Multimodal Human-Computer Interaction

The design and implementation of a prototype

by Maurits André

•

Overview

2

- Introduction
 - Problem statement
- Technologies used
 - Speech
 - Hand gesture input
 - Gazetracking
- Design of the system
- Multimodal issues

Overview

3

- Testing
 - program tests
 - usability tests
 - human factors studies
- Conclusions and recommendations
- Future work
- Video

CAIP

•

Center for Computer Aids in Industrial Productivity

Prof. James L. Flanagan

Multimodal HCI

• Currently: mouse, keyboard input

- More natural communication technologies available:
 - sight
 - sound
 - touch
- Robust and intelligent combination of these technologies

Aim

•

Problem statement

- Study three technologies:
 - Speech recognition and synthesis
 - Hand gesture input
 - Gazetracking
- Design prototype (appropriate application)
- Implement prototype
- Test and debug
- Human performance studies

SR and TTS

- Microsoft Whisper system (C++)
- Speaker independent
- Continuous speech
- Restricted task-specific vocabulary (150)

- Finite state grammar
- Sound capture: microphone array

Hand gesture input

- Advantages:
 - Natural
 - Powerful
 - Direct
- Disadvantages:
 - Fatigue (RSI)
 - Learning
 - Non-intentional gestures
 - Lack of comfort

Force feedback tactile glove

- Polhemus tracker for wrist position/orientation
- 5 gestures are recognized

•

Implemented gestures

- Grab "Move t
- Open hand
- Point at an object
- "Move this" "Put down" "Select" "Identify"

• Thumb up

"Resize this"

• •

•

Eyes output

- Direction of gaze
- Blinks

•

- Closed eyes
- Part of emotion

Gazetracker

- ISCAN RK-726 gazetracker
- 60 Hz.

•

• Calibration

Application

- Requirements:
 - Multi-user, collaborative
 - Written in Java
 - Simple
- Choice:
 - Drawing program
 - Military mission planning system

Drawing program

•

15

Military mission planning

•

۲

۲

Frames

- Slots
- Inheritance
- Generic properties
- Default values

Create Figure			
Туре	circle/rect/line		
Color	[white]/red/grn/		
Height	0max_y		
Width	0max_x		
Location	(x,y)		

•

Fusion Agent

Example:"Move tank seven here."

(x1,y1) (x2,y2) (x3,y3) (x4,y4)

Classification of feedback

- Confirmation
 - Exit the system. Are you sure?
- Information retrieval
 - What is this? This is tank seven.
 - Where is tank nine. Visual feedback.
- Missing data
 - Create tank. Need to specify an ID for a tank.
- Semantic error
 - Create tank seven. Tank seven already exists.
 - Resize tank nine. Cannot resize a tank.

Multimodal issues

- Referring to objects
 - describing in speech:
 - using anaphora:
 - by glove
 - gaze + pronoun:
 - glove + pronoun:

Move the big red circle Move it

- Delete this
- Delete this

• Timestamps

Create a red rectangle from here to here T1 T2 T3 T4 T5 T6 T7 T8 xy1 xy2 xy3 xy4 xy5 xy6 xy7 xy8

Multimodal issues

- Ambiguity
 - saying x, looking at y >>> x
 - saying x, pointing at y >>> x
 - looking at x, pointing at y www x
 - saying x, gesturing y »» xy or yx
- Redundancy
 - saying x, looking at x »» x
 - etc.

Program testing

24

• Implementation in Java

- Program testing and debugging
 - Module testing
 - Integration testing
 - Configuration testing
 - Time testing
 - Recovery testing

Testing

- Usability tests
 - Demonstration with military personnel
 - Human factors study:
 - Script for user
 - Questionnaire for user
 - Tables for observer
 - Log-file for observer

Lab

•

Conclusions:

Selecting

Modality	Accuracy	Speed	Learning
Speech	++	++	_
Gaze	+	++	++
Glove	+	+	+
Mouse	++	—	+

•

27

Conclusions / recommendations

- Speech
- real-time
- timestamps
- grammar in help file
- Glove
- real-time
- low precision
- 2D »» 3D
- Gaze
- real-time
- self-calibration
- face tracker

- low error rate
- misunderstanding

- fatigue
- non-intentional gesture
- limited number of gestures
- head movements
- jumpiness of eye movements

• object of interest

• • •

General remarks

- Response time within 1 sec.
- Instruction, help files
- Application effective but limited

Future work

- Human performance studies
- Conversational interaction
- Context-based reasoning and information retrieval
- New design:

Problem statement

- Study three technologies:
 - Speech recognition and synthesis
 - Hand gesture input
 - Gazetracking
- Design prototype (appropriate application)
- Implement prototype
- Test and debug
- Human performance studies