated using grid-based maps.
A planner alone, however, is not sufficient to control the robot, because it does not take robot
dynamics into account and because learned maps are incapable of capturing moving obstacles.

Collision avoidance
The task of the collision avoidance routine (also called obstacle avoidance) is to navigate the robot to
subgoals generated by the planner while avoiding collisions with obstacles. It adjusts the actual
velocity of the robot and chooses the motion direction. For obvious reasons, the collision avoidance
routine must operate in real-time. Depending on the speed and weight of the robot, it is very
important that the robot’s dynamics (inertia and torque limits) are taken into account. The collision
avoidance routine is easily trapped in local minima, such as U-shaped obstacle configurations.
However, it reacts in real-time to unforeseen obstacles such as humans and is usually capable of
changing the motion direction while the robot is moving.

Part I Chapter 4: Multi-robot systems

13

Chapter 4: Multi-robot systems
Biology has shown that multi-agent societies, like schooling fish or insect colonies, offer significant
advantages in the achievement of community tasks. For example, ants typically use chemical
communication to convey information to one another. They lay down chemical trails via pheromones
that increase efficiency and at the same time they avoid the need for explicit memory. Decision-
making becomes a collective effort rather than a master-slave decision. Like ants, teams of robots
have significant advantages over individual robots in terms of performance, sensing capabilities, and
fault tolerance.

4.1 Tasks
Coordinating activity is important for a society. The society needs to remain together and work on a
common goal. Specialization can occur based upon the need of the society. Typical tasks for societies
of robots include:

• Foraging: randomly placed items are distributed throughout the environment and the team’s
task is to carry them back to a central location.

• Consuming: the robots perform work on the desired objects in place, rather than carrying
them back to a home base. This may involve assembly or disassembly operations, for
example clearing a minefield.

• Grazing: the robot team covers a certain area. The potential applications of this social
behavior include lawn mowing, surveillance operations and vacuuming.

• Formation or flocking: the team of robots assumes a geometric pattern and maintains it while
moving. This behavior can be useful for exploration.

• Object transport: requires a distribution of robots around the desired object with the goal
being to move it to a particular location. This task can also be regarded as a subtask of
foraging.

The behavioral architecture of the robots in a multi-robot system is only one of many design issues
that have to be made during team design. Other aspects that need to be considered are the
communication protocols between team members and the societal structure. To effectively evaluate
societal system performance, specific metrics must be introduced. One useful metric is speedup, a
measure of the performance of a team of N robots relative to N times the performance of a single
robot.

4.2 Communication
Communication plays a large role in coordinating teams of robots. Communication is not necessary
for cooperation but it is often desirable. Range, content, and guarantees for communication are
important factors in the design of social behavior. Communication is not free and can be
undependable. It can be done explicitly, through direct channels, or indirectly, through the
observation of other robot’s behaviors or changes in the environment. An example of the latter is trail
marking. The major roles of communication in robot teams are:

• Synchronization of action: certain tasks require actions to be performed simultaneously or in

a particular sequence.
• Information exchange: different robots have varying perspectives on the world based on their

spatial position or knowledge of past events and may need to communicate them.
• Negotiations: decisions can be made regarding who should do what.

MacLennan has studied whether communication is important for cooperation [MacLennan 1991]. In
his studies the societies in which communication evolved were 84% fitter than those in which

Part I Chapter 4: Multi-robot systems

14

communication was suppressed. Nonetheless, is has been has established that for certain classes of
tasks, explicit communication is not a prerequisite for cooperation.

4.3 Social learning
Various forms of machine learning have been applied to robotic teams, including reinforcement
learning and imitation. Social learning is the process of acquiring new (cooperative) behavior patterns
by learning from others. Social learning includes learning how to perform a behavior, and when to
perform it. Mataric defines the basic forms of social learning as imitation or mimicry and social
facilitation [Mataric 1994]. Imitation involves first observing another agent’s actions (either human
or robot), then encoding that action in some internal representation and finally reproducing the initial
action. Reinforcements can result from a robot’s action directly, from observation of another robot’s
actions, or from observations of the reinforcement another robot receives
Tensions between individual and group needs can exist. Robots may be strongly self-interested and
have no concern for the society’s overall well being. Optimization in social robots usually focuses on
minimizing interference between robots and maximizing the society’s reward.

4.4 Advantages and disadvantages
To summarize, teaming robots together has both an upside and a downside. The positive aspects are:

• Improved system performance: if tasks are decomposable, the ‘divide and conquer’-strategy
can be applied. The parallelism inherent in teaming causes tasks to be completed more
efficient.

• Task enablement: the ability to do tasks that would be impossible for a single robot.
• Distributed sensing: information sharing beyond the range of the sensors on an individual

robot.
• Fault tolerance: robot redundancy and reduced individual complexity can increase overall

system reliability.

The negative aspects are:

• Interference: robots have physical size that can cause blockage or collisions. They may
compete over things like food or information. Interference is also referred to as ‘resource
competition’.

• Communication cost and robustness: communication is not free and requires additional
hardware, computational processing, and energy. Communication can also suffer due to noisy
channels, electronic countermeasures, and deceit by other robots.

• Uncertainty concerning other robots’ intentions: coordination generally requires knowing
what the other robot is doing. When this is unclear because of lack of knowledge or poor
communication, robots may compete rather than cooperate.

15

PART II:

Behavior-based robotics

Part II Chapter 5: History of behavior-based robotics

16

Chapter 5: History of behavior-based robotics

5.1 Early developments
In the late 1940s, Norbert Wiener lead the development of cybernetics which is a combination of
control theory, information science and biology that seeks to explain the common principles of
control and communication in both animals and machines. In 1953, W. Grey Walter applied these
principles in the creation of a robotic design termed ‘Machina Speculatrix’, which was later
transformed into hardware as Grey Walter’s tortoise. The tortoise consisted of two sensors, two
actuators and two ‘nerve’ cells or vacuum tubes and it could demonstrate behaviors like seek light,
head toward weak light, back away from bright light, turn, and recharge battery.
Three decades after Walter, Valentine Braitenberg revived his behavior ideas [Braitenberg 1984].
Braitenberg’s vehicles used inhibitory and excitatory influences, directly coupling the sensors to the
motors. Seemingly complex behavior resulted from relatively simple sensor-motor combinations.
However, just like Walter’s tortoise, the Braitenberg vehicles were inflexible and could not be
reprogrammed.

5.2 The sense-plan-act paradigm
In the 1980s the Artificial intelligence community was beginning to produce useful automated
planning systems. Their idea was that knowledge and knowledge representation are central to
intelligence and that robotics was no exception. Artificial intelligence research focused mainly on the
hierarchical organization for planning. Large amounts of domain knowledge were incorporated by the
planning systems to predict future implications of actions, but at the same time made the systems
slow and difficult to use. The planning systems could take a goal, a starting situation and a desired
situation and generate an ordered, finite set of actions that would produce the desired situation. The
general approach is shown in Figure 2.

Sensors

P
er

ce
pt

io
n

W
or

ld
 m

od
el

in
g

P
la

nn
in

g

Ta
sk

 e
xe

cu
tio

n

M
ot

or
 c

on
tro

l

Actuators

Figure 2: Classical decomposition of an autonomous robot

The sensors of a robot were part of the lower regions of a large structure, usually a complex semantic
net that served as a model of the world. The world model would interpret the sensor data via the
network that produced logical propositions about the state of the world. These propositions then
served as input to the planning process, which would look through all possibilities to produce a set of
actions that would result in the desired situation. Each step of this plan was passed to the control
level of the robot for execution, so the plan had to include actions down to the actuator level. The
problem with this sense-plan-act approach is that it could not run fast enough to keep up with the
state of the robot in the world. By the time the sensor information was processed, the robot had
already run into an object.

5.3 The Subsumption architecture
In 1986, Rodney Brooks published a paper on the subsumption architecture [Brooks 1986]. Brooks
had been thinking about how animals used fast, specific behaviors to survive in the world and
developed the subsumption language that would allow modeling something analogous to animal
behaviors in tight sense-act loops using asynchronous finite-state machines. The first set of behaviors

Part II Chapter 5: History of behavior-based robotics

17

for a robot might simply be used to avoid objects. Another higher-level behavior might be to move in
a given direction. This behavior would dominate the obstacle-avoidance behavior by suppressing its
output to the actuators unless an object got too close. The higher levels subsumed the lower levels,
hence the name of the architecture. The advantage of this approach is that the behaviors could
execute well within the cycle times of most natural environments. Simple plan generation, mostly for
path planning, and the compilation of the resulting network of actions were done before run time.
Essentially, all that Brooks had done was rearranging of the sense-plan-act cycle, as is shown in
Figure 3. The general idea was to build up capability in the robot through behaviors that ran in
parallel, accomplishing possibly competing goals. "The hope is that the ideas used will generalize to
more sophisticated tasks." [Brooks 1990]

Sensors
Explore

Build maps

Avoid objects

Wander
Actuators

Figure 3: Behavior-based decomposition of an autonomous robot

Although many researchers agreed with the movement away from general representations, the
resulting degree of specialization was viewed with some alarm. However it was clear that planning in
both its form and function had to be rethought.

5.4 Robotic control
Over the years many different techniques and approaches for robotic control were developed. The
complete spectrum ranges from the more traditional methods that use deliberative reasoning on the
one side to reactive and behavior-based control on the other (see also Figure 4). Many hybrid
approaches using a combination of both techniques can be classified in between.

Deliberative control
A robot that uses deliberative reasoning requires much knowledge about the world and uses this
knowledge to predict the outcome of its actions to optimize its performance. If the information is
inaccurate or out of date, the outcome of the reasoning process is probably incorrect. In a dynamic
world, where objects may be moving, it is potentially dangerous to rely on past information that may
no longer be valid. Representational world models are therefore generally constructed from both prior
knowledge about the environment and incoming sensor data. Deliberative reasoning systems often
have several common characteristics [Arkin 1998]:

• They are hierarchical in structure with a clearly identifiable subdivision of functionality.
• Communication and control occurs in a predictable and predetermined manner, flowing up

and down the hierarchy with little if any movement.
• Higher levels in the hierarchy provide subgoals for lower subordinate levels.
• Planning scope changes during descent in the hierarchy. Time requirements are shorter and

spatial considerations are more local at the lower levels.
• They rely heavily on symbolic representation of world models.

Part II Chapter 5: History of behavior-based robotics

18

Figure 4: robot control system spectrum

Reactive control
On the other side of the control spectrum are the reactive systems. “Reactive control is a technique
for tightly coupling perception and action, typically in the context of motor behaviors, to produce
timely robotic responses in dynamic and unstructured worlds” [Arkin 1998]. Reactive robotic
systems have the following characteristics:

• Behaviors serve as the building blocks for robotic actions. A behavior in these systems
typically consists of a simple sensorimotor pair, with the sensor providing the necessary
information for a reflexive motor response.

• The use of explicit abstract representational knowledge is avoided in the generation of a
response. Purely reactive systems react directly to the world as it is sensed.

• Animal models of behavior often serve as a basis for these systems.
• Reactive systems are inherently modular in design. New behaviors can be added without

redesigning or discarding the old behaviors. This allows for increasingly complex systems and
software reuse.

Part II Chapter 6: Inspiration sources

19

Chapter 6: Inspiration sources
Roboticists have struggled to provide their machines with capabilities that even simple animals
possess: the ability to perceive and act within the environment in a meaningful and purposive manner.
Behavior-based roboticists argue that there is much that can be gained for robotics through the study
of neuroscience, psychology and ethology. Some scientists attempt to implement these results as
closely as possible, testing the hypotheses of the biological models in question [Lund et al 1998].
Others use it as an inspiration to create more intelligent robots.

6.1 Neuroscientific and psychological basis for behavior
At the cellular level of neurons, neuroscience has inspired computer scientists to create artificial
neural networks, but also at the organizational level of brain structure much can be learned.
Animal brains come in a very wide range of sizes. Simple invertebrates have nervous systems
consisting of 103-104 neurons, whereas the brain of a small vertebrate such as a mouse contains
approximately 107 neurons. The human brain has been estimated to contain 1010-1011 neurons.
Despite a large variation in brain size, we can say several things in general about vertebrate brains.
First, locality is a common feature. Brains are structurally organized into different regions each
containing specialized functionality. Next, animals brains generally have three major subdivisions;
the forebrain (containing the neocortex, limbic system, thalamus and hypothalamus), the brainstem
(midbrain and hindbrain), and the spinal cord for control of various motor systems.
Neuroscientific models have often had an impact on behavior-based robot design. Two examples are:

• The distinction between deliberative (willed) and automatic behavioral control systems.
• Parallel mechanisms associated with both long- and short-term memory.

Psychological models focus on the concept of mind and behavior rather than on the brain itself.
Various often opposing psychological schools have inspired roboticists. Examples are:

• Using stimulus-response mechanisms for the expression of behaviors.
• Capturing the relationship a robot has with its environment based on theories of ecological

psychology.
• Using computational models from cognitive psychology to describe a robot’s behavior within

the world.

6.2 Ethological basis for behavior
Ethology is the study of animal behavior in its natural environment. For the true ethologist, the
behavior of an organism is intimately coupled with its environment, so removing the animal from its
environment destroys the context for its behavior. Animal behavior can be roughly categorized into
three major classes:

1. Reflexes are rapid automatic and involuntary responses triggered by certain environmental
stimuli. The reflexive response persists only as long as the duration of the stimulus. Further,
the response intensity correlates with the stimulus’s strength. Certain escape behaviors, such as
those found in snails and bristle worms, involve reflexive action.

2. Taxes are voluntary behavioral responses that direct the animal toward or away from a
stimulus (attractive or aversive). Taxes occur in response to visual, chemical, mechanical and
electromagnetic phenomena in a wide range of animals. Chemotaxis for example, can be seen
in response to chemical stimuli, used in the trail following of ants.

3. Fixed-action patterns are time-extended response patterns triggered by a stimulus but
persisting for longer than the stimulus itself. The strength and duration of the stimulus do not
control the intensity and duration of the response. Unlike reflexes, fixed-action patterns may be

Part II Chapter 6: Inspiration sources

20

motivated and they may result from a much broader range of stimuli. Examples include egg-
retrieving behavior of the greyling goose and the song of crickets.

One of the most important concepts for behavior-based robotics drawn from the field of ethology is
the ecological niche. As defined by [McFarland 1981, page 411] “The status of an animal in its
community, in terms of its relation to food and enemies, is generally called its niche”. Animals
survive in nature because they have found a reasonably stable niche. They have a place where they
can coexist with their environment. Evolution has shaped animals to fit their niche. As the
environment is always changing, a successful animal must be capable of adapting to these changes or
it will become extinct.
Comparing the niche concept to robots, if a roboticist wants to build a system that is autonomous and
can successfully compete with other environmental inhabitants, that system must find a stable niche
or it (as an application) will be unsuccessful. Often economic pressures are sufficient to prevent the
fielding of a robotic system. If humans are willing to perform the same task as a robot at a lower cost
and/or with greater reliability then the robot will be unable to displace the human worker from the
niche he already occupies. Thus, for a roboticist to design an effective real world system, the system
must be targeted towards some niche. This is the reason that most robot applications are highly
specialized, targeting a specific niche.

Part II Chapter 7: Designing robot behavior

21

Chapter 7: Designing robot behavior
The behaviorist school of psychology teaches us that a behavior is a reaction to a stimulus.
Transforming this idea to robotics, a robotic behavior generates a motor response reacting on a given
stimulus from its sensors.

7.1 Design approaches
A variety of approaches for behavior choice and design exist. Three different design paradigms for
building behavior-based systems can be distinguished.
As discussed in the previous chapter, biological models are often used as the basis for behavioral
selection, design and validation. This called ethologically guided or ethologically constrained design.
Another design approach is called situated activity. With situated activity behaviors are created that
fit specific circumstances or situations in which the robots needs to respond. As soon as the robot
finds itself in a new situation, it selects a new and more appropriate action.
The third design approach is experimentally driven design that uses a bottom-up design strategy
based on the need for additional functionality as the system is being built. The robot is equipped with
a limited set of capabilities, experiments are run to see what works and what does not, and imperfect
behaviors are debugged. New behaviors are added iteratively until the overall system performs
satisfactory.
Whatever the design basis, a generic classification of robot behaviors can be used to categorize the
different ways in which a robotic agent can interact with its world. These behaviors are:

• Exploration / directional behaviors (move in a general direction)
• Goal-oriented appetitive behaviors (move towards an attractor)
• Aversive / protective behaviors (prevent collisions)
• Path following behaviors (move on a designated path)
• Postural behaviors (balance and stability)
• Social / cooperative behaviors (multi-agent cooperation)
• Teleautonomous behaviors (coordinate with human operator)
• Manipulator-specific behaviors (arm-hand control)

Design choices for all robotic architectures involve issues such as whether to use analysis or
synthesis, take a top-down or bottom-up design approach, and design for specific or general domains.

7.2 Behavioral encoding
To encode the behavioral response that a stimulus should evoke, a functional mapping from the
stimulus domain to the motor domain is needed. The robot’s motor response can be separated into
two orthogonal components, strength and orientation. Strength indicates the magnitude of the
response and orientation denotes the direction of action for the response.
Behaviors can be represented as triples (S, R, β), with S being the domain of all interpretable stimuli,
R the range of possible response, and β the behavioral mapping between S and R. Each individual
stimulus s ∈ S is represented as a tuple (p, λ) where p is a particular type or perceptual class and λ
the strength of the stimulus. The strength can be either discrete or continuous. The presence of a
stimulus is necessary but not sufficient to evoke a motor response in a behavior-based robot. Only
when the stimulus exceeds some threshold value t will it produce a response. A strength multiplier gi,
or gain value associated with a particular behavior β can be used to turn off behaviors or increase the
relative strength of the response. In formula this is represented as:

β: (p, λ) → {for all λ do: if λ < t then r = 0 /* no response */
else r = g * arbitrary function} /* response */

Part II Chapter 7: Designing robot behavior

22

Responses are coded in two forms, discrete encoding with an enumerable set of responses or
continuous functional encoding with an infinite space of responses possible for a behavior. Rule-
based methods (IF-THEN-rules) are often used for discrete encoding strategies. Approaches based on
the potential-fields method are often used for the continuous functional encoding of robotic response.

Potential fields
The potential-fields method generates a field representing a navigational space based on a chosen
potential function. Goals are treated as attractors and obstacles are treated as repulsors. Separate
fields are constructed, each based upon potential functions, to represent the relationship between the
robot and each of the objects within the robot’s sensor range. These fields are then combined to a
single global field, usually through superpositioning. For path planning, a smooth trajectory can be
computed based upon the gradient within the globally computed field (see Figure 5).
However, potential fields are not without their problems. In particular, they are vulnerable to local
minima or cyclicoscillatory behavior. Most of these problems can be solved by using time-varying
potential fields or injecting random noise into the field [Arkin 1998]. To reduce the amount of time
that is required to compute the entire field, reactive robotic systems compute each field’s contribution
only at the position where the robot is currently located.

Figure 5: three obstacles in a potential field while navigating towards a goal

7.3 Using multiple behaviors
Conflict can arise when two or more behaviors are active, each with its own independent response.
Two primary mechanisms for behavioral coordination are competitive or cooperative methods, but
the two can be combined if desired.
Competitive methods can often be viewed as a winner-takes-all strategy in which the single
response for the winning behavior suppresses all the others and is directed to the robot’s actuators for
execution. Competitive methods result in the selection of the output of a single behavior, either by
arbitration of action-selection. Arbitration requires that a coordination function serving as an arbiter
selects a single behavioral response. The selection is usually based on some sort of predefined
hierarchy. Action-selection methods select the output of a single behavior in a less autocratic manner.

Part II Chapter 7: Designing robot behavior

23

Here the behaviors actively compete with each other through the use of activation levels driven by
both the robot’s goals and incoming sensor information. The behavior with the highest activation
level wins.
Cooperative methods offer an alternative to competitive methods by using behavioral fusion. This
provides the ability to use the output of more than one behavior at a time. The central issue in
combining the outputs of behaviors is finding a representation that allows fusion. One such
representation is the previously discussed potential-fields. The most straightforward method here is
the use of vector addition or superpositioning.

Behavioral assemblages
Behavioral assemblages are the packages from which behavior-based robotic systems are constructed.
An assemblage is recursively defined as an aggregation of behaviors or other assemblages. They
serve as important abstractions that can be used to create higher-level behaviors from simpler ones.
Each individual assemblage consists of a coordination operator and a number of behavioral
components.

Emergent behavior
Emergence is the appearance of novel properties in a system. Often emergence is viewed in an almost
mystical sense regarding the capabilities of behavior-based systems. It is true that what occurs in a
behavior-based system is often a surprise to the system’s designer, but this surprise does not come
because of a shortcoming in the analysis of the behavioral building blocks and their coordination.
Coordination functions are algorithms and hence are straightforward and contain no surprises.
However, we cannot predict robot behavior exactly because the real world is filled with uncertainty
and dynamic elements. The world cannot be faithfully modeled and is full of surprises. As Rodney
Brooks [Brooks 1990] said it “…the world is its own best model. It is always exactly up to date. It
always contains every detail there is to be known. The trick is to sense it appropriately and often
enough.”

Part II Chapter 8: Behavior-based architectures

24

Chapter 8: Behavior-based architectures
A common theme across robot systems is architecture. An architecture is a description of how a
system is constructed from basic components and how those components fit together. Every robot has
an architecture, even if implicitly.

8.1 Common features and differences
Behavior-based robotic systems work best when the real world cannot be accurately characterized or
modeled. Whenever engineering can remove uncertainty from the environment, purely behavior-
based systems may not necessarily be the best solution for the task. Often this is not the case and
behavior-based robotic architectures were developed in response to this difficulty. A wide range of
architectural solutions exists under the behavior-based paradigm. Common features of behavior-based
architectures are:

• An aversion to the use of representational knowledge.
• A tight coupling between sensing and action.
• Decomposition into meaningful units (behaviors or situation-action pairs).

The differences between behavior-based architectures are:
• Choice of behaviors.
• Used coordination methods (competitive or cooperative).
• Response encoding method (discrete or continuous).
• Programming methods.
• Basis for development (ethological, situated activity or experimental).

Behavior-based architectures can be evaluated in terms of their support for parallelism, hardware
retargetability, ecological niche fitting, modularity support, robustness, flexibility, ease of
development, and performance. However, there is no accepted theory of architecture design that can
be used to prove that one design is better than over another design.

8.2 Subsumption architecture
In the mid-1980s, Rodney Brooks developed the subsumption architecture. Brooks argued that the
sense-plan-act paradigm the Artificial intelligence community was using (see also paragraph 5.2 The
sense-plan-act paradigm) led robotics researchers in the wrong direction. He further argued that
complex behavior does not necessarily need a complex control system.
The subsumption architecture is a layered architecture that uses arbitration strategies and augmented
finite state machines as its basis. Task-achieving behaviors in the subsumption architecture are
represented as separate layers with individual layers working on individual goals concurrently. At the
lowest level, each behavior is represented with an augmented finite state machine (AFSM) model.
Sensor inputs are directed to behaviors that need them. The lower levels have no awareness of higher
levels. Higher levels can be added on an already working control system without further
modifications to the lower levels. Complex actions subsume simpler behaviors, hence the name.
Coordination in the subsumption architecture is done either by inhibition or suppression of signals.
The subsumption architecture has been implemented on many robotic systems using rule-based
encodings and an experimental design methodology. Some heuristics for the design and development
of behaviors are [Mataric 1992]:

1. Specify the desired behavior(s) in qualitative terms. The behaviors are the goals of the
system.

2. Specify the behavior in terms of the actions in the observer space. This is the process of
breaking down the behavior into observable, disjoint actions that will serve as subgoals.

3. Specify the actions in terms of the robot’s effectors. This is the process of selecting the
action set and the point at which the decision about the granularity of control is made.

Part II Chapter 8: Behavior-based architectures

25

8.3 Motor schemas
The motor schemas approach, motivated by the biological sciences, appeared a few years after the
subsumption architecture. Motor schemas are a software-oriented dynamic reactive architecture that
is non-layered and cooperative [Arkin 1998]. Vectors serve as the continuous response-encoding
mechanism with summation as the coordination strategy. Each motor schema has an output, an action
vector that defines the way it should respond to the perceived stimuli, and all vectors are multiplied
by its gain value and summed. No predefined hierarchy exists for coordination. Instead, the behaviors
are configured at run-time. Perception is often conducted on a need-to-know basis. Individual
perceptual algorithms provide the information that is necessary for a behavior to react. This is called
action-oriented perception. Arkin has made a list for building a schema-based robotic system,
which is as follows:

1. Characterize the problem domain in terms of the motor behaviors necessary to accomplish the
task.

2. Decompose the motor behaviors to their most primitive level using biological studies,
whenever feasible, for guidelines.

3. Develop formulas to express the robot’s reaction to perceived environmental events.
4. Conduct simple simulation studies assessing the desired behaviors’ approximate performance

in the proposed environment.
5. Determine the perceptual requirements needed to satisfy the inputs for each motor schema.
6. Design specific perceptual algorithms that extract the required data for each behavior, utilizing

action-oriented perception, expectations and focus-of-attention techniques to ensure
computational efficiency.

7. Integrate the resulting control system onto the target robot.
8. Test and evaluate the system’s performance.
9. Iterate and expand behavioral repertoire as necessary.

8.4 Other architectures
A wide range of other behavior-based architectures exists. Each approach is characterized by its
choice of coordination mechanisms, the used response-encoding methods, the used behaviors, and the
design methodology. Well-known architectures are:

• The circuit architecture that uses logical expressions for behavioral encoding, and abstraction
coupled with arbitration.

• The action-selection architecture, which is a dynamic competition system with a high
emergent quality using arbitration, developed by Pattie Maes.

• The colony architecture is a simplified version of subsumption, more straightforward in its
implementation. It only uses suppression and is more flexible in behavioral relations.

• The animate agent architecture uses reactive action packages (RAPs), which are specific
methods for certain tasks or situations.

Although behavior-based methods work excellent in dynamic environments, many roboticists would
like to use representational knowledge in their robots. Research has been done on how to integrate
various forms of representational knowledge into behavioral architectures. This will be the subject of
the next chapter.

Part II Chapter 9: Knowledge representations

26

Chapter 9: Knowledge representations
A controversy exists regarding the role of knowledge in robotic systems. Behavioral roboticists
generally view the use of symbolic representational knowledge as an obstacle to efficient and
effective robotic control. Others argue that strong forms of representational knowledge are needed to
have a robot perform at anything above the level of a lower life form.

9.1 What is knowledge?
Knowledge, much like intelligence, is a word that is very difficult to define. Information arises from
data and knowledge can be said to emerge from information. Knowledge involves using information
intelligently. Two important characteristics of knowledge include its predictive power and the need
for the stored information to correlate with the environment. The more predictable the world, the
more useful knowledge representations are since the predictive power of the knowledge will be
higher. Knowledge can be characterized into three primary forms:

1. Explicit knowledge is symbolic discrete and manipulable knowledge, typically used as
knowledge representations in traditional Artificial intelligence reasoning.

2. Implicit knowledge is non-explicit but reconstructable and can be made explicit through
procedural usage.

3. Tacit knowledge is knowledge embedded in a system that existing processes cannot
reconstruct.

Symbolic systems use explicit knowledge as defined above, subsymbolic systems (e.g. artificial
neural networks) use either implicit or tacit knowledge.
Knowledge can also be characterized by its durability. Transitory knowledge, which is derived from
sensor data, corresponds to cognitive short-term memory. Persistent knowledge, which may originate
from either a priori knowledge or sensor data, corresponds to long-term memory.

9.2 Knowledge in behavior-based systems
Many roboticists, especially the ones using behavior-based systems, resist the use of explicit
knowledge because of the symbol-grounding problem. The symbol-grounding problem refers to the
difficulty in connecting the meaning (semantics) of an arbitrary symbol to a real world entity or
event. It is easy to create a symbol that represents something, but it is difficult to attach the full
meaning and implications of that real world object or event to the symbol. Often, other symbols are
used to define the symbol that one is trying to describe.
Although it appears contradictory, knowledge representations have been used in the control system of
behavior-based robotic systems. We can distinguish two different types. Short-term memory (STM)
uses representational knowledge for specific behaviors on a need-to-know basis, in a manner similar
to action-oriented perception. As an analogy, this is called action-oriented knowledge representation.
Long-term memory (LTM) can be divided in two forms: sensor-derived cognitive maps and a priori
derived maps. In the first case information is directly received from the environment and gathered
only during the lifetime of the robot in a particular environment. It is used to construct a stand-alone
world model that is continuously updated to maintain a close correlation with the actual world. In the
second case, information was gathered earlier and possibly independent of the robotic agent. A priori
derived maps make it possible for a robot to navigate through an environment it has never visited
before.

Short-term behavioral memory
Behavioral memory provides certain advantages to a robot. It reduces the need for frequent sensor
sampling in reasonably stable environments and it provides recent information to guide the robot to
places outside its sensor range. Short-term memory is often used in single behaviors, usually obstacle
avoidance. The memory serves as a buffer and translator for a limited number of previous sensings. It

Part II Chapter 9: Knowledge representations

27

is used while the robot is in the environment, discarded afterwards and must be reconstructed if the
robot re-enters the environment. Although this might appear to penalize the robot by making it
somewhat absentminded, it is actually valuable as it eliminates much of the difficulty of long-term
localization (position relative to a map). Also, it is useful in dynamic environments where the
position of obstacles may change over time.

Long-term memory maps
Long-term memory representations can be used for mapping and navigational purposes. Map
representational knowledge is usually encoded in either metric form (absolute measurements) or
qualitative form (topological). One should note that the use of any form of map knowledge could be
dangerous because the world may have changed since the map was constructed. Also, localization
needs to be conducted for the robot to plan routes using its current position on the map.
Sensor derived maps provide information directly obtained from the robot’s experiences in the world.
As the world is sampled from the robot’s point of view, it is often better to use qualitative
representations instead of metric ones because of the always-present inaccuracies in robot motion and
sensor readings. The drawback of these navigational techniques is that the robot must have the ability
to distinguish the different places in its environment.

9.3 Hybrid deliberative-reactive architectures
Both deliberative planning systems and purely reactive control systems have their limitations, but
using both forms of knowledge in a robotic architecture can make behavior-based navigation more
flexible and general. Hybrid deliberative-reactive robotic architecture can combine the traditional
abstract representational knowledge with the responsiveness, robustness, and flexibility of purely
reactive systems. However, building such a hybrid system requires certain compromises. The
interface between deliberation and reactivity is not yet well understood and a research in this area is
still ongoing.
An important design issue of hybrid control systems is the number of layers. Usually the hybrid
architecture consists of two or three layers. In the case of two layers the interface between the layers
is very important because it links rapid reactions with long-range planning. In the case of three layers
the middle layer coordinates between the other two layers, much like the interface in the two-layer
architecture. There are four main interface strategies for the various hybrid architectural designs:

1. Selection: planning is viewed as configuration and determines the behavioral composition and
parameters used during execution.

2. Advising: the planner suggests changes that the reactive control system may or may not use.
3. Adaptation: the planner continuously alters the ongoing reactive behaviors based on the

changing conditions within the world and task requirements.
4. Postponing: planning is viewed as a least commitment process. The planner postpones making

decisions on action until as late as possible.

Strong evidence exists that hybrid deliberative and behavior-based systems are found in biology, so
research in this area could lead to new insights. For example, there seem to be two distinct systems
concerned with controlling human behavior, a reactive and automatic system (e.g. when one’s hand
touches something hot) and a willed and conscious control system (e.g. grasping something).

28

PART III:

Evolutionary robotics

Part III Chapter 10: Genetic algorithms

29

Chapter 10: Genetic algorithms
Genetic algorithms are search algorithms based on the principles of natural selection and natural
genetics, and are particularly suited for optimization problems. Genetic algorithms work with a set of
potential solutions to a problem. Every solution is awarded with a fitness rating, which is a measure
of the relative success in solving the problem. The best solutions are combined to form new and
hopefully better solutions.

10.1 The history of genetic algorithms
Around the year 1850 Gregor Mendel developed his theory of genes, also called the theory of
genetics. Genes are tiny bits of hereditary information found in the DNA of all living beings. Each
gene describes an aspect of the organism to which it belongs. Every cell of an organism contains
DNA and each DNA string contains all the genes of an organism. This means that every cell in its
body contains all the necessary information for a complete description of the organism. During its
development, the organism’s DNA is used as a blueprint for the production of new cells. Usually,
new organisms are created by combining DNA parts from two parents.
In 1859 Charles Darwin published his book ‘Origin of Species’. In this work he explains his theory of
evolution, which describes how the emergence of life as we know it, can be explained as a natural
phenomenon. A very important aspect of Darwin’s theory is the ‘survival of the fittest’, also called
‘natural selection’. This part of his theory explains that an organism that is well fitted for survival has
a greater chance to reproduce and pass along its genes to future generations. Winners stay alive and
losers become extinct. Just by surviving an organism proves its superiority. As the environment
slowly changes, the organisms can adapt gradually and evolve with it. Nowadays, there are still many
opponents to Darwin’s theory, mostly religious people, but in the scientific world the basics of
Darwin’s theory are widely accepted.
Genetic algorithms (GAs) are a way to use Darwin’s natural selection theory and Mendel’s theory of
genes to solve certain problems on a computer. GAs are most commonly used for optimization
problems that are difficult to analyze. Many of the terms used with GAs are derived from the
biological phenomenon. The GA as it is known today was first described by John Holland in the
1960s and further developed by Holland and his students and colleagues at the University of
Michigan [Holland 1992].

10.2 A simple genetic algorithm
The basis for a GA is a collection of candidate solutions for a problem. This collection is called a
population, and each candidate solution is called an individual (see also Figure 6).

101100100011

110111010010

010010010111

101110111100

00101011

1111000101101

101110101101

chromosome gene

10011101101111

population

individual

Figure 6: elements of a genetic algorithm

Part III Chapter 10: Genetic algorithms

30

All the individuals are represented by a chromosome, a string or vector usually encoded in binary
form1. Each element (bit) in a chromosome is called a gene, with each gene being an instance of a
particular allele (0 or 1). Each individual in the population is given a fitness rating that is calculated
according to a pre-defined fitness function. This fitness value indicates how well the individual
‘performs’ in relation to the other individuals. A new population or generation is created from the
existing one, based on the fitness of the individual and certain genetic operators. The genetic
operators are configured in such a way that the new generation has a higher average fitness score, so
each generation contains more fit individuals than the previous generation. The GA continues to
create new generations until some termination criterion has been fulfilled. Most commonly this
criterion is a maximum number of generations. When the process has terminated, the individual with
the highest fitness is taken as the best approximation of the required solution. The basic algorithm is
shown in Figure 7 below.

Generate initial random population
 P(0) and set i:=0

For each individual in P(i) determine
 its fitness

Select parents from P(i) based on
 fitness

Apply genetic operator(s) on parents.
Offspring is P(i+1)

Maximum size of P(i+1)
reached?

No

Yes

Termination
criteria satisfied?

Return the fittest individual in P(i)

No

Yes

Define parameters, fitness function
 and termination criteria

i := i + 1

Figure 7: a simple genetic algorithm

1 Some people reserve the term ‘genetic algorithm’ for cases where the representation is a bit string and use the
term ‘evolutionary programming’ when the representation is more complicated.

Part III Chapter 10: Genetic algorithms

31

10.3 Genetic operators
There are several commonly used genetic operators and depending on the problem at hand, different
operators can be applied. Probably the most popular genetic operator is the crossover operator.
Crossover is the artificial equivalent of sexual reproduction. Two individuals are selected based on
their fitness value. The fittest chromosome has the highest chance to be selected and the least fit
chromosome has the lowest chance. One or more crossover points are randomly selected on the
chromosomes that cut the chromosomes into several parts. The parts of the two chromosomes are
exchanged to create two new ones, as is shown in Figure 8.

101100100011

100011101000

parent chromosomes

100 01110 1000

101 10010 0011

crossover points

100100101000

101011100011

offspring

Figure 8: the crossover operator

Reproduction is an operator that copies one or more fit chromosomes to the next generation in order
to preserve the solutions with a high fitness rating. Solutions with a low fitness rating are removed.
Since reproduction is computationally less expensive than crossover it can speed up the algorithm.
The mutation operator can be used to randomly change one or more values of genes in a
chromosome. Every chromosome has a slim chance to be mutated.
In the early stages of a GA, a few very fit individuals may tend to dominate the population. To avoid
premature convergence the scaling operator can be used. The scaling operator scales down the fitness
rating of very fit individuals, so the difference between them and not so fit individuals does not
become too large.
The permutation operator is used to change the order of genes in a chromosome without changing
the values.
The inversion operator reverses the order of a contiguous section of the chromosome. However the
meaning of the chromosome remains the same. Inversion is rarely used in GAs because of the high
implementation costs.

The fitness function
The fitness function of a GA depends on the problem at hand, but in any case it is a function that
takes an individual as input and returns a number as output. The fitness function should not only
recognize the optimum solution, but should also be able to reward partially correct solutions. For
instance, if the problem consists of solving the mathematical equation x2 = 1, individuals which
represent a value close to 1 should be more fit than other individuals not so close to 1. If it is possible
that non-legal chromosomes are created, the fitness function should give a penalty to those
chromosomes.

10.4 Genetic parameters
There is no such thing as ‘the best GA’ for all problems, but only the best GA for a particular
problem. In order for a GA to work properly and converge to increasingly fitter generations several
parameters have to be selected. Unfortunately, there are no strict rules that determine the values of
the parameters and for each problem different settings should be used. However, there are several
helpful rules of thumb.
First of all the size of a population has to be selected. If a population is too small, the possibility to
create a highly fit individual is limited. If it is too large the GA executes very slow. Depending on the
problem and available processing power a population of 100 individuals or more is normal practice.

Part III Chapter 10: Genetic algorithms

32

[Haupt 1998] has found that creating a random initial population twice the size of the normal
population (which is computationally inexpensive to create) gives the GA a good start.
The number of generations that the algorithm will create before returning the best found solution
determines how long the GA will run. This parameter is dependent on the processing speed of the
computer and the time one is willing to wait. In general, the more generations are created, the better
the solution that is found, but note that individuals will not improve much in the later stages. The
situation becomes more complex if chromosomes are allowed to grow and vary in length. This is
because there is always the possibility that the chromosome can grow after some period of
convergence.
The choice of operators depends very much on the type of problem. A reordering operator like
permutation is aimed at another kind of problem than a simple crossover operator. Almost all
operators need a selection mechanism. Selection is done mostly according to fitness, but even then
there are a number of ways to implement selection. Mutations introduce ‘fresh’ genes into a
population, but most of the time it creates a relative weak individual. A high mutation rate would
introduce many weak individuals into a fit population, so the mutation rate has to be very low.
The design of a GA is a process that needs tuning and becomes easier with experience. One should
not count on choosing the right coding, the right fitness function and the right parameters on the first
try. Also, it is advisable to run a GA with specific parameters more than once. If the results are rather
erratic over the runs, one should mistrust the design.

10.5 Genetic algorithms versus traditional search algorithms
There are a number of differences between GAs and traditional search algorithms like A* or Hill-
climbing. The most important differences are [Spronck 1996]:

• GAs are inherently parallel: traditional search algorithms work with one solution at the time,

while GAs work with many potential solutions.
• GAs are probabilistic in nature: traditional search algorithms are often deterministic, while

GAs are probabilistic in nature. However, if we compare GAs with a pure probabilistic search,
we can say that GAs work far better because they use the implicit knowledge that is found in
the fitness of the chromosomes.

• GAs are blind: GAs work with coded parameters and change them without any concern for the
meaning of the code.

GAs function in many different environments and circumstances with many different kind of
problems, but there are some weak points. There is no guarantee that a found solution is good enough
and GAs are very slow in comparison with traditional search algorithms because complete
populations are examined instead of separate solutions. Balancing the advantages and weaknesses,
we may conclude that GAs can be of greatest value with those problems for which no good dedicated
search algorithms exists.

Part III Chapter 11: Genetic algorithm applications

33

Chapter 11: Genetic algorithm applications
The most direct application of GAs is in the field of function optimization, but a lot of problems can
be defined as optimization problems and therefore GAs can be applied to a wide range of problems.
Other than that, GAs can also be used as the basis or part of other problem solving techniques.

11.1 Classifier systems
Classifier systems (CSs) are architectures within the domain of Genetics-Based Machine Learning
(GBML) systems and use genetic search as their primary discovery mechanism. A CS uses a machine
learning system that learns string rules, called classifiers, to guide its performance in an arbitrary
environment. The three main components of a CS are a classifier and message system, an
appointment of credit system and the genetic algorithm. (see Figure 9).

sensors effectors

appointment
of credit

genetic
algorithm

message
list

classifier
 store

Figure 9: a classifier system

A CS can be treated as a black box that gets information from the environment via sensors and
performs some action through effectors. The information from the environment comes in the form of
messages that are placed on a fixed-size message list. Messages are fixed-length strings that contain
characters from a specific alphabet (usually binary). The messages may activate classifiers from the
classifier store. Classifiers consist of a condition and a message. When the condition is fulfilled, the
classifier may place its message on the message list. A condition has the same length as the messages
and uses the same alphabet, but in addition it may contain ‘wild-card’ symbols. A condition is
fulfilled when there is a message on the message-list that is equal to the condition in all positions
except for the positions containing wild cards. Each classifier in the classifier store maintains a
record of its net worth, called its strength. The higher the strength of a classifier, the better it
performs and the more it is needed. While the CS is active, it has to change the strength of the
classifiers according to their effect on the environment. A common method of doing this is the bucket
brigade method. To manipulate the classifier store to get new, possibly better classifiers a GA is used.
The classifier store can be viewed as a population of chromosomes and new populations can be
created based on the strength of the classifiers. An extra parameter is needed to decide at what
moment the GA is activated.
Work by Dorigo and Colombetti demonstrates the use of classifier systems for evolving controllers
for a simulated and a real robot [Dorigo and Colombetti 1998].

11.2 Genetic programming
In 1992 John Koza published his book “Genetic Programming”’ [Koza 1992] and it immediately
found a great interest from many researchers in the field of GAs. Koza’s idea was to manipulate

Part III Chapter 11: Genetic algorithm applications

34

complete computer programs in the same way chromosomes are manipulated with a GA to create a
program that excels in performing a given task.
Genetic programming (GP) has some benefits over GAs. Solutions derived with GP are algorithms
and therefore more flexible than solutions found with a GA. More important, once an algorithm is
found it can be re-used to develop more complex programs. Obviously, GP is far more difficult to use
than GAs. The syntax of the evolved programs should be well defined and we should take care not to
create badly constructed programs. Normally, a crossover operator is not syntax preserving. It cuts
correct programs in pieces and reassembles them from the parts. Therefor the crossover operator in
GP is slightly different. Each program is viewed as a tree-like structure with each node containing a
function and each leaf a terminal. For example, ‘sum(x,y)’ can be modeled as the first tree in
Figure 10. The node contains the function ‘sum’ and the leafs contain terminals ‘x’ and ‘y’. The
crossover operator can only exchange subtrees from each program. This means that unlike most GAs
the chromosomes in GP almost always have a variable length.

sum

x y

mult

xdiff

p q

sum

x y

mult

xdiff

p q

Figure 10: crossover in subtrees

It is clear that with GP we cannot use an ordinary fitness function as we did with GAs. A GP fitness
function has to evaluate an entire program according to its success in performing a given task. A
much-used technique is the application of fitness cases. The effect of a program is the conversion of
some input to specific output. The collection of fitness cases consists of a variety of inputs for which
the desired output is known. The program is run with each of these inputs and a fitness measure is
determined for each case, based on the comparison between the actual output and the desired output.
The average of these fitness measures is the fitness value.

11.3 Other approaches
GAs can be combined with several other conventional methods of searching. For example, a GA can
scan the solution space quickly and the conventional algorithm finds the optima in the regions that
were found by the GA.
A popular approach in robotics is the use of a GA in combination with a neural network. The GA is
used to evolve the synaptic weights for the network that functions as a controller. An example can be
in found in the autonomous vehicle ALVINN [Pomerleau 1993].
An interesting example of a hybrid GA/GP application in robotics can be found in [Lee et al 1996]. In
this paper a GP algorithm is used to evolve the controller and a GA is used to evolve the body of the
robot. The subject of evolving robot morphology will be addressed briefly in the next chapter.

Part III Chapter 12: Research questions

35

Chapter 12: Research questions
Since several years, researchers have tried to use evolution for the automatic design of control
systems for robots. The idea of evolutionary robotics is to use a GA or GP algorithm that evolves the
control program depending on the task. However, the field of evolutionary robotics is still very young
and practical applications are rare.

12.1 Fitness evaluation: real time or simulation?
As with any genetic algorithm, a population has to be evaluated on the ability to perform the desired
task. In the case of evolutionary robotics, the populations consist of robot control programs. A
problem that needs to be resolved is the way that the evolving controllers can be evaluated best. If
they are tested on real robots in the real world, then this has to be done in real-time and evolution will
take very long. If controllers are tested using simulations the results may not be applicable on real
robots because of the differences between the simulation and the real world. Simulations can be made
more complex in order to represent the world more realistically, but this reduces the speed advantage
that simulations have over real world evaluation.
The problems with using physical robots are [Mataric and Cliff 1996]:

• Real time on real hardware: evolution on physical systems takes prohibitively long.
• Battery lifetime: the unavoidable need to recharge robot batteries further slows down the

experimental procedure.
• Physical hardware: aside from the prohibitive time overhead, the physical hardware of a

robotic system cannot survive the necessary continuous testing without constant maintenance
and repairs.

Problems with using simulations:

• Noise and error models: since it is impossible to simulate all details of a physical system any
abstraction made in a simulation may be exploited by the genetic algorithm and results in a
behavior that is maladaptive in the real world.

• Generality v. usefulness: most successful simulations have been based on accurate physical
measurements that were then incorporated into the sensor and effector models, as well as into
the fitness function. This not only makes the job of writing a simulation for a nontrivial robot
very challenging, it also produces an extremely specialized tool that does not generalize to
any other system.

Although several attempts to evolve real robots in real-time were quite successful [Steels 1994],
[Floreano and Mondada 1996] the simulation approach is more popular. A solution for better
simulation-real world consistency and faster simulations might be the ‘minimal simulation’ method
[Jakobi 1998] that focuses on making the simulation as simple as possible, but at the same time
incorporating all the necessary conditions for the result to be usable on a real robot. This method
appears to be promising, but so far it has only been used for relatively simple problems.

12.2 Design issues
A feature of robotics that sets it apart from many other domains that use artificial evolution is noise.
When working with robots or simulations that behave like real robots every evaluation function will
be noisy. This makes comparisons between different controllers difficult and the individuals that
receive the highest fitness values may not always be the fittest. One way of resolving this problem is
to evaluate each individual a number of times, instead of just once, and take the average score as the
its final fitness value. Obviously, this slows down the evolution process.
Although evolutionary robotics is not restricted to any one particular type of controller some seem to
perform better than others. The most commonly used types of control architectures in evolution are
artificial neural networks [Floreano and Mondada 1996], Lisp or Lisp-like programs [Koza 1990],
and classifier systems [Dorigo and Colombetti 1998]. Neural networks seem to be the most popular

Part III Chapter 12: Research questions

36

of the three, possibly because their structure provides flexibility in the functionality of the control
system.
The choice of the controller encoding scheme can have a large impact on the success or failure of the
evolutionary robotics process. If one has intuitions about what potential solutions to a problem might
look like, then the encoding scheme can be used to search in those areas of the solution space that are
rich in these potential solutions. If used carelessly it can also do the opposite.

12.3 Future directions
Both the controller and the physical characteristics of a robot play a major role in its functionality.
The shape, number and arrangement of sensors determine what features of the environment will
affect the robot and what will not. The physical dynamics of the actuators and the used control
program determine the set of possible actions that the robot may use to perform its task. There have
been attempts to evolve features of the physical dynamics of a robot while evolving the controller but
the results so far have been very thin [Lund et al 1997]. An interesting method is Karl Sims’ evolved
virtual creatures [Sims 1994a], [Sims 1994b]. He created a complex virtual world with life-like
physics and evolved the bodies and brains of virtual creatures to perform a variety of different
behaviors like swimming, jumping and competing with other creatures. An example is shown in
Figure 11.

Figure 11: two of Sims' creatures competing for a cube.

37

 Bibliography

38

Bibliography

Aleksander, I. and Morton, H. (1995) An introduction to neural computing. (2nd edition), International

Thomson Computer Press.

Arkin, R. C. (1998) Behavior-based Robotics. The MIT Press, Cambridge, Massachusetts.

Ballard, D.H. and Brown, C.M. (1982) Computer vision. Englewood Cliffs, N.J., Prentice-Hall.

Braitenberg, V. (1984) Vehicles: experiments in synthetic psychology. The MIT Press, Cambridge

Massachusetts.

Brady, M. (1985) Artificial intelligence and robotics. In Artificial Intelligence and Robotics, Vol. 26,

pages 79-121.

Brooks, R.A. (1990) Elephants don't play chess. In Robotics and Autonomous Systems Vol. 6, 1990,

pages 3-15.

Brooks, R.A. (1986) A robust layered control system for a mobile robot. MIT AI Lab Memo 864

September 1985, also IEEE Journal of Robotics and Automation Vol. 2, No. 1, March 1986,
pages 14-23.

Connell, J.C. and Mahadevan, S. editors (1993) Robot learning, Kluwer Academic Publishers.

Craig, J.J. (1989) Introduction to Robotics: mechanics and control (2nd edition), Addison-Wesley

Publishing Company, Inc.

Dorigo, M. and Colombetti, M. (1998) Robot Shaping: an experiment in behavior engineering, The

MIT Press, Cambridge, Massachusetts.

Floreano, D. and Mondada, F. (1996) Evolution of homing navigation in a real mobile robot. In IEEE

Transactions on Systems, Man and Cybernetics - Part B, Vol.26 (3), pages 396-407.

Goldberg, D.E. (1989) Genetic algorithms in search, optimization and machine learning. Addison-

Wesley, Reading, Massachusetts.

Haupt, R.L. and Haupt, S.E. (1998) Practical genetic algorithms. John Wiley & Sons.

Hecht-Nielsen, R. (1989) Neurocomputing. Addison-Wesley Publishing Company, Inc.

Holland, J.H. (1992) Adaptation in natural and artificial system. (2nd edition), The MIT Press,

Cambridge, Massachusetts, (1st edition 1975).

Jakobi, N. (1998) Minimal solutions for evolutionary robotics. D. Phil Thesis, University of Sussex.

Kortenkamp, D., Bonasso, R.P. and Murphy, R., editors (1998) Artificial intelligence and mobile

robots: case studies of successful robot systems. The MIT Press, Cambridge, Massachusetts.

Koza, J.R. (1992) Genetic programming: on the programming of computers by means of natural

selection. MIT Press/Bradford Books Edition, Cambridge, Massachusetts.

 Bibliography

39

Koza, J.R. (1990) Evolution and co-evolution of computer programs to control independently-acting
agents. In From Animals to Animats: Proceedings of the First International Conference on
Simulation of Adaptive Behavior, Meyer and Wilson editors, pages 366-375.

Koza, J.R. and Rice, J.P. (1992) Automatic programming of robots using genetic programming. In

Proceedings of the Tenth National Conference on Artificial Intelligence. Menlo Park, CA: AAAI
Press / The MIT Press, pages 194-201.

Lee, W., Hallam, J. and Lund, H.H. (1996) A hybrid GP/GA approach for co-evolving controllers

and robot bodies to achieve fitness-specified tasks. In Proceedings of IEEE 3rd International
Conference on Evolutionary Computation. IEEE Press.

Lund, H.H. and Miglino, O. (1998) Evolving and breeding robots. In Proceedings of the First

European Workshop on Evolutionary Robotics. Springer-Verlag.

Lund, H.H., Hallam, J. and Lee, W. (1997) Evolving robot morphology. In Proceedings of IEEE 4th

International Conference on Evolutionary Computation. IEEE Press.

Lund, H.H., Webb, B. and Hallam, J. (1998) Physical and temporal scaling considerations in a robot

model of cricket calling song preference. In Artificial Life 4, Vol. 1, pages 95-107, 1998. Also in
Proceedings of Artificial Life VI.

MacLennan, B. (1991) Synthetic ethology: an approach to the study of communication. In Artificial

Life II: the Proceedings of the Second Workshop on the Synthesis and Simulation of Living
Systems, Vol. 10. Santa Fe Institute Studies in the Sciences of Complexity, Redwood City, CA:
Addison-Wesley, pages 631-658. Also University of Tennessee, Knoxville, Department of
Computer Science, Technical report CS-90-104, May 1990.

Maes, P. and Brooks, R.A. (1990) Learning to coordinate behaviors. In Proceedings of AAAI-90,

pages 796-802.

Mahadevan, S. and Connell, J. (1991) Automatic programming of behavior-based robots using

reinforcement learning. In Proceedings of the Ninth National Conference on Artificial
Intelligence (AAAI ’91), Anaheim CA, July 1991, pages 768-773.

Mataric, M.J. (1994) Learning to behave socially. In proceedings of "From animals to animats 3,"

Third International Conference on Simulation of Adaptive Behavior (SAB-94). Cliff, D. et al.
Editors, MIT Press, pages 453-462.

Mataric, M.J. (1992) Behavior-based systems: main properties and implications. In Proceeding of

the IEEE International Conference on Robotics and Automation, Workshop on Architectures for
Intelligent Control Systems, Nice, France, May 1992, pages 46-54.

Mataric, M.J. and Cliff, D. (1996) Challengs in evolving controllers for physical robots. In

Evolutional Robotics; special issue of Robotics and Autonomous Systems, Vol. 19, No.1, Oct
1996, pages 67-83. Also Brandeis University Computer Science Technical Report CS-95-184,
Nov 1995.

McFarland, D. (1981) The Oxford companion to animal behavior, Oxford University Press.

Mitchell, T.M. (1997) Machine Learning, McGraw-Hill Companies, Inc.

 Bibliography

40

Nilsson, N.J. (1969) A mobile automoton: an application of artificial intelligence techniques. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-69).
Washington, D.C., May. Reprinted in Autonomous mobile robots. Vol. 2, Iyengar, S. and Elfes,
A. editors, IEEE Computer society press, Los Alamitos, 1991, pages 233-244.

Pomerleau, D. (1993) Neural network perception for mobile robot guidance. Kluwer Academic

Publishers, Boston.

Russell, S. and Norvig, P. (1995) Artificial Intelligence: a modern approach. Prenctice-Hall

International, Inc.

Sims, K. (1994a) Evolving virtual creatures. In Computer graphics, proceedings of Siggraph July

’94, pages 15-22.

Sims, K. (1994b) Evolving 3D morphology and behavior by competition. In Artificial Life IV

proceedings, Brooks, R. and Maes, P. editors, MIT Press, pages 28-39.

Spronck, P. (1996) Elegance: genetic algorithms in reinforcement control. Master’s Thesis, Delft

University of Technology, The Netherlands.

Steels, L. (1997) A selectionist mechanism for autonomous behavior acquisition. In Robotics and

Autonomous Systems, Vol 20, pages 117-131.

Steels, L. (1994) Emergent functionality in robotic agents through on-line evolution. In Designing

Autonomous Agents. Edited Maes, P., MIT Press, Cambridge Massachusetts, pages 71-88.

Appendix Used WWW-pages

41

Appendix: Used WWW-pages
Note: all addresses were checked august 27th 1999. A complete list of all addresses can also be found
at http://student.twi.tudelft.nl/~s218303/robotlinks.html

People
Arkin, Ronald http://www.cc.gatech.edu/aimosaic/faculty/arkin
Bonasso, Pete http://tommy.jsc.nasa.gov/~bonasso
Brooks, Rodney http://www.ai.mit.edu/people/brooks
Channon, Alastair http://www.channon.net/alastair
Dorigo, Marco http://iridia.ulb.ac.be/dorigo/dorigo.html
Floreano, Dario http://diwww.epfl.ch/lami/team/floreano
Forrest, Stephanie http://www.cs.unm.edu/~forrest
Goldberg, David http://www.ge.uiuc.edu/people/faculty/Goldberg.html
Harvey, Inman http://doc-sun.crn.cogs.susx.ac.uk/users/inmanh
Husbands, Phil http://www.cogs.susx.ac.uk/users/philh
Kaelbling, Leslie http://www.cs.brown.edu/people/lpk
Koenig, Sven http://www.cc.gatech.edu/fac/Sven.Koenig
Konolige, Kurt http://www.ai.sri.com/~konolige
Kortenkamp, David http://tommy.jsc.nasa.gov/~korten
Koza, John http://www.genetic-programming.com/johnkoza.html
Krink, Thiemo http://www.daimi.aau.dk/~krink
Kuipers, Benjamin http://www.cs.utexas.edu/users/kuipers/index.html
Lund, Henrik http://www.daimi.au.dk/~hhl
Maes, Pattie http://pattie.www.media.mit.edu/people/pattie/homepage.html
Mahadevan, Sridhar http://www.cps.msu.edu/~mahadeva
Martin, Fred http://lcs.www.media.mit.edu/people/fredm
Mataric, Maja http://www-robotics.usc.edu/~maja
McLennan, Bruce http://www.cs.utk.edu/~mclennan
Minsky, Marvin http://minsky.www.media.mit.edu/people/minsky
Mitchell, Melanie http://www.santafe.edu/~mm
Mondada, Francesco http://diwww.epfl.ch/lami/team/mondada
Nilsson, Nils http://robotics.stanford.edu/people/nilsson
Nolfi, Stefano http://kant.irmkant.rm.cnr.it/nolfi.html
Resnick, Mitchel http://mres.www.media.mit.edu/people/mres
Rybski, Paul http://www-users.cs.umn.edu/~rybski
Simmons, Reid http://www.cs.cmu.edu/~reids
Sims, Karl http://www.genarts.com/karl
Steels, Luc http://arti.vub.ac.be/steels
Thrun, Sebastian http://www.cs.cmu.edu/~thrun

Robots
Alvinn http://www.navlab.org/projects/ALVINN.html
Flakey http://www.ai.sri.com/people/flakey
Khep on the web http://KhepOnTheWeb.epfl.ch
Marie Curie http://mars.jpl.nasa.gov/2001
Minerva http://www.cs.cmu.edu/~minerva
Rhino http://www.informatik.uni-bonn.de/~rhino
Sojourner http://mars.jpl.nasa.gov/default.html
Xavier http://www.cs.cmu.edu/~xavier

http://student.twi.tudelft.nl/~s218303/robotlinks.html
http://www.cc.gatech.edu/aimosaic/faculty/arkin
http://tommy.jsc.nasa.gov/~bonasso
http://www.ai.mit.edu/people/brooks
http://www.channon.net/alastair
http://iridia.ulb.ac.be/dorigo/dorigo.html
http://diwww.epfl.ch/lami/team/floreano
http://www.cs.unm.edu/~forrest
http://www.ge.uiuc.edu/people/faculty/Goldberg.html
http://doc-sun.crn.cogs.susx.ac.uk/users/inmanh
http://www.cogs.susx.ac.uk/users/philh
http://www.cs.brown.edu/people/lpk
http://www.cc.gatech.edu/fac/Sven.Koenig
http://www.ai.sri.com/~konolige
http://tommy.jsc.nasa.gov/~korten
http://www.genetic-programming.com/johnkoza.html
http://www.daimi.aau.dk/~krink
http://www.cs.utexas.edu/users/kuipers/index.html
http://www.daimi.au.dk/~hhl
http://pattie.www.media.mit.edu/people/pattie/homepage.html
http://www.cps.msu.edu/~mahadeva
http://lcs.www.media.mit.edu/people/fredm
http://www-robotics.usc.edu/~maja
http://www.cs.utk.edu/~mclennan
http://minsky.www.media.mit.edu/people/minsky
http://www.santafe.edu/~mm
http://diwww.epfl.ch/lami/team/mondada
http://robotics.stanford.edu/people/nilsson
http://kant.irmkant.rm.cnr.it/nolfi.html
http://mres.www.media.mit.edu/people/mres
http://www-users.cs.umn.edu/~rybski
http://www.cs.cmu.edu/~reids
http://www.genarts.com/karl
http://arti.vub.ac.be/steels
http://www.cs.cmu.edu/~thrun
http://www.navlab.org/projects/ALVINN.html
http://www.ai.sri.com/people/flakey
http://khepontheweb.epfl.ch/
http://mars.jpl.nasa.gov/2001
http://www.cs.cmu.edu/~minerva
http://www.informatik.uni-bonn.de/~rhino
http://mars.jpl.nasa.gov/default.html
http://www.cs.cmu.edu/~xavier

Appendix Used WWW-pages

42

Research institutions
University of Aarhus LEGO Lab http://legolab.daimi.aau.dk
University of Amsterdam Intelligent Autonomous

Systems Group
http://www.wins.uva.nl/research/ias

Boston University AI Laboratory http://neurobotics.bu.edu
Free University of Brussel AI Laboratory http://arti.vub.ac.be
California Institute of Technology Robotic’s

Homepage
http://robby.caltech.edu

University of South California Robotics Institute http://www-robotics.usc.edu
Carnegie Mellon University http://www.ri.cmu.edu
University of Edingburgh Mobile Robots Group http://www.dai.ed.ac.uk/groups/mrg
Georgia Institute of Technology Mobile Robot

Laboratory
http://www.cc.gatech.edu/aimosaic/robot-lab

University of Illinois Genetic Algorithms Laboratory http://gal4.ge.uiuc.edu/illigal.home.html
University of Manitoba Computational Intelligence

Laboratory
http://www.ee.umanitoba.ca/~cilab

Massachusetts Institute of Technology AI Laboratory http://www.ai.mit.edu/projects
Michigan State University Genetic Algorithms

Research and Applications Group
http://GARAGe.cps.msu.edu

University of Minnesota AI, Robotics and Vision
Laboratory

http://www.cs.umn.edu/Research/airvl

NASA’s Space Telerobotics Program Home Page http://ranier.hq.nasa.gov/telerobotics_page/tele
robotics.shtm

SRI International's Artificial Intelligence Center http://www.ai.sri.com/
Stanford University Robotics Laboratory http://robotics.stanford.edu
University of Western Australia Telerobot on the web http://telerobot.mech.uwa.edu.au
University of Zurich Artificial Intelligence Laboratory http://www.ifi.unizh.ch/groups/ailab

Newsgroups
Robotics FAQ http://www.frc.ri.cmu.edu/robotics-faq
Robot Competition FAQ http://www.ncc.com/misc/rcfaq.html
The Hitch-Hiker's Guide to Evolutionary

Computation (FAQ for comp.ai.genetic)
http://www.cs.purdue.edu/coast/archive/clife/FAQ/www

 News://comp.ai.alife
 News://comp.ai.genetic
 News://comp.robotics.misc
 News://comp.robotics.research

Software
Saphira robot control system http://www.ai.sri.com/~konolige/saphira/
Genetic Programming for trail following ants http://members.xoom.com/lowht1
Genetic Algorithms and Artificial Life

 resources
http://www.scs.carleton.ca/~csgs/resources/gaal.html

Genetic Algorithms Software http://www.geneticprogramming.com/ga/Gasoftware.html
The Genetic Algorithms Archive http://www.aic.nrl.navy.mil/galist
Matthew's C++ Genetic Algorithm Library http://lancet.mit.edu/ga

Links to links
Internet Robotic sources http://grouchy.cs.indiana.edu/usr/local/www/robotics/worl

d.html
Ragman's robotic links http://www.euronet.nl/users/ragman/link_64.html
Robot Information Central http://www.robotics.com/robots.html
Robotics Internet Resources page http://www-robotics.cs.umass.edu/robotics.html
Evolutionary computation and Artificial

Life
http://www.dai.ed.ac.uk/groups/evalg/copy_of_smucker_
ec_page.html

http://legolab.daimi.aau.dk/
http://www.wins.uva.nl/research/ias
http://neurobotics.bu.edu/
http://arti.vub.ac.be/
http://robby.caltech.edu/
http://www-robotics.usc.edu/
http://www.ri.cmu.edu/
http://www.dai.ed.ac.uk/groups/mrg
http://www.cc.gatech.edu/aimosaic/robot-lab
http://gal4.ge.uiuc.edu/illigal.home.html
http://www.ee.umanitoba.ca/~cilab
http://www.ai.mit.edu/projects
http://garage.cps.msu.edu/
http://www.cs.umn.edu/Research/airvl
http://ranier.hq.nasa.gov/telerobotics_page/telerobotics.shtm
http://ranier.hq.nasa.gov/telerobotics_page/telerobotics.shtm
http://www.ai.sri.com/
http://robotics.stanford.edu/
http://telerobot.mech.uwa.edu.au/
http://www.ifi.unizh.ch/groups/ailab
http://www.frc.ri.cmu.edu/robotics-faq
http://www.ncc.com/misc/rcfaq.html
http://www.cs.purdue.edu/coast/archive/clife/FAQ/www
news://comp.ai.alife/
news://comp.ai.genetic/
news://comp.robotics.misc/
news://comp.robotics.research/
http://www.ai.sri.com/~konolige/saphira/
http://members.xoom.com/lowht1
http://www.scs.carleton.ca/~csgs/resources/gaal.html
http://www.geneticprogramming.com/ga/Gasoftware.html
http://www.aic.nrl.navy.mil/galist
http://lancet.mit.edu/ga
http://grouchy.cs.indiana.edu/usr/local/www/robotics/world.html
http://grouchy.cs.indiana.edu/usr/local/www/robotics/world.html
http://www.euronet.nl/users/ragman/link_64.html
http://www.robotics.com/robots.html
http://www-robotics.cs.umass.edu/robotics.html
http://www.dai.ed.ac.uk/groups/evalg/copy_of_smucker_ec_page.html
http://www.dai.ed.ac.uk/groups/evalg/copy_of_smucker_ec_page.html

43

	Preface
	Abstract
	Chapter 1: What is a robot?
	1.1 Tasks
	1.2 Parts
	Effectors

	1.3 Sensors
	Proprioception
	Force sensing
	Tactile sensing
	Sonar
	Vision

	Chapter 2: Intelligence in robots
	2.1 The development of autonomous robots
	2.2 Learning
	When is learning useful?
	Learning approaches

	2.3 Reinforcement learning
	Applications

	2.4 Artificial neural networks
	ALVINN

	2.5 Genetic algorithms
	2.6 Fuzzy control
	2.7 Other learning methods

	Chapter 3: Mapping, localization and navigation
	3.1 Mapping
	Creating and using grid-based maps
	Creating and using topological maps

	3.2 Localization
	3.3 Navigation
	Planning
	Collision avoidance

	Chapter 4: Multi-robot systems
	4.1 Tasks
	4.2 Communication
	4.3 Social learning
	4.4 Advantages and disadvantages

	Chapter 5: History of behavior-based robotics
	5.1 Early developments
	5.2 The sense-plan-act paradigm
	5.3 The Subsumption architecture
	5.4 Robotic control
	Deliberative control
	Reactive control

	Chapter 6: Inspiration sources
	6.1 Neuroscientific and psychological basis for behavior
	6.2 Ethological basis for behavior

	Chapter 7: Designing robot behavior
	7.1 Design approaches
	7.2 Behavioral encoding
	Potential fields

	7.3 Using multiple behaviors
	Behavioral assemblages
	Emergent behavior

	Chapter 8: Behavior-based architectures
	8.1 Common features and differences
	8.2 Subsumption architecture
	8.3 Motor schemas
	8.4 Other architectures

	Chapter 9: Knowledge representations
	9.1 What is knowledge?
	9.2 Knowledge in behavior-based systems
	Short-term behavioral memory
	Long-term memory maps

	9.3 Hybrid deliberative-reactive architectures

	Chapter 10: Genetic algorithms
	10.1 The history of genetic algorithms
	10.2 A simple genetic algorithm
	10.3 Genetic operators
	The fitness function

	10.4 Genetic parameters
	10.5 Genetic algorithms versus traditional search algorithms

	Chapter 11: Genetic algorithm applications
	11.1 Classifier systems
	11.2 Genetic programming
	11.3 Other approaches

	Chapter 12: Research questions
	12.1 Fitness evaluation: real time or simulation?
	12.2 Design issues
	12.3 Future directions

	Bibliography
	Appendix: Used WWW-pages

