
I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Abstract

Title: Digital University – Serious Gaming

After following a lecture in one of the lecture rooms you can relax in one of the meeting

places. You can look to your right to see a student picking his nose, you silently laugh.

Luckily he can’t hear you. Suddenly you hear your mother shouting: “Diner!”. Within a

second you’re back in reality, back from the Digital University!

The assignment:
Design and build a virtual Delft university, starting with a lecture room and a meeting
place. Eventually there needs to be some interactivity between agents, objects and other
players. To accomplish this we need 3D software for modeling/building the 3D
environment. After building the environment we can start adding some interaction
between the user and the agents or objects in the classroom. The interaction, physics and
game play are defined in the game engine. So besides finding a good and functional 3D
software package, we also need to look for a game engine which can interact with the 3D
modeling tool.

Student information:
Sven Anker
Rotterdam University / CMI
0773594@student.hro.nl

Rob van der Kamp
Rotterdam University / CMI
0772800@student.hro.nl

Supervisors:
Dr. Ir. M.M.M. Abd el Ghany
Rotterdam University / CMI
G.J. de Jonghweg 4-6
3015 GG Rotterdam
abdmm@hro.nl

Dr. drs. L.J.M. Rothkrantz
Delft University of Technology

Mekelweg 4
2628 CD Delft
L.J.M.Rothkrantz@ewi.tudelft.nl

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Acknowledgements

First of all we would like to thank our supervisors Ir. M.M.M. Abd el Ghany and Dr. drs.
L.J.M. Rothkrantz for the time, the feedback and all the effort they put in us. We thank
them for their support, guidance and attention during our internship period.
We also thank them for making it possible for us to work at the Delft University of
Technology.

Also many thanks to the technical support staff, Bart Vastenhouw, and Ruud
de Jong for their support while facing hardware and software problems.

Sven Anker
Rob van der Kamp
Delft
December 2007

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Contents

Abstract……………………………………………………………………. 1

Acknowledgements……………………………………………………….. 2

Table of contents

1 Research……………………………………………………………….. 6
 1.1 Game engine research……………………………………………. 6
 1.1.1 Game engine features scheme…………………………..... 6
 1.1.2 Features list………………………………………………. 6
 1.1.2.1 Modeling requirements………………………… 6
 1.1.2.2 Engine requirements…………………………… 7
 1.1.2.3 Game play requirements……………………….. 10
 1.1.2.4 Extra……………………………………………. 12
 1.2 Research explanation…………………………………………….. 13
 1.2.1 Why did we use this research approach?............................ 13
 1.2.2 Why these engines?... 13
 1.2.3 Why these features?.. 14
 1.2.4 Why did we use this information display method?............. 14
 1.3 Chosen engine……………………………………………………. 14

2 Blender………………………………………………………………… 16

 2.1 Blender information……………………………………………… 16
 2.2 Game Blender information………………………………………. 16
 2.3 Blender features and benefits…………………………………….. 17
 2.3.1 Features…………………………………………………... 17
 2.3.2 Benefits…………………………………………………... 18
 2.4 User interface (UI)……………………………………………….. 19
 2.5 Interaction by using Blender……………………………………... 22
 2.5.1 Game Blender…………………………………………….. 22
 2.5.2 Sensors, controllers and actuators logic bricks………….... 23
 2.5.2.1 Sensors………………………………………….. 23
 2.5.2.2 Controllers…………………………………….... 23
 2.5.2.3 Actuators……………………………………….. 23
 2.6 Physics within Blender…………………………………………... 23
 2.6.1 Particles…………………………………………………... 23
 2.6.2 Fluid simulation…………………………………………... 24
 2.6.3 Soft body…………………………………………………. 26
 2.6.4 Rigid body………………………………………………... 27
 2.7 System requirements……………………………………………... 27

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

3 Digital University……………………………………………………... 30

 3.1 What do we want?... 30
 3.2 The design………………………………………………………... 30
 3.2.1 The idea…………………………………………………... 31
 3.2.2 Sketches (pen & paper, 2D)……………………………… 32
 3.2.3 Digital design (2D)………………………………………. 32
 3.3 3D environment…………………………………………………... 33
 3.3.1 Lecture room……………………………………………... 33
 3.3.1.1 Objects in the lecture room……………………... 33
 3.3.1.2 Where does the interactivity take place?.............. 33
 3.3.1.3 Why is the lecture room important?..................... 34
 3.3.1.4 Object screenshots and explanation……………. 34
 3.3.2 Corridor…………………………………………………... 34
 3.3.2.1 Objects in the corridor…………………………. 34
 3.3.2.2 Where does the interactivity take place?............. 34
 3.3.2.3 Object screenshots and explanation……………. 34
 3.3.3 Meeting place…………………………………………….. 35
 3.3.3.1 Objects in the meeting place…………………… 35
 3.3.3.2 Where does the interactivity take place?............. 35
 3.3.3.3 Why is the meeting place important?................... 36
 3.3.3.4 Object screenshots and explanation……………. 36
 3.4 Building and animating the characters…………………………… 36
 3.4.1 3D Modeling……………………………………………... 36
 3.4.2 Armatures……………………………………………….... 36
 3.4.3 Animations………………………………………………... 37
 3.4.4 Game logic………………………………………………... 37
 3.4.5 Mouselook………………………………………………... 38
 3.4.6 Bots………………………………………………………. 38
 3.4.7 Path Node………………………………………………… 38
 3.5 Lesson materials………………………………………………...... 39
 3.6 User Interface Digital University………………………………… 41

4 Conclusion and recommendations…………………………………… 42

 4.1 Conclusions………………………………………………………. 42
 4.2 Recommendations………………………………………………... 42

References…………………………………………………………………. 43

List of abbreviations………………………………………………………. 44

Appendix…………………………………………………………………... 45

A. Features scheme…………………………………………………......... 46

B1. Sensors………………………………………………………………… 48

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

B2. Controllers……………………………………………………………. 50

B3. Actuators……………………………………………………………… 51

C. Sketches………………………………………………………………… 54

D1. Screenshot lecture room…………………………………………….... 56

D2. Screenshot corridor…………………………………………………... 57

D3. Screenshot meeting place…………………………………………….. 58

E. Building and animating the characters………………………………. 60

F1. MouseLook.py………………………………………………………… 64

F2. os.py…………………………………………………………………… 66

F3. ntpath.py……………………………………………………………… 71

F4. Stat.py…………………………………………………………………. 78

F5. UserDict.py……………………………………………………………. 80

F6. callFMV……………………………………………………………….. 80

F7. hasFMVfinished………………………………………………………. 81

F8. playFMV………………………………………………………………. 81

G. Internship report - Digital University

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Chapter 1

Research

1.1 Game engine research
Game engines are very important for the game industry. All the interaction,
movements, explosion, animation and cameras are controlled by the game engine.
So it’s very important for a game developer to choose the right engine. For our
project we need a game engine with as much as possible options. We need to
control the movements of the player, add mass and gravity, control animations and
control the cameras.
So before we can start modeling and coding we need to choose an engine which is
capable of doing all these things.

The following pages contain all the research documentation we’ve done considering
the game engine. Differences between the engines will let use decide which engine
we’ll going to use for our project. First of all we need to find multiple game
engines. We need to make a list of features; features we consider to be useful for the
game engine.
By making a list of these features, we can see what the strengths and weaknesses
are of the selected game engines.

After doing the game engine research we can choose a game engine to work with.

1.1.1 Game engine features scheme
 Appendix A. Features scheme, page 43 – 44.

1.1.2 Features list
The following pages will explain all the features written in the “Game
engine features scheme” (chapter 2.1). All the features are “numbered” from
A – V, just like in the scheme. We’ll describe every feature and explain why
they are useful for our project.

1.1.2.1 Modeling requirements
 A. Modeling environment

Modeling environment is also known as a “Model Program Tool”
for creating 3D models. This modeling program/tool normally
includes: building tools, rendering and analyzing options.
Sometimes the modeling environment is integrated in the game
engine. These modeling environments are also known as: model-
intergraded programs. The Characters, objects and terrain are build
with these modeling tools.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Our project needs: (integrated) modeling tool for building

characters, surroundings and objects.

B. Rendering system

Rendering systems are used to make a digital image from a model.
Textures, lights and shadows become visible. In Serious Gaming
this is the last major step, giving the final appearance to the models
and animation. There are lots of rendering systems available. Some
are integrated in modeling and animation packages, some are
stand-alone, some are free open-source projects. There are two
types of rendering: pre-rendering and real time rendering. Pre-
rendering is a computationally intensive process that is typically
used for movie creation, while real-rime rendering is often done
3D video games which rely on the use of graphics cards with 3D
hardware accelerators.

Our project needs: a rendering system (integrated in the modeling

tool) for rendering the game scenes. This is very useful for creating

a realistic environment.

 1.1.2.2 Engine requirements
 C. Animation

An animation is a simulation of movement created by displaying a
series of pictures or frames. Animation is one of the main
ingredients for Serious Gaming. Many software applications make
it possible to create animations which you can use in your game.
Walking cycles, explosives and tree & scenic animations are
examples of computer animations.

Our project needs: a game engine with an animation option; to

make it possible for our characters to walk through the virtual

environment and to make the game look more realistic.

D. Collision

In serious gaming collision detection involves algorithms for
checking for collision or intersection of two given solids.
Simulating what happens once a collision is detected is sometimes
referred to as "collision response", for which see “physics (physics
engine)”. Collision detection algorithms are a basic component of
3D video games. Without them, characters could go through walls
and other obstacles.

Our project needs: a game engine which has collision detection for

preventing the character to walk through walls and other object.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Collision detection is also needed to detect collision between the

other objects in the virtual environment.

E. Physics (physics engine)

Computer animation physics or game physics involves the
introduction of the law of physics into a simulation or game
engine, for purpose of making the effect appear more real to the
observer. A physics engine is a computer program that simulates
Newtonian physics models, using variables such as mass, velocity,
friction and wind resistance. It can simulate and predict effects
under different conditions that would approximate what happens in
real life or in a fantasy world.

Our project needs: a game engine which has physics for simulating

gravity, mass, friction etc. Just to make the game look and feel

more realistic.

F. Body dynamic

There are two types of body dynamic: soft body dynamic and
ridged body dynamic. Soft body dynamics is an area of physics
simulation software that focuses on accurate simulation of a
flexible object. The object is deformable, meaning that the relative
positions of points of the objects can change. Friction, gravity,
collisions, springs, wind are some of the forces who can influence
the behavior of an object. Clothes, hair, sand and water are
examples of soft bodies. Ridged body dynamic stands for a solid
object of finite size which deformation is neglected. The distance
between any two given points of the ridged body remains constant
in time regardless of external forces.

Our project needs: mostly ridged body dynamic for the characters

and objects.

G. Coding / Scripting

After modeling the objects in the virtual environment you can start
coding/scripting. Most of the game engines support one or more
coding languages. Other engines are working with scripting
languages, where you don’t have to code anything in the engine.
Objects can start moving, transform or disappear by scripting
them.

Our project needs: a coding/scripting language to control the

game engine.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

H. Multiplatform

Multiplatform applications are applications which can run on
multiple computer platforms. A multiplatform application can run
on all common platforms, or simply more than one. These days
everyone has got different needs and wishes and that’s why there
are many different operating systems that vary in options. Engines
also work on certain operating systems. The most engines work on
the popular operating systems like Windows, Mac OS and Linux.
It is important for an engine to support as many operating systems
as possible so the software developed on the engine can reach a
wide public.

Our project needs: a game engine which runs on multiple

operating systems (multiplatform). So the game can be widely

spread. Plus, IF this project is taken over by other students it needs

to be possible to run/edit/model on all the other available

platforms.

I. Import 3D files

Some engines don’t have their own 3D modeling program attached
to it, so then its necessary to be able to import files from an extern
modeling program. Modeling programs like 3Ds Max, Maya and
Milkshake are popular programs used by 3D modelers. If these
programs files are supported by the engines, they can be imported
to be used in the software.

Our project needs: a game engine who can import 3D files. We

prefer to use an engine with an integrated 3D modeling tool. So

there will be no problems using the 3D models in combination with

the game engine.

J. Costs

There is a great variety of engines. Engines made by companies in
order to earn money by selling the engines to game developers and
engines made by hobbyist so developers with a low budget or
hobbyist can use them for free to develop games. Depending on the
purpose of your software you will have to consider which type to
choose. The commercial engines may be expensive but they got all
the latest technologies included. The free engines may not have all
the latest technologies included, but most of the time they do have
great support and a big community who helps to improve the
engine.

Our project needs: an inexpensive game engine.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

 1.1.2.3 Game play requirements
 K. Interactivity

Interaction is the kind of action that occurs as two or more objects
have an effect upon one another. In the gaming world this is the
same. For example, if a car crashes into a building, the building
gets damaged. So the interaction between the 2 object is that the
building and the car got damaged as the result of a crash.
To make a game or simulation realistic you should be able to pick
up objects, talk to other players or Non playing characters. This all
is called interaction.

Our project needs: a game engine which makes it possible for

objects in the virtual environment to “communicate” with each

other. If an object does something with a second object, both of the

objects need to react on each other.

L. Movement

The movement in a game is depended on the type of game, but is
always one of the most important features in a game. Movement in
a game is for example, walking with a character. The movement in
a game is mostly controlled with the keyboard or mouse.

Our project needs: a game engine which supports a keyboard (and

probably a mouse) to control the movement of the character /

player.

M. View (Camera)

The view in a game is controlled by cameras. Some games got
cameras that can be controlled by the user and some don’t. The
view is also defined by the type of game. There are first person,
third person and “free camera” games. In first person camera view
you see what is in front of the object you are controlling. That
means looking trough the eyes of a character or see what is in front
of a car. In third person camera view, the camera is behind the
character or object you control. For example: looking at the back
of a character. The “free camera” view means that the user can
control the camera by itself. This camera view is mostly used in
games that have a big area to overview. The view in a game is
mostly controlled with the computer mouse.

Our project needs: different cameras, for different camera views.

Some camera’s need to follow our character, others need to stay

focused on one particular spot.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

N. Artificial Intelligence

Artificial Intelligence is an object or character that is acting out of
his own. This object or character is programmed to react on his
environment. It is programmed to have a mind of his own, based
on certain factors it moves and/or undertakes actions. An AI
controlled character is always trying to maximize his chances of
survival and/or success. Many games that involve enemies with
weapons use advanced AI controlled characters that attack the
player when spotted or when the player attacks them. There are
various combinations of AI and gaming. AI also is a part of
interaction as you can interact with computer controlled characters.

Our project needs: objects which are artificial intelligence. They

need to react on the actions made by the player.

O. Audio & Video

Audio and video make a game more realistic. Sounds of doors
opening, guns firing and the running engine of a car. All these
sounds add realism to the game. What would a game be without
sound? Sound can express happiness and drama.
Video’s in games make it possible to explain certain things or give
an intro to the game. All games these days got storylines which
they show trough videos.
Videos in games also show commercials or promotion material of
well known companies.

Our project needs: a game engine which supports audio and video.

We prefer a game engine with integrated audio and video options.

We want to be able to stream video in-game. We also want the

objects/characters in-game to interact with the player, using

sounds.

P. Menu Building

When you start a game you always begin in the main menu. The
menu displays the options of the game. For example: Single player,
Multiplayer, Options, and Exit. A menu makes it easier for the user
to navigate to the program and also gives the first impression of the
game.

Our project needs: an option for building menus. We need a menu

to start the game, to edit game options and stop/exit the game.

Q. Multiplayer

The most games have a storyline to follow or single player
missions, but some players want to compete against other players

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

just like them. Multiplayer makes it possible for people from all
over the world to play together. The AI in these days games are
very advanced but the human brain still is different from the
computers “brain”.

Our project needs: a game engine which supports multiplayer

options. Like an integrated networking engine. So multiple players

can join the server and interact with each other in-game.

R. Text Display
By displaying text in a game the player can get all kind of
information like; what to do, where to go or who to talk to. Some
engines can display text by using bitmap images. Others engines
got the option “text display” integrated.

 Our project needs: an option to display text in-game.

 1.1.2.4 Extra
 S. Documentation

In order to program and configure the engine properly, knowledge
of the engine is needed. When the programmers of the engine are
not that well known with the engine they can look up certain
subjects in the engines documentation. Having documentation
delivered with the engine thereby is a big plus when purchasing an
engine.

Our project needs: lots of documentation made by the creators of

the game engine, plus documentation written by users.

T. Tutorials

When the documentation of an engine (if supplied with the engine)
isn’t very clear on some points tutorials can help out. Tutorials are
examples of a certain subject explained step by step. Good tutorials
are easy to follow and can be a big help when work with the
engine.

Our project needs: tutorials written by the creators of the game

engine, plus tutorials written by users. This will probably increase

our level of success. This is the fastest way to learn the basic of a

modeling tool or game engine.

U. Community/Forum

If u encounter problems while developing software with an engine
and the documentation doesn’t contain an answer to the problem
you can always ask the community of that engine for help. The

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

community of an engine mostly consists of users that use the
particular engine. They got experience with the engine and may
have encountered the same problem before and can help you to
solve the problems. These communities’ share there experiences
on forums.

Our project needs: a game engine with a community behind it,

willing to help others.

V. Online support

Online support is the kind of support where u can contact the
developers of the engine for questions considering the engine. This
might be useful if no one can help you out with a problem or if you
have any other question considering the engine. Online support is a
service towards the buyer of the engine and not every engine
developer has this service available.

Our project needs: a game engine with some kind of online

support. This isn’t necessary, but it can be very helpful when

you’re having problems.

1.2 Research explanation
We’ll now explain why we used this kind of research, why we selected the engines
and why we made the “Game engine features scheme”.

1.2.1 Why did we use this research approach?
We are researching different engines because of the great offer in engines.
These days more and more engines are being developed. There are free
engines and engines you will have to pay for. Our goal was to find the best
engine for our project, but we couldn’t just take any engine. We preferred a
free engine, but there are lots of free engines and they’re not all the same in
options and quality.
This research has to point out which engine is best fitted for our project.

1.2.2 Why these engines?
 Why did we pick these particular engines to research and not other engines?

It’s pretty easy to answer; we chose these engines based on what engines we
found on the internet and our own experience with game engines. Most of
the engines are free of use. We also chose some engines that cost money to
purchase in order to see if there is a big difference between freeware and
commercial engines. 3D Blender and Second Life were known to us.
Irrlicht, Virtools and Torque are engines that we found on the internet and
Half-life is a commercial engine.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

1.2.3 Why these features?
Not every engine has all the latest techniques, but engines that do have all
the techniques are too expensive. Looking at all techniques we needed for
our project we came up with a list of all features that the engine needed to
contain. So we know which engine is the best for our project.

1.2.4 Why did we use this information display method?
We wanted the information of the research to be displayed as good as
possible. That is why we chose to display the information in one big table.
The engines are displayed on the top of the table and all features are
displayed on the left. When an engine contains the feature noted on the side
a cross is placed in the cell of the table where the feature and engine come
together. This way of displaying information makes it easy to quickly see
which engine has what features.

1.3 Chosen engine
Choosing the right game engine for our project wasn’t that easy. There are many
game engines available, but there are only several good engines.
We needed to research which game engine is the best for our project. We started
our research with making a list of features which our game engine needs to support.
When the list was completed, we started looking for game engines that met the
features of our list. We found several engines on the internet and we used game
engines that we already knew. We listed the engines in a table, together with the
features. By placing crosses in the table if a game engine supported a feature, we
could easily see which game engine supported what features.

Eventually we compared the engines depending on which features they have. We
didn’t only take a look at the features, but also if the engine wasn’t too difficult to
work with. According to the time schedule there isn’t much time to learn the basics
of programming the engine. We also looked if the engine had a modeling
environment included. This makes sure that the models will work with the engine.
Extern modeling programs may make things more difficult then with an integrated
modeling tool. Combining all these requirements we chose the engine which, to us,
seemed to be the best engine for our project.

Game Blender is the game engine we chose. Game Blender is a game engine which
is very complete; it contains a modeling environment and an environment where
games can be created.
Blender contains all the features we need for our project, Blender is free to use and
has a great community that supports it.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Chapter 2

Blender

2.1 Blender information
Blender is open-sourced, community developed software based in the Netherlands.
The software allows for the design and development of 3D models, animations,
photo realistic graphics, architectural walk-throughs, and 3D games. The growing
success of the blender program comes from contributors world-wide. Each
contributor works freely to enhance the program. Blender is comparable to
programs like Maya, Lightwave, and 3D Studio. The biggest difference is that
Blender is free.

Blender was developed as an in-house application by the Dutch animation studio
Neo Geo and Not a Number Technologies (NaN). It was primarily authored by Ton
Roosendaal, who had previously written a ray tracer called Traces for Amiga in
1989. The name "Blender" was inspired by a song by Yello, from the album Baby.
Roosendaal founded NaN in June 1998 to further develop and distribute the
program. The program was initially distributed as shareware until NaN went
bankrupt in 2002.
The creditors agreed to release Blender under the terms of the GNU General Public
License, for a one-time payment of €100,000. On July 18th 2002, a Blender funding
campaign was started by Roosendaal in order to collect donations and on September
7th 2002, it was announced that enough funds had been collected and that the
Blender source code would be released. Blender is now an open source program
being actively developed under the supervision of the Blender Foundation.
The Blender Foundation initially reserved the right to use dual licensing so that, in
addition to GNU GPL, Blender would have been available also under the "Blender
License", which did not require disclosing source code but required payments to the
Blender Foundation. However, this option was never exercised and was suspended
indefinitely in 2005. Currently, Blender is solely available under GNU GPL.

Blender has a great verity of options. Starting with the modeling tool integrated in
the game engine (Game Blender). This has some advantages comparable to the
other modeling tools and game engines. These advantages of Blender will be
explained later on.

2.2 Game Blender information
Game Blender is a sub-application of Blender, the popular open source 3D
application, used to make games using Blender. It is an outgrowth of the application
that Blender once was, which was a 3D application to make games for the Sony
Playstation. The new Game Engine was written from scratch in C++, including
support for standards like Python scripting and OpenAL 3D sound. Blender, being
programmed in C and Game Blender in C++ kept development strictly separated.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Erwin Coumans and Gino Van Den Bergen developed Game Blender in 2000. The
goal was to make a saleable commercial product that users of the freeware Blender
could use to create games and real-time presentations. These games could either run
as stand-alone applications or embedded in a web page; using a special plugin
created from the Game Blender sources. An alpha version of the Internet Explorer
browser plugin is on preview, and Firefox and COLLADA support is under
consideration. Game Blender is used by inserting "logic bricks," "controllers" and
"actuators" to control the movement and display of objects in the engine. Game
Blender is also able to be extended via the Python programming language.

After version 2.37a was released, the game engine was almost completely stable,
but it wasn't until version 2.41 that a complete and stable version of the Blender
game engine was released. Currently, a team is working on developing Blender,
releasing many new additions and changes periodically. Version 2.42 shows even
more additional features being implemented into the game engine, including
integration of the Bullet Rigid Body Dynamics and Vehicle Physics.

2.3 Blender features and benefits
Based on the research done in chapter 3 “Game engine research”, this chapter
extricates the abilities and features of Blender. Blender has a great variety of
options. Starting with the modeling tool integrated in the game engine. This has
some advantages comparable to the other modeling tools and game engines. These
advantages of Blender will be explained later on.

 2.3.1 Features
Blender has a lot of build-in features, these features are listed below:

• Modeling features
o Modeling environment
o Rendering system

• Game Engine features
o Animation
o Collision
o Physics
o Body Dynamic
o Coding/scripting
o Multiplatform
o Import 3D files
o Costs

• Game play features
o Interactivity
o Movement
o View (camera)
o AI
o Audio & video support

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

o Menu building
o Multiplayer
o Text display

• Extra
o Documentation
o Tutorials
o Community/forum
o Online support.

These features are explained in the document: “Game engine research”. By
having all these features, Game Blender has advantages comparing with
other engines. These advantages are listed in chapter 2.2 “Benefits”.

 2.3.2 Benefits
The game engine of Blender, Game Blender; has some benefits comparing
with the other game engines we found. They are as following:

1. Integrated environment; with modeling, animation and game play.

2. Framework with a collection of modules for interactive purposes like

physics (rigid body dynamics), graphics, logic, collision simulation,
sound and networking.

3. GameObjects can behave autonomously by having a set of tools called

LogicBricks and properties. Properties act as the memory, sensors are
the senses, controllers are the brain and actuators allow for actions in the
outside world (muscles). So there can be interactivity by using the
predefined sensors and Logic Bricks.

Logic Bricks:

• Sensors are like the senses of a life form; they react on key
presses, collisions, contact with materials, timer events or values
of properties.

• Controllers are collecting events from the sensors and are able to
calculate them to a result (brain).

• Actuator performs actions on objects (motion etc.).

The logic is connected (wired) with the mouse, Sensors to Controllers
and Controllers to Actuators. After wiring you are immediately able to
play the game! If you discover something in the game you don't like, just
stop the game engine, edit your 3-D world and restart. This way the
development time is drastically cut down!

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 1 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

4. Virtual reality, consisting of content and behaviors (physics, animation
and logic).

5. Blender acts as a complete development tool for interactive worlds

including a game engine to play the worlds.

6. Powerful scripting language Python for more advanced game play

control.

7. True Multiplatform, All flavors of Windows, Linux, FreeBSD, BeOS,

Irix and more.

8. Blender is still being used by a large group of people. So Blender has a

large community, which is willing to help you with any problem.

9. Zero costs.

2.4 User interface (UI)

Figure 2.4.1 User Interface Blender

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

• The main menu panel is located at the top of the screen.

• The main 3D view is shown as a grid area. It shows the current scene
from the top.

• The menu for the 3D view is located below it.

• At the bottom of the screen, you will see the Buttons Panel. The
 GE has its own panel.

Blender's user interface is based on splittable and joinable windows. The main
system is basically a grid with edges splitting the parts. The edges can be freely
manipulated. Each window has a window type.
Actually even the main menu at the top of the screen is a window. It is a window
that contains settings of Blender. The window can be dragged downwards to reveal
these settings. The menu can be put anywhere you like on the screen or even
disabled. This is a big difference compared to conventional software.
Each window contains a header. Header contains basic menus and commands. You
can move the header by using middle mouse button for instance to find more
commands. Menus contain the shortcuts to the commands and can hence be used as
reference when needed.
One of the most important windows in Blender is the Buttons Window. Buttons
Window consists of panels that can have subpanels. Panels have been categorized
and their contents may vary depending on mode you are working in. You can find
essential commands and tools such as rendering settings there.

Blender has several window types:

• Scripts Window: provides access to all registered Blender Python scripts and a
place for GUI scripts to draw in.

• File Browser: Blender will use this window whenever it asks you to load and
save.

• Image Browser: like the File Browser, but shows thumbnails of image files it
finds on disk.

• Node Editor: a newly introduced and very exciting way to handle materials
borrowed from Softimage|XSI’s powerful render tree editor.

• Buttons Window: this is easily the most complex and the most used window
type. It is worth your time to become very familiar with it. Many of Blender’s
powerful features are found inside.

• User preferences: provides the Blender main menu. Also allows you to
manipulate things like; mouse and widget display and user interaction, themes,
autosave, OpenGL lighting, memory, system sound, video, file paths etc.

• Text Editor: a very simple plain-text editor with syntax highlighting and editing
features for Python scripting.

• Audio Window: used for audio sequencing.

• Timeline: a new window to help with animation editing and playback.

• Video Sequence Editor: postproduction editing.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

• NLA Editor: The Non-Linear Animation editor is one of the most powerful
features in Blender. With it you can blend actions and objects IPO’s together.

• Action Editor: this is another useful, and well-used, animation editor.

• IPO Curve Editor: IPO is short for interpolated. All animation is interpolation
between keys, or values at a specific time. Values include: position, rotation,
color, action etc. Learning about IPO’s is very important for animation.

• 3D View: this is the window where you can create, edit, position and animate
your objects.

Figure 2.4.2 Window types Blender

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Blender uses a widget to move, rotate or scale objects. A widget is sometimes
called a manipulator. A widget has three colored handles to drag or manipulate
objects. Each handle is color coded to identify one of the three coordinate axes:

• Red: x-axis

• Green: y-axis

• Blue: z-axis.
By dragging one of these handles, the object will move, rotate, scales along the axis
of the handle (dragging a red handle moves, rotates or scales the object along the x-
axis).

Blender has three widgets:

Transform Rotate Scale

Figure 2.4.3 Widgets

2.5 Interaction by using Blender
Interaction is the main ingredient for gaming. Blender uses the game engine, Game
Blender, for creating this interaction.

 2.5.1 Game Blender
The game engine of Blender 3D is called: “Game Blender”. The engine
controls all the movements made by objects, creates gravity; using the
physics engine and controls the interaction between the objects. To make the
objects react or interact with each other, they need to be scripted. Game
Blender is used by inserting “logic bricks”. These logic bricks can be a
sensor, controller or actuator to control the movement, and display of
objects in the engine. Game Blender is also able to be extended via the
Python programming language.

Figure 2.5.1.1 Game Logic Control Panel

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Blender uses a visual click-and-drag system to create basic game
interactions.

• Sensors; A sensor will detect some form of input. This input could be
anything from a key press, a joystick button or a timer that triggers every
single screen update (or frame) of the game.

• Controllers; Controllers are used to link Sensors to Actuators. They
allow for some more complex control over how sensor and actuators
interact with each other.

• Actuators; An actuator will actually carry out an action within the
game. This can include moving an object within a scene, playing an
animation, or playing a sound effect.

Figure 2.5.1.2 Game Logic Control Panel with a Sensor, Controller and Actuator selected
for the object: Cube.

 2.5.2 Sensors, controllers and actuators logic bricks
Game Blender has 28 different sensors, controllers and actuators. All these
logic bricks make it possible for objects to start “thinking” for their own.

 2.5.2.1 Sensors
 Appendix B1. Sensors, page 45 – 46.

 2.5.2.2 Controllers
 Appendix B2. Controllers, page 47.

 2.5.2.3 Actuators
 Appendix B3. Actuators, page 48 – 49.

2.6 Physics within Blender

A physics engine is a computer program that simulates Newtonian physics models,
using variables such as mass, velocity, friction and wind resistance. It can simulate
and predict effects under different conditions that would approximate what happens
in real life or in a virtual world.

 2.6.1 Particles
To create particles, you will first have to enter the Object menu (F7) or press
the icon with the three-way arrows (the one in a row of 6 icons), which is

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

the icon for the object menu. Then u will have to select the Physics button
which is the icon with the orange/yellow dots. When u clicked these icons, a
menu will show up with 4 fields.
These fields are Fields and Detection, Particles, Soft Body and Fluid
simulation. To enable Particles press the NEW button in the Particles field.

Figure 2.6.1.1 Physics buttons

When the NEW button is pressed, a new menu appears. The menu is divided
in 4 submenu’s, Emit, Display, From and Children. The Emit submenu is
the most important menu for the creation of the particles. In this menu you
set the amount of particles and how long these particles live and when they
end. Particles are mostly textured, because otherwise you won’t be able to
see the particles. You can also use objects like spheres or cube’s to visualize
the particles.

Figure 2.6.1.2 Particles

• Amount: The total number of particles that will be emitted

• Sta: The starting frame of emission

• End: The last frame of emission

• Life: How long the particles will exist after emission

• Disp: Percentage of particles displayed and calculated in 3DView.

 2.6.2 Fluid simulation
To create a Fluid Simulation, you will first have to enter the Object menu
(F7) or press the Object menu icon (The three-way arrows icon (the one in a
row of 6 icons)). Then u will have to select the Physics button which is the

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

icon with the orange/yellow dots. When u clicked these icons, a menu will
show up with 4 fields.
These fields are Fields and Detection, Particles, Soft Body and Fluid
simulation. To enable Fluid Simulation press the Enable button in the Fluid
Simulation field.

If the Enable button is pressed a menu will appear. This menu contains 6
buttons: Domain, Fluid, Obstacle, Inflow, Outflow and Particle.

Figure 2.6.1.3 Fluid simulation

To create a Fluid Simulation there have to be at least two objects. One
object is the Domain which normally is a cube. The Domain is the space
where the fluid simulation is performed. All fluid objects outside of it are
ignored, and the fluid can not flow out of the domain.
The second object is the fluid. The Fluid object is always placed within the
domain. When this scene is simulated the Fluid will release within the
domain and act like a real fluid would.

Figure 2.6.1.4 Fluid simulation - animated

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

2.6.3 Soft body
To make an object Soft Body, you will first have to enter the Object menu
(F7) or press the icon with the three-way arrows (the one in a row of 6
icons), which is the icon for the object menu. Then u will have to select the
Physics button which is the icon with the orange/yellow dots. When u
clicked these icons, a menu will show up with 4 fields.
These fields are Fields and Detection, Particles, Soft Body and Fluid
simulation. To enable Soft Body press the Soft Body button in the Soft
Body field.

Figure 2.6.3.1 Physics buttons

When the Soft Body button is clicked a menu appears with some parameters
for the Soft Body. The most important parameters are Friction, Mass, Grav
and Speed.
Adjusting the parameters gives different results regarding to how the object
behaves.

Figure 2.6.3.2 Soft body settings

• Friction: A generic force against movement that acts on all vertices. A
value of zero means no Friction.

• Mass: The mass of the body in kilograms. Will be shared equally among
all vertices. A higher mass will make the object harder to stop, and the
action of force fields will be smaller.

• Grav: The local gravity, it’s always pointing the negative z-axis.

• Speed: A tweak used while solving the movement. Don’t modify, unless
you have a good reason to do so.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

2.6.4 Rigid body
To make an object Rigid Body, the following actions need to be executed.
First you will have to select the object that has to become Rigid Body.
While having the object selected, enter the Logic menu (F4). You can also
press the icon for the Logic menu which is the icon with the purple Pacman.
By clicking this icon the Logic menu appears. This menu contains 4 fields,
Actor/Bounds, Sensors, Controllers and Actuators. For Rigid Body only the
Actor/Bounds menu is needed.

 Figure 2.6.4.1 Logic panel

In the Actor/Bounds menu press on the Actor button in order to display new
options. Two extra buttons will appear; Ghost and Dynamic. For the Rigid
Body function we will have to choose Dynamic. When the Dynamic button
is pressed two extra buttons will appear, Rigid Body and No sleeping. Press
the Rigid Body button and your object will become Rigid Body.

Figure 2.6.4.2 Actor

2.7 System requirements
Operating Systems:

• Windows 98, ME, 2000, XP or Vista

• Mac OS X 10.2 and later

• Linux 2.2.5 i386

• Linux 2.3.2 PPC

• FreeBSD 6.2 i386

• Irix 6.5 mips3

• Solaris 2.8 sparc.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Optimal specs for hardware:

• 2 Ghz dual CPU

• 2 GB Ram

• 1920 x 1200 px Display with 24 bit color

• 3 button mouse

• Open GL Graphics Card with 128 or 256 MB Ram.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 2 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Chapter 3

Digital university

3.1 What do we want?
When creating a Digital University there are several crucial segments. Of course
you will need a system for interactivity, so people can interact with each other. You
will also need some kind of Internet system so students will be able to log on to the
University. You also need sound effects, but after all one of the most important
segments is a 3D environment. Without a 3D Environment there is no University.
The users of the University won’t be able to see anything and won’t be able to
follow lessons as there is no visual teaching material. The users would also not be
able to see any teachers, students, books etc.

 Without a 3D Environment there visually wouldn’t be a Digital University.

This report will contain information regarding the 3D environment of the Digital
University TU Delft. The report will explain the choices and decisions that were
made during the development of the 3D environment. All the information in the
report is supported by matching illustrations. The report will attend to the design of
the Digital University and the different areas the Digital University exists of. These
points will be highlighted in their own chapters and subchapters. We will also share
our view and experiences on building and designing the Digital University 3D
environment.

3.2 The design
Before we can start modeling objects in Blender 3D, we need to start thinking about
a plan. Therefore we need to make a design of the 3D environment, which includes
all the objects we’re going to build, an interactivity plan (painted on the map) and
we need to find out where the cameras should be positioned within the
environment.

There are three design phases:
1. The idea
2. Sketches (pen & paper – 2D)
3. Digital design (2D).

The first phase (phase 1. The idea); during the first phase the assignment will be
defined. Defining the assignment makes there will be no discussion possible about
the assignment later on. After the assignment has been defined, we can have a look
at how the 3D Environment should look like in game. By writing down these ideas,
they can later on be used to create sketches.

The second phase (phase 2. Sketches); during the second phase several sketches will
be made to give us an impression of the (to develop) 3D environment.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

The third and last phase (phase 3. Digital design); this phase will give us the final
2D impression of the 3D environment. All the models and objects will be created
according to the 2D digital drawings.

 3.2.1 The idea
The assignment is documented in our report: “The Assignment”. It tells us
what to do and provides us some guidelines. The assignment summarized:
Design and build a virtual TU Delft, starting with a lecture room and a

meeting place. Eventually there needs to be some interactivity between

agents, objects and other players.
To accomplish this we need to write down some ideas, about how the
environment should look like.

3 different areas:

• Lecture room:
§ A room to meet other students and teachers
§ A room to follow lectures:

• Presentations on demand

• Should be able to ask the teacher questions
§ A room with lots of interaction:

• Interaction between player and teacher

• Interaction between students (bots/agents - virtual students):
o Bots/agents notice when you enter the room
o Bots/agents notice when you look at them
o Bots/agents and the player should be able to communicate

with each other (chat or voice)

• Interaction between objects in the room (able to touch etc.).

• Corridor:
§ An area to walk from the lecture room to the meeting place
§ An area to meet other students (lots of bots/agents walking around)
§ An area with interaction between bots/agents:

• Collision detection
§ An area which provides information (using posters etc.).

• Meeting place:
§ A place to meet other students and teachers
§ A place to relax and eat
§ A place with interaction:

• Interaction between the player and other students

• Interaction between objects in the room (pick up a glass etc.)

• Bots/agents notice when you enter the room

• Bots/agents notice when you look at them

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

• Bots/agents and the player should be able to communicate with
each other (chat or voice).

 3.2.2 Sketches (pen & paper, 2D)
The ideas are defined and approved by Mr. Prof. Rothkrantz and Mr. Ir. Abd
el Ghany, so now we can start sketching the environment on paper. These
sketches represent the 3D environment (in 2D). They give us an impression
how it would look like in Blender 3D after modeling all the objects. Heights,
lengths, widths and scale aren’t important for the sketches.

 Appendix C. Sketches, page 50.

 3.2.3 Digital design (2D)
The sketches can now be repainted on the computer. This is the last chance
to modify the designs. All the digital designs/illustrations are drawn in Jasc
Paint Shop Pro 9.

 The digital designs:

Figure 3.2.3.1 Digital design - top view

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Figure 3.2.3.2 Digital design - side view

3.3 3D environment
Now we have some idea of how the 3D environment should look like, so we can
start modeling in Blender 3D. Most of the objects are made from scratch, but some
are modeled in 3D Studio and later on imported into Blender. The Blender libraries
aren’t really useful for our project so we need to search for FREE user-created
objects.
The following chapters will explain why we created the lecture room, the corridor
and the meeting place.

 3.3.1 Lecture room
The lecture room is the room where users can follow lectures. This is the
main room in the current version of the digital university, without it, the
digital university would not have any educational meaning.

 3.3.1.1 Objects in the lecture room

• Projector screen

• Lecture room seating and desk

• Teacher’s desk

• Door.

The lecture room’s most important objects are the lecture room
seating’s and desks, and the projector screen. These objects are
most important because of their vital function is this room. The
lecture room seating’s make sure the users are able to follow
lectures comfortable and the desks create a place for the user’s
(exercise) books. The projector screen creates an opportunity to
show presentations or other media to the users.

 3.3.1.2 Where does the interactivity take place?
The interaction in the lecture room takes place at the lecture room
seating’s and desks, the projector screen and the door. There is also
possible interaction between the users or between a user and the

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

teacher. There could also be possible interaction between users and
certain objects like books or pencils.

 3.3.1.3 Why is the lecture room important?
The lecture room is the main reason of creating the digital
university. With the digital university students will be able to
follow lectures while being at home or anywhere else on a
computer. The lecture room represents the real lecture room as on
the university, and creates a feeling that users are still following a
lecture on school.

 3.3.1.4 Object screenshots and explanation
Appendix D1. Screenshot lecture room, page 51.

 3.3.2 Corridor
The corridor separates the lecture room from the meeting place. Its function
is the connection between the lecture room and the meeting place. Users can
use the corridor in order to get from the one to the other room. Later on the
corridor will be extended and will function as a connection between multiple
rooms.

 3.3.2.1 Objects in the corridor

• Bench

• “Poster”(Optional).

The only objects that the corridor contains are 2 benches. Users
can use these benches to rest before college starts, just to relax on
or have a chat before college starts.
An optional object for the corridor would be a “digital” poster.
This poster could contain information about upcoming events or
information regarding the university.

 3.3.2.2 Where does the interactivity take place?
The interactivity in the corridor takes place in whole corridor.
There can be interaction when a user wants to sit down on one of
the benches. A number of agents continually walk certain paths in
the corridor, a user can walk into one of these agents, on which the
agent will respond to the user.

 3.3.2.3 Object screenshots and explanation
Appendix D2. Screenshot corridor, page 52.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

3.3.3 Meeting place
The meeting place is the place where people get together
before/after/during college to meet each other, having a drink,
relax, to study or to have lunch.

 3.3.3.1 Objects in the meeting place

• Couch

• Bar & Bar Stool

• Sink

• Dining Table & Dining Table Chair

• Bin

• Side Table

• Coffee Table

• Wine Glass

• Knife

• Fork & Plate

• Book

• Clock

• Wall Decoration

• Plant.

The most important objects of the meeting place have to be the
dining table & dining table chair and the bar & bar stool. These
objects are both socializing areas within the room. Users enter this
room and will mostly use it to enjoy a drink or have something to
eat. The users use the dining table & dining table chair to enjoy
their food/drink comfortable; thereby the users also have an
opportunity to meet new users. The bar is also a social point,
people are waiting for their drink or are enjoying their drink while
being at the bar and meet new users. The meeting place also
contains a corner with 2 couches, this is area where users can relax
after college or have a chat with the other users.

 3.3.3.2 Where does the interactivity take place?
The meeting place contains several interactivity points. All the
interactivity takes place between:

• Interaction with an object: user picking up a glass

• Interaction with a bot/agent: having a dialog with and agent.
An agent reacting on actions made by the user.

• Interaction with another user: having a real-time chat with
another user.

There isn’t a certain spot where the interactivity takes place, only
the interaction with objects may have a prefixed spot. When the

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

user interacts with an agent and/or user the place of interaction
isn’t defined. An agent could move (if the agent has AI) and so
could a user.

 3.3.3.3 Why is the meeting place important?
The meeting place is of great importance when it comes to
socializing with other users.
The users will be able to communicate with the other users
(students, teachers etc.) while enjoying their virtual cup of coffee.
The meeting place represents all the social activities that would
normally take place throughout the whole university. All these
activities are now focused into one area, as where normally people
would meet each other at different locations. After a digital lesson,
students can gather in the meeting place and evaluate the lesson or
discuss whatever they would like to. The meeting place would also
be a good area for students to interact with the teachers after
college.

 3.3.3.4 Object screenshots and explanation
Appendix D3. Screenshot meeting place, page 53.

3.4 Building and animating the characters

In this chapter we will explain how we created the characters that we use in our 3D
environment, how we modeled the characters and what we used to animate the
characters. We will also explain how we created interactivity between objects and
how we created paths.

3.4.1 3D Modeling
The first thing we had to take care of in order to create a character, was modeling
the character. Our choice to model the character by our own, and not using an
existing model, is because of the high polygons used in existing models. We created
the body majorly by using the functions “Extrude”,” Scale” and by editing the
positions of the vertices.
The whole character actually exists out of one mesh, which is the torso. All other
parts of the body were extruded out of the torso or out of the extruded parts. After
the whole body was roughly created by extruding and scaling, all parts of the body
were “smoothed”.
All the parts were “smoothed” by hand (editing of vertices positions) and on the end
smoothed by Blender’s smooth function.
Appendix E. Figures E1 – E3, page 54.

3.4.2 Armatures
After creating the body of the character, we need to add a bone structure to be able
to continue. An armature is another name for bone, or bone structure. By creating a

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

bone structure for the character, we will be able to animate it which leads to a more
realistic view when the character is moving.
The creation of an armature is relatively easy. We simply add an armature which
represents the spine or “the torso bone”. From there we simply extrude other
armatures for the other parts of the body. After creating an armature for every part
of the body, we named all these parts. This naming of parts will be of great use later
on.
Now there is a model of the character and armatures, and by connecting these
armatures the character will be able to move the body parts realistic.
By “parenting” the body to the armature, and thereby creating name groups, we link
the armatures to the body. Now that the armatures and the body are linked, we
assign which bones to move what part of the body. After this all is done, moving an
armature will move the corresponding body part.
Appendix E. Figure E4, page 54.

3.4.3 Animations
Animating a character is the next step to a more realistic appearance. By animating
the character we made, we can create a walk animation that will be triggered after
(for example) pressing a button.
Animating a body which contains armatures is relatively easy. All that needs to be
done is placing the armatures in the required position and then “lock” them in place.
The position of the armature can be changed in the “pose mode” of the armatures.
The locking of the armatures can be done by using a timeline.
This timeline uses the number of frames as “time”. We lock the position of all the
armatures on the wanted frame position by creating a key frame in the timeline. By
repeating this action we created a full animation of the character moving his arms
and legs and thereby making a walk movement.
Appendix E. Figures E5 –E6, page 54 – 55.

3.4.4 Game logic
In order to implement the character we created into our “game” we used the game
engine of blender to do so. Adding certain functions or options to objects in the
game engine, is done by using Logic Bricks. These logic bricks are pre-
programmed blocks, where the user can adjust certain variables or select options
with the help of a drop-down-menu.
By using these logic bricks we created the possibility to control our character with
the w,s,a,d keys and thereby make him walk forwards, backwards, left and right.
The logic bricks system exists out of 3 categories: sensors, controllers and
actuators. These categories all have their own different logic bricks and by
connecting these 3 categories of bricks to each other, we can “program” certain
actions.
For example: Sensor (keyboard) à AND à Motion. By connecting these 3 bricks,
we can bind a key to let the object move in a direction we want to.
Appendix B1 – B3 (sensors, controllers and actuators), page 45 – 49.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

3.4.5 Mouselook
By using the game logic, the character can move forward, backward, left and right.
But what if we want to turn the character around or look up and down. One way to
have a character make these movements is by using the mouse for this action. With
the help of the programming-language Python, we can make a script to be able to
make these movements. By choosing the Python controller logic brick, a python
script can be used to control the sensor and actuator logic bricks. By using a certain
combination of actuators and sensors together with the script, we were able to
control the character’s body rotation and view.
Appendix F1. MouseLook.py, page 58 – 59.

3.4.6 Bots
In our environment we used computer controlled characters (Bots), in order to
create a more realistic environment. These bots represent teachers or other students
and respond on their surroundings. With the help of logic bricks we can make the
bots respond on anything we want to. For example, they stop moving if the “player”
crosses their path. This detection is done by adding sensors to the object that look
out for objects with the property “player”. They could also be able to detect each
other, to make sure they won’t collide or react on a collision.
The paths that these bots follow are predefined paths. More information of the paths
that these bots follow will be explained in the Path Node section.
Appendix E. Figure E7, page 55.

3.4.7 Path Node
In order to move the bots in a certain pattern, we had to create a Path. A path is a
predefined route of waypoints. In Blender we created cubes as waypoints and gave
the cubes two properties: ‘pathnode’ and ‘switch’. The ‘pathnode’ property is to
make sure that the bot will only “see” waypoints with the property ‘pathnode’. The
property ‘switch’ was added to switch the waypoints on or off in the game.
The bot has also got two properties, but those are different then the waypoint’s
properties. These properties are: ‘node’ and ‘speed’. The property ‘speed’ is used to
define if the bot should move or not. When ‘speed’ is 0 the bot stands still, and
when ‘speed’ is 1 the bot moves with a constant speed. The property ‘node’ makes
sure the bot knows which waypoint is next.
The idea of the path is that the bot moves to the first waypoint and when the bot hits
the waypoint the property ‘node’ will increase with +1. Each waypoint has a certain
value of ‘node’ linked to it, so if ‘node’ reaches the corresponding value the bot will
move towards that waypoint.
This method may sound complicated or like a lot of work, but this is by far the only
way to create a path in blender, without using python or any plug-in.
Appendix E. Figures E8 – E10, page 55 – 57.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 3 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

3.5 Lesson material
The lecture room is the most important room for creating a digital university. With
the digital university students will be able to follow lectures while being at home or
anywhere else on a computer. The lecture room has several objects, including a
projector screen. The projector screen shows us an image with key bindings which
represent a video, image or sound.

 Figure 3.5.1 Image shown on the projector screen

Adding video cut scenes (movie clips that play in between segments of the game) in
the Blender Game Engine (BGE) is easy by using the tool developed by Keith
Gearty. Keith Gearty has developed a simple to use Python tool called "FMV-ed" to
do just that. Keith pointed out that FMV-ed doesn't actually add the video to
Blender, it merely calls the Windows Media ActiveX controller needed to display
the cut scene. This means a pop-up opens on top of Blender, automatically plays the
video, sound or show the image and than closes itself. By pressing the spacebar, the
video pauses. By pressing the spacebar for the second time, the video continues. By
pressing Escape, the player closes. The tool supports/plays .avi, .mpeg, .wma, .gif
and .jpg files. The current license is closed-source freeware, provided as is, without
warranty.

FMV-ed information summarized:
Author: Keith Gearty
Company: Gorgan Studios
Email: gorgan_almighty@yahoo.co.uk
Source: http://www.blendenzo.com/faqMovies.html.

By using this tool, the teacher is able to add his or her own lesson material to the
digital university.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Figure 3.5.2 Objects “behind” the projector screen

Figure 3.5.3 Pop-up; showing a video in Blender

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

The Python scripts can be found in Appendix F1 – F8, page 58 – 75. Comments
included.

3.6 User Interface Digital University

After converting the Blender file to an executable file, the interface for the player
gets something smaller, but it takes less time to render and start the game.
For the most user friendly version of our game, the main menu doesn’t load before
starting the game. You can play the game directly after you started it.
The following page shows us two screenshots of the main menu and “game
interface” for the player.

Figure 3.6.1 Main menu Figure 3.6.2 User Interface player

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Chapter 4
Conclusions and recommendations

4.1 Conclusions
After working with Blender for about 4 months you can say we’re well known with most
of the features and options offered by Blender. We discovered new options every day and
I’m sure we still didn’t use all the features Blender is offering.
We thought Blender had all the features as mentioned in Appendix A. Features Scheme,

page 43 - 44. But Blender did not turn out to be like we expected. We had the most
problems with the interactivity part of Blender. The main goal of this project was to
create an interactive Digital University, where students and teachers could interact with
each other and any object in the university. Blender has a small amount of possibilities
regarding to interactivity though. With the logic bricks we could give objects sensors and
actuators so they could respond on certain objects or actions but these options were too
limited. The only option to add some more interactivity is by using python scripts but
then we would have to write scripts our own, which wasn’t an option due to lack of time.
We also reached a certain point in Blender where the contents of the environment got to
big for the game, as the game took very long to load and the performance of the game
was very low. So if we had managed to create an interactive environment, it still would
have been a failure as the game wouldn’t be to run on an average computer.
Blender does have a great usability. It is very easy to create 3D objects and to manipulate
them. The game engine also isn’t hard to use because of the logic brick system. Blender
also has a great collision and physics engine which are easy to use in combination with
the logic bricks.

Not all of our research goals are realized. Unfortunately “making the virtual environment

interactive” did not worked out as planned, due to an unexpected time consuming
problem.

4.2 Recommendations
So creating a simple game is relatively easy to do in Blender. But if you wish to create a
complicated game with all kinds of features then we advise to use a commercial engine as
they are far more extended.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

References

http://www.blender.org - Blender main page

http://www.gameblender.org - Game Blender forum

http://wiki.blender.org - Blender Wiki

http://blenderartists.org - Blender Artist forum

http://www.blendenzo.com - Blender tutorials

http://www.devmaster.net/engines - Game engines

http://www.blendermasters.com - Blender tutorials

http://www.secondlife.com - Second Life

http://irrlicht.sourceforge.net - Irrlicht engine

http://www.virtools.com - Virtools

http://www.garagegames.com - Torque game engine

http://developer.valvesoftware.com - Valve Developer Community

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

List of abbreviations

2D Two Dimensional
3D Three Dimensional
AI Artificial Intelligence
API Application Programming Interface
BGE Blender Game Engine
GNU GPL GNU General Public License
GUI Graphical User Interface
HRO Rotterdam University of Applied Sciences
PC Personal Computer
SDK Software Development Kit
TU Delft Delft University of Technology
UI User Interface
URL Uniform Resource Locator

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Appendix

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

A. Features scheme

Features
3D

Blender

Half-

Life

Second

Life Irrlicht Virtools Torque

Modeling Requirements:
A Modeling Environment x / x / x /
B Rendering system x x / x x x
 Engine Requirements:
C Animation x x x x x /
D Collision x x x x x /
E Physics (physics engine) x x x x x x
F Body dynamic x x x x x x

G

Coding / scripting C/C++,
Python

C/C++ Linden
Scripting
Language
(LSL)

C++, C#,
VB.Net

C/C++,
Virtools
Scripting
Language

C/C++,
Torque
Script

H Multiplatform x x x x x x

I

Import 3D files 3D Studio,
AC3D,
COLLADA,
DEC Object
File Format,
DirectX,
Lightwave,
MD2,
Motion
Capture,
Nendo,
OpenFlight,
PLY, Pro
Engineer,
Radiosity,
Raw
Triangle,
Softimage,
STL,
TrueSpace,
VideoScape,
VRML,
VRML97,
Wavefront,
X3D
Extensible
3D, xfig
export

XSI, Max
and Maya
.smd

3D Studio
Max,
Maya,
Autocad and
Blender

3DS,
Milkshape,
COLLADA,
Maya,
DeleD,
DirectX .X,
FSRad .oct,
Cartography
shop 4 .csm,
Pulsar
LMTools
.lmts,
My3DTools
3 .my3D,
Quake 2
models,
3DS Max,
Gile[s],
Blender

3ds Max,
Maya, XSI,
Lightwave,
Collada

Milkshape,
3DStudio
Max, and
Blender

J Costs Free
On
request Free Free

$9000-
$10000

$150/
$290

 Game play requirements:
K Interactivity x x x x x /
L Movement x x x x x x
M View(Camera) x x x x x x
N AI x x x / x x
O Audio & video support x x x x x x

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

P Menu building x / / x / x
Q Multiplayer x x x / x x
R Text display x x x x x x

 Extra:
S Documentation x x x x / x
T Tutorials x x x x / x
U Community / forum x x x x / x
V Online support x x x x x x

x = this option is supported by the game engine.
/ = this option is not supported by the game engine.
A-V = each feature has his own character. The character corresponds with the character
in the “Features list” (chapter 2.2).

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

B1. Sensors

Name Figure Description

Joystick

Triggers when either a joystick
button is pressed, or when joystick
is moved along a certain direction
(left/right, up/down).

Message

Triggers when a message is
received.

Ray

This will trigger when an object is
detected along a certain axis. You
can additionally check for the
detected object having a certain
material or property value.

Random

Triggers randomly, change seed
for different sequences numbers.

Property

Triggers when a property changes,
is between certain min and max
values, or is equal or not equal to a
certain value.

Radar

Triggers when an object is
detected within a certain range
(distance and angle). You can
specify a property that the object
must have.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 4 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Near

Triggers when a object is detected
within a certain distance. You can
specify a property that the
detected object must have.

Collision

Triggers when the object is in
collision with another object. You
can specify a material or a
property that the collided object
must have.

Touch

Triggers when an object is
touching another object. You can
specify a property that the touched
object must have.

Mouse

Triggers when certain mouse
event occur, such as mouse button
clicks, mouse movement etc.

Keyboard

Triggers when a certain key is
pressed.

Always

Triggers every single frame.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

B2. Controllers

Name Figure Description

AND

Runs the connected actuator if all
of the connecting sensors are
triggered.

OR

Runs the connected actuator if any
of the connecting sensors is
triggered.

Expression

Evaluates an expression.

Python

Runs a python script.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

B3. Actuators

Name Figure Description

Visibility

Show and hide the current object.

Game

Restart and Quit the current level.
Can also load a new scene.

CD

Allows for control over CD music
tracks.

Message

Send a message to all objects, or
to a certain object. This message
will trigger the Message sensor.

Random

Sets a random value into a
property of the object.

Motion

Allows control over the motion of
the objects. This includes direct
positioning and rotating of the
object (dLoc and dRot), as well as
applying forces to a physical
object to move it (Force and
Torque).

Edit Object

Allows for control over adding,
editing and deleting objects within
the scene at run-time.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Property

Sets the property value of the
object.

Sound

Allows you to control sounds from
within Blender (Only sounds into
Blender will be accessible).

Camera

Allows the camera to track an
object. The camera can be placed
behind the object within a certain
distance (min and max) and
height.

IPO

Allows control over playing object
animations.

Constraint

Constrains the objects position.

Scene

Allows for control over scenes
(loading, playing, suspending
etc.).

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

C. Sketches

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

D1. Screenshot lecture room

Figure D1.1 Lecture room

1. Door to the corridor
2. Lecture room seating’s and desk
3. Teacher’s desk
4. Projector screen

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

D2. Screenshot corridor

Figure D2.1 Corridor

1. The two benches in the corridor, where users can relax, rest or have a chat.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

D3. Screenshot meeting place

Figure D3.1 Meeting place

1. Dining/studying area

Area of the room filled with tables and comfortable chairs where the users can study,
talk or lunch. Users can also meet new people while studying or lunching.

2. Couch Corner

A little corner with 2 couches a coffee table and a side table. The users can relax or
study in this corner of the room. The comfortable couches together with the wall
decoration and the coffee table make this corner a cozy area of the room.

3. Bar

The bar makes sure everyone can buy something to drink. While having a lunch or
while studying people can buy a drink at the bar or have a chat with the people
hanging around.
A couple of bar stools is placed in front of the bar.

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 5 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

E. Building and animating the

characters

Figure E1. 3D Character side view
Figure E2. 3D Character wireframe
Figure E3. 3D Character front view
Figure E4. 3D Character with armatures

Figure E5. Animation window (with key frames and “timeline”)

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Figure E6. Armature’s logic bricks for triggering the animation

Figure E7. Bot’s logic bricks

Figure E8. Waypoints logic bricks

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Figure E9. Player’s logic bricks

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Figure E10. Path Node (All waypoints + bots and player – Old version)

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

F1. MouseLook.py

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

F2. os.py

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 6 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

F3. ntpath.py

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 3 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 4 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 5 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 6 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 7 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 8 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

F4. stat.py

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 7 9 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 8 0 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

F5. UserDict.py

F6. callFMV

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 8 1 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

F7. hasFMVfinished

F8. playFMV

I N T ERN SH I P T U D EL FT – SERI O U S GA M I N G RO T T ERD A M U N I V ERSI T Y / C M I

D I GI T A L U N I V ERSI T Y PA GE 8 2 1 2 - 0 1 - 2 0 0 8

SVEN ANKER - 0773594

ROB VAN DER KAMP - 0772800

Appendix G. Internship Report –

Digital University

