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Abstract

The usefulness of identifying a person from the characteristics of his voice
is increasing. The thesis will describe an approach to speaker identification
where a neural classifier is used to separate different speakers. Several possi-
ble solutions will be showed. We will select cepstrum parameters as speaker’s
feature and explore the ways for solving the problem of speaker identifica-
tion; the artificial neural network is introduced. The random combination
of isolated digits from 0 to 9 is specified as identification utterances. The
system has been evaluated on a database of isolated digit utterance of 20
speakers.
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Chapter 1

Introduction

Personal Identity Identification is an essential requirement for controlling ac-
cess to protected resources. Personal identity is usually claimed by presenting
a unique personal possession such as a key, a badge or a password. However,
these can be lost, stolen, or counterfeited, thereby posing a threat to security.
Hence, identification based on biometric features of a person can be a solution
[Naik]. This can be attempted by examining an individual’s biometric fea-
tures, such as fingerprints, hand geometry, or retinal pattern, or by examining
certain features derived from individual’s unique activity, such as speech or
handwriting. The speaker recognition task falls under the general problem
of pattern classification. In each case, the features are compared with all the
previously stored features of persons. If the comparison is favourable, based
on a decision criterion, then the person is identified. Among these meth-
ods, speaker recognition based on a person’s voice has special advantages for
practical deployment. Speech is our most natural means of communication
and, therefore, user acceptance of the system would be high. Speech con-
veys linguistic information, speaker-dependent (individual) information, and
many more other kinds of information. Among these, individual informa-
tion plays the most important role next to linguistic information. Individual
information takes the form of voice quality, voice height, loudness, speed,
tempo, intonation, accent, the use of vocabulary and so on. Voice quality
and height, which are the most important of the auditory types of individual
information, can be related mainly to the static and dynamic characteristics
of the spectral envelope a fundamental frequency (pitch). Advances in digi-
tal signal processors and speech technology have made possible the design of
fast, cost effective, high performance speaker recognition systems.
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Figure 1.1: Basic model of Speaker Identification

In figure 1.1 we display a general model of speaker identification, where
each block represents a function. The unknown speaker pronounces a pass-
word. In Feature extraction the characteristics of the speaker’s utterance are
extracted (feature vectors), the Model Speaker n consists out of reference
feature vectors of the speaker n, in the selector the speaker is selected where
the feature vectors (from Feature extraction) resembles the feature vectors
(stored in the Model Speaker) most. When the resemblance expressed in a
percentage is not equal or higher then the threshold then the speaker it not
recognized.

Speaker recognition can be divided into speaker identification and speaker
verification. Speaker identification is the process of determining from which
of the registered speakers a given utterance comes (see figure 1.1). Speaker
verification is the process of accepting or rejecting the identity claim of a
speaker (see figure 1.2). In figure 1.29 jeach block represents a function. The
unknown speaker claims an identity and pronounces a password. In Fea-
ture extraction the characteristics of the speaker’s utterance are extracted
(feature vectors), in Model Claimed Speaker the reference feature vectors are
stored, the decision algorithm computes the resemblance between the feature
vectors (from the feature extraction) when this is higher then the threshold
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Figure 1.2: Basic model of Speaker Verification.

the claimed identity is accepted. The process of ”getting to know” speakers
is referred to as training and consists of collecting data from utterances of
people to be identified. The second component of speaker identification is
testing; namely the task of comparing an unidentified utterance to the train-
ing data and making the identification. The speaker of a test utterance is
referred to as the target speaker. The terms speaker identification and speaker
recognition are used interchangeably. In this thesis, only text-independent
recognition is considered. By text-independent, we mean that the identifica-
tion should work for any text in either training or testing. This is a different
problem than terxt-dependent recognition, where the text in both training
and testing is the same or is known. In the latter case, knowledge of the
word sequence can be exploited to improve performance. In some cases text
dependency is implicit, e.g., training and testing is done with digit strings
although the digit strings may be different in training than in testing. Text
dependent systems require the recitation of a predetermined text, thereby
maintaining a high degree of user cooperation, whereas text-independent
systems accept speech utterances of unrestricted text. In text-dependent
systems, with adequate time alignment, one can make precise and reliable
comparisons between two utterances of the same text. This is not easily ac-



complished with text-independent systems. Hence, text-dependent systems
have a much higher level of performance than text-independent systems.
There are two main reasons for wanting a speaker identification system to
prompt the speaker with a new password phrase for each new occasion: (1)
the client does not have to remember a fixed password and (2) the system
cannot easily be defeated with replaying of recordings of the speaker’s speech.

Speaker recognition can be subdivided in two further categories, closed-set
and open-set problems. The closed-set problem is to identify the speaker
from a group of N known speakers. Naturally, the larger N is, the more
difficult the task is. The speaker that scores best on the test utterance is
identified. Alternatively, one may want to decide whether the speaker of a
test utterance belongs to a group of N known speakers. This is called the
open-set problem, since the speaker to be identified may be not to be one
of the N speakers. If a speaker scores well enough on the basis of a test
utterance, then the target speaker is accepted as being known. Though the
open-set task involves only binary decision (accept or reject), it is not nec-
essarily easier then the closed-set problem, since it requires that a score be
developed that has an absolute meaning; namely, a score that provides a
calibrated measure of believe that the target speaker is known. The score is
compared to a threshold for purposes of acceptance or rejection. The process
of developing a calibrated score is referred to as score normalization. While
this normalization process is not required for the closed-set problem, score
normalization can play an important role in robust, closed-set, recognition
procedures [Gish et al]. In addition, this normalization enables the scores
from the robust procedures to be used directly for the open-set problem.
Speaker verification see figure 1.2 is a special case of the open-set problem
and refers to the task of deciding whether a speaker is who he or she claims
to be. Often, however, speaker verification systems must not only verify the
voice, but also the text with a speech recogniser in order to prevent impostors
from using recordings. In this thesis, we will focus attention on the closed-set
problem.

Potential applications: The potential for applications of speaker recog-
nition systems exists any time speakers are unknown and their identities are
important. In meetings, conferences, or conversations, speech technology
makes automated identification of participants possible. If used in conjunc-
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tion with continuous speech recognizers, automatic transcriptions could be
produced containing a record of who said what. This capability can serve
as the basis for information retrieval technologies from the vast quantities of
audio information produced daily. In law enforcement [Klevans R.L, et al]
[Anon], a speaker recognition system can be used to help identify suspects.
In other words, security applications are abound. Access to cars, buildings,
bank accounts and other services may be voice controlled in the future. Some
existing applications use voice in conjunction with other security measures,
perhaps a codeword, to provide an extra level of security. Speaker identifica-
tion also has applications to other voice technologies. For example, speaker
recognition can be usefully employed in speech recognition systems. Gender
recognition, based on a variant of speaker recognition techniques, is already
in use in many speaker independent speech recognizers to improve perfor-
mance.

The problem definition is as follows
e A literature survey about speaker identification is performed
e Design a model for speaker identification.
e (Create a workbench on which the test with the model can be performed.

e Design and implement a prototype.

Test the prototype on its functionality.

This thesis focuses on the closed-set text-independent speaker recognition
problem. The text, however, is restricted to numbers consisting of three

digits where any combination of the words "nul”, een” . ”drie”, ”vier”, ” vijf”
y ) ) ) ) )

"zes”, "zeven”, ”acht” and "negen” are allowed. However, the possibility of
pronouncing numbers greater than nine and words has been investigated as
well. Several existing techniques and methods are developed for solving any
recognition problems are introduced. In the following, a brief overview of
the organization of this thesis is presented. In chapter 2 the basic building
blocks of a speaker identification system are described. Further in chapter
4 the Text-independent Speaker Identification system is tested with several

experiments and chapter 5 holds the conclusions and the recommendations.



Chapter 2

Speaker identification models

2.1 Basic model of a speaker identification

system

Figure 2.1 shows a block diagram of a basic Speaker Identification system.
Next we will describe each block in more detail:

Speech signal:
Here the utterance of a speaker is converted to a digital data format
and stored in a file (which we will shall call a speech file).

Pre-processing:

The speech signal in the speech file contains data that is not needed
(like noise or non-speech) this has to be removed. The resulting speech
signal will be passed through a filter that will amplify the speech signal
and stored in a speech file (from this point this can be seen as speech
data).

Feature Extraction:

To extract the characteristics of the utterance of the speaker, the speech
data is used. We will use an algorithm that is able to extract certain
characteristics from the speech data, which will be discussed in section
2.2 (Vocal Signal). The extracted characteristics will be called the
feature vectors.

Classifier:
Here the identification of the speaker has to be established, on the basis

9
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Figure 2.1: Basic model of a speaker identification system

of the given utterance of the speaker. There are several ways to take

this decision on the basis of the feature vectors; this will be pointed
out in section 4.

e Speaker set:

The speaker that is to be identified must belong to the Speaker-set. In
the Speaker set the speech data of all speakers are stored.

In the recognition phase our system demands the speaker to pronounce three
randomly chosen digits. However, instead of these digits we also investigated
words and digits bigger then nine (for instance thirteen, twenty, etc.) and
also the usage of words. The following basic problems have to be solved:

e What kind of input (like the number of digits, one or two syllables
digits etc.) can to be used?

e How to choose a representation of the speaker’s utterance (feature vec-
tors)?

e How to select the type of classifier?
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e how to configure the classifier (to get an optimal result)?

The aim is to develop a working system that is capable of recognizing a
speaker on the basis of the speaker’s utterance.

2.2 Speech signal

Feature extraction is the first important step in solving any recognition prob-
lem, and consists in our case, in obtaining a set of characteristics parameters
with a high discriminating power between speakers to be used in signal clas-
sification.

What is it about the speech signal that conveys information about the
speaker’s identity? There are, of course many different sources of speaker
identifying information. The speech signal conveys information about the
speaker, these include ” high-level” features (such as dialect, context, speak-
ing style, emotional state of the speaker, etc.) These features are often used
by human listeners to identify a person, however implementations to identify
these perceptual bases have not been successful. The reason for this is be-
cause of the difficulty in acquiring and quantitatively measuring the speaker
discriminating features used by humans. Hence, operational speaker identi-
fication systems use ” low-level” parameters, such as pitch, spectral magni-
tudes, formant frequencies, energy profiles, etc. which can be derived from
acoustic measurements of the speech signal.

These variables may be measured as a function of time or the statistics
of long-term averages may be used as recognition variables. But the real
question, the essence of the problem, is this : How stable are these speakers
discriminating features? Given a speech signal, is the identity of the speaker
uniquely decodable? The fact is that the speech signal is a complex function
of the speaker and his environment. It is an acoustic signal generated by the
speaker and which does not convey detailed anatomical information, at least
not in any explicit manner. This distinguishes voice recognition from finger-
print identification, since fingerprint recognition uses fixed, static, physical
characteristics, while speaker recognition uses dynamic ”performance” fea-
tures that depend upon an act.

Thus there exist inherent limitations in performance, which are attributable
to the nature of the speech and its relationship to the signal generator
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(the speaker). To appreciate these limits we must understand the source
of speaker-discriminating information and how it is encoded in the speech
signal. The speech signal, being a consequence of articulation, is determined
by the vocal apparatus and its neural control. Thus there are two possible
sources of speaker information; namely, the physical and structural charac-
teristics of the vocal tract and the controlling information from the brain and
articulatory musculature. This information is imparted to the speech signal
during articulation along with all the other information sources. These other
sources include not only the linguistic message but also the speech effort level
(loud, soft), emotional state (e.g., anger, fear, urgency), health, age, and so
on.

The characteristics of the speech signal are determined primarily by the
linguistic message, via control of the vocal tract musculature and the re-
sulting articulation of the vocal cords, jaw, tongue, lips and velum (which
controls coupling to the nasal cavity). This articulation, in turn, produces
the speech signal as a complex function of the articulatory parameters. The
secondary speech messages, including speaker discriminates, are encoded as
non-linguistic articulatory variations of the basic linguistic message. Thus
the information useful for identifying the speaker is captures indirectly in
the speech signal, a side effect of the articulatory process, and the speaker
information may be viewed as "noise” applied to the basic linguistic message.
Thus the problem with speaker recognition is that there are no known speech
features or feature transformation which are dedicated solely to carrying
speaker-discriminating information, and further that the speaker-discriminating
information is a second-order effect in the speech features.

The fact is, however, that different individuals typically exhibit speech
signal characteristics that are quite strikingly individualistic. We know that
people sound different from each other, but the differences become visually
apparent when comparing spectrograms from different individuals. The spec-
trogram is by far the most popular and generally informative tool available
for phonetic analysis of speech signals. The spectrogram is a running dis-
play of the spectral amplitude of a short-time spectrum as a function of
frequency and time. The amplitude is only rather crudely plotted as the
level of darkness, but the resonant frequencies of the vocal tract are usually
clearly presented in the spectrogram. Figure 2.2 demonstrates the degree of
difference between spectrograms of 3 different speakers saying the number
"negen”. The spectrogram is a display of the amplitude of a speech signal as
a function of frequency and time. Note the differences between the individual
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Figure 2.2: This figure exhibits 3 different spectrograms, one from each
speaker pronouncing the number ” negen”.

pronunciations. Segments duration’s, formant frequencies, and formant fre-
quency transitions, pitch and pitch dynamics, formant amplitude, all exhibit
gross differences from speaker to speaker. Thus these speakers would be very
easy to discriminate by visual inspection of their spectrograms.

But there are problems with this appealing notion of spectrographic dif-
ferences. The primary difficulty lies not with the similarity between different
speakers. Speakers usually sound very different from each other, and, in
fact, the spectrograms in figure 2.2 show large differences between speakers.
The real problem is that a single speaker also sounds (and looks, spectro-
graphically) very different from time to time. We call this phenomenon
”intraspeaker variability.” This is illustrated in figure 2.3, which displays the
spectrograms of three speakers (pronunciation of the number ”zeven”). The
spectrogram is a display of the amplitude of a speech signal as a function of
frequency and time. One of the key issues in developing a text-independent
speaker recognition system is to identify appropriate features and measures
that will support a good recognition performance. The usage of the long-term
average spectrum as a feature vector was discovered to have a potential for
free-text recognition during initial exploratory studies of fixed-text recogni-
tion using spectral pattern matching techniques [Pruzansky|. Unfortunately,
the long-term spectrum is not a good stable feature vector to use for speaker
recognition. Long-term spectrum is sensitive to changes in the spectral re-
sponse of any interposed communication channel. More important, the long-
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Figure 2.3: Spectogram for three speakers of the pronunciation of ”zeven”.

term spectrum is not particularly stable across variations in the speaker’s
speech effort level. A number of increasingly more sophisticated approaches
have been developed to overcome some of the more fundamental limitations
of a simple Euclidean distance measure on a simple spectral amplitude vec-
tor [Cheung], [Wohlford] and [Shridar et al]. These approaches typically at-
tempt to stabilize and statistically characterize the features that represent
the speech spectrum. These features include statistically orthogonal spectral
vector combinations, cepstral coefficients, and a variety of LPC-based pa-
rameters. Surprisingly, the primary measure of choice remains the spectral
amplitude vector, and very little effort has been devoted to the development
of other measure such as pitch, formant frequencies or statistical time func-
tions. One reason for selecting the spectral amplitude vector is that is has
typically produced performance superior to other features such as voice-pitch
frequency [Markel].

Short time spectral features of speech signal have long been used success-
fully in speaker recognition applications, the spectral features hold speaker
related information. The selection of the acoustic features is crucial for the
effectiveness of the system. These features should have the following proper-
ties:
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Discriminate between speakers while being tolerant of intra-speakers
variability’s.

Be easily measurable from the speech signal.

Be stable over time.

Not to be susceptible to mimicry by possible impostors.

There are several important issues involved in automatic speech and speaker
recognition, including;:

1. How to extract short-time spectral information from raw speech sig-
nals?

2. How to efficiently represent instantaneous spectral information at any
time instant?

3. How to reliably characterize transitional spectral information associ-
ated with the time-varying properties of a speech signal in a compact
form?

4. How to use instantaneous and transitional spectral features to measure
the similarity (or dissimilarity) between two given running spectra?

5. How to make use of instantaneous and transitional spectral features in
a complementary way?

Short-time spectral information of speech signal is usually extracted through
a filter bank, a Fast Fourier Transform, or a LPC (Linear Predictive Coding)
spectral analysis. Atal [Atal] compared several different spectral representa-
tion of speech spectra including LPC predictor coefficients, autocorrelation
coefficients and LPC-derived cepstral coefficients, etc. and found that the
LPC coefficients based spectral representation gave the best speaker recog-
nition performance. Both text-dependent and text-independent experiments
were conducted, and the performance of the text-dependent speaker recog-
nition system was found to be better than that of the text-independent one.
Furui [Furui] used both instantaneous and transitional spectral information
in his LPC cepstrum-based speaker verification experiments to characterize
a sequence-long utterance.
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2.3 Linear predictive coding

Before any features can be extracted from the speech signal, some pre-
processing has to be performed. The speech signal contains noise and unim-
portant data that has to be excluded. The noise can be filtered out by band
limiting the speech signal (for instance between 100 Hz to 3.0 kHz). The re-
sulting speech signal is then amplified. The parts of the speech signal where
the energy of the signal is zero (silence) should be removed. LPC is a very
important spectral estimation technique because it provides an estimate of
the poles (hence the formants) of the vocal tract transfer function. The LPC
algorithm is a n** order predictor which attempts to predict the value of any
point in a time-varying linear system based on the values of the previous n
samples. The representation of the vocal tract transfer function, H(z), can
be represented by the following equation:

B G

1= a()z
The values a(i) are called the prediction coefficients while G represents the
amplitude, or gain, associated with the vocal tract excitation. The notation
27! indicates a single, discrete-time delay in the domain of z-transforms. For
discrete-time signals, the z-transforms can be considered a generalization of
the Fourier transform. The poles of the transfer function in equation 2.1 are
determined from the roots of the polynomial in the denominator. The LPC
can only derive the resonant frequencies, or the formants, but not the zeros.
The LPC does not adequately estimate signals that have no poles, such as
some unvoiced speech noise. The non-linear signal components adversely
affect the LPC estimates.

H(z) (2.1)

For the speech signal s(n), the predicted speech sample §(n) is a function
of a(i) and prior speech samples according to:
p

5(n) = a(i)s(n — 1). (2.2)

i=1
LPC analysis involves solving for the a(i) terms according to least squared
error criteria. If the error is defined as:
e(n) = s(n)—3(n)
P
s(n) =Y _a(i)s(n — 1), (2.3)

=1
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then taking the derivative of the squared error with respect to the coefficients
a(i) and setting it equal to zero gives:

0 ia s(n —1)] 2:0
Ba(J)

[s(n) =Y a(i)s(n —i)]s(n —j) =0 for 1L < j <P. (2.4)

Thus,
s(n)s(n —j) = ;a(i)s(n —i)s(n—j) for 1<j<P. (2.5)

A possible method for solving the matrix is called the autocorrelation method,
which assumes that the signal is stationary within the analysis windows. The
autocorrelation solution to 2.5 can be expressed as

§)=>_a(@)R(|i — j|) for 1<j <P, (2.6)

i=1
where R(j) is an even function R(j)=R(-j) and is computed from:

N-1—j

R(j)= Y. s(m)s(m+j) for0<j<P (2.7)

m=0

Once the autocorrelation terms R(j) have been calculated, a recursive algo-
rithm, called Durbin’s recursion [Makhoul|, is used to determine the values
of a(i). The initial state of the recursion begins with an energy term, which
contains the summed, squared energy in the windowed signal,

E° = R(0). (2.8)

At each step in the recursion the following calculations are performed:

i—1

k(i) = (R(@) =) a '(J)R(i—3))/E™" for1<i<P

a'(i) = k() i
a'(j) = a"'(j) — k(@)a"'(i - j) for1<j<i-—1
E' = (1-k@G)*)E™ (2.9)
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The final solution for a(j) is given by a” (j) for 1 < j < P. Given that the
vocal tract does not produce a ”purely” linear speech signal, the solution for
a(j) is optimal, but not exact. The most difficult part of the speech signal
to predict is the glottal pulse because it contains a large amount of energy,
which ”instantaneously” appears in the signal.

One can calculate the cepstrum in 2 ways, one using simple recursion and
the other with the Fourier transform.

Using the Fourier method: Speech wave z(n) can be expressed as a
convolution of speech wave g(n) and vocal tract impulse response v(n). In
other words,

z(n) = g(n) * v(n). (2.10)
Letting the logarithmic operation for the discrete Fourier transformation be
D

Y

D{z(n)} = D{g(n)} * v(n) = D{g(n)} + D{v(n)}. (2.11)

The inverse discrete Fourier transform for Dz(n) is called a cepstrum. In
other words,

c(n) = 217r/027r log| X (w)]e’™ dw,
X(w) = [X(2)],eimt - (2.12)

The cepstrum for X(n) turns out to be the sum of the cepstrum for g(n) and
the cepstrum for v(n). The independent variable of the cepstrum has a time
dimension (frequency). In the case of a voiced sound, D{g(n)} appears as
a component in the neighbourhood of 1/F, (Fy:fundamental frequency) on
the time axis, and Dv(n) as a component of the short time domain. Thus,
a window is opened in the cepstrum and the short time range components
extracted (this is accomplished by removing g(n)), and if a discrete Fourier
transformation is performed in this, the spectral envelope is obtained (see
Fig 2.4).

Using the Linear Prediction coefficient The LPC-derived cepstral
coefficients are defined as follows, where c; is the ith cepstral coefficient:

Ci = a1

c; = ai+i_21((1—(k/i))akci_k), 1 <1 <N (2.13)
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Figure 2.4: Cepstrum analysis

where c; is the ith cepstral coefficient and a, are the prediction coefficients.
Unlike LPC coefficients, cepstral coeflicients are independent and the dis-
tance between cepstral coefficients vectors can be calculated with a Euclidean-
type distance measure.

2.4 Artificial neural network

Artificial neural networks (ANN) are computational models that attempt to
emulate the human brain by a topology that resembles interconnected nerve
cells. NNs are capable of modelling non-linearity and can be used for many
different tasks, such as classification, associative memory, and clustering.
This versatility has allowed them to solve problems in areas as diverse as
computer vision, process control, and medical diagnostic. The main draw-
back of a neural network is their long training time. Although knowledge
about neural networks is still in an early stage, their application to auto-
matic speaker recognition is significant.

ANN consists of a collection of neurons that are connected by weighted
pathways. Each neuron is a processing element performing one function
and producing one output (see figure 2.5). The computation performed by
a typical neuron consists of taking the sum of its inputs (equation 2.14)
and using that value as the argument to a (preferable) non-linear function
(equation 2.15)

N
di = Zwi,jxj (214)
j=1

Where w; ; stands for the weighted pathway between neuron i and j, z; the
output of neuron j and d; is the result of the sum.
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Figure 2.5: Basic model of a neuron

1

R — 2.1
14 e Adi (2.15)

yi = f(di)
This non-linear function (2.15) is called the activation function of the neuron.
The most commonly used activation function is the sigmoid. The A stands for
the learning rate, it influences the slope of the sigmoid and the x is the result
of the equation 2.14. For small values of lambda, the sigmoid approximates
the linear activation function, while for large values the sigmoid approximates
the step function. The output of the cell is computed with the function 2.15
(f(d;)). The activation rule for the neuron has a geometric interpretation.
The choice of which activation function to use in combination with a given
similarity metric is typically guided by two constraints: differentiability and
non-linearity. Activation functions that are differentiable are often selected
because they facilitate analytic manipulation of the mapping produced by the
ANN. In particular ,gradient-descent learning algorithms rely on the calcula-
tions of the gradient of a global measure of the network activity with respect
to the network’s weights. The sigmoid is easy to manipulate analytically, and
for this reason they are most commonly used activation functions. A princi-
ple advantage of ANNs constructed from neurons with non-linear activation
functions is that they are able to compute more complex mappings than net-
works of neurons with linear activation functions. There are two types of
neural networks that have the learning capabilities. The learning is accom-
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plished through modification of processing element weights. It is important
to develop a good model of the weight modification process. Most learning
laws are formulated with a specific goal in mind. A commonly encountered
type of goal is to move to position that yields a network that minimizes or
maximizes some particular global neural network cost or performance func-
tion, such as mean squared error. Neural network adaptation always takes
place in accordance with a learning regimen. Learning models can roughly
be divided in two categories: supervised learning and unsupervised learning
paradigms.

2.4.1 Supervised learning

Minsky and Papert acknowledged the computational potential of multi-layer
network consisting of several layers of modifiable weights and non-linear pro-
cessing elements [Minsky|. They argued that networks with one hidden layer
could solve complex problems that cannot be tackled by a single layer per-
ceptron. These types of networks are often called multi-layer perceptrons
(MLPs). From this point, Werbos[Werbos| defined a learning algorithm for
multi-layer networks. This was rediscovered by other researches and pop-
ularised by Rumelhart, Hinton and Williams in the 90s [Rumelhart et al].
This algorithm is also known as backward error propagation. This algorithm
for determining the weights in a multi-layer network is very popular due to
its simplicity and efficiency. The term hidden layer as mentioned before can
be seen as a transition between the input and the output layer. Remember-
ing that z;;(the input of neuron j from neuron i), d; (is the sum of the input
of neuron j), y;; (the output of neuron ) and A (stand for the learning rate).
The training rules for the Backpropagation network can be summarized by
three statements.

1. The change of weights between neuron ¢ and j, Apw;; (during the train-
ing of the pth presentation of an input \output pair) is proportional to
computed error say Op; for the jth neuron. This can be expressed in
the following equation :

prij = Bapjypi (216)

The calculation of A for the hidden layers is the important aspect of
the Error Backpropagation network.
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2. For the output layer, the error is calculated based on the difference
between the wanted output on x and the real output, the error for
neuron j can be expressed as:

Opi = (Ytarget — Ypi) [i(dpj) (2.17)

From the expression (Yiarget-Yp;) it is clearly that the error is propor-
tional to the difference between the actual output y,; and the target
output yarget. The term f;(ap;) indicates the rate of change. Rum-
melhart et al. indicates that the activation function should be smooth
function, when the error is small the weight change is small otherwise
the weight change is greater.

3. In case when the neuron is in the hidden layer then the error of this
neuron can be defined as being proportional to the sum of the errors
of all the neuron (say k neurons)that are connected to the output as
modified by the weights. In symbols:

Opi = (D Omwry)fi(dyy) (2.18)

for all k

The training consists of 2 steps, the forward pass and the backward pass.
The forward pass during the input is applied and allowed to propagate
to the output. The error values of the output neurons are calculated by
using equation 2.17. During the backward pass these errors are prop-
agated backwards and the weight changes made (see equation 2.18).
This procedure will continue backwards until the weights in the input
layer are adjusted. This then followed by another forward pass and a
further backward pass, and so on.

The network is functioning as an input/output system, it receives an input
vector x and emits a vector y. Supervised learning for such a system implies
a regimen in which the network is supplied with a sequence of examples
(z1,91),(2,Y2),---,(Tk,xx). As each input zy, is entered into the neural network,
the ”correct output” y; also is supplied to the network. When the response
pattern of the network does not match the networks output, the network
corrects by modifying the weights to reduce the difference between the output
and yi. The result that we want is that the neural network generalizes the
training set examples to the entire problem environment, the weights of the
neurons will define an almost flat surface. So that when the network is



2.4. ARTIFICIAL NEURAL NETWORK 23

e,

Weights | Training

x\“Test

erfarmance

—Cver———

Training

Figure 2.6: An interpretation of net training.

prompted with a slight different input (that lies within the surface) it will
”interpolate” the output of the trained data to actual data. A problem
that occurs when one is not careful with choosing the number of training
iterations is the phenomenon of overtraining. The problem that arises here
is that the network looses its important aspect namely generalization. With
overtraining the network will adjust its weights so that it can match the input
to the output, the result is that the surface is not flat but very wrinkled. This
will cause a very bad interpolation between the points on the surface. So the
number of training iteration is not dependent of one cost function but with
another function (see figure 2.6).

2.4.2 Unsupervised learning

Self-learning network have particular importance because they can act as
”optimal” vector quantifiers. They provide useful descriptions of the input
signal in terms of self-generated primitives, arranged to form an ordered map,
which has topological properties with a metric that is related to the similarity
between the input signals. Neural network clustering algorithms have been
employed for a large number of applications such as speech recognition and
pattern recognition. It is possible that the representation of knowledge be in
the particular form of a feature map that is geometrically organized. Kohonen
showed that a set of interconnected adaptive units has the ability to change
its responses in such a way that it will adept to represent the characteristics
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Figure 2.7: The architecture of the Kohonen feature map.

of the input signal. It is the same as the classification problem in classical
pattern recognition such as vector quantization algorithm, where the feature
vector space is to be partitioned into a set of non-overlapping regions, and
where a reference vector represents each region.

A number of researches have studied models which develop feature maps
[Kohonen82], [Scofield]. Kohonen has developed a model, which both emu-
lates the feature maps observed in biological systems, and serves as a useful
computational device for pattern classification [Kohonen82a]. In this model,
the development of cell responses occurs in an unsupervised or self-organising
fashion. Cells automatically develop stimulus specific properties, and the
network self-organizes such that neighbouring cells are ”tuned” to similar
stimuli. In Kohonen’s approach, a layer of cells is organized as a two dimen-
sional grid, with each cell receiving input from a separate layer of input cells.
The cells of the second, or feature-map layer, receive input from both the first
layer and from neighbouring cells in the second layer. The lateral connectivity
within the second layer is assumed to be distance dependent, but identical
for all cells. Kohonen has selected a common distance-dependent relation
in which neighbouring cells excite each other through positive connection
weights, while more distant cells are mutually inhibitory. An example is il-
lustrated in Figure 2.7. Lateral connectivity is not modifiable in Kohonen’s
model because the connections are employed only for the communication of
activity levels within the network. In practical, the time-rate of change of a
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cell’s activation in the second layer is given by:

D=

T, = —riw) + (;(wij—fj)Q) + ;miﬂ'l (2.19)

In this equation, the first term is a non-linear loss, typically modelled by
ri(z;) = z3. The function r;(z;) forces the network activity to decay to
zero in the absence of external stimulation. This permits the activity to be
dominated by external input and not locally induced activity. The second
term is simply the input of f; to cell 7 from input cells j in the first layer
of N cells, mediated by modifiable weights w;;. The third term in equation
2.19 sums the activity levels of the L remaining cells in the network. The
non-modifiable weights m;; are distance dependent so that m;=m(|i-l|). The
effect of the lateral connectivity is a ”clustering” of activity levels during
processing. If a cell has been preferentially stimulated, then it will dominate
and reduce the activity of cells within the inhibitory zone while exciting
cells within the closer, excitatory zone. Thus the lateral connectivity results
in a ”winner-take-all” processing and a recruiting of neighbouring cells to
the winner’s activity. During training, the effect of the lateral connectivity
may be replaced with a simple winner-take-all computation. In particular,
a pattern vector f(t) is presented to each cell in the input layer and an
initial activity, 20=|f(t)-w;(t)], is computed. The cell that has the smallest
distance is selected as the center of a modification region in the network. The
weight vectors of cell ¢ and each of its spatial neighbours in a region R(t) are
adjusted according to the rule:

—

Gi(t+1) = di(t) = n()(f(t) — @i(t)- (2.20)

The weight vectors of cells which fall outside of the winner-take-all region R(t)
are not modified. The quantity 7(¢) is the learning rate and is selected such
that 0 < n(t) <1. Typically n(t) decays to zero after a pre-selected number of
training set presentations. The exact decay schedule is not critical; however,
Kohonen has noted that the convergence of the feature map consists of two
distinct phases: initial formation of map order, and final convergence. The
learning rate is usually chosen as a piecewise linear decay with the second
phase lasting 0 to 100 times longer that the first phase [Kohonen82a]. An
appealing aspect of the feature map learning procedure of equation 2.20 is
that it may be easily converted to a supervised learning algorithm. Kohonen
has called his algorithm Learning Vector Quantization (LVQ) [Kohonen88].
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2.4.3 Advantages and limitations of neural networks

As pointed out before that with the use of a neural network one can exploit
certain properties but one also have to face several problems that will arise.
The advantages and its properties when one uses a Neural network are:

e No explicit knowledge is required: They can learn and classify
input data without having an explicit knowledge of the application.
This approach is well suited for applications where the topic is too
complex to be explicitly formulated or where not all knowledge can be
specified exactly.

e Ability to generalize: Neural networks can be useful to generalize
from known data when different inputs are presented. Input like the
training data are recognized, while cases outside the training set can
be put into the closest match while the network has already learned.

e Ability to adapt to changing environment and events: Neural
networks can learn from training data sets. During the learning stage,
the weights change in response to the training data presented to the
network. This data driven feature of neural networks allows a fast
adjustment of the network to changing conditions. The neural network
can be modified by retraining with updated training data sets.

e Robust: Neural network have the ability to deal robustly with poor
structured data. Noise, incorrect and incomplete data may have enough
information to recall or restore the complete stored information.

There are however (of course) limitations and disadvantages:

e Training: The network has to be trained with the appropriate train-
ing data set, determined structure and parameters. The task to find
suitable, complete training sets to be a vital one. Furthermore, the
convergence (of Root Mean Square Error) may lead to local minima.
Finally, the training phase may take a very long time of course the
danger of over training is resident.

¢ Non-transparent: A neural network does not use symbolic knowledge
as used by humans to express a reasoning process. The knowledge is
represented as stored patterns of numeric weights, it is not possible to
inspect and/or examine the knowledge. Thus, a neural network can be
seen as a black-box solution to problems.
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e Configuration: Theoretically a neural network can solve any problem
with one hidden layer, only the number of neurons in this layer is
unknown. To find an optimal number of neurons, number of layers,
learning rate parameters numerous set-ups are to be tested and where
of course the time to train all the networks increases drastically.

2.5 Speaker recognition

Before addressing the various speaker recognition techniques and systems,
it is appropriate to review the acoustical bases for speaker recognition. An
excellent exposition in this subject is presented in a book by Francis Nolan
[Nolan]; see also [Hecker]. Probably the most significant paper on speaker
recognition, as judged by the amount of further research it has stimulated,
was a paper by Kersta introducing the spectrogram as a means of personal
identification [Kersta]. The term ”voiceprint” was introduced in this paper,
and 99-percent correct identification performance based upon visual compar-
ison of these voiceprints (spectrogram) was reported in a voiceprint identifi-
cation task using 12 reference speakers. The use of the term ” voiceprint” has
probably contributed to the popularity of voiceprint identification by analogy
of the term ”fingerprint.” In the largest evaluation of voiceprints ever con-
ducted, under the direction of professor Oscar Tosi at Michigan State Univer-
sity, [Anon], 0.5-percent identification error was achieved using voiceprints
for nice clue words under the restrictive condition of isolated word utter-
ances, closed trials, and contemporary speech. That is, the unknown speech
tokens, and identification scenario, particularly any type of forensic model,
which is the major application of voiceprint identification. The recognition
reliability of voiceprints, relative to the reliability of a listener’s judgment, is
also an important consideration in the eyes of voiceprints (and in weighing
voiceprints evidence in the courtroom). In previous studies comparing the
performance of voiceprint identification with aural speaker discrimination by
human listeners, the error rated for aural discrimination have always been
smaller [Carbonell], [Stevens], [Clarke]. In the 1968 study by Stevens, for
example, a closed-set identification test using a homogeneous group of eight
reference speakers yielded 6-percent error for listening and 21-percent error
for voiceprint. Thus the reliability of the voiceprint technique for speaker
identification is clearly a fragile issue, because identification performance is
sensitive to many acoustic, environmental, and speaker conditions. Further-
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more, the use of the voiceprint technique is highly questionable, because bet-
ter performance can likely be obtained through a listener’s judgment. This
brings up an important perspective on the development and evaluation of
speaker recognition technology in general; namely, the comparative perfor-
mance of a computative technique with respect to some generally accepted
benchmark. Such a performance comparison seems to be a valuable step
toward calibration of the absolute performance of any speaker recognition
technique.

2.6 Neural models for speaker identification

A wide variety of pattern recognition processes have been applied to the task
of speaker identification, most of which have their roots in speech recogni-
tion. The relative success of these methods has brought about commercial
utilization of person recognition by speech.

Recently neural pattern classifiers have received a great deal of interest for
tasks such as speech classification. The use of neural networks for speaker
recognition has advantages, not only in terms of recognition performance but
also in terms of computational tractability, and scalability, which are major
issues in neural modelling. Currently little is known of the way speaker
dependent characteristics are embedded in the speech signal. However, we
expect to be able to extract some of the characteristics automatically, by
training a neural model using unconstrained optimisation techniques.

There are several neural network configurations possible, the following
four configurations can be considered as adequate:

1. One large neural network
The speaker classification is performed by one network, with three lay-
ers and trained with back-propagation algorithm. First layer is for the
input, which is a vector with the length 10, one hidden layer and one
output layer. The number of neurons in the output layer equals the
number of speakers. When speech data of speaker n is presented then
the n'® neuron in the output layer is 1 and all the other 0. This is
the less favourite choice, the consequence of adding or removing a new
speaker to the speakers set is that the neural network has to be re-
trained and re tuned (this takes a lot of time), the number of layers
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and the neurons will increase this will have effect on the complexity of
the NN. The advantage is that the time to recognize is minimal.

. Each speaker has a personalized network [Oglesby]

Each person to be recognized has a personalized network, with the
output being active for the features associated with that person. An
important aspect of the training is that the output is inactive for all
speech not from the specified speaker. Each net is trained using back-
propagation and conjugate gradient descent. The neural model used
for automatic speaker identification comprises a 3 layer feed-forward
net with standard sigmoid non-linearity’s. The first hidden layer has
32 nodes, the second hidden layer 16. The input is a 10 dimensional
feature vector, and the output is as single value that is active for the
feature vectors associated with one of the speaker known to the sys-
tem Advantage is that adding a new speaker is simple; this can be
achieved by adding a new personalized network. The disadvantage is
the time to recognize the speaker, which is n-time(network) (n=number
of speakers) when using a sequential computer.

Binary network [Rudasi et al]

One big neural network is replaced with a large number of smaller
networks. The binary-pair approach will need N times (N-1)/2 small
neural classifiers to be trained, each to distinguish between two of the
N categories (one might think of male and female or age). Each of
these small binary neural nets is independent of the others as well as
the training data. Each classifier would sort incoming data into one of
two groups. At each step of classification half of the remaining possible
categories are eliminated. The configuration of each classifier is a net-
work with two layers, fully connected, memory less, feed-forward with
sigmoid non-linearity. Network weights are initialised with random val-
ues uniformly distributed from -0.05 to -.005. Each was trained with
back propagation method with a fixed learning rate (0.1 - 0.3) and
fixed momentum term (0.7). The output targets were 0.999 for the
node corresponding to the target category, and 0.001 for the other(s).
The training and testing data sets were the same in each experiment.
The conclusion of Rudasi was that this partitioned approach performs
comparably, or even better, than a single large network. For large val-
ues of N (>10), the partitioned approach requires only a fraction of the
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training time required for the partitioned network would be about two
orders of magnitude less than for the single large network.

4. Kohonen network [Ciobanu et al]
Vector Quantization (VQ) is an effective method of segregating data
into clusters and determining the centroid of those clusters. VQ reduces
a set of n k-dimensional vectors into a codebook of N centroids where
n>> N. There are several algorithms to create such codebook, but one
can also create such codebook with a Kohonen network. The network
is presented with the speech data of one speaker.

In a later report [Oglesby2] an improvement is made, they examined the
variation in performance with the number of nodes for a single layer model,
i.e. one hidden layer. Also two hidden layer models are investigated, the
number of nodes in both layers being varied. The speech for the experiments
is drawn from a speaker database and consists of 500 utterances from the
digit set, 100 of which were used for training and 400 for recognition. In all
experiments the same feature extraction process was used, namely 10t* or-
der LPC-derived coefficients calculated on 256 samples. This resulted in the
following conclusions: for the case of 16 nodes in the first layer a marginal
improvement is seen as the number of second layer node is increased. This
is despite the number of model parameters almost doubling from 249 to 465.
When 32 first layer nodes are used performance actually drops in going from
8 to 16 second layer nodes. Above 16 a consistent improvement is seen, but
again it should be noted the model size, in terms of free parameters, is grow-
ing rapidly as the number of second layer nodes is increased. A network with
one hidden layer out-performs the two hidden layer models. The reason is
that this is the consequence of the required decision surface for this specific
task or the learning process.

For our speaker identification system we select the second configuration (see
figure 2.8). The reason why the third option is not chosen is that the speaker
set we are using is too small. The usage of a binary network would not be
efficient. The type of neural network that is used is a Feed Forward neural
network with one hidden layer, which is motivated by J. Oglesby [Oglesby2].
The neural network is first trained with the feature vectors of the speaker,
every speaker owns a personalized neural network. The training of such per-
sonalized NN proceeds as follows, the NN will output a ”1” when his own
speech data (feature vectors) is presented as input and a ”0” (speech data
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Figure 2.8: Neural classifier.

from other persons) otherwise. The activation function is a sigmoid and the
generalized delta rule is used as update rule.



Chapter 3

Experimental design

Before we can proceed with experiments we have to create a workbench.

3.1 Hardware and software

The following hardware and software are used:

Pentium III 450 MHz (hw)

Sounblaster 16 (hw)

CD-Rom player (Philips) (hw)

Windows 95 (sw)

Xwin32, this is needed to be able to use Snns

Snns (sw), this program is used to create and train a neural network.
soundforge (sw), used for editing the speech signal.

cepstrum.exe (sw), it visualizes the cepstral vectors in a spectrogram.
Shoten.exe (sw), it calculates the cepstral vectors of a speech signal.

visualize.exe, it plots the average (sum of all the output divided by the
number of cepstral vectors) of the output neural network.

Borland c++, a ¢ compiler.

Where "hw” stands for hardware and ”sw” for software.

32
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3.2 Database

The speech data is obtained via a corpus cd (Polyphone), on this c¢d 500
speakers are stored in arbitrary order. These speakers were recorded in sev-
eral sessions over more than 3 months. This database is a telephone database
recorded over local and long distance telephone lines using different types of
handsets. Recordings took place from the speaker’s office or from his/her
home.

3.3 Goals

The experiments will be divided into two sections:

e proving that the neural network will converge to a stable point. A
speaker identification (using ANN) will be configured and trained for
several days, the MSE will be monitored.

e assessment of the impact of input (speech) on the recognition result,
by changing certain variables (training iterations, number of neurons
in the hidden layer, etc).

3.4 Respondents

From the polygon database 20 female speaker are selected (see figure 3.8) of
the test set cd. The speech data of the selected speakers has the following
properties:

e each digit (zero to nine)must be pronounced twice,
e the average speaker range is in the range of 20-30 years,
e each utterance of a digit is isolated from other utterances of digits.

The reason for the last properties is that the samples are hand selected, when
the digits are close connected with each other then this will become a more
difficult task to select only the needed digit without any interference of the
other digit (see figure 3.2 versus figure 3.1).

The speaker-set consists out of the following respondents (table 3.1).



34 CHAPTER 3. EXPERIMENTAL DESIGN

O x

Digits wav =

,00:00:02.000 ,00:00:02.500

-

225
-26.0

| e —

Irf

L L AR e
5 il LI TR

260

225

af[a]s | » 18 allalw

|| m | e [re]ed] | oo:00:00.000 | | OLE

Figure 3.1: The speech wave of the pronunciation of the number 2 (”twee”).
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Table 3.1: Overview of all the speakers in the speaker-set.
‘ ‘ code ‘ age ‘ domicile ‘ sex ‘
speaker 1 | tf0058nh | 36 | Noord Holland | female
speaker 2 | tf0093nh | 33 | Noord Holland | female
speaker 3 | tf0106zh | 52 | Zuid Holland | female
speaker 4 | tf0508zh | 34 | Zuid Holland | female
speaker 5 | tf0122zh | 30 | Zuid Holland | female
speaker 6 | tf0103ut | 26 Utrecht female
speaker 7 | tf0107fr | 33 Friesland female
speaker 8 | tf0109ge | 25 Gelderland female
speaker 9 | tf0113zh | 34 | Zuid Holland | female

speaker 10 | tf0114gr | 31 Groningen female

speaker 11 | tf0115ge | 29 Gelderland female
speaker 12 | tf0118ge | 36 Gelderland female
speaker 13 | tf0124li | 32 Limburg female
speaker 14 | tf0127zh | 32 | Zuid Holland | female
speaker 15 | tf0130ov | 34 Overijssel female
speaker 16 | tf0147nh | 35 | Noord Holland | female
speaker 17 | tf0152nh | 36 | Noord Holland | female
speaker 18 | tf0588zh | 28 | Zuid Holland | female
speaker 19 | tf0722zh | 30 | Zuid Holland | female
speaker 20 | tf0204nh | 30 | Noord Holland | female

3.5 Pre-processing of the speech data

The next step is to store the pronunciation of the digits zero to nine to a
speech file. This must be done for all the respondents in the speaker-set
(table 3.1).

The needed recordings from the digits zero to nine are selected from the
following files that exists in each directory of each person: digits.wav, num-
ber1, number2, number3, Number/ and numbers. In these files the person
is asked questions or the person has to pronounce prompted sentences that
are related with the pronunciation of numbers. All files are stored in a NIST
format, this consists out of a header (with information about the speech file)
and the actual compressed speech data. To decompress the speech data an
msdos program (shorten.exe) is used, shorten -z <speech file> <output file>
(the ”-x” switch stands for extraction) writes the decompressed speech file to
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"4 MS-DOS Prompt [_[Of x|

D:~verslag’cepstrum

Extracting features from speech signals
Author: Jialong He, %$Id: cepstrum.c,v 1.2 19960469 11:27:15 jialong Exp %

Usage: cepstrum [options] speechfile

Hhere [options] can be any of the Followlgg

-o feature vector file [stdout [512] starting sample

-w [256] window size -5 [128] window moving step
-L LPC [off] -p [128] LPC order

-C LPCC Loff] -n [18] LPCC order

-M MFCC [off] -r [181 MFCC order

-R RCEP Loffl -q [2] RCEP order

-P PARCOR [off] - itch period [off]

-V Voiced seagments only [alll -t ?@] Tolerance, B adaptive
-S #%not* swap byte order -1 Label for this class

D:\verslag>

Figure 3.5: The Command line of cepstrum.exe with all the possible switches.

a specified output file. The decompressed speech data file is a RAW sound
format, unfortunately this is not a standard sound format (like WAV). Using
the sound utility program Soundforge all the speech data files of the type
RAW format are converted to a WAV sound format. From the converted
speech data files the needed digits are manually selected and saved for fur-
ther usage (1.wav, 2.wav etc, where the number stands for the spoken digit).

3.6 Feature extraction

The next step is to extract from each sound file the feature vectors, this is
achieved by calculating from each digit the cepstrum vectors. To perform
the calculation of the cepstrum vectors, the program cepstrum is used. The
author of the program cepstrum.eze is J. He, this program is used to calculate
from a sound file the cepstrum coeflicients. A short overview of the programs
possible variables are given in figure 3.5 more information can be found in
the appendix. The following configuration is selected: cepstrum -C -V -n
10 <input file> <output file>. Which will calculate the first 10 cepstrum
coefficients and only the voiced parts of the input file. Further the window
size is set to 256 samples and windows overlap is 128 samples. This setting is
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D:N\verslag>speech

speech - version 2.8 Contact: <{jelasity@usa.net>
Usage: speech <infile>.EXT [<outfile>] <{switch> [-m{@,1,2}1]
speech -i
EXT can Ee 'wav’, ’'spc’, 'phs’, 'lpc’, 'bmp’ or ’‘cps’
{switches>:
-b: To windows bitmap ‘outfile.bmp’ -i: Default ’speech.ini’ to stdout
-p: To phase ’outfile.phs’ -m: Control message display
-1: To EPC 'outfile.lpc’ -m@: No messages
-w: To wav ’outfile.way’ -ml: Errors only

-s: To spectogram ’outfile.spc’ -m2: All messages
-c: To cepstrum 'outfile.cps’

files used:
./bmp.pal : A 256 color HSI palette used for bitmaﬁ generation (optional).
./speech.ini : Settings for the conversion algorithms (optionall.
./dft.SEc : Needed for phs -)> wav conversion {necessary).
Zdft.phs : Needed for spc -> wav conversion (necessary).

D:N\verslag>

Figure 3.6: The Command line of speech.exe with all the possible switches.

used for all the digits (1.wav, 2.wav etc these files are filled in <input file>)
of each speaker, and stored in a file with the extension cep (1.cep, 2.cep etc.
where the number stands for the spoken digit). To visualize the resulted
cepstrum vectors, the program speech (see figure 3.6) is used, the image is
created with the following command line: speech <filename> -Isb. First a
spectrogram is created with the use of the cepstrum coefficients, then the
image file is created (this is an BMP format). This resulted in the following
image 3.7, in this image one can see the pronunciation of the digit 7 (” zeven”),
the upper left to the upper right images are the utterances of TF0058, TF0093
and TF0508. The lower three images are a second pronunciation of the digit
7. These images are a function of time (x-axis) and the amplitude (y-axis),
the colour intensity is an indication of the amplitude. The lightest colour
stands for low amplitude and the brightest colour stands for high amplitude.
One can see that the second utterance does resemble the previous utterance
and differ from the other utterances of other speakers.

3.7 Creation of the training and test data set

There are two data sets to be created:
Training set A training set consists out of cepstral vector of all digits (zero
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Figure 3.7: Spectrogram for three speakers of the pronunciation of ”zeven”.

to nine) of all speakers (speaker belongs to the speaker set). A file is created
in a snns pattern format, with the extension pat. In the pattern file there are
in total of 3277 cepstral vectors. For all cepstral vectors of speaker tf0058nh
and one (target output) is inserted otherwise a zero is inserted. This file is
used to train the personalized for speaker tf0058nh neural network.

Test set Several speakers are randomly selected from the speaker set, from
these speakers some digits are selected. The cepstral vectors of these digits
are used to test the recognition capabilities of the neural network. The
cepstral vectors of each speaker are saved to a pattern file (in according to
the snns format).

3.8 Experiment set up
We now have :
e recorded speech.
e respondent pronouncing three digits (between zero and nine).

e cepstral vectors of the digits of all respondents.
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e training and test data set.

The recognition will take place on the base of three spoken digits. Three
digits are simple to use as a password and easily to remember, instead of
using several words.

3.9 Creation of network

To create a neural network the program snns is used. There are some vari-
ables that are to be filled in:

e model of speaker recognition

e type of neural network.

e number of layers.

e number of neurons in the layers.
e number of training cycles.

The model that is chosen is a personalized neural network, each speaker will
have a trained network. On the base of a paper of Oglesby ([Oglesby2]) we
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use an Error Back propagation network and the number of layer is three.
The first layer contains 10 neurons, this will function as an input layer and
the third layer consist out of one neuron (output layer). On the base of the
average output value (of all cepstral vector of speech data) of this neuron,
the identity is established.

When unknown cepstral vectors of speech data are presented to the per-
sonalized network (of speaker tf0058nh) and the average output is high, then
the speaker is probably tf0058nh. Otherwise when the average output is low
then it is probably not speaker tf0058nh.

To calculate every time the average output of the neural network, a program
(visualize) is written. The next time when ”output of the neural network”
is mentioned then this is the total sum of values (generated by the output
neuron of the neural network) divided by the number of cepstral vectors.
See figure 3.9, here a typically output file is shown. The line starting with
-0.7596 is the input pattern, this is one cepstral vector. The value 0.50683
is a value that is generated by the output neuron (in the output layer) of the
neural network.

The number of neurons in the second layer and the number of training cycles
is still open. We will test four network configuration, where the hidden layer
varies from 60, 70, 80 and 90 neurons and select the network that performs
best (good recognition, using less neurons in the hidden layer and with short
training time).

Each network will default trained for 160.000 training cycles with the
training data set, with the following set-up (see table 3.2). And the test data
set is used to test the recognition capabilities. Every 100 training cycles the
test pattern file is used to test the recognition performance. This option
can be set in the valid textbox. By using the graph option the mean square
error and the output of the test pattern can be monitored. On the x-axis the
training cycles are shown and on the y-axis the error and output is shown
(mostly between zero and one). The lower graph is the mean square error
(between 0.02 and 0.04) and the other the output of the neural network
(around 0.26).

During the training the following must happen:

1. The mean square error must decrease, but beware of overtraining.

2. The recognition performance must increase or stabilize.
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SHHS result file w1.4-3D
generated at Sat Aug 05 23:15:04 2000

HNo. of patterns L 72
INo. of dnput units @ 10
Mo, of cutput units @ 1
startpattern 1
endpattern 1 72
input patterns included

#1.1

-0.7596 -0.4516 -0.2344 -0.1527 -0,0089 -0,155 0,1015 -0.1132 -0.0632 -0.0415
0505653

1#:.1

=0.8463 -0.550 -0.0687 -0_.1516 0.01 -0.0395 00253 0,077 -0.0925 0.0465
0.49142

1#3.1

-0.9037 -0.5453 -0.2486 -0.095 -0.1736 -0.072 0.1298 0.1038 0.028 0.105
045432

J#4.1

-0.8665 -0.4716 -0.2694 -0.1401 -0,0267 -0,1663 -0.0207 0,0484 00,0494 -0,0753
0_45%736

#5.1

-0.5203 -0.5142 -0,1882 -0.2466 -0.1364 -0,0055 -0.0114 -0,06597 0.1766 -0,1551
—-— More --

Figure 3.9: Output of the neural network.

snns-control  pattern: a_l106 ._..

STEPS |1, |[_stEP | |0 | [1niT] [ REsET | [_ERROR | [1nFO]

CYCLES [50000_ |[SIMLE | [ALL | [STOF] [TEST] orTI0ME| [act
PATTERH |1 [DELETE | [moo | [Hew | [soTa] [W] [4] ) [M]

VALID [100,  |[vAUD | [USE| a_058

LeARN  [o.2 0.t |
UPDATE
INIT 1.0 |[-1.0 |

Update func: Topological_Order

Figure 3.10: Control panel of Snns.
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Table 3.2: Setup of snns.

variable ‘ value
Learning rate 0.2
Maximun error 0.1
Learning function | standard backpropagation
Update function topological order
Init function randomise weights
Valid 100

The training is interrupted when the recognition performance worsens or
when the mean square error did not decrease significantly. The following
conclusions can be made:

1. When the training iteration is below the 100.000 the classification is
very bad (for all three tested configuration), the reason for the bad
performance is that the network has not yet reached the point where
it has generalized the speaker’s data.

2. When the training iterations exceed the 180.000 the recognition worsens
(for the configuration with 80 and 90 neurons in the hidden layer),
the network cannot recognize the speaker between the other speakers.
The output of the network for all the speakers are close to each other,
here the phenomenon arises which is called overtraining(see the section
about classification for more details). The mean square error increases
and the recognition performance worsens.

3. When one chooses 70 neurons in the hidden layer then the recognition
is probably reasonable when the training iterations exceeds far over
1600.000 cycles, the output of all the speakers seems to be converse
from each other but here the danger of overtraining exists.

4. Taken the factor of efficiency into account, the 80 neurons in the hidden
layer is preferable above the 90 neurons. Here the number of training
cycles is shorter and due to the number of neurons in the hidden layer
less complex compared with 90 neurons in the hidden layer.

The resulting output of the neural network after 3 days continuous train-
ing is showed in figure 3.11. On the horizontal axis the number of training
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Figure 3.11: Result after 160.000 cycles of training.

cycles is shown and on the vertical axis the mean square error and the out-
put of the neural network. We see that the mean square error stabilizes to
a steady error in a very early stage. The reason that the training is not
stopped is that the recognition performance is not good (the output varies
too much). After 90.000 training cycles the recognition performance is sta-
bilised. This trained network is prompted with several speech data of several
speakers. this resulted in the following two graphs. The training time can
be shorter, there are two neural networks selected. One neural network gave
a high output for speaker tf0058nh (1368.000 training cycles) and one where
the difference between speaker tf0058nh with the other speaker was maxi-
mal (1390000 training cycles). We now have a trained personalized neural
network for speaker tfO058NH, the mean square error converts to a stable
point and the recognition performance is good. The next step is to do some
experiments with this trained network and tests its recognition capabilities.
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Chapter 4

Experiments

We can now start experimenting the recognition performance by changing the
input data. For speaker tf0058NH a personalized neural network is created
and trained. With this neural network we will experiment. Further more we
will only select the first five speakers who gave a high (average) output on
the personalized neural network of speaker tf0058nh. Note that speaker one
is always tf0058nh.

4.1 Experiment 1 (one syllable versus two syl-
lables digits)

Of each speaker two sets of three digits are created, one other set consists
out of one syllable numbers (the digits 717, ”2” and ”4”) and the other set
(the digits ”7”,”8” and ”9”). The chosen digits that are used in the two sets
are not the same as the one that are used in the training set. The two sets
created for all speakers are stored in two separate files, namely 1klinker.nna
(this contains the one syllable numbers) and 2klinkers (this contains two
syllable numbers). In the file option in recall source window (see section
”Creation of Network”) these files are used to test the network. The results
of the recognition capabilities are given in the table below, in this table the
output value of the network is noted: From the resulting output of the
network the difference of speaker 1 with all the other speaker is calculated,
the result is shown in the table 4.3: Looking at the distance of speaker one
with all the other speakers, we see that it decreases when two syllables is
used also the overall output decreases. The pronunciation of the digit seven

46
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Table 4.1: The output of the personalized network of speaker 1 is given
(1368000 training iterations).

| input | speakerl | speaker2 | speaker3 | speaker4 | speaker5 |
1 syllable (1-2-4) 0.456 0.321 0.320 0.346 0.383
2 syllables (7-8-9) | 0.337 0.312 0.305 0.329 0.272

Table 4.2: The output of the personalized network of speaker 1 is given
(1390.000).

| input | speakerl | speaker2 | speaker3 | speaker4 | speaker5 |
1 syllable (1-2-4) 0.467 0.342 0.329 0.385 0.417
2 syllables (7-8-9) 0.342 0.337 0.315 0.348 0.282

and nine in Dutch is :"ne-e-g-e-n” and ”z-e-e-v-e-n”. When we examine it
closely, we see that the "e-e” dominates and especially when the window size
is 10 ms. The problem is that the utterance of ”e-¢” is nearly the same for
all the speakers, the consequence of this is that the feature vectors (of the ”e-
e”) of all the speakers are close. When these feature vectors are fed into the
network, it cannot see whether the utterance is from speaker 1 this can result
in a "mismatch” with another speaker. To see if this conclusion is correct
two test sets are created one with 3 digits namely 1,2 and 7 ("een”, ”twee”
and ”zeven”) and the second set: 3,4 and 8 (”drie”, ”vier” and ”acht”).
From this we can see the following:

e The output for speaker one is higher when using digits 3, 4 and 8,
here the vowels are shorter in contrast with digits 1,2 and 7 (where the
output is lower).

e The output for all the other speakers is lower when using digits 3,4 and
8.

e When using the test digits 1,2 and 7 we can see that all the distance
of the output of all speakers is small.

Here we can see that the supposed explanation is correct, the recognition is
better when using numbers with short vowels. In figure 4.1 and in figure 4.2
a spectrogram is showed where the speaker pronounces one syllable digits
(124 and 789)). The spectrogram is a display of the amplitude of a speech
signal as a function of frequency and time.
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Figure 4.1: Each Speaker pronouncing the digits ”een”, ” twee” and ” vier”.

Figure 4.2: Each speaker pronouncing the digits ” zeven”, ” acht” and " ne-
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Table 4.3: The difference of speaker 1 with other speakers (13680.000 training
iterations).

| input | speaker2 | speaker3 | speaker4 | speaker5 |
1 syllable (1-2-4) 0.135 0.136 0.010 0.073
2 syllables (7-8-9) | 0.025 0.032 0.008 0.065

Table 4.4: The difference of speaker 1 with other speakers (1390.000 training
iterations).

‘ input ‘ speaker2 ‘ speaker3 ‘ speaker4 ‘ speaker) ‘
1 syllable (1-2-4) 0.125 0.138 0.082 0.050
2 syllables (7-8-9) | 0.005 0.027 -0.006 0.060

Table 4.5: The output of the personalized network of speaker one (1368.000
training iterations).

‘ input ‘ speakerl ‘ speaker2 ‘ speaker3 ‘ speaker4 ‘ speakerb ]
73-4-8” 0.379 0.255 0.292 0.369 0.322
71-2-77 0.344 0.343 0.320 0.322 0.360

Table 4.6: The output of the personalized network of speaker one (1390.000
training iterations).

| input | speakerl | speaker2 | speaker3 | speaker4 | speaker5 |
7 3-4-8” 0.387 0.265 0.296 0.390 0.332
71-2-7" 0.366 0.367 0.338 0.360 0.396
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4.2 Experiment 2 (words versus digits)

A second set-up is created, to see what kind of effect it would have when one
uses words instead of digits. The training set is gathered and recreated, again
the speech data are acquired from the NIST database and from each person
three words are selected. The words are selected from the following files
phonsntl, phonsnt2, phonsnt3, phonsntj and phonsnts. First the words for
the training set are chosen, these have to be phonetically rich. The extraction
of the selected words is done in a similar way as with the digits. After we

Table 4.7: Training set

‘ # speaker ‘ word 1 ‘ word 2 ‘ word 3 ‘
speaker 1 technisch universiteit voetbalwedstrijd
speaker 2 uitbetalingen programmamakers vakantie
speaker 3 diepgeworteld filipijnen februari
speaker 4 professioneel debuterende correspondentie
speaker 5 | ziekenhuisspullen uitsluitend gedupeerde

have trained (similar way as with digits) the network with the training set,
the testing can begin. From the same files several word are extracted, from
each speaker three words (see table 4.8) are selected, namely words with one,
two and three syllables. This resulted in the following output, which are

Table 4.8: The following words are selected.
| # speaker ‘ one syllable | two-three syllables | four-five syllables ‘

speaker 1 park rommel vernielingen
speaker 2 dag versliep gewoontegetrouw
speaker 3 beide getuigen pessimisme
speaker 4 club onderhoudt gewonnen
speaker 5 staan kwamen gechanteerde

showed in table 4.9, and 4.10. The results are not spectacular, but this
was to be expected. The reason is that when using words instead of digits
the diversity of the sound will increase, the used network is configured for
digits. A way to solve this bad performance is to change the configuration,
one might think to increase the number of nodes in the hidden layer or add
another hidden layer (due to the complexity of the sound). The phonetics
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Table 4.9: The output of the personalised network of speaker one (1368000
training iterations)
| # syllable(s) ‘ speakerl | speaker2 ‘ speaker3 ‘ speaker4 ‘ speakerb ‘
1 syllable 0.351 0.323 0.254 0.333 0.126
2-3 syllables 0.117 0.111 0.179 0.146 0.166
4-5 syllables 0.121 0.239 0.297 0.134 0.108

Table 4.10: The output of the personalised network of speaker one (1390000
training iterations)
‘ # syllable(s) ‘ speakerl ‘ speaker2 ‘ speaker3 ‘ speaker4 ‘ speakerb ‘
1 syllable 0.245 0.303 0.214 0.333 0.067
2-3 syllables 0.113 0.049 0.162 0.116 0.147
4-5 syllables 0.119 0.203 0.280 0.095 0.051

of the digits are : ”ee”, ”ie”, ”ij”, ”e”, "a”and ”ie”, in contrast with words.

The number of phonetics in words is many times more than with digits.
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4.3 Experiment 3 (multiple digits)

To see what kind of influence the number of digits can have on the per-
formance of the network, the following experiment is created. From each
speaker 4 sets are put together, the first set contains one digit, the second 2
digits, the third 3 digits and the last set contains 4 digits (of course all the
selected digits are not from the training set). This resulted in the following
table, in each column the output of the network is noted. The following digits
are randomly chosen, 9824 (pronounce like ”negen, acht, twee, vier”). Note

Table 4.11: The output of the personalized network of speaker one (1368000
training iterations)

‘ # digit(s) ‘ speakerl ‘ speaker2 ‘ speaker3 ‘ speaker4 ‘ speakerb ‘
one digit 0.226 0.286 0.329 0.290 0.229
two digits 0.342 0.304 0.343 0.361 0.268

three digits 0.339 0.303 0.344 0.358 0.276
four digits 0.369 0.313 0.346 0.345 0.302

Table 4.12: The output of the personalized network of speaker one(1390000
training iterations)

‘ # digit(s) ‘ speakerl ‘ speaker2 | speaker3 ‘ speaker4 | speakerb ‘
one digit 0.222 0.293 0.330 0.311 0.335
two digits 0.356 0.320 0.345 0.387 0.281

three digits 0.350 0.318 0.355 0.391 0.284
four digits 0.379 0.328 0.358 0.368 0.316

that a negative number indicates that the output of the speaker is higher
than the output of speaker one. One can say that the recognition is more
convincing when the number of digits is increased, the output of speaker one
increases and the output of the other speakers slowly decreases. There is of
course a limit of the numbers of digits, when it is too long then will not be
user-friendly. The user has to pronounce a long password, which can result in
agitation or making a slip of the mouth (like pronouncing the wrong number).

Additional research is done concerning the usage of numbers that are greater
then 9 (like fourteen, twenty-one etc.).
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Table 4.13: The difference of the output of the personalized network of
speaker one with the other speakers(1680000 training iterations)
| input | speaker2 | speaker3 | speaker4 | speaker5 |
one digit -0.060 -0.103 -0.064 -0.003
two digits -0.038 -0.001 -0.019 0.076
three digits | 0.036 -0.005 -0.019 0.063
four digits 0.056 0.023 0.024 0.067

Table 4.14: The difference of the output of the personalized network of
speaker one with the other speakers(1390000 training iterations)
| input | speaker2 | speaker3 | speaker4 | speaker5 |
one digit -0.071 -0.108 -0.089 -0.113
two digits 0.036 0.011 -0.031 0.075
three digits | 0.032 -0.005 -0.041 0.066
four digits 0.051 0.021 0.011 0.063

4.4 Experiment 4 (usage of numbers greater
then 9)

We have used till now digits in the training’s and test phase of the speaker
identification system, the question now arises is if numbers greater then nine
has any influence on the performance. The next set-up is to get an answer on
the question, we select 2 numbers that are greater then nine. The numbers
are extracted from the files number! till numbers of the Polygon database.

Table 4.15: The selected numbers for the test set.
‘ ‘ speakerl | speaker2 ‘ speaker3 ‘ speaker4 ‘ speakerb ‘

| number | 32-64 | 32-67 | 37-76 | 21-71 | 4571 |

The chosen numbers are not all the same, the reason is that each speaker
pronounces different numbers. With these numbers the tests are performed.
The results are a bit dissatisfactory, a possible explanation is that numbers
greater then nine has more variation in tones than numbers smaller than
9. An important factor is that the neural network is trained with numbers
below the nine.
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Table 4.16: The output of the personalised network of speaker one (1368000
training iterations) when prompted with numbers greater then nine

| input | speakerl | speaker2 | speaker3 | speaker4 | speaker5 |

| numbers > 9| 0311 | 0349 | 0.285 | 0306 | 0.255 |

Table 4.17: The output of the personalized network of speaker one (1390000
training iterations) when prompted with numbers greater then nine.
‘ input ‘ speakerl ‘ speaker2 ‘ speaker3 ‘ speaker4 ‘ speakerb ‘

| numbers > 9| 0318 | 0370 | 0292 | 0324 | 0.265 |




Chapter 5

Summary

We have seen the trajectory of the development of a Text-independent Speaker
Identification system for a closed-set. A suitable method for feature extrac-
tion is selected. We have performed several tests with different type of input
utterances (one or two syllable digits and words) of several speakers. A
prototype of a speaker identification system is created and tested, we have
seen that the prototype is able to recognize a speaker on basis of his speech
characteristics.

5.1 Conclusions

We found that it is possible to use ANN in speaker identification in combina-
tion with cepstral analysis (feature extraction). Several ANN configurations
(number of neurons in the layer and number of training cycles) are tested.
Further more we have looked at the recognition performance by changing the
input (number of digits, words and numbers above nine).

When one uses digits with a dominating ”e-e” ("een”, ” twee” and ”zeven”)
this will have a negative influence on the recognition. The usages of words
and numbers greater then nine as input utterance in the speaker identifica-
tion system resulted in a very poor performance. The main reason is that
the system was designed for the usage of digits.

The result was that the recognition increases when the number of digits
increases. One might be attempted to use more digits (five or six etc.) but
this will not be user-friendly as pointed out on page 52, so the number of
digits is best kept to four. The following configuration file is used for the
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construction of the Speaker Identification system:

| Configuration | chosen
Representation of feature vectors LPC-Cepstrum Analysis
Type of Classifier feed forward neural network (backpropagation)
Number of neurons in the hidden layer | 80 neurons
Training iterations 1390.000 cycles
The number of digits 4

And with a note that when using the numbers: 3 (”drie”), 4 (vier”), 5
("vijf?), 6 ("zes”) and 8 (”acht”) will give a better recognition.

5.2 Recommendations

There are some points what can be looked into thoroughly, one could train
the network (Feed Forward network) with numbers that are higher then nine.
This will take another problem with it, for instance number as ten, eleven,
twelve and thirteen should be included in the training set. One will have to
look hard for these numbers on the Polygon database cd, which consists out
of 500 speakers! When one wants to use words as input utterance then this
will be a more difficult task, one cannot use short-term cepstral coefficients
[Furui2][Markel], but long-term cepstrum coefficients.

Also the speaker set can be increased and this would results in a larger
neural network (80 neurons in the layer will not be sufficient). Also one could
use different types of neural network for speaker identification (Kohonen
network or a binary network). A very intriguing approach is the combination
of fuzzy logic and ANN. There are some research papers ([Yuan|, [Yuan et al)
about this combination.
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