
SOUND SOURCE LOCALIZATION
USING THE AIBO ERS–7

Bachelor project Computer Science

Marlon Richert 9692077
Tijmen Roberti 1015613
Wouter de Vries 1015842

Faculty of Electrical Engineering, Mathematics and Computer Science

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Table of Contents

1 TABLE OF CONTENTS
1 Table of Contents...3
2 Preface..5
3 Introduction..6

3.1 Sound source localization... ...6
3.2 ...using the AIBO ...6

4 Introduction to the AIBO ERS–7...7
4.1 Specifications ERS–7...7
4.2 OPEN–R SDK ...8

5 Sound Source Localization Techniques...10
5.1 Interaural Differences ..10
5.2 Interaural Delay Models ..12
5.3 Deconfusion ...15

6 Project Management ..17
6.1 Project Approach ...17
6.2 Teamwork ..17
6.3 Tools used in the project ..18

7 Project Execution ...19
7.1 Requirements Analysis ..19
7.2 System Design ...19
7.3 Program Design ...20
7.4 Implementation ..23
7.5 Program Testing...25
7.6 System Testing...28

8 Project Evaluation..30
8.1 Recommendations..31

9 Conclusion ...32
10 Sources and References ...33
11 Appendix A: Programming Guidelines ...35
12 Appendix B: Class Diagrams...38

12.1 SoundSourceLocalizer ...38
12.2 Speaker...39
12.3 HeadMover ..39
12.4 AibioDemo...40
12.5 BlinkAgent...40

3

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Preface

2 PREFACE
This document is the result of our BSc project Computer Science at Delft University
of Technology. A abstract technical paper about this project written by Marlon
Richert can be requested from prof. Rothkrantz.

The software described in this document was used in a demonstration made by
Wouter Caarls and Stijn Oomes at Robocup 2004 in an Open Challenge. A second
place was the result, pre-qualifying the Dutch Aibo Team for Robocup 2005 in Japan!

5

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Introduction

3 INTRODUCTION
The purpose of the Bachelor project of Computer Science is to apply all gathered
knowledge and experience in the field of information technology of the past three
years to a big CS-related problem. Ideally this problem contains both research and
realization. In this report we will show that our project contains plenty of these two
aspects and we will give an in-depth explanation of the realized software, the
technical challenges that we encountered, and of course the solutions to these
challenges. But first we will start this report with an introduction to our assignment.

3.1 SOUND SOURCE LOCALIZATION...
The problem we chose for our project, as the title of this report indicates, is the
localization of sound sources; determining the direction from which sounds are
coming from. This project got our interest when prof. Rothkrantz introduced us to
Robocup, an international tournament where teams from universities play soccer
against each other using robots. Together with other Dutch universities the Delft
University of Technology competed in this tournament with their own team: the
Dutch AIBO Team [6]. In these competitions almost all teams utilize only one
modality the AIBO offers; the camera. However, the AIBO has a range of other
modalities including a stereo microphone. Prof. Rothkrantz’s suggest that sound could
be an interesting extra modality to recognize teammates. Every AIBO would emit a
unique sound signal that is received by another AIBO, which can then determine the
direction and identity of that teammate. Of course, determining the direction of
sounds can be useful in other situations when a camera is ineffective.

3.2 ...USING THE AIBO
The fact that our software had to be developed on an AIBO ERS–7 meant that we got
the chance to work with an state of the art piece of technology, but also gave us the
opportunity to use our software on a real world platform, instead of the conventional
theoretical setups used in sound source localization research. Furthermore the AIBO
gave us the extra challenges that working with an embedded system brings, but more
on that later. With this interesting assignment the foundation was made for a
challenging project, which we would commit ourselves to in the coming three months.

This report will continue with an extensive introduction to the AIBO ERS–7 in
chapter 4, and a description of several basic techniques used to localize sound sources
in chapter 5. After that we will discuss the project process management in chapter 6.
The analysis, design and implementation details are located in chapter 7. The
evaluation of the software can be found in chapter 8. The report ends with a
conclusion and a list of referenced resources. Appendix A contains our programming
guidelines; appendix B contains the class diagrams of our developed software.

6

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Introduction to the AIBO ERS–7

4 INTRODUCTION TO THE AIBO ERS–7
The AIBO was introduced to the world by Sony in 1999 as a robotic pet dog. This is
reflected in his name, which is deducted from AI (Artificial Intelligence) and roBOt.
It also means pal in Japanese. In the following five years since the original design the
AIBO has been improved and its appearance has changed several times.

Initially it was impossible for individual developers to write software for the
AIBO because the necessary interface with the hardware was kept secret. In 2002
Sony changed this policy and released the AIBO OPEN–R Software Development Kit
(SDK). The AIBO became very interesting for research purposes because it provided
a complete robot platform on which people could write software and conduct
experiments on at a relatively low price. The most recent version of the AIBO is the
ERS–7. We have developed our software for this particular version of the AIBO.

Figure 1: Sony AIBO ERS-7

4.1 SPECIFICATIONS ERS–7
The AIBO ERS–7 is a state-of-the-art piece of technology and has the following
specifications:

Dimensions: 180 (W) x 278 (H) x 319 (D) mm
Weight: Approx. 1.65kg (including battery and memory stick)
CPU: 64bit RISC Processor (MIPS R4000)
CPU Clock Speed: 576MHz
Memory (SDRAM): 64MB
Program Storage Media: 16MB AIBO Memory Stick
Wireless LAN Card: IEEE 802.11b (Integrated)
Media: Memory Stick slot In/Out
Camera: CMOS Image Sensor 350,000 pixels
Microphone: Stereo, 16bit, 16 KHz
Speaker: Miniature speaker, 20.8 mm, 500 mW

7

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Introduction to the AIBO ERS–7

Sensors: Temperature sensor, Infrared Distance Sensor (head, body), Acceleration
Sensor, Electric Static Sensor (head, back (3)), Pressure Sensor (chin, paws (4)),
Vibration Sensor.

For our project, interesting specifications are of course the available system

resources, like the CPU and amount of system memory. Also key are the microphone
specificiations. As we will see later in this report the distance between the two
microphones and the shape of AIBO’s head are of great influence on the
determination of the direction of the sound sources.

Figure 2 : Head dimensions of the ERS-7

As can be seen from Figure 2 the distance between the microphones is 95.424 mm. In
the next chapter we’ll see that this distance combined with a sampling rate of 16 KHz
results in a maximum accuracy of approximately 13 degrees. As comparison, typical
human accuracies are in the order of 10 to 20 degrees.

4.2 OPEN–R SDK
As mentioned the OPEN–R SDK was released to the public by Sony in 2002 and
contains everything required to write your own software for the AIBO ERS–7 and its
predecessors. The OPEN–R SDK consists of several (C++) libraries, compilers and
linkers for the AIBO ERS–7 platform. The libraries provide the layer between the
software and the hardware of the AIBO. Sony calls this layer the Level 2 (L2)
software. The Level 1 (L1) software contains all software developed by Sony that
makes AIBO act as a robotic dog. This software is not publicly available.

The OPEN–R environment was developed as a basis for Sony’s future
entertainment robots in such a way that changes in the hardware of the robots could
easily be incorporated in the environment. The basis is formed by the AIBO
Operating System, APERIOS. APERIOS provides basic OS functionality, like
memory and file management, threading of running applications, etc. APERIOS is
located on a Sony memory stick which is inserted into the AIBO. The user developed
applications also have to be on the memory stick in the proper format.

4.2.1 OPEN OBJECTS
In the operating environment certain applications are running, called Open Objects
(OObjects). These objects are very different from the well known Objects in Object-
Oriented Programming. Objects in Object-Oriented Programming are an abstract
method for structured programming; Objects running on the AIBO are applications,
like those running on a Windows or Linux system. From now on we will use the
words Object and OObject concurrently, meaning OObjects.

8

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Introduction to the AIBO ERS–7

By standard there are a number of Objects in the operating environment

responsible for several tasks, such as TCP/IP, memory management, disc access,
power management etc. These Objects can communicate with each other through a
framework provided by APERIOS. Sony has chosen for this highly modular model so
that Objects can be easily changed without interfering with other objects (given that
the interface remains the same).

The communication system works as follows: one Object is the Subject; this
Object sends data to other interested Objects, called Observers. When an Observer
indicates that it is ready to receive data it sends a Ready command to the Subject,
which then in turn sends the data to the Observer. See Figure 3. A Subject can have
multiple Observers and can of course observe other Subjects.

Figure 3: Communication between Objects

4.2.2 CHALLENGES OF WORKING ON AN EMBEDDED SYSTEM
As said in the introduction developing software for an embedded system is quite
different from developing software on a normal pc. Aside from having less system
resources then on a normal workstation, you also have to deal with the idiosyncracies
of the system and it’s OS. For example, basic functionality like expanding assigned
memory might or might not always work on the AIBO, resulting in unexpected
crashes. Also since the OPEN-R SDK uses a different compiler and linker
combination then usual, strange errors can occur, especially when using advanced
C++ programming techniques like templates. At first these problems took a while for
us to fix and get used to, but in the end we were able to find workarounds for almost
all problems we encountered.

9

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Sound Source Localization Techniques

5 SOUND SOURCE LOCALIZATION TECHNIQUES
In this chapter several techniques are discussed to determine the location of a sound,
also called the azimuth. The azimuth is defined as being a direction expressed as the
angular distance between the observer's orientation (the ERS–7's, in this case) and the
direction of the sound source. In most literature about this subject and this report the
azimuth is represented by the character θ.

5.1 INTERAURAL DIFFERENCES
About 100 years ago one of the pioneers in spatial hearing research, Lord Rayleigh,
developed his Duplex Theory. According to this theory, there are two primary cues
for determining the direction of a sound: The Interaural Time Difference (ITD) and
Interaural Level Difference (ILD). These are an example of a measure to express the
difference between the sounds arriving at the microphones. These measurements are
then applied in a certain model to retrieve an azimuth. We first will discuss several
measurements and then some models, including the one we developed for our
software.

Interaural Level Difference
The ILD is the difference in intensity/magnitude of two sampled signals. It is
sometimes also called the Interaural Intensity Difference (IID).

Quote from [7]:

Lord Rayleigh also observed that the incident sound waves are diffracted by
the head. He actually solved the wave equation to show how a plane wave is
diffracted by a rigid sphere. His solution showed that in addition to the time
difference there was also a significant difference between the signal levels at
the two ears—the ILD. As you might expect, the ILD is highly frequency
dependent. At low frequencies, where the wavelength of the sound is long
relative to the head diameter, there is hardly any difference in sound pressure
at the two ears. However, at high frequencies, where the wavelength is short,
there may well be a 20-dB or greater difference. This is called the head-
shadow effect, where the far ear is in the sound shadow of the head.

The Duplex Theory asserts that the ILD and the ITD are complementary.
At low frequencies (below about 1.5 kHz), there is little ILD information, but
the ITD shifts the waveform a fraction of a cycle, which is easily detected. At
high frequencies (above about 1.5 kHz), there is ambiguity in the ITD, since
there are several cycles of shift, but the ILD resolves this directional
ambiguity. Rayleigh's Duplex Theory says that the ILD and ITD taken
together provide localization information throughout the audible frequency
range.

Quote from [8]:

The most basic principles used to localize the azimuth of a sound source in the
horizontal plane involve the inter-aural intensity difference (IID) and the inter-
aural time differences (ITD) between the signals received at each ear. The IID
is caused mostly by the shading effect of the head, while the ITD is caused by

10

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Sound Source Localization Techniques

the difference in distance the sound must travel to reach each ear. […] Tones
at low frequencies (less than 2 kHz) have wavelengths longer than the
distance between the ears, and are relatively easy to localize. Pure tones at
higher frequencies, however, present ambiguity in the determination of correct
time delay, which may be a greater than the signal period, and are much
harder to localize. Fortunately, pure tones are fairly uncommon in nature, and
high-frequency noises are usually complex and random enough to allow
unambiguous interaural delay estimation.

Estimation of elevation and distinction between sounds originating in front
of and behind the listener requires more sophisticated processing than IID and
ITD. The shape of the pinna and head effect received sounds in a manner
dependent on arrival angle and frequency. A model of this process is referred
to in the literature as the Head Related Transfer Function (HRTF) and is
frequently used in virtual reality and other headphone applications where
generated sounds are artificially processed to provide realistic spatial
sensations to the inner ears [96]. The theory behind this model is that the brain
analyzes the received sound and determines, from the qualities of the signal
and learned understanding of the body's HRTF, what direction the sound must
have come from.

Interaural Time Delay
The ITD is defined as the difference in time of a signal arriving at two microphones.
It is one of the most important attributes for locating a sound source.

Quote from [10]:

These lateralization experiments have shown that the most important attribute
for locating an auditory event is the interaural time difference (Blauert, 1997).
However, the literature is somewhat confusing on the use of the term, because
it generically represents arrival, phase, and even envelope temporal
differences. […]

Interaural Time Difference (ITD): A generic term used to describe any of
the above time differences. Typically refers to the one that dominates the
frequencies under discussion.

As can be read in the quote, usage of the term ITD can sometimes be confusing. In
this document, when we use the term ITD we will mean the delay in time or in
samples.

Interaural Phase Difference
Quote from [8]:

By taking the Fourier transform of each microphone signal, the relative phase
at each frequency may be compared between the signals. Dividing this phase
delay by its corresponding frequency gives the time delay. Phase delay is
computed from the discrete Fourier transform of the left and right speech
signals, L(k) and R(k), respectively, as described by BrandStein, Adcock, and
Silverman [44]. The cross-spectrum GLR(k) is given by

11

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Sound Source Localization Techniques

)*)()(()(kRkLkGLR =

where * is the complex conjugate operation. The sample (time domain) delay
at a particular frequency ωk may be calculated as

kLR kGd ω/))((arg=

Note that for wavelengths shorter than the microphone spacing, the phase
delay will have an ambiguity corresponding to integer multiples of 2π. The
localization system must either reject short wavelengths, or use phase
unwrapping to determine all the potential delays and accumulate these in a
histogram. […]

[…] Also, reflected sound tends to shift the phase of the received signal,
corrupting the delay calculation.

The fastest way to calculate the IPD is to simply perform a FFT on the samples signal
and then use that to determine the interaural phase difference. However, this method
is extremely sensitive to reflection and background noise. Thus, we have found it to
be of no practical use in a real world application like our own. For this reason, we
have ourselves developed a slightly more complex algorithm to calculate the ITD as is
explained in chapter 7.

There are much more delay measurements, like the Interaural Envelope Delay.
These measures are all more or less variations on the above mentioned measures and
we will not discuss them here. More information about them can be find in the papers
found in chapter 10.

5.2 INTERAURAL DELAY MODELS
Determining the azimuth from the observed ITD or ILD requires a model that predicts
the difference in distance between the left and right ear that the signal of a sound
source on a specific azimuth must travel in order to reach them, respectively. Various
models have been developed over time. We tested many of them, but none produced
satisfactory results. In the end we developed our own model that produced the right
results during our testing.

Headless Model
Quote from [8]:

Interaural intensity differences play a significant role in sound localization in
animals due to filtering effects of the head and outer ears, especially for
determining elevation. However, for two microphones mounted near one
another in open air, these effects are minimal, and are ignored here. This
dissertation project involves localization in azimuth only, based entirely on
interaural time difference. Two assumptions are necessary for this to work
properly: (1) The speaker is always assumed to be on the "front" side of the
microphone pair, limiting the localization to a range of 180 degrees; and (2)
the speaker's location is assumed to exist approximately within a plane
parallel with the floor and level with the microphones. This approximation is
forgiving enough to allow for differences in height and for both standing and
sitting positions, but does not allow the speaker to hover over or duck below

12

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Sound Source Localization Techniques

the array. Also implicit in this configuration is the assumption that two
speakers will not be positioned one above the other when viewed from the
microphone array's perspective. […]

Figure 4: Headless model

Figure 4 shows the geometry used for calculating sound direction based on
interaural delay. Calculation of the ITD between two microphones specifies a
hyperbolic locus of points upon which the corresponding sound source may
reside. For target distances (DL and DR) much greater than the microphone
spacing DM, the target bearing angle may be approximated as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≅ −

M

RL

D
DD1sinθ

Rewriting the difference in target distance in terms of the interaural time
delay, one obtains

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
≅ −

M

sound

D
ITDV1sinθ

where Vsound for a comfortable indoor environment is approximately 344 m/s.

The headless models assumes an empty space between the microphones. In our case
however, we have AIBO’s head to deal with. Since most frequencies don’t pass
through the head they have to go around it, resulting in greater delays. The headless
model will therefore generally lead to an underestimation of the azimuth.

5.2.1 DUPLEX THEORY
Originally, we tried to use Lord Rayleigh's (John Strutt's) duplex theory. However,
our real world measures with the ERS–7 have definitely shown with great certainty

13

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Sound Source Localization Techniques

that it is possible for ITDs to occur that are greater than can be predicted with this
model. Therefore, we have decided to design and use a new model of our own.

Figure 5: Lord Rayleigh's model

5.2.2 OUR SPHERE MODEL
A serious problem with Lord Rayleigh's model is that he assumes that the left and
right signals arrive at the head in two parallel lines. Unfortunately, this is only the
case if the sound source is of the exact same size as the head or if the sound source is
very far away. In our test environment, however, we also make use of the ERS–7's
own speaker (while another ERS–7 fulfills the role of observer), which is significantly
smaller than its head. Because of this, the paths of the left and right signal are at an
angle to each other. This phenomenon becomes even stronger the closer the sound
source is positioned to head.

Our model represents the sound source as a point source, which is the situation
most commonly encountered. This is approximated by the following formula

())sin()2(θχθχ +−≅
m

s

r
v

ITD ,

where vs equals the speed of sound, rm equals microphone radius (the distance of
either ear to the center of the head), θ is the azimuth, and χ is a function of the
distance of the sound source to the head. The properties of χ are that it is always
positive and correlates with the distance of the sound source to the head, and that as
the sound source moves toward the head, χ converges to zero, while as the distance of
the sound source to the head grows toward infinity, χ converges to 1 (which leads to
Lord Rayleigh's formula). For computational simplicity in converting the ITD to the
azimuth, we assume that the distance of the sound source to the head is effectively
zero, so that χ equals zero, which leaves us with

ITD
v

r

s

m

2
≅θ .

Since in practice the distance of the sound source to the head will never be completely
zero, it would seem that any θ produced by this formula leads to a slight
overestimation of the ITD in this model, and conversely, any ITD would lead to an
underestimation of the θ. However, in practice, this bias is only noticeable when the
sound source is located a significant distance above the azimuth plane or when the

14

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Sound Source Localization Techniques

distance of the sound source to the head becomes larger than roughly three meters.
Furthermore, since the speaker of the ERS–7, which serves as the sound source, is
located significantly closer to the ground than its ears, interposing parts of the
observing ERS–7's body (mainly its shoulders and nose) lead to additional delays that
even further obscure this bias.

The accuracy of the azimuth detection is of course limited by the available
hardware. In the case of the ERS-7, the limiting factors for the determination of the
ITD are the microphone-sampling rate and the distance between the microphones. The
smallest detectable delay between the left and right channel is one sample. Since the
ERS-7 microphone has a sampling rate of 16 KHz, this corresponds to a time delay of
1 / 16000 = 0.0625 ms.

The largest possible time delay can be calculated as follows (assuming a round
head and the microphones opposite to each other):

s

m

v
r⋅

≅
π

δ

Where δ is the delay in seconds, rm the microphone radius (the distance between de
microphones and the center of the head) in meters and vs the speed of sound in m/s.
Substitution of the proper values results in a maximal time delay of 0.4364 ms.
Multiplying this by the number of samples per ms results in a maximum delay in
samples of 7.

5.3 DECONFUSION
After determination of the ITD and conversion to an azimuth it is still unknown if the
sound source is a front angle or a back angle. Actually, the source can be on an entire
cone in 3D space: the so-called cone of confusion. The cone of confusion represents
all possible locations of a sound source given a certain ITD or ILD. The only way to
discover exactly where a sound source is located in this cone is to move the
microphones and measure again. Then, by comparing the measurements, the direction
of the source can be determined. In order to simplify this problem we assume that the
sound source is on a plane level to the microphones and the ground.

Figure 6: Cone of confusion

15

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Sound Source Localization Techniques

Our deconfusion used in the software operates on some very simple, but powerful
premises. Given our head rotation δ:
• If we previously localized a sound source at a certain azimuth θold and we rotated

our heading toward it:
▪ If –π/2 + θold < δ < –π/2 – θold or π/2 – θold < δ < π/2 + θold, then the sound source

must be in front our heading.
▪ If |θnew| > |θold|, then the sound source must be behind our heading.

• If we previously localized a sound source at a certain azimuth θ and we rotated our
heading away from it:
▪ If –π/2 – θold < δ < –π/2 + θold or π/2 + θold < δ < π/2 – θold, then the sound source

must be behind our heading.
▪ If |θnew| > |θold|, then the sound source must be in front our heading.

• Otherwise, we assume per default that the sound source is in front our heading.
Notice that if we do rotate our head too far, wrapping can occur which can cause the
deconfusion to fail. In practice, we avoid this by not allowing the ERS–7 to rotate its
head more than ±π/2 between observations, which is a safe value for any azimuth.

Obviously, if we do not rotate our head between two periods of observations, no
deconfusion is possible. Therefore, in those cases were the ERS–7 would otherwise
not move its head enough between observation periods to allow for deconfusion, we
force it to make saccadic head movements. These randomly distributed motions are
relatively small, but significantly large enough motions to allow our software to
continue to perform successful deconfusion at all times.

16

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Management

6 PROJECT MANAGEMENT
Until this project, our project experience was limited to the ones in the curriculum of
the BSc Computer Science. These projects required an estimated 56 hours of work per
person. For this project however, a full three months are scheduled. To ensure a
smooth progression of a project of this size we made important decisions regarding
process management and teamwork right at the start.

6.1 PROJECT APPROACH
Because the AIBO as well as the subject of sound source localization was unknown to
us, we decided to use an iterative design model. An iterative model allows the use of
knowledge acquired during development to improve the final design/product by
revising parts of the program. We decided to use the V-model (see Figure 7). In this
model each step has a matching validation process and when defects are found, cause
a loop back to the corresponding development stage. The next chapter’s paragraphs
will reflect the steps in this model.

Figure 7: V-process model

6.2 TEAMWORK
For maximum efficiency and productivity during the project, the teamwork has to be
excellent. To eliminate the wasting of precious time with logistical problems we
decided to use the same working environment and made a clear set of rules to get a
concise style during the entire project. At the start of the project we had some
bottleneck problems because of missing hardware like AIBOs or WiFi base stations,

17

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Project Management

but most of these were solved pretty quickly. The following are some of the decisions
we took regarding teamwork:

Programming Guidelines
The Programming Guidelines (PG) were decided on at the start of the project to
ensure a consistent coding style throughout the project. The PG contain rules for
writing code, comments, file names and directory structure. The use of the PG
guarantees a uniform style, reducing logistical problems and improving general
readability of the code for the other team members. The complete Programming
Guidelines (in Dutch) can be found in the Appendix.

Concurrent Versions System
Concurrent Versions System (CVS) [4] is a software configuration management
program to support teams working simultaneously at the same set of source files. CVS
allows multiple users simultaneous access to files and the merging of any changes
they make. It also keeps version information and supports the storage of project
related files.

Eclipse
Eclipse was chosen as our main editor [3]. This editor works as well in Windows as in
Linux and is because of its standard support for CVS very suited for our project.
Having all team members use the same editor also eliminates potential conversion and
format problems.

Peer review
To get the code at the highest possible quality we used peer reviews. Originally
known as “egoless” programming, peer reviews allow team members to look at and
verify another team member’s code. Improvements in the code and/or comments and
the occasionally found bugs are discussed and the code is updated.

6.3 TOOLS USED IN THE PROJECT
In addition to the aforementioned tools, we also used MATLAB to design, simulate and
tests some of the features in our software. The entire application was written in C++
and compiled in Linux using the tools provided by the OPEN-R SDK. Debugging was
done with a WiFi network connection to the AIBO. This document was produced in
Microsoft Word 2003, diagrams were designed in Visio 2003 and Rational Rose.
Configuration management for the report was done with Microsoft Sharepoint.

Initial testing of the software was done with a pair of Labtec speakers and a
program called ToneGenerator. Later on, testing was done with multiple AIBO’s.

18

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Execution

7 PROJECT EXECUTION
This chapter describes in detail how the software is produced and what technical
solutions are used. The paragraphs will generally follow the phases in the V-process
model discussed in paragraph 6.1.

7.1 REQUIREMENTS ANALYSIS
As mentioned earlier, there were two major objectives to fulfill. AIBO should be able
to determine the direction of a sound source (for example another AIBO) and
recognize different sounds (frequencies). The desired result is that you can have two
AIBOs, where one produces a certain sound and the second AIBO can determine from
that sound the location of the first AIBO. Also some way of demonstrating the
software is required. To provide this functionality the following requirements were
set:

▪ AIBO has to be able to determine the azimuth of a specified frequency or

specified frequencies. This requirement allows for a flexible approach for locating
sound sources. For example: if you would want to locate human voices, you can
configure the software to recognize the characteristic frequencies in voices.

▪ AIBO needs a way to produce sounds. This is necessary for AIBO-to-AIBO
localization.

7.2 SYSTEM DESIGN
To keep the system as modular as possible, it was decided that all sound source
localization functions would be contained in one OObject, SoundSourceLocalizer.
The specific frequencies SoundSourceLocalizer will listen to has to be specified by
other Objects.

SoundSourceLocalizer will receive the byte input stream in an OSoundVectorData
format from OVirtualRobotComm. OVirtualRobotComm is an OObject provided by
Sony’s L2 layer and handles communication with AIBO’s sensors. After conversion,
SoundSourceLocalizer will extract the azimuth from the data. The azimuth then can
be sent to all Objects observing SoundSourceLocalizer.

To make AIBO-to-AIBO communication a possibility, a way to produce different
tones is needed. The Object Speaker is designed to fulfill that role. It is responsible
for producing sounds of the frequency and duration specified in the given SoundFile.
Various amplitude modulation functions also need to be available, like triangular
modulation.

Finally, an Object to demonstrate the functionality of the other Objects is needed.
For this purpose we designed the Object AibioDemo (Aibo + Audio). AibioDemo has
to be able to specify what frequencies SoundSourceLocalizer should listen to and
output the results by moving AIBO’s head in the direction of the source. To move the
head, another Object called HeadMover is needed. AibioDemo will also give visual
cue’s regarding the status of the sound source. If AIBO thinks the sound source is
right in from of him, it will blink his green LED’s. If the sound source is at a direction
it is unable to point at with his head (for example behind him) it will blink his red
LED’s. When tracking sound sources it display a moving bar of white LED’s. An
Object called BlinkAgent will provide the LED display. Figure 8 shows an overview
of the system design.

19

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Project Execution

Figure 8: System model

7.3 PROGRAM DESIGN
Now that we had specified the design of all Objects, design of the code structure
started. Each Object has to be developed in a certain framework, called a Core Class.
The Core Class is like a standard C++ class but with extra functions for startup,
shutdown and functions for communications with other Objects (see Figure 9). A
Core Class is comparable to a normal program which requires a main() function.

20

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Execution

Figure 9: Core Class

7.3.1 SOUNDSOURCELOCALIZER
SoundSourceLocalizer is the Object used to calculate the azimuth and to do so several
steps has to be taken:

• Convert microphone byte stream to double arrays so calculations can be performed

on the data.
• Apply a Fourier Transform on the data, for frequency and phase information.
• Calculate the azimuth.
• Send azimuth to all observing Subjects.

It was decided that that three of these functions would be performed in their own
class. A static class Converter was designed for converting data; a static class FFT
was designed for the Fourier Transform and a class AzimuthCalculator was designed
for all calculations regarding the azimuth. The Class SoundSourceLocalizer would
deal with all AIBO hardware and communications with other Objects. Figure 10
shows the class diagram of the initial SoundSourceLocalizer design.

21

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Project Execution

Figure 10: SoundSourceLocalizer Class diagram

7.3.2 SPEAKER
The Speaker OObject is responsible for emitting sounds that would be recognized by
another AIBO with our software. The specific type of tone has to be specified in a
file. Object Speaker consists of two classes (see Figure 11). Core Class Speaker is
responsible for the communication with other Objects and for outputting the sound to
the hardware. Class ToneGenerator produces signals with the desired frequency and
modulation. Speaker also uses Converter to convert the generated signal to a Linear
PCM encoded byte stream and FileParser to read sound settings from stored files.
.

22

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Execution

Figure 11 : Speaker Class diagram

7.4 IMPLEMENTATION

7.4.1 SOUNDSOURCELOCALIZER
The SoundSourceLocalizer Core Class is the template for an AIBO OObject and has
all necessary functions and attributes necessary to make it run on the AIBO. The class
accepts microphone sound input from AIBO’s OVirtualRobotComm Object (which is
a virtual Object running on the AIBO). The sound data is converted using the class
converter, the Fourier Transform is calculated and the finally, the azimuth. The
azimuth produced by AzimuthCalculator is the azimuth angle relative to AIBO’s
head. SoundSourceLocalizer changes the azimuth so that it is relative to the direction
in which AIBO’s body is facing. The calculated azimuth is then sent to Objects
observing SoundSourceLocalizer.

Converter
The Converter class performs various data conversion operations. The operation used
by SoundSourceLocalizer converts the Linear PCM encoded sound signal from
AIBO’s microphone to an array of doubles. Converter also has a function to convert
an array of doubles to a Linear PCM encoded byte stream, used by the Object
Speaker. Other functions include array to string functions used for debugging
purposes.

FFT
For the actual Fourier transform calculations performed by the class FFT we used the
C library FFTW (Fastest Fourier Transform in the West) [5]. This library is developed

23

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Project Execution

at M.I.T. and won the 1999 J. H. Wilkinson Prize for Numerical Software. Getting
this library to work on the AIBO was fairly hard, because the automatic configuration
utility only works on Unix platforms. There were also no existing configurations for
the AIBO (no surprise here) so we had to configure and compile everything manually.

AzimuthCalculator
When performing our sound source localization with the ERS–7, we are merely
interested in determining the azimuth of the observed sound source. To be able to
discern multiple sound sources from one another and facilitate the distinction between
signal and noise, we perform the sound source localization on a number of separate,
predefined frequencies only.

Each time frame, the AzimuthCalculator receives the sampled input signal of the
left and right ear, the Fourier transforms of these two signals, and the AIBO's head
orientation for the current time frame. It uses this information to calculate a
deconfused azimuth.

To prevent sound source localization from being performed on frequencies that
contain only background noise, we establish a reliability threshold. To this end, we
use the Fourier transformed signal of both the left and right channel of the sampled
signal. We define a reliability threshold t as

2

2 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+
⋅+= µµ

r
i

l
i ff

kt ,

where

()r
i

l
ii

ff +=
∀

meanµ

and where

l
if and r

if

are the amplitudes of the i-th Fourier components of the left and right signal,
respectively. k is a constant which for our purposes has a value of 2, so that the sound
from the ERS–7's own speaker does not raise the threshold too much, which would
cause it to view the signals of other ERS–7s as unreliable. The signal corresponding
to the j-th Fourier component is then considered reliable if and only if

() ()tftf r
j

l
j >∨> .

Note that since we perform the FFT on a sampling frame of 16 ms, the j-th Fourier
component corresponds with a frequency of j / 0.016 = j · 62.5 Hz. For all reliable
frequencies the delay is then calculated by determining the Interaural Phase
Difference (IPD) as discussed in 5.1.

7.4.2 SPEAKER
To produce a sound Speaker must send an OsoundVectorData struct to
OVirtualRobotAudioComm. This struct contains a byte array which is Linear PCM
encoded. To construct this struct, Speaker first reads the file indicated by another
Object using FileParser, which returns an array of doubles. The n-th element of these

24

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Execution

doubles represents the relative amplitude of the n · 62.5 Hz tone. Speaker then calls
the generate function of the ToneGenerator class to convert the amplitudes into an
array of triangular modulated doubles representing the samples to be played. The
doubles are converted to Linear PCM encoded bytes by the Converter class, buffered,
and then sent to OVirtualRobotAudioComm.

7.5 PROGRAM TESTING
During testing we noticed that the IPD, the measure we initially used to determine
delay, is extremely susceptible to reflections. To solve this problem we tried various
approaches, like envelope extraction. None were satisfactory. In the end we decided
to manually filter out the frequencies we were interested in (contrary to using a
Fourier Transform) and use the cross correlation to find the delay in samples between
the left and right channel. To perform the signal filtering a new class had to be
developed, appropriately named FilterBank. The updated class diagram can be seen in
Appendix B: Class Diagram.

FilterBank
A Filter Bank is a combined set of parallel filters all filtering a single input signal.
Class FilterBank is designed to do just that. A given input signal is filtered by a
number of FIR filters. A FIR Filter performs the following operation on an input
signal x[n]

∑
=

−=
M

k
k knxbny

0
][][

where y[n] is the output signal, bk the filter coefficients and M the number of filter
coefficients. (For more information on filters, see [11].) To filter out the desired
frequency, bandpass filters were developed in MATLAB. At first, we had 64 filters
with a passband of 62.5 Hz and 8 filter coefficients. Preliminary testing and
simulation in MATLAB showed that the performance of the filters was sub-par. In
order to get adequate performance we determined that we needed to use much more
filter coefficients. Since this increases the computational costs of the filtering
operation, the number of filters was reduced. The new filter coefficients were
developed with MATLAB’s Filter Design & Analysis Tool (see Figure 12).

25

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Project Execution

Figure 12: Filter Design & Analysis Tool

With the FDA Tool 8 filters were designed. Every filter is a 128th-order FIR filter
with a bandwidth of 62.5 Hz and a central frequency of an integer multiple of 250 Hz.
The filters were designed using a 129-point Bartlett window. One beneficial property
of this specific type of filter is that it has a magnitude response of −45 dB or less for
all frequencies that are multiples of 250 Hz, other than the central frequency (see
Figure 13).

Figure 13: Magnitude response of 128th-order Bartlett FIR Filter

26

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Execution

Normalized Cross-Correlation
After filtering the input signal, we want to determine the delay between the left and
right filtered signal of that specific frequency. To do so, we try to maximize the cross-
correlation between the left and the right signal. The cross-correlation is the preferred
measure to determine the coherence between two signals. For our application we
make use of the windowed cross-correlation

∑
=

−=
2

1

][][][
N

Nn
lr dnrnldρ

where l[n] and r[n] are the discretely-filtered left and right signal, respectively, and
where N1 and N2 define a window in time for which the cross-correlation is
calculated. The value of the delay d that maximizes ρlr[d] is the ITD in samples. This
is then multiplied by the duration of one sample to acquire the ITD in seconds. Since
it is known that the maximal delay in our model can only be 7 samples, we optimize
the cross-correlation by only using values for d that are in the discrete interval [-7,7].

A problem with this cross-correlation method is that for signals of constant
amplitude it produces more than one maximum at intervals equal to the signal's
frequency. In order to overcome this ambiguity, we use an amplitude-modulated
signal as our sound source. More specifically, we use triangular modulation, since this
always produces the greatest difference in amplitude between periods. Furthermore,
when the ITD is larger than one-half the period of the signal, the smallest delay that
maximizes the cross-correlation will actually be smaller than the real ITD. To avoid
this issue of wrapping, we do not process signals of frequencies that have wavelengths
shorter than half the distance between both ears.

Figure 14: 16ms, 1000Hz signal sample captured with AIBO’s microphones

27

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Project Execution

Figure 14 shows an actual signal captured from the AIBO’s microphones when a
1000Hz, triangular modulated tone is generated. The red line shows the input on the
left microphone, the blue line shows the input on the right microphone. A plot of the
calculated cross-correlation can be seen in Figure 15. The results show that a delay of
7 samples produces the highest correlation, which means that the source must be
entirely to the left of the AIBO.

Figure 15: Cross-correlation of the 1000Hz signal for various values of d

7.6 SYSTEM TESTING
At first, SoundSourceLocalizer was designed as a passive Object. It would only
receive data from the AIBO and not control any parts of the robot itself. The
necessary movement of the head for deconfusion would have to be done by other
applications. After testing however, we noticed that the calculated azimuths were
fairly inaccurate. This could be attributed to the sound produced by moving the head
while sampling. It was decided that we would also add an active mode of operation to
SoundSourceLocalizer, in addition to the already existing passive mode. In this active
mode SoundSourceLocalizer would listen for a sound, move the head towards the
perceived source using the Object HeadMover, listen again, and repeat. This new
approach is illustrated in Figure 16.

28

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Execution

Figure 16: System model with SoundSourceLocalizer running in active mode

Testing showed that the new approach produced far better and more accurate results.
Listening times are set to 160ms, equivalent to 10 sampling frames. To smooth the
azimuth and reduce the effect of noise we also apply the following formula:

θαθαθ ⋅+−=+ nn)1(1

where θ is the latest observed, deconfused azimuth, θn is the smoothed azimuth at the
n-th sampling frame, and α is a constant for which 0 < α < 1. In our application, we
have chosen α = 0.1, which gives the last 10 sampling frames an influence of about
65% on the current value of the smoothed azimuth. A high value of α would lead to a
very fluctuating azimuth, while a low value would produce a very slowly changing
azimuth. By testing, it was determined that a value of 0.1 provides the best balance
between noise reduction and a quick response.

29

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Project Evaluation

8 PROJECT EVALUATION
The software was tested using PC speakers and a tonegenerator application. A
different triangular modulated frequency would be generated on each channel
simultaneously. The AIBO would then be set to determine the azimuth of one of the
frequencies. Figure 17 shows an example of such a setup. After one azimuth has been
determined, the AIBO would be set to determine the azimuth of the other frequency.

Figure 17: AIBO test setup

Figure 18: Multiple AIBO test setup

Figure 18 shows a test setup with multiple AIBO’s and two speakers. The AIBO’s
both produced certain frequencies, which then had to be recognized by the other
AIBO.

Deconfusion was tested by letting AIBO track a certain source. Then the sound
source would be shut down and moved in the mirror position relative to the
microphone axis. Without deconfusion, the azimuth of the new sound source would
have been exactly the same and AIBO would continue to look in the old direction.
With deconfusion however, AIBO found the new location of the sound source.

The performance of the software in all tests exceeded our expectations. Looking
back to the requirements, we can safely say we fulfilled all of them. With our
software the AIBO is able to:

▪ Determine the azimuth of a specified frequency or frequencies.
▪ Determine the azimuth of that frequency in noisy environment, within reasonable

limits.
▪ Determine whether the azimuth is a front or back angle.
▪ Produce triangular modulated frequencies that can be detected by other AIBOs.

Our attempt to make one isolated Object that gets raw stereo sound data and

returns azimuths has only partly succeeded. To prevent noise interfering with the
sound we had to introduce an active mode to SoundSourceLocalizer in which it has
control over the head movements via HeadMover. Although it doesn’t work stand-
alone in active mode it does yield significantly better results. Passive mode still is
available and is automatically used if the HeadMover Object is not available.

30

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Project Evaluation

8.1 RECOMMENDATIONS
Even with all the current features, there is certainly still room for improvement. The
following are suggestions of improvements that can be made:

▪ Using IIR (Infinite Impulse Response) filters instead of FIR filters in the filter

bank. IIR filters produce better bandpass filtering results than FIR filters but are
harder to implement in software. Also with IIR filters the passband frequency can
be much smaller, allowing for the recognition of more frequencies.

▪ Testing and improvement of the passive mode of SoundSourceLocalizer.

31

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Conclusion

9 CONCLUSION
When we started this project we decided to use an iterative approach to the problem,
following the V-process model (Figure 7). This approach was very useful to us,
because it allowed us to use the knowledge that we gained during the whole process
to improve certain parts of the system.

In the end, after numerous steps back and forth, we achieved an impressive result.
The AIBO can sit listening to one particular frequency and move its head towards the
sound source, or else indicate that the sound source is beyond the turning range of its
head. Other sounds, nearby objects, positioning of the sound source behind the head
or talking people did not seem to have a significant influence on AIBO’s ability to
localize the sound source.

Observing the performance of our software, we can conclude that sound source
localization is very possible on an embedded environment such as an AIBO like the
ERS-7. It has enough system resources to process the necessary operations and
calculations fast enough to follow a sound source in real-time.

Sound source localization can be made fairly accurate and reliable to the point
where two AIBOs can blindly find each other by using sound. The Dutch AIBO Team
demonstrated this during the Robocup Tournament 2004, in a demo using this sound
source localization software. They got 2nd place in the Open Challenge, pre-qualifying
for Robocup 2005 in Japan!

32

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Sources and References

10 SOURCES AND REFERENCES

[1] www.eu.aibo.com, “AIBO Europe”.
[2] www.openr.org
[3] www.eclipse.org, “The Eclipse Project”.
[4] www.cvshome.org, “Concurrent Versions System”.
[5] www.fftw.org, “FFTW Home Page”.
[6] http://aibo.cs.uu.nl, “Dutch AIBO Team 2004”
[7] http://interface.cipic.ucdavis.edu/CIL_tutorial/3D_psych/azimuth.htm,

“Azimuth Cues”.
[8] http://www.ie.ncsu.edu/kay/msf/sound.htm, “Sound Localization”.
[9] François Serra and Jean-Cristophe Baillie, “AIBO Programming Using

OPEN-R SDK”, June 2003.
[10] Rob Hartman, Ken Pohlmann, and Kevin Heber, High Frequency Effects on

Localization and Sound Perception in a Small Acoustic Space, 2002.
[11] James H. McClellan, Ronald W. Schafer, Mark A. Yoder, DSP First. A

Multimedia Approach. Prentice Hall, 1998.
[12] Bob Hughes and Mike Cotterell, Software Project Management. Third

Edition. McGraw-Hill, 2002.
[13] Kazuhiro Nakadai, Hiroshi G. Okuno, and Hiroaki Katano, Real-time Sound

Source Localization and Separation for Robot Audition, 2002.
[14] Kazuhiro Nakadai, Hiroshi G. Okuno, and Hiroaki Katano, Auditory Fovea

Based Speech Separation and Its Application to Dialog System, 2002.
[15] Keith D. Martin, Estimating Azimuth and Elevation using Auditory

Differences, 1999.
[16] http://en.wikipedia.org/wiki/Bandpass_filter, “Band-pass Filter”.
[17] http://www.biols.susx.ac.uk/home/Chris_Darwin/Perception/Lecture_Notes/

Hearing5/hearing5.html, “Binaural Hearing and Localization”.
[18] http://www.ee.surrey.ac.uk/Personal/D.Jefferies/powerac.html, “Complex

Numbers”.
[19] http://www.circuit-magic.com/complex_numbers.htm, “Complex Numbers

for AC Circuits Analysis”.
[20] http://en.wikipedia.org/wiki/Discrete_Fourier_transform, “Discrete Fourier

Transform”.
[21] Kenzo Obata, Kentaro Noguchi, Yoshiaki Tadokoro, A New Sound Source

Localization Algorithm Based on a Formant Frequency for Sound Image
Localization, 2003.

[22] http://www.u-aizu.ac.jp/~j-huang/Localization/localization.html, “Sound
Localization in Reverberant Environments”.

[23] http://www.ie.ncsu.edu/kay/msf/sound.htm, “Sound Localization”.
[24] Jie Huang, Noboru Ohnishi, and Noboru Sugie, A Biomimetic System for

Localization and Separation of Multiple Sound Sources, IEEE Transactions
on Instrumentation and Mesurement, vol. 44, nr. 3, June 1995.

[25] Ehud Ben-Reuven and Yoram Singer, “Discriminative Binaural Sound
Localization”.

[26] Michael S. Brandstein, John E. Adcock, and Harvey F. Silverman, A
Practical Time-Delay Estimator for Localizing Speech Sources with a
Microphone Array, 1995.

33

http://www.eu.aibo.com/
http://www.openr.org/
http://www.eclipse.org/
http://www.cvshome.org/
http://www.fftw.org/
http://aibo.cs.uu.nl/
http://interface.cipic.ucdavis.edu/CIL_tutorial/3D_psych/azimuth.htm
http://www.ie.ncsu.edu/kay/msf/sound.htm
http://en.wikipedia.org/wiki/Bandpass_filter
http://www.biols.susx.ac.uk/home/Chris_Darwin/Perception/Lecture_Notes/Hearing5/hearing5.html
http://www.biols.susx.ac.uk/home/Chris_Darwin/Perception/Lecture_Notes/Hearing5/hearing5.html
http://www.ee.surrey.ac.uk/Personal/D.Jefferies/powerac.html
http://www.circuit-magic.com/complex_numbers.htm
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://www.u-aizu.ac.jp/~j-huang/Localization/localization.html
http://www.ie.ncsu.edu/kay/msf/sound.htm

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Sources and References

[27] Hiromishi Nakashima, Toshiharu Mukai, and Noboru Ohnishi, Self-
Organization of a Sound Source Localization Robot by Perceptual Cycle,
2002.

[28] Ea-Ee Jan and James Flanagan, Sound Source Localization in Reverberant
Environments using an Outlier Estimation Algorithm, 1996.

[29] Kazuhiro Nakadai, Daisuke Matsuura, Hiroshi G. Okuno, and Hiroaki
Katano, Applying Scattering Theory to Robot Auditioning System: Robust
Sound Source Localization and Extraction, Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robot and Systems, Las
Vegas, Nevada, October 2003.

[30] Tokuji Okada, Naoyuki Takahashi, and Hideyuki Sato, Compact Sensor for
Localizing a Sound Source Using Differences of Sound Levels Sensed by
Condenser Microphones, 2002.

[31] Keith D. Martin, Towards Automatic Sound Source Localization: Identifying
Musical Instruments, 1998.

[32] Harald Viste, Gianpaolo Evangaliste, On The Use of Spatial Cues to Improve
Binaural Source Separation, Proceedings of the 6th International Conference
on Digital Audio Effects (DAFx-03), London, UK, September 2003.

[33] Jean-Marc Valin, François Michaud, Jean Rouat, Dominic Létourneau,
Robust Sound Source Localization Using a Microphone Array on a Mobile
Robot.

[34] Vikas C. Raykar, Optimization Methods for Sound Source Localization Using
Microphone Arrays, CMSC 660 Project Solutions, December 2002.

[35] http://homepages.inf.ed.ac.uk/rbf/HIPR2/zeros.htm, “Zero Crossing
Detector”.

[36] http://www.cs.cf.ac.uk/Dave/Vision_lecture/node29.html, “Second Order
Zero Crossing Methods”.

34

http://homepages.inf.ed.ac.uk/rbf/HIPR2/zeros.htm
http://www.cs.cf.ac.uk/Dave/Vision_lecture/node29.html

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Appendix A: Programming Guidelines

11 APPENDIX A: PROGRAMMING GUIDELINES
Programmeer Guidelines voor Aibio

Code structuur:
--
- Include files hebben de extensie .h
- h-files declareren eerst de public methoden en dan de private.
- h-files declareren per access modifier (public/private)
 eerst constanten, dan variabelen, dan constructors en dan de methoden.
- Source files hebben de extensie .cc
- Maximaal 1 klasse definitie in een include file.

File naamgeving en plaatsing:
--
- <classname>.h en <classname>.cc (dus inclusief hoofdletters).
- Alle files die nodig zijn per Core class Object in een aparte directory in
 /src. De naam van de directory dient hetzelfde te zijn als de naam van het
 Object.
- Alle config files voor objecten (.ocf,stub.cfg) moeten in de /src/<Objectname>
 directory.
- Alle files voor libraries die door meerdere objects gebruikt (kunnen) worden
 in de /src/common directory op volgende wijze:
 * Library source files in de /src/common/lib<libname> directory.
 * Library interface header files in de /src/common/include directory.
 * Gecompilede libraries in /src/common/lib<libname> directory (samen met de
 sources dus). Zorg ook voor een makefile om de library te compilen, archiven
 en ranlib-en.

File Header:
--
- Zet de onderstaande header aan het begin van alle nieuwe software files die je
 toevoegd aan het project. Vervang de commentsigns door de juiste tekens voor
 die file. Header is onder voorbehoud.

/*
 * Copyright 2004 Aibio Project Group
 * Copyright 2004 Delft University of Technology
 *
 * Aibio Project Group is: Marlon Richert, Tijmen Roberti and Wouter de Vries
 *
 * Permission to use, copy, modify, and redistribute this software for
 * educational purposes is hereby granted.
 *
 * This software is provided "as is" without warranty of any kind,
 * either expressed or implied, including but not limited to the
 * implied warranties of fitness for a particular purpose.
 */

Algemene code eisen:
--
- Maak bij if-statements ALTIJD gebruik van accolades {}.
 Het weglaten van {} speelt latere fouten in de hand.
 Dus NIET zo:

 if (condition) //FOUT, Tijmen!! GEEN ACCOLADES {}!!
 STATEMENT;

 Maar ZO:

 if (condition)
 {
 STATEMENT;
 }

- Klassenamen beginnen met een Hoofdletter.
- Functienamen beginnen met een kleine letter (dus niet volgens die vage Sony
 manier).
- variabelen beginnen ook met een kleine letter.
 Gebruik GEEN underscores maar wel hoofdletters:
 bijv: mijnMooieVariabele ipv mijn_mooie_variabele
- constanten in FULL_CAPS.

35

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Appendix A: Programming Guidelines

- verzin ZINNIGE en logische variabelenamen!! Dus geen bla1, temp1, temp2 etc.
 De variabelenaam moet het gebruik van de variabele zo goed mogelijk verklaren.
- Idem voor functienamen. Er mag best wat tijd besteed worden aan het bedenken
 van een goede functienaam.
- Schrijf niet teveel inline code.
- Gebruik geen afkortingen die niet algemeen bekend/geaccepteerd zijn.
- Vermijd ambiguiteit.

Debugging:
--
- Gebruik voor debugging de OSYSDEBUG macro van OPEN-R, wanneer we _eindelijk_
 de wireless console tot onze beschikking hebben! Gebruik tot die tijd de eigen
 TOLOG macro op dezelfde manier als OSYSDEBUG. TOLOG schrijft per default naar
 de file /MS/OPEN-R/DEBUG.LOG.
- Om deze macro te kunnen gebruiken moet je <log.h> includen.
- Je moet in je Makefile ook de Aibio library meelinken. Dus voeg aan je LIBS
 toe:

 -L../common/libAibio -lAibio

- Begin elke debugmessage met "<klassenaam>::<methodenaam>() : ". Gebruik van de
 % operator is mogelijk. Dus bijvoorbeeld:

 TOLOG(("MyClass::myBuggyMethod() : state = %d\n pointer = %x\n", state, ptr));

- Gebruik voor run-time debuggen het BlinkAgent OObject. Zie voor een
 handleiding Debugging with BlinkAgent.txt in de aibio/docs folder.

Comments:
--
- Alle comments in het Engels.
- Alle top-level comments graag in mooie volzinnen.
- Een /* */ comment refereert altijd aan het GEHELE volgende codeblock.
- Een // comment refereert ALLEEN aan de volgende zin.
- Een // comment mag ook achter de zin in kwestie staan, na een of meer tabs.
- Iedere klasse begint met een comment waarin uitgelegd wordt hoe die klasse
 heet en wat hij doet:

 /* A FirstClass is a thing that does incredible things.
 * Some might say it is destined for greatness.
 * Others beg to differ.
 */
 class FirstClass
 {
 //I'm awesome!!
 }

- Zet comments er DIRECT bij als de code af is (en werkt uiteraard) en niet
 later want dat gebeurt meestal niet. :)
- Alle niet standaard functies beginnen met een comment waarin uitgelegd wordt
 wat die functie doet op de volgende wijze:

 /* Does amazing things because we want it too.
 * Has some embarrassing side effects that we didn't want,
 * but they're here anyway so deal with it!!
 */
 <return type> <class name>::<function name>(<args>)
 {
 //...
 }

- Voeg comments toe bij potentieel onduidelijk stukken code.
- Vertel ook WAAROM je iets doet.
- Bij het committen naar de CVS ook comments toevoegen aub.

Code style:
--
- Wrap alle lines (netjes!) op 80 characters.
- Als je line-wrapt, indenteer per default met twee tabs (en niet met één),
 om goed onderscheid te maken met block indents.
- Functies/constructors definitie:

 <return type> <method name>(<args<)
 {

36

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Appendix A: Programming Guidelines

 //insert code here
 }

- Zet, bij het line-wrappen van een functie met veel argumenten,
 de argumenten onder elkaar. Bijvoorbeeld:

 int mijnIngewikkeldeFunctie(int myInt,
 int* myIntPointer,
 double myDouble,
 double* myDoublePointer);

- Bij functies met als argumenten input en output array pointers gebruik de
 volgende volgorde :
 1) source array
 2) parameters die iets over source zeggen
 3) overige parameters
 4) destination array

 bijv:
 copyArrayTo(double* source, int length, int mask, double* destination);
 output(double* source, int amount);

37

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Appendix B: Class Diagrams

12 APPENDIX B: CLASS DIAGRAMS

12.1 SOUNDSOURCELOCALIZER

38

Bachelor project Computer Science – Sound Source Localization using the AIBO ERS-7
Appendix B: Class Diagrams

12.2 SPEAKER

12.3 HEADMOVER

39

Marlon Richert, Tijmen Roberti & Wouter de Vries, 2004
Appendix B: Class Diagrams

12.4 AIBIODEMO

12.5 BLINKAGENT

40

	Table of Contents
	Preface
	Introduction
	Sound source localization...
	...using the AIBO

	Introduction to the AIBO ERS–7
	Specifications ERS–7
	OPEN–R SDK
	Open Objects
	Challenges of working on an embedded system

	Sound Source Localization Techniques
	Interaural Differences
	Interaural Level Difference
	Interaural Time Delay
	Interaural Phase Difference

	Interaural Delay Models
	Headless Model
	Duplex Theory
	our Sphere Model

	Deconfusion

	Project Management
	Project Approach
	Teamwork
	Programming Guidelines
	Concurrent Versions System
	Eclipse
	Peer review

	Tools used in the project

	Project Execution
	Requirements Analysis
	System Design
	Program Design
	SoundSourceLocalizer
	Speaker

	Implementation
	SoundSourceLocalizer
	Converter
	FFT
	AzimuthCalculator

	Speaker

	Program Testing
	FilterBank
	Normalized Cross-Correlation

	System Testing

	Project Evaluation
	Recommendations

	Conclusion
	Sources and References
	Appendix A: Programming Guidelines
	Appendix B: Class Diagrams
	SoundSourceLocalizer
	Speaker
	HeadMover
	AibioDemo
	BlinkAgent

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

