Dialogue Control in the Alparon System

Niels Andeweg

Knowledge Based Systems Group

Zuidplantsoen 4 2628 BZ Delft, The Netherlands

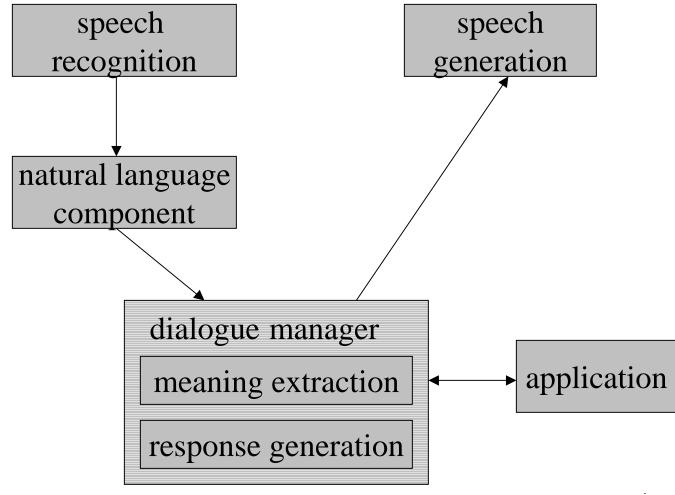
- Information Technology and Systems
- Knowledge Based Systems
 - Artificial Intelligence
- Alparon
 - multi-media
 - automatic speech processing
 - dialogue management

Assignment

- design dialogue control for the Alparon system
- implement prototypes of the components for dialogue control

Contents

- Automatic speech processing (ASP)
- Alparon system
- Dialogue control
- Train timetable information system
- Conclusions


Contents

- Automatic speech processing (ASP)
- Alparon system
- Dialogue control
- Train timetable information system
- Conclusions

ASP system

Dialogue management

Why dialogue management?

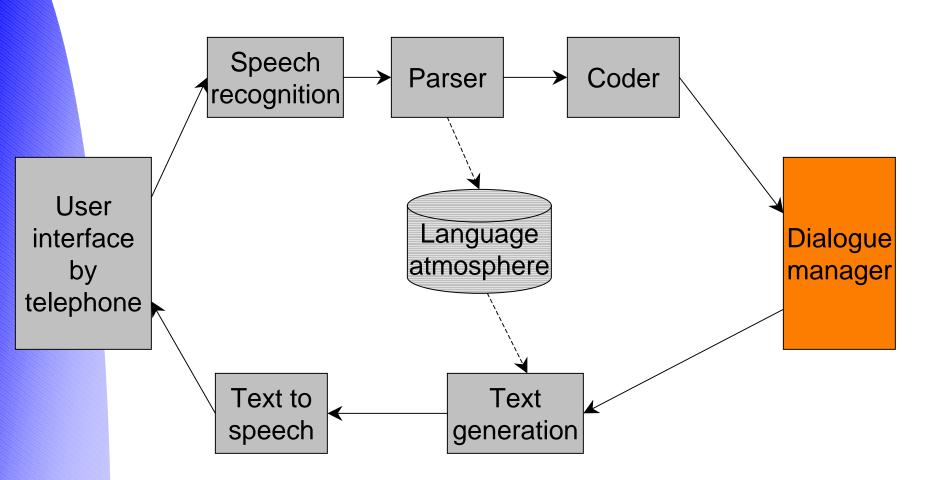
- spread out user requirements
- discourse phenomena

Tasks:

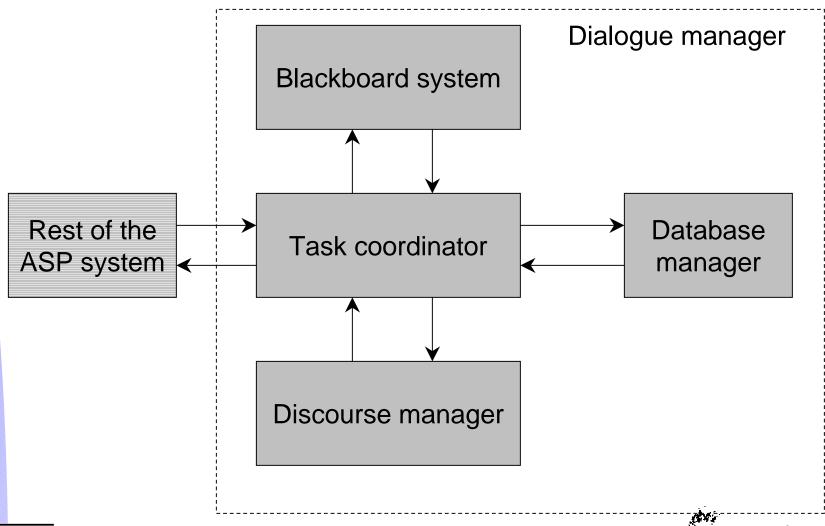
- provide context
- problem solving
- response generation

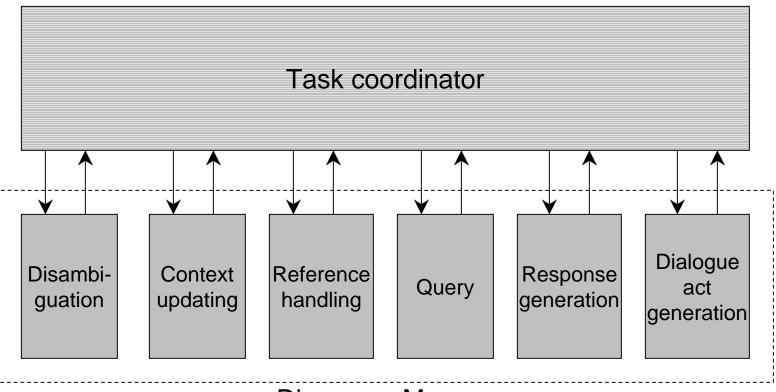
Contents

- Automatic speech processing (ASP)
- Alparon system
- Dialogue control
- Train timetable information system
- Conclusions


Alparon system

- information retrieval and transaction services
- natural language
- speech interface
- mixed-initiative
- focus on dialogue management
- strategies in human-human dialogues

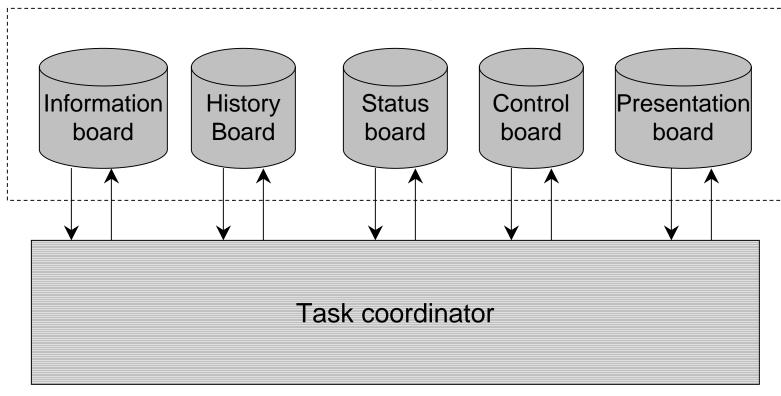

Alparon model


Alparon DM

Alparon

TUDelft

Discourse Manager


Discourse Manager

Blackboard system

Blackboard system

Contents

- Automatic speech processing (ASP)
- Alparon system
- Dialogue control
- Train timetable information system
- Conclusions

Dialogue control

Tasks

- structure dialogue
- generate responses

Two kinds of information

'What time does the train to Amsterdam leave?'

Approach

- task-oriented dialogues
- plan-based
- goal structure
 - level of abstraction
 - task & dialogue goals
 - determine departure station
 - verify departure station
 - dynamic

Achievement

- operations
 - deductions
 - default behaviour
- interaction
 - 'Departure at 8:30.'
 - 'What is your departure station?'
- strategy

Implementation

- framework
- rulesets

Two steps

- determine consequences of user's turn
 - → dialogue updating module
- generate response
 - → response generation module
- Java

Dialogue updating module

Process effects of user's turn

- new information
- conflicts
- choices
- reaction

Response generation module

Generate a system response

- actions
- candidates
- combine

Control board

Store information for dialogue control

- goalstack
- conflicts
- choices
- response

Strategy 1

decomposition

CdetermineNeed

AdetermineDep, AdetermineArr
AdetermineTime, AdetermineDate
.....

- achievement
 - slot Time contains departure time
 - slot DeparturePlace is verified
 - communicated
- operations
 - city(Delft) → station(Delft)
 - $\cdot \rightarrow$ date = today

Strategy 2

reactions

reconfirmation of departure place → reconfirm(DepPlace) start dialogue → ChelpUser

actions

Averify(time) → [VerifyExplicit(time), VerifyImplicit(time)]
Adetermine(DepPlace) → [Ask(DepPlace), Ask(Where),
Encourage)]

combinations

– VerifyImplicit(*): {Ask(*)}

Contents

- Automatic speech processing (ASP)
- Alparon system
- Dialogue control
- Train timetable information system
- Conclusions

Train timetable information

- travelplan for train connections
- mixed-initiative
- information needed
 - departure station
 - arrival station
 - departure or arrival time
 - date

Phases

- greeting
- determination of user's need
- query
- presentation
- further needs
- goodbye

Example actions

Adetermine(DepPlace): [Ask(DepPlace), Ask(Place), Encourage]

Adetermine(ArrPlace): [Ask(ArrPlace), Ask(Place), Encourage]

Adetermine(Time): [Ask(DepTime), Ask(Time), Ask(When)]

Adetermine(Date): [Ask(date), Ask(When)]

Averify(*): [VerifyExplicit(*), VerifyImplicit(*)]

U1: User connects.

Gs: Cclose

Ctravelplan

Agreet

Res: Greetings

S1: Hello, train timetable information service.

DA Sys(Start_conversation): send(CB, clear, dummy), send(IB, clear, dummy), goal(ChelpUser)

ChelpUser: [[Cclose], [Ctravelplan], [Cgreet]]

Cgreet: [[Agreet]]

Agreet: [Greetings]

U2: Hello, I want to travel from Baarn/Maarn to Den Haag.

Agreet: communicated

Achoice(*): [Choice(*)]

Gs: Cclose

Ctravelplan

Achoice(DepPlace, city(Baarn), city(Maarn))

Res: Choice(DepPlace, city(Baarn), city(Maarn))

S2: Do you want to travel from Baarn or Maarn?

U3: I want to travel from Baarn.

Gs: Cclose

CfurtherNeeds

Cpresent

Cquery

Adetermine(Time)

Adetermine(ArrPlace)

Achoice(ArrPlace, station(Den Haag cs), station(Den Haag hs))

Res: Choice(ArrPlace, station(Den Haag cs), station(Den Haag

hs))

S0: Which station in Den Haag do you want to go to, central

station or Holland Spoor?

Achoice(*): communicated

Ctravelplan: [[CfurtherNeeds], [Cpresent], [Cquery], [CdetermineNeed]]

CdetermineNeed: [[Adetermine(Date), Adetermine(Time)], [Adetermine(DepPlace), Adetermine(ArrPlace)]]

Adetermine(Date):

Date has empty: put(Date, today, default)

Adetermine(Date): Date hasnot empty

Adetermine(DepPlace): DepPlace is station(*) & DepPlace has user

Adetermine(ArrPlace):

ArrPlace is city(Den Haag) : goal(Achoice(ArrPlace, station(Den Haag cs), station(Den Haag hs))

Achoice(*): [Choice(*)]

U4: I want to go to Den Haag central station.

Gs: Cclose

CfurtherNeeds

Cpresent

Cquery

Adetermine(Time)

Res: Ask(When)

S4: When do you want to

travel?

Achoice(*): communicated

Adetermine(ArrPlace):

ArrPlace is station & ArrPlace has user

Adetermine(Time): [Ask(DepTime), Ask(Time), Ask(When)]

U5: ...???...

Gs: Cclose

CfurtherNeeds

Cpresent

Cquery

Adetermine(Time)

Res: Ask(Time)

S5: At what time do you

want to travel?

Adetermine(Time): [Ask(DepTime), Ask(Time), Ask(When)]

U6: I want to arrive at half

past nine.

Gs: Cclose

CfurtherNeeds

ApresentPart(3)

ApresentPart(2)

ApresentPart(1)

Res: PresentPart(1)

S6: OK. Departure at 7:35

in Baarn to Utrecht.

Adetermine(Time):

Time is ArrTime(*)

Cquery: [[Aquery]]

Aquery:

true: send(QM, query, empty

body, queryDone)

Cpresent: [[ApresentPart(*)]]

ApresentPart(*): [PresentPart(*)]

U7: When do I depart again?

Gs: Cclose

CfurtherNeeds

ApresentPart(3)

ApresentPart(2)

Areconfirm(Time

(DepTime))

Res: Reconfirm(Time

(DepTime))

S7: Departure at 7:35.

ApresentPart(*): communicated

DA Rec(*): goal(Areconfirm(*))

Areconfirm(*): [Reconfirm(*)]

U8: *OK.*

Gs: Cclose

CfurtherNeeds

ApresentPart(3)

ApresentPart(2)

Res: PresentPart(2)

S8: Departure at 8:32 to Den

Haag cs in Utrecht.

ApresentPart(*): communicated

ApresentPart(*): [PresentPart(*)]

U9: 8:32 to Den Haag.

ApresentPart(*): communicated

Gs: Cclose

CfurtherNeeds

ApresentPart(3)

Res: PresentPart(3)

S9: *Arrival at 9:13.*

ApresentPart(*): [PresentPart(*)]

U10: 9:13 in Den Haag.

Gs: Cclose

AfurtherNeeds

Res: AskFurtherNeeds

S10: Do you want another

travelplan?

ApresentPart(*): communicated

CfurtherNeeds: [[AfurtherNeeds]]

AfurtherNeeds: [AskFurtherNeeds]

U11: No thanks.

Gs: Aclose

Res: Bye

S11: Have a nice day.

AskFurtherNeeds: communicated

Cclose: [[Aclose]]

Aclose: [Bye]

U12: *Goodbye.* and the user disconnects

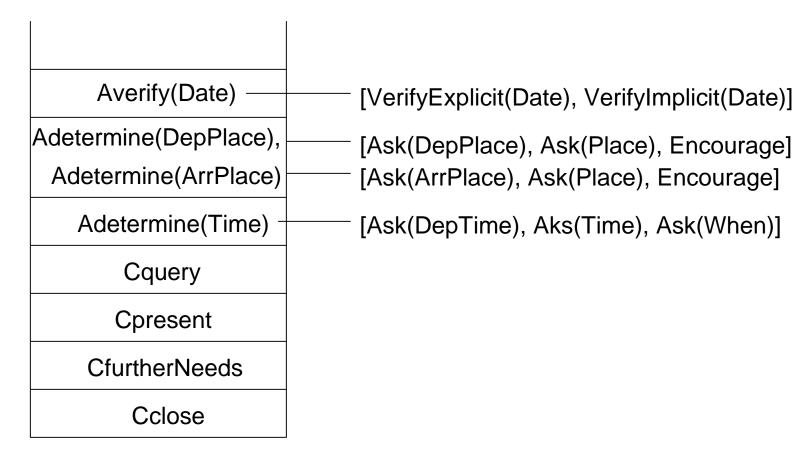
Aclose: communicated

Gs: ...

Res: ...

Contents

- Automatic speech processing (ASP)
- Alparon system
- Dialogue control
- Train timetable information system
- Conclusions


Conclusions

- two modules and a blackboard
- generic framework with rulesets
- mixed-initiative
- reactions
- adequate rulesets
- testing with complete system

Example goalstack & actions

Goalstack

Actions

