INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 1 12-01-2008

©

|
Abstract

Title: Digital University — Serious Gaming

After following a lecture in one of the lecture rooms you can relax in one of the meeting
places. You can look to your right to see a student picking his nose, you silently laugh.
Luckily he can’t hear you. Suddenly you hear your mother shouting: “Diner!”. Within a
second you’re back in reality, back from the Digital University!

The assignment:

Design and build a virtual Delft university, starting with a lecture room and a meeting
place. Eventually there needs to be some interactivity between agents, objects and other
players. To accomplish this we need 3D software for modeling/building the 3D
environment. After building the environment we can start adding some interaction
between the user and the agents or objects in the classroom. The interaction, physics and
game play are defined in the game engine. So besides finding a good and functional 3D
software package, we also need to look for a game engine which can interact with the 3D
modeling tool.

Student information:

Sven Anker

Rotterdam University / CMI
0773594 @student.hro.nl

Rob van der Kamp
Rotterdam University / CMI
0772800 @student.hro.nl

Supervisors:

Dr. Ir. M.M.M. Abd el Ghany
Rotterdam University / CMI
G.J. de Jonghweg 4-6

3015 GG Rotterdam
abdmm@hro.nl

Dr. drs. L.J.M. Rothkrantz

Delft University of Technology
Mekelweg 4

2628 CD Delft
L.J.M.Rothkrantz@ewi.tudelft.nl

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 2 12-01-2008

©

l
Acknowledgements

First of all we would like to thank our supervisors Ir. M.M.M. Abd el Ghany and Dr. drs.
L.J.M. Rothkrantz for the time, the feedback and all the effort they put in us. We thank
them for their support, guidance and attention during our internship period.

We also thank them for making it possible for us to work at the Delft University of
Technology.

Also many thanks to the technical support staff, Bart Vastenhouw, and Ruud
de Jong for their support while facing hardware and software problems.

Sven Anker

Rob van der Kamp
Delft

December 2007

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING

ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY PAGE 3 12-01-2008 @
/
Contents
ADSEIacCt. ... 1
Acknowledgements. ...t 2
Table of contents
1 Research...... ... 6
1.1 Game engine research.............ccoviiiiiiiiiiiiiiiii i, 6
1.1.1 Game engine features scheme..............c..cooevieiiiiinin. 6
1.1.2 Features list.......c.oouiiiiiiii i 6
1.1.2.1 Modeling requirements................ccoeevneen... 6
1.1.2.2 Engine requirements.ccevvueernnernnenn. 7
1.1.2.3 Game play requirements...............c.c.ceevueennn. 10
1.1.2.4 0 EXtra.....ccoiiiiiiiii e 12
1.2 Research explanation.............coooeiiiiiiiiiiiiiiiiiiiii e, 13
1.2.1 Why did we use this research approach?............ccccccecueee.. 13
1.2.2 Why these engines?........ccoccueeevieeriiieniieenieeenieeeieeeieeeeae 13
1.2.3 Why these features?........coocveevvieeriiieniiieeniieenee e 14
1.2.4 Why did we use this information display method?............. 14
1.3 ChOSEN @NZINE. ...ttt e eeenns 14
2 Blender.............. 16
2.1 Blender information.............c.ooiuiiiiiiiiiiiiiee 16
2.2 Game Blender information.............c.ocooiiiiiiiiiiiiiii 16
2.3 Blender features and benefits..............coooiiiiiii 17
2.3.1 Features.....oo.oiueiniii i 17
232 Benefits.. ..o, 18
2.4 Userinterface (UD).........ooiiiiiiiiiiiiii e 19
2.5 Interaction by using Blender.................cooooiiiiiiii 22
2.5.1 GameBlender...........cooiiiiiiiiiiii 22
2.5.2 Sensors, controllers and actuators logic bricks................ 23
2.5.2.1 SeNSOTS...uuenniintie e 23
2.5.2.2 Controllers........ooovviiiiiiiiiiii e 23
2523 ACTUALOTS. ..ottt 23
2.6 Physics within Blender................ooo 23
2.6.1 Particles........oooiiiiiiii 23
2.6.2 Fluid stmulation............ccoooiiiiiiiiiiiiiiii i, 24
2.6.3 Softbody.....o.oiniiiiiii 26
2.6.4 Rigid body.....ccooiuiiniiiiii 27
2.7 SyStem reqUITEMENLS.uueentteete et ete et eaieeeeeenieenneenes 27

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY PAGE 4 12-01-2008 @

/
3 Digital University............ccooiiiiiiiiii e, 30
3.1 What do We Want?........ccooiiiiiiiiiiiieceeeeceee e 30
3.2 The deSi@N....c.ueineiiit et 30
32,1 Theidea.....o.oouiiuiiiiii i 31
3.2.2 Sketches (pen & paper, 2D).......ccoiiiiiiiiiiiiiiiiii 32
3.2.3 Digital design (2D).....covviiiniiiiiii i 32
3.3 3D enVIFONMENT. .. uutnnententett ettt e ettt e e 33
3.3.1 LeCture rOOM.euue ittt et 33
3.3.1.1 Objects in the lecture room.................ccceennnn. 33
3.3.1.2 Where does the interactivity take place?.............. 33
3.3.1.3 Why is the lecture room important?..................... 34
3.3.1.4 Object screenshots and explanation................ 34
3.3.2 COrTidOr. .o vt 34
3.3.2.1 Objects in the corridor................coieiiiin. 34
3.3.2.2 Where does the interactivity take place?............. 34
3.3.2.3 Object screenshots and explanation................ 34
3.33 Meeting Place......ovuiirniiiiiiiiii e 35
3.3.3.1 Objects in the meeting place........................ 35
3.3.3.2 Where does the interactivity take place?............. 35
3.3.3.3 Why is the meeting place important?................... 36
3.3.3.4 Object screenshots and explanation................ 36
3.4 Building and animating the characters......................coooeenae.. 36
341 3D Modeling.....o.vvvniiiiiiiiiiiii e 36
342 AIMATUIES. ..ottt 36
343 ANIMATONS. ...ttt 37
344 Game logIC....ouiiniiii i, 37
3.4.5 MouselooK......o.oiiiiiii 38
346 BoOtS. . 38
347 PathNode.......ooviniiiiii i 38
3.5 Lesson materials.........cooueiiiiiiiiiiiiii i, 39
3.6 User Interface Digital University.............cooviiiiiiiiinineinnnn. 41
4 Conclusion and recommendations.....................c..cooi, 42
4.1 CONCIUSIONS. ...ttt e 42
4.2 Recommendations.ceuueuirutiutintiniien e 42
References.o 43
List of abbreviations.....................ciii 44
APPENAIX. ... oo e 45
A. Featuresscheme.....................iiiiii e, 46
Bl SENSOTS. ...t 48

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING

ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY PAGE 5 12-01-2008
- /

B2. Controllers......... ..o 50
B3, ACtUAtorsS. ... 51
CoSKetChes. ... e 54
D1. Screenshot lecture room......................ccooiiiiiiiiiiiii e, 56
D2. Screenshot corridor. ... 57
D3. Screenshot meeting place....................... 58
E. Building and animating the characters..................................... 60
F1. MouSeLOOK.PY......c.ooniiiiii e 64
F 2 08 Py oo e 66
F3.ntpathopy.o e 71
FA. Stat Py e, 78
FS5.USerDict.py......couoinii 80
F6. callF MV 80
F7. hasFMVfinished......................o i 81
F8. playF MV ... 81

G. Internship report - Digital University

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 6 12-01-2008

©

|
Chapter 1
Research

1.1 Game engine research

Game engines are very important for the game industry. All the interaction,
movements, explosion, animation and cameras are controlled by the game engine.
So it’s very important for a game developer to choose the right engine. For our
project we need a game engine with as much as possible options. We need to
control the movements of the player, add mass and gravity, control animations and
control the cameras.

So before we can start modeling and coding we need to choose an engine which is
capable of doing all these things.

The following pages contain all the research documentation we’ve done considering
the game engine. Differences between the engines will let use decide which engine
we’ll going to use for our project. First of all we need to find multiple game
engines. We need to make a list of features; features we consider to be useful for the
game engine.

By making a list of these features, we can see what the strengths and weaknesses
are of the selected game engines.

After doing the game engine research we can choose a game engine to work with.

1.1.1 Game engine features scheme
Appendix A. Features scheme, page 43 — 44.

1.1.2 Features list
The following pages will explain all the features written in the “Game
engine features scheme” (chapter 2.1). All the features are “numbered” from
A -V, just like in the scheme. We’ll describe every feature and explain why
they are useful for our project.

1.1.2.1 Modeling requirements
A. Modeling environment
Modeling environment is also known as a “Model Program Tool”
for creating 3D models. This modeling program/tool normally
includes: building tools, rendering and analyzing options.
Sometimes the modeling environment is integrated in the game
engine. These modeling environments are also known as: model-
intergraded programs. The Characters, objects and terrain are build
with these modeling tools.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

1.1.2.2

PAGE 7 12-01-2008

©

Our project needs: (integrated) modeling tool for building
characters, surroundings and objects.

B. Rendering system

Rendering systems are used to make a digital image from a model.
Textures, lights and shadows become visible. In Serious Gaming
this is the last major step, giving the final appearance to the models
and animation. There are lots of rendering systems available. Some
are integrated in modeling and animation packages, some are
stand-alone, some are free open-source projects. There are two
types of rendering: pre-rendering and real time rendering. Pre-
rendering is a computationally intensive process that is typically
used for movie creation, while real-rime rendering is often done
3D video games which rely on the use of graphics cards with 3D
hardware accelerators.

Our project needs: a rendering system (integrated in the modeling
tool) for rendering the game scenes. This is very useful for creating
a realistic environment.

Engine requirements

C. Animation

An animation is a simulation of movement created by displaying a
series of pictures or frames. Animation is one of the main
ingredients for Serious Gaming. Many software applications make
it possible to create animations which you can use in your game.
Walking cycles, explosives and tree & scenic animations are
examples of computer animations.

Our project needs: a game engine with an animation option; to
make it possible for our characters to walk through the virtual
environment and to make the game look more realistic.

D. Collision

In serious gaming collision detection involves algorithms for
checking for collision or intersection of two given solids.
Simulating what happens once a collision is detected is sometimes
referred to as "collision response", for which see “physics (physics
engine)”. Collision detection algorithms are a basic component of
3D video games. Without them, characters could go through walls
and other obstacles.

Our project needs: a game engine which has collision detection for
preventing the character to walk through walls and other object.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

PAGE 8 12-01-2008

©

Collision detection is also needed to detect collision between the
other objects in the virtual environment.

E. Physics (physics engine)

Computer animation physics or game physics involves the
introduction of the law of physics into a simulation or game
engine, for purpose of making the effect appear more real to the
observer. A physics engine is a computer program that simulates
Newtonian physics models, using variables such as mass, velocity,
friction and wind resistance. It can simulate and predict effects
under different conditions that would approximate what happens in
real life or in a fantasy world.

Our project needs: a game engine which has physics for simulating
gravity, mass, friction etc. Just to make the game look and feel
more realistic.

F. Body dynamic

There are two types of body dynamic: soft body dynamic and
ridged body dynamic. Soft body dynamics is an area of physics
simulation software that focuses on accurate simulation of a
flexible object. The object is deformable, meaning that the relative
positions of points of the objects can change. Friction, gravity,
collisions, springs, wind are some of the forces who can influence
the behavior of an object. Clothes, hair, sand and water are
examples of soft bodies. Ridged body dynamic stands for a solid
object of finite size which deformation is neglected. The distance
between any two given points of the ridged body remains constant
in time regardless of external forces.

Our project needs: mostly ridged body dynamic for the characters
and objects.

G. Coding / Scripting

After modeling the objects in the virtual environment you can start
coding/scripting. Most of the game engines support one or more
coding languages. Other engines are working with scripting
languages, where you don’t have to code anything in the engine.
Objects can start moving, transform or disappear by scripting
them.

Our project needs: a coding/scripting language to control the
game engine.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

PAGE 9 12-01-2008

©

H. Multiplatform

Multiplatform applications are applications which can run on
multiple computer platforms. A multiplatform application can run
on all common platforms, or simply more than one. These days
everyone has got different needs and wishes and that’s why there
are many different operating systems that vary in options. Engines
also work on certain operating systems. The most engines work on
the popular operating systems like Windows, Mac OS and Linux.
It is important for an engine to support as many operating systems
as possible so the software developed on the engine can reach a
wide public.

Our project needs: a game engine which runs on multiple
operating systems (multiplatform). So the game can be widely
spread. Plus, IF this project is taken over by other students it needs
to be possible to run/edit/model on all the other available
platforms.

1. Import 3D files

Some engines don’t have their own 3D modeling program attached
to it, so then its necessary to be able to import files from an extern
modeling program. Modeling programs like 3Ds Max, Maya and
Milkshake are popular programs used by 3D modelers. If these
programs files are supported by the engines, they can be imported
to be used in the software.

Our project needs: a game engine who can import 3D files. We
prefer to use an engine with an integrated 3D modeling tool. So
there will be no problems using the 3D models in combination with
the game engine.

J. Costs

There is a great variety of engines. Engines made by companies in
order to earn money by selling the engines to game developers and
engines made by hobbyist so developers with a low budget or
hobbyist can use them for free to develop games. Depending on the
purpose of your software you will have to consider which type to
choose. The commercial engines may be expensive but they got all
the latest technologies included. The free engines may not have all
the latest technologies included, but most of the time they do have
great support and a big community who helps to improve the
engine.

Our project needs: an inexpensive game engine.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

1.1.2.3

PAGE 10 12-01-2008

©

Game play requirements

K. Interactivity

Interaction is the kind of action that occurs as two or more objects
have an effect upon one another. In the gaming world this is the
same. For example, if a car crashes into a building, the building
gets damaged. So the interaction between the 2 object is that the
building and the car got damaged as the result of a crash.

To make a game or simulation realistic you should be able to pick
up objects, talk to other players or Non playing characters. This all
is called interaction.

Our project needs: a game engine which makes it possible for
objects in the virtual environment to “communicate” with each
other. If an object does something with a second object, both of the
objects need to react on each other.

L. Movement

The movement in a game is depended on the type of game, but is
always one of the most important features in a game. Movement in
a game is for example, walking with a character. The movement in
a game is mostly controlled with the keyboard or mouse.

Our project needs: a game engine which supports a keyboard (and
probably a mouse) to control the movement of the character /
player.

M. View (Camera)

The view in a game is controlled by cameras. Some games got
cameras that can be controlled by the user and some don’t. The
view is also defined by the type of game. There are first person,
third person and “free camera” games. In first person camera view
you see what is in front of the object you are controlling. That
means looking trough the eyes of a character or see what is in front
of a car. In third person camera view, the camera is behind the
character or object you control. For example: looking at the back
of a character. The “free camera” view means that the user can
control the camera by itself. This camera view is mostly used in
games that have a big area to overview. The view in a game is
mostly controlled with the computer mouse.

Our project needs: different cameras, for different camera views.
Some camera’s need to follow our character, others need to stay
focused on one particular spot.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

PAGE 11 12-01-2008

©

N. Artificial Intelligence

Artificial Intelligence is an object or character that is acting out of
his own. This object or character is programmed to react on his
environment. It is programmed to have a mind of his own, based
on certain factors it moves and/or undertakes actions. An Al
controlled character is always trying to maximize his chances of
survival and/or success. Many games that involve enemies with
weapons use advanced Al controlled characters that attack the
player when spotted or when the player attacks them. There are
various combinations of Al and gaming. Al also is a part of
interaction as you can interact with computer controlled characters.

Our project needs: objects which are artificial intelligence. They
need to react on the actions made by the player.

0. Audio & Video

Audio and video make a game more realistic. Sounds of doors
opening, guns firing and the running engine of a car. All these
sounds add realism to the game. What would a game be without
sound? Sound can express happiness and drama.

Video’s in games make it possible to explain certain things or give
an intro to the game. All games these days got storylines which
they show trough videos.

Videos in games also show commercials or promotion material of
well known companies.

Our project needs: a game engine which supports audio and video.
We prefer a game engine with integrated audio and video options.
We want to be able to stream video in-game. We also want the
objects/characters in-game to interact with the player, using
sounds.

P. Menu Building

When you start a game you always begin in the main menu. The
menu displays the options of the game. For example: Single player,
Multiplayer, Options, and Exit. A menu makes it easier for the user
to navigate to the program and also gives the first impression of the
game.

Our project needs: an option for building menus. We need a menu
to start the game, to edit game options and stop/exit the game.

Q. Multiplayer
The most games have a storyline to follow or single player
missions, but some players want to compete against other players

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

1.1.2.4

PAGE 12 12-01-2008

©

just like them. Multiplayer makes it possible for people from all
over the world to play together. The Al in these days games are
very advanced but the human brain still is different from the
computers “brain”.

Our project needs: a game engine which supports multiplayer
options. Like an integrated networking engine. So multiple players
can join the server and interact with each other in-game.

R. Text Display

By displaying text in a game the player can get all kind of
information like; what to do, where to go or who to talk to. Some
engines can display text by using bitmap images. Others engines
got the option “text display” integrated.

Our project needs: an option to display text in-game.

Extra

S. Documentation

In order to program and configure the engine properly, knowledge
of the engine is needed. When the programmers of the engine are
not that well known with the engine they can look up certain
subjects in the engines documentation. Having documentation
delivered with the engine thereby is a big plus when purchasing an
engine.

Our project needs: lots of documentation made by the creators of
the game engine, plus documentation written by users.

T. Tutorials

When the documentation of an engine (if supplied with the engine)
isn’t very clear on some points tutorials can help out. Tutorials are
examples of a certain subject explained step by step. Good tutorials
are easy to follow and can be a big help when work with the
engine.

Our project needs: tutorials written by the creators of the game
engine, plus tutorials written by users. This will probably increase
our level of success. This is the fastest way to learn the basic of a
modeling tool or game engine.

U. Community/Forum

If u encounter problems while developing software with an engine
and the documentation doesn’t contain an answer to the problem
you can always ask the community of that engine for help. The

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 13 12-01-2008

©

community of an engine mostly consists of users that use the
particular engine. They got experience with the engine and may
have encountered the same problem before and can help you to
solve the problems. These communities’ share there experiences
on forums.

Our project needs: a game engine with a community behind it
willing to help others.

V. Online support

Online support is the kind of support where u can contact the
developers of the engine for questions considering the engine. This
might be useful if no one can help you out with a problem or if you
have any other question considering the engine. Online support is a
service towards the buyer of the engine and not every engine
developer has this service available.

Our project needs: a game engine with some kind of online
support. This isn’t necessary, but it can be very helpful when
you're having problems.

1.2 Research explanation
We’ll now explain why we used this kind of research, why we selected the engines
and why we made the “Game engine features scheme”.

1.2.1

1.2.2

Why did we use this research approach?

We are researching different engines because of the great offer in engines.
These days more and more engines are being developed. There are free
engines and engines you will have to pay for. Our goal was to find the best
engine for our project, but we couldn’t just take any engine. We preferred a
free engine, but there are lots of free engines and they’re not all the same in
options and quality.

This research has to point out which engine is best fitted for our project.

Why these engines?

Why did we pick these particular engines to research and not other engines?

It’s pretty easy to answer; we chose these engines based on what engines we
found on the internet and our own experience with game engines. Most of
the engines are free of use. We also chose some engines that cost money to
purchase in order to see if there is a big difference between freeware and
commercial engines. 3D Blender and Second Life were known to us.
Irrlicht, Virtools and Torque are engines that we found on the internet and
Half-life is a commercial engine.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 14 12-01-2008

©

1.2.3 Why these features?
Not every engine has all the latest techniques, but engines that do have all
the techniques are too expensive. Looking at all techniques we needed for
our project we came up with a list of all features that the engine needed to
contain. So we know which engine is the best for our project.

1.2.4 Why did we use this information display method?

We wanted the information of the research to be displayed as good as
possible. That is why we chose to display the information in one big table.
The engines are displayed on the top of the table and all features are
displayed on the left. When an engine contains the feature noted on the side
a cross 1is placed in the cell of the table where the feature and engine come
together. This way of displaying information makes it easy to quickly see
which engine has what features.

1.3 Chosen engine

Choosing the right game engine for our project wasn’t that easy. There are many
game engines available, but there are only several good engines.

We needed to research which game engine is the best for our project. We started
our research with making a list of features which our game engine needs to support.
When the list was completed, we started looking for game engines that met the
features of our list. We found several engines on the internet and we used game
engines that we already knew. We listed the engines in a table, together with the
features. By placing crosses in the table if a game engine supported a feature, we
could easily see which game engine supported what features.

Eventually we compared the engines depending on which features they have. We
didn’t only take a look at the features, but also if the engine wasn’t too difficult to
work with. According to the time schedule there isn’t much time to learn the basics
of programming the engine. We also looked if the engine had a modeling
environment included. This makes sure that the models will work with the engine.
Extern modeling programs may make things more difficult then with an integrated
modeling tool. Combining all these requirements we chose the engine which, to us,
seemed to be the best engine for our project.

Game Blender is the game engine we chose. Game Blender is a game engine which
is very complete; it contains a modeling environment and an environment where
games can be created.

Blender contains all the features we need for our project, Blender is free to use and
has a great community that supports it.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 15 12-01-2008

©

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 16 12-01-2008

©

Chapter 2
Blender

2.1

2.2

Blender information

Blender is open-sourced, community developed software based in the Netherlands.
The software allows for the design and development of 3D models, animations,
photo realistic graphics, architectural walk-throughs, and 3D games. The growing
success of the blender program comes from contributors world-wide. Each
contributor works freely to enhance the program. Blender is comparable to
programs like Maya, Lightwave, and 3D Studio. The biggest difference is that
Blender is free.

Blender was developed as an in-house application by the Dutch animation studio
Neo Geo and Not a Number Technologies (NaN). It was primarily authored by Ton
Roosendaal, who had previously written a ray tracer called Traces for Amiga in
1989. The name "Blender" was inspired by a song by Yello, from the album Baby.
Roosendaal founded NaN in June 1998 to further develop and distribute the
program. The program was initially distributed as shareware until NaN went
bankrupt in 2002.

The creditors agreed to release Blender under the terms of the GNU General Public
License, for a one-time payment of €100,000. On July 18th 2002, a Blender funding
campaign was started by Roosendaal in order to collect donations and on September
7th 2002, it was announced that enough funds had been collected and that the
Blender source code would be released. Blender is now an open source program
being actively developed under the supervision of the Blender Foundation.

The Blender Foundation initially reserved the right to use dual licensing so that, in
addition to GNU GPL, Blender would have been available also under the "Blender
License", which did not require disclosing source code but required payments to the
Blender Foundation. However, this option was never exercised and was suspended
indefinitely in 2005. Currently, Blender is solely available under GNU GPL.

Blender has a great verity of options. Starting with the modeling tool integrated in
the game engine (Game Blender). This has some advantages comparable to the
other modeling tools and game engines. These advantages of Blender will be
explained later on.

Game Blender information

Game Blender is a sub-application of Blender, the popular open source 3D
application, used to make games using Blender. It is an outgrowth of the application
that Blender once was, which was a 3D application to make games for the Sony
Playstation. The new Game Engine was written from scratch in C++, including
support for standards like Python scripting and OpenAL 3D sound. Blender, being
programmed in C and Game Blender in C++ kept development strictly separated.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 17 12-01-2008

2.3

©

Erwin Coumans and Gino Van Den Bergen developed Game Blender in 2000. The
goal was to make a saleable commercial product that users of the freeware Blender
could use to create games and real-time presentations. These games could either run
as stand-alone applications or embedded in a web page; using a special plugin
created from the Game Blender sources. An alpha version of the Internet Explorer
browser plugin is on preview, and Firefox and COLLADA support is under
consideration. Game Blender is used by inserting "logic bricks," "controllers" and
"actuators" to control the movement and display of objects in the engine. Game
Blender is also able to be extended via the Python programming language.

After version 2.37a was released, the game engine was almost completely stable,
but it wasn't until version 2.41 that a complete and stable version of the Blender
game engine was released. Currently, a team is working on developing Blender,
releasing many new additions and changes periodically. Version 2.42 shows even
more additional features being implemented into the game engine, including
integration of the Bullet Rigid Body Dynamics and Vehicle Physics.

Blender features and benefits

Based on the research done in chapter 3 “Game engine research”, this chapter
extricates the abilities and features of Blender. Blender has a great variety of
options. Starting with the modeling tool integrated in the game engine. This has
some advantages comparable to the other modeling tools and game engines. These
advantages of Blender will be explained later on.

2.3.1 Features

Blender has a lot of build-in features, these features are listed below:

e Modeling features

o Modeling environment
o Rendering system

¢ Game Engine features
Animation
Collision
Physics
Body Dynamic
Coding/scripting
Multiplatform
Import 3D files
Costs
e Game play features

o Interactivity

Movement
View (camera)
Al
Audio & video support

O O O O O O O O

o O O O

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 18 12-01-2008

2.3.2

©

o Menu building
o Multiplayer
o Text display

e Extra
o Documentation
Tutorials

o
o Community/forum
o Online support.

These features are explained in the document: “Game engine research”. By
having all these features, Game Blender has advantages comparing with
other engines. These advantages are listed in chapter 2.2 “Benefits”.

Benefits
The game engine of Blender, Game Blender; has some benefits comparing
with the other game engines we found. They are as following:

1. Integrated environment; with modeling, animation and game play.

2. Framework with a collection of modules for interactive purposes like
physics (rigid body dynamics), graphics, logic, collision simulation,
sound and networking.

3. GameObjects can behave autonomously by having a set of tools called
LogicBricks and properties. Properties act as the memory, sensors are
the senses, controllers are the brain and actuators allow for actions in the
outside world (muscles). So there can be interactivity by using the
predefined sensors and Logic Bricks.

Logic Bricks:

e Sensors are like the senses of a life form; they react on key
presses, collisions, contact with materials, timer events or values
of properties.

e Controllers are collecting events from the sensors and are able to
calculate them to a result (brain).

e Actuator performs actions on objects (motion etc.).

The logic is connected (wired) with the mouse, Sensors to Controllers
and Controllers to Actuators. After wiring you are immediately able to
play the game! If you discover something in the game you don't like, just
stop the game engine, edit your 3-D world and restart. This way the
development time is drastically cut down!

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 19 12-01-2008

©

4. Virtual reality, consisting of content and behaviors (physics, animation
and logic).

5. Blender acts as a complete development tool for interactive worlds
including a game engine to play the worlds.

6. Powerful scripting language Python for more advanced game play
control.

7. True Multiplatform, All flavors of Windows, Linux, FreeBSD, BeOS,
Irix and more.

8. Blender is still being used by a large group of people. So Blender has a
large community, which is willing to help you with any problem.

9. Zero costs.

2.4 User interface (UI)

E’ = File Add Timeline Game Render Help | =|SR:2-Madel X || =|3CE:3cene x _ We:d | Fab | Ob:3-1 | Lal | Mem:0.80M | Time: |

3D View Menu

V Wiew Select Object l -© O |Global = H:FFHH:FFF\I@
= panets (¢ [S[0]w[Hla]

¥ Link and Materials ¥ Mesh _ ﬂ Modifiers .
[=]ME:Cubs Auto Smooth \TexMesh: | [Add Multires] lAdd Modifier] To
Wertex Groups Matarial Sticky
Vertex Calor Mew
New | Delse
Salact l Desealect Center | Center Mew
ssign Button Panel

Double Sided

Set Smooth | Set Salid No % MNormal Flip

Figure 2.4.1 User Interface Blender

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 20 12-01-2008

e The main menu panel is located at the top of the screen.

e The main 3D view is shown as a grid area. It shows the current scene
from the top.

e The menu for the 3D view is located below it.

e At the bottom of the screen, you will see the Buttons Panel. The
GE has its own panel.

Blender's user interface is based on splittable and joinable windows. The main
system 1is basically a grid with edges splitting the parts. The edges can be freely
manipulated. Each window has a window type.

Actually even the main menu at the top of the screen is a window. It is a window
that contains settings of Blender. The window can be dragged downwards to reveal
these settings. The menu can be put anywhere you like on the screen or even
disabled. This is a big difference compared to conventional software.

Each window contains a header. Header contains basic menus and commands. You
can move the header by using middle mouse button for instance to find more
commands. Menus contain the shortcuts to the commands and can hence be used as
reference when needed.

One of the most important windows in Blender is the Buttons Window. Buttons
Window consists of panels that can have subpanels. Panels have been categorized
and their contents may vary depending on mode you are working in. You can find
essential commands and tools such as rendering settings there.

Blender has several window types:

e Scripts Window: provides access to all registered Blender Python scripts and a
place for GUI scripts to draw in.

e File Browser: Blender will use this window whenever it asks you to load and
save.

e [mage Browser: like the File Browser, but shows thumbnails of image files it
finds on disk.

® Node Editor: a newly introduced and very exciting way to handle materials
borrowed from SoftimagelXSI’s powerful render tree editor.

® Buttons Window: this is easily the most complex and the most used window
type. It is worth your time to become very familiar with it. Many of Blender’s
powerful features are found inside.

e User preferences: provides the Blender main menu. Also allows you to
manipulate things like; mouse and widget display and user interaction, themes,
autosave, OpenGL lighting, memory, system sound, video, file paths etc.

e Text Editor: a very simple plain-text editor with syntax highlighting and editing
features for Python scripting.

® Audio Window: used for audio sequencing.

e Timeline: a new window to help with animation editing and playback.

e Video Sequence Editor: postproduction editing.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 21 12-01-2008

®

e NLA Editor: The Non-Linear Animation editor is one of the most powerful
features in Blender. With it you can blend actions and objects IPO’s together.

e Action Editor: this is another useful, and well-used, animation editor.

e [PO Curve Editor: TPO is short for interpolated. All animation is interpolation
between keys, or values at a specific time. Values include: position, rotation,
color, action etc. Learning about IPO’s is very important for animation.

e 3D View: this is the window where you can create, edit, position and animate
your objects.

Window type:
ﬁ; Scripts Window

@’ File Browser
@ Image Browser

B Mode Editor
Buttons Window

B Outliner

1 User Preferences

E| Text Editor

o fudio Window

() Timeline

B video Sequence Editor
v/mage Editor

= ML& Editor

& action Editar

B Ipo Curve Editar

HE 3D View

BN~ View Gelect Ohject [tacC
B~ paneis [e[=z]oIC @

Figure 2.4.2 Window types Blender

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 22 12-01-2008

2.5

©

Blender uses a widget to move, rotate or scale objects. A widget is sometimes
called a manipulator. A widget has three colored handles to drag or manipulate
objects. Each handle is color coded to identify one of the three coordinate axes:

e Red: x-axis

e (Qreen: y-axis

¢ Blue: z-axis.

By dragging one of these handles, the object will move, rotate, scales along the axis
of the handle (dragging a red handle moves, rotates or scales the object along the x-
axis).

Blender has three widgets:

Transform Rotate Scale

Figure 2.4.3 Widgets

Interaction by using Blender
Interaction is the main ingredient for gaming. Blender uses the game engine, Game
Blender, for creating this interaction.

2.5.1 Game Blender

The game engine of Blender 3D is called: “Game Blender”. The engine
controls all the movements made by objects, creates gravity; using the
physics engine and controls the interaction between the objects. To make the
objects react or interact with each other, they need to be scripted. Game
Blender is used by inserting “logic bricks”. These logic bricks can be a
sensor, controller or actuator to control the movement, and display of
objects in the engine. Game Blender is also able to be extended via the
Python programming language.

ERER I - EIFIEAEE 1 N

[Cube [mda | [Cube [Add | Cube [aad |

[&dd Property |

Figure 2.5.1.1 Game Logic Control Panel

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 23 12-01-2008

©

Blender uses a visual click-and-drag system to create basic game
interactions.

¢ Sensors; A sensor will detect some form of input. This input could be
anything from a key press, a joystick button or a timer that triggers every
single screen update (or frame) of the game.

Controllers; Controllers are used to link Sensors to Actuators. They
allow for some more complex control over how sensor and actuators
interact with each other.

Actuators; An actuator will actually carry out an action within the
game. This can include moving an object within a scene, playing an
animation, or playing a sound effect.

B = panes [@]2]0]z]0]@ [« 1] 3
Sensars el Link Controllers Sel Link Actuators Sel Link
Cube Cube Cube
% |Aways < [sensor i % |AND - [[cont iv]l =
w [0 | g2 Force « 0,00+ |« 0.00 [« 0.00+
Torque< 0.00 | « 0,00, | < 0,00,
[Add Property | dloc < 0.00. [« 000, |« 0.00, [T
dRot < 0.00 |+ 0.00 |« 0.00, I

liny <000 000, 000 L] add
angy <000, |.000 000 L

Figure 2.5.1.2 Game Logic Control Panel with a Sensor, Controller and Actuator selected
for the object: Cube.

2.5.2 Sensors, controllers and actuators logic bricks
Game Blender has 28 different sensors, controllers and actuators. All these
logic bricks make it possible for objects to start “thinking” for their own.

2.5.2.1 Sensors
Appendix Bl. Sensors, page 45 — 46.

2.5.2.2 Controllers
Appendix B2. Controllers, page 47.

2.5.2.3 Actuators
Appendix B3. Actuators, page 48 — 49.

2.6 Physics within Blender
A physics engine is a computer program that simulates Newtonian physics models,
using variables such as mass, velocity, friction and wind resistance. It can simulate
and predict effects under different conditions that would approximate what happens
in real life or in a virtual world.

2.6.1 Particles
To create particles, you will first have to enter the Object menu (F7) or press
the icon with the three-way arrows (the one in a row of 6 icons), which is

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 24 12-01-2008

2.6.2

©

the icon for the object menu. Then u will have to select the Physics button
which is the icon with the orange/yellow dots. When u clicked these icons, a
menu will show up with 4 fields.

These fields are Fields and Detection, Particles, Soft Body and Fluid
simulation. To enable Particles press the NEW button in the Particles field.

[#]~ view select onject [onjectrode =] [] [@] BIE]6 = [aiova =] FHHHHHE] (@]

+ ranes [o [E[O FAIC] [|
c Soft Body |_Soft Body Collsion
Fields Deflection NEW
MNane < Deflection Object not enaled for fluid simulation.

Figure 2.6.1.1 Physics buttons

When the NEW button is pressed, a new menu appears. The menu is divided
in 4 submenu’s, Emit, Display, From and Children. The Emit submenu is
the most important menu for the creation of the particles. In this menu you
set the amount of particles and how long these particles live and when they
end. Particles are mostly textured, because otherwise you won’t be able to
see the particles. You can also use objects like spheres or cube’s to visualize
the particles.

Particles Particle totion
| Delete |Recalcall| | Static |
Emit; Dizplay:

« Amaount 1000 | |« kdaterial: 1 b

“Sta; 1.0+ |[End: 100.0] | Mesh | Unbor| Died

Life: 50.0 | Disp: 100 Wect |1Size: 0.0

From: Children:

: “aces < Generation: 0+
Rand | Even |F/F: 8 [+ Mum: 4+ | Prob: 0.0

|UGrnup: | Life: 50.0 |« at 1 »

1-T:

Figure 2.6.1.2 Particles

Amount: The total number of particles that will be emitted

Sta: The starting frame of emission

End: The last frame of emission

Life: How long the particles will exist after emission

Disp: Percentage of particles displayed and calculated in 3DView.

Fluid simulation

To create a Fluid Simulation, you will first have to enter the Object menu
(F7) or press the Object menu icon (The three-way arrows icon (the one in a
row of 6 icons)). Then u will have to select the Physics button which is the

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 25 12-01-2008

©

icon with the orange/yellow dots. When u clicked these icons, a menu will
show up with 4 fields.

These fields are Fields and Detection, Particles, Soft Body and Fluid
simulation. To enable Fluid Simulation press the Enable button in the Fluid
Simulation field.

If the Enable button is pressed a menu will appear. This menu contains 6
buttons: Domain, Fluid, Obstacle, Inflow, Outflow and Particle.

Fluid [Ohstacle
Infl oo Cufflows | Particle
Bt adlen] | BAKE |
Red. BAKE Memary: 1241 MB
[Resoltion: 50 [+ Preview-Res. 25 *|
[Stattime:0o0 | Endtime:o3o |
Disp.-Gual: [Preview =|Final 2]
& |Ampi |

Figure 2.6.1.3 Fluid simulation

To create a Fluid Simulation there have to be at least two objects. One
object is the Domain which normally is a cube. The Domain is the space
where the fluid simulation is performed. All fluid objects outside of it are
ignored, and the fluid can not flow out of the domain.

The second object is the fluid. The Fluid object is always placed within the
domain. When this scene is simulated the Fluid will release within the
domain and act like a real fluid would.

Figure 2.6.1.4 Fluid simulation - animated

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

2.6.3 Soft body
To make an object Soft Body, you will first have to enter the Object menu
(F7) or press the icon with the three-way arrows (the one in a row of 6
icons), which is the icon for the object menu. Then u will have to select the
Physics button which is the icon with the orange/yellow dots. When u

INTERNSHIP TU DELFT - SERIOUS GAMING
DIGITAL UNIVERSITY

PAGE 26

ROTTERDAM UNIVERSITY/CMI

12-01-2008

clicked these icons, a menu will show up with 4 fields.

These fields are Fields and Detection, Particles, Soft Body and Fluid
simulation. To enable Soft Body press the Soft Body button in the Soft

Body field.

]~ view select ouject [Wonectvose =] [@] [@ 5] BI&T0 = [aona =] FETHETT@I

©

r ¥ Panels (@ |5 J

EIE

Fields Deflection

None 2] Deflection

Figure 2.6.3.1 Physics buttons

When the Soft Body button is clicked a menu appears with some parameters
for the Soft Body. The most important parameters are Friction, Mass, Grav

Adjusting the parameters gives different results regarding to how the object

Soft Body
NEW Soft Bod

and Speed.
behaves.
Soft Bady Soft Body Collisior
Soft Body | Bake seftings |
< Friction: 0.50 + |« hdags: 1.00 [}
¢ Grav: 9800 |+ Speed:1.00 ¢
£)4 Goal: 0,700«
. G St 0500 |« G Damp: 000 -
< G Min 0000 ¢« GMax1.000 -
(ECR=GLEE Stiff Quads | CEdg |CFac
« EStiff0500 +|« EDamp: 050 -
4 Sero; 0 o« Rigidity: 0.000

Figure 2.6.3.2 Soft body settings

e Friction: A generic force against movement that acts on all vertices. A

value of zero means no Friction.

® Mass: The mass of the body in kilograms. Will be shared equally among
all vertices. A higher mass will make the object harder to stop, and the

action of force fields will be smaller.

® Grav: The local gravity, it’s always pointing the negative z-axis.
o Speed: A tweak used while solving the movement. Don’t modify, unless

you have a good reason to do so.

[S0t Body Calision

Ohject nat enabled for fluid simulation,

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

.

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 27 12-01-2008

2.7

©

2.6.4 Rigid body

To make an object Rigid Body, the following actions need to be executed.
First you will have to select the object that has to become Rigid Body.
While having the object selected, enter the Logic menu (F4). You can also
press the icon for the Logic menu which is the icon with the purple Pacman.
By clicking this icon the Logic menu appears. This menu contains 4 fields,
Actor/Bounds, Sensors, Controllers and Actuators. For Rigid Body only the
Actor/Bounds menu is needed.

(B~ raneis B0
e

[Add Property J

Figure 2.6.4.1 Logic panel

In the Actor/Bounds menu press on the Actor button in order to display new
options. Two extra buttons will appear; Ghost and Dynamic. For the Rigid
Body function we will have to choose Dynamic. When the Dynamic button
1s pressed two extra buttons will appear, Rigid Body and No sleeping. Press
the Rigid Body button and your object will become Rigid Body.

Actor Dynatiic Rigid Body [ERGEE A0
| kaszs: 1.00 k[Fadiusg: 1.00 b

|Damp 0,04 |RotDamp 0108

| Add Propery

Figure 2.6.4.2 Actor

System requirements

Operating Systems:

Windows 98, ME, 2000, XP or Vista
Mac OS X 10.2 and later

Linux 2.2.5 1386

Linux 2.3.2 PPC

FreeBSD 6.2 1386

Irix 6.5 mips3

Solaris 2.8 sparc.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 28 12-01-2008

©

Optimal specs for hardware:

2 Ghz dual CPU

2 GB Ram

1920 x 1200 px Display with 24 bit color

3 button mouse

Open GL Graphics Card with 128 or 256 MB Ram.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 29 12-01-2008

©

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 30 12-01-2008

©

Chapter 3
Digital university

3.1

3.2

What do we want?

When creating a Digital University there are several crucial segments. Of course
you will need a system for interactivity, so people can interact with each other. You
will also need some kind of Internet system so students will be able to log on to the
University. You also need sound effects, but after all one of the most important
segments is a 3D environment. Without a 3D Environment there is no University.
The users of the University won’t be able to see anything and won’t be able to
follow lessons as there is no visual teaching material. The users would also not be
able to see any teachers, students, books etc.

Without a 3D Environment there visually wouldn’t be a Digital University.

This report will contain information regarding the 3D environment of the Digital
University TU Delft. The report will explain the choices and decisions that were
made during the development of the 3D environment. All the information in the
report is supported by matching illustrations. The report will attend to the design of
the Digital University and the different areas the Digital University exists of. These
points will be highlighted in their own chapters and subchapters. We will also share
our view and experiences on building and designing the Digital University 3D
environment.

The design

Before we can start modeling objects in Blender 3D, we need to start thinking about
a plan. Therefore we need to make a design of the 3D environment, which includes
all the objects we’re going to build, an interactivity plan (painted on the map) and
we need to find out where the cameras should be positioned within the
environment.

There are three design phases:

1. The idea

2. Sketches (pen & paper — 2D)
3. Digital design (2D).

The first phase (phase 1. The idea); during the first phase the assignment will be
defined. Defining the assignment makes there will be no discussion possible about
the assignment later on. After the assignment has been defined, we can have a look
at how the 3D Environment should look like in game. By writing down these ideas,
they can later on be used to create sketches.

The second phase (phase 2. Sketches); during the second phase several sketches will
be made to give us an impression of the (to develop) 3D environment.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

PAGE 31 12-01-2008

©

The third and last phase (phase 3. Digital design); this phase will give us the final
2D impression of the 3D environment. All the models and objects will be created
according to the 2D digital drawings.

3.2.1 The idea

The assignment is documented in our report: “The Assignment”. It tells us
what to do and provides us some guidelines. The assignment summarized:
Design and build a virtual TU Delft, starting with a lecture room and a
meeting place. Eventually there needs to be some interactivity between
agents, objects and other players.

To accomplish this we need to write down some ideas, about how the
environment should look like.

3 different areas:

e Lecture room:
§ A room to meet other students and teachers
§ A room to follow lectures:

Presentations on demand
Should be able to ask the teacher questions

§ A room with lots of interaction:

Interaction between player and teacher

Interaction between students (bots/agents - virtual students):

o Bots/agents notice when you enter the room

o Bots/agents notice when you look at them

o Bots/agents and the player should be able to communicate
with each other (chat or voice)

Interaction between objects in the room (able to touch etc.).

e (Corridor:

W W

An area to walk from the lecture room to the meeting place
An area to meet other students (lots of bots/agents walking around)
An area with interaction between bots/agents:

Collision detection

§ An area which provides information (using posters etc.).

e Meeting place:
§ A place to meet other students and teachers
§ A place to relax and eat
§ A place with interaction:

Interaction between the player and other students

Interaction between objects in the room (pick up a glass etc.)
Bots/agents notice when you enter the room

Bots/agents notice when you look at them

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 32 12-01-2008

©

e Bots/agents and the player should be able to communicate with
each other (chat or voice).

3.2.2 Sketches (pen & paper, 2D)

3.2.3

The ideas are defined and approved by Mr. Prof. Rothkrantz and Mr. Ir. Abd
el Ghany, so now we can start sketching the environment on paper. These
sketches represent the 3D environment (in 2D). They give us an impression
how it would look like in Blender 3D after modeling all the objects. Heights,
lengths, widths and scale aren’t important for the sketches.

Appendix C. Sketches, page 50.

Digital design (2D)

The sketches can now be repainted on the computer. This is the last chance
to modify the designs. All the digital designs/illustrations are drawn in Jasc
Paint Shop Pro 9.

The digital designs:

55 o bo |

o R e ot R !

o[| |= Meeting place
c| B =
o

o,

Cornidor

arririr I I ITrITT
]

[RININiNin] Lecture room

Figure 3.2.3.1 Digital design - top view

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

PAGE 33 12-01-2008

Lecture room Corridor Meeting place

Figure 3.2.3.2 Digital design - side view

3.3 3D environment
Now we have some idea of how the 3D environment should look like, so we can
start modeling in Blender 3D. Most of the objects are made from scratch, but some
are modeled in 3D Studio and later on imported into Blender. The Blender libraries
aren’t really useful for our project so we need to search for FREE user-created

objects.

The following chapters will explain why we created the lecture room, the corridor
and the meeting place.

3.3.1 Lecture room
The lecture room is the room where users can follow lectures. This is the
main room in the current version of the digital university, without it, the
digital university would not have any educational meaning.

3.3.1.1

3.3.1.2

Objects in the lecture room

® Projector screen

e [ecture room seating and desk
e Teacher’s desk

e Door.

The lecture room’s most important objects are the lecture room
seating’s and desks, and the projector screen. These objects are
most important because of their vital function is this room. The
lecture room seating’s make sure the users are able to follow
lectures comfortable and the desks create a place for the user’s
(exercise) books. The projector screen creates an opportunity to
show presentations or other media to the users.

Where does the interactivity take place?

The interaction in the lecture room takes place at the lecture room
seating’s and desks, the projector screen and the door. There is also
possible interaction between the users or between a user and the

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

3.3.2

PAGE 34 12-01-2008

©

teacher. There could also be possible interaction between users and
certain objects like books or pencils.

3.3.1.3 Why is the lecture room important?
The lecture room is the main reason of creating the digital
university. With the digital university students will be able to
follow lectures while being at home or anywhere else on a
computer. The lecture room represents the real lecture room as on
the university, and creates a feeling that users are still following a
lecture on school.

3.3.1.4 Object screenshots and explanation
Appendix D1. Screenshot lecture room, page 51.

Corridor

The corridor separates the lecture room from the meeting place. Its function
is the connection between the lecture room and the meeting place. Users can
use the corridor in order to get from the one to the other room. Later on the
corridor will be extended and will function as a connection between multiple

rooms.

3.3.2.1

3.3.2.2

3.3.2.3

Objects in the corridor
e Bench
e “Poster”(Optional).

The only objects that the corridor contains are 2 benches. Users
can use these benches to rest before college starts, just to relax on
or have a chat before college starts.

An optional object for the corridor would be a “digital” poster.
This poster could contain information about upcoming events or
information regarding the university.

Where does the interactivity take place?

The interactivity in the corridor takes place in whole corridor.
There can be interaction when a user wants to sit down on one of
the benches. A number of agents continually walk certain paths in
the corridor, a user can walk into one of these agents, on which the
agent will respond to the user.

Object screenshots and explanation
Appendix D2. Screenshot corridor, page 52.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY

3.3.3

3.3.3.1

3.3.3.2

PAGE 35 12-01-2008

©

Meeting place

The meeting place is the place where people get together
before/after/during college to meet each other, having a drink,
relax, to study or to have lunch.

Objects in the meeting place
Couch

Bar & Bar Stool

Sink

Dining Table & Dining Table Chair
Bin

Side Table

Coffee Table

Wine Glass

Knife

Fork & Plate

Book

Clock

Wall Decoration

Plant.

The most important objects of the meeting place have to be the
dining table & dining table chair and the bar & bar stool. These
objects are both socializing areas within the room. Users enter this
room and will mostly use it to enjoy a drink or have something to
eat. The users use the dining table & dining table chair to enjoy
their food/drink comfortable; thereby the users also have an
opportunity to meet new users. The bar is also a social point,
people are waiting for their drink or are enjoying their drink while
being at the bar and meet new users. The meeting place also
contains a corner with 2 couches, this is area where users can relax
after college or have a chat with the other users.

Where does the interactivity take place?

The meeting place contains several interactivity points. All the

interactivity takes place between:

¢ Interaction with an object: user picking up a glass

¢ Interaction with a bot/agent: having a dialog with and agent.
An agent reacting on actions made by the user.

e Interaction with another user: having a real-time chat with
another user.

There isn’t a certain spot where the interactivity takes place, only
the interaction with objects may have a prefixed spot. When the

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 36 12-01-2008

©

user interacts with an agent and/or user the place of interaction
isn’t defined. An agent could move (if the agent has Al) and so
could a user.

3.3.3.3 Why is the meeting place important?

The meeting place is of great importance when it comes to
socializing with other users.

The users will be able to communicate with the other users
(students, teachers etc.) while enjoying their virtual cup of coffee.
The meeting place represents all the social activities that would
normally take place throughout the whole university. All these
activities are now focused into one area, as where normally people
would meet each other at different locations. After a digital lesson,
students can gather in the meeting place and evaluate the lesson or
discuss whatever they would like to. The meeting place would also
be a good area for students to interact with the teachers after
college.

3.3.3.4 Object screenshots and explanation
Appendix D3. Screenshot meeting place, page 53.

3.4 Building and animating the characters
In this chapter we will explain how we created the characters that we use in our 3D
environment, how we modeled the characters and what we used to animate the
characters. We will also explain how we created interactivity between objects and
how we created paths.

3.4.1 3D Modeling

The first thing we had to take care of in order to create a character, was modeling
the character. Our choice to model the character by our own, and not using an
existing model, is because of the high polygons used in existing models. We created
the body majorly by using the functions “Extrude”,” Scale” and by editing the
positions of the vertices.

The whole character actually exists out of one mesh, which is the torso. All other
parts of the body were extruded out of the torso or out of the extruded parts. After
the whole body was roughly created by extruding and scaling, all parts of the body
were “smoothed”.

All the parts were “smoothed” by hand (editing of vertices positions) and on the end
smoothed by Blender’s smooth function.

Appendix E. Figures EI — E3, page 54.

3.4.2 Armatures
After creating the body of the character, we need to add a bone structure to be able
to continue. An armature is another name for bone, or bone structure. By creating a

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 37 12-01-2008

©

bone structure for the character, we will be able to animate it which leads to a more
realistic view when the character is moving.

The creation of an armature is relatively easy. We simply add an armature which
represents the spine or “the torso bone”. From there we simply extrude other
armatures for the other parts of the body. After creating an armature for every part
of the body, we named all these parts. This naming of parts will be of great use later
on.

Now there is a model of the character and armatures, and by connecting these
armatures the character will be able to move the body parts realistic.

By “parenting” the body to the armature, and thereby creating name groups, we link
the armatures to the body. Now that the armatures and the body are linked, we
assign which bones to move what part of the body. After this all is done, moving an
armature will move the corresponding body part.

Appendix E. Figure E4, page 54.

3.4.3 Animations

Animating a character is the next step to a more realistic appearance. By animating
the character we made, we can create a walk animation that will be triggered after
(for example) pressing a button.

Animating a body which contains armatures is relatively easy. All that needs to be
done is placing the armatures in the required position and then “lock™ them in place.
The position of the armature can be changed in the “pose mode” of the armatures.
The locking of the armatures can be done by using a timeline.

This timeline uses the number of frames as “time”. We lock the position of all the
armatures on the wanted frame position by creating a key frame in the timeline. By
repeating this action we created a full animation of the character moving his arms
and legs and thereby making a walk movement.

Appendix E. Figures E5 —E6, page 54 — 55.

3.4.4 Game logic

In order to implement the character we created into our “game” we used the game
engine of blender to do so. Adding certain functions or options to objects in the
game engine, is done by using Logic Bricks. These logic bricks are pre-
programmed blocks, where the user can adjust certain variables or select options
with the help of a drop-down-menu.

By using these logic bricks we created the possibility to control our character with
the w,s,a,d keys and thereby make him walk forwards, backwards, left and right.
The logic bricks system exists out of 3 categories: sensors, controllers and
actuators. These categories all have their own different logic bricks and by
connecting these 3 categories of bricks to each other, we can “program” certain
actions.

For example: Sensor (keyboard) = AND Motion. By connecting these 3 bricks,
we can bind a key to let the object move in a direction we want to.

Appendix Bl — B3 (sensors, controllers and actuators), page 45 — 49.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 38 12-01-2008

©

3.4.5 Mouselook

By using the game logic, the character can move forward, backward, left and right.
But what if we want to turn the character around or look up and down. One way to
have a character make these movements is by using the mouse for this action. With
the help of the programming-language Python, we can make a script to be able to
make these movements. By choosing the Python controller logic brick, a python
script can be used to control the sensor and actuator logic bricks. By using a certain
combination of actuators and sensors together with the script, we were able to
control the character’s body rotation and view.

Appendix F1. MouseLook.py, page 58 — 59.

3.4.6 Bots

In our environment we used computer controlled characters (Bots), in order to
create a more realistic environment. These bots represent teachers or other students
and respond on their surroundings. With the help of logic bricks we can make the
bots respond on anything we want to. For example, they stop moving if the “player”
crosses their path. This detection is done by adding sensors to the object that look
out for objects with the property “player”. They could also be able to detect each
other, to make sure they won’t collide or react on a collision.

The paths that these bots follow are predefined paths. More information of the paths
that these bots follow will be explained in the Path Node section.

Appendix E. Figure E7, page 55.

3.4.7 Path Node

In order to move the bots in a certain pattern, we had to create a Path. A path is a
predefined route of waypoints. In Blender we created cubes as waypoints and gave
the cubes two properties: ‘pathnode’ and ‘switch’. The ‘pathnode’ property is to
make sure that the bot will only “see” waypoints with the property ‘pathnode’. The
property ‘switch’ was added to switch the waypoints on or off in the game.

The bot has also got two properties, but those are different then the waypoint’s
properties. These properties are: ‘node’ and ‘speed’. The property ‘speed’ is used to
define if the bot should move or not. When ‘speed’ is O the bot stands still, and
when ‘speed’ is 1 the bot moves with a constant speed. The property ‘node’ makes
sure the bot knows which waypoint is next.

The idea of the path is that the bot moves to the first waypoint and when the bot hits
the waypoint the property ‘node’ will increase with +1. Each waypoint has a certain
value of ‘node’ linked to it, so if ‘node’ reaches the corresponding value the bot will
move towards that waypoint.

This method may sound complicated or like a lot of work, but this is by far the only
way to create a path in blender, without using python or any plug-in.

Appendix E. Figures ES — E10, page 55 — 57.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 39 12-01-2008

©

3.5 Lesson material
The lecture room is the most important room for creating a digital university. With
the digital university students will be able to follow lectures while being at home or
anywhere else on a computer. The lecture room has several objects, including a
projector screen. The projector screen shows us an image with key bindings which
represent a video, image or sound.

e

— o m T .

L = e [

<NM1> FILMPJE <NM4> GELUID
<NM2> GELUID <NM5> FILMPJE
<NM3> AFBEELDING

Figure 3.5.1 Image shown on the projector screen

Adding video cut scenes (movie clips that play in between segments of the game) in
the Blender Game Engine (BGE) is easy by using the tool developed by Keith
Gearty. Keith Gearty has developed a simple to use Python tool called "FMV-ed" to
do just that. Keith pointed out that FMV-ed doesn't actually add the video to
Blender, it merely calls the Windows Media ActiveX controller needed to display
the cut scene. This means a pop-up opens on top of Blender, automatically plays the
video, sound or show the image and than closes itself. By pressing the spacebar, the
video pauses. By pressing the spacebar for the second time, the video continues. By
pressing Escape, the player closes. The tool supports/plays .avi, .mpeg, .wma, .gif
and .jpg files. The current license is closed-source freeware, provided as is, without
warranty.

FMV-ed information summarized:

Author: Keith Gearty

Company: Gorgan Studios

Email: gorgan_almighty @yahoo.co.uk

Source: http://www.blendenzo.com/fagMovies.html.

By using this tool, the teacher is able to add his or her own lesson material to the
digital university.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 40 12-01-2008

©

0 Blender =2 x|
[§ /]~ File Add Timeine Game Render Help [<[SR:2-Model % | [=[scE:scene * [ABIEnaeTorgleds \ve:151962 | F2:219077 | OW557-1 | Laiz | Mem:B5.09M | Time: | Plane.012

Hilmpje (.avi) — NM1
Geluid (.wma) — NM2
Bfbeelding (-Jjpg) — NM3
Geluid (.wma) — NM4
Eilmpije (.avi) — NMS

[= view select Object [Objectmode = EAo s [aova <] FHFHFETHE] @)
r ~ Panels [@lE[@ e[[@ a7

Sensars Sel Link Controllers etuztars Sel Lik
Plane.012 Plane.| n|2
2 |Fython cont! x| Seene
e,y

.y [Beript: play Py Ao OverlayScene o Dverlayscene

s0008 x|aniD cant = —

il Prliperty ’_‘—.,7
Del [String = [Mame: T [pie (aviy = MM [D Li Pmper'v L
Del [Int__ = Hame praf#hiv o b
Del_| String = [Mame:fmame |elock avi I mp plavFMV
.
L}
®e

T
Frop: play Py

Figure 3.5.2 Objects “behind” the projector screen

0 Blender =2 x|
[§ J~ File Add Timelne Game Render Help [=[SR:2-Model % | [=[scE:scene x [ARIEnGeToraleas \/o:155442 | FaiZ02037 | ObiS57-0 | Lai2 | Mem:52.69M | Time: | Curve.457

([= view seect oojest [@onectmooe < (@ [=] [GI8To [= [ava <] EEETHFFTTHE] (@)
(BT rees cERIEE] RRIER])
Figure 3.5.3 Pop-up; showing a video in Blender

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 41 12-01-2008

3.6

©

The Python scripts can be found in Appendix FI — F8, page 58 — 75. Comments
included.

User Interface Digital University

After converting the Blender file to an executable file, the interface for the player
gets something smaller, but it takes less time to render and start the game.
For the most user friendly version of our game, the main menu doesn’t load before
starting the game. You can play the game directly after you started it.

The following page shows us two screenshots of the main menu and ‘“game
interface” for the player.

(@"IzliﬂiriEIL 151GY,
ST WA

Bsw| 3 @ O Owwmmconden [[Srew

Figure 3.6.1 Main menu Figure 3.6.2 User Interface player

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 42 12-01-2008

©

!
Chapter 4
Conclusions and recommendations

4.1 Conclusions

After working with Blender for about 4 months you can say we’re well known with most
of the features and options offered by Blender. We discovered new options every day and
I’m sure we still didn’t use all the features Blender is offering.

We thought Blender had all the features as mentioned in Appendix A. Features Scheme,
page 43 - 44. But Blender did not turn out to be like we expected. We had the most
problems with the interactivity part of Blender. The main goal of this project was to
create an interactive Digital University, where students and teachers could interact with
each other and any object in the university. Blender has a small amount of possibilities
regarding to interactivity though. With the logic bricks we could give objects sensors and
actuators so they could respond on certain objects or actions but these options were too
limited. The only option to add some more interactivity is by using python scripts but
then we would have to write scripts our own, which wasn’t an option due to lack of time.
We also reached a certain point in Blender where the contents of the environment got to
big for the game, as the game took very long to load and the performance of the game
was very low. So if we had managed to create an interactive environment, it still would
have been a failure as the game wouldn’t be to run on an average computer.

Blender does have a great usability. It is very easy to create 3D objects and to manipulate
them. The game engine also isn’t hard to use because of the logic brick system. Blender
also has a great collision and physics engine which are easy to use in combination with
the logic bricks.

Not all of our research goals are realized. Unfortunately “making the virtual environment
interactive” did not worked out as planned, due to an unexpected time consuming
problem.

4.2 Recommendations

So creating a simple game is relatively easy to do in Blender. But if you wish to create a
complicated game with all kinds of features then we advise to use a commercial engine as
they are far more extended.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING

DIGITAL UNIVERSITY

References

http://www.blender.org

http://www.gameblender.org

http://wiki.blender.org

http://blenderartists.org

http://www.blendenzo.com

http://www.devmaster.net/engines

http://www.blendermasters.com

http://www.secondlife.com

http://irrlicht.sourceforge.net

http://www.virtools.com

http://www.garagegames.com

http://developer.valvesoftware.com

ROTTERDAM UNIVERSITY/CMI
PAGE 43 12-01-2008

- Blender main page

- Game Blender forum
- Blender Wiki

- Blender Artist forum
- Blender tutorials

- Game engines

- Blender tutorials

- Second Life

- Irrlicht engine

- Virtools

- Torque game engine

- Valve Developer Community

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 44 12-01-2008

List of abbreviations

2D Two Dimensional

3D Three Dimensional

Al Artificial Intelligence

API Application Programming Interface
BGE Blender Game Engine

GNU GPL GNU General Public License

GUI Graphical User Interface

HRO Rotterdam University of Applied Sciences
PC Personal Computer

SDK Software Development Kit

TU Delft Delft University of Technology

Ul User Interface

URL Uniform Resource Locator

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 45 12-01-2008

©

l
Appendix

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING

ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY PAGE 46 12-01-2008
A. Features scheme
3D Half- | Second
Features Blender | Life Life Irrlicht | Virtools | Torque
Modeling Requirements:
Modeling Environment | x / X / X
B | Rendering system X X / X X X
Engine Requirements:
C | Animation X X X X X /
D | Collision X X X X X /
E | Physics (physics engine) | x X X X X X
F | Body dynamic X X X X X X
COdil’l / SCI‘i til’l C/C++, C/C++ Linden C++, C#, C/C++, C/C++,
g pung Python Scripting VB.Net Virtools Torque
G o .
Language Scripting Script
(LSL) Language
H | Multiplatform X X X X X X
Import 3D files 3D Studio, XSI, Max | 3D Studio 3DS, 3ds Max, Milksha.pe,
AC3D, and Maya | Max, Milkshape, Maya, XSI, 3DStudio
COLLADA, .smd Maya, COLLADA, | Lightwave, Max, and
DEC Object Autocad and Maya, Collada Blender
File Format, Blender DeleD,
DirectX, DirectX .X,
Lightwave, FSRad .oct,
MD2, Cartography
Motion shop 4 .csm,
Capture, Pulsar
Nendo, LMTools
OpenFlight, JImts,
PLY, Pro My3DTools
I Engineer, 3 .my3D,
Radiosity, Quake 2
Raw models,
Triangle, 3DS Max,
Softimage, Gile[s],
STL, Blender
TrueSpace,
VideoScape,
VRML,
VRMLY7,
Wavefront,
X3D
Extensible
3D, xfig
export
7 On $9000- $150/
Costs Free request Free Free $10000 $290
Game play requirements:
K | Interactivity X X X X X /
L | Movement X X X X X X
M | View(Camera) X X X X X X
N | Al X X X / X X
0 | Audio & video support | x X X X X X

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI

DIGITAL UNIVERSITY PAGE 47 12-01-2008 @
/
P | Menu building X / / X / X
Q | Multiplayer X X X / X X
R | Text display X X X X X X
Extra:
S | Documentation X X X X / X
T | Tutorials X X X X / X
U | Community / forum X X X X / X
V| Online support X X X X X X

x = this option is supported by the game engine.
/ = this option is not supported by the game engine.

A-V = each feature has his own character. The character corresponds with the character

in the “Features list” (chapter 2.2).

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING
DIGITAL UNIVERSITY

B1. Sensors

Name

ROTTERDAM UNIVERSITY/CMI
PAGE 48 12-01-2008

©

Description

Joystick

Triggers when either a joystick
button is pressed, or when joystick
is moved along a certain direction
(left/right, up/down).

Message

Triggers when a message is
received.

Ray

This will trigger when an object is
detected along a certain axis. You
can additionally check for the
detected object having a certain
material or property value.

Random

Triggers randomly, change seed
for different sequences numbers.

Property

Triggers when a property changes,
is between certain min and max
values, or is equal or not equal to a
certain value.

Radar

Triggers when an object is
detected within a certain range
(distance and angle). You can
specify a property that the object
must have.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING
DIGITAL UNIVERSITY

ROTTERDAM UNIVERSITY/CMI
PAGE 49 12-01-2008

©

Near

Triggers when a object is detected
within a certain distance. You can
specify a property that the
detected object must have.

Collision

Triggers when the object is in
collision with another object. You
can specify a material or a
property that the collided object
must have.

Touch

Triggers when an object is
touching another object. You can
specify a property that the touched
object must have.

Mouse

Triggers when certain mouse
event occur, such as mouse button
clicks, mouse movement etc.

Keyboard

Triggers when a certain key is
pressed.

Always

Triggers every single frame.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING

DIGITAL UNIVERSITY

ROTTERDAM UNIVERSITY/CMI

PAGE 50 12-01-2008

B2. Controllers

©

Name Figure Description

AND o X anD o Runs the connected actuator if all
of the connecting sensors are
triggered.

OR AL I N Runs the connected actuator if any
of the connecting sensors is
triggered.

Expression Expression Evaluates an expression.

o i i —
Python Runs a python script.

B ——

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 51 12-01-2008

©

|
B3. Actuators

Name Figure Description

Visibility Show and hide the current object.

Restart and Quit the current level.
Can also load a new scene.

Game

CD Allows for control over CD music

tracks.

Send a message to all objects, or
to a certain object. This message
will trigger the Message sensor.

Message

Sets a random value into a
property of the object.

Random

Allows control over the motion of
the objects. This includes direct
positioning and rotating of the
object (dLoc and dRot), as well as
applying forces to a physical
object to move it (Force and
Torque).

Motion

Edit Object Allows for control over adding,
editing and deleting objects within

the scene at run-time.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING
DIGITAL UNIVERSITY

ROTTERDAM UNIVERSITY/CMI
PAGE 52 12-01-2008

©

Property Sets the property value of the
object.
Sound Allows you to control sounds from

within Blender (Only sounds into
Blender will be accessible).

o _

Allows the camera to track an
object. The camera can be placed
behind the object within a certain
distance (min and max) and
height.

IPO Allows control over playing object
animations.

Constraint Constrains the objects position.

Scene Allows for control over scenes

(loading, playing, suspending
etc.).

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 53 12-01-2008

©

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 54 12-01-2008

C. Sketches

o p]
“”n‘)\'SVL'&;L} [”Vi@/[\ VV@(’- (Qe
" A
]

LF

o™
Vowie epsn/le L F , ‘ |
) /P /by l@i’sJ\e mn ; DRR|C 'V"v_ﬁ"&/’@m O&ZA Lg@’&;/,ﬁ
e | P)
Ty g cgeiie. Ms e
Ffﬂ@\oe@m’ Zy Hen lgg q?@m/;
' - J

- r ~ /
AGe i Rewgee I,

il [

|
}

_—

T
)

k

SRR e b

6 7
|
t

|

el

N == i = ; 7
, PoFrsedt c/o!c‘b bebggim
/ i

¥ / / / o~) - N |
Video ditnntond on o Jouleie porla ¢
- - y

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 55 12-01-2008

©

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 56 12-01-2008

©

D1. Screenshot lecture room

i
Figure D1.1 Lecture room

Door to the corridor

Lecture room seating’s and desk
Teacher’s desk

Projector screen

Rl o

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 57 12-01-2008

D2. Screenshot corridor

Figure D2.1 Corridor

1. The two benches in the corridor, where users can relax, rest or have a chat.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 58 12-01-2008

D3. Screenshot meeting place

Figure D3.1 Meeting place

1.

Dining/studying area
Area of the room filled with tables and comfortable chairs where the users can study,
talk or lunch. Users can also meet new people while studying or lunching.

Couch Corner

A little corner with 2 couches a coffee table and a side table. The users can relax or
study in this corner of the room. The comfortable couches together with the wall
decoration and the coffee table make this corner a cozy area of the room.

Bar

The bar makes sure everyone can buy something to drink. While having a lunch or
while studying people can buy a drink at the bar or have a chat with the people
hanging around.

A couple of bar stools is placed in front of the bar.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 59 12-01-2008

©

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 60 12-01-2008

©

E. Building and animating the
characters

Figure E1. 3D Character side view
Figure E2. 3D Character wireframe
Figure E3. 3D Character front view
Figure E4. 3D Character with armatures

>

LR

> B_Hip

» R_U_Leg
»R_L Leg
» R_Ancle
» R_Feet
> L_hip
L_U_Leg
»L_L Leg
»L_Ancle
»L_Feet
B Meck

» Head

» R_Should
» R_L_Arm
» R_L_arm
» R_Hand
» L_Should
B L_UU_Am
»L_L_arm
» L_Hand

[E)-EY-BY WS- -BY-B-FY - W BN B -F - -NY-BY-B-N W -F

. <. <> <> <. < {J
A 4 4 . - . 4 S &
* *
L *

* *

A S S S S &
A 4 4 . - . 4 T &

D 4 4 S S &
A 4 . - . 4 T &
40 * L * * + *
40 * * * * L *
A4 442 4 S
A 4 . - . 4 T &
40 * . * * + L
40 * * * * L *
e <> <: <> << <}

- 0 5 0 15 W 2\ 3| I 40 45 S0 55 &0
Figure ES. Animation window (with key frames and “timeline”)

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 61 12-01-2008

S Controllers Link |

Amature.002 | | Armature.002 Armature.002

Figure E6. Armature’s logic bricks for triggering the animation

| | Sel Link Contrallers E [| Gel
1

Bot_1

Figure E7. Bot’s logic bricks

Controliers | Sel Link | |

Figure E8. Waypoints logic bricks

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 62 12-01-2008

| sel Link | Controllers | s : | [el

Camera.001 Camera.001 Camera.001

Cube.044

Cube.044

Cube.044

Figure E9. Player’s logic bricks

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 63 12-01-2008

Figure E10. Path Node (All waypoints + bots and player — Old version)

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 64 12-01-2008

F1. MouseLook.py

Mouselook.py BElender 2.45

Clark R Thames
Releazed under Creative Commons Attribution License

Tutorial for using MouselLook.py can be found at

www. tntorialsforblender3D.com

FEFTTEERT ARSI RASTITIAREENE Logic Bricks

Get controller
controller = GamelLogic.getCurrentController()

Get sensor named Mouse
mouse = controller.getSensor ("Mouse™)

Get the actuators

rotLeftRight = controller.getActuator ("LookLeftRight™)
rotUpDown = contraller.getictuator ("LookUpDown™)
FRRTIRRTTARTATTAsssasAassassass Meed the size of the game window
import Rasterizer

width = Rasterizer.getWNindowNidth ()

height = Rasterizer.getWindowHelight ()}
FEFIFFFFFAAFAFFFFIFFFSTFFFEEFES Gt the mouse movement

def mouseMove () :

distance moved from sScreen center
X = width/2 - mouse.getXPosition()
¥ = height/2 - mouse.getYPosition()
intialize mouse so it doesn't jerk first time
if has=sattr (Gamelogic, 'init') == False:
x=0
y=20
GameLogic.init = True

return (x, ¥)

pos = mouseMowve ()

F#¥###4# Figure out how much to rotate camera and plaver FF§#####

Mouse sensitivity
sensitivity = 0.0015

Amount, direction and sensitiwvity
leftRight = pos[0] * sensitivity

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 65 12-01-2008

upDown = pos[l] * =sensitivity

invert upDown
upDown = —-upDown

FEFF¥F44# Uze actuators to rotate camera and plaver #FF#fsf#sdds4

Set the rotation wvalues
rotLeftRight.setDRot(0.0, 0.0, leftRight, False)
rotUpDown.setDRot (| upDown, 0.0, 0.0, True)

Use them
GameLogic.addActiveActuator (rotLeftRight, True)
GameLogiec.addhetivelotuator (rotUpDown, True)

FEFEFFFF4444F Center mouse pointer in game window FFFFFFFF#FF44%F

Center mouse in game window
Rasterizer.setMouselosition (width/2, height/2)

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING
DIGITAL UNIVERSITY

F2. os.py

ROTTERDAM UNIVERSITY/CMI
PAGE 66 12-01-2008

os.py —-- either mac,

his exports:

all functions from either posix or
os.path is either module posixpath
oz, is either 'posix' or 'mac'
.curdir is a string representing
os.pardir is a st
os.8ep is the (or
o3.
os.
o3

mac,

name
o=

a mosSt Common)

e S e Ak Sk e S S S S

stand a
Of

Programs that import and use 'os!
portable between different platforms.

and opendir) ,
(e.g., SP1it and join}.

M A e e A

import 8¥s

_names sy2.builtin module names

alt=ep None

if 'posix' 1n names:

= 'posix'
I\nl

[
G

name
linesep
curdir
defpath
from po=ix
tr

.

pardir Ui0g
':/bin: fusc/bin'

import *

=ep

Ve

from posix import exit
except ImportError:

pass
import posixpath
path posixpath
del posixpath

ll—_tl

name
linesep
curdir
defpath
from nt
for

elif in names:

L] 1—_t L]

L] ".\ :\. n L]
Le pardir
:\\bin®
import *
["_exitc']:

—] [}
L

[
.

05z zep

= L} .C
iin
try:

exec "from nt import
except ImportError:

pass

import ntpath

path ntpath

del ntpath
elif 'do=s' in _names:
= 'dDS'

"\r\n'

Le pardir
LiCiv\bin!

import *

"

name
line=ep
curdir
defpath
from dos
try:

[Ty
v LA

[
v

=ep
L]

from dos import T
except ImportError:

pass

exi

doz or posix depending on what system we're on.

or macpath

the current directory
ring representing the parent directory

pathname sSeparator
altsep 1S the alternatte pathname separator
pathsep i= the component separator used in EPATH ete
.defpath i=s the default search path for

only use function= that are defined by all platforms
and leave all pathname manipulation te os.path

e.J.,08.unlink, a=s.stat, etc.

-
(..
or
lfl]

or
or =
"' OEE

500
l:l"fl

(Hone or
executables
better chance of being

they mast then
(e.g., anlink

course,

pathsep

pathsep

.

[
v

pathsep =

v

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 67 12-01-2008

import dospath
path = dospath
del dospath

elif 'osz2' in _names:
name = 'osz2'
line=sep =
curdir = ', r=",.'"; sep = "\\'; pathsep = ';'
defpath = '.;C:\\bin"
from os2 import ¥

from os2 import _exic
except ImportError:
pass
import ntpath
path = ntpath
del ntpath
elif 'mac' in names:
name = 'mac'

linesep = "\r'

curdir = ':'; pardir = '::'; sep = '":'; pathsep = '\n’
defpath = '":°

from mac import *

try:

from mac import _exit
except ImportError:
pass
import macpath
path = macpath
del macpath
else:
raize ImportError, 'no os specific module found!

del names
sys.modules['os.path'] = path

Super directory utilities.
(Inspired by Eric Raymond; the doc strings are mostly his)

def makedirs (name, mode=07T77
"mhmakedirs (path [, mode=0777]) —-> MHone

Super-mkdir; create a leaf directory and all intermediate ones.
Works like mkdir, except that any intermediate path segment (not
just the rightmost) will be created if it does not exist. This i=s

recursive.

men

head, tail = path.split (name)

if head and tail and not path.exists (head):
makedirs (head, mode)

nmkdir (name, mode)

def removedirs (name) :
nrrremovedirs (path) -> None

Super-rmdir; remove a leaf directory and empty all intermediate
ones. Works like rmdir except that, if the leaf directory is
succeszsfully removed, directories corresponding to rightmost path
segments will be pruned way until eith is
consumed Or an error occurs. i
ignored -- they generally mean

phase are
EMPLTY .

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 68 12-01-2008

mern

rmdir (name)

head, tail = path.split (name)
while head and tail:
Lry:

except error:
break
head, tail = path.split (head)

def renames(old, new):
n"rhrenames (0ld, new) -» None

Super-rename; create directories as necessary and delete any left
empty. Works like rename, except creation of any intermediate
directories needed to make the new pathname good is attempted
first. After the rename, directories corresponding to rightmost
path segments of the old name will be pruned way until either the
whole path iz consumed or a nonempty directory is found.

Hote: this function can fail with the new directory structure made
if vou lack permissions needed to unlink the leaf directory or
file.

mrrn

head, tail = path.split (new)

if head and tail and not path.exists(head):
makedirs (head)

rename (old, new)

head, tail = path.split (old)
if head and tail:
try:

removedirs (head)
EXCEept error:
pass

Make sure os.environ exists, at least

Lry:
environ
except NameError:
environ = {}

def execl (file, *args):
execv (file, args)

def execle (file, *args):
env = args[-1]
execve (file, args[:-1], enwv)

def execlp(file, *args):
execvp (file, args)

def execlpe (file, *args):
env = args[-1]
execvpe (file, args[:-1], env)

def execvp(file, args):
_execvpe (file, args)

def execvpe(file, args, env):
_execvpe (file, args, env)

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING
DIGITAL UNIVERSITY

_notfound = None
def execvpe (file, args, env = None):
if enwv:

fune =

argrest =
elae:

fune =

argrest =

EXEeCVE
(args, env)
EXECV

(args,)

env = environ
global notfound

head, tail = path.split(file)

if head:
apply (func, (file,) + argrest)
return

if env.has key("PATH'):
envpath = env['PATH']

else:

envpath = defpath
import string
PATH = string.splitfields (envpath,
if not notfound:

import tempfile

pathsep)

ROTTERDAM UNIVERSITY/CMI
PAGE 69 12-01-2008

Exec a file that is guaranteed not to exist

try: execv(tenpfile.mktemp (),
except error, notfound: pass
arg = error, _notfound
dir in PATH:

llname = path.join(dir,

()

eXC,
for
file)

apply(func, (fullname,) + argrest)

except error, (errno, mnsg):

if errno !'= arg[0]:
exXc, arg = error,

g (errno,
arg

msg)
raise exc,

Change environ to automatically call putenv()
Lry:
This will fail if there's no putenv
putenv
except NameError:
pass
else:
import UserDiect
if name in ('os2', 'nt', 'dos'):
But we store them as upper
import string
_Environ (UserDict.UserDict) :
def init (self,

case

class
environ) :

UserDict.UserDict. init (=self)

data = =elf.data

upper = string.upper

for k, v in environ.items():
data[upper(k)] = v

__setitem (self, key,

putenv (key, item)

key = string.upper(kev)

self.data[key] = item

_ getitem (self, key):

def item) :

def

if it exists

Where Env Var Names Must Be UPPERCASE

return self.data[string.upper (key)]

else: # Where Env Var Names Can Be Mixed

Case

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING

DIGITAL UNIVERSITY
class Environ(UserDict.UserDict):

def init (self, environ):
UserDict.UserDict. init (=self)
self.data = environ

def setitem (self, key, item):
putenv (key, item)
zelf.data[key] = item

environ = Environ(environ)

ROTTERDAM UNIVERSITY/CMI
PAGE 70 12-01-2008

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 71 12-01-2008

F3. ntpath.py

Module 'ntpath' -- common operations on WinNT/WinS5 pathnames
rrrCommon pathname manipnlations, WindowsNT,/S95 wersion.

Inztead of importing this module directly, importyoos and refer to.this
module as os.path.
e

import os
import stat
import string

Normalize the case of & pathname and map slashes to backslashes.
Other normalizations (such as optimizing '../" awav) are not done
(this is done bv normpath) .

def normcase (s) :
nrrNormalize case of pathname.

Make=s all characters lowercase and all slashes into backslashes. ™™™
return string.lower (string.replace (s, "/™, "\\"))

Return wheter a path i= absolute.
Trivial im Posix, harder on the Mac or M5-DO5.

For DOS it is absolute if it starts with a slash or backslash (current
volume), or if a pathname after the wolume letter and colon / UNC resource
starts with'a slash or back=slash.

EEEED

def i=abs(s):
"mrTest whether a path is absolute™™"

in /AN

Join two (or more) paths.

def join(a, *p):
"M Tain tWo Or more pathname components, inserting "\\" asz needed""™"

path = a
for b in p:
if i=abs(b):
path = b
elif path == '' or path[-1:] in '/%\':
path = path + b
else:
path = path + os.s3ep + b

return path

Split a path in a drive specification (a driwve letter followed by a
colon) and the path specification.
It is alwavs true that drivespec + pathspec == p
def splitdrive(p):
nerSplit a pathname into drive and path specifiers. Returns a 2-tuple
either part may be empty™"™"

Parse UNC paths

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 72 12-01-2008

def splitunc({p):
n"enSplit a pathname into UNC mount point and relative path specifiers.

Return a 2-tuple (unc, rest); either part mav be enpty.

If unc is not empty, it has the form '//host/mount' (or similar
using backslashes). unc+rest is always the input path.

Paths containing drive letters never hawve an UNC part.

mrrn

if p[l:2] = '":"':
return '', p # Drive letter present

firstTwo = p[0:2]

if firstTwo == "
iz a UNC
F VWYV VVE VYV YV YYYYYY equivalent to drive letter
‘\\machine‘mountpointhdirectories...

F dirTeorory ~asssRsA LA A

or firstTwo == "‘\A\N\!

normp = normcase (p)

index = string.find(normp, "%\', 2)
if index == -1:
f#raise RuntimeError, 'illegal UNC path: ™' + p + '™
return (""", p)
index = string.find(normp, "“\\', index + 1)
if index == -1:
index = len(p)
return pl:index], pl[index:]
return '', p
S5plit a path in head (everything up to the last '/') and tail (the
rest). After the trailing '/' is stripped, the invariant
join(head, tail) == holds.
The resulting head won't end in '/' unless it i=s the root.

def split(p):
n"erEplit a pathname.

Return tuple (head, tail) where tail is everything after the final slash.
Either part may be empty."""

d, p = splitdrive(p)

% set i to index bevond p's last slash
i = len(p)

while i and p[i-1] not im '/A\\':

head, tail = p[:1i], pli:] # now tail has no slashes
remove trailing slashes from head, unless it's all slashes
head2 = head
while head? and head?[-1] in '/%\":
head2 = head2[:-1]
head = head2 or head
return d + head, tail

5plit a path in root and extension.

The extension is everything starting at the last dot in the last
pathname component; the root is everything before that.

It iz always true that root + ext == .

def splitext(p):
nrrSplit the extension from a pathname.

Extension iz everything from the last dot to the end.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 73 12-01-2008

Return (root, ext), either part may be empty."™"

root, ext = "', !
for c in p:
if e din ["/", "W\
root, exXt = root + ext + <, ''
glif ¢ == ".":
if exc:
root, ext = root + ext, c
else:
EXT = C
elif ext:
ext = ext + cC
else:
root = root + C

return root, ext

Return the tail (basename) part of a path.

def basename (p):
"rrReturns the final component of a pathname™"™
return split(p) [1]

Return the head (dirname) part of a path.

def dirname (p) :

"rrReturns the directory component of a pathname™™"

return split(p) [0]

Return the longest prefix of all list elements.

def commonprefix(m):
"Given a list of pathnames, returns the longest
if not m: return "'
prefizx = m[0]
for item in m:

for i in range (len(prefix)):
if prefix[:i+1] <> item[:i+1]:
prefix = prefix[:1i]
if i = 0: return "'
break

return prefix

Get size, mtime, atime of files.

def getsize(filename):

"rrReturn the zize of a file, reported by os.statc(}"™""

st = os.stat (filename)
return st[stat.5T_SIZE]

def getmtime (filename) :
"rrReturn the last modification time of a file,
2t = og=z.3tat (filename)
return st[stat.5T_MITME]

def getatime (filename):

"rrReturn the last access time of a file, reported by os.stac()"™™"

st = os.stat (filename)
return st[stat.5T_MTIME]

common leading component™

reported by os.stat()"™""

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING
DIGITAL UNIVERSITY

Is a path a2 symbolic link?

This will always return false on systems wWher

def i=zlink(path):

nrrTest for symbolic link. On WindowsNTI/95 always returns false™™™

return 0

Does a path exist?
This iz false for dangling symbolic links.

def exists(path):
"nMTest whether a path exists™""
Try:
st = o=.stat(path)
except os.error:
return 0
recturn 1

T

I= a path a dozs directory?
This follows symbolic links, so both islink()
for the same path.

T

def isdir(path):
n"rhTest whether a path is a directory™™"”
Try:
st = o=.=stat(path)
EXCept 0OS.8error:
return 0
return stat.5 ISDIR(st[atat.5T_MODE])

Is a path a regular file?
This follows symbolic links, so both islink()
for the same path.

EETS

def i=sfile(path):
"rPhTest whether a path is a regular file"™""
Try:
st = os.stat (path)
EXCEept 0OS.8error:
return 0
return stat.5 ISREG(st[stat.5T MODE])

Iz a path a mount point? Either a root (with
or an UNC path with at most a / or %\ after th

def ismount (path):

"MNTest whether a path is a mount point (defined as root of drive) ™™™

unc, rest = splitunc(path)

if unc:

return rest in ("7, "/, WAL
p = splitdrive (path) [1]
return len(p)==1 and p[0] in "/%\"

Directory tree walk.

For each directory under top (including top i
'." and '..'), func(arg, dirname, filenames)
dirname is the name of the directory and file

ROTTERDAM UNIVERSITY/CMI
PAGE 74 12-01-2008

e posix.l=stat doesn't exist.

and i=sdir() can be true

and isdir() can be true

or without driwve letter)
e mount point.

tself, but excluding
is called, where
names is the list

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 75 12-01-2008

files files (and subdirectories etc.) in the directory.
The func may modify the filenames list, to implement a filter,
or to impose a different order of visiting.

def walk(top, func, arg):
nrrhirectory tree walk whth callkack function.

walk(top, func, args) calls funclarg, d, files) for each directory d
in the tree rooted at top (including top itself):; files iz a list
of all the files and subdirs in directory 4."""
try:
names = os.listdir(top)
EXCEept 0OS.error:
return
func (arg, top, names)
exceptionzs = (".', '..")
for name in names:
if name not in exceptions:
name = join(top, name)
if izdir(name):
walk (name, func, arg)

Expand paths beginning with '~' or '~user'.

'~! means FHCME; "~user' means that user's home directo
If the path doesn't begin with '~', or if the user or $HOME i= unknown,
the path i=z returned unchanged (leaving error reporting to whatewver
function is called with the expanded path as argument).

ZSee also module 'glob' for expansion of *, ? and [...] in pathnames.

(A function should alsoc be defined to do full *sh-style environment
wvariable expansion.)

def expanduser (path):
nerExpand ~ and ~user constructs.

If uzer or SHOME i=s unknown, do nothing.™™"
if path[:1] <> "~':
return path
i, n = 1, len(path)
le i <« n and path[i] not im "/A\\':

if i = 1:
if os.environ.has key ('HOME'):
userhome = ogs.environ['HCME']
elif not os.environ.has key ("HOMEPATH'):
return path
else:
Lry:
drive=os.environ['HOMEDRIVE']
except KeyError:
drive = '!
userhome = jolin(drive, ozs.environ['HCOMEPATH'])
elae:
return path
return userhome + pathf[i:]

Expand path= containing shell wariable substitutions=.
The following rules apply:
- no expansion within single guotes
- no escape character, except for '$5' which is translated into '$°
- ${varname} is accepted.

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING

DIGITAL UNIVERSITY

F - varnames can be
¥¥¥ With
XXX except

§

<F=".

varchars ztring.letters

def expandvars(path):

Unknown wariables are

if not in path:
return path

LI]

res
index
pathlen len(path)

while index < pathlen:

o]

COMMAND.COM wvou can

"rrExpand shell wvariables of form $var and

ROTTERDAM UNIVERSITY/CMI
PAGE 76 12-01-2008

made out of letters, digits and the character ' '

use any characters in a variable name,

+ string.digits +

{war}.

left unchanged.™™"™

no expansion within single guotes

but as this module i=s called "ntpath™, that's

path = path[index + 1:]
pathlen = len(path)
Lry:
index = string.index(path, '%'")
res = res + '"\'' + path[:index + 1]
except string.index error:
resz = res + path
index = pathlen -1
elif ¢ == '£': # wariable or '§%!
if pathindex + l:index + 2] == '§':
res = res + C
index = index + 1
elif path[index + l:index + 2] == '{°'
path = path[index+2:]
pathlen = len(path)
Try!
index = string.index(path, '}')
var = path[:index]
if os.environ.has key(var):
rez = res + os.environ[var]
except string.index error:
res = res + path
index = pathlen - 1
else:
var = '!'
index = index + 1
c = [index:index +
while c '= '' and c in wvarchars:
var = var + c
index = index + 1
c = path[index:index + 1
if os.environ.has key(var):
res = res + os.environ[wvar]
if c = "";
res = res + cC
elae:
res = res + C
index = index + 1
return res
Normalize a path, e.g. &//B, &/./B and &/foo/../B all become A/E.
Previously, this function also truncated pathnames to 8+3 format,

obviously wrong!

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 77 12-01-2008

®

def normpath (path):
n"rrNormalize path, eliminating double =lashes, etc.™™"
path = string.replace (path, "/™, "\\")
prefix, path = splitdriwve (path)
while path[:1l] == o=s.sep:
prefix = prefix + o=.=ep
path = path[1l:]
comps = string.splitfields (path, os.sep)
i=20
while i < len(comps):
if comps[i] = '.':
del comps[i]
elif comps[i] = '.."' and 1 > 0 and comp=[i-1l] not in ("', ".."}:
del comps[i-1:i+1]

elif comps[i] == '' and i > 0 and comps[i-1] <> "':
del comps[i]
elae:

4# If the path is now empty, substitute ".°'
if not prefix and not comps:
comps.append('.")
return prefix + string.joinfields (comps, o=.sep)

Return an absolute path.
def abspath (path):
"rrMReturn the absolute wversion of a path™™?
Try:
import win3Zapi
Lry:
return win32api.GetFullPathMame (path)
except win3Zapi.error:
return path # Bad path - return unchanged.
except ImportError:
if not isabs(path):
path = join(os.getcwd(), path)
return normpath (path)

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 78 12-01-2008

F4. stat.py

Module 'stat'

Defines gonstants and functfions for interpreting stat/lstat struct
as returned by os.stat () jand as.lstat () (if it £=Xists).

F
F
F
F
F
Suggested usage: from stat import *
F
XXX Strictly spoken, this module may have to be adapted for each POSIX
implementation; in practice, however, the numeric cgonstantsyused by

stat|() are almost universal (even for stat() emulations on nom-UNIX

svstems like MS-DOS) .

Indices for stat struct members in tuple returned by os.3tat()

ST_MODE
ST_INO

LU

HHEHAEH
(=R]
M
(=] é <

Il LU I T

st
0l
I
[=]
I
W =] e W RO

Extract bits from the mode

def 3_IMOLDE (mode) :
return mode & OTFTTTT

def 5 IFMT (mode):
return mode & 0170000

Constants used as 5_IFMT () for warious file rypes
(not all are implemented on all systems)

5 IFDIR = 0040000

5 TFCHR = 0020000

5 TFBLK = 0060000

5 TFREG = 0100000

5 _IFIFO = 0010000

5 _IFLNK = 0120000

5 _IFSOCE = 0140000

Functions to test for each file type

def 5_ISDIR (mode):
return 5 IFMT (mode) == 3_IFDIR

def 3_ISCHR (mode):

return 5 IFMT (mode) == 5 IFCHR
def 5 ISELK (mode):

return 5 IFMT (mode) == 3_IFELK
def 3_ISREG (mode):

return 5 IFMT (mode) == 5_IFREG
def 5 ISFIFO(mode):

return 5 IFMT (mode) == 5_IFIFD

def 3_ISLNK (mode):

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 79 12-01-2008

©

return 5_TIFMT (mode) == 5_IFLNE

def 3 ISS0CK (mode):
return 5_IFMT (mode) == 5 IFS0CH

Names for permission bits

_ISUID = 04000

_ISGID = 02000
NFMT = 5 ISGID

_ISVIX = 01000
READ = 00400

“IWRITE = 00200
EXEC = 00100
B 00700

RUSR = 00400
IWOSR = 00200
IXUSR = 00100

|
Bt b b
L

2N
b
(=}

[}

LW wmm LI.IIUI L7 P o 7 < L o < I WP R |

IRWXG = 00070
_IRGRF = 00040
_IWGREF = 00020
_IXGRP = 00010
_IRWXO = 00007
_TROTH = 00004
_IWOTH = 00002
_TXO0TH = 00001

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 80 12-01-2008

©

F5. UserDict.py

A more or less complete user-defined wrapper around dictionary objects

clas=s UserDict:
def init (self, dict=None):

self.data = {}
if dict is not Nome: self.update (dict)
def repr (self): return repr(self.data)

def cmp (Self, dict):
if isinstance (dict, UserDict):
return cmp{self.data, dict.data)

elae:
return cmp(self.data, dict)

def len (self): return len(self.data)
def getitem (self, key): return self.datalkey]
def setitem (self, key, item): 3elf.data[key] = item
def delitem (self, key): del self.data[key]
def clear(self): =self.data.clear ()
def copy(=self):

if self. class__ is UserDict:

return UserDict (self.data)
import copy
return copy¥.copy(self)
def keys(self): return self.data.kevys()

def items(self): return self.data.items()
def values(self): return self.data.values()
def has key(self, key): return self.data.has_key (key)

def update{self, dict):
if i=inatance (dict, UserDicTt):
zelf.data.update(dict.datca)
elif isinstance{dict, tvpe (self.data)):
zelf.data.update (dict)
else:
for k, v In dict.items():
self.datalk] = ¥
def get(self, key, failobj=None):
return self.data.get({key, failobj)

Fé6. callFMV

callFMV:

import os
if hasattr (GamelLogic, "fmvName™) :

filename = GameLogic.fmvName

f = open("fmv-ed.in", "w")
f.write (filename)
f.close ()

s = o3.8yvsten (" fmv-ad™)

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 81 12-01-2008

©

F7. hasFM Vfinished

hasFMVfinished:

import os

f = open("fmv—ed.out”, "xr")

inl = f.read()
f.claose ()
if inl/=— ™ok":
f = open("fmv—ed.out™, "w")
f.write(™")
f.close ()
ownr = GamelLogic.getCurrentController() .getCwner ()

OWDRE.uUnpause = 1

F8. playFMV

playFMV:

ownr = GameLogic.getCurrentController|() .getOwner ()
GameLogic. fmvHame = ownr.fmvName

ownr.playFMV = 1

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

INTERNSHIP TU DELFT - SERIOUS GAMING ROTTERDAM UNIVERSITY/CMI
DIGITAL UNIVERSITY PAGE 82 12-01-2008

@

Appendix G. Internship Report —
Digital University

SVEN ANKER - 0773594
ROB VAN DER KAMP - 0772800

