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1. Introduction

People communicate with each other through spoken words and nonverbal behavior. 
Verbal communication is used to convey objective information, whereas nonverbal 
communication is used to convey subjective and affective information. 
Due to a number of reasons, confusion and misunderstandings can arise when people 
communicate with each other. 
A verbal dictionary can be used to look up the spelling of a word, sometimes the 
phoneme representation, the meaning in different contexts and rules of transformation. 

Facial expressions play an important role in human communication. The contours of the 
mouth, eyes and eyebrows play an important role in classification. 
The automatic recognition of facial expressions is a difficult problem because of 
changing light conditions, posture and occlusion. In the past several techniques have 
been developed such as using templates or splines to find the contours of the mouth. Or 
to locate special points around the contours of the mouth and use a classifier to put 
facial expressions in predefined classes (i.e. happiness, sadness, disgust, fear, anger 
and surprise). 
Another method is to use vector flow in video recordings of facial expression. A 
promising method to classify facial expressions in still pictures is to use ideas from Viola 
and Jones. They select some basic features from a picture and then use a classifier to 
select the most promising features to classify faces in predefined classes. 

The goal of the project is to design and implement an algorithm which is able to classify 
a grey-level picture of a front-view facial expression in predefined classes (i.e. 6 basic 
emotions), with no need of a human pre-processing the picture.
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2. Background

I carried out my final project at TU Delft, in the Netherlands, within the framework of the 
exchange program Socrates-Erasmus. 
I worked from March 6th to August 31st, 2006 within the research laboratory of EEMCS 
faculty of TU Delft, inside the KBS group (Knowledge Based Systems), part of the Men-
Machine Interaction department.

Leon Rothkrantz, my professor at TU Delft and Datcu Dragos, as a PhD student at KBS, 
have supervised me. This training period had for main personal objectives:

 To train theoretically and practically my knowledge acquired during 3 
years at ENSEIRB… particularly skills related to my third year course in 
multimedia technologies.

 To work on an international context in order to improve my English by 
using it both for work and everyday life. 

 But also to know how research way of working is, discover the 
Netherlands and its culture, meeting intercultural people to learn from 
them.

My project was part of the whole ISFER project, and meant to be an extension of a 
previous project called FED.

ISFER: 
(Integrated System for Facial Expression Recognition)

The goal for ISFER project is to develop an automated system for facial expression 
recognition.
Since 1992 the research in this field was done by the Knowledge Based Systems group 
of the TU Delft. In the course of the years a lot of working prototypes have been 
developed for different parts of the process of analyzing the face. Some of these 
prototypes are based on neural networks and fuzzy logic, while others are based on 
image processing techniques.
In 1996 the Human Emotion Recognition Clips Utilized Expert System (HERCULES) 
was developed by M. Pantic. This system performs reasoning about the emotions based 
on characteristics of the facial picture which can be obtained in automated way.
In 1997 the idea of the common workbench for all the programs developed so far 
became reality thanks to M. van Schouwen and J. Vollering. Also in this year the name 
Integrated System for Facial Expression Recognition (ISFER) was given in order to 
group all the works in this field.
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FED, E. de Jongh, 2002:
(Facial Expression Dictionary)

The goal of this project was to develop a prototype of an online Facial Expression 
Dictionary, or FED for short, as a first step in the creation of a complete Nonverbal 
Dictionary. A complete Nonverbal Dictionary would contain information about all the 
ways people communicate with each other nonverbally. 
Instead of words, FED contains information about facial expressions. 
FED had several goals to reach: 

 become available as a website
 offer the possibility to issue a nonverbal query through (multimodal) 

content

With FED, issuing a nonverbal query is done through uploading a picture containing a 
facial expression, after which the user semi-automatically determines the location of the 
face and the coordinates of 30 Facial Characteristics Points or FCPs. FED then 
determines the label of the unknown facial expression by comparing the FCP 
coordinates to the FCP coordinates of all entries present in the database. 
Other query possibilities have been implemented as well. It is possible to look for entries 
in FED on facial expression label, active Action Units (an Action Unit or AU is a group of 
FCP correlations describing muscles movements, see section 4.1.4) or specific 
geometrical features. Finally, it is possible to look for entry incrementally, were the user 
iteratively selects the facial expression that resembles the facial expression he is looking 
for the closest. 
The concept of FED as an online Facial Expression Dictionary was tested and found to 
be a viable approach. The FED system is easy to use, adapt, extend and manage. The 
approach taken with FED could be used to create a complete Nonverbal Dictionary.

Actually, if FED system provides a viable approach and good answers to the problem, 
some features were still to be possibly improved or added.

3D faces instead of 2D faces

Currently, the face model used by FED is Kobayashi & Hara face model (Figure 2.1).
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Figure 2.1: The Face Model 
developed by Kobayashi and Hara

Naturally, a 3D image of a facial expression would contain more information than a 2D
image. It would thus be nice to introduce this concept.

Figure 2.2: The Kobayashi and Hara 
Face Model as it is in FED

Several methods to simulate the “3Dness” of faces exist, based on physical or statistical 
models, often utilizing grey-levels as additional information. Points still are computed in 
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2D-coordinates (from 2D-images), but the grey-level intensity is considered as a third 
dimension.

Fully automatic facial expression labeling

The FED system allows users to determine the label of a facial expression shown in a 
picture. This is accomplished semi-automatically: the user has to select a subpart of the 
picture containing the face and determine the positions of the 30 FCPs manually. 
If the face detection and feature extraction step could be performed fully automatically, 
the user friendliness and performance of this type of FED query could be improved. 
Image processing techniques can be used to automatically determine the location of the 
face. Also, the FCPs should be positioned automatically and if needed, displayed to the 
user, who could then manually adjust the FCPs if he thinks some are not positioned 
correctly. 
This could save the user time, and there is no error introduced in the position of the 
FCPs due to incorrect positioning by the user. Of course, the algorithm that determines 
the positions of the FCPs would introduce an error too, but this method is still expected 
to be more robust.

My mission in the end was to build a good face model to recognition, easy to integrate 
on FED or a new facial expression recognition system, bringing improvements in order 
to make it fully automatic and trying to get even more satisfactory results.

Overview

Chapter 3 will give an overview of the theoretic background in which the facial 
expression recognition is set. First, the basic psychological concepts currently accepted 
on facial expressions are briefly introduced. Also in this chapter is an overview of the 
fields of automatic facial expression, with descriptions of several methods implemented 
in previous works. Finally, the subject of information retrieval is briefly reviewed here. 
Chapter 4 describes the conceptual design of the system, from entries (pictures) to 
criterions used for expression recognition, passing by the model chosen to describe
pictures. 
Chapter 5 describes the implementation details of the main algorithms that were used to 
implement the system. 
Finally, chapter 6 is devoted to conclusions. This includes a discussion on to what extent 
the implementation goals are met and conclusions regarding the research goals based 
on the performance and characteristics of the system.
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3. Related Works

3.1 Facial expressions

Facial expressions play an important role in nonverbal communication. Psychological 
research has shown that facial expressions are an indication of someone’s emotional 
state.

3.1.1 Universality of some facial expressions

Cross-cultural psychological research on facial expressions indicates that there may be 
a small set of facial expressions that is universal. This was first suggested by Charles 
Darwin in his work On the Origin of Species. Psychologists Paul Ekman and Wallace 
Friesen (1972), and independently, Carroll Izard (1971) conducted the first 
methodologically sound studies, and concluded that the emotions Happiness, Anger, 
Sadness, Disgust, Surprise and Fear are shown and interpreted in all human cultures in 
the same way. It should be noted that not all social psychologists accept these 
conclusions (e.g., J.A. Russell, 1994). Figures 3.1 and 3.2 show one example for each of 
those 6 emotions.

    
 Surprise                          Anger                           Sadness

Figure 3.1: 3 of the 6 universal expressions of facial emotion
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               Happiness                                  Disgust                                    Fear

Figure 3.2: The 3 other universal expressions of facial emotion

Ekman and Friesen called their 6 emotions the 6 basic emotions. Even though their 
research suggests that all humans are born with the ability to express and recognize 
these 6 basic emotions, it does not imply that emotions are actually displayed, 
experienced and interpreted in the same way across all cultures.

3.1.2 Cultural display rules

Ekman and Friesen explained this discrepancy by introducing the concept of cultural 
display rules. Cultural display rules determine how basic universal emotions are modified 
in a certain culture in certain social circumstances. They performed a study where 
American and Japanese subjects were shown highly stressful films while there facial 
expressions were being monitored. 
When watching the films alone, both American and Japanese subjects expressed 
negative feelings of disgust, anger, sadness and fear. When the experiment was done 
while an older, higher-status experimenter was with them in the room, the Japanese 
carefully hid their emotions, while the Americans continued to show their emotions. The 
conclusion is that facial expressions of emotion are influenced by universal, biological 
factors and also by culturally dependent learned display rules. Figure 3.3 gives a 
schematic overview of the principle of display rules. An emotional stimulus triggers an 
event were a universal facial expression is modified as a result of the relevant cultural 
display rule(s) to create the final facial expression displayed by a person. 
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Figure 3.3: The neuro-cultural theory of emotional expression 
- Cultural display rules

3.1.3 Representation of facial expressions

When developing a facial expression recognition system, it is important to realize that 
there are many possibilities that exist to represent a facial expression. Facial 
expressions can be represented through:

 Pictures
 Video
 Cartoons
 Smiley
 Facial characteristic points
 Active Action Units (see next section)
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As mentioned in the introduction, the basis of a facial expression entry in the system is a 
picture.

3.1.4 Action Units: a universal representation of facial expressions

The findings on the universality of 6 basic emotions inspired researchers to try and find a 
way to measure facial expressions, so that emotions could be objectively measured 
(instead of relying on the subjective interpretation of an observer). Probably the most 
prominent and most used technique to emerge is the Facial Action Coding System 
(FACS), developed by Ekman and Friesen in 1978. In their research they define 44 so-
called Action Units (AUs). Each action unit describes the movement of certain muscle(s) 
of the face. Every facial expression can then be described in terms of which AUs are 
active, i.e. which muscles are flexed and which muscles are relaxed. 

3.2 Automatic facial expression recognition

Automatic facial expression recognition can be of importance for applications in the field 
of human-computer interfaces, monitoring and education. Examples are a computer 
system interface which gives feedback to the user depending on the emotional state of 
the user, or a monitoring system in the cockpit of a plane, which alerts the people in the 
control tower when the pilot becomes stressed. 
Because of the many possible applications, research on automatic facial expression 
recognition has been conducted since the 1970’s. The first subsection describes how 
facial expressions are modeled in current automatic facial expression recognition 
systems. The next two sections describe the three steps that have to be performed by 
any automatic facial expression recognition system: face detection, facial features 
extraction and facial expression classification.

3.2.1 Modeling facial expressions

Basically all of the current automatic facial expression recognition systems use one of 
three methods to model / represent a facial expression. The facial expression is either 
represented in the system as a whole (holistic representation), as a set of facial 
characteristic points or contours describing the eyes, eyebrows and mouth (analytic 
representation) or as a combination of these (hybrid approach). 
An example of the analytic representation is the method of Kobayashi and Hara (1992), 
where the face is modeled as a set of 30 facial characteristic points. 
Terzopoulos and Waters (1993) used the holistic approach and modeled the face as a 
3D wire frame model with texture mappings. An example of the hybrid approach is 
provided by Thalmann (1998), who modeled the face as a wire frame model combined 
with a number of 3D facial characteristic points. 
Another method for representing facial expressions, closely related to the representation 
through AUs, is representation of facial expressions through so-called Facial Animator 
Parameters or FAPs. The FAPs are based on a study of minimal perceptible actions. 
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There are 68 FAPs, divided into 10 groups based on different parts of the face. 
Representation of facial expressions through FAPs is especially useful when trying to 
animate faces.

Since face is a deformable object, and in order to go further than just modeling it, looking 
at approaches to modeling variability is needed. The most common general approach is 
to allow a prototype to vary according to some physical model. Bajcsy and Kovacic 
(1989) described a volume model (of the brain) that also deforms elastically to generate 
new examples. Christensen and others (1995) described a viscous flow model of 
deformation which they also applied to the brain, but it is very computationally 
expensive. Park (1996) on one hand, and Pentland and Sclaroff (1991) on the other 
hand both represented the outline or surfaces of prototype objects using finite element 
methods and describe variability in terms of modes of vibration. Such modes are not 
always appropriate description of deformation and thus not very useful for recognition. 
This is primarily because they normally have more degrees of freedom than there are 
sensor measurements, so that the recovery process is under-constrained. Therefore, 
although heuristics such as smoothness or symmetry can be used to obtain a solution, 
they do not produce a stable, unique solution. Turk and Pentland (1991) used principal 
component analysis (PCA) to describe face images in terms of a set of basis functions, 
known as “eigenfaces”, because they are the eigenvectors (principal components) of the 
training set of faces. Though valid modes of variation are learnt from the training set, and 
are more likely to be more appropriate than a physical model, an eigenface is not robust 
to shape changes, and does not deal well with variability in pose and expression, and is 
actually only well suited to face recognition for identification. However, the model can be 
matched to an image easily using correlation based methods.

3D models also had been described. Poggio and co-workers described image-based 
modeling techniques that make possible the creation of photo-realistic computer models 
of real human faces (1996). They were able to synthesize new views of a face from a set 
of examples views of the face. They fitted the so-called “morphable” model to an unseen 
view by a stochastic optimization procedure, a gradient descent algorithm (1998). This is 
slow, but can be robust because of the quality of synthesized images. Cootes and Taylor 
(1994) described a 3D model of the grey-level surface, allowing full synthesis of shape 
and appearance. However they had not suggested a plausible search algorithm to match 
their grey-level/shape combined model to a new image yet. Nastar and others (1996) 
described a related model of the 3D grey-level surface, combining physical and 
statistical modes of variation. Though they applied it to an image matching search 
algorithm, it requires a very good intensity and spatial smoothing initialization.

Cootes and Taylor (1995) described a shape and local grey-level appearance, using 
Active Shape Models (ASMs) to locate flexible objects in new images. ASM method is 
analytically based on points and contours.
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Figure 3.4: Example face image annotated with ASM landmarks 

Lanitis (1997) used this approach to interpret face images. Having found the shape 
using an ASM, the face is warped into a normalized frame, in which a model of the 
intensities of the shape-free face is used to interpret the image. Edwards (1997) 
extended this work to produce a combined model shape and grey-level appearance, but 
again rely on the ASM to locate faces in new images. The model used in this paper is 
called Active Appearance Model (AAM, Cootes, Taylor and Edwards, 1998) and is a 
direct further extension of this idea, using this time all the information in the combined 
appearance model to fit to the image; it will be described precisely in section 5.

3.2.2 Face detection and facial features extraction

The first step that has to be performed by an automatic facial expression recognition 
system is, given an input image, to determine the position of the face. Automatic 
detection of the position of the face is complex because of the fact that the size and 
orientation of the head may differ for different input images. A simple method is to 
assume input images where the face is visible are in frontal view. In general, methods 
from the field of image processing are applied to detect the face in an input image. 

Detecting a face with its facial features is distinguishing the face and non-faces. This is 
done by using a classifier. There are different kinds of classifying methods. Some well 
known examples are K-Nearest Neighbours (KNN), Tree-Augmented Naive-Bayes 
(TAN) and Support Vector Machines (SVM). The latter is based on some rather simple 
ideas and provides a clear intuition of what learning from examples is about: to 
emphasize, starting with two classes to separate, it looks for the hyperplane with the 
maximum margin between the two classes, where the margin is defines as the sum of 
the hyperplane from the closest point of the two classes. Practical applications have 
already shown outstanding high performances of this classification method, like Osuna’s 
face detection in images (1997). However, despite its success, there are some
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significant and practical disadvantages in the SVM learning methodology, like being 
computationally expensive for datasets with thousands of entries. 

Viola & Jones (2001) described an object detection method they successfully applied to 
face detection. Using an original image representation called Integral Image, where the 
value associated with a point is the sum of all the pixels above and to the left, they 
applied a variant of AdaBoost learning algorithm. AdaBoost is an adaptive algorithm able 
to boost a so-called weak learner by adjusting it step by step with weights accordingly to 
the global error (sum of errors) on a set of classified pictures. 

Another classification method, based on the idea of the Support Vector Machine, is the 
Relevance Vector Machine (RVM) by Tipping (2001). RVM is a Bayesian framework for 
regression and classification with analogous sparsity properties as the SVM. It can be 
seen as a probabilistic version of SVM but without the disadvantages and 
simultaneously providing a number of additional advantages, including the benefits of 
probabilistic predictions, automatic estimation of parameters and the facility to use 
arbitrary basis functions, which are not necessary ‘Mercer’ kernels as in SVM (kernels 
are functions known to pre-process well a dataset such as de-noising, see Figure 3.5). 
Wong (2005) used RVM to detect face and extract features on a video-based recognition 
system.

Figure 3.5: Mercer kernels

The next step that has to be performed by an automatic facial expression recognition 
system is the automatic extraction of facial expression feature information. The method 
used is dependent on the representation method of the face and the kind of input images 
(static or dynamic). If the analytical approach is used to model the face, the relative 
positions and distances between the facial characteristic points are used for facial 
expression recognition. If the face is modelled as a whole, any data structure that 
describes the face as a whole (a complete 2D array of intensity values of the image, a 
labelled graph) can be used to represent the facial expression information. If the hybrid 
approach is used, some facial characteristic points usually determine the initial position 
of a certain template.
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The two steps can also be done at the same time. Covell (1996) demonstrated that the 
parameters of an eigen-feature model can be used to drive shape model points to the 
correct place. The AAM is an extension of this idea. Black and Yacoob (1995) used 
local, hand crafted models of image flow to track facial features, in which the image 
difference patterns corresponding to changes in each model parameter are learnt and 
used to modify a model estimate. However they did not attempt to model the whole face. 
The AAM can be thought of as a generalisation of this, in which the image difference 
patterns corresponding to changes in each model parameter are learnt and used to 
modify a model estimate.

Fast model matching algorithms have been developed in the tracking community. 
Gleicher (1997) described a method of tracking objects by allowing a single template to 
deform under a variety of transformations (affine, projective etc). He chose the 
parameters to minimize a sum of squares measure and essentially pre-computes 
derivatives of the difference vector with respect to the parameters of the transformation. 
Hager and Belhumeur (1998) described a similar approach, but include robust kernels 
and models of illumination variation.
In a parallel development Sclaroff and Isidoro (1998) have described “Active Blobs” 
tracking method. The approach is broadly similar in that they use image differences to 
drive tracking, learning the relationship between image error and parameter offset in an 
off-line processing stage. The main difference is that Active Blobs are derived from a 
single example, whereas AAMs use a training set of examples. Thus, Active Blobs use a 
single example as the original model template, allowing deformations consistent with low 
energy mesh deformations (derived using a Finite Element method). A simple 
polynomial model is used to allow changes in intensity across the object. AAMs learn 
what shape and intensity variations are valid from their training set. Sclaroff and Isidoro 
also suggested applying a robust kernel to the image differences. 

La Cascia and others (2000) described a related approach to head tracking. They 
projected the face onto a cylinder (or more complex 3D face shape) and use the residual 
differences between the sampled data and the model texture (generated from the first 
frame of a sequence) to drive a tracking algorithm, with encouraging results.

3.2.3 Classification

The final task to be performed by an automatic facial expression recognition system is 
the classification of the facial expression displayed in the input image into a certain 
category. Successful classification is only possible if the input images are normalized in 
some way, so that images can be compared with each other. Normalizing all input 
images goes through defining the characteristic points in a coordinate system which is 
independent of the size of the input image and of the size of the face in the input image.
Another important issue involved in the classification is defining a set of categories into 
which the input images are to be classified. This depends on the application domain of 
the facial recognition system. If the system is to be used as a tool for behavioural 
research, it may be desirable to determine and quantify the AUs present in the input 
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image. In other cases it may be useful to classify the input image into an emotion 
category, which is the purpose here.

A number of categorization mechanisms can be used. With template-based classification 
(like in Wong 2005), the unknown facial expression is compared with templates 
representing the classification categories (for example the 6/7 basic emotions). The 
image is classified into the category of the template to which it is closest. 
Neural networks can also be used as a classification method. Neural networks are an 
example of a black box approach. The neural network is trained by using a set of images 
that have been correctly classified as a certain emotion by a human expert. After 
training, the neural network can be used to correctly classify new images of which the 
corresponding emotions are unknown. 
Another method often used for classification in facial expression recognition systems is a 
rule-based expert system. The expert system contains a knowledge base with 
information about facial expression features stored in the form of logical if-then rules. 
The facial features of the unknown facial expression are given as input into the 
knowledge base and the facial expression label is determined through logical inference. 
Datcu (2004) tried both latter approaches for his facial expression recognition system 
(Artificial Neural Network and Bayesian Belief Network), using Principal Component 
Analysis (PCA) for features extraction.
There are several other techniques from the field of Artificial Intelligence that can be 
used to implement the classification component of an automatic facial expression 
recognition system, such as case-based reasoning, fuzzy logic or genetic algorithms.

3.3 Information retrieval

There are vast amounts of information available in (online) computer systems. The total 
amount of information stored worldwide increases each year. Retrieving relevant 
information speedy and accurately is becoming ever more difficult. Since the 
development of the computer, information retrieval systems have been created that aim 
to provide a solution. Although some advances have been made, the problem of 
retrieving all and only the relevant information is still largely unsolved. Figure 3.6 shows 
the general design of an information retrieval system.
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Figure 3.6: General design of an Information Retrieval System

The actual implementation of an information retrieval system depends on the kind of 
information that is to be retrieved. The first information retrieval systems were used to 
search collections of text documents. Instead of parsing each document entirely, 
documents were usually characterized by a limited number of keywords. Advances in 
the field of natural language processing have made it possible to determine the 
relevancy of a document by looking at the entire text, but these methods are time-
consuming and still far from perfect. Below an overview of the search techniques most 
commonly used by current information retrieval systems is given.

Boolean search

A Boolean search strategy retrieves all information that evaluates as 'true' for the query. 
This formulation only makes sense if the queries are expressed in terms of index terms 
(or keywords) and combined by the usual logical connectives AND, OR, and NOT.

Matching functions

A matching function calculates the degree of association between a query and a 
document or cluster profile. An example of a matching function is (With D the set of 
keywords representing the document, and Q the set representing the query):

Serial Search

With this type of search strategy, a matching function is used to calculate the degree of 
association between the query and a collection of documents. The documents can be 



ENSEIRB The automatic recognition of facial expressions TU Delft

Chenet Simon 21

ranked by degree of association, or a threshold can be used to filter out unlikely 
matches.

Cluster representatives

A profile is defined for all identifiable clusters of documents in the total collection. The 
query is matched against these profiles, or cluster representatives. The cluster of 
documents corresponding to the best matching profile is returned.

Cluster-based retrieval

All clusters are ordered in a tree structure. The search starts by evaluating the value of a 
matching function for the top cluster (node 0). The search then proceeds to evaluate the 
matching function for the immediate descendants of the first node. This pattern repeats 
itself down the tree. The search is directed by a decision rule, which on the basis of 
comparing the values of a matching function at each stage decides which node to 
expand further. For example, the node with the highest matching function value could be 
used. A stopping rule determines when to terminate the search and retrieve a cluster.
The above search strategy can be described as a top-down search strategy. It is also 
possible to traverse the tree through a bottom-up strategy, with the terminal nodes of the 
tree evaluated first.

Relevance feedback

This search technique uses feedback provided by the user to iteratively improve the 
relevancy of the returned documents. Experiments have shown that relevance feedback 
can be very effective.
A problem with implementing a relevance feedback system is that it is difficult for users 
to determine the relevance or non-relevance of a document. 
Except for text, computers are also used to store multimodal information. This can 
include images, music, video etc. Multimodal Information Retrieval (MMIR) differs from 
text-based information retrieval in a number of ways. Different search techniques are 
used to retrieve the relevant multimodal information corresponding to a query. The most 
commonly used techniques are based on relevance feedback algorithms. Also, often a 
query can be issued using multimodal content.
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4. Conceptual Design

As seen before, several steps have to be performed to build a system for automatic 
facial expression recognition. A suitable model has to be chosen, which will permit to 
learn the characteristics of 6 basic facial expressions. The Active Appearance Model 
used in this project is thus presented in this chapter. 
First, the analytic representation approach of AAM is presented, showing how facial 
expressions are modelled, from a well-prepared set of pictures with landmarks 
describing face, nose, eyes, eyebrows and mouth contours. The two statistical models 
combined to build AAM are thus consecutively explained so as the training set 
preparation.
Then, the search algorithm is studied, presenting how a new “unseen” facial image is 
fitted to the model built from the training set, and thus approximated in its statistical 
representation.
Finally, the way facial expressions are recognized is explained.

4.1 Model design

Because faces are classes of objects which are not identical, variability has to be dealt 
with. This leads naturally to the idea of deformable models - models which maintain the 
essential characteristics of the class of objects they represent, but which can deform to 
fit a range of examples. There are two main characteristics such models have to 
possess. First, they should be general - that is, they should be capable of generating any 
plausible example of the class they represent. Second, and crucially, they should be 
specific - that is, they should only be capable of generating 'legal' examples that is to say 
limiting the attention of our system to plausible interpretations. In order to obtain specific 
models of variable objects, acquiring knowledge of how they vary is essential.
Where structures vary in shape or texture, it is possible to learn which variations are 
plausible and which are not. A new image can be interpreted by finding the best 
plausible match of the model to the image data. The advantages of such a method are 
that: 

 It is widely applicable. The same algorithm can be applied to many different 
training examples, providing answers not only to facial expression recognition.

 Expert knowledge can be captured in the system in the annotation of the training 
examples. 

 The models give a compact representation of allowable variation, but are specific 
enough not to allow arbitrary variation different from that seen in the training set. 

 The system need make few prior assumptions about the nature of the objects 
being modelled, other than what it learns from the training set (for instance, there 
are no boundary smoothness parameters to be set).
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The models described below require a user to be able to mark `landmark' points on each 
of a set of training images in such a way that each landmark represents a 
distinguishable point present on every example image. For instance, when building the 
model of appearance of the eyes in face images, good landmarks would be the corners 
of the eye, as these would be easy to identify and mark in each image. Thus it requires 
that the topology of the object cannot change and that the object is not so amorphous 
that no distinct landmarks can be applied, which is the case with faces. 

4.1.1 Statistical Shape Model

Here is described the statistical model of shape which will be used to represent faces in 
images. The shape of an object is represented by a set of n 2-dimensions points. Shape 
is usually defined as that quality of a configuration of points which is invariant under 
some transformation. In two dimensions, only the Similarity transformation (translation, 
rotation and scaling) will be considered. The shape of an object is not changed when it is 
moved, rotated or scaled.
Our aim is to derive models which allow us to both analyse new shapes, and to 
synthesise shapes similar to those in a training set. The training set typically comes from 
hand annotation of a set of training images. By analysing the variations in shape over 
the training set, a model is built which can mimic this variation.
Much of the following will describe building models of shape under a similarity transform 
Tθ (where θ are the parameters of the transformation).

Suitable Landmarks

Good choices for landmarks are points which can be consistently located from one 
image to another. The simplest method for generating a training set is for a human 
expert to annotate each of a series of images with a set of corresponding points. 
Points can be placed at clear corners of object boundaries, T-junctions between 
boundaries or easily located biological landmarks. However, there are rarely enough of 
such points to give more than a sparse description of the shape of the target object. This 
list would be augmented with points along boundaries.

Figure 4.1: a T-junction

If a shape is described n points in 2 dimensions the shape is represented by a 2n
element vector formed by concatenating the elements of the individual point position 
vectors.
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Thus, for a single example, the n landmark points {(xi ; yi)}, can be represented as the 
2n element vector, x, where:

(4.1)

Given s training examples, s such vectors xj are generated. Before statistical analysis can 
be performed on these vectors it is important that the shapes represented are in the 
same coordinate frame in order to remove variation which could be attributable to the 
allowed global transformation, T.

Aligning the Training Set

Though analytic solutions exist to the alignment of a set, a simple iterative approach is 
as follows:

The operations allowed during the alignment will affect the shape of the final distribution.
To keep the distribution compact and keep any non-linearity to a minimum, the tangent 
space approach is used. 
Be: 

The goal is to transform each shape into the tangent space to the mean so as to 
minimise D. The tangent space to xt is the hyperplane of vectors normal to xt, passing 
through xt. That is to say all the vectors x such that (xt - x). xt = 0, or x.xt = 1 if |xt| = 1. 
This preserves the linear nature of the shape variation. The simplest way to achieve this 
is to align the shapes with the mean, allowing scaling and rotation, then project into the 

tangent space by scaling x by .



ENSEIRB The automatic recognition of facial expressions TU Delft

Chenet Simon 26

Modelling Shape Variation

Suppose now having s sets of points xi which are aligned into a common coordinate 
frame. These vectors form a distribution in the 2n dimensional space in which they live. 
If this distribution can be modelled, new examples can be then generated, similar to 
those in the original training set, and new shapes can be examined to decide whether 
they are plausible examples.
In particular a parameterised model is searched, with the form x = M(b), where b is a 
vector of parameters of the model. Such a model can be used to generate new vectors, 
x’s. If the distribution of parameters p(b) can be modelled, they can be limited so that the 
generated x's are similar to those in the training set. Similarly it should be possible to 
estimate p(x) using the model.
To simplify the problem, it is to reduce the dimensionality of the data from 2n to 
something more manageable. An effective approach is to apply Principal Component 
Analysis (PCA) to the data. The data form a cloud of points in the 2n-dimensions space. 
PCA computes the main axes of this cloud, allowing one to approximate any of the 
original points using a model with fewer than 2n parameters. The approach is as follows:

The vector b defines a set of parameters of a deformable model. By varying the 
elements of b the shape x can vary using Equation 4.4. The variance of the ith

parameter, bi, across the training set is given by λi. By applying limits of  to the 
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parameter bi, it is ensured that the shape generated is similar to those in the original 
training set.
The number of eigenvectors to retain, t, can be chosen so that the model represents 
some proportion (e.g. 98%) of the total variance of the data, or so that the residual terms 
can be considered noise (see next paragraph).
For instance, Figure 4.2 shows the principal axes of a 2D distribution of vectors. In this 
case any of the points can be approximated by the nearest point on the principal axis 

through the mean:  where b is the distance along the axis from the 
mean of the closest approach to x. Thus the two dimensional data is approximated using 
a model with a single parameter, b. Similarly shape models controlling many hundreds of 
model points may need only a few parameters to approximate the examples in the 
original training set.

Figure 4.2: Applying a PCA to a set of 2D vectors. p is the principal axis. Any point x can 
be approximated by the nearest point on the line, x’

Choice of Number of Modes

The number of modes to retain, t, can be chosen in several ways. Probably the simplest 
is to choose t so as to explain a given proportion (e.g. 98%) of the variance exhibited in 
the training set.
Let λi be the eigenvalues of the covariance matrix of the training data. Each eigenvalue 
gives the variance of the data about the mean in the direction of the corresponding 
eigenvector. The total variance in the training data is the sum of all the eigenvalues, 

.

Then the t largest eigenvalues are chosen such that:

(4.6)

where fv defines the proportion of the total variation one wishes to explain (for instance, 
0.98 for 98%).
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4.1.2 Statistical Appearance Model

To synthesise a complete image of the face, both its shape and its texture has to be 
modelled. Here is described how statistical models can be built to represent both shape 
variation, texture variation and the correlations between them. Such models can 
generate photo-realistic synthetic images.
The models are generated by combining a model of shape variation with a model of the 
texture variations in a shape-normalised frame. “Texture” means the pattern of 
intensities or colours across an image patch. 
Given the statistical model of shape variation, each training example can be warped into 
the mean shape, to obtain a “shape-free” patch (see Figure 4.4). Then a statistical model 
of the texture variation is built in this patch.
There will be correlations between the parameters of the shape model and those of the 
texture model across the training set. To take account of these a combined appearance 
model is built which controls both shape and texture.
The following subsections describe these steps in more detail.

Statistical Texture Model

To build a statistical model of the texture each example image is warped so that its 
control points match the mean shape using a piece-wise affine triangulation algorithm 
explained below.

Supposing an image I, the problem is to warp it so that a set of n control points { xi } are 
mapped to new positions, { x’i  }. A continuous vector valued mapping function f is 
required, such that:

(4.7)

Given such a function, each pixel of image I can be projected into a new image I’. In 
practice, in order to avoid holes and interpolation problems, it is better to find the reverse 
map, f', taking x’i into xi. For each pixel in the target warped image I’ is determined 
where it came from in I and fill it in. In general f’ ≠ f -1, but it’s a good approximation 
enough.
Note that f can always be break down into a sum:

(4.8)

where the n continuous scalar valued functions fi each satisfies:

(4.9)
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This ensures f(xi) = x’i.

The simplest warping function is to assume each fi is linear in a local region and zero 
everywhere else.
In two dimensions, a triangulation (e.g. Delaunay) can be used to partition the convex 
hull of the control points into a set of triangles. To the points within each triangle can be 
applied the affine transformation which uniquely maps the corners of the triangle to their 
new positions in I’.
Suppose x1, x2 and x3 are three corners of such a triangle. Any internal point can be 
written:

(4.10)

where α = 1 - (β + γ) and so α + β + γ = 1. For x to be inside the triangle, the equation 
0 ≤ α, β, γ ≤ 1 has to be verified.
Under the affine transformation, this point simply maps to:

  (4.11)

To generate a warped image each pixel x’ in I’ is taken, deciding which triangle it 
belongs to, computing the coefficients α, β, γ giving its relative position in the triangle 
and using them to find the equivalent point in the original image, I. Sample is done from 
this point and the value into pixel x’ in I’ is copied.

This triangulation removes spurious texture variation due to shape differences which 
would occur if eigenvector decomposition on the un-normalised face patches was simply 
performed. Then the intensity information is sampled from the shape-normalised image 
over the region covered by the mean shape to form a texture vector, gim. For example, 
Figure 4.3 shows a labelled face image, the model points and the face patch normalised 
into the mean shape. 

The sampled patch contains little of the texture variation caused by the exaggerated 
expression - that is mostly taken account of by the shape.
To minimise the effect of global lighting variation, the example samples are normalised 
by applying a scaling, α, and offset, β:

  (4.12)
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Figure 4.3: Each training example is split into a set of points and a `shape-free' image 
patch

The values of α and β are chosen to best match the vector to the normalised mean. Let 
be the mean of the normalised data, scaled and offset so that the sum of elements is 

zero and the variance of elements is unity. The values of α and β required to normalise 
gim are then given by:

  (4.13)

where n is the number of elements in the vectors.

Of course, obtaining the mean of the normalised data is then a recursive process, as the 
normalisation is defined in terms of the mean. A stable solution can be found by using 
one of the examples as the first estimate of the mean, aligning the others to it (using 
equations 4.12 and 4.13), re-estimating the mean and iterating.
By applying PCA to the normalised data a linear model is obtained:

     (4.14)

where  is the mean normalised grey-level vector, Pg is a set of orthogonal modes of 
variation and bg is a set of grey-level parameters.

The texture in the image frame can be generated from the texture parameters bg, and 
the normalisation parameters α, β. For linearity, these are represented in a vector          
u = (α – 1, β)T. In this form the identity transform is represented by the zero vector. 
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The texture in the image frame is then given by:

  (4.15)

Combined Appearance Model

The shape and texture of any example can thus be summarised by the parameter 
vectors bs and bg. Since there may be correlations between the shape and texture 
variations, a further PCA is applied to the data as follows. 

For each example the concatenated vector is generated:

  (4.16)

where Ws is a diagonal matrix of weights for each shape parameter, allowing for the 
difference in units between the shape and grey models. 

Indeed, the elements of bs have units of distance, those of bg have units of intensity, so 
they cannot be compared directly. Because Pg has orthogonal columns, varying bg by 
one unit moves g by one unit. To make bs and bg commensurate, the effect of varying bs

on the sample g has to be estimated. To do this each element of bs is systematically 
displaced from its optimum value on each training example, and sample the image given 
the displaced shape. The RMS change in g per unit change in shape parameter bg gives 
the weight Ws to be applied to that parameter in equation 4.16.

A PCA is applied on these vectors, giving a further model:

  (4.17)

where Pc is the eigenvectors and c is a vector of appearance parameters controlling both 
the shape and grey-levels of the model. Since the shape and grey-model parameters 
have zero mean, c does too.
Note that the linear nature of the model allows us to express the shape and grey-levels 
directly as functions of c:

  (4.18)

where:

  (4.19)
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Or more, to summarize, as:

  (4.20)

where:

  (4.21)

An example image can be synthesised for a given c by generating the shape-free grey-
level image from the vector g and warping it using the control points described by x.

4.2 The training set

As seen previously, system’s entries are grey-level pictures of front-view faces, showing 
one of the 6 basic emotions.
Then in order to train the model, a database of grey-level pictures showing front-view 
faces has to be chosen, sub-sampled (if necessary) and annotated precisely. 
This section presents the Cohn-Kanade database (1999), a standard database for facial 
expression recognition.

Cohn-Kanade database pictures:

Subjects were 100 university students enrolled in introductory psychology classes. They 
ranged in age from 18 to 30 years. Sixty-five percents were female, 35% male, 85% 
European-American, 15% African-American or Asian.
The observation room was equipped with a chair for the subject and two Panasonic 
WV3230 cameras, each connected to a Panasonic S-VHS AG-7500 video recorder with 
a Horita synchronized time-code generator. One of the cameras was located directly in 
front of the subject, and the other was positioned 30 degrees to the right of the subject. 
Only image data from the frontal camera are concerned here.
Subjects were instructed by an experimenter to perform a series of 23 facial displays 
that included single action units (e.g., AU 12, or lip corners pulled obliquely, showing a 
smile) and combinations of action units (e.g., AU 1+2, or inner and outer brows raised). 
Subjects began and ended each display from a neutral face. Before performing each 
display, an experimenter described and modeled the desired display. Six of the displays 
were based on descriptions of prototypic emotions (i.e., joy, surprise, anger, fear, 
disgust, and sadness). These six tasks and mouth opening in the absence of other 
action units were coded by an expert who is certified in the use of FACS. Seventeen 
percent of the data were comparison coded by a second certified FACS coder. Inter-
observer agreement was quantified with a coefficient characterizing the proportion of 
agreement above what would be expected to occur by chance. The mean coefficient for 
inter-observer agreement was 0.86.
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Action units which are important to the communication of emotion and which occurs a 
minimum of 25 times in the image data base were selected for analysis. This frequency 
criterion ensured sufficient data for training and testing of Automated Face Analysis. 
When an action unit occurred in combination with other action units that may modify its 
appearance, the combination rather than the single action unit was the unit of analysis.

Figure 4.4: Facial displays studied for Automated Face Analysis

Figure 4.4 shows the action units and action unit combinations which were selected. The 
action units we analyzed in three facial regions (brows, eyes, and mouth) are key 
components of emotion and other paralinguistic displays, and are common variables in 
emotions research. For instance, AU 4 is characteristic of negative emotion and mental 
effort, and AU 1+2 is a component of surprise. AU 6 differentiates felt smiles, also called 
Duchenne smiles (AU 6+12) from non-Duchenne smiles (AU 12) (Ekman et al., 1990). In
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all three facial regions, the action units chosen are relatively difficult to discriminate 
because they involve subtle differences in appearance (e.g. brow narrowing due to AU 
1+4 versus AU 4, eye narrowing due to AU 6 versus AU 7, three separate action unit 
combinations involving AU 17, and mouth widening due to AU 12 versus AU 20.). 

Image sequences from neutral to target display (mean duration ~ 20 frames at 30 frames 
per second) were digitized automatically into 640 by 490 pixel arrays (PNG files) with 8-
bit precision or grey scale values. Target displays represented a range of action unit 
intensities, including low, medium, and high intensity, above about 2000 pictures.
The Cohn-Kanade AU-Coded Facial Expression Database provides a valuable test-bed 
with which alternative approaches to automated recognition of facial expression and 
person identification may be tested. The database has been widely distributed for 
research in automated facial image analysis and serves as a test-bed and benchmark 
for algorithm development and testing.

The training set which was used in this project is a 400 pictures-sample of the Cohn-
Kanade database, with an increased brightness applied on all pixels. It was done to 
make boundaries easier to see and thus facilitate the annotation process. Resulted 
pictures had been computed into 640x490 PNG files with 32-bit depth. Figure 4.5 shows 
one of those pictures.

Figure 4.5: one picture of the training set

4.3 Fitting the model to a new image

To interpret an image using a model, the set of parameters which best match the model 
to the image has to be found. This set of parameters defines the shape, position and 
appearance of the target face in an image, and is used for further processing, such as 
making measurements and classifying the object.
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There are several approaches which could be taken to match a model instance to an 
image, but all can be thought of as optimising a cost function. For a set of model 
parameters c, an instance of the model can be generated and projected into the image. 
This approximation can be compared with the target image, to get a fit function F(c). The 
best set of parameters to interpret the object in the image is then the set which optimises 
this measure. For instance, if F(c) is an error measure, which tends to zero for a perfect 
match, the aim is to choose parameters c which minimise the error measure.
Thus, in theory all it has to be done is to choose a suitable fit function, and use a general 
purpose optimiser to find the minimum. The minimum is defined only by the choice of 
function, the model and the image, and is independent of which optimisation method is 
used to find it.
However, in practice, care must be taken to choose a function which can be optimised 
rapidly and robustly, and an optimisation method to match.

4.3.1 Choice of fit function

Ideally, a fit function would represent the probability that the model parameters describe 
the target image object, P(c|I) (where I represents the image). Then the parameters are 
chosen to maximise this probability.
In the case of the appearance model described above, the varying parameters are the 
appearance model parameters, c and the pose parameters defining the position, (Xt , 
Yt), orientation, θ, and scale, s, of the model in the image.
The quality of fit of an appearance model can be assessed by measuring the difference 
between the target image and a synthetic image generated from the model. 
Given no initial knowledge of where the target face lies in an image, finding the 
parameters which optimise the fit is a difficult general optimisation problem.
If, however, an initial approximation to the correct solution is known, that is to say it is 
known roughly where the target face is in an image, due to prior processing, local 
optimisation techniques can be used.
Additionally, by taking advantage of the form of the fit function, it is possible to locate the 
optimum rapidly.
The actual Active Appearance Model searching algorithm is described in the following.

4.3.2 Active Appearance Model

Here is described an algorithm which allows us to find the parameters which generates a 
synthetic image as close as possible to a particular target image, assuming a reasonable 
starting approximation (typically the mean appearance model).

Overview of AAM Search

The aim is to treat interpretation as an optimisation problem in which the difference 
between a new image and one synthesised by the appearance model is minimized. 
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A difference vector δI can be defined:

  (4.21)

where Ii is the vector of grey-level values in the image, and Im, is the vector of grey-level 
values for the current model parameters.

To locate the best match between model and image, minimising the magnitude of the 
difference vector Δ = |δI|2 has to be done by varying the model parameters c. Since the 
appearance models can have many parameters, this appears at first to be a difficult 
high-dimensional optimisation problem. However, each attempt to match the model to a 
new image is actually a similar optimisation problem. A possibility is to learn something 
about how to solve this class of problems in advance. By providing a-priori knowledge of 
how to adjust the model parameters during image search, an efficient run-time algorithm 
is reached. In particular, the spatial pattern in δI encodes information about how the 
model parameters should be changed in order to achieve a better fit. In adopting this 
approach there are two parts to the problem: learning the relationship between δI and 
the error in the model parameters, δc and using this knowledge in an iterative algorithm 
for minimising Δ.

Learning to Correct Model Parameters

The appearance model has parameters c, controlling the shape and texture in the model 
frame according to equation 4.20.
A shape in the image frame, X, can be generated by applying a suitable transformation 
to a set of points x: X = St(x). Typically St will be a similarity transformation described by 
a scaling, s, an in-plane rotation, θ, and a translation (tx , ty). For linearity the scaling and 
rotation are represented as (sx , sy) where sx = (s.cos θ - 1), sy = s sin θ. The pose 
parameter vector t = (sx , sy , tx , ty)T is then zero for the identity transformation and 

.

The texture in the image frame is generated by applying a scaling and offset to the 
intensities, gim = Tu(g) = (u1 + 1) gim + u2.1, where u is the vector of transformation 
parameters, defined so that u = 0 is the identity transformation and

.

The appearance model parameters c and shape transformation parameters t define the 
position of the model points in the image frame, X, which gives the shape of the image 
patch to be represented by the model. During matching the pixels in this region of the 
image are sampled and gives gim, and are projected into the texture model frame,         
gs = T-1(gim). The current model texture is given by gm = + Qgc. The current difference 
between model and image (measured in the normalized texture frame) is thus:

  (4.22)

where p are the parameters of the model, pT = (cT|tT|uT).
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A simple scalar measure of difference is the sum of squares of elements of r, E(p) = rTr.
A first order Taylor expansion of equation 4.22 gives:

  (4.23)

where the ijth element of matrix is .
Suppose during matching our current residual is r. The goal is to choose δp so as to 
minimize |r(p + δp)|2. 
The RMS solution is obtained by equating 4.23 to zero:

  (4.24)

In a standard optimization scheme it would be necessary to recalculate  at every step, 
which would be an expensive operation. However, by assuming that since it is being 
computed in a normalized reference frame, it can be considered approximately fixed. It 

can be thus estimated once from our training set.  is estimated by numeric 
differentiation, systematically displacing each parameter from the known optimal value 
on typical images and computing an average over the training set. 
Residuals at displacements of differing magnitudes are measured (typically up to 0.5 
standard deviations of each parameter) and combined with a Gaussian kernel to smooth 
them:

  (4.25)

where w(x) is a suitably normalized Gaussian weighting function.

We then pre-compute R and use it in all subsequent searches with the model. Images 

used in the calculation of  can be examples from the training set. 
The best range of values of δc, δt and δu to use during training is determined 
experimentally. Ideally it means modelling a relationship that holds over as large a range 
error δg as possible. However, the real relationship is found to be linear only over a 
limited range of values. 
Experiments on the face model suggest that the optimum perturbation was around 0.5 
standard deviations (over the training set) for each model parameter, about 10% in 
scale, the equivalent of 3 pixels translation and about 10% in texture scaling.
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Iterative Model Refinement

Given a method for predicting the correction which needs to be made in the model 
parameters, an iterative method can be built for solving our optimisation problem.
Given the current estimate of model parameters, c0 (initialized at 0) and the normalised 
image sample at the current estimate, gs, one step of the iterative procedure is as 
follows:

 Evaluate the error vector δg0 = gs – gm

 Evaluate the current error E0 = |δg0|2

 Compute the predicted displacement, δc = Rδg0

 Set k = 1
 Let c1 = c0 – kδc
 Sample the image at this new prediction, and calculate a new error vector, δg
 If |δg1|2< E0 then accept the new estimate c1 as the new c0

 Otherwise try at k = 1.5, k = 0.5, k = 0.25 etc.

This procedure is repeated until no improvement is made to the error |δg|2, and 
convergence is declared.

A multi-resolution implementation is used, in which is applied the above algorithm at 
each level, until convergence is reached, before projecting the current solution to the 
next level of the model. This is more efficient and can converge to the correct solution 
from further away than search at a single resolution.
This involves first searching for the object in a coarse image, then refining the location in 
a series of finer resolution images. This leads to a faster algorithm, and one which is less 
likely to get stuck on the wrong image structure.
For each training and test image, a Gaussian image pyramid is built. The base image 
(level 0) is the original image. The next image (level 1) is formed by smoothing the 
original then sub-sampling to obtain an image with half the number of pixels in each 
dimension. Subsequent levels are formed by further smoothing and sub-sampling 
(Figure 4.6).

Figure 4.6: A Gaussian image pyramid is formed by repeated smoothing and sub-sampling
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4.4 Features extraction

Once points’ coordinates are computed, expressions cannot be recognized only with 
those. Thus, it is needed to use some of those points to compute useful distances and 
angles which will provide measures in order to determine which expression is displayed. 
The features must be precise enough to cover every possible case. Typically, they will 
describe Action Units. Figure 4.7 shows some of them.

Figure 4.7: Some good discriminative facial features
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4.5 Recognizing facial expressions

Although this part of the project weren’t implemented in time, there were some 
previously developed ideas that could have been discussed about before choosing one.
This section gives some further details about those ideas quickly seen in section 3.2.3.

4.5.1 Template-based classification

In a template-based system, the template can be a pixel image or a feature vector 
obtained after processing the face images as a whole. In general, template-based 
techniques have limited recognition capabilities, which may be caused by the smoothing 
of some important individual facial details, by small misalignment of the faces, and also 
by large inter-personal expression differences. But they are quite simple, and have 
biological validity.
There are several methods of forming a template or using it.

Feature vectors of training samples with same labeled expressions can be simply 
averaged and the average results are used as templates. But templates can also be 
generated by successive training processes: the training set is divided into new training 
sets, each one standing for one label, and thus being composed of pictures showing the 
same expression for different people and/or different emotion configuration.
For instance, in the AAMs, each of the 6 expressions could be represented by a 
normalized shape-template, represented by a computed vector of facial characteristic 
points.
In addition, classification itself - and as a consequence for comparison between a new 
shape/appearance and templates - can be done in different ways. You can either 
compute an error measurement between the template’s shape and the new shape (like 
Mean-Squared Error or MSE), or compute new features from templates (like distances 
and angles between precise characteristic points) then define domains or thresholds 
from data given by templates and finally check if the shape studied match some or all 
constraints given by each template. With latter approach, it is even possible not to give 
one and only one precise emotion label, by giving the user results with percentages. For 
instance, one face can show a happy smile with anger eyebrows (sadistic emotion for 
example), thus it would be a mistake to label it as only one of those two expressions. 
Then result can be like (50% happiness, 50 % anger). With a strict classifier, made to 
put new faces in only 6 categories, this face would have certainly been labeled as 
“unclassifiable”, or less plausible but worse, misclassified.

Practically, templates were revealed not to be efficient enough in facial emotion 
classification (and precise classifications in general), but has the advantage of 
discriminating main expression features. As a consequence, template-based 
classification can be used as a coarse classification, reducing the number of dimensions 
of the problem from 6 (here) to 2. Then a fine classification is used in order to choose 
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between the 2 classes remaining, done by a simple k-nearest neighbor classifier for 
example.

4.5.2 Artificial Neural Networks

The ANN represents learning mechanisms that are inspired from the real world. The 
structure of such a mathematical abstraction would consist in a set of neurons 
presenting a certain type of organization and specific neuronal interconnections.
The Back Propagation approach of the ANN implies that the learning process takes 
place on the base of having learning samples for input and output patterns. In the case 
of learning such a system to model the mechanism of classifying facial expressions, it is 
required to have a set of input and output sample data. 
There would be two stages; first, the training stage would make the system aware of the 
structure and associations of the data, then the second step would be testing. In the 
training step, the system would build the internal knowledge, based on the presented 
patterns to be learned. The knowledge of the system resides in the weights associated 
to the connections between the neurons.
The training of the ANN is done by presenting the network with the configuration of the 
input parameters and the output index of facial expression. Both kinds of data are 
encoded as values in the network neurons. The input parameters are encoded on the 
neurons grouped in the input layer of the network. In the same way, the emotion index in 
encoded in the neuron(s) in the output layer.
Figure 4.8 shows a three-neuron-layers-topology network. The input layer is set to 
handle the input data according to the type of each experiment. The data refer to the 
parameters of the model used for analysis.

Input Layer  Hidden Layer     Output Layer
1bit x 58 parameters = 58 neurons       varying    3 bits for 6 basic facial expressions

Figure 4.8: Structure example of an ANN

Building knowledge in ANN is based on what follows: when the system learns a new 
association in the input/output space, a measure (typically the squared error) is used to 
give the degree of the improvement done or which still has to be done for the ANN to 
recognize all the samples without any mistake.

ANN is capable of storing many more patterns than the input number of dimensions and 
is able to acquire complex nonlinear mappings. However, it requires extremely long-time 
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training, an offline encoding, and is unable to know how to precisely generate any 
arbitrary mapping procedure.

4.5.3 Bayesian Belief Networks

Bayesian networks are knowledge representation formalisms for reasoning under 
uncertainty. A Bayesian network is mathematically described as a graphical 
representation of the joint probability distribution for a set of discrete variables. Each 
network is a direct acyclic graph encoding assumptions of conditional independence. 
The nodes are stochastic variables and arcs are dependency between nodes.
For each variable there exists a set of values related to the conditional probability of the 
parameter, given its parents. The joint probability distribution of all variables is then the 
product of all attached conditional probabilities.
Bayesian networks are statistical techniques, which provide explanation about the 
inferences and influences among features and classes of a given problem. 
Every expression is analyzed for determining the connections and the nature of different 
causal parameters. The graphical representation makes Bayesian networks a flexible 
tool for constructing recognition models of causal impact between events. Also, 
specification of probabilities is focused to very small parts of the model (a variable and 
its parents).
A particular use of BBN is for handling models that have causal impact of a random 
nature. In the context of the current project, networks have been developed to handle 
the changes of the human face by taking into account local and temporal behavior of 
associated parameters.
Having constructed the model, it is used to compute effects of information as well as 
interventions. That is to say that the state of some variables is fixed, and the posterior 
probability distributions for the remaining variables were computed.
By using software of Bayesian network models construction, different Bayesian network 
classifier models can be generated, using the extracted given features used as the input 
to Bayesian network in order to verify their behavior and probabilistic influences. Some 
tests are performed in order to build the classifier then.
Bayesian networks were designed to explicitly encode “deep knowledge” rather than 
heuristics, to simplify knowledge acquisition, provide a firmer theoretical ground and 
foster reusability.
The idea of Bayesian networks is to build a network of causes and effects. Each event, 
generally speaking, can be certain or uncertain. When there is a new piece of evidence, 
this is transmitted to the whole network and all the beliefs are updated. The research 
activity in this field consists of the most efficient way of doing the calculation, using 
Bayesian inference, graph theory, and numerical approximations.
The BBN mechanisms are close to the natural way of human reasoning, the initial beliefs 
can be those of experts, avoiding the long training needed to set up neural networks for 
example, then learning is done by experience as soon as evidence starts to be received.

The expression recognition is done by computing the anterior probabilities for the 
parameters in the BBN (Figure 4.9). 
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Figure 4.9: An AU-based facial expression recognition BBN

The procedure starts by setting the probabilities of the parameters on the lowest level 
according to the values computed at the preprocessing stage. For each parameter, 
evidence is given for both static and dynamic parameters. Moreover, the evidence is set 
also for the parameter related to the probability of the anterior facial expression. It 
contains 6 states, one for each major class of expressions. The aim of the presence of 
the anterior expression node and that associated with the dynamic component of one 
given low-level parameter is to augment the inference process with temporal constrains. 
The structure of the network integrates parametric layers having different functional 
tasks. The goal of the layer containing the first features (here AUs) set and that of the 
low-level parameters is to detect the presence of some features in the current frame. 
The dependency of the parameters on AUs is determined on the criteria of influence 
observed on the initial database. The presence of one AU at this stage does not imply 
the existence of one facial expression or another. Instead, the goal of the next layer 
containing the AU nodes and associated dependencies is to determine the probability 
that one feature presents influence on a given kind of emotion.
The final parametric layer consists of nodes for every emotional class. More than that, 
there is also one node for the current expression and another one for the one previously 
detected. The top node in the network represents the current expression. It has two 
states according to the presence and absence of any expression and stands for the final 
result of analysis. The absence of any expression is seen as a neutral display of the 
person’s face on the current frame. While performing recognition, the BBN probabilities 
are updated in a bottom-up manner. As soon as the inference is finished and 
expressions are detected, the system reads the existence probabilities of all the 
dependent expression nodes. The most probable expression is then given by the larger 
value over the expression probability set.

BBN is capable of discovering causal relationships and has probabilistic semantics for 
fitting the stochastic nature of both the biological processes and noisy experimentation. 
However, it cannot deal with continuous data and have to be partly changed in order to 
deal with temporal expression data.
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5. System implementation

5.1 Preprocessing the data set

5.1.1 Annotating pictures

The training process was done with an independent application, implemented in Matlab.
Seven contours were defined (see Figure 5.1): 

 The face contour defines the global contour of the face, starting from the left, 
slightly higher than the eye-brows, going down to the chin and finishing on the 
other side of the face, at the same level than the first point.

 The nose contour starts from the upper-left of the nose, slightly above the eyes, 
and defines the nose in the whole, not taking account of nasal holes for example.

 The two eye contours both start from the inner corner of the eye, the closest to 
the nose, run along the upper part of the eye, reach the opposite corner, and 
come back to the beginning running through the bottom part. Note that those 
contours are not closed; the last point is not linked to the first one. 

 The two eyebrows contours are defined in the same way, starting from the inner 
corner, reaching the opposite side by the upper part and getting back by the 
bottom part. Those are not closed contours either.

 Last but not least, the mouth contour starts from the inner left corner of lips, runs 
along the inner bottom lips, reaches the opposite corner and comes back to the 
first point running through the inner upper lips. Here again, this contour is not 
closed.

As we can see, the contours of the data pictures are not defined as shown on Figure 3.4. 
Instead of using two contours for both the eyes and mouth, it had been decided to take 
only the external contour for the eyes, and the internal contour (of lips) for the mouth. As 
a matter of fact, modeling the eyes circle around the iris will not bring too much
additional information, as it is always keeping a round form and it often stands in the 
middle of the eye. It is the same for the external lips contour, which looks globally the 
same than the internal contour, bringing very few useful features for the future model. 
Additionally, the implementation has to be real-time oriented as possible as it is, and the 
more contours there are, the longer it will for the model to be trained or used. Figure 5.1
shows the application used for annotating data, with a picture example where contours 
are shown.

Its functioning is quite simple. The left frame shows all PNG files from a directory, whose 
complete path has been given on the top-left field by the user. Then it’s possible to 
display each folder’s picture on the main frame by left-clicking on its name. Once the 
picture is loaded, it’s time to put contour points. 
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The top-right corner presents a radio button field, enabling the successive definition of 
the 7 separate contours. The practical process of putting points for every 400 pictures 
was not completely planned, simply because at this time of the project, the model was 
not chosen yet. So point count change randomly between two pictures and are not 
equidistant at all. However, T-junctions (eyes, eyebrows and mouth corners for instance) 
were always marked with carefulness and precision, as those kind of points are always 
determinant whatever which model is chosen. As for the choice of pictures to be 
annotated, it was done in order to maximize variations between each two images. For 
instance, when two pictures of the same person display the same emotion, without 
significant visible changes in the way it’s displayed, only one is kept.
Speaking of carefulness and precision, as Figure 5.1 proves it, global brightness of one 
single picture is not enough to see every points being set at the same time, even if it had
been optimized in advance. This comes from some contrast differences, depending on 
which part of the picture is covered - shadows around the eyes and underneath the nose 
and the chin can be a real bother - and on which color is the contour, at a lower level. As 
a consequence, 2 action buttons had been added in order to increase or decrease 
brightness. Finally, last buttons are basic methods to be applied to points, like deleting 
current contour to do it over again, loading and saving every points of the picture (not 
only of one contour). Actually, loading a new picture automatically saves current picture 
points, and loads new picture points (if already existing).

In the end, practically putting points on a picture equaled to successive left-clicks on face 
boundaries, designing contours by running along boundaries with respect of contour 
path definitions seen above (points links are displayed automatically by the application). 
In order to be accurate, brightness has to be almost constantly adjusted during the 
process.
Another little but time-consuming problem is that contour boundaries are sometimes 
difficult to distinct precisely, especially for face contour around hairs and upper region of 
nose contour, and not because of brightness but simply because it is a front-view 
picture. Consequently, those parts of contours have to be “guessed” with trying to keep 
somehow a “logical” global structure for each face taken separately of course, but also to 
keep a coherent contour structure among the whole training set.
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Figure 5.1: Pointer application window with example
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5.1.2 AAM files

When saved, points’ coordinates are written in a file with the AAM extension. For 
example, for an image called S001.PNG, once points put and saved, a text file with the 
name S001.PNG.AAM is created with every point coordinates written in it, grouped by 
contour. Plus, the quantity of points for each contour is added at the beginning of the 
contour’s list of points. An example of an AAM file is shown at Appendix B.

5.2 AAM-API: generating the model

5.2.1 Introduction

The AAM-API is a C++ implementation of the Active Appearance Model framework. It 
can be used as a traditional API by linking in an AAM library, or it can be used as a 
precompiled command line program, e.g. as a part of an image analysis course. The 
complete package includes the AAMLab, various Matlab scripts for shape annotation 
and communication with the API, source code documentation and project files.

The AAMLab is a windows program that presents a GUI front-end to some of the 
functionality offered by the API. This includes running model searches, real-time 
visualisation of the modes of variation and training set annotation.

The software runs on the Windows platform and is partly based on the following software 
libraries: 

 MS VisionSDK - image, vector and matrix handling etc. 
 LAPACK - matrix handling, eigen and singular value decompositions etc. 

Microsoft Visual C++ is required to compile or modify the source code.

File Formats

 Image i/o: BMP (8-bits BMP for grey-scale AAM)
 Shape i/o: ASF - AAM Shape File Format (see subsection 5.3.1)
 Model I/O: AMF - AAM Model File Format, Partly binary and partly ASCII format. 

(see Chapter 6 for ASCII results part)

A class graph of AAM-API can be found in Appendix E.
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5.2.2 Model generation

The model generation process was done with AAM-API’s command-line aamc. This 
method makes mainly use of CAAMBuilder and CAAMModel class.
Parameters are a folder path with an image database in 8-bits BMP format, with 
corresponding annotations in ASF format, and a configuration file (text file) allowing 
tweaking the generation process. Such a configuration file can be seen in Appendix D. 
Additionally, all ASF files have to comport the same total number of points, or else aamc
command-line will throw an error.
As a result, the program writes a binary AMF file, named by the user, and two text files, 
one characterizing the model, and one listing the pose parameters (scale, rotation and 
translations) for every picture of the database – of the folder parameter – and giving 
some statistics (mean and standard, minimal and maximal deviations).

5.2.3 ASF files

ASF files are text files, just as AAM files; though it’s slightly more complicated, meaning 
they are more precisely defined. An example of such a file is shown at Appendix C.

An ASF files always starts with some comments, titling the file, and stating the creation 
time of the file. Comments lines start with the ‘#’ character. Then, the number of points is 
written, providing an easy way to check if all ASF files present the same number of 
points. Indeed, the AAM-API model generation requires that all contours are defined with 
the same number of points, this number being the quantity of points of the future 
generated model. 

Then all points are listed, without being grouped by contour the way as AAM files do, but 
displaying more information than just the two coordinates. Actually, ASF files comport 
seven fields useful to us:

 Path number (integer): the contour number which point belongs to
 Type (integer): the way the point will be displayed by the AAM-API
 X rel and Y rel (double): the relative point coordinates; instead of stocking points’ 

coordinates in an absolute format - that is to say the pixel coordinates, which are 
integers, coordinates origin being the top-left corner of the picture - points are 
computed into an image-size relative format. It means that those are the pixel 
coordinates, divided by image attributes - width for x coordinates and height for y 
coordinates – and thus it brings points’ coordinates between 0 and 1. Since those 
coordinates are computed into a double format, this allows more precise 
calculations when generating the model

 Point number (integer): starts from 0
 Connects from and Connects to (integer): the point numbers linked to the current 

point on the contour, defining where the two contour’s segments linked to the 
current point go to. If the contour is not closed, contour’s first and last points are 
linked to themselves.
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Finally, the picture’s name associated to the ASF file is written at the end of the file - in 
the field host image.

5.3 Database conversion

In order to generate the model, and because the annotation process was done 
separately, before finding the AAM-API, training set’s pictures and annotations text files 
must be converted into the right format. Several steps have to be completed: first, AAM
files have to be changed to equalize the total number of points and the quantity of points 
defining each contour. Then those files have to be converted into ASF files, that is to say 
“translated” into the text file defined by the AAM-API. Finally, the 32-bits PNG pictures 
are converted into 8-bits BMP pictures.

5.3.1 ModelConvertor classes

First two classes are basic interfaces enabling to easily manipulate shape points in both 
AAM and ASF formats. Thus both classes’ fields just correspond to the fields defined in 
those text files and seen in previous sections.
Since those classes will be especially used in vectors, one additional copy constructor 
has been defined for each of them. Indeed, copy constructors are always required to 
manipulate vectors, since this is the constructor which is called when simply adding a 
new entry – with the push_back instruction for instance.
AAMPoint’s and ASFPoint’s fields and constructors are made public, and then it can be 
called by the main classes.

class AAMPoint {

public:
int x;
int y;

AAMPoint(){ x=0 ; y=0; }
AAMPoint(int x_p, int y_p) { x=x_p; y=y_p; }
AAMPoint(const AAMPoint &toCopy){ x = toCopy.x; y = toCopy.y;}

};
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The two main classes give the methods for converting the database.

class ASFPoint {

public:
unsigned int PathID;
unsigned int TypeFlag;
double x;
double y;
unsigned short int ID;
unsigned short int ConnectFrom;
unsigned short int ConnectTo;

ASFPoint(int path, int flag, double x_rel, double y_rel, 
int id, int cf, int ct) 

{PathID=path; TypeFlag=flag; x=x_rel; y=y_rel; 
ID=id; ConnectFrom=cf; ConnectTo=ct;}

ASFPoint(const ASFPoint &toCopy)
{PathID=toCopy.PathID; TypeFlag=toCopy.TypeFlag; 
x=toCopy.x; y=toCopy.y; ID=toCopy.ID; 
ConnectFrom=toCopy.ConnectFrom; 
ConnectTo=toCopy.ConnectTo;}

};

class AAMConvertor {

private:
CString filename;

public:
AAMConvertor(const CString &fn) { filename = fn; }
virtual ~AAMConvertor(){}
AAMConvertor(const AAMConvertor &aamC) 

{ filename = aamC.filename; }

const CString GetFName() const { return filename; }
void SetFName(const CString &fn) { filename = fn; }

bool AAM2ASF(int img_width, int img_height, int numP, 
int numFC, int numN, int numE, int numEB, 
int numPM);

private:
AAMPoint FindNextPoint(AAMPoint p0, AAMPoint p1, 

double currentD);
bool AAMResize(int numberP, int numberPFC, int numberPN, 

   int numberPE, int numberPEB, int numberPM);
};
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This class enables to manipulate one AAM file – which path is given by the field filename
– and to generate the corresponding ASF file. 
Since this class is then used in a vector, once again a public copy constructor is defined. 
The filename field being made private, one public accessor and modifier for this field 
have been defined. The main method AAM2ASF enabling to convert an AAM file into an 
ASF file is made public, in order to be used by the ModelConvertor class. This method 
uses private method AAMResize, which uses itself private method FindNextPoint.
AAM2ASF needs all the global model conversion parameters for the conversion 
process, and outputs a Boolean for errors handling, so as AAMResize, although it does 
not need image sizes. AAMResize set AAM files to the right size (right number of 
points), and use FindNextPoint to get the AAMPoint at distance currentD on a segment 
defined by two AAMPoints, starting with the first one.

The final class uses the later class to convert a whole directory with AAM files to 
corresponding ASF files. This class is associated to an AAMConvertor vector, with 
additional fields and methods.

This is where model conversion parameters are loaded, and computed in the eight first 
private fields. The two first parameters are images attributes, which have been 
considered to be the same through the whole training set. The six other ones are the 
predefined quantity of points, in a whole for nbP, and for each contour for the five others. 
Those parameters are loaded from a text file in the InitializeData method, which 
additionally initialize the public vector of AAMConvertor, with the names of the AAM files 
inside the folder determined by the parameter path. It also computes the number of files 

class ModelConvertor : public  std::vector<AAMConvertor>{

private: 
int img_width;
int img_height;

int nbP;
int nbPFC;
int nbPN;
int nbPE;
int nbPEB;
int nbPM;

int nbfiles;
public:

ModelConvertor() { nbfiles=0; }
virtual ~ModelConvertor(){}

bool InitializeData(const CString &path, const CString 
&model_param);

bool ConvertData2ASF(const CString &path, const CString 
&model_param);

bool ConvertPNG2BMP(const CString &path);
};
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added to the vector into nbfiles. ConvertData2ASF calls this method, before applying 
one by one AAM2ASF with all AAMConvertors inside the vector, using ModelConvertor 
fields loaded with InitializeData.
As for the ConvertPNG2BMP method, it uses CXImage library to simply generate 8-bits 
BMP files from all 32-bits PNG files of the folder path.

5.3.2 Normalizing points
(AAMConvertor::AAMResize)

This method takes in parameter all the number of points for each contour, which are 
loaded from the model_parameters text file with the ModelConvertor class. 
This method reads a .PNG.AAM file, and creates an .AAM file of the same name, that is 
to say a new AAM file well prepared for the further training process.
When reading through the file, every time ‘#’ is found means that a list of points for a 
new contour has been reached. Depending of the contour’s ID read after the ‘#’, the 
number of points NP defined for the contour is initialized, accordingly to the parameters. 
Then the whole list of points is read, and stocked in an AAMPoint vector. 
Obviously, the first and the last contour points will be kept.

At first, it was decided to use those points and especially the contour it defines to keep
T-junctions, and to discard some other points until the right quantity is reached.
This is of course in the case points are more numerous than it should be in the end. Else 
some points are just equally added between existing points until the right number is 
reached.
Thus for the tough case, all points are studied in order, except for the first one and the
last one. Each other point is then studied by using the two segments of which it is an 
extremity, as shown on Figure 5.2.

Figure 5.2: detecting a T-junction

With this configuration, deciding if point C is a T-junction or not can simply be defined by
determining if the scalar between vectors CB and CD is positive or equals to zero. But 
the angle is actually not enough for deciding if a point is a T-junction or not. As a 
consequence, it was decided to use another prediction measure: detecting a T-junction 
was decided to be detecting a change in direction in x or y. 
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Consequently, points are studied 3 by 3, and evolution of coordinates on those points is
checked to see if there is a T-junction. For example, with Figure 5.2, y-coordinates 
increase from B to C and from C to D; but obviously C’s x-coordinate is lower than B’s 
whereas D’s x-coordinate is higher than C’s. A change of direction in x-coordinates is 
detected, and the T-junction is declared. Lots of cases have to be considered then, and 
a point – the one on the middle, C on Figure 5.2 – is not considered a T-junction if, for 
the 3 points:

 x-coordinates and y-coordinates increase or decrease both
 x-coordinates increase and y-coordinates decrease
 x-coordinates decrease and y-coordinates increase
 x-coordinates stay still and y-coordinates increase or decrease
 y-coordinates stay still and x-coordinates increase or decrease

Note that increasing/decreasing can mean “staying still for one of the segment and 
increasing/decreasing for the other one”.

Once a point is detected not to be a T-junction, it has to be deleted somehow. It is not as 
easy as it seems to be, since simply deleting a point make losing much contour 
information. Indeed, given 3 points, simply deleting the middle one and linking the 
extreme ones is really not a thing to do, reducing the contour precision and thus the 
shape approximation for the future model. In order to delete this point without losing too 
much precision on the contour, the following algorithm is applied:

Let A,B,C,D,E,F,G be 7 consecutive points on a contour, where C is the current point, so 
neither B is the first contour point nor D is the last contour point.

 if BC>=2, then displace B on [BC] such as BC=|BC/2|, and discard C
 take F as the next point to be studied

 else if CD>=2, then displace D on [CD] such as CD=|CD/2|, and discard C
 take G as the next point to be studied

 else just discard C, and take D as the next point.

Of course, if B is the first point, it won’t be displaced, same thing for D if it is the last 
point. And it is also possible that E or F doesn’t exist, in this case there is no next point, 
same thing if it should be D and it is the last point.
Testing if segment size is higher than two is done for checking that there will be a pixel 
between the two points enabling to displace B (or D) on it. Finding a point on a computer 
equals finding a pixel, which is why the absolute value is taken when displacing B or D.
The next point to be studied is chosen in order to avoid a bad approximation resulting 
from the combination of deleting two successive studied points. For instance, taking the 
“contour” defined by A,B,C,D,E,F,G,H, deleting C transforms it into A,B,D,E,F,G,H. If no 
points have been moved, this means B,C,D were close, then just deleting C do not 
change the contour much and B,D,E can be the next three points of the algorithm. But if 
B has been displaced, it should not be displaced again or else AB would become too 
large, plus D should not be changed either or else BD would form a combined 
approximation, less accurate than only one alone of course. Then E,F,G are the next 
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three points. Finally it is the same problem if D is displaced, neither D nor E should be 
displaced next iteration, then F,G,H are taken.

This algorithm is applied by iterating it on the whole contour, but since running through 
the contour only once can be not enough, the contour is read the number of times 
needed to reach the right contour quantity of points.
However, if this algorithm can be enough for generating the statistical shape model, it 
did not provide satisfactory results for the texture model, and a fortiori for the combined 
appearance model. This can be explained by the fact that points’ locations are not 
necessarily the same from one picture to another. It depends on the annotation process, 
where changes in direction can happen at different locations. Plus, annotated contours 
don’t have necessarily the same number of points from an image to another. As a 
consequence, nothing ensures that two corresponding points in two different pictures are 
efficiently related. Then another algorithm is applied to ensure this attribute. 

The aim here is to put equally distant points on the contour, starting from the first point 
and ending on the last point. The total length L of the contour is computed by summing 
all contours’ segment lengths. The distance between two consecutive points is then       
D = L/(NP-1), where NP is the target number of points. The algorithm is quite simple, it is 
to run through the contour previously defined while putting equally distant points and 
deleting others. However, it is slightly more complicated when it has to be implemented 
because of the discreet computer’s representation.
First, it cannot be done inside the vector, because the contour defined by the annotation 
process has to be kept as the contour to be considered, or else every time an old point is 
deleted, the contour changes and so as the distance D.
In addition, even if distances are computed in double, precision is not enough and pixels 
coordinates are still integers, so putting a point on a pixel at a certain distance from 
another pixel is an approximation operation. Then a threshold t has to be defined under 
which the right distance is said to be reached. 
The algorithm iteration is then defined as:

Let d=D stand for the distance which has to be done before putting an other point, and 
AB the length of the current segment [AB], and C the next point on the contour

 if |AB-d| < t*AB then add B to the new contour list of points, and take [BC] as 
the next segment with d=D

 else if AB < d then just take [BC] as the next segment with d=d-AB
 else AB > d then find and add P to the new contour list of points, such as it 

belongs to [AB] and AP=d, then take [PB] as the new segment with d=D

The main operation is then to find P when AB > d, which is done in FindNextPoint
method. The equation defining x-coordinate of any point P belonging to segment AB can 
be: x(P) = k*x(B) + (1-k)*x(A), where k evolve between 0 and 1. It is of course similar for 
P’s y-coordinate. Then when computing distances, AP=k*AB. Thus FindNextPoint
algorithm is theoretically to compute AP=k*AB with all k’s between 0 and 1 until AP=d. 
Practically of course, k is decremented starting from k=1 (or incremented with k=0), that
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is to say that k’s accuracy is limited. Then k is initialized to k=1, and decremented by the 
threshold t at every step. Deciding if loop has to be stopped is then done by testing if 
k*AB ≤ d – which means that k*AB ≤ d ≤ (k+t)*AB, which is equivalent to |k*AB-d| ≤ t*AB. 
In the end, this ensures that AP ≈ d while being smaller than d, thus ensuring that the 
right number of points will be added to the new contour list of points.

Of course, every time a point is added to the “output” list of points, the algorithm checks 
if the right number of points have been reached, since a priori distances between those 
points are a little smaller than D. This is obviously because of the algorithm, but also 
because pixels’ coordinates are integers and not doubles. Though if the accuracy of 
threshold t is good enough, this test should not been verified and the entire contour 
studied. However, for the same reasons, it is 100% sure there will not lack points by 
examining the contour just once. It was decided to take t=0.01 as threshold value, since 
it seemed to give enough satisfactory results.

Every time a contour – an AAMPoint vector – have ended to be studied, generating 
another AAMPoint vector defining a contour with the right properties, points’ coordinates 
are written in the output AAM file, with the suitable structure of course. A mistake which 
shall not be done once points have been written on the AAM text file is forgetting to clear 
vectors, which avoids examining the same contour points all over again. 
In the end, when all contours have been examined, output is closed and is ready to be 
converted in ASF format. Note that if AAMConvertor filename was S001.PNG.AAM, it is 
updated to S001.AAM, since this will be the one to be converted.

5.3.3 Writing ASF files
(AAMConvertor::AAM2ASF)
(ModelConvertor::ConvertData2ASF)

Once contours have been normalized and written into an AAM file, it can be converted in 
an ASF file. It simply equals to read the AAM file contour by contour, every line 
coordinates being used to add an ASFPoint to a global vector. This vector will in the end 
be used to write the list of points into the ASF file, with the right structure, after having 
written the number of model points and before writing the host image.
As for ASFPoint fields, they are filled in this way:

 PathID (Path number in ASF files) is determined by the number read at the 
beginning of a contour in AAM file, minus 1 because in AAM it starts from 1 
whereas in ASF it starts from 0 

 TypeFlag (Type in ASF) is also determined by the same number, except that it
does not change for both eyes on one hand, and both eyebrows on the other 
hand

 x, y (X rel, Y rel) are computed from AAM’s coordinates by dividing x-coordinate 
by image width and y-coordinate by image height. Image attributes are given as 
parameters
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 ID (Point number) is simply computed with a incremental index inside the loop, 
starting from 0

 ConnectFrom, ConnectTo (Connects from, Connects to) are generally given by 
ID-1 and ID+1, except for first and last points. For those points, it depends on if 
the current contour is closed or not. If the contour is closed or not is decided from 
PathID of course, since contours are always listed in the same order. If contour is 
not closed, first point’s ConnectFrom field is given by current ID,  so as the last 
point’s ConnectTo field – meaning that first point and last point are linked to 
themselves. If contour is closed, first point’s ConnectFrom field is given by the 
total number of points minus 1,  and the last point’s ConnectTo field is given by 
the total number of points minus the current contour number of points. Note that 
the total number of points correspond to the quantity of points read from AAM
file, computed at the beginning of a new contour thanks to the current contour 
number of points given in AAM file after PathID number.

After the AAM file has been read and the ASFPoint vector is generated, a quick check 
about the total quantity of points read from the AAM file is done by comparing it with the 
number of model points given in parameter. Then the ASF file is actually written by using 
the ASFPoint vector.
One final mistake not to be done is to write the entire path for the host image at the end 
of ASF file. This “field” is just supposed to show the corresponding image’s name, 
confirming that ASF annotations must be inside the same path than their corresponding 
BMP pictures for the model generation.

Finally, this method is applied to a whole path of .PNG.AAM files in ConvertData2ASF
method by using an AAMConvertor vector. This vector is initialized in InitializeData
thanks to a WIN32_FIND_DATA file descriptor and a file HANDLE enabling to look for 
.PNG.AAM files inside a given directory which path is given as a parameter. Then
AAM2ASF method is called for every AAMConvertor of the vector (this method calling 
AAMResize). Additionally, once all ASF files have been generated, “temporary” AAM 
files (the ones which are normalized) are deleted.

5.3.4 Converting pictures
(ModelConvertor::ConvertPNG2BMP)

Similarly as in ConvertData2ASF, a folder which path is given as a parameter is read for 
searching for PNG files. Every time a PNG file is found, CXImage library is used to load 
it in a CXImage format. Then, it is simply saved into 8-bits BMP picture, still using 
CXImage library and structure.

5.4 Active Appearance Search

The AAM-API doesn’t only provide methods for generating the model, but also for 
reading it of course, and more important to manipulate shapes. Consequently, starting 
from a new image, it provides the needed methods to initialize the model fit in order to 



ENSEIRB The automatic recognition of facial expressions TU Delft

Chenet Simon 58

approximate the shape first, before optimizing it. Indeed, as seen in chapter 4, the Active 
Appearance Model needs a good initialization to be efficient. In this section, both 
initialization and optimization processes are detailed.

5.4.1 Initialization method

Once the model and the picture have been correctly read from disk, the goal of 
searching is to find the model parameters (called c in chapter 4).
The system is meant to be integrated into a more global system where face detection 
will pre-process the pictures, thus giving a good initial approximation to the place where 
to put the shape. 
So the initialization is rather simple. It requires getting the information by the face 
detection process, about the global position of the face – actually the coordinates of the 
center of the square defining face’s position – and its global size – height and width of 
the same square. 
The initial shape inserted is the reference shape, defined as the mean shape scaled to 
the mean size, with no rotation on it, and extracted from the model (CAAMModel 
RefShape method). Thanks to the information given by the face detection process, the 
reference shape can then be translated, making the center of gravity of the shape –
actually the center of gravity of the points – to correspond to the center of the square; 
and scaled, using the face attributes (CAAMShape COG, Translate and Scale methods). 
This gives a first approximation of model parameters c.

5.4.2 Optimization method

To optimize the model fit, first some constants have to be defined. As we can’t be 100% 
sure the optimization process will converge, in case the initialization were not good 
enough, the optimization process will be iterated 30 times at worst. The convergence is 
declared when the error measure is under 0.01.
Then the initial error (and error vector) between the model and the image is computed, 
that is to say the pixel difference from a model instance (defined by c) and an image. To 
calculate this error, first the model texture and shape model has to be generated, using c
(CAAMModel TextureInstance and ShapeInstance methods). Then, the shape model is 
aligned on x coordinates, and texture for shape points is sampled from the image
(CAAMShape AlignTo and CAAMModel SampleShape methods). Finally, the difference 
between the texture instance and the texture sample corresponding to shape points is 
computed, and its similarity measured, using the non-normalized L2 norm. Note that if 
the initial shape was define outside the image, the algorithm terminate here.
This process is repeated, updating pose and model parameters using the error vector
and the coefficient k=1, computing the new error, and if it is inferior to the previous error, 
parameters are accepted as the new ones for next iteration. Of course, pose parameters 
are constrained in range, so they have to be checked, to be sure the model will be inside 
the image for example, or not to stand for a rotation of more than +180° or less than -
180° (CAAMModel ConstrainSearchParameters method). Else if the new error is 
superior, the prediction is damped updating model parameters with k=0.5, later then 
k=0.25.
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The (input/) output shape is the last one of the iteration process, even if it occurred 30 
times. Thus, the final error, the number of iterations and the number of damping process 
needed are given as a result.

Once the shape is optimized, it can be easily written in ASF format with AAM-API 
methods.

5.5 Results

5.5.1 Generating the model

The methods described above were used to build the model of facial appearance. The
training set is made of 400 images of faces, each labelled with 122 points around the 
main features.
From this, a shape model with 22 parameters were generated, a shape-free grey model 
with 122 parameters and a combined appearance model with only 58 parameters 
required to explain 95% of the observed variations. The model used about 44,000
texture samples to make up the face patch.
Model ASCII results can be found in Appendix F.

5.5.2 Active Appearance Model search

The optimization method was applied to the face model described above. After 
performing linear regression, a square error statistic (R2) is computed for each 
parameter perturbation δc to measure how well the displacement is “predicted” by the 
error vector δg. The average R2 value for the 58 parameters was 0.91, with a maximum 
of 0.98 and a minimum of 0.47.

To obtain a quantitative evaluation of the performance of the global algorithm, the model 
was tested on a different set of 48 labelled images. 
On each test image, the model is systematically displaced from the true position by ±15
pixels in x and y, and changed its scale by ±10%. Then the AAM search is run, starting 
with the mean appearance model. About 7776 search configurations were run, 162 on 
each image, each taking an average of 3.88 seconds on a Intel Pentium 4 3 GHz with 
512 Mo RAM. Of those 7776, 528 failed to converge to a satisfactory result (the mean 
point position error was greater than 7.2 pixels per point). Of those that did converge, the 
RMS error between the model centre and the target centre was (0.533; 0.56) pixels. The 
standard deviation of the model scale error was 12%. The mean magnitude of the final
image error vector in the normalised frame relative to that of the best model fit given the 
marked points was 0.72 and the standard deviation was 0.11. Figures 5.3 and 5.4 show 
initialization and final optimization of AAM search.
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Figure 5.3: AAM search initialization

Figure 5.4: Final AAM search optimization
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6 Conclusion

This paper showed a way to automatically extract contour points from a face. Several 
improvements can be done.
First and foremost, there was not enough time to complete the whole system of 
recognition. Then, features extraction and especially recognition process have to be 
implemented.
Secondly, AAM search takes an average time of nearly 4 seconds, which is too slow for 
a real-time oriented system. This is mainly because of the time it takes for loading the 
model. Then the model training set can be tweaked by defining less contour points or by 
decreasing its size. Another possibility is to reduce the variation percentage wanted to 
be explained by the model. Any case, it will reduce model’s accuracy more or less, so 
those parameters have to be optimized such as time computation is less than 1 second 
while trying to keep satisfactory results in the mean time. However, some says that 
Active Appearance Model should not be used for real-time systems. My opinion is that if 
it is useless now, it could however become really interesting in couple years with better 
and better computation capacity.
This slowness is also the reason why multi-resolution implementation was not used, so it 
is also an improvement to take into account once the system is faster.

Applications for those kinds of systems are numerous. A facial expression dictionary, 
and then a non-verbal dictionary are the main project of KBS department. But of course 
other applications are obvious in video surveillance. Indeed, it could partly automate 
aggression detection from a video flux, instead of having an operator looking at dozen 
screens. If an aggressive face emotion or a scary face emotion is displayed by 
someone, then alert is given to the operator, which can decide what to do. Another 
viable application would be to listen to suspicious conversations. Thus video camera 
would have a long-range microphone and when detecting several suspicious, worried or 
badly determined persons’ face emotions, it could eventually record their conversation 
by targeting them with the microphone.

Training into image analyzing and processing was very instructive and I’m now more 
skillful with speaking English and Visual C++.
My experience here accentuated my desire to work on an international context (even 
more on Netherlands which is so much a welcoming and understanding country), 
whereas I didn’t feel really comfortable with research way of functioning. 
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Appendix

A. Specifications

i. Softwares needed

o Windows XP

o Visual C++ with MS VisionSDK, CLAPACK and CXImage installed to compile 
sources

ii. System specifications

Functional requirements

o Fully automated way to efficiently locate faces and characterize expressions 
(with landmark points)

o Recognize a facial expression from that information among 6 basic emotions: 
fear, anger, disgust, happiness, surprise and sadness, plus neutral eventually

Non-functional requirements

o Running demonstrator of the system (displaying contours, showing search…)

o Easy to integrate

iii. Anticipated Schedule

Week 1-4:       Study previous related internal and external works
Week 5-8:    Find an efficient and robust model which allows to locate face contours 

automatically and which provides additional information than just the 
shape

Week 9-16:     Implement the model and test it
Week 17-18:  Find and compute the characteristics values of the front-view face for a 

pictures sample of the Cohn-Kanade database.
Week 19-24:   Find, implement and test the algorithm for the expression recognition
Week 25-26:   Write the report
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B. Example of an AAM file

Points for Active Appearance Model
#1:36
260,177
260,218
260,267
261,284
262,303
263,319
265,329
268,339
273,351
283,366
294,381
312,395
332,408
344,414
352,417
361,421
372,423
385,423
398,423
413,421
428,418
441,413
453,405
461,394
468,383
476,375
487,363
495,349
498,340
503,329
503,311
503,301
503,270
503,247
503,206
503,170
#2:34
362,212
365,223
366,236
365,246
363,258
360,268
355,274
349,278
344,284
342,289
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342,297
349,301
356,300
364,300
368,304
374,308
381,309
388,307
392,302
404,298
401,298
411,298
416,296
418,289
417,284
410,275
402,271
392,265
389,259
389,249
389,237
389,228
391,218
395,209
#3:16
347,227
341,221
335,218
329,213
320,210
312,210
304,211
298,215
293,220
299,225
307,230
314,230
322,229
329,228
338,228
342,227
#4:18
406,226
413,220
420,216
426,211
432,208
438,206
444,206
451,209
456,212
462,216
466,222



ENSEIRB The automatic recognition of facial expressions TU Delft

Chenet Simon 66

459,225
451,227
442,227
432,227
425,227
417,227
412,227
#5:20
355,208
353,201
347,195
340,191
332,186
325,183
317,183
307,183
298,184
292,188
287,194
295,191
301,189
308,189
316,189
323,190
330,194
337,198
342,202
348,205
#6:24
409,197
414,190
419,186
424,181
430,178
437,175
445,172
453,172
462,173
470,176
479,181
484,186
490,195
479,192
473,186
465,181
457,179
449,179
442,180
436,182
429,185
424,188
419,191
414,194
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#7:39
332,345
336,350
341,355
348,356
353,356
360,356
366,356
370,357
376,359
383,360
388,359
394,359
400,359
408,358
416,358
421,358
426,355
432,354
435,350
439,347
435,343
428,339
422,338
415,337
409,337
403,338
399,339
395,340
390,341
386,342
381,342
375,341
368,340
361,338
356,338
352,339
346,340
340,341
337,342
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C. Example of an ASF file

######################################################################
#
#    AAM Shape File  -  written: Tuesday July 25 - 2006 [12:33]
#
######################################################################

#
# number of model points
#
122

#
# model points
#
# format: <path#> <type> <x rel.> <y rel.> <point#> <connects from> 
<connects to> <user1> <user2> <user3>
#
0 0 0.40136676 0.36518024 0 0 1 0.00 0.00 0.00
0 0 0.39485458 0.42450437 1 0 2 0.00 0.00 0.00
0 0 0.39353967 0.48489212 2 1 3 0.00 0.00 0.00
0 0 0.39800679 0.54438909 3 2 4 0.00 0.00 0.00
0 0 0.40468706 0.60397396 4 3 5 0.00 0.00 0.00
0 0 0.41361814 0.66294780 5 4 6 0.00 0.00 0.00
0 0 0.42895674 0.71966446 6 5 7 0.00 0.00 0.00
0 0 0.45358886 0.76946325 7 6 8 0.00 0.00 0.00
0 0 0.48803194 0.80954338 8 7 9 0.00 0.00 0.00
0 0 0.52814001 0.83934570 9 8 10 0.00 0.00 0.00
0 0 0.57131780 0.85862989 10 9 11 0.00 0.00 0.00
0 0 0.61750803 0.86040945 11 10 12 0.00 0.00 0.00
0 0 0.66207799 0.84614439 12 11 13 0.00 0.00 0.00
0 0 0.70147620 0.81492163 13 12 14 0.00 0.00 0.00
0 0 0.73489080 0.77245170 14 13 15 0.00 0.00 0.00
0 0 0.76060632 0.72181013 15 14 16 0.00 0.00 0.00
0 0 0.77527809 0.66329456 16 15 17 0.00 0.00 0.00
0 0 0.78130733 0.60226972 17 16 18 0.00 0.00 0.00
0 0 0.78553550 0.54069368 18 17 19 0.00 0.00 0.00
0 0 0.78890719 0.47893551 19 18 20 0.00 0.00 0.00
0 0 0.78466697 0.41708744 20 19 21 0.00 0.00 0.00
0 0 0.77399229 0.35667215 21 20 21 0.00 0.00 0.00
1 1 0.56375361 0.43582430 22 22 23 0.00 0.00 0.00
1 1 0.56645822 0.46349902 23 22 24 0.00 0.00 0.00
1 1 0.56553918 0.49197844 24 23 25 0.00 0.00 0.00
1 1 0.56334999 0.52080165 25 24 26 0.00 0.00 0.00
1 1 0.55704943 0.54782774 26 25 27 0.00 0.00 0.00
1 1 0.54265700 0.56825953 27 26 28 0.00 0.00 0.00
1 1 0.53198451 0.59168501 28 27 29 0.00 0.00 0.00
1 1 0.53909457 0.61422601 29 28 30 0.00 0.00 0.00
1 1 0.56068051 0.61568670 30 29 31 0.00 0.00 0.00
1 1 0.58055557 0.62200749 31 30 32 0.00 0.00 0.00
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1 1 0.60166396 0.62446176 32 31 33 0.00 0.00 0.00
1 1 0.62066770 0.61584036 33 32 34 0.00 0.00 0.00
1 1 0.64136906 0.61511756 34 33 35 0.00 0.00 0.00
1 1 0.65574223 0.59671221 35 34 36 0.00 0.00 0.00
1 1 0.64915720 0.56911772 36 35 37 0.00 0.00 0.00
1 1 0.62881907 0.55390456 37 36 38 0.00 0.00 0.00
1 1 0.61767005 0.52911698 38 37 39 0.00 0.00 0.00
1 1 0.61283737 0.49957057 39 38 40 0.00 0.00 0.00
1 1 0.61042331 0.46959031 40 39 41 0.00 0.00 0.00
1 1 0.61325652 0.43937947 41 40 41 0.00 0.00 0.00
2 2 0.53796049 0.46246552 42 57 43 0.00 0.00 0.00
2 2 0.52857255 0.44940387 43 42 44 0.00 0.00 0.00
2 2 0.51722992 0.43924570 44 43 45 0.00 0.00 0.00
2 2 0.50484493 0.43283228 45 44 46 0.00 0.00 0.00
2 2 0.49137946 0.43204043 46 45 47 0.00 0.00 0.00
2 2 0.47810973 0.43264681 47 46 48 0.00 0.00 0.00
2 2 0.46601329 0.43779183 48 47 49 0.00 0.00 0.00
2 2 0.45576231 0.44655356 49 48 50 0.00 0.00 0.00
2 2 0.44869454 0.45798581 50 49 51 0.00 0.00 0.00
2 2 0.45775468 0.46472215 51 50 52 0.00 0.00 0.00
2 2 0.46880747 0.46845909 52 51 53 0.00 0.00 0.00
2 2 0.48048875 0.47146268 53 52 54 0.00 0.00 0.00
2 2 0.49235152 0.47116821 54 53 55 0.00 0.00 0.00
2 2 0.50411323 0.46952381 55 54 56 0.00 0.00 0.00
2 2 0.51588911 0.46728811 56 55 57 0.00 0.00 0.00
2 2 0.52773039 0.46513690 57 56 42 0.00 0.00 0.00
3 2 0.63623992 0.45482451 58 73 59 0.00 0.00 0.00
3 2 0.64702329 0.44244355 59 58 60 0.00 0.00 0.00
3 2 0.65895168 0.43288137 60 59 61 0.00 0.00 0.00
3 2 0.67131539 0.42505785 61 60 62 0.00 0.00 0.00
3 2 0.68485610 0.42114493 62 61 63 0.00 0.00 0.00
3 2 0.69883205 0.42098609 63 62 64 0.00 0.00 0.00
3 2 0.71261533 0.42375840 64 63 65 0.00 0.00 0.00
3 2 0.72426786 0.43199871 65 64 66 0.00 0.00 0.00
3 2 0.73393364 0.44392763 66 65 67 0.00 0.00 0.00
3 2 0.72840627 0.45663690 67 66 68 0.00 0.00 0.00
3 2 0.70504016 0.46088846 68 67 69 0.00 0.00 0.00
3 2 0.68926400 0.46183832 69 68 70 0.00 0.00 0.00
3 2 0.67335132 0.46085840 70 69 71 0.00 0.00 0.00
3 2 0.65756780 0.45721936 71 70 72 0.00 0.00 0.00
3 2 0.64295966 0.45697130 72 71 73 0.00 0.00 0.00
3 2 0.62963154 0.45751669 73 72 58 0.00 0.00 0.00
4 3 0.54516758 0.41554050 74 85 75 0.00 0.00 0.00
4 3 0.53216404 0.39037859 75 74 76 0.00 0.00 0.00
4 3 0.51000802 0.37763794 76 75 77 0.00 0.00 0.00
4 3 0.48554455 0.37354703 77 76 78 0.00 0.00 0.00
4 3 0.45999213 0.37247789 78 77 79 0.00 0.00 0.00
4 3 0.43860769 0.38598256 79 78 80 0.00 0.00 0.00
4 3 0.42658394 0.40989499 80 79 81 0.00 0.00 0.00
4 3 0.44406389 0.39987627 81 80 82 0.00 0.00 0.00
4 3 0.46662931 0.39129111 82 81 83 0.00 0.00 0.00
4 3 0.49059777 0.39290220 83 82 84 0.00 0.00 0.00
4 3 0.51234654 0.40146077 84 83 85 0.00 0.00 0.00
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4 3 0.53386528 0.41041985 85 84 74 0.00 0.00 0.00
5 3 0.63508587 0.39657855 86 97 87 0.00 0.00 0.00
5 3 0.65222868 0.37045110 87 86 88 0.00 0.00 0.00
5 3 0.67559761 0.35702470 88 87 89 0.00 0.00 0.00
5 3 0.70053691 0.35210662 89 88 90 0.00 0.00 0.00
5 3 0.72602650 0.35436430 90 89 91 0.00 0.00 0.00
5 3 0.74810962 0.36895068 91 90 92 0.00 0.00 0.00
5 3 0.76186540 0.39681960 92 91 93 0.00 0.00 0.00
5 3 0.74348218 0.38942180 93 92 94 0.00 0.00 0.00
5 3 0.72006782 0.37345490 94 93 95 0.00 0.00 0.00
5 3 0.69320018 0.37346816 95 94 96 0.00 0.00 0.00
5 3 0.66800996 0.38327614 96 95 97 0.00 0.00 0.00
5 3 0.64374665 0.39353852 97 96 86 0.00 0.00 0.00
6 4 0.51570806 0.70268622 98 121 99 0.00 0.00 0.00
6 4 0.52561133 0.71544837 99 98 100 0.00 0.00 0.00
6 4 0.53768365 0.72523392 100 99 101 0.00 0.00 0.00
6 4 0.55136690 0.73173899 101 100 102 0.00 0.00 0.00
6 4 0.56540403 0.73564703 102 101 103 0.00 0.00 0.00
6 4 0.57953706 0.73891326 103 102 104 0.00 0.00 0.00
6 4 0.59424001 0.73906912 104 103 105 0.00 0.00 0.00
6 4 0.60894166 0.73844267 105 104 106 0.00 0.00 0.00
6 4 0.62356013 0.73721340 106 105 107 0.00 0.00 0.00
6 4 0.63764234 0.73456777 107 106 108 0.00 0.00 0.00
6 4 0.65172899 0.73101720 108 107 109 0.00 0.00 0.00
6 4 0.66455806 0.72223820 109 108 110 0.00 0.00 0.00
6 4 0.67685349 0.71197770 110 109 111 0.00 0.00 0.00
6 4 0.68342363 0.70097405 111 110 112 0.00 0.00 0.00
6 4 0.67235715 0.69384140 112 111 113 0.00 0.00 0.00
6 4 0.65788946 0.69010405 113 112 114 0.00 0.00 0.00
6 4 0.64260320 0.68861298 114 113 115 0.00 0.00 0.00
6 4 0.62735065 0.69027617 115 114 116 0.00 0.00 0.00
6 4 0.61156416 0.69260654 116 115 117 0.00 0.00 0.00
6 4 0.59562552 0.69363261 117 116 118 0.00 0.00 0.00
6 4 0.57955754 0.68927094 118 117 119 0.00 0.00 0.00
6 4 0.56327812 0.68840216 119 118 120 0.00 0.00 0.00
6 4 0.54746516 0.68886552 120 119 121 0.00 0.00 0.00
6 4 0.53074877 0.69226072 121 120 98 0.00 0.00 0.00

#
# host image
#
S010_001_01594225.BMP
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D. Configuration file used for generating the model

#######################################################################
######
#
#   Active Appearance Model Builder Configuration File
#
#######################################################################
######

1       # Model reduction               [1-n]   (reduction factor = 
1/x)

0       # Model expansion               [0-n]   (pixels along the point 
normal)

1       # Use convex hull               [0|1]   (off/on)

0       # Verbose mode                  [0|1]   (off/on)

1       # Write registration movie      [0|1]   (off/on)

1       # Write variance image          [0|1]   (off/on)

1       # Produce model documentation   [0|1]   (off/on)

1       # Use tangent space projection  [0|1]   (off/on)

1       # Training method [ 0=PC Regression, 1=Jacobian (recommended) ]

95      # Shape model truncation (percentage [0-100], -1=parallel 
analysis)

95      # Texture model truncation (percentage [0-100], -1=parallel 
analysis)

95      # Combined model truncation (percentage [0-100], -2=no combined 
model)

1       # Subsampling of the training set (during training) [1-n]

1       # Warping method [ 0=benchmark, 1=software, 2=hardware 
(requires OpenGL) ]
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E. AAM-API class graph
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F. Model results

######################################################################

Active Appearance Model File 

Written                   : Thursday August 24 - 2006 [12:49]

Format version            : 0.99

Build time                : 58:03 (3482.8 secs)

Shapes                    : 400

Shape points              : 122

Texture Bands             : 1

Texture samples           : 43979

Texture TF                : identity

Model reduction           : 1

Add Shape Extents         : 0

Convex hull used          : Yes

Tangent space used        : Yes

Learning method           : 1

Shape truncation level    : 95 (variance: 0.00882/0.00928)

Texture truncation level  : 95 (variance: 0.28/0.295)

Combined truncation level : 95 (variance: 0.533/0.56)

Parameters used           : 58 

Mean shape area           : 43990.34 

Combined mode variation : 
1  24.45% ( 24.45%)
2   8.67% ( 33.11%)
3   6.84% ( 39.95%)
4   6.57% ( 46.52%)
5   5.32% ( 51.84%)
6   3.98% ( 55.82%)
7   3.59% ( 59.41%)
8   3.19% ( 62.60%)
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9   3.08% ( 65.69%)
10   2.68% ( 68.36%)
11   2.45% ( 70.82%)
12   1.79% ( 72.60%)
13   1.64% ( 74.25%)
14   1.52% ( 75.76%)
15   1.38% ( 77.15%)
16   1.29% ( 78.44%)
17   1.05% ( 79.49%)
18   0.96% ( 80.45%)
19   0.88% ( 81.34%)
20   0.83% ( 82.16%)
21   0.81% ( 82.97%)
22   0.78% ( 83.75%)
23   0.72% ( 84.47%)
24   0.65% ( 85.11%)
25   0.62% ( 85.74%)
26   0.58% ( 86.32%)
27   0.53% ( 86.85%)
28   0.51% ( 87.36%)
29   0.47% ( 87.83%)
30   0.44% ( 88.27%)
31   0.44% ( 88.71%)
32   0.40% ( 89.11%)
33   0.39% ( 89.50%)
34   0.37% ( 89.86%)
35   0.36% ( 90.22%)
36   0.33% ( 90.55%)
37   0.31% ( 90.86%)
38   0.30% ( 91.15%)
39   0.28% ( 91.44%)
40   0.28% ( 91.71%)
41   0.26% ( 91.97%)
42   0.25% ( 92.22%)
43   0.25% ( 92.47%)
44   0.23% ( 92.70%)
45   0.21% ( 92.91%)
46   0.21% ( 93.13%)
47   0.21% ( 93.34%)
48   0.19% ( 93.53%)
49   0.19% ( 93.72%)
50   0.18% ( 93.89%)
51   0.17% ( 94.06%)
52   0.16% ( 94.23%)
53   0.16% ( 94.39%)
54   0.16% ( 94.55%)
55   0.15% ( 94.70%)
56   0.14% ( 94.84%)
57   0.14% ( 94.98%)
58   0.14% ( 95.12%)

Shape mode variation : 
1  40.07% ( 40.07%)
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2   9.72% ( 49.78%)
3   6.93% ( 56.71%)
4   6.14% ( 62.85%)
5   5.50% ( 68.35%)
6   4.77% ( 73.12%)
7   4.36% ( 77.48%)
8   3.06% ( 80.55%)
9   2.50% ( 83.05%)
10   1.90% ( 84.95%)
11   1.71% ( 86.66%)
12   1.28% ( 87.94%)
13   1.08% ( 89.01%)
14   1.02% ( 90.03%)
15   0.85% ( 90.88%)
16   0.79% ( 91.67%)
17   0.68% ( 92.35%)
18   0.64% ( 92.99%)
19   0.56% ( 93.54%)
20   0.54% ( 94.09%)
21   0.51% ( 94.60%)
22   0.44% ( 95.04%)

Texture mode variation : 
1  12.34% ( 12.34%)
2  10.67% ( 23.01%)
3   9.77% ( 32.78%)
4   7.90% ( 40.68%)
5   5.64% ( 46.32%)
6   4.53% ( 50.85%)
7   3.29% ( 54.14%)
8   2.81% ( 56.96%)
9   2.56% ( 59.52%)
10   1.97% ( 61.49%)
11   1.79% ( 63.28%)
12   1.64% ( 64.91%)
13   1.51% ( 66.42%)
14   1.34% ( 67.76%)
15   1.28% ( 69.04%)
16   1.18% ( 70.22%)
17   1.06% ( 71.28%)
18   0.98% ( 72.26%)
19   0.89% ( 73.15%)
20   0.78% ( 73.92%)
21   0.75% ( 74.67%)
22   0.69% ( 75.37%)
23   0.65% ( 76.01%)
24   0.62% ( 76.64%)
25   0.57% ( 77.20%)
26   0.56% ( 77.76%)
27   0.54% ( 78.30%)
28   0.52% ( 78.82%)
29   0.48% ( 79.30%)
30   0.47% ( 79.77%)
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31   0.46% ( 80.23%)
32   0.45% ( 80.68%)
33   0.41% ( 81.09%)
34   0.40% ( 81.49%)
35   0.40% ( 81.89%)
36   0.38% ( 82.27%)
37   0.36% ( 82.63%)
38   0.35% ( 82.98%)
39   0.34% ( 83.31%)
40   0.31% ( 83.62%)
41   0.30% ( 83.92%)
42   0.30% ( 84.22%)
43   0.30% ( 84.52%)
44   0.29% ( 84.80%)
45   0.28% ( 85.08%)
46   0.26% ( 85.34%)
47   0.26% ( 85.60%)
48   0.25% ( 85.85%)
49   0.25% ( 86.10%)
50   0.23% ( 86.33%)
51   0.23% ( 86.57%)
52   0.23% ( 86.79%)
53   0.22% ( 87.01%)
54   0.22% ( 87.23%)
55   0.21% ( 87.43%)
56   0.20% ( 87.64%)
57   0.20% ( 87.83%)
58   0.20% ( 88.03%)
59   0.19% ( 88.23%)
60   0.19% ( 88.42%)
61   0.18% ( 88.60%)
62   0.17% ( 88.77%)
63   0.17% ( 88.95%)
64   0.17% ( 89.12%)
65   0.17% ( 89.29%)
66   0.16% ( 89.45%)
67   0.16% ( 89.61%)
68   0.15% ( 89.76%)
69   0.15% ( 89.92%)
70   0.15% ( 90.06%)
71   0.15% ( 90.21%)
72   0.14% ( 90.36%)
73   0.14% ( 90.50%)
74   0.14% ( 90.63%)
75   0.13% ( 90.77%)
76   0.13% ( 90.90%)
77   0.13% ( 91.03%)
78   0.13% ( 91.15%)
79   0.12% ( 91.28%)
80   0.12% ( 91.40%)
81   0.12% ( 91.52%)
82   0.12% ( 91.63%)
83   0.11% ( 91.75%)
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84   0.11% ( 91.86%)
85   0.11% ( 91.97%)
86   0.11% ( 92.08%)
87   0.11% ( 92.18%)
88   0.11% ( 92.29%)
89   0.10% ( 92.39%)
90   0.10% ( 92.49%)
91   0.10% ( 92.59%)
92   0.10% ( 92.69%)
93   0.10% ( 92.79%)
94   0.09% ( 92.88%)
95   0.09% ( 92.97%)
96   0.09% ( 93.06%)
97   0.09% ( 93.16%)
98   0.09% ( 93.24%)
99   0.09% ( 93.33%)
100   0.09% ( 93.42%)
101   0.09% ( 93.51%)
102   0.08% ( 93.59%)
103   0.08% ( 93.67%)
104   0.08% ( 93.75%)
105   0.08% ( 93.83%)
106   0.08% ( 93.91%)
107   0.08% ( 93.99%)
108   0.08% ( 94.07%)
109   0.08% ( 94.14%)
110   0.07% ( 94.22%)
111   0.07% ( 94.29%)
112   0.07% ( 94.36%)
113   0.07% ( 94.43%)
114   0.07% ( 94.50%)
115   0.07% ( 94.57%)
116   0.07% ( 94.64%)
117   0.07% ( 94.71%)
118   0.07% ( 94.78%)
119   0.07% ( 94.84%)
120   0.07% ( 94.91%)
121   0.06% ( 94.97%)
122   0.06% ( 95.03%)

######################################################################
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