Abstract

In this report a model for an image vision system is presented that is capable of recognizing car
license plates independent from plate location, -size, - dimension, -color and -character style. We
propose the application of a combined neocognitron type of neural network classifier in a generic car
license plate recognition (CLPR) system.

The suggested system contains an image-processor, a segment-processor and five combined
neocognitron network classifiers which act as a character recognizer. The presented model of the
system depends neither on specific license plate image features nor on license plates character style
and size. Combining neocognitron classifiers was motivated by the fact that manually tuning a
training-set for a large neocognitron network is tedious. It is shown how training set tuning for a large
neocognitron network can be avoided. By connecting small neocognitrons specifically trained for
character classes that were frequently wrongly classified, the performance of the recognizer in our
CLPR was be improved significantly. The use of a neocognitron recognizer contributes significantly
to the generality of a CLPR system. Besides, character recognition-rates over 98% are in reach using
the proposed neocognitron configuration.

The only universal character recognizer is the human visual system. Mimic only some of the
capabilities of human vision seemed not a trivial task. However it is demonstrated that the introduced
techniques for image- processing, image segmentation and character recognition make the
constructing of a generic CLRP system in software possible. Our prototype system needs further
analysis and development but it currently exhibits an overall plate recovery-rate of 65% in laboratory
conditions. The overall performance can be easily pushed towards rates that are claimed by
commercial applications in this area.
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Preface

This report discusses a newly developed Car License Plate Recognition (CLPR) system, which
performs recognition of numberplate characters from digital photo images of cars. The system
consists of two major subsystems.

First, we have developed a prototype for image processing. This subsystem implements existing
algorithms on image-enhancing and image-segmentation, to find the individual characters on the
picture. We have managed to isolate individual license plate characters from low resolution grey-
scaled images without applying so-called size constraints and without selecting the relevant objects by
looking at certain intensity values of pixels of the number plate. Of course there are certain
restrictions regarding the ‘quality’ of the image but our pre-processor does isolate individual
characters of Dutch license plates with a reasonable success rate without using explicit knowledge on
the numberplate size, -dimensions, -color and -location.

The second subsystem deals with recognizing the isolated segments as alphanumerical characters. For
this subsystem, we have implemented a neocognitron simulator that runs on a Personal Computer.
Where other CLPR systems do use multilayer perceptron (MLP) artificial neural classifiers which get
their input as a derived set of specific features (e.g. principle components, moments or projections) of
the presented image, we have selected to pass the character images directly to the recognizer. We
make use of a multilayer neocognitron artificial type of network as a character recognizer. The
neocognitron is one of the most complex neural network architectures. Nevertheless, this network is
chosen because this network is successfully applied to similar problems (recognition of handwritings)
and because the neocognitron can process input, independent from sizing and position of the object
picture in the visual field.

There is a lot of material covered in this report and since not all readers would have the same
background or interest, we have divided the text into three main parts.

. Part I covers an overview of the fundamental steps within an automated image understanding
system. It gives an introduction to the main characteristics of image acquisition, image
preprocessing, image segmentation and pattern recognition. Most of the image preprocessing
algorithms described in this part are used later in our CLPR implementation. In chapter 2 an
introduction on the architecture and functionality of a neocognitron neural network is given which
is used as the character recognizer in our system.

. Part II provides a comprehensive description of our CLPR architecture. Chapter 3 gives the
overall design of the CLPR system and chapter 4 deals with the procedures followed to configure
and train the neocognitron neural network used.

. Part IIl gives the software implementation of the CLPR. An overview of the system software
layers is given and, where applicable, the functionality of the software libraries is given. Of all
relevant image processing and userinterface functions, implementation details are described in



chapter 5. In Chapter 6 the system is evaluated and some suggestions are made to improve the
overall performance of the system.

The appendix contains:

. The software specification of the implemented neocognitron simulator.

«  The used neocognitron network configurations and training-set patterns.

«  The test results on the used neocognitron networks.

« A library of digital photographs used in the verification of the system.

The source code of both the CLPR prototype and the neocognitron simulator are available on a CD-
ROM. This CD-ROM also contains a copy of this report, the appendices, the training-set pattern files,
network configuration files and the photographs used for system verification and system evaluation.
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Introduction

Some years ago Car License Plate Recognition System technology received renewed interest from the
Dutch government because of a political resolution to introduce automated tollgates around the 4
major cities. Commercial CLPR system applications are widely used in traffic law enforcement
systems in order to process photos that record speed limit excess automatically. The number of photos
to be processed by these systems is low compared to the numerous photos that will be produced by the
proposed tollgate cameras. The availability of an accurate, robust and reliable CLPR system is
mandatory to successfully introduce these tollgates that seems desirable by Dutch politicians.

A CLPR system is also the object of research in this graduation project. Initially this research was
started to find a model for a universal character recognizer for photographs that show a wide range of
objects that all could be identified by an alphanumerical character string. Car license plates,
signposting , sea-containers and wagonnumbers on trains are only a few examples of objects that
could be recognized.

Although intuitively we know such a universal system would be very hard or even impossible to
implement, a model for such a system should not necessarily be very complex. Basically such a
system needs only a number of independent well defined processing steps.

. Isolated all possible character image segments on the photograph.

. Extract features from the isolated segments.

. Pass all catched segments to a character recognizer.

«  Apply domain knowledge to the string of alphanumerical characters found.

By using existing image processing techniques, it will not be a major problem to extract all possible
character images of a photo. We can look for example at high frequency components in the Fourier
transform of an image, or find objects of equal size or color that are arranged in line or that are
surrounded by border frames. We can pass the isolated and pre-processed segments to a neocognitron
network which is capable of classifying any kind of character style invariant of location and size.
Finally we make use of a knowlegde based system that may detect and even correct erroneous
character classifications based on domain knowledge. However the only universal character
recognizer is the human visual system, and only mimic some of the capabilities of human vision
seemed not a trivial task.

In this report a model for an image vision system is presented that is capable of recognizing car license
plates independent from plate location, size, dimension, color and character style. Of course, car
license plates have standard formats. However if we want to generalize to other objects, we do not
want to use this a priori-knowledge. By far our model is not a universal character recognizer system,
however we’ve tried to introduce some techniques that are generally applicable in such a system.
From this model, a software system has been implemented. Based on a license plate model, we have
implemented a simple image processor to isolate individual license plate characters. For character
recognition, we have implemented the neocognitron network in software as proposed by Fukisuma.
Our motivation to use this type of artificial neural network was because of its capability to read



generalized character styles independent from size or location. This type of network would make
many image preprocessing steps superfluous and therefore, it would make the system concept more
general applicable.

In this report the reader will not find a description of a universel characters recognizer system nor a
complete model for such a system, but instead a prototype and model for a CLPR is described based
on a neocognitron type of artifical network. Our system needs further analysis and development but,
based on the recognition rate it currently exhibits, we believe the recognition performance can be
easily pushed towards recognition rates that are claimed by commercial applications in this area.
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Chapter 1

Image understanding

To find a solution in the problem domain of image understanding, the following model is commonly
used.

image image l image feature segment . .
. . o interpretation
acquistion preprocessing segmentation extraction recognition

Fig. 1.0 A generalized image understanding system

«  Image acquisition deals with the problem of getting a digital image representation of the scene of
interest.

«  Pre-processing are all image transformations that ‘improve’ the image in order to increase the
change on successfully segmentate, and eventually understand, the image.

. Segmentation is defined as partitioning the pre-processed image such that areas of interest may
easily be captured.

«  Feature extraction is the process of determining specific features of the objects selected in the
previous step in order to decrease the variety of all possible object appearances.

«  Recognition deals with classification of the object according to its previous determined features.

«  Interpretation, the last step in the image understanding model deals with verification of the results
based on explicit knowledge of the objects recognized.

In order to increase the performance of image understanding systems, some stages in the process
provide feedback to previous steps. The nature of feedback data depends mainly on the application
area. The more complex the subject, the more feedback loops may be required to build a robust and
reliable system.

In the next sections, the main topics of the different stages in the image understanding process are
described in more detail. This chapter doesn’t pretend to give a complete overview on all possible
techniques involved in the field of image understanding. Mainly those techniques and aspects are
described which are used within our car license plate recognition system. Below in table 1.0 an
overview is given on the subjects described in this chapter. Per section indications are given whether
the subject was implemented in software and whether applied for license plate recovery. In our image
recognition systems approach there was no need for a feature extraction stage in the processing
pipeline. Therefore this subject is not described in this chapter.

13



Table 1.0 Stages in the image understanding process

Section Subject Impl” Appl’ Remark

1.1 Image acquisition Background information only N - Used existing digital images

1.2 Digital image preprocessing  -Basic transforms Y Y Inverse, grey-scaling
-Complex transforms Y N Fourier transforms
-Spatial domain enhancements Y Y Biniarization, area-filling, filtering
-Frequency domain Y N Inverse Fourier transforms
enhancements

1.3 Image segmentation -Discontinuity detection Y N Sobel operation
-Region oriented segmentation Y Y Pixel aggregation

1.4 Pattern recognition -Multi Layer Perceptron Y N SNNS MLP prototype was tried
-Neocognitron Y Y PC implementation neocognitron

1.5 Interpretation of results Background information only N - Typically post-processor aspects

" indicates whether software functionality is written and available in the prototype CLPR
Tindicates the application of the technique described to actually recover car license plates

1.1 Image acquisition

The first step in the image understanding process is image acquisition. Image acquisition encompasses
a broad range of mechanisms and theoretically underpinnings that would go far beyond the scope of
this report. Since, in our prototype CLPR system an image acquisition system has not been
implemented, we confine with only a brief introduction on image acquisition.

The imaging device in an image understanding system would normally be a camera. A camera
performs a perspective transformation. It projects the light reflected by three-dimensional objects onto
a two-dimensional plane. Although the human eye does show some principal differences compared to
a camera, they both consists of two basic components; a lens and discrete light receptor plane. In a
camera, an optical lens focuses an image of the reflected light of the object or scene photographed
onto a photographic film or electronic image chip. The light intensity values recorded by the film or
the image chip forms the input information for an image understanding system. Within the human
visual system light reflected by a scenery excitates the so-called cones and rods in the eye, which on
their turn send electrical impulses to the visual cortex for human perception.

It would be very interesting to research how much the physical construction and mechanism in the eye
contributes to the fact that humans can interpret images seemingly effortless. In automated image
understanding systems, we shall have to make shift with mechanical cameras.

As stated in the previous section the task of the image acquisition module within an image
understanding system is to get a digital image representation of the scene of interest.

The image acquisition module within an image understanding system should supply the preprocessing
step with as much as possible information. It should deliver ‘good quality’ photographs under all
conditions it was specified for. Image acquisition modules can be very complex because they have to
compensate for all kind of physical recording limitations even modern cameras have. In a CLPR
system used for law traffic enforcement for example the camera should not only deliver sharp images
of moving cars under bad illumination conditions but also the image acquisition system should
measure the speed and type of the cars.

In our prototype system there exists not an automated image acquisition module as such. In stead, we
have used images produced by a digital pocket-camera and some digital scanned slide-images made
available by the Dutch police.

14



Fig. 1.1 The imaging device for traffic law enforcement

1.2 Digital image preprocessing

Nowadays, digital image processing is applied in many different user areas. Enhancing pictures for
human interpretation, automation of video animation and environment simulation in virtual reality
systems are only a few examples were digital image processing is used extensively. Processing of
image data in relation to computerized perception is another area of use. However, in all application
areas the basic idea behind the processing of an image is transformation. In the field of human
perception, the transformation of a picture serves for example sharpening; magnification or
beautification. The goal of picture transformation for automated machine perception is to reduce the
data of the image, such that features or areas of interest may be far easier isolated.

In literature, many different techniques and algorithms for image processing are described. The
quintessence with respect to pattern recognition systems is to select those series of transformations
that fit best to prepare the image for further steps that lead towards image interpretation. In the
remainder of this section the theoretical background, terminology, and basic properties of some
general image transformations are given.

1.2.1 Image definition and basic transforms

Image definition

An image may be represented by a function or a mapping:

z=f(x)

Equation 1.1

In this equation, z represents the brightness or color of an image at the spatial coordinates x and y. A
digital image (both spatial and color variables have discrete values) is represented by a matrix :

15



Equation 1.2
Where matrix elements values indicate the brightness/color values of an image at the spatial
coordinates n and m. Which representation is taken, is dependent on the characteristic of the
transformation. In our case we will consider only grey-scaled images where the grey scale ranges from
0 to 255. Z in equation 1.1 is characterized by two components; the fraction of light received by

objects (i) on the scene and the fraction of light reflected by the object (7) in the direction of the
camera. Equation 1.1 may therefore be written as a product of i and r.

z=i(x,y)r(x.y)

Equation 1.3
Inversion
The negative of an image is obtained by assigning each pixel in the image its ‘negative’ value. If on a
grey-scale image the intensity values of pixels are in a range of [0,255]. The image negative is
defined by:

z=-z+255

Equation 1.4

Contrast stretching

Within all segmentation procedures, detection of intensity values transitions plays an important role.
In general, image contrast improvement will increase the success rate of segmentation especially
when the image suffers poor illumination. Therefore a contrast stage in an image preprocessing
procedure is often used. The following graph shows the grey-scale function which is applied on the
image depicted in figure 1.3.

contrast stretching

function
255
Q
=
«<
>
2
7]
=
g
R=
z
Q
=
0 L . 255
original intensity
value .
brightness

Fig. 1.2 Image contrast stretching function
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Fig. 1.3 Left the original picture, right the contrasted stretched one

Both the negative image transform and contrast stretching transform are used in our application. There
exist many more point processing transformation techniques the above mentioned alike; among others:
grey-level slicing to highlight specific grey-level ranges, bitplane slicing to highlight or remove
certain grey-levels or intensity value transforms based on the image color histogram. Since these are
not used in our work, a description is not given here.

1.2.2 Complex image transforms

There exists many transformations on digital images that reveal characteristics that may be very useful
in automated image recognition systems. The Fourier integral transform on a image may be useful in
texture analysis. On a high-contrast image we will find more high frequency components and we will
find mainly lower values for the frequency components in a low-contrast image. See figure 1.4.

The Fourier transform is based on the fact that any continuous function defined on a finite interval
could be expanded into a series of sine and cosine functions. Since an image may be represented by a
function, we may transform the brightness values in the x-y plane of the image.

Fig. 1.4 Left the original pictures, right the absolute value of the frequency
components. White corresponds to the high values, black to low values

A Fourier transform of function f{x) is defined as:

17



= Tf(x)e_z’””’dx

Equation 1.5

In case of an image brightness function as described in section 1.1 the one-dimensional Fourier
transform is extended to:

F(v,0)= ”f(x,y) e 2 ) gy

Equation 1.6

In practice we only have discrete functions f(x,y) the Fourier transform of an image will therefore be
defined by:

M-

N

NZ_IL J)éﬂﬁﬁg)

x=0 y=o0 MN

Equation 1.7

If we consider only images where N=M; equation (1.7) may be written as:

Equation 1.8

= Zf (ry)e

where

Equation 1.9

A Fourier transform of a 2-D image may easily be performed within two successive 1-D Fourier
transforms. The pictures in figure 1.4 are created by implementing equations 1.8 and 1.9 in
programming code together, using an existing 1-D fast Fourier implementation'.

A Fourier transformation as described above may be used in texture analysis of the image and for
image enhancements and —segmentation techniques by filtering out specific frequency components.

' Written by Don Cross dcross@intersrv.com avialable at http://www.intersrv.com/~dcross/fft.html
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1.2.3 Spatial domain image enhancements
1.2.3.1 Point processing

Point processing techniques are based on the intensity value of individual pixels of the image. In the
literature many techniques are described to enhance an image. In section 1.2.1, some basic
transformations have been discussed. In this section some aspects of image biniarization and area
filling algorithms are given.

Biniarization

Biniarization or tresholding may be considered as a special form of high-pass filtering. The result of
the following filter will highlight all pixels that have intensity values above a certain level.

if f(x,y)>T set pixel(x,y)to BLACK
else set pixel(x,y) to WHITE

Equation 1.10

This type of filter is of practical use only in highly controlled environments. The problem with this
kind of filter is selecting the threshold value 7 such that for all possible input images a binary image is
created where the intended black-white relation is preserved. In literature, the biniarization method
described above is often labeled as global tresholding. As opposed to global tresholding several
techniques, referred as local tresholding have been developed. These techniques have dynamic
threshold values based on intensity values of neighboring pixels.

Figure 1.5 shows the results of the biniarization procedures of equation 1.10 and 1.11. Figure 1.5.b
shows the black/white image when 1.10 is applied with a fixed treshold value T. Figure 1.5.c shows
the black/white image when the treshold value for each pixel is adjusted. The treshold value in the
latter is assigned as the average value of the surrounding pixels.

T =(f(x,y)+f(x—1,y)+f(x+1,y)+f(x,y—1)+f(x,y+l))/5
Equation 1.11

Looking at equation 1.11 it is expected that this treshold applied would result in a very noising black
and white image, because even small differences in intensity values of surrounding pixels may turn a
pixel form bright to black or form dark to white. That is exactly what it does. As shown later in section
3.3 this transformation is very useful to highlight the numberplate boundary as well as the
numberplate characters under particular conditions.

Fig. 1.5a,b,c Left the original picture, global tresholding applied on middle picture, right
shows the result of the local tresholding procedure
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Areafilling algorithms

Various algorithms have been defined to fill image areas with a predefined color. The floodfill
algorithm is the most practical when dealing with digital photographs. The floodfill algorithm starts at
a pixel inside the interior of area that is to be filled with a specific color. If the intensity value of the
starting pixel does not equal the value specified as the boundary, the color of the pixel is set to the
specified fill color. The algorithm then continuos by applying the same procedure for all the
surrounding pixels. If the pixel under consideration has either the specified fill color or the specified
boundary color the algorithm stops. Below a code sample of a recursive function is given that turns all
pixels of a monochrome image to white except those that lie within an enclosed white area.

floodfill (int x, int vy)

{

if b[x] [y]=BLACK

{
b(x][y] = WHITE
floodfill (x+1,v)
floodfill (x,y+1)
floodfill (x-1,vy)
floodfill (x,y-1)
}

}

1.2.3.2 Spatial filtering
Spatial filtering refers to filtering techniques where pixel masks are used to enhance the image.
Spatial filtering, as opposed, to point processing enhancements, considers the intensity values of

neighbouring pixels to determine new intensity values.

Low-pass filtering

Low-pass filters are often used to clean the noise on an image. A side effect of noise reduction by
applying low-pass spatial filters is image blurring. Generally, a mask describes filter operations. By
moving the mask over the whole picture, each pixel in the image is assigned a new intensity value.
The value z is set to the sum of the products of the masks weight values (wl..w9) and the intensity
values z; of the pixels under the mask. The following spatial filter is often used to enhance noisy
pictures.

wl w2 w3

w7 w8 w9

Where
w, =1 and z3=W,z, +wW,z, + Wszs + Wz, + Wezg)/5
Equation 1.12

Below in figure 1.6 the effect of the filter is shown.

Fig. 1.6 Left the original image, right lowpass filtered image
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High-pass filtering

High-pass filters are, as opposed to there low-pass equivalent, used to sharpen the picture. High pass
filters ‘highlight’ details while low contrast areas of an image remain unchanged. Edge enhancement
is often implemented by applying a high-pass filter. The following figure gives an example of a
special high boost filter.

wl w2 w3
1/9 wd | w5 | w6
w7 w8 w9

Where

w,==1Vi#5 w,=9 and

Zs = (W2 + WyZy + WiZy + WyZy + e+ WyZg) /9

Equation 1.13

Fig. 1.7 Left the original image right the highboost filtered image

1.2.4 Frequency domain filtering
Image filtering in the frequency domain is in principle straightforward. First, the Fourier transform of

the image is computed; the result is multiplied by a filter transfer function and finally the inverse
Fourier transform is taken.

Lowpass filters

Sharp transitions in grey-levels between connected pixels do contribute to the high frequency
components in the Fourier transform of the image. We recall equation 1.8. When multiplying this
function by A(v,w) from equation 1.14 we can easily remove all sharp transition between pixels on the
image just by taken the inverse transform. Figure 1.8 demonstrates the result.

h(o,w)=0 if Vo’ +@*> >D

h(v,w)=1 elsewhere

Equation 1.14 Function used in backward FFT
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Fig. 1.8 Left original picture right the inverse transform using equation 1.14

High-pass filters

As opposed to low pass filtering in order to smooth the image, the Fourier transform can be multiplied
by 0 for all low frequency components (use equation 1.15). The inverse transform of the image will
show only the sharp transitions of the original. See figure 1.9

ho,w)=0 if\Jv’ +@* <D
h(u, w) =1 elsewhere

Equation 1.15 Function used in backward
FFT to filter out low-freqency components

Fig. 1.9 Left original picture right the inverse transform using equation 1.15

1.3 Image segmentation

Within the pre-processing stage of an automated image understanding system, normally no
information is extracted from the image. Generally, image pre-processing steps map an image from
one disguise onto another.

Image segmentation, subdivides the image into parts that are considered to be the objects for
recognition. The output of image segmentation as opposed to pre-processing, is not a transformed
image but either cutouts of the original image or data related to segment properties.

Segmentation algorithms are based on two basic properties of the segment searching for:

«  Local discontinuity in pixel intensity level.

. Pixel connection based on certain color similarities.
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1.3.1 Discontinuity detection

In this section the most used line detection algorithm is presented; the Sobel operator. Similar
operators can be used for point or edge detection. The Sobel operator to compute the derivative of
image pixel intensity values in the y-direction is given by the following mask.

-1 -2 -1
0 0 0
1 2 1

The Sobel operator to compute the derivative of image pixel intensity values in the x-direction is given
by the following mask.

-1 0 1
-2 0 2
-1 0 1

The black areas in the picture of figure 1.10b indicate that absolute values of the pixel intensity
derivatives are above a certain level in either x or y direction.

@:Gx =-z, -2z, —zy+ 2z, +2z4 + z,
ox
g:Gy =—z, —2z,—z,+z,+2z,+ 2z,
oy

Equation 1.16 Sobel operation

i
|
E
E

Fig. 1.10a,b Left original image, right the image after the Sobel
operation of Equation 1.16 has been applied

1.3.2 Region-oriented segmentation

Discontinuity detection as described in the previous section does give us clues of what pixel areas to
select in order to cutout the area of interest. Although the numberplate of the truck shown in figure
1.10 is surrounded by black pixels, further processing is required to cutout the actual license plate
pixels. A technique to accomplish this is referred to as region growing by pixel aggregation. This
procedure groups pixels that have the same color and that are connected into a region.

In order to reveal the absolute pixel coordinates of the edges of the numberplate we could work out the

following algorithm.

1. Take the coordinates of utmost left bottom pixel of the image to start with.

2. Travel from this coordinate from left to right along each scan line of the image until a black pixel
is hit.

3. This pixel will be the first pixel of the set of pixels belonging to the segment.

4. Add recursively all connected black pixels to the set.
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5. Finally determine the maximum x- and y-coordinate en minimum x- and y coordinate of all pixels
that belong to the set.

6. License plate edge coordinates will be (X,in Viin )s( Ximine Vinax ) Fmaxr Vimin) a0d Xpnaws Vina)-

7. Redo from 2 to grab the next segment if necessary.

In our application we have implemented an algorithm as such to grab the areas in which individual
characters of the number plate reside.

1.4 Pattern recognition

As with image processing, pattern recognition is applied in many different areas; speech processing
early failure detection in machinery by trending characteristic parameters and share value forecasting
are only a few examples.

Automated pattern recognition systems are hard to implement. In [6] Bishop stated: ““ Often pattern
recognition problems may seemingly be solved by humans effortless, computer implementations for
this problem have in many cases proven to be immensely difficult however.”

Traditional programming provides enough flexibility, expressive power, and theoretical foundation to
solve the major problems in the image pre-processing, image segmentation, and feature extraction
stage of an image understanding system relatively easy. There does not exist a serious hardware
bottleneck in either pre-processing or in segmentating a digital image. However, solutions for pattern
recognition problems in digital images are less obvious. The challenge within automated pattern
recognition is; to program a machine such that instances of input patterns can be recognized with an
expectable low misclassification rate.

Mathematically, a pattern recognition problem may be formulated as follows: “find a function which
maps instances of the input sample to be recognized onto one of the classes that are defined on the
pattern searched for”. Often it is convenient to denote the input sample as a vector x and the output
classes to vector y.

f: RY >R yzf(x)
Equation 1.17

If there exists a “many to one”- relation between x and y and the input range and dimension are small
numbers, then one can always find an implementation of the function in equation 1.17, just by simple
constructing a mapping table by enumeration.

In practice however, N and M will not be small numbers and more seriously, we even might not have a
clue to formulate a sensible relation between the input vector and the output vector.

Statistics form the framework to formulate solutions for pattern recognition problems. Neural
networks have shown many powerful results in the field of pattern recognition and may be viewed as
an extension on conventional techniques in statistics. We will use neural network pattern recognizers
without given an introduction to statistical pattern recognition because this would be far beyond the
scope of this report.

Neurocomputing as opposed to traditional programming, gives us tools to find functions like equation
1.17 that eventually may serve as a pattern recognizer function on a specific problem. Nowadays,
often the term connectism is used for a class of algorithms that have a structure and behavior alike the
model that currently exists on the functioning of the human brain. Typically, a neural network is
trained to recognize pattern-classes in the image by supplying it with sufficient samples. If the
recognition rate is acceptable after a certain time of training the network may be used as an
approximation of the function, we were looking for, as specified in equation 1.17.

Most of the neural network applications require the original input sample to be classified to be pre-
processed. This pre-processing, often referred as feature extraction, has often greatly improved the
performance of the recognition system. This is mainly because we reduce the dimension N in formula
1.17. Suppose we want to recognize a character figure on a 256*256 pixel image. We could use
simply all 65.536 pixel values directly as input to the neural network. M would be 36 in this case if all
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alphanumerical characters are considered; N would be 65,536 ! This is not necessarily a problem
computational wise but the size of the training set would be huge. Therefore, we select only specific
features on the input sample. Moments and principle components of the image to be recognized are
often extracted before the image is fed to the neural network recognizer.

We have used two types of neural networks:
« A multiple layer perceptron network using 16*20 binary pixels directly without preprocessing.
« A neocognitron type neural network.

Image segment samples to be recognised can be used directly in a neocognitron, provided some trivial
preprocessing on the input segment is preformed like biniarization. Viewed form the outside a
neocognitron network type has the same processing function as any other type of artificial network. It
provides a mapping like equation 1.17. Training/learning the network can be carried out explicitly as
opposed to MLP’s which have implicit training methods.

1.5 Interpretation of results

Humans can often recall complete information from partial or unclear observations. Everybody can
interpret this text even if we dn’t prnt th vwls bt nly th cnsnnts. Somehow, we have explicit
knowledge about text. We know the syntax and grammar structure and rules applied to text and use
this knowledge after having recognized the underlined printed text above. Another example of explicit
knowledge: we would never classify an object as an elephant if observed as something big, high above
us in the sky, since we know elephants do not fly usually. It would be more likely an airplane or an
UFO.

The image processor, feature extractor and recognizer module in an image understanding system will
never perform 100%. Misclassification will inevitably occur. Therefore, many image understanding
systems have interpretation modules attached as final step in the processing chain. These post-
processor modules do hold the explicit knowledge of the problem domain.

There is no general architecture of such a module since this highly depends on the domain of the
image understanding system. In case of a CLPR for Dutch license plates, a hardcoded procedure of
some syntax rules may be used to try to eliminate or correct recognition errors. If a silhouette
recognizer for flying objects is the subject of our image understanding system, a knowledge base and
an interference engine would be necessary to increase the understanding performance of the system.

In our system design, the post-processor is given a place in the architecture. We have not implemented
any software module however, that acts as a post-processor.
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Chapter 2

An introduction to character recognition using
a neocognitron type of artificial neural network

2.1 Description of the neocognitron

The basic function of the neocognitron is to act as a pattern recognition network. The neocognitron is
mainly used to classify spatial binary character images. The neocognitron has been described
comprehensively in many textbooks (i.e.Hecht-Nielsen[7] pp198-210) and many papers (i.e. Fukisuma
[2][3]). Because describing the neocognitron in short but formal matter is a rather difficult task
(because of the complexity on functionality and architecture), we will only briefly explain the items of
the original neocognitron proposed by Fukisuma[2][3] which may be relevant for implementing the
neocognitron in software and using the neocognitron as a character recognizer in a CLPR.

The neocognitron, developed between 1980 and 1990, is typically a hierarchical network, composed
as cascaded connected layers. Neocognitron layers on their turn are composed of one or more slabs or
planes. A plane is built as a two-dimensional array of cells. Often the neocognitron network is
described top-down in literature. From a logical network model towards individual cells. In the next
sections we have selected to describe the network bottom-up. That is starting with the cell description
and ending with a complete network model.

2.1.1 Cells

The cells used in neocognitron networks are fundamentally simple objects. In the neocognitron
network three types of cells are defined. S-cells, C-cells and V-cells. Cells may be compared to the
classical perceptrons used in MLP artificial neural networks. Each type of cell is assigned to perform a
typical function within the neocognitron.

The S-cells in the neocognitron network are the feature extracting cells. The excitation of a particular
cell will be high only if a specific input pattern is presented (a particular feature) to its inputs. Which
features a S-cell should detect is determined by training. Training is basically reinforcing the input
connection weights of the cell according to certain rules. These rules are presented later. A S-cell is
depicted in figure 2.1a. The excitation of a S-cell is calculated by equation 2.1a.

1+ zl_eA Uc;a,
"_bUv

Us=rgo
1+

r+1

Equation 2.1a
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In equation 2.1a 4 is the set of all cells in the connectable area. The connectable area will be explained
later. ¢ is defined a function: max ( 0, x ). The constant r is called the selectivity parameter and will
also be explained later.

The V-cells are inhibitory cells. Their input connection weights are fixed, their output connections
weight is reinforced by training. A V-cell is depicted in figure 2.1. The excitation of a V-cells is
calculated by equation 2.1b.

The C-cells have an important task to make the network tolerant for small pattern distortions and
deformations and translations of patterns. How this is accomplished will be explained in the next
section. A C-cell is depicted in figure 2.1. The excitation of a C-cells is calculated by equation 2.1c.
C-cells have predefined input connection weights which cannot be changed during training.

Fig. 2.1 Neocognitron type cells. a,b,c and d are the different cell weights values, Uc,Uv and Us are

cell excitation values
. 2
Uv =, E Ue

Equation 2.1b

Uc = V/(ZieA Us,.di)
Equation 2.1c
Where s a function defined as follows: x /(1 + x).
2.1.2 Planes
As there exist three kinds of cells in a neocognitron, there also exist three kinds of planes in a

neocognitron architecture. Their names will not be very supprising: S-planes, C-planes, and V-planes.
Planes hold two dimensional arrays of S-cells, C-cells or V-cells.
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The number of plane outputs equals the number of cells in the plane and the number of inputs equals
the number of cells times the number of input connections per cell. Per plane, all cells have exactly the
same structure; their weights however will be different because of training, as we will see later.

C-cells and V-cells are often modeled together on one plane because each C-cell is connected to
exactly one V-cell and because their inputs are connected. This is shown in figure 2.2. A model of an
S-plane is displayed in figure 2.3.

Uc1

Fig. 2.2 V-S cell connection

Within a neocognitron network, two specific types of C-planes are defined: one input plane and
several (more than one) output planes. The cells of the input plane only have output connections while
the output C-plane typically has only one cell. There exists as much output planes, as there are
different pattern-classes to be recognized by the network.

For example a neocognitron designed to recognize the numerical characters 0 through 9 from a 19 by
19 pixel binary image will have an input C-plane with 361 cells while it will have 10 output C-planes.
Such a neocognitron basically implements a mapping as defined in equation 2.2.

f: R _y RO
Equation 2.2

In the following section it will be explained how the ‘hidden’ planes and their interconnections are

RS
RORCRC
RO
RS
RO

Fig. 2.3 A 5*5 S-plane

6 PP PP
0 PP PP
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2.1.3 Layers

A neocognitron network will have one or more hidden layers. Each hidden layer has two sublayers;
these are called a C- and S-sublayer. C-sublayers hold a one dimensional array (a row) with one or
more C-planes, S-sublayers hold one or more S-planes (also organized in a row) and exactly one V-
plane. The number of C-planes is less or equal to the number of S-planes. Since we would have more
than one plane per sublayer, we need additional indexes to indicate the output of a specific cell within
a layer. Therefor we rewrite equations 2.1a ,-b and —c by:

Uc=Uc,
Us=Us, .
Uv=0y,,,

Equation 2.3

Where m is the (x,y) position of a cell within a plane and « is the plane number within a layer. Note
that the output of V-cell has no plane index k, because there is only defined one V-plane per layer.

Plane 1

™ Uc((2,2),2)

V-P1

C-plane

Fig. 2.4 The structure of a hidden layer of a neocognitron

Before explaining how signals are propagated between sublayers, we introduce two new concepts:
connectable area and neuron gap. These two entities play an important role in the configuration of the
network and determine the interconnections of cells.

Each neuron or cell takes input form several cells of planes in a previous (sub) layer. The source
neurons all lie within a square area. This area is referred as the connectable area of the cell considered.
Figure 2.5 shows the connectable area of 3*3 in the source plane for the center cell in the target plane.
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Fig. 2.5 The connectable area between two planes

In figure 2.5 both the source and target plane are of the same size and neuron density. The neuron gap
for the target plane is 1. The neuron gap is defined as the distance of neurons in the layer considered
compared to the distances between neurons in the source plane. Figure 2.6 illustrates the neuron gap
parameter if we have different layouts of source and target planes. As shown in figure 2.6b we may
use the neuron gap parameter to enlarge the area of the source plane that is visible by the target plane.

0000000000 ODOOO0
CO000000000O00000
0000000000000 0O0

O000000000000O000
0000000000000 0O0

0000000000000 00

0000000000000 00

Fig. 2.6a Reachable area if neurongap=1 Fig. 2.6b when neurongap = 3

Layer intra-connections:

Within a layer the C-planes are connected to S-planes. A C-plane may be connected to one or more S-
planes. The designer of the network determines these intra- connections. Which plane is connected to
which is given by a discrete function: j (x;p). j=1I if planes k and p are connected; j=0 otherwise.
Basically, planes are connected through the cell connections shown in figure 2.6. Each cell in the
target plane is linked to ‘many’ cells in the source plane. The size of the connectable area and the
value of the neurongap parameter determine cell’s connection.

Layer inter-connections:

Overall a layer, all S-planes are connected to all C-planes in the previous layer. S-planes are connected
to C-planes in the same way as layer intra-connections have been defined. The single V-plane in the
layer is also connected by cell connections. Each V-plane cell is connected to all C-planes of the
previous layer. The V-plane cell outputs are connected to a special inhibitory input of the cells in the
S-plane of the same layer.

In figure 2.7 some of the intra and inter plane connections are drawn. Obviously painting a
neocognitron in its full glory would result in a beautiful but very complex picture. In the next section,
a more schematic picture is given of the neocognitron.
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Fig. 2.7 Intra- and Inter layer connections

2.1.4 Network

Before the propagation functions per cell type are given in equation 2.7a, -c we present in table 2.1 the
identifier symbols used in these equations.

Table 2.1 Formula indentifiers used to describe the neocognitron

Indentifier Description

Us, Uc, Uv Output of a S-, C-, V-Cell

n (x,y) absolute cell position in a plane
kand p Index numbers of source and target plane
A Layer index number
v (x,y) relative cell position in a connectable area
r Selectivity parameter
K Set of numbers of planes in a sublayer
A Set of elements v e.g { (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), .. ,(2,2) } for a 3*3 area
q Trainings coefficient normally set aprox 100000
a,b Reinforcable cell weights
¢d Fixed cell weights (see equation 2.4)
Y, O, &-bar Network constants determined by design to set the fixed cell weights
Jj(xp) Connection function.
¢ A maximum function (see equation 2.5)
% A normalisation function (see equations 2.6)
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¢, (V) = 7‘;‘
d,(v)= 515‘;‘

Equation 2.4 Weight functions

p(x)=0x<0,
p(x)=1x2>0,

Equation 2.5 The maximum function

@(x)

w(x)= I+ (o)

Equation 2.6 The normalisation function

Equation 2.4 together with the knowledge that S-planes and C-planes are based on a connectable area
and the neuron gap parameter lets us rewrite the output excitation function of C-,S- and V-plane cells
as earlier defined in equation 2.3.

K
Ue=Ue, = W[Z jlep)2d, W)Us,, .., }

K
_ _ Z — 2
UV ZUVﬂ.(ﬁ) - \/ C/‘i (V)U Cﬂ_l(nﬁ+?,fc)

1+ Zaﬂ(V,K,/l)Uci_l("ﬁw“
Us=Us, = rp—*= VeAr -1
I+—*—b,(p)Uv,,.,
T

Equation 2.7a,b,c C-cell excitation, V-cell excitation and S-cell excitation

Using the equation above we can propagate the excitations of the input plane towards the output
planes. These functions may not seem to be very trivial however one thing is clear, on whatever input,
we won’t get any other output values than 0 because the weights a and b are initially set to zero. The
weight values a and b should be set to sensible values. This is accomplished by training the network.
How this is done is described in the next section.

In figure 2.8, finally a schematic overview is given on a neocognitron configuration designed to
recognize handwritten characters. The squares drawn within the plane boundaries designate the
connectable areas. The circles on the last sublayer ‘Uc4’ designate the single cell planes from which
finally the classification of the input image sample is derived.
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Fig. 2.8 Hierarchical network structure of neocognitron model. This
model is used to implement Fukisuma’s handwritten character recognizer

2.2 Training the neocognitron network

Training a neocognitron is a complex task. Fukisuma has formally defined how a neocognitron is to be
trained. This is described in section 2.2.1. Unfortunately, there is no formal definition on how to create
a suitable training set for a neocognitron. In section 2.2.2 an example procedure and some guidelines
are given to implement a training-set to recognize simple objects. As will be demonstrated in section
2.2.2, training-set samples are found intuitively by studying the characteristic layout of the objects to
be classified. A formal procedure to choose training features based on network response on the level
of individual cell excitations in the hidden layers is not yet available.

2.2.1 Training individual neocognitron cells

The neocognitron network can be trained to classify its input sample images using a supervised

method or through self-organization, also called unsupervised training. Although the neocognitron

simulator used has functionality build in to perform weight sharing and unsupervised training, the

procedures for unsupervised training are not described in this report, because in our application, we do

not use the unsupervised training method.

The supervised training approach involves the use of “direct” inputs to the S-plane cells in each

sublayer in the network. The following rules apply on a supervised training session:

. All training patterns are passed to the input plane of the network.

. Each S-plane is learned to recognize one specific input pattern.

. Each cell in a specific S-plane will have the same weights setting after training.

. Training set image samples are centered at the input plane.

. Supervised training starts with layer number 1, subsequent layers are trained after all planes in
previous layers have finished training.

. Training-set patterns are binary images with intensity values 0 and 1.
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As stated earlier, training the network is adjusting the weights a and b of the S- and V-cell
respectively. Fukisuma has defined the following formula’s to adjust the weight a and b during the
supervised training session.

Aa,(v,x,p)=q,c, (V)Ucl—l(fﬁv,lr)
Ab,(p) = CIAUV/H(W)

Equation 2.8a,-b a-weight adjusting, b-weight adjusting

Let us consider the following situation. We have created a new network. All weights are initialized to
zero. The connectable area of the S-planes in the first sublayer is defined as a 3*3 area. The input
plane and the S-planes in the first sub-layer have the same size so the neuron gap parameter value is
set to 1. Furthermore, we have set the y parameter to a value of 0.9. Table 2.2 shows the weights of the
S-cell and the V-cell after being reinforced. Obviously the weights are set conform the ‘layout’ of the
input training-set pattern.

Table 2.2 The S-cell weights after training one input sample

Relative position Weight ‘a’ of the C-cell
v X—> 1 0 -1
1 8615 0 0
0 0 10000 9000
-1 0 0 0
Weight b of the v-cell 16618

Does the plane just trained above recognize the input image it was trained for? Yes, it is not difficult
to proof that cells in this plane will be activated only if the learned input pattern is presented. Note that
our starting point was ‘all weights initialized to zero’. Hence da = a and 4b = b. We rewrite
equations 2.8 and substitute these in 2.7c. We will get equation 2.10 for the output excitation value of
cells in the trained plane.

Aa 2 (Va K, /7) :a;{ (V, K, ,0) = QELCX (V)Ucﬂ—l(r]+v,/c)

K

Ab,(p)=b;(P)=4q, \/Z D¢ (V)Uzcifum;,m

k=lved

Equation 2.9 Rewritten weight values

M K
1+ z z a, (17, K, E)Uci—l(n_gmm

k=l ved _1

r
b (P,

Us =Us =r
Ai.p) 2P

1+
7

or

L 7 S

Us =Us =r
AT, p) 2P r,
Oy

1+

r, +1

Equation 2.10
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Four different cases can be distinguished. Table 2.3 shows all four cases. From 2.10, the excitation
value of the trained cell(s) in the S-plane can be derived.

Table 2.3 Trained S-cell excitations

Perfect match Partly matched Over matched No single match
Qs=Qv>>1=> Qs<Qv => Qs<<Qv => Qs=Qv=0
Cell output =1 Cell output ~ 1 0 < Cell output <<'1 Cell output =0
Maximum cell output that Inhibitory v-cell wins over Trivial
can be reached excitory s-cell inputs

In figure 2.9, the relative output values are given of a network plane trained with the sample in table
2.2. The input plane size and the S-plane size are 19 * 19.

"//"C/'

.

Fig. 2.9 Left: 3 segments in the input-plane network’s Right: response on first layer S-plane

So far, we have described training the first plane in the first layer. Training the rest of the network
however is more of the same, we train the network plane by plane, layer by layer. Constantly and
consistently applying the formulas for cell excitation in equation 2.7 and the formulas for weight
changing in equation 2.8 will be awarded by getting a trained neocognitron network for image
classification. It will be unfeasible to analytically write down the behavior of the network during
training in an understandable matter, but just that is one of the secrets of the neocognitron artificial
network. In the next section an example is given on how a training-set is designed for recognition of
images of arrow symbols.

2.2.2 An example on how to create a training-set

Suppose we are asked to design a neocognitron network that reads the direction to which an arrow
symbol points. In order to keep the network small and simple, we require the network only to classify
arrows pointing up or pointing down. Furthermore, the network only has to recognize arrows of a
certain style. In figure 2.10 some examples of arrows to be recognized are given.

Before the network can be trained, a network configuration is to be determined. The design and
configuration of the layers in the network however is depended on the training-set required. By
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analyzing the basic properties of typical sample images of the objects to be recognized this chicken
and egg situation is avoided. Property analysis applies to the following procedure:

Find the basic(smallest) line segments of the images to be recognized.

Find combinations of basic line segments that form parts of the object.

Find more complex combinations that specify characteristics (larger) parts of the objects.

4. Finally, find the typical structural layout of all object classes.

Step 3 is repeated depending on the complexity of the images and the number of classes to be
recognized.

W N =

Thus, as described above, the first layer is trained with rather simple images, the successor layers are
trained with more complex patterns of larger size. Normally the trainingsset patterns of successor
layers are combinations of patterns in previous layers. The last plane is trained with typical samples of
the images finally to be classified.

The 4 patterns shown in figure 2.11 are designed to detect line segments at various orientations. In the
typical samples shown in figure 2.10 we only find horizontal, vertical and 45 degree angle line
segments.

< Tt L& 7 .!.
o

Fig. 2.10 Samples of objects to be recognized in this example Fig. 2.11 Basic line segments

In figure 2.12 all relevant combinations of basic line segments are shown. Note that only those
combinations of basic line segments are chosen that actually form a part of the arrow images to be
recognized. Finally, in figure 2.13 typical arrow samples are depicted.
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Fig. 2.12 Combined basic line segments Fig. 2.13 Typical object layout

Since the number of patterns (shown in figure 2.11 through 2.13) per layer are known, the network
layout can be determined. In figure 2.12 the network layout of the ‘arrow’ recognizer is given. The
input plane is defined as a 19*19 cell plane. The output C-layer consists of two planes both having one
cell, the upper cell indicates the arrow is pointing up, lower cell indicates the arrow is pointing down.

Two hidden layers are defined. The first layer is capable of recognizing the small elementary line
segments of arrow images, the second layer is trained to recognize the combinations of line segments
that occur in the symbol images to be recognized. The last layer, the output layer is trained with
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typical samples of the symbols to be recognized. In figure 2.14, the training-set samples are given for
each layer. Note that a plane may trained using more than one training-set sample. This superimposed
training makes the network more robust against deformations and scale invariant.
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Fig. 2.14 The complete training set of the ‘arrow’ recognizer

In this case, the network parameters like selectivity, gamma and delta are set to the same values
Fukisuma uses in his network for handwritten character recognition. The network parameter values do
greatly influence the robustness and accuracy of the network, however in this example the exact
values of these parameters are not very relevant. The same counts for the connectable areas. We have
selected some sensible ranges, the exact sizes of the connectable areas are not very relevant in this
example either. Figure 2.15 shows the network layout of the arrow-recognizer.

dimension connectable areas

3*3 3*3 5%5

—

arrow up

11*11

o

2

19*19*%4  21*21*4

11*11%*2 %

arrow down

/

21%21*8 13*13*8
dimension planes and layers

input samples
Fig. 2.15 The arrow recognizer
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Before the total network is trained according to the training-set patterns defined in figure 2.14, we
demonstrate the individual response per layer per plane of a partly trained network.

In Usl Ued v Usl Uzl Us2 U2 In Usl Uzl Usz2 Ued
Y B T T - = B L
i B LY R
AR
N b - LY
4 * s - -
»

Fig. 2.16a-c Individual cell excitations on line segments and line combinations

In figure 2.16a the network is supplied an input sample with all possible basic line segments. In the
planes of the layer labeled Usl, the excitation of the cells is visible. Note that only those cells in the
planes are excitated for which it was trained. The first plane (counting top-down) was trained to detect
horizontal lines segments. It clearly shows it has detected a horizontal line segment in the upper left
corner of the input plane. The second plane was trained to detect vertical lines segments. Cells in this
plane clearly shows a vertical line segment was detected in the upper right corner of the input plane.

In figure 2.16b and 2.16¢ the excitation of line combinations are given for both layer 1 and layer 2. In
figure 2.16¢, plane 4 in the layer labeled Us2 is trained to detect a combination of a horizontal and a —
45 degree angle line segments. Individual cells in the plane considered show that such a feature has
been detected in the upper left corner of the input plane.

As stated in the previous section the network is trained plane by plane, layer by layer and all training
samples are supplied through the input layer. Training the feature combination as described in the
previous paragraph for fourth plane in layer Us2 is implicitly accomplished by the network. In fact we
do train this plane by adjusting the its cell weights based on the excitation in the previous C-layer (the
first plane and third plane in layer Ucl in this case) and not based on the training-set sample as
available from the input plane directly. In figure 2.17 it is shown that in this simple case it is relatively
easy to trace the individual cell excitations through the network caused by a training-set sample. In a
neocognitron network designed for character recognition we have for example 80 planes in layer 2 and
97 planes in layer 3 all connected to each other. In such a network is it would be very difficult to find
the relation between individual cell excitations of the plane under training and any training-set images
of previous planes.
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Fig. 2.17 Training-set sample propagation

Finally, in figure 2.18 it is demonstrated that the network and its training described in this section
indeed classifies the direction of the arrow of the sample image correctly. The network exhibits
robustness against image deformation and clearly the network recognizes object location invariant.
Note the network response of the last network image in figure 2.18, both output cells have the same
excitation. The network classifies this sample as “up’ and ‘down’.
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Fig. 2.18 Network response on different ‘arrow’ image samples. (Out 0 =up, Out 1=down)
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2.3. Design and dimension of a network for handwritten
character recognition

Fukisuma has proposed a 4-layer neocognitron network to classify handwritten characters. As stated in
[3], it is difficult to show precisely how to choose the network configuration and how to scale
parameters, however a few guidelines can be given. If the complexity of the patterns to be recognized
is high, the size of the connectable area would be small, while the number of layers in the network
would be high. In other words the more complex the patterns the finer individual cell tune in on
features to be recognized and the ‘wider’ the network becomes. If a network has to recognize between
a large number of classes the network becomes ‘higher’ that is the layers would have a larger number
of planes.

Another design considerations are the robustness of the network against deformations and its
generalization capabilities. These network characteristics are mainly depended on the size of the
connectable area. Large sizes of the connectable area result in less robustness against deformations,
small connectable areas serve good deformation tolerance.

As with the configuration of the network, it seemed also difficult to determine ‘good’ training-sets for
the network. In the lower stages and the last stage, the trainingset images may look obvious.
Determining the training set patterns for the hidden layers however is, using Fukisuma’s words, hard
labor. We have the same experience. Although insight in the architecture of the network and the basic
functionality is mandatory, one needs patience, some feeling and above all good-luck to find an
optimal training-set pattern for the recognition problem which has to be resolved.

A formal description of Fukisuma original network is given in appendix 2.1. Below the main
characteristics of Fukisuma’s network are given on the trainable planes in the S-sublayers.

Table 2.4 Fukisuma’s original network main characteristics

layer #planes Plane Connect-  y Purpose
/Training able area
size

input 1 19*%19 - - Receptable of input image for training or recognition.

1 12 19*19/ 3*3 0.9 Extraction of simple and small straight line components.
3*3 Single pattern training.

2 80 21%21/ 5*5 0.9 Extracting local features of characters like corners,
9*9 curvatures, intersections, line endpoints. Superimposed

training on all planes.

3 97 13*13/ 5*5 0.9 Global feature extracter. In this layer local image features are
19*19 combined to form complete characters or major characteristic
parts of a specific characters. Superimposed training on each

plane.
4 47 3*3/ 5%5 0.8 This layer is trained with typical samples of alphanumerical
19*%19 characters. For most alphanumerical characters there is

defined more than one plane to reflect the different styles
there exists for character ‘prints’. Superimposed training-set
samples are used to train this plane on different sizes of the
character.

output 35 - 3*3 1.0 Single cell planes which output excitations are used to finally
classify the input sample .
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2.4. Network recognition performance

In appendix 2.1, the specification and training-set is given of the network described in the previous
section. This network has been used to verify our neocognitron simulator software implementation. In
this section we will demonstrate that our implementation indeed does the things that Fukisuma has
intended its recognizer should do.

Although we have tried to implement the neocognitron simulator in a structured manner the program
eventually becomes seemingly large and complex. Both aspects are inherent to the nature of the
neocognitron network. In order to let the software give reasonable response times, we have not always
followed the rules according to which perfect OO-system should be build. The neocognitron output
results given in this section will sufficiently sustain the claim that our neocognitron is implemented
correctly. At least our neocognitron is implemented according to Fukisuma’s original design.

In figure 2.19 an example is given of the response of the network when the input is supplied with a
binary image of the character ‘A’. First of all the network indeed recognizes the letter correctly but
also the responses of individual cells in each plane compares correctly to Fukisuma[3, pp. 362 Fig 9.]
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h §0.000 R 0000
;11‘ | 70.000 §0.000
80.000 T 0.000
_h. 30.000 U 0.000
40869 V0000
\ B O.000 W 0.000
CO.000 0.000
-\' D 0.000 Y 0.000
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" G 0.000
H 0.000
| 0.000
410.000

Fig. 2.19 An example of the response of the network in our neocognitron simulator. Only the C-cells
are displayed. Note that the planes have different ‘cell-resolutions’ per layer

Figure 2.20 shows the example character images we supplied to the network to recognize. This sample
compares to the input sample Fukisuma has also verified his network with Fukisuma[3, pp. 363
Fig.10] . The result of our verification test is shown in table 2.5. Obviously our network does not
recognize all characters correctly. Only about 90% of the input sample images have been classified
correctly.

43



At this point we must conclude that our network does not exactly implements Fukushima’s original
design since the result of our last test contradicts with Fukisuma’s claim that all these samples are
correctly recognized. Extensive code reviews and debugging of our s/w implementation does not
reveal any significant mismatches with Fukisuma’s architecture and design of the network. There are
however four aspects that may clarify the different recognition rates.

1.

In our implementation, we cannot have different selectivity values of individual planes in a
sublayer. All planes in a sublayer in our network have the same selectivity value assigned at
initialization. Fukisuma’s system is designed so that adjustment of the selectivity parameter can
be done per plane. In most layers there was no apparent need for having different values however
Fukisuma does specify slight different selectivity values for some S-cell planes in the second
sublayer. Where we use 4.0 for all planes, Fukisuma uses 4.0 for all planes except some are
assigned a value 3.8. From its publication [3] it remains unclear why different selectivity values
are chosen within one layer.

It was observed that our training patterns used for layer-2 through layer 4 do not exactly match
the training-set patterns Fukisuma has used. The reason for this mismatch is because we had to
input the patterns manually, as read from a largely magnified photocopy of a print of Fukisuma’s
paper. During this labor-intensive activity, visual misinterpretations and typing errors have caused
our training-sets to be slightly different from the training-set Fukisuma had intended.

The input examples as depicted in figure 2.8 do not exactly match Fukisuma’s example set. Our
sample files are created by optically scanning the print of the paper and processing the bitmap file
of the scan with a paint-program to adjust scale and color values. It was not possible to correct all
deviations in the scanned image.

There may be another implementation aspect that could clarify slightly different recognized
values. We have implemented real-numerical values as float datatypes. If, instead we had used the
double type for floating point numbers, the output values of the trained network could have been
just be a little different because of rounding errors in the numerous successively floating point
calculations during training and using of the network.
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Fig. 2.20 Some examples of deformed input patterns
with which the neocognitron has been verified against
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Table 2.5 Results of recognition of the “handwritten characters” from figure 2.20
using the orginal Fukisuma network

Character Column Column Column Column Recognised
1/2 3/4 5/6 7/8 Correctly

0 0CS6Q  0SC69  0CS69 0C6S0 100%
1 13400 14000 11000 13400 100%
2 2S000 27000 2Qs00 25000 100%
3 30000 38000 7?2?27 30C00 75%
4 40000 4L000 40000 40000 100%
5 5FEOO0 FEOOO 5DFEO 50000 75%
6 S6000 60S00 ????? 60S00 50%
7 7T000 70000 7T000 7T000 100%
8 80000 BQBOO0 80000 80000 75%
9 9QsCo 9Q000 9Q0COo 9Q000 100%
A AMA00 AMDOO  AO000 A0000 100%
B BO00O PRDOO  DEOOO DO000 25%
C C0000 CQs90 CE000 C0000 100%
D DPSRO DPRSO  DO000 DPROO 100%
E EF000 EFLOO0  E0000 EFLOO 100%
F FEOO0O FEOOO  FE500 FEOOO 100%
G QGCo9 GC09  CG000 GCo000 50%
H HA100 41HO0O H4100 4HO00 50%
I 1 1000 10000 11000 11000 100%
J J1000 VNWO J4100 Juo00 75%
K K1400 KO000  K0000 K1000 100%
L L1EOO LEOOO LEOOO L0000 100%
M MA400 MDO0O0  MDOOO MLOOO 100%
N NVWDO NV100 NOOOO N4000 100%
P PRDOO PRDOO  PO00O PRDOO 100%
Q Q0000 Q@S00 Q0Cs Qs 100%
R RPDFB RPO0O0  RPDOO RPO0OO 100%
S S06D0 S0000 S6DO0 S0000 100%
T TOO00 TOOOO TOOOO TFOOO 100%
U u1400 uo000  U1000 uJooo 100%
\Y% VWNOO VWWROO0  VNWO VVROO 100%
\%% WW/NOO W/NOO  NW/00 WW/NOO 75%
X XKO00 X0000 X0000 XKO00 100%
Y Y0000 Y0000 YOO000 Y0000 100%
Z Z2F00 Z0000 Z0000 Z2000 100%

Recognised

Correctly 94% 86% 86% 94% 90%

Finally, a brief remark on response times performance. The time to train the network as described
above is about 30 minutes on an ordinary Personal Computer. As stated earlier the network was
trained the supervised way only. The CPU-time that is needed for the network to train only depends
on the number of layers, the number of planes and the size of the connectable area’s. Unlike a MLP
training times are highly predictable. The time needed for the network to recognize an input image
sample is about 2 seconds. Although these response times do not compare to response times we would
measure when using a MLP network, there is no reason not to use a neocognitron in a CLPR system
when only running times are considered.

2.5. Recognizing printed characters

Obviously Fukisuma had not hired a person specialized in calligraphy to produce the input sample as
shown in figure 2.20. In general, handwritings may be classified as a generalization of a formally
defined character font. One should expect the neocognitron defined in by Fukisuma[3] will have
comparable recognition rates for characters produced by beautiful and perfect handwriting. We did not
hire a calligrapher either but instead we supplied the network with printed characters from a
predefined font. Table 2.6 shows the results of these tests.
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Table 2.6 Percentage of characters recognized correctly using the orginal Fukisuma training-

set.

Font/Style 22pt 20pt 18pt 16pt 14pt 12pt 10pt 8pt average
Arial - 62 65 62 71 88 65 62

Arial Bold - 47 71 68 76 62 44 29

Veranda - 59 65 65 62 88 53 62

Veranda Bold - 50 44 59 41 62 50 38

Eurostile - 47 59 65 56 50 50 41

Eurostile Bold - 56 56 53 56 44 35 26

License Plate 52 - 52 52 56 44 26 -

Total 52 53 59 60 59 62 46 43 54

The table 2.6 is summarized from the results as presented in appendix 3.1 (table 3.1.1. till 3.1.7). The
Arial, Veranda and EuroStile character font samples are created by a paint-program while the license
plate font characters are reproduced from 27 original high resolution digital photo images taken from
Dutch license plates. It may be clear that the original Fukisuma’s network configuration cannot be
used in our CLPR system due to poor recognition performance.

A quick review of table 3.1.8 in appendix 3.1 however reveals that the spread in recognition rate per
character is high; some characters are recognized with acceptable high rate’s e.g. ‘E’,’F’,’L’ and ‘T’
and some are recognized with dramatic low rates e.g. ‘3°,’X” and 'B’ . It is expected that a refined
training-set would increase the performance of recognition of printed characters.

In chapter 4 we will clarify the poor results described above and explain our procedure followed to
increase the performance of a neocognitron recognizing license plate font characters up to 95 %.

Fukisuma must have had foresight not to hire a calligrapher, since those people often beautify their
characters with serifs. Just out of curiosity, we have tested our network supplying it with a serif font
like TimesRoman 14pt. The recognition rate found at this test was very poor: about 30 %! Below the
input samples used in our recognition system representing the Dutch license plate character font.

0123456789 BDFGCHIJKLNPRSTYYY?Z
01234567B9BDFGHIKLNPRETYXYZ
01234546789BDFGHJKLNPRSTVXYZ
0123456789BDFGHIJKLNPRSTVXYZ

0123456789BDFGHJK LNPRSTVXYZ
0123456 789BDFGHJKLNPRSTVXYZ

Fig. 2.21 Reproduced Dutch license plates characters from original high resolution digital
photo images
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Chapter 3

The architecture for a license plate character
recognizer

There is no such thing as a universal car license plate recognition (CLPR) system. If we recall, figure
1.0. in chapter 1. each step in the image understanding process must be tailored to the input image and
to the object characteristics we are looking for.

First of all each CLPR application will be equipped with a specific image acquisition system;
camera types may vary, camera position with respect to distance and direction form which the
image is photographed, image resolution and illumination conditions will be different.

The required transformations in the image preprocessing steps will be depended on the quality of
the input image and the size in pixels of the character objects to segment.

The implementation of the segmentation step will be depended on character features and the
number of characters to segment.

Although the character recognition is implemented using neural computing, it is quite different
whether to recognize a Japanese symbol string of variant length or a fixed length Dutch license
plate character string with a predefined font.

Finally, the interpretation step may vary due to the syntax of the license plate text.

In this chapter the overall design of our CLPR is given. Starting point in the design is to construct the
system with a minimum of assumptions regarding its input. Our system is invariant to image size,
license plate dimensions, license plate color and location. Figure 3.1 depicts the context diagram of
our character recognition system.

bitmap user
store
\ gray-scaled
images commands
output

char*__—7| display/file

Fig. 3.1 Top level diagram of the CLPR
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3.1. Design background

3.1.1. The license plate paradigm

In the real world, it may be observed that:

1. The color of the border of a numberplate is different from the object it is attached to (either the
cars chassis or the cars bumpers).

2. The background color of license plate and the color of the characters reproduced on it are
different.

The latter may be trivial, even for humans it would be impossible to discriminate characters printed in
the same color as their background. Practically, the first observation would not always be true.
However, even if numberplates don’t have a physical border or different color from its background it
is attached to, a difference in intensity levels between the physical number plate and is background on
the picture would always exists.

Since numberplates are made of specific retroflex material with different reflection components as
their background one may conclude that intensity levels will always exist (recall the image definition
equation 2.3 in section 2.1).

Figure 3.2.a-d. shows some typical examples of either images that confirm the above definition of
numberplates. The numberplate definition above will be the starting point for the image processor
module design.

AMBB13 AABBA13

AAMBB-13 AABB13

Fig. 3.2a-c number plates Fig. 3.2d (super)inscription

3.1.2. Implementation limitations.

The system is designed as a prototype CLPR. The main purpose of the system’s implementation is to

demonstrate different techniques on image processing and pattern recognition in software. There is no

formal specification given on the CLPR system however, the starting points, which our design are

based upon, are listed below:

. Without losing generality the input is restricted to series of 8-bit grey-scaled images of less then
640*480 pixel format. Any picture with different specifications needs to be reformatted.

. The systems userinterface will run on a standard PC under Windows98/NT.

. Although the image analyzer, segment analyzer, and character recognizer are designed O/S
independent, in our CLPR system these modules will also run a PC under Windows98/NT.

«  The minimum size of characters recognized would be 10 pixels height.

In the design of our CLPR, reusability of code is accounted for as long as it will not affect the time
needed to implement certain modules too much. The neural network software implementation is
generated by either the SNNS workbench [9] (for MLP usage) or our refactored Sun/N-cube C\C++
version of the neocognitron implementation [12] is used.
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3.2. System concept

The system should be invariant to the position of the license plate on the image, the color of the
license plate background, the color of the characters on the plate and the dimensions of the plate. Of
course there are input resolution restrictions; recognizing characters of dirty or vague plate with too
small size, will surely fail whatever techniques used.

The basic procedure to automatically read numberplate characters from a digital image is performed in

the following steps:

1. Binarize the image such that at least the individual characters form connected segments.

2. Successively take all connected segments produced in the previous step and determine whether it
could be a character by applying dimension checks.

3. Apply a character recognition procedure on all candidate segments.

4. Determine whether the recognized characters in step 3 from a valid character numberplate string.

In the following sections of this chapter, it will be discussed how to overcome the most trivial
problems that surely will be encountered when implementing the procedure above:

. Which threshold has to be applied to biniarize the image correctly ?

. How to keep the number of segments in step 2 small in order limit processing time?

. Will the recognizer accept all real characters from the segments ?

In figure 3.3 the DFD of our CLPR is given depicting the main processor modules and the main data.

bitmaps | user

segment location
and size

segment
processor

segment *
character
recogniser

images /r file

character*

character *

segments

syntax
analyser

Fig. 3.3 The dataflow diagram the CLPR

3.3 The image processor

The problem to be solved by our image analysis module is finding all license plate characters without
considering license plate properties. We have used a Belgium numberplate as an example in the text of
section 3.3 and section 3.4 to show that the proposed image processor mechanisms and concepts
indeed remains independed on size, location and color of the numberplate.
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The main function of the image processor is to biniarise the image such that the intended ‘black-white’
relation of the numberplate background and the numberplate characters is preserved. The image
processor also should remove all possible non-character areas on the biniarized image.

As stated in the ‘license plate paradigm’ section 3.1.1, the pixels belonging to the prints of license
plate characters have different intensity values as the pixels belonging to the background area of the
characters. By applying a biniarization function over the total image we divide the image in two parts.
One part does hold only regions of white pixels connected; the other part does hold regions with only
black connected pixels (refer figure 1.5). Since we do not know in what color a license plate
background and its characters appear, we need to apply a local biniarization method.

All black pixel-connected regions are candidate license plate characters. However, as shown in figure
1.5 there may be too many of these areas. The ‘license plate paradigm’ also states that there always
would be some kind of boundary around license plates characters. If we implement the local
biniarization function as kind of etching filter, this boundary would also be an area of black connected
pixels. Figure 3.4 shows the original picture in which a part of it is locally biniarized. Obvious we see
the characters as connected black pixel regions as well as a boundary enclosing the license plate
characters.

e ol 0 s

ff H i

character
region

bouncary
region

Fig. 3.4 A cutout of an original 640*480 8-bit bitmap image

If we only select the regions of black pixels connected within an enclosed area of black connected
pixels we would have all license plate character segments isolated form the original picture. The main
trick is how to dimension the etching filter such that characters are formed as connected black pixel
regions and the license plate characters are enclosed by a black-pixel border. The implementation of
this function is given in section 5.2.3.

Once we have defined the filter, isolating the characters from the orginal image is not a problem any
more. Finally the image processor should have the following basic image transformation functions:

. Contrast stretching  (to remove large equal intensity areas on the image).

«  Low pas filtering (to blur the image and make is less noisy).

«  Local biniarization  (to highlight license plate characters and boundaries).

«  Area filling functions (to remove all segments which do not lie within an enclosed area).

3.4 The segment processor

Figure 3.5 shows a part of the image after the area filling procedures have been applied on the
biniarized section of figure 3.4. As shown the number of segments have been decreased significantly.
The segment processor should take all connected black-pixel regions; determine the rectangular area
of the original location, catch, and cutout the segment from the original image. A procedure to do so is

54



described in section 1.4.2. As shown in figure 3.5 we enlarge the connected region one pixels on all
sides. As described later in this section this boundary extension will be very helpful in processing the
segment.
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355 361
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3 31

Fig. 3.5 The work of the segment analyser

Notice that the total number of segments in figure 3.5 is still relatively high compared to the number
of segments that actually form the characters of the license plate. Moreover, we have depicted only a
small part of the analyzed image. The segment processor should remove or ignore all segments that
could not be considered character images. Before the isolated segment is send to the recognizer
module a validation procedure should be applied. The segment processor should perform one other
function. Since we select rectangle areas form the original picture we should biniarized the segment
again. The procedure to biniarize an isolated segment taken form the original image is as follows:

«  Determine the average pixel intensity values of all boundary pixels of the segment.

«  Determine the standard deviation of the pixel intensity values set.

. Assign the average pixel intensity value - 2*standard deviation to the treshold variable.
«  Turn all pixels white that have intensity values higher or equal then the treshold.

«  Turn all pixels black that have intensity values less then the treshold.

Figure 3.6 shows the original segment and the biniarized segment after the procedure described above
has been applied.
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Fig. 3.6 The segment biniarizer

As stated above the segment analyzer also has the task to remove or ignore all segments that do not
depict a character. The segment analyzer checks biniarized segments like in figure 3.6 above against:

«  Min and Max height in pixels. (adjustable by 9 < system constant < 50 )
«  Min and Max width in pixels. (adjustable by 1< system constant <40 )
. Height/width ratio. (adjustable by a system constant > 1)

. Ratio of white/black pixels in the segment.

As stated in section 1.5 we have used a neocognitron type of network as character recognizer. Since

the neocognitron only uses skeletonised image samples directly on a fixed size input plane, three
other functions are defined for the segment processor module:
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«  Scaling the cutout segment towards the standard height (not necessary for the neocognitron).
. Copy/paste the cutout segment onto a fixed 19*19 pixel plane.
. Thinning the segment (necessary for the neocognitron)

Rather than defining the algorithms here, which perform the functions listed above, in the text we
illustrate only the workout of these functions in figure 3.7a and 3.7b. In 3.7a the original 9*10 pixel
cutout is scaled to a standard height segment of 17*19 pixels. In 3.7b the biniarized segment is pasted
on a 19*19 plane and successively skeletonized. The function definitions and implementations can be
found in section 5.3.

Fig. 3.7a The scaling operation on segments to a standard height
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Fig. 3.7b The copy/paste and the thinning operation on an isolated segment

3.5 Character recogniser

The main character recognizer module in our CLPR is a neocognitron neural network. The
architecture of our CLPR system provides for any type of neural net as long as it will use binary image
inputs directly. The character recognizer takes one segment at the time as input, and outputs a series of
character values on each segment. These character values are sorted in the order of the neuron’s output
excitation. For example a character ‘B’ may be classified as “B-0.921” and “8-0.624”. These values
are taken directly from the output neuron of the classifier. The output of the neuron trained to classify
a B has value 0.921 in this case, and the output of the neuron trained to classify an 8 has value 0.624 in
this case. Note that the output values are only relative numbers.

It is for the character recognizer to find out which segments are actual characters and which segments
should be considered isolated erroneously from the image. A post processor should remove all faulty
recognized segments. For post-processing purposes the character recognizer will not only output the
mostly likely character class per segment but also output the actual size and location of the segment in
the original picture. Unclassified characters are assigned a ‘?” value. These segments may be
considered rejected characacters. After all segments on the image have been processed by the
recognizer, an output formatter will sort the segments such that the sequence in the output string
would reflect the same sequence as characters on the actual plate. The dataflow diagram of the
character recognizer is depicted in figure 3.8.
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Fig. 3.8 The recogniser dataflow

3.6 CLPR blue print

Figure 3.9 shows the conceptual software model of our CLPR system. Within each building block, the
main functions required are given in the bullet lists. If this blueprint of our CLPR is compared against
the model depicted in figure 1.0, we will find the image acquisition, feature extraction, and syntax
analysis building blocks missing. The reasons for this are:

. The images to be processed are considered to be available from a datastore.
. Feature extraction function seemed not be necessary in our setup.
. Syntax analysis is left undefined.

As will be described in chapter 5, the building blocks in figure 3.9 are implemented as physically
separated software modules except for the (sub)blocks ‘bitmap xformer’, ‘segment catcher’ and
‘output formatter’. In order to make the CLPR software platform independent we have selected to
incorporate the ‘bitmap xformer’, ‘segment catcher’, and ‘output formatter’ in the user interface.

The bitmap xformer translates a MFC bitmap structure into a simpler format that is more easily to
manipulate. The segment catcher and the output formatter heavily rely on the GUI since both building
blocks are using display windows as output device during processing.
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Fig. 3.9 The CLPR blueprint
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Chapter 4

Finding an optimal neocognitron configuration
to recognise characters of car license plates

4.1 Reviewing the results using Fukisuma’s original network.

The results of the verification of our software implementation of Fukisuma’s neocognitron as
presented in chapter 2 do not harm his claim that the neocognitron proposed in [3] is capable of
deformation-, location,- and size-invariant visual character recognition. However, it sounds
contradictory that this specific network designed to recognize handwritten characters performs so
poorly on printed characters. Table 4.1 illustrates this poor performance on a number of characters in
the Eurostile font that were used in our earlier tests (see also appendix 3.1, table 3.1.5).

Table 4.1 Typical Eurostile font characters

EuroStile font 0 =) B M R S W

Recognition rate 29% 29% 14% 0% 14% 14% 29%

The characters shown in table 4.1 are not randomly selected from the result tables in the appendix 3.1.
We took these characters with the intention to clarify the fact they are recognized with such a poor
performance. If we compare the characteristic layout of these input sample characters to the training-
sets Fukisuma’s proposed for the third and fourth layer we find noticeable differences:

« The 0’ has more the form of a square rather than that of a circle or ellipse.

. Notice the perpendicular line segment crossing in the lower left corner of the character 2.

«  Both humps of the letter ‘B’ have the same width each.

«  The three ‘legs’ of letter ‘M’ do end at the same bottom line.

«  The normally oblique left little leg of character ‘R’ is parallel to the line segment on right side of
the character.

«  Notice the amidships part of the letter ’S’ which is a pure horizontal line segment.

. Finally, letter “W’ which has also three legs of the same length.

The training-set patterns of all layers used in Fukisuma’s original network are depicted in the appendix
2.1. Figure 4.1 illustrates our findings described above by showing the specific training character
images used to train layer 4. Obviously, these elements of the training-set and the characters listed in
table 4.1 have different styles.
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Fig. 4.1 Layer 4 training-set images on the characters of table 4.1

Of course, the fourth layer does not solely determine the recognition performance on these characters.
The training-set patterns of previous layers may be even more important. However, we found out that
if you do not fix these mismatches between the character style and the training-set style, it is very
difficult to increase recognition performance.

Things can get even worse with respect to character styles. The Fukisuma network used is designed
only to accept character patterns consisting of line segments of one pixel width. All input character
images should therefore be ‘thinned’ before they can be fed to the neocognitron’s input plane.
Thinning the input character images is not the problem, however thinning will deform the characters
to be recognized even more. The ‘character style problem’ described above gets even worse due to
thinning.

The only way to solve this problem is to refine the training-sets and adapt them to the styles we could
expect of the skeletons of printed characters. Figure 4.2 illustrates the deformation and/or style
changes that occur when samples of the license plate font characters are skeletonized. Do note the high
deformation caused by thinning on the letters ‘K’ and ‘X’ in the first series of characters in figure 4.2.
The thinning algorithm used can even deform the characters such that it makes it even very hard for
humans to interpret the image correctly. Note for example the letters ‘3°, ‘N°, and ‘T’ in the second
series of characters in figure 4.2.
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Fig. 4.2 Thinned characters of the license plate sample of figure 2.9.
on a 19*19 pixel raster. Only 18pt and 10pt characters are shown
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4.2 Redefining training patterns

4.2.1 Refining the existing training set

In the previous section we demonstrated that the only way to improve the performance on printed

characters is to refine the training-set and adapt them to the style we could expect on skeletons of

characters that should be recognized.

. First of all we passed all image samples as reproduced from Dutch license plates characters from
high resolution digital photo images (see figure 2.9) through our thinning algorithm.

. Then we studied the skeletons we got.

. Finally we tried to adapt the training-set for layer 3 and layer 4 of the network such that the
network will become invariant for the deformations as shown in figure 4.2 on certain characters.

We changed those training patterns in layers 3 and layers 4 of which we think they contribute most to
recognize the ‘3°, ‘N’, ‘X’ and ‘K’. Furthermore, we made some minor changes to several trainingset
patterns on characters whose style will not ever appear on numberplates. For example, the second style
of ‘4’ and the letter ‘R’ as defined in figure 2.1.3 in appendix 2.1.

Figure 2.2.2 and 2.2.3 in the appendix show the new trainingset for layer 3 and 4. Note that we have
not changed the training-set of layer 2, neither we have changed the network constants selectivity, nor
the gamma or deltas.

How our new network performs on the same testset as used in chapter 2 is shown in table 4.2. On the
average, we got a recognition rate improvement of about 3 % only. On license plate character samples,
we got a 17 % increase on recognition rate, most likely this is because we focused on the training-set
patterns of this font specifically. If we take only into account the license plate characters with a size
greater then 10 pt we got an increase in performance of 20 % (71.2 versus 51.2). This 20 %
improvement confirms that the refined trainingsset pattern has sorted some effect.

Table 4.2 Percentage of characters recognized correctly using a modified Fukisuma training-
set network specified in appendix 2.2

Font/Style 22pt 20pt 18pt 16pt 14pt 12pt 10pt 8pt total
Arial - 64627 70(65) 64(62) 61(71) 91(88) 67(65) 55(62)

Arial Bold - 5547) 64(71) 64(68) 76(76) 67(62) 48(44) 24(29)
Veranda - 67(59) 52(65) 70(65) 58(62) 76(88) 61(53) 55(62)
Veranda Bold - 55(50) 52(44) 55(59) 52(41) 48(62) 55(50) 33(38)

Eurostile - 45(47) 45(59) 48(65) 52(56) 42(50) 45(50) 45(41)

Eurostile Bold - 45(56) 52(52) 55(53) 60(56) 51(44) 42(35) 33(26)

License Plate 78(52) - 70(52) 67(52) 74(56) 67(44) 33(26) - 64(47)
total 78(52) 54(53) 57(59) 60(60) 61(59) 63(62) 50(46) 40(43) 57(54)

It may be clear that a network which exhibits a 64 % recognition rate on individual characters is
absolutely not usable in a CLPR. When using this network the chance to read a Dutch license plate
correctly would be less than 8 % (0.65 1 6).

4.2.2 Modifying the existing training set

Therefor we started a second round to improve the performance by modifying the network training-set
patterns. Since it becomes clear that training-set patterns significantly determine the recognition rate

? In brackets the recognition rate of Fukisuma original network is given.
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on certain character fonts, we decide that from now on we concentrate on gaining recognition rates
improvements on license plate characters only. This may be justified because constructing an artificial
network for recognizing license plate characters is our objective. Besides it would make the training-
set smaller and the network configuration a fraction less complex computational wise.

We carried out the following modifications in our second try to get a better performing network on
license plate characters:

«  The network gets only 27 output neurons each specifically trained to recognize one character in
the set: { 0,1,2,3,4,5,6,7,8,9,B,C,D,E.,F,G,H,J,K,LN,P.R, S, T,V.X,Y,Z }.

. We change the configuration of layer 3. Instead of having multiple S-planes connected to one C-
plane we have connected all S-planes to exactly one C-plane in this configuration.’

. By studying results shown the table 3.1.8 en 3.2.8 in the appendix we have tried to improve the
training-set by decreasing the misclassification rate on certain characters. See table 4.3. below.

Table 4.3 Highest misclassifications rates

Misclassification Relatively high rate
rate to be misclassified as

0 66.7 % QorD

6 70.8 % 5

8 64.6 % QorB

9 64.6 % Q

B 45,8 % DorP

ct 64.3 % F

G 72.9 % C

J 60.4 % 1

K' 56.3 % 1

N 43,8 % 1

R 45.8% PorD

\% 68.8 % 1

w' 524 % N

Z 43.8% 2

Characters will not appear on Dutch license plates.

After several iterations, we found a network trainingset that produces comparable results to the
previous one. It seemed hard to improve the recognition performance using the configuration and
basic training-set Fukisuma has proposed initially. We experienced that one can increase the
recognition rate of some individual characters just by matching the expected input patterns to training-
set patterns and studying the excitation of individual planes. However increasing the recognition rate
of the numerical ‘0’ could easily lead to a significant drop of recognition rate of e.g characters like ‘P’,
‘B’ or ‘R’.

Since the neocognitron has so many connections it makes it almost impossible to trace why exactly
there exist such an observed negative correlation in recognition rate of some characters. In total we
tried about 4 different trainingset patterns and network configurations, all alike Fukisuma’s original
one. There seems some maximum to exists in overall recognition rate of about 70%.

Table 4.4 Car license plate character recognition rates in % on different configurations of
Fukisuma’s orginal network

Network 22pt 18pt 16pt 14pt 12pt 10pt total
Fukisuma (refer section 2.5) 52 52 52 56 44 26 47
First attempt  (refer section 4.2.1) 78 70 67 74 67 33 64
Second attempt  (refer section 4.2.2) 78 66 63 70 70 40 65

3 With this ‘type’ of layer one could better study which neurons have large excitations on exactly what
specific input pattern
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One other thing we experienced was that tuning, on more than one of the parameters like selectivity,
gammas, or deltas at the time, could lead to very poor performance rates. The new network
configuration suggested in this section is described in appendix 2.3

Table 4.5 Comparision of recognition rates of two different networks per
indiviual character

Recognition  Our network in section 4.2.1 Fukisuma’s orginal network from
Rate in % Section 2.5
classified Mis- Un- classified Mis- Un-
correctly classified classified correctly classified classified

input
0 23 67 10 25 62 13
1 31 40 30 19 54 27
2" 73 25 2 56 35 8
3 56 19 25 6 29 65
4 71 8 21 40 17 44
5 77 15 8 77 15 8
6 25 71 4 33 56 10
7 100 0.0 0.0 96 2 2
8 17 65 19 19 52 29
9 15 65 21 21 52 27
Af 41 43 17 62 17 21
B 44 46 10 10 65 25
C 36 64 0 71 24 5
D’ 90 8 2 75 23 2
E 96 5 0 88 0 12
F 96 2 2 92 2 6
G 21 73 6 33 63 4
H 94 6 0 67 29 4
I - - - 7 93 0
J 38 60 2 38 33 29
K' 42 56 2 63 35 2
L 100 0 0 96 4 0
M 45 48 7 38 50 12
N 54 44 2 44 52 4
P 90 8 2 88 4 8
R 46 46 8 58 23 19
s 54 42 4 25 54 21
T 90 10 0 92 8 0
U 60 40 0 91 9 0
A\ 31 69 0 56 44 0
W 36 52 12 38 54 7
X 58 31 10 31 56 13
Y 79 17 4 83 17 0
Z 56 44 0 60 38 2

total 57 36 7 53 35 13

“significantly improved recognition rates
Tsignificantly decreased recognition rates

Finally, we show in table 4.5 (derived form tables 3.1.8 and 3.2.8 in appendix 3 ). the overall
recognition rate per character. The only conclusion we can draw so far is that in general we can only
increase performance slightly, on a network considered to recognize different character fonts and
sizes, simultaneously. We managed to do so on one specific font, the license plate character font, and
also we managed to increase the recognition rate of certain characters (see the annotated characters in
table 4.5) but overall performance remains poor. In the next section, we suggest a different network
layout with more drastical changes to the network training-set patterns: a neocognitron network that
shows significant better results. We refer to appendix section 3.1 and 3.2 specifically table 3.1.8 and
table 3.2.8 for comprehensive data regarding the recognition behaviour of the networks described in
this section.
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4.3 Modifying layer and plane configuration

As stated earlier the neocognitron is capable of deformation-, location,- and size-invariant visual
character recognition. However, do we all need these features ?

«  The character images of license plates to be recognized are to some extend deformed but they are
all of the same style.

. We could easily fix the location®.

«  Adjusting the size of too small characters is not a problem in software.

In the previous section, we came to the conclusion that somehow the interconnections between certain
planes are too tied after training. Since changing a training-set of a plane obviously mend as a
keyplayer in recognizing the numeral ‘0’ appeared to worsen the recognition rate of for example the
character ‘P’. The latest may be plausible but hard to proof and even more difficult to fix.

Taken all these facts into account we designed a neocognitron network with only 3 layers. The first
two layers comparable to Fukisuma’s configuration. Layer 1 serves as a line extractor, layer 2 is
trained to detect parts of any alphanumerical characters. We added a number of planes to layer 2. The
added planes are trained on parts of the characters ‘6°, ‘V’, ‘X’ and ‘Z’. These characters have been
proven earlier to be recognized with difficulty.

Layer 3 is trained directly with character images instead of using this layer as combined feature
extractor as Fukisuma does. Training a plane with more than one pattern increases its ability to extract
deformed features. Since we do not expect our characters have too much deformations we train the
plane in layer 3 with only one training sample per plane. The required robustness against deformation
is set with the selectivity parameter of the planes in this layer. The formal description of this new
network can be found in appendix 2.4.

The network described above has indeed lost some of it functional features with respect to size and
location constraints but performs quite well on the test set containing the license plates characters we
used in section 2.5 as shown in table 4.6. below.

At this point, we want to recall our previous results in table 4.4. If the recognition rate of our
neocognitron is plotted against the size of the characters, we get the following graph figure 4.3.

Obviously, the network recognition performance starts to degrade significantly at characters less then

12 pixels height on each configuration based on the original Fukisuma’s network. The upper line in

the graph depicted in figure 4.3 shows the recognition rate of the neocognitron described in this

section to drop significantly at about 15 pt’s. This is very plausible since we do not explicitly train the

network on the small characters anymore.

In order to increase the recognition rate performance of our network on all character sizes we have

carried out two other experiments. The results are shown in table 4.7.

1. First of all we magnified all character images to a standard size of 19 pixels height.

2. Secondly, to get the best of both worlds, we magnified only the character images to 19 pixels that
had a height equal or less than 15 pixels. As shown in table 4.7. we achieved a recognition rate on
individual characters of out of our test set of about 90 %.

* In fact, the are already positioned at a fix location in the input plane of the neocognitron. Our
segmentation routine implicitly centers the image on the input plane.
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Table 4.6 Recognition of standardised car license plate characters by the
network suggested in section 4.3

Font License Plate Recognised

Size 22px 18px 16px 14px 12px 10px Correctly

Character
0 0D&EB3 0D8X  0G830 0D900  ?2?2??? 40000 67
1 1YVNO 1YVNO 1YVNO TOOOO 10000 10000 83
2 27000 22000 27000 ????? 2LZ00 7?7?7727 67
3 3J000 3JO00 3J000 3J000 30000 70000 83
4 40000 40000 40000 40000 40000 40000 100
5 5B000 5S000 5S000 50000 50000 ?7?27?27?7? 83
6 60000 60000 60000 60000 ????? 40000 67
7 7TZ00 7TZ00 70000 7TO00 70000 70000 100
8 B8G30 B8D60 B8000 BY00OO 2?2?7227 2?7?77 0
9 90000 90000 90000 94000 40000 ?7?27?27?7? 67
B B8DPO BDSPR BDP80 B8P60 B8600 BO000O 100
D DOB8G DB0O0O0O  DBO0OO DB200  DOO0OO DOO0OO 100
F FP500 FPOOO FPOOO FPOOO  FOO00 FO000 100
G G0000 VOO0 D000 V000  ??2?2?2? 272727272 67
H HKNOO HNKVO ~ HKNOO HKOOO  HKOOO HKO00 100
J J3000 J3000 J3000 JOOOO JOOOO JOOOO 100
K HKINO KNOOO KNVOO KNOOO  KNOOO KO0000 83
L L2000 L2000 L2000 LOOOO LOOOO LOOOO 100
N NVKHO NVHKX  NVKHO NVOOO  NKOOO NKOO0O 100
P PRO0O0 PROOO PRO0O0O PROOO  PROOO ????? 83
R RPO0O0 RPOOO RPOOO RP8O0  RPOOO ????? 83
S S0000 SO0 S5000 SO000 50000 7272727272 67
T T7000 10000 TOOOO TOOOO 10000 10000 50
v VNYX0 VNY1X VNYOO VNOOO VKOOO 7?7?77 83
X XY000 YX000 XYKNV YXVNK  XYO00 KYOO0O0 50
Y YVX10 YVX10 YVXNO YVXKO  YVOOO YVKOO 100
Z Z2700 22700 72000 22000 Z2L00 Z2L0O 100

Recognised

Correctly 93 89 96 85 74 48 81
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Table 4.7 Recognition rate after sizing the character image samples

Sizing the input image 22pt 18pt 16pt 14pt 12pt 10pt total
Only when heigth or width > 19 pixels 93 89 96 85 74 48 81
All images sized to 19*19 pixels 93 89 81 85 85 85 86
Only size to 19*19 if >19 or <15 pixels 93 89 96 89 85 85 90

So far, we have only tested the network with samples produced from standardized images of
individual characters. How this network performs on character images isolated from real photographs
of cars on the road is given in the next section. A final remark on this section. If you look at the results
on recognition of the numerical ‘8’ in table 4.6. you will find either it is recognized as ‘B’ or it
remains unrecognized. We will fix this problem in the next section.

4.4. A combined neocognitron network

4.4.1 Recognition performance increase measured on real-world photographs

Table 4.8. gives an overview on the recognition rates obtained using the various described networks
on character segment images isolated from real photographs. As expected the table below shows a
slightly lower recognition rate than the recognition rates observed in the previous tests with the
various network configurations using a standardized character set. This is caused by the fact that the
segments isolated from real photographs show more irregularities and noise than the segments isolated
form the binary image shown in figure 2.9. The images refereed to in table 4.8. are 640 * 480 8 bit
grey-scaled pictures produced by an Olympus CAMEDIA digital camera C-840L. In appendix IV find
of the photographs used are presented.
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Table 4.8 Recognition of car license plates using the various networks

ref  image plate char  Network configuration
# ident sizein Fukisuma’ Network Network Network Network
px s network in in in in
section section section section section
2.5 4.2.1 4.2.2 4.3 44
1 004 02-DR-GR 12 Q?D97?9 02D9GQ 02D9G? 02DRGR 02DRGR
2 005 02-DR-GR 12 9LDR4P 02DRGP 02DRGP 02DRGR 02DRGR
3 006 02-DR-GR 11 CZD97?R 02D9FR 02D?FR 02DRGR 02DRGR
4 007 02-DR-GR 11 C2DR?? C2DR1X 02DR?X 02DRGR 02DRGR
5 008 02-DR-GR 13 02SRCR 02DRCR 02DRGR 02DRGR 02DRGR
6 009 02-DR-GR 13 OLD?CR 02D?GR 02D?GR 020RGR" 02DRGR
7 012 02-DR-GR 16 QLDR?R Q2DRFR 02DXFR 02DRGR 02DRGR
8 013 LS-BZ-92 17 L5DL?2 LSDz?2 LSBZ92 LSBz92 LSBz92
9 015 PG-2G-50 14 RCL?EO PGZF50 PGZF50 PGZG50 PGZG50
10 016 HJ-XT-50 10 H4KFE2 H1X?5Q 11XF50 HJIXT50 HJIXT50
11 021e 71-FF-NN 16 71FFNN 71FFNN 71FFNN 71FFNN 71FFNN
12 022 71-FF-NN 14 TK?FNN TXFENN 71FFNN 7?FFNN 7?FFNN
13 023 RS-ZF-23 15 R?LF2? RS2F23 RS2F23 RSZF23 RSZF23
14 024 68-DB-BT 14 ??DDQT 6?DDDT 6B?DBT 6BDBBT" 6BDBBT
15 028 PD-21-DJ 12 RSZ1S1 PQ31D1 pP?3101 P021DJ" PD21DJ
16 029 TF-TF-85 12 TFP?D5 TEP?B? TEPED5S T?2?F?5 T?2?F?5
17 031e NX-NP-31 9 4?2p?721 1K1Y?1 1K?Y?1 NxNp21f NXNP21
18 032 VL-29-DN 9 VLL?1? KLL?17? ?LL11J 2L.29DN' ?LZ9DN
19 035 JS-PT-84 9 4FPTA? 15p?72°7 15p12? Jgsprgat J5PT84
20 036 VG-47-GD 17 444748 1GH7GD 1GH7GO VG47G0" VG47GD
21 037e LT-TL-53 20 L?TL5? LXTL53 LXFL53 LTTLS53 LTTLS53
22 038 HP-BG-77 15 49DC77 HQODG77 10BG77 HPBG77 HPBG77
23 039 PX-HT-87 17 PKHTQ7 PXHTQ7 PXHTO7 PXHTO7 PXHTO7
24 040e VR-18-NK 9 _4PK1? 1PK1?K 2?7117 VR18°?K' VR18?K
25 041 70-VH-RT 10 7QYHRT 7QYHRT 701HRF 70VHRT 70VHRT
26 043¢ HN-LX-85 17 H1L4Q5 H1LX8S HNLX85 HNLXBS" HNLXBS5
27 044 JG-XG-98 19 142293 1GXFQ8 1GXF98 1GXG90 JGXG90
28 045¢e KZ-96-XR 15 1296KR 1296XR 1296XR KZ96XR KZ96XR
29 046 _P-44-RD 13 _P??RD  _P44RD  _P4?RD _P44RD _P44RD
30 047 VS-44-ZT 12 V?22RLF K3??ZF 1S??2F YS447ZT YS447ZT
31 048 BB-PB-95 14 D?SB95 BBPBQS BBPDI95 BBRB95 BBRB95
32 049¢ BB-NH-08 18 DBKHO? P?KHO? P?NHOB BBNHO8 BBNHO8
33 050 BG-2G-21 12 PCL??1 BCZG21 DGzG21 8GzG21" 8GzG21
34 051 VX-Rz-10 11 VV7?MQ N1?ZMD ?1?z21°? ?XRZ10 ?XRZ10
35 053 ZF-54-FY 14 LES5?FY 2F54FY 2F54FY ZF54FY ZF54FY
36 054 50-VG-ST 19 55V45T 5SVGST 501G5T 50VGST 50VGST
37 055¢e JX-71-RT 15 1111R7 1X11R7 1X11X7 JXHIRT JXHIRT
38 056 SJ-GN-95 11 ?W4ND5 51?NB5 51°?N°?5 SJGNOS” SJGN95
39 057¢ HZ-LH-47 12 411457 121127 N21127 NZLH47 NZLH47
40 058 XN-zD-18 13 ?KLI16 X1ZDl6 XXZD10 XKZD1B XKzD18
41 059 PN-NG-01 14 PN1CO1 PN1GO1 PN?G01 PNNGO1 PNNGO1
42 060 RS-BJ-46 13 R5D146 RSD146 RSD146 RSBJ46 RSBJ46
43 061 XJ-PJ-42 16 K1R142 X1RJ42 X1PJ42 X1PJ42" XJPJ42
character recognition rate 3891 60.70 63.81 89.88 92.61
plate recognition rate 2.33 4.65 11.63 53.49 65.12

*0/D, 5/S, 8/B, 2/Z or 1/J problem
T Sizes less than 9 pixels

Although we have managed to increase the recognition rate of a binary character image from 39 %,
using Fukisuma’s original neocognitron, up to almost 90% using a 3 layer neocognitron trained for the
license plate character font specifically, the overall recognition rate on plate level is still poor about
53%.

It should be noted that many of the unclassified characters marked as ‘?’s in table 4.8 are caused by

shortcomings of the segmentation- or thinning processing procedures. However, even if the image pre-
processing and segment enhancement routines would carry out the job perfectly, we would still
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observe many character misclassifications. In figure 4.4, an example is given on how a character is
deformed too much as a result of failure in the skeletonizing procedure.

YRABHK- .

-

v (r|[t1]]8]|[w|[c|4

IR IERIERIER IR

Fig. 4.4 Not all segments are processed correctly. The image left is a 300*250 pixel cutout of original
picture. The character size in this case +/- 9 pixels. See image ref 24 on table 4.8

4.4.2 Combining neocognitron classifiers

As with many other character image recognizers we observe that some character images are hard to
distinct from each other. Typical examples are the numerical ‘0’ and the alpha character ‘O’ or the
numerical ‘1” and the alpha character ‘I’. To a lesser extend we observed misclassifications between
the ambiguous characters 0/D, 2/Z, 5/S, 8/B and even 1/J. If we could eliminated all these errors in
recognition, we could improve the recognition rate on character level up to 94 % and license plate
recognition rate up to 67%.

When only considering Dutch license plates we could parse the recognized string, apply a syntax
check, and correct the output according to certain rules. We show some typical examples in table 4.9
to illustrate this.

Table 4.9 Applying syntax rules to correct misclassifications
by the neocognitron

ref Image Plate Recognised Corrected string
# ident string
14 024 68-DB-BT 6BDBBT 68DBBT
15 028 PD-21-DJ P021DJ PD21DJ
26 043¢ HN-LX-85 HNLXBS HNLXBS or HNLX85

We suggest a different method however to correct for neocognitron misclassifications on the
alphanumerical characters {0, 1,2, 5,8, B, D, J, S, Z}. In case the output of the neocognitron is one
of the alphanumerical characters in the set mentioned above we let a dedicated neocognitron network
confirm or correct the output of the ‘main’ neocognitron.

Why don’t we improve the training of the main neocognitron such that these misclassifications are
prevented to happen? This seemed very hard to model. If we try to tune the recognition rates of ‘0’
and ‘D’ by adjusting the training-set patterns in layer 2 of the neocognitron (specified in section 2.4. of
the appendix) we observe severe decrease in recognition rates on other alphanumerical characters like
for example 8,R or P. This is because specific planes in layer 2 do not only determine the recognition
of 0/D but also may contribute significantly to the recognition of the §, R or P.

If we build specialized networks which are only used to discriminate between a ‘0’ or ‘D’ we could
freely adjust training-set samples in each plane of the lower layers without disturbing the behavior of
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the main network. Which rules to apply exactly for correction and or confirmation in order to have the
best overall performance, should be determined by verification testing. We have selected the
architecture depicted in figure 4.5. Implementation of this model is not difficult; since our
implementation is Object Oriented. We just instantiate a number of additional objects of the CNetwork
class and add some if-statements to include the logic we suggest. What is left is defining the
configuration and training-set patterns of the dedicated networks.

0/D neocognitron
classifier

main necognitron
character
classifier

propagate

»(u=0 or u=D
character

image

restructured license

2/Z neocognitron plate character class

classifier

propagate

»(u=2 or u=2Z

5/S neocognitron
classifier

8/B neocognitron
classifier

Fig. 4.5 Connected neocognitrons. u is the character class with the highest excitation value

In figure 4.6. the configuration and the training-set patterns of a network to discriminate between ‘0’
and ‘D’ are given. This network serves only as an example. Building a network that has to
discriminate between only two classes is much easier than building a network that should recognize 27
different classes. Mainly because we must only concentrate on a small number of specific
characteristics of the characters to be recognized. Besides that, the dedicated neocognitrons are small,
their training-set is easy to manipulate, and training times are short. All this makes the manual process
of iteratively reconfiguring the network in order to find an optimal performing network apparently
easier. The exact specification of this network can be found in appendix 2.5.1.
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...-——Excitation of this neuron when input image ='0'
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Fig. 4.6a An 0/D discriminator neocognitron network Fig. 4.6b Corresponding training set

Does it work, the mini-neocognitrons ? Below we will demonstrated that the specific ‘0/D’
discriminator neocognitron does indeed correct or confirm any ‘D’ characters found on the
numberplates of the cars in picture 28 and picture 36 of table 4.8.

In table 4.10 the five highest output cell excitations and their associated character classes of the main
neocognitron are given for any ‘D’character in both plates considered. Obviously the first ‘D’ in plate
“PD-21-DJ” and the ‘D’ in plate “VG-47-GD” are misclassified as ‘0’ by the main neocognitron.

Table 4.10 Recognition of ‘0’ instead of ‘D’

ref image Plate Network configuration as specified in section 4.3
# Ident Output Plate
main recognized Five highest values of exitation of the output planes
network as
15 28 PD-21-DJ [0D8G-] P021DJ 0 8 D G -
0.711 0.445 0.493 0.067 0.000
15 28 PD-21-DJ [DOBS8G] P021DJ 0 8 B D G
0.583 0.223 0.250 0.784 0.093
20 36 VG-47-Gif [0DGB8]  VG47GO 0 8 B D G
0.698 0.125 0.126 0.621 0.269

As listed in the table above, discrimination between 0 and D is a close race. In figure 4.7 however the
specialized ‘0/D’-discriminator neocognitron network does pronounce its judgement on what
characters is finally recognized.
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DEEEER cf i) 1° -
HEFEAD
EARNLEDO

PD-21-IJ PD-21-DT WiF-47-GD

Fig. 4.7 Outputs of O/D classifier in the combined neocognitron network for the ‘D’ characters of the
plates considered

According to the outputs of the neocognitron shown above; the first letter ‘D’ in plate PD-21-DJ
should be classified as ‘D’ and not as ‘0’, the second letter ‘D’ in the same plate is confirmed as ‘D’
obviously and finally the last character in plate “VG-47-GD’ is —succeeded by the skin of one teeth-
classified as ‘D’. Finally, the plates do read PD21DJ and VG47GD successively, which is correct
after all.

In table 4.8 last column the recognition results are listed after we have corrected the output using mini
neocognitron correctors for the character combinations O/D, 2/Z, 5/S, 8/B and 1/J. On our verification
set of images listed in table 4.8 we got a plate recognition rate of 65 %. In chapter 6 the recognition
results are given on a larger number of photographs taken on the TU-Delft parking lots.
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Chapter 5

Software implementation of the license plate
recognizer

Preceding the description of the model of the software of the implemented prototype CLPR, figure 5.1
gives the overall block structure and figure 5.2 shows a typically setup of the current user interface.
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bitmap file
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status (3) (4) (5) (6) temporay
display store
main image processor
display
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[ recognize J re-recog. segment 1151 soﬁsegment [format list&]
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store display
recognizer segment list processor

segment processor

next

Fig. 5.1 The CLPR building blocks as implemented in software

A car license plate is recovered from an image by the following user-actions: A) the system is loaded,
B) select and open a bitmap file C) initiate image pre-processing and finally D) trigger image
segmentation and recognition. Steps B, C and D are preformed automatically when processing series
of bitmap files. Internally the system executes the functions 1 through 15 successively as given in the
block diagram above. Note that function 7 until 13 are repeated for each segment catched.

In the remainder of the chapter the overall software structure of the CLPR prototype is given and the
descriptions of the main functions of the image processor, segment processor and recognizer are
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given. The prototype CLPR is written in C++. All text in remainder of this chapter printed in the
courier new font are to be considered implicit references to the source code.

automatic pre-
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Mo Maore Characters Found j IUZDHGH |
Mo More Characters Found b ‘\
logger status display ;/‘ recognizers / recovered /
character

string

Fig. 5.2 The userinterface of the CLPR system prototype

5.1 Systems software components

5.1.1 Software layers

Figure 5.3 shows the layered structure according to which the software of the CLPR is constructed.
The userinterface layer provides for some displays to paint images and segments, it provides for
buttons to start/stop the application, to manually select individual image preprocessing functions and
manually start segment recognition. The userinterface is named SysUI and is build using the
MicroSoft Foundation Class library (MFC).

Above the userinterface, two object-view layers are available. The SysOV layer holds all declarations
and definitions of the classes relevant for image processing and image segmentation. These classes
are CImage, CSegment and cSegmentList. The NeoOV layer holds the class cnetwork and all its
derived classes like cLayer and cpiane. Finally, a utility layer is used. The NeoUT layer holds some
classes helpful for logging and debugging while the SysUT holds a collection of different functions
which were not implemented in C++. Among others, a recursive filling function and a MLP character
recognizer function. The NeoOv and NeoUI are described comprehensively in appendix I.
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SysUT NeoUT

Fig. 5.3 The software layers of a license plate character recognizer

5.1.2 Software modules

The CLPR is build as one executable program called sysui.exe. The program is build according to
figure 5.4 below. The two object views SysOv and NeoOv are available from a library and statically
linked onto the executable. The same counts for both UT-libraries. MFC classes are linked
dynamically using a MicroSoft DLL. The graphical user-interface (gui) is programmed in an
evolutionary way, using the VisualStudio Wizard. A formal design and specification on gui-class
members is therefore not given in this chapter. In the remainder of this chapter we will only briefly
describe the main characteristics of the classes in the image- and segment processor module. Because
a comprehensive description of the functionality provided by the NeoOv.Lib can be read in the
appendix 1.1 through 1.7, we will only indicate how the neocognitron simulator is used in the s/w of
our CLPR application.

77



Logical View
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Fig. 5.4 The class diagram of the CLPR

5.2 The image processor

The image processor functions are all captured the cimage class. The size of the image is given by the
private datamembers m_Height and m_Width. The pixel intensity values are stored in the m Values
datamember. The datatype of m_Values, a pointer to an array of unsigned char, restricts us to only 8-
bit grey-scaled images. In the sections that follow some details of specific implementations on the
class operations used within our CLPR are described.
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ClImage

- unsigned char *m Values

- int m_ Height
- int m Width
+ CImage ()

+ CImage (const unsigned char *b, const int h, const int w)

+ ~CImage ()

+ int GetHeight (void)

+ int GetWidth (void)

+ int GetSize (void)

+ bool GetSegMent (int, CSegment *)

+ void SetImage (const unsigned char *b, const int h, const int w)

// image transformations

+ bool Invert (void)

+ bool GrayScale (void)

+ bool FilterLow (void)

+ bool FilterHigh (void)

+ bool BlackWhite (int GLOBAL|| LOCAL, int level=200)
+ bool Boundary (int BLACK || WHITE)

+ bool FloodFill (int BLACK || WHITE)

+ bool Noise (int BLACK || WHITE)

+ bool Sobel (void)

Fig. 5.5 The image class
5.2.1 Contrast stretching

Contrast stretching is performed by the operation cImage::Grayscale() . Basically, this operation
performs the function as depicted in figure 1.2. The grey-scale boundaries are given by two systems

constants defined in a header file. Currently these values are set to:
#define LOWERSLICEBOUND 40
#define UPPERSLICEBOUND 210

5.2.2 Filtering

The filtering procedure to blur the image is a 3*3 mask according equation 1.12. Filtering the image is
performed by cImage::FilterLow () . We have experienced that a larger filter yields better processing
results. Within the filtering block in figure 5.1 this methode is called twice.

5.2.3 Biniarization

The implementation of the local biniarization routine deviates slightly from the algorithm presented in
section 1.2.3. The local biniarization procedure is applied by calling the cImage::Blackwhite ()
method with parameter croBarn. Basically, the functions defined in equation 1.10 and 1.11 are
implemented. The treshold value used to set each pixel of the image to either black or white is
determined by taken the average of the five pixels. Four surrounding pixels plus the pixel under
consideration.

If the average value however is greater then a certain level, defined by the UPPERGRAYLEVEL constant,
and the difference between the maximum and minimum value of the pixel intensity values of the five
pixels considered is above a certain value, defined by uppERGRAYRANGE. The treshold value is adjusted
to: minimum value + (maximum value — minimum value)/2.

Another situation where the treshold value is adjusted is, if the average value is less then a certain
level (defined by the nLOWERGREYLEVEL constant) and the difference between the maximum and
minimum value of the pixel intensity values of the five pixels considered is above a certain value
(defined by rLowerRGREYRANGE). The treshold value is also adjusted to: minimum value -+ (maximum
value — minimum value)/2. This treshold adjusting based on the maximum and minimum intensity
values of the surrounding pixels described above prevents the binary image to become too noisy. The

79



biniarization constants are given by four systems constants defined in a header file. Currently these

values are set to:

#define UPPERGRAYLEVEL 180
#define LOWERGRAYLEVEL 70
#define UPPERGRAYRANGE 30
#define LOWERGRAYRANGE 20

5.2.4 Area filling

After the image has been biniarized, filling operations are applied to get rid of all segments which are
not potential number plates characters. Areafilling is performed by the cImage::FloodFil() method.
The operation CImage::FloodFil (int) is called with the filling color required. Either the parameter
is BLACK or the parameter is WHITE.The CImage::FloodFill () method calls a recursive c-function
form the SysUT library to perform the actual filling.

5.2.5 Segment locator

The cImage: :GetSegment (int, Csegment *) does locate the segments on the biniarized image (note
that segments are considered groups of black connected pixels). The integer parameter gives the start
location for searching on the image. The CSegment pointer is the output parameter. The
CImage: :GetSegment () method calls a recursive c-function form the SysUT library to perform the
region-oriented segmentation.

5.3 The segment processor

The central object in the image processor step of our image CLPR system is an instance from the
segment class. As stated earlier a segment is the ‘raw’ cutout from the original image. The segment
locator discussed in the previous section gives use the exact location. The segment catcher as part of
the gui actually cuts out the segment from the original image preserving the original pixel intensity
values. Figure 5.6 gives all data members and operations available on the segment class. In this
section, we only briefly describe the most relevant operations on segments.
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Csegment

- int m Height
- int m _Width

- int m _Line

- int m Pos

- char m char([6]

+ CSegment ()
+ ~CSegment ()
+ CSegmenté& operator=( const CSegmenté& rhs )

+ void SetSegment

const int maxx, const int maxy,
const int minx, const int miny )

+ void SetSegmentWidth ( const int width )
+ void SetSegmentHeight ( const int height )
+ void SetSegmentPixels( void )

+ void SetSegmentPixels( int , int )

+ void SetSegmentChar ( char *)

+ void SetPos ( int )

+ void SetLine ( int )

+ int GetSegmentWidth ( void )
+ int GetSegmentHeight ( void )
+ int GetLine ( void )
+ int GetPos ( void )
+ char* GetSegmentChar ( void )
+ unsigned char* GetSegmentPixels ( void )
+ bool IsValidSegment ( void )
// segment transformations

+ void EnLargeSegment (void)

+ void RemoveBorder (void)

+ void SetCorrectDimension (void)

+ void SetCorrectScale (int, int)

+ bool Biniarise (float level=1.6)

+ void Thinning (bool)

+ bool operator == (const CSegmenté& seg) const
+ bool operator != (const CSegment& seg) const
+ bool operator > (const CSegmenté& seg) const
+ bool operator < (const CSegmenté& seg) const

+ int m_Maxx
+ int m_Maxy
+ int m_Minx
+ int m_ Miny
+ unsigned char* m_Pixels

Fig. 5.6 The segment class

5.3.1 Segment scaling

CSegment::SetCorrectScale (int, int) reformats the segment as cutout from the image. This
operation is only performed if a segment is too large to fit on a 19*19 plane or if the segment to be
recognized is too small (refer to section 4.3 for our motivation). The original ratio of the segment is
preserved in order to prevent character deformation. E.g., a segment holding an image of the
numerical character ‘1’ of size 38*4 will be resized to a segment of 19*2. The scaling operation does
change the segment’s resolution. The segment is either magnified or reduced, in both cases new pixels
intensity values are calculated by linear interpolation.

5.3.2 Segment biniarizer

After the segment has been scaled, the segment is biniarized according the procedure explained in
section 3.4. During biniarization the number of black and white pixels are counted. The biniarization
operation validates the segment against two system constants: MINPERCENTAGEBLACK and

MAXPERCENTAGEBLACK Currently these values are set to:
#define MINPERCENTAGEBLACK (double)0.06
#define MAXPERCENTAGEBLACK (double)0.90

This validation prevents segments, catched by previous steps, to be considered as characters
erroneously.
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5.3.3 Segment copying/pasting

CSegment: :SetSegmentPixels () 1S the operation which is called after the segment has been
biniarized and validated. Basically this operation pastes the binary character image onto a 19*19 plane
to be used directly by the neocognitron recognizer. In our CLPR the segment pixels will be placed
centrally on the 19*19 plane; however an overloaded operation

CSegment: :SetSegmentPixels (int, int)is available to place the segment on any location on the
plane (this operation may be used to verify the location invariance of the neocognitron recognizer).

5.3.4 Segment thinning

As stated earlier the neocognitron used is designed to recognize features that have only line segments
of one pixel thick, therefore a thinning operation is applied on the segment before the segment image
is supplied to the recognizer. We have implemented the ‘Hillditch’ algorithm to skeletonise the
segment. We have slightly changed the procedure described in Woods[1, pp 491] to prevent certain
line segments to be wiped out completely. Later in chapter 6 it will be mentioned that finding a better
skeletonizing operation will improve the overall performance of our CLPR system. Skeletonising is
performed by calling the csegment : : Thinning () method.

5.4 The character recognizer

Within the CLPR, two types of neural networks can be used: a MLP using direct input and a
neocognitron network. The MLP is used only for verification and not described in this document. The
neocognitron simulator software is described in the appendix. The incorporation of the neocognitron
recognizer in the CLPR is straightforward. What is important for the CLPR software implementation
may best be explained by the code fragment listed below.

#include “network.h”

float* z; // pointer to array of all networks output cells
int max layer; // integer defining the layer number

// instantiate the network object
m NetWork = new CNetwork();

// load the network configuration
m NetWork->Install (SupervisedFukushima, “c:\MyNetworkFile.net”) ;

// let the network recognise an input sample
m NetWork->Test (a pointer to an array containing the image sample);

// get the networks output
z = m_NetWork->GetPlaneOutput (5, 'C');

Fig 5.7 Sample code to include the neocognitron in the application

In the main program of the CLPR, a pointer to the network object is created. Once the network has
been created, the network constants and weights are installed from an existing network configuration
file: m NetWork->Install (). After installation, the network is supplied with a character array holding
the image segment to be recognized: m NetwWork->Test () . What follows is retrieving the output after

the network has propagated the output neuron excitations. This is accomplished by the method
m_NetWork>GetPlaneOutput () .
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5.5 The user-interface

As shown in figure 5.2 there are many buttons to push on the control panel of the userinterface. We
will not explain the working out of each button in this report because many are self-explaining and
because such a description should be given in a user-manual. Basically, the system can be operated in
two ways. Either all processing steps including loading the image are initiated separately by
successively pushing the buttons that call their corresponding operations or the system is presented a
file containing a list of images to be processed ‘automatically’.

By pushing the ‘FileSeries’ button, a FiledialogBox is presented to select a file containing all files to
be processed. After the file has been selected the system starts processing all image listed in the file
automatically. After all images listed in the file have been processed, an output file will be available
with the recognition results. Below some lines of an output file are listed as an example.

FILE:

C:\Afstudeer\PIC00032.BMP READ: [?LZ9DN]
FILE: C:\Afstudeer\PIC00035.BMP READ: [JSPT84]
FILE: C:\Afstudeer\PIC00036.BMP READ: [VG47GO0]
FILE: C:\Afstudeer\PIC00037e.BMP READ: [LTTL53]
FILE: C:\Afstudeer\PIC00038.BMP READ: [HPBG77]

Fig 5.8 File sample containing the analyzed bitmap images and the recovered car license plate
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Chapter 6

Evaluation

6.1 Systems performance

Below, in figure 6.1, it is demonstrated that our CLPR does recognize license plates on photographs
produced by automated road cameras operated by the Dutch police. It would have been beyond the
scope of this research to verify our system against a large number of these types of photographs in
in this report. In stead, for
evaluation of our prototype system we have produced a number of photographs of cars parked on
several parking lots of the Delft University campus. The pictures were taken using a digital pocket
camera equipped with a 36-mm lens. All images taken have a 640*480 pixel 8-bit grey scale format.

order to measure the recognition success rate of the prototype described

Figure 6.2 shows a representative sample of our evaluation set.
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Fig. 6.1 A processing example of a photograph produced by an automated camera
operated by the Dutch police. The image cut-out is 320*280 pixels 8-bit grey scaled
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Fig. 6.2 A representative sample of the evaluation set used

6.1.1 Performance definition

Obviously, our system is not a ready-to-use automated CLPR to be used for traffic law enforcement.
Only certain aspects of image processing and character recognition have been studied and
implemented in software. Nevertheless, it is possible to compare the performance of our CLPR to
other system-architectures described in scientific articles or other commercial systems. In this chapter
we will present the results of our system regarding the image processor and the recognition rate of the
neocognitron, based on the definitions described below.

Our prototype CLPR is based on the block diagram of a general image understanding system as
presented in figure 1.0. However, not all building blocks have been implemented.

«  There is no automated image acquisition.

. Feature extraction seemed superfluous in our setup.

« A post-processor has been defined but was not implemented.

. Finally, there exists no feedback in the processing chain of our prototype.

Basically, our system contains only two components:

1. An image processor that transforms an input image into a series of binary image cutouts
representing individual license plate characters.

2. A character recognizer that classifies the binary image cutouts into alphanumerical characters.

image image segment segment
preprocessing segmentation skeletonizing recognition
image processing recognizer

Fig. 6.3 The model of our system used to define performance measures

Below two measures are defined which are used to qualify the system’s overall performance. In the
next two sections these measures are explained and quantified for the CLPR prototype described in
this report.

«  Supply the image-processor an image, how well does it segmentate the license plate characters?
This measure has been defined as the image processor success rate: PRSC.

. Given a binary segment cutout representing a license plate character is it recognized correctly?
This measure has been defined the recognition rate: RR
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6.1.2 Image processor performance

Ideally, the image processor would return exactly the number of character cutouts the license plate
has, of each bitmap photo presented to the system. Our image processor does not. In stead it can
return:

1. Not a single valid segment.

2. Many segment but none of them may be considered character cutouts.

3. A setof segments containing not all license plate character cutouts.

4. A set of six or more segment, among which are all license plate character cutouts.

It will be clear that a CLPR only can recover the car’s license plate if the image processor returns a
value that fall within category 4 of the list given above.’. If the image processor returns at least all
license plate character cutouts, the image processor step is considered successful. In all other cases,
the image processor has failed, and eventually the CLPR system would not read the license plate. Our
image processor performance is defined by the successrate achieved when processing the image:

PRSC = #images at least all characters isolated

total # images

Equation 6.1 Image-processor succes rate

We have taken in total 162 pictures. Nineteen of them seemed unusable. Either the picture was over
exposed, suffered fuzziness caused by movement or the car has been photographed from a distance too
far away. Finally we ended up with 144 photographs, 125 of them were pre-processed successfully.
This yields a image processor success rate of 87%. Of course, this number may vary depending on the
characteristics of the photographs in the testset. It will go up in a highly controlled environment, and it
will surely be much lower under bad lighting conditions. However it gives a good indication that the
techniques and algorithms used in the pre-processor may work quite satisfactory in this kind of
software application.

Unfortunately in most cases the image processor returns more than six segments. As will be
demonstrated in section 6.1.4 this should not cause any performance degradation on the total system
but it makes it mandatory to include a post-processor in the CLPR. Another problem with the many
erroneously isolated segments is related to run-time performance. Currently the setup of our system is
such that all isolated segments are considered candidate license plate characters. The neocognitron
recognizer will therefor analyze all of them. Since the neocognitron network simulator is by far the
most CPU-cycles consuming part of the system, long processing times images should be anticipated.
A recognition cycle for one segment takes about 2 seconds on an 1400 Mhz Pentium PC using a
release version of the neocognitron simulator. Below in figure 6.4 a histogram is given showing the
frequency of the number of segments isolated per image.

> remember we do not catch complete license plates but consider individual characters in our
segmentation procedures
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Fig. 6.4 The frequency on the number of segments catched

What goes wrong in the image processor? The main reason the pre-processor fails to isolate license
plate characters is because the etching filter used in the biniarization method seems not to enclose the
license plate characters completely. The filling operations applied after the image has been biniarized
do wipe out completely the characters. See figure 6.5. This happens when the license plate color is too
much alike the color of the cars chassis.

Fig. 6.5 left: 240*190 pixel cutout from original picture #154. middle: biniarized image right: no plate
left.

Another reason why segmentation fails is that individual characters become mutual connected or
become connected to the plate boundary. The filling operation in this case does wipe out the not
completely isolated characters. See figure 6.6. This problem also does occur on dirty numberplates or
when for example too big screws have been used to attach the numberplate.

Fig. 6.6 left: 240*190 pixel cutout from original picture #015. middle: biniarized image right: missing
‘S’ char
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6.1.3 Recognition performance

The recognition performance of the system is defined by equations 6.2.

RR _ #correctly read characters

character level

#characters isolated

#correctly read plates

licenseplate level =

#images at least all characters isolated

Equation 6.2 recognition succes rate

It should be noted that recognition success rate (RR) is determined by both the segment skeletonizer
and the neocognitron network. Refer figure 6.3. From the set of 125 pictures successfully pre-
processed, we leave out 4 pictures that have license plate character images of less then 10 pixels
height. The remaining 726 =(6*121) characters were passed through the neocognitron recognizer. 13
out of 726 were not classified at all, 34 out of 726 were misclassified, refer table 6.3. On character
level, the recognizer part of the CLPR system exhibits the following performance figures.

Table 6.1 Character level recognizer performance

Recognition on character level RRhartevel
Recognition rate (correctly classified segments) 93.9%
Error rate (misclassified segments) 44 %
Rejection rate  (unclassified segments) 1.7 %

The figures above are derived from table 3.4.2 in the appendix. Tables 6.2 lists the recognition rate
performance on license plate level. It shows the percentage of images from which all six
alphanumerical characters of the numberplate have been recognized correctly (recognition rate), the
percentage of image where not all characters have been recognized correctly (error rate) and the
percentage of numberplates that show one unclassified character (rejection rate) at least.

Table 6.2 Character level recognizer performance

Recognition on license plate level RRyiatelevel

Recognition rate (correctly classified license plates) 72.7 %
Error rate (misclassified plates) 16.6 %
Rejection rate  (unclassified plates) 10.7 %

In table 6.3 a matrix is given that shows the the recognition results on all characters that appear in the
testset. What is causing the rejection or misclassification in the recognizer module of the system ? 47
out 726 characters are either rejected or wrongly classified. A brief analysis showed the failures of
the recognizer fall in either one of three categories below:

1. Regrettably, the ‘mini’ discriminator neocognitrons for 0/D, 2/Z, .. ,8/B suggested in section 4.4
let us down in some cases. In section 6.1.4 we will comment on this.

2. The thinning operation on the segments seems not to be able to process certain input patterns
correctly. In figure 6.7a some typical examples are given of skeletonizer errors.

3. Finally, it was observed that the rest of the failures is due to the neocognitron failure. Seemingly
the trainingset patterns for the network and/or its configuration were not sufficient to correctly
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classify the input samples. Figure 6.7b gives some examples of segments that belong to the this
category.

Below in figure 6.7a four character segments are depicted of respectively the pictures #20, 141, 154
and 27 of the testset. Refer appendix table 3.4.2. The recognizer respectively reads “?”,7?”, “H” and
“Y”. This seemes very plausible. The segments shown in figure 6.7b are isolated from image # 51, 89,
58 and 27 respectively. The neocognitron rejects the J,L,G and misclassifies the character K as R.

YANY QUG

][R INISES

Fig. 6.7a Thinning failures Fig. 6.7b Recognizer failures

Table 6.3 The character confusion matrix observed on the evaluation photo set
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" 7 =rejected characters
"I = misclassified characters

6.1.4 Post-processor performance

In section 6.1.2 it was mentioned that a post-processor becomes necessary in the current system setup
because of the large number of non character segments are isolated from the input images. As
described in section 3.5 of this report the character recognizer does not only outputs the most likely
character class the segment belongs to, but also returns the exact pixel location and size of the
segment. It is for the post-processor to select just these six license plate segments from the segment
list. Below the systems output is given produced when processing image #111 from the testset.
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Fig. 6.9 Image number 111 of the testset

15:36:32 New Bitmap Loaded File=C:\new\PIC00111l.bmp Size=640*480
15:36:34 Bitmap Preprocessed using method I
15:36:39 Start recognizing picture segments

15:36:42 analysing segment num=[ 1] loc=[328,338,162,178] NeoCognitron Output=[S5000

15:36:44 analysing segment num=[ 2] loc [341,352,162,178] NeoCognitron Output=[R0000

15:36:47 analysing segment num=[ 3] loc=[359,370,163,179] NeoCognitron Output=[D0000

15:36:49 analysing segment num=[ 4] loc=[371,379,163,180] NeoCognitron Output=[J0000

15:36:52 analysing segment num=[ 5] loc=[387,398,164,180] NeoCognitron Output=[2Z000

15:36:54 analysing segment num=[ 6] loc=[397,407,164,180] NeoCognitron Output=[7T000

15:36:57 analysing segment num=[ 7] loc=[270,275,222,232] NeoCognitron Output=[10000

15:36:57 1InValid segment num=[ 8] loc=[282,296,224,236] skipped

15:37:00 analysing segment num=[ 9] loc=[114,124,369,386] NeoCognitron Output=[?2?727?

15:37:00 1InValid segment num=[10] loc=[123,134,370,386] skipped

15:37:00 1InValid segment num=[11] loc=[ 28, 34,386,396] skipped

15:37:00 1InValid segment num=[12] loc=[570,583,417,432] skipped

15:37:00 1InValid segment num=[13] loc=[ 51, 64,441,458] skipped

15:37:00

15:37:00 End recognizing picture segments

15:37:00 Processing segment list selecting plate candidate characters

15:37:00 segment num=[ 1] loc=[115,123,370,385] size=[ 16, 9] pos=[ 20,115] recog=[?2227?]
15:37:00 segment num=[ 2] loc=[271,274,223,231] size=[ 9, 4] pos=[ 6,271] recog=[10000
15:37:00 segment num=[ 3] loc—[329,337,163,177] size=[ 15, 9] pos=[ 0,329] recog=[55000
15:37:00 segment num=[ 4] loc=[342,351,163,177] size=[ 15, 10] pos=[ 0,342] recog=[R0000
15:37:00 segment num=[ 5] loc=[360,369,164,178] size=[ 15, 10] pos=[ 0,360] recog=[D0000
15:37:00 segment num=[ 6] loc=[372,378,164,179] size=[ 16, 7] pos=[ 0,372] recog=[J0000
15:37:00 segment num=[ 7] loc=[388,397,165,179] size=[ 15, 10] pos=[ 0,388] recog=[2Z000
15:37:00 segment num=[ 8] loc=[398,406,165,179] size=[ 15, 9] pos=[ 0,398] recog=[7T000

15:37:00 No More Characters Found

Fig. 6.10 The output log produced by the system when processing the image number 111 above

A program to select only the last 6 segments of the list of 8 segments initially analysed, and mark
them as the license plate characters would not be very difficult. No performance degradation would
occur by this step if added to the CLPR.

Clearly a post-processor must be included in our system setup because non character segments are to
be removed from the output string based on their location and size. This post-processor could also
perform a syntactical analysis on the output string. Although the use of a post-processor as syntax
forcer is not favourable in a CLPR because it makes it less general applicable, it must be mentioned
that the post-processor in our system could increase the total performance significantly. Table 6.3
shows 12 misclassifications on 0/D, 2/Z ,5/S or 8/B characters. From table 3.4.2 in the appendix it is
derived that correcting this misclassification by using the Dutch license plate syntax rules we would
recover an additional number of 9 license plates.

Our system definitely needs real life experimental verification, but recognition rates on plate level of
80 % can be achieved in this setup using a post-processor. Taken the image processor into account we
finally would have an overall succesrate of 70%° , on images that have character sizes as small as 10
pixels.

= PRSC * RR jyever = 0.87 * .80
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6.2 Future work

The CLPR described in this report is a prototype. 4 prototype is the first model that is made of
something. The prototype is used as a basis for later improved models. [Collins cobuild English
language dictionary]. Unfortunately it is not common practice in the software development industry to
through away the implemented prototype and starting from scratch only reusing the prototype’s
concepts.

However, we believe the demonstrated image processor concept is usable for this kind of software
application but needs further analysis. Especially the biniarization method described in section 5.2.3.
This algorithm relies too much on practical experience rather than a theoretical foundation.

The neocognitron on the other hand is a proven concept and it has been demonstrated that it does work
quite well in this application also. The neocognitron simulator we have build should be analyzed
regarding it response times, in order to let it compete with MLP artificial networks or template
matchers in this kind of application.

An overall performance of about 90% should be achievable using the concepts of our CLPR design by
increasing image processor and recognizer perfomance.

The image processor performance can be increased by:

1. Using higher resolution digital photographs.
2. Developing a better local biniarization method.
3. Tuning the segment validator to decreased the number of erroneously isolated segments.

The recognizer performance can be increased by:

1. Modifying the segment-thinning algorithm by taken the original grey-scales of the biniarized
segment into account.

2. Enlarging the neocognitron input plane to 38*38 pixels. Larger character image samples would
suffer less from the thinning deformations demonstrated in figure 6.7a.

3. Try to train the neocognitron the unsupervised way to make it more robust against character
deformations as depicted in figure 6.7b.

4. Adding a post-processor to include syntax forcing and plate validation to reduced the error rate.
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