
MULTI-AGENT STRATEGO

University of Rotterdam Delft University of Technology
for Professional Education Delft Faculty of ITS
Faculty of Computer Science Department of Mediamatica
Software Engineering Man-Machine Interaction

Place, date:

Rotterdam, 26 august 2004

Author:

Mohannad Ismail

 ii

 MULTI-AGENT STRATEGO

By

Mohannad Ismail

A thesis submitted in partial
fulfillment of the requirements for the

degree of

Bachelor of Computer Science

University of Rotterdam

2004

 Approved by

 ir. M.M.M. Abdelghany University of Rotterdam
 Chairperson of Supervisory Committee

 Drs.dr. L.J.M. Rothkrantz T.U. Delft University of Technology

Program Authorized
to Offer Degree Bachelor of Computer Science

Date 26 august 2004

TABLE OF CONTENTS
TABLE OF CONTENTS ...I

ACKNOWLEDGMENTS...III

ABSTRACT .. IV

CHAPTER 1 ... 5
INTRODUCTION... 5

1.1 Motivation... 6
1.2 Project Goals.. 7

CHAPTER 2 ... 9
MULTI-AGENT SYSTEMS... 9

2.1 Intelligent agents .. 9
2.2 Multiple cooperative agents... 10

CHAPTER 3 ... 15
PLAYING STRATEGO .. 15

3.1 The game .. 15
3.2 Rules of the game ... 16
3.3 Description of the pieces.. 17

CHAPTER 4 ... 19
DESIGN... 19

4.1 Requirements .. 19
4.1.1 The agent's environment ... 19
4.1.2 The agent's functionality ... 21
4.1.3 Decision making ... 22

4.2 UML.. 23
4.2.1 The Use-Case diagram.. 23
4.2.2 The Class diagram... 25
4.2.3 Sequence diagram ... 27

4.3 The game board.. 29
CHAPTER 5 ... 31

CHAPTER 5 ... 31
KNOWLEDGE OF THE AGENTS .. 31

5.1 Rule-based systems... 31
5.2 Rules for the agents' behavior.. 32

5.2.1 Preference rules for the miner... 33
5.3 The Rete Algorithm... 35

CHAPTER 6 ... 43
IMPLEMENTATION .. 43

6.1 Jess - Java Expert System Shell ... 43
6.2 Simulating the agent's environment ... 45
6.3 Agent neighbours.. 48

 Multi-Agent-Stratego

 ii

CHAPTER 7 ... 49
TESTING THE GAME.. 49

7.1 Game play... 49
7.1.1 Game play test results ... 49

7.2 The agent view.. 50
7.2.1 Agent view test results .. 50

7.3 The communications between the agents... 52
7.4 The communication between the agents and Jess ... 52

7.4.1 Jess test results .. 52
7.5 Testing the agents and the CDM communication ... 55
7.6 Making a plan... 56
7.7 Playing the game. ... 57

MANUAL .. 61
8.1 User manual ... 61
8.2 CLIPS manual .. 62

CHAPTER 9 ... 65
CONCLUSION.. 65

9.1 Evaluation... 65
9.2 Future work .. 67

BIBLIOGRAPHY .. 69

APPENDIX A ... 71
THE AGENT’S SOURCE CODE .. 71

APPENDIX B.. 99
UML DIAGRAMS.. 99

 Multi-Agent-Stratego

 iii

ACKNOWLEDGMENTS
This report describes the bachelor end report that I have done in the past 5

months. This is the final stage in the bachelor program to become an

engineer. This project was headed by drs.dr. L.J.M. Rothkrantz. And I also

would like to thank him for helping me and guide me during this project.

Special thank to Ir. M.M.M Abdelghany for the support and help with the

solutions of problems. Also special thanks to my colleagues in the lab for

sharing the knowledge and helping me with the all kinds of technical

problems and offering solutions, and last but not least my family for

providing me with all the support I needed.

 Multi-Agent-Stratego

 iv

Abstract
The field of multi-agent systems is an active area of research. One of the

possible applications of a multi-agent system is the use of distributed

techniques for problem solving. Instead of approaching the problem from a

central point of view, a multi-agent system can impose a new mode of

reasoning by breaking the problem down in a totally different way.

In this report we investigate a distributed approach to playing Stratego. The

individual pieces of the Stratego army are represented by computational

agents that each have their own field of perception, evaluation and behavior.

A first prototype of a framework has been built that consists of a simulation

environment for the agents and an implementation of the agent’s evaluation

function. The agents have a rule engine that generates behavior that is a

resultant of the environment in which they live. This report presents a result

of playing the game using agents against a human player.

 Multi-Agent-Stratego

 5

Chapter 1

Introduction
This report describes an attempt to play the Stratego game with multiple agents

using decentralized decision making. The Stratego game is a board game where

two players battle each other with their armies of pieces. The object of the game

is to capture the enemy flag by moving pieces towards the enemy and try to

capture enemy pieces. An interesting property of the game is that the

information the players have is incomplete, because the identity of the

opponent's pieces is concealed until exposed by battles between pieces.

 Multi-Agent-Stratego

 6

1.1 Motivation
Our motivations for using the multiple agent approach are as follows. When we

consider a human society from a central point of view we see that it is a very

complex system. A possible attempt to understand the complex behavior of a

human society may be considering it as a system that is made up of individuals

that each has their own characteristics, behavior patterns and interactions with

each other’s. It is the sum of all the local actions and interactions that

constitutes the overall behavior of the society. In other words, we can

understand this complex system by considering it in a distributed fashion. We

expect that the distributed approach of taking a local point of view in stead of a

central point of view, can not only be used to understand complex systems but

may also be used to solve complex problems. This investigation is an attempt to

support this hypothesis by considering the Stratego game. Specially we want to

investigate whether a distributed way of playing this game will provide us with a

means to break down the complexity of playing it. We believe that the Stratego

game can serve as an example for supporting our hypothesis, because of the

characteristics of the game. The game brings about a high complexity when

seen from a central point of view. This is a direct consequence of the fact that

during the greater part of the game, both players have incomplete information

of the board situation. Our approach will be an attempt to handle the game's

complexity by using the distributed decision-making at the level of the Stratego

pieces.

The complexity of the game can best be recognized by attempting to design a

computer algorithm that approaches the game the same way human players do.

When a human player plays Stratego, the human takes a central point of view of

the game. Up to a certain level every human can learn to play the game. We

assume that the human brain can somehow handle the complexity of the game

by making up tactics and strategies, form hypothesis and go after their intuition.

 Multi-Agent-Stratego

 7

Depending on the level of play, some of the abilities of the human players may

be implicit knowledge.

1.2 Project Goals
What is the goal of this project? The goal is to create the board game

Stratego on the computer. This will be an attempt to play the Stratego game

with multiple agents and using an expert system for decentralized decision

making. The rule engine is Jess (the Rule Engine for the JavaTM Platform). The

project goal can be split up in the following subgoals:

• Literature study.
• Design a model.
• Implementation of the model.
• Build a running prototype.
• Test of the prototype.

What is the scope of this project?

• To create a working version of the game which can be played against
the computer.

• The computer must use agents.
• The use of CLIPS for the rule set of the agents.

What are high-level features you are sure to build?
• An easy to use graphical user interface.
• A rule set of the game Stratego.
• A working computer opponent.

What are the high-level assumptions or ground rules for the project?

• There is no central point of view.
• Our approach will be an attempt to handle the game's complexity by

using the distributed decision-making at the level of the Stratego pieces.
• Every individual piece/agent takes its decision based on its perception

of the world and reasoning mechanism.
• Individuals differ in their perception of the world and reasoning

mechanism.
• The game will be implemented in the programming language Java
• The main developing platform will be Windows (though it should run

on any Java enabled platform)

 Multi-Agent-Stratego

 8

 Multi-Agent-Stratego

 9

Chapter 2
Multi-agent systems
This chapter provides some background material of the investigation. The

relatively new field of research called multi-agent systems is described. But first

an introduction is given to the concept of an intelligent agent.

2.1 Intelligent agents
In the computer science literature a lot of papers, reports and books contain the

word "agent". Apparently it has become a very popular word of describing

systems and software. But there seem to be a lot of disagreements as to what

the characteristics of these systems and software are that constitute an agent.

In this Section we will review some of the main interpretations of the agent-

concept. Before we start comparing definitions and interpretations we need to

have an understanding of what types of agents we will discuss. The Collins

English dictionary gives a rather broad definition of the word agent:

1. A person who acts on behalf of another person, group, business,
government etc.

2. A person or thing that acts or has the power to act.
3. A substance or organism that exterts some force or effect.
4. The means by which something occurs or is achieved.
5. A person representing a business concern.

According to this characterization virtually any system can be classified as an

agent. Thus our agent definition needs to be more specific, to characterize the

kind of agents in which we are interested. Our interpretation will be in the

context of agents that are used in the computer science literature. These have

two main characteristics, a level of intelligence and autonomy.

 Multi-Agent-Stratego

 10

An agent is anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through effectors. See Figure 2.1 for

a schematic view of an agent interacting with its environment.

Figure 2.1: Agents interact with environments through sensors and effectors

2.2 Multiple cooperative agents
So what about multi-agent systems? A multi-agent system is a system in which

multiple agents are working together, possibly in a distributed context. There

are a number of reasons to distribute artificial intelligence.

A lot depends on the nature of the problems that are to be solved, or the topics

that are to be investigated. Because of the possible use in multiple domains, the

essentials of multi-agent systems can best be understood by considering the

areas of application.

Ferber (1999) has made a classification of the possible areas of application as

shown in Figure 2.2. In the following paragraphs an outline of each of these

five categories of applications is given.

 Multi-Agent-Stratego

 11

Problem solving. This concerns the use of software agents, brought into

action to accomplish tasks that are of use to humans. These software agents are

computing agents and have no real physical structure. Ferber (1999)

discriminates between `distributed solving of problems' and `solving of

distributed problems'. The first concerns a problem solving where the expertise

to solve the problem is distributed among agents, i.e. the agent system

comprises of a number of agent-specialists. The latter deals with problems that

are themselves distributed. Typically, in these applications multiple agents of

identical skills are used. Distributed techniques for problem solving are

sometimes used for problems where the domain is not distributed nor is the

expertise. Yet sometimes a multi-agent system can dictate a different point of

view of the problem, which might make it possible to break down the problem

to an easier way to solve.

Multi-agent simulation. Theoretical models of the surrounding world are

sometimes used in simulations to explain or forecast natural phenomena. In

contrast with the traditional analytical models that are used, the multi- agent

approach to modelling is conceptually different. Instead of creating the model

from a central viewpoint, individuals are directly represented along with their

behavior and interactions. This way the modeller expects to see emergent

behavior patterns arising during simulations.

 Multi-Agent-Stratego

 12

Figure 2.2: A classification of the various types of application for multi-agent
systems.

Building artificial worlds. A big part of research efforts on agents is the

construction of synthetic worlds. These are worlds made up by the designer for

investigating the use of agents. In this case the agents are purely computational

agents. These worlds are specifically constructed in order to investigate agent-

concepts, interactions amongst agents or to gain an understanding of the in of

behavior on the regulation of a society.

Collective robotics. An active area of research is the construction of multiple

physical robots situated in a shared environment. Research interests can be to

 Multi-Agent-Stratego

 13

build autonomous robots or a study of interaction and cooperation between

robots.

Program design. According to Ferber multi-agent systems can be used for

kenetic program design. The ambition of this concept of designing is to be able

to create distributed systems and software that operate with great and ability to

adapt to the environment.

 Multi-Agent-Stratego

 14

 Multi-Agent-Stratego

 15

Chapter 3
Playing Stratego
This chapter covers the basics of playing the Stratego game. First some general

things about the game are described, the layout of the board, number of pieces

and rules of the game.

3.1 The game
The game Stratego was designed by Milton Bradley Company in 1961. It is a

military strategy game for two players fighting each other on a board of 10 x 10

squares. Each player has an army of pieces that each represent a military man or

a military object (a bomb or a flag). Every piece has a certain rank that is used to

determine the outcome of battles between pieces.

The goal of the game is to capture the enemy flag. At the start of the game all of

the ranks of enemy pieces are unknown. The players have to come up with a

strategy to find out the positions and identities of enemy pieces, including the

flag.

Upon starting the game, the players position their armies. They are completely

free to position their pieces within their side on the board, but every square can

contain only one piece. The first thing that both players have to do is think

carefully about the initial strategic positions of their pieces. The initial

positioning is a very important part of the strategies of the game. The strength

of the army is to a considerable extent result of the initial positioning.

The board consists of ten rows of ten columns of squares on which two armies

begin playing with forty pieces each. Part of the squares is covered water and

forbid for pieces. See Figure 3.1 for a screenshot of the board and pieces.

 Multi-Agent-Stratego

 16

Figure 3.1: Screenshot of the board.

3.2 Rules of the game
As mentioned before the identity of any enemy piece is unknown at the start of

the battle. When a piece attacks an enemy piece, the ranks of both pieces

determine the outcome of the battle. The higher rank wins, which means that

the looser is removed from the board. When the pieces share the same ranks

both are removed. However there are two exceptions. Any piece attacking a

bomb looses except for the miner who can dismantle bombs. The second

exception concerns the spy. This piece can attack and defeat the marshal, but

when the marshal attacks the spy the marshal wins.

A movable piece can move only one square at a time, either forward, backward,

to the left or to the right. It attacks an enemy piece by trying to move to an

already occupied square on the board. Two kinds of non-movable pieces exist

which are bombs and the flag.

 Multi-Agent-Stratego

 17

3.3 Description of the pieces

The Flag is the most important piece of the Stratego army, because
once attacked the game is lost. Every enemy piece can beat it because
it has the lowest rank.

The bomb is lethal for every enemy piece except for the miner, who
can dismantle bombs. The bomb is the second non-movable piece.
The bombs are very suitable for protecting important pieces in the

army, such as the flag.

The spy is the lowest ranking moving. Every enemy piece attacking it
wins, or when attacked by an enemy spy a draw occurs. However, the
spy has an important quality. Upon attacking the enemy

Marshall the spy wins (if the Marshall attacks the Spy, the spy loses).

 The scout is piece with rank 3, which is mostly used to reveal enemy
ranks at the cost of its own life. In the game there’re 8 scouts for this
purpose.

The miner is the only piece able to dismantle enemy bombs. It has
rank 4, which means it can also capture enemy scouts & spies, but all
other pieces with higher rank are lethal. 5 miners are available at

the start of the game. It is important to position the miners somewhere where
they can move easily. When for example an enemy bomb has been discovered,
one of the miners has to come into action.

The sergeant typically belongs to the middle-ranks of the Stratego
army. It has rank 5, all lower ranks except for the bomb ofcourse can
be captured and all higher ranks are lethal. The initial Stratego army

has 2 sergeants. The sergeants are probably at their best during the mid-game.
They can capture the enemy spy and minors.

The lieutenant with rank 6, the lieutenant is the first higher rank in the
army. The Stratego armies each have 4 lieutenants. Care should
therefore be taken not to reveal its rank when unnecessary. However a

role in the army may be to capture as much as enemy pieces as possible,
because of its rank which is between low ranked pieces (that can be captured)
and higher ranks (which are more important in the end game).

The captain has rank 7. With this rather strong rank the captain might
want to conceal its rank for a while. It will probably come in handy in
the end-game, if the captain is to be used for defences.

 Multi-Agent-Stratego

 18

Also the captain can take offensive actions.

The major has rank 8. Each army has 3 majors. The major's starting
position is preferably some where in the back, where it can defend
lower ranks and wait for a possible attack when the risks can be

estimated well. The major should think twice before attacking pieces that
haven't moved yet, they may be bombs.

The colonel has rank 9. Each army has 2 colonels.

With rank 10, the General is the second strongest piece in the game,
because of the Marshall’s weakness against the spy, theoretically the
General is the strongest piece in the game.

The Marshal is the most powerful piece in the Stratego army. It can
only be captured by the enemy marshal (a draw), by the enemy bombs
upon attacking them and by the spy attacking the marshal. It should

never attack pieces that haven't moved yet, because they may be bombs.
Preferably the marshal's rank is to be concealed as long as possible.

From our definition of agents we can elude that agents differ with respect to:

• Perception: we assume that agents have a different field of perception.
Size of the higher the rank, the greater the field of percept.

• Reasoning: we assume that the agents have their own set of rules.
• Actuator: we assume that the agents have their own behaviour.

 Multi-Agent-Stratego

 19

Chapter 4
Design
4.1 Requirements
This section discusses the requirements of our Stratego agent. These

requirements will be discussed in terms of the agent's, its desired functionality

and the way decisions are to be made.

4.1.1 The agent's environment
In this project almost every piece of the army is an agent (only computer played

pieces). We consider 2 different types of agent’s:

1. The lower rank agent.
2. The higher rank agent.

1- The lower ranked agents are: the scout, the sergeant, the lieutenant, the

captain and the major. These soldiers can only look 1 square around them see

figure 4.1.

Figure 4.1: The blue agent only sees the red squares.

2- The high ranked agents are: the spy, the miner, the colonel, the general and

the marshal. We considered the spy and the miner as high ranked view agents,

because they have a second goal then capturing the enemy flag, which is

capturing the enemy marshal for the spy and defusing the enemy bombs for the

miner. Now is the percentage between low and high ranked agents is 50%. The

view of the high ranked agents is 12 squares, figure 4.2

 Multi-Agent-Stratego

 20

Figure 4.2: The blue agent sees the red squares.

Both kind of the agents work as figure 4.3

Figure 4.3: The agent observes the environment and calculates a best action.

The agent can see the environment. He calculates what’s the best action1 for

him using the rule base engine that fires the rule-set with the Rete Algorithm2.

Because we are working with more then one agent so we want the agent’s to

take the best action for the whole army. So now every agent communicates with

the Central Decision Maker (CDM) and send his best action. The CDM decide

what agent can take his calculated action. See figure 4.4.

1 In chapter 6 we will discuss how the agents calculate their best score.
2 In chapter 5 the Rete Algorithm will be explained

 Multi-Agent-Stratego

 21

Figure 4.4: The agents communicate with the CDM

4.1.2 The agent's functionality
In designing the agents we want to make use of the fact that each piece in the

Stratego army has a certain dedicated role. These roles originate from their

specific ranks and the rules of the Stratego game. For some pieces this goal can

be quite explicit. For example, the miner's primary goal is to dismantle enemy

bombs. All pieces have secondary goals as well however, of which possibly the

most important one is to stay alive. The scout however forms a clear exception

to this general goal, as the scout's primary goal might be to discover the identity

of enemy pieces-possibly at the cost of its own life.

 Multi-Agent-Stratego

 22

We propose to define some degrees of freedom in our model of the agent that

will allow us to experiment with different types of agents in the Stratego army.

Specifically we define for each agent:

• The agent's perception range. Depending on the agent's role in the army

the perception will be a diamond of range one or rang 2. Important
pieces will have wider perceptions.

• The agent's "reactive" behavior. For every agent we define four
elementary behaviors that are executed following a reaction in various
situations. These behaviors are:

1. Attack: attack an enemy piece that is situated within attacking
range of the agent (at a distance of one square).

2. Flee: move away from an enemy piece that is situated within
attacking range of the agent. Ideally the agent moves to a square
that is in the opposite direction of the enemy piece.

3. Wander: random walk.
4. Stay: do nothing.

• The agent's "cognitive" abilities, like for example evaluate situation,
compute optimal next move, form hypotheses, make plans (marshal).

4.1.3 Decision making
Because of the fact that only one piece can move at a time, a mechanism has to

be found that decides which agent is allowed to move. We propose three

possible ways of implementing this mechanism:

1. Based on scores, where each agent evaluates its current situation and
assigns scores to preferences of moving. A higher score will indicate a
stronger desire to move and the agent with the highest score will be
allowed to move.

2. Based on a random pick, where at each move a random choice will be
made of the agent that is allowed to move. It is possible however that
the chosen agent does not want to move. In this case another agent
will be randomly chosen. When none of the agents wants to move,
one of them will be forced to move.

3. Based on hierarchy in the Stratego army. Because we are speaking of
an army, a way of organizing it may be a strict hierarchy based on
ranks. In this scheme the highest rank in the army may decide which
agent will be allowed to move.

 Multi-Agent-Stratego

 23

We mainly use mechanism number 1 and if more then one agent highest score
are equal then we use mechanism number two to pick up a random agent to
move. If none of the agents wants to move e.g. because his highest score is
staying then we force the agent to move.

4.2 UML
In this section some UML designs will be showed and explained. We will

discuss the Use-Case diagram, the Class diagram and sequence diagram.

4.2.1 The Use-Case diagram
The human player doesn’t have a lot of action to do in the game. The player can

do the following actions with the program see figure 4.5.

The player can start, restart and exiting the game. And there is also an “about”

button in the help menu of the game to show the game credits and version

number. And for playing the game the user can set the pieces from the player-

hand to the game board, and moving the pieces.

 Multi-Agent-Stratego

 24

Start game

Restart game

Exit game

About game

Set tile

Human_Player

Move tile

Figure 4.5: Use-case diagram

 Multi-Agent-Stratego

 25

4.2.2 The Class diagram
The game uses packages see figure 4.6.

RUN

jess

agents

Images

Figure 4.6: Packages

The “RUN” package is where the game is implemented and all the code is
there. In the package “agents” is where the rule-set (CLIPS) of all the agents is
located and also the files that make the connection between Jess and the code.
“Jess” is the rule-base engine files. The package “Images” is where all the game
images are stored.

If we zoom into RUN we see the following class diagram see figure 4.7

 Multi-Agent-Stratego

 26

Figure 4.7: Stratego Class diagram.

See appendix for a bigger size of the class diagram.

As we can see that Tile is a super class. And the other subclasses are actually the

Stratego army pieces. The agent is a Tile with the extra attribute, which are the x

and y location, the agent best score and the move direction. See figure 4.8 for

the Tile and the Agent classes.

ComputerPlayerHumanPlayer

FlagTile BombTileMinorTile LieutenantTileCaptainTile MajorTile GeneralTileMarshalTile ScoutTile SergeantTi le SpyTile ColonelTile

SplashScreenImage

ButtonListenerMenuKeyListenerSplashScreenStartingSetupCPU

Stratego

Grid

1

1

1

1

Board
1 11 1

Player

1

1..*

1

1..*

Tile

*

1..*

*

1..*

Agent * ** *AgentComparator

 Multi-Agent-Stratego

 27

From every agent we can get/set his

location, score and move. The agent

type is the agent rank.

Figure 4.8: Tile and Agent class.

The status of a tile is KNOWN or UNKNOWN. When the game starts all the

agents are UNKNOWN if they go in a battle and win the battle, their status

change to KNOWN. The move attribute shows if a Tile is moved from it place

or not.

Check the appendix for the rest of the classes.

4.2.3 Sequence diagram
Here we will discuss what the system well do, when it’s his turn to play. We

will use a sequence diagram to summarize the method (figure 4.9).

Agent
i : int
y : int
score : int
move : Logical View: :java::lang::St ring

Agent()
getAge ntType()
getI()
setI()
getY()
setY()
getSco re()
setScore()
getMovement()
setMovement()

Tile
FLAG_TILE : int = 11111
BOMB_TILE : int = 1000000
SPY_TILE : int = 33333
SCOUT_TILE : int = 33344
MINOR_TILE : int = 44444
SERGEANT_TILE : int = 55555
LIEUTENANT_TILE : int = 55566
CAPTAIN_TILE : int = 55577
MAJOR_TILE : int = 55588
COLONEL_TILE : int = 55666
GENERAL_TILE : int = 66666
MARSHAL_TILE : int = 77777
UNKNOWN : int = 88888
KNOWN : int = 99999
NotMoved : int = 0
Moved : int = 1
ti leType : int
status : int
move : int

Tile()
getPlayer()
getTileType()
setStatus()
getStatus()
setMove()
getMove()

 Multi-Agent-Stratego

 28

Figure 4.9: Computer turn sequence diagram.

The first step is to get all the agents on the board. After this is done every

agent communicates with Jess to get his best action. Every agent sends his

information to the AgentComparator to sort the agents and put the highest

scoring agents at the top of the list. After that every agent percept is reset and

the agent is ready to move.

 : Stratego : Board : Agent :
AgentComparator

JESS

getAgents() getAgentType()

compare()

Agent()
orderAgents(List)

Resetview()

checkPlayerTurn()

AgentPlay()
getMovement()

getScore()

AgentPlay()
checkPlayerTurn()

ResetAgent()

checkPlayerTurn()

Status

setScore(int)

setMovement ()

 Multi-Agent-Stratego

 29

The second step is the Agentplay() function. It picks a random choice from

the set of the highest scoring agent. The agent tries to move, if the agent has

been moved then the turn ends and everything will be reset with the function

ResetAgent(). If the agent couldn’t move for some reason like the end of the

game board or there is water in his direction then he send an error message

back. The AgentPlay function tries the second best high scoring agent to play

if he couldn’t move agent the third best etc… until an agent moves. It could

happen that none of the agents can move, because he is blocked. An error

message appears in the information area that none of the agents can’t move.

When this happen the game will stop.

4.3 The game board
The board consists of ten rows of ten columns of squares. In this Stratego

design the decision was made to use double array. This way we can locate the

agents very simple. See figure 4.10 for the schematic board view.

Figure 4.10: the Red agent has the location [1][2].

 Multi-Agent-Stratego

 30

Also this way the agent can communicate with the other agents or check their

environment with the following method:

If the agent is located at [Y][X].
To check the environment from the north then the agent looks at
[Y - 1][X]. From the south is [Y + 1][X], East [Y][X + 1] and West [
Y][X – 1]. See figure 4.11 for an overview.

Figure 4.11: The blue agent percept in field

 Multi-Agent-Stratego

 31

Chapter 5
Knowledge of the agents
This chapter focuses on the knowledge level of the individual agents. Since the

agents represent pieces of the Stratego army, we want them to express behavior

that can be seen as "rational" from their point of view. In other words, we want

them to express behavior that will make the agents successful in achieving their

goals. Our approach is based on a rule-set that explicitly defines what to do for

a number of situations. Section 5.2 gives an elaborate discussion of a rule-set of

one of the agents, the miner. But first Section 5.1 discusses the concept of rule-

based systems in general.

5.1 Rule-based systems
Rule-based systems, also called production systems, form a well-known

architecture for implementing systems based on artificial intelligence techniques.

The heart of a rule-based system consists of a database, a rule-base and an

inference engine. These components interact with the external environment

through a perception of the environment and an execution to in the

environment (see Figure 5.1).

The database contains a representation of the state of the environment in

asserted facts. Upon perceiving the environment the agent asserts

corresponding facts in the database. The rule base consists of a set of rules,

each of which maps a specific state in the environment to one or more actions

the agent performs. The rules take the following form:

if <list of conditions> then <list of actions>

Where <list of conditions> is associated with asserted facts in the database and

<list of actions> are actions that may update other facts in the database or in

the external environment. The connection between the facts in the database and

the rules in the rule base is made by the inference engine. Upon assertion of

 Multi-Agent-Stratego

 32

facts, the inference engine considers all rules in the rule base. When a state of

the world matches a rule, the rule is said to be fired.

Figure 5.1: An agent based on a rule-based system

5.2 Rules for the agents' behavior
For each of the Stratego agents we have defined a set of rules that specify the

behavior, according to the current situation of the agent. We call these rule-sets

preference rules, since they indicate preferences to exhibit behavior rather than

performing explicit actions.

In this section we will describe a preference rule-set for the miner agent in the

Stratego army, check the appendix for the rest of the agents rule-set’s. Every

rule in the set defines several conditions to activate the rule and a preference

that is expressed upon activation. The use of preferences instead of actions in

 Multi-Agent-Stratego

 33

the rules arises from the desire to allow separate behaviors to be activated

simultaneously. In Section 5.2.1 an example of a preference rule-set will be

given.

5.2.1 Preference rules for the miner
Here we will give some example preference rules for the agent with rank 4,

which is the miner. Its complete rule-set, along with the rule-sets of the other

agents can be found in Appendix A. Since the miner has a dedicated role within

the Stratego army, its behavior has to be somewhat cautious.

The miner has 29 preference rules, which take the following conditions into

consideration:

• Enemy bombs captured: when all enemy bombs are captured there

will be no more bombs to be dismantled and the miner will become less
cautious.

• I have moved: when this condition is not met, the miner will be less
eager to move since it does not want the enemy to know it is a movable
piece.

• My rank revealed: when this condition is not met, the miner will be
less eager to attack pieces because it will try to conceal its rank as long
as possible.

• Enemy at distance 1 or 2: an enemy piece is spotted within range 1 or
2. Possible types of enemies are:

1. An enemy piece with unknown rank.
2. An enemy piece with a higher rank.
3. An enemy piece with a lower rank.
4. An enemy bomb!

 Multi-Agent-Stratego

 34

Preference rule 1
This rule will fire the preference “attack” when the following conditions are
met:
→ enemy bombs captured,
→ I have moved,
→ my rank revealed and
→ enemy with unknown rank present at distance 1.

In this case the miner is not very cautious because it does not need to dismantle

bombs anymore, the enemy already knows that it is not a movable piece and its

rank is already known.

Preference rule 13
This rule will fire the preference “fleeing” when the following conditions are
met:
→ I have moved,
→ my rank revealed,
→ not enemy bombs captured and
→ enemy with unknown rank present at distance 1.

Here the miner has a preference for fleeing, because it still has to dismantle

bombs and the enemy knows the rank of the miner.

Preference rule 22
This rule will fire the preference “stay” when the following conditions are met:
→ not I have moved,
→ not my rank revealed,
→ not enemy bombs captured and
→ enemy with higher rank present at distance 1.

Here the miner dares to stay in spite of the fact that it can be attacked by the

enemy. The reason for staying is the fact that the miner has not moved yet and

its rank is unknown. The miner wants to prevent the enemy from knowing that

it is movable and the enemy piece may be careful.

 Multi-Agent-Stratego

 35

Preference rule 27
This rule will fire the preference “attack” if and only if an enemy bomb has
been spotted at distance 1. It is the task of the miner to dismantle bombs,
therefore it will attack.

5.3 The Rete Algorithm
Jess is a rule-based expert system shell. In the simplest terms, this means that

Jess's purpose it to continuously apply a set of if-then statements (rules) to a set

of data (the knowledge base). You define the rules that make up your own

particular expert system. Jess rules look something like this:

Note that this syntax is identical to the syntax used by CLIPS. This rule might

be translated into pseudo-English as follows:

Enemy higher rank #rule1:
If
My rank is NOT revealed
And
An enemy of a higher rank is a distance 1
Then
Stay

The rank and the enemy higher rank entities would be found on the knowledge

base. The knowledge base is therefore a kind of database of bits of factual

knowledge about the world. The attributes (called slots) that things like ranks

and enemy distance are allowed to have are defined in statements called

deftemplates.

The typical expert system has a fixed set of rules while the knowledge base

changes continuously. However, it is an empirical fact that, in most expert

(defrule enemy-higher-rank-2
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

 Multi-Agent-Stratego

 36

systems, much of the knowledge base is also fairly fixed from one rule

operation to the next. Although new facts arrive and old ones are removed at all

times, the percentage of facts that change per unit time is generally fairly small.

For this reason, the obvious implementation for the expert system shell is very

inefficient. This obvious implementation would be to keep a list of the rules and

continuously cycle through the list, checking each one's left-hand-side (LHS)

against the knowledge base and executing the right-hand-side (RHS) of any

rules that apply. This is inefficient because most of the tests made on each cycle

will have the same results as on the previous iteration. However, since the

knowledge base is stable, most of the tests will be repeated. You might call this

the rules finding facts approach and its computational complexity is of the order of

O(RF^P), where R is the number of rules, P is the average number of patterns

per rule LHS, and F is the number of facts on the knowledge base. This

escalates dramatically as the number of patterns per rule increases.

Jess instead uses a very efficient method known as the Rete (Latin for net)

algorithm. The classic paper on the Rete algorithm ("Rete: A Fast Algorithm for

the Many Pattern/ Many Object Pattern Match Problem", Charles L. Forgy,

Artificial Intelligence 19 (1982), 17-37) became the basis for a whole generation

of fast expert system shells: OPS5, its descendant ART, and CLIPS. In the Rete

algorithm, the inefficiency described above is alleviated (conceptually) by

remembering past test results across iterations of the rule loop. Only new facts

are tested against any rule LHSs. Additionally, as will be described below, new

facts are tested against only the rule LHSs to which they are most likely to be

relevant. As a result, the computational complexity per iteration drops to

something more like O(RFP), or linear in the size of the fact base. Our

discussion of the Rete algorithm is necessarily brief. The interested reader is

referred to the Forgy paper or to Giarratano and Riley, "Expert Systems:

Principles and Programming", Second Edition, PWS Publishing (Boston, 1993)

for a more detailed treatment.

 Multi-Agent-Stratego

The Rete algorithm is implemented by building a network of nodes, each of

which represents one or more tests found on a rule LHS. Facts that are being

added to or removed from the knowledge base are processed by this network of

nodes. At the bottom of the network are nodes representing individual rules.

When a set of facts filters all the way down to the bottom of the network, it has

passed all the tests on the LHS of a particular rule and this set becomes an

activation. The associated rule may have its RHS executed (fired) if the

activation is not invalidated first by the removal of one or more facts from its

activation set. Within the network itself there are broadly two kinds of nodes:

one-input and two-input nodes. One-input nodes perform tests on individual

facts, while two-input nodes perform tests across facts and perform the

grouping function. Subtypes of these two classes of node are also used and

there are also auxilliary types such as the terminal nodes mentioned above.

An example is often useful at this point. The following rules:

(defrule example-2 (defrule example-3
 (x) (x)
 (y) (y)
 (z) =>)
 =>)

might be compiled into the following network:

 (one-input nodes)

 (two-input nodes)

 (terminals)

X? Y? Z?

+

+

X? Y?

+

fire example-2
 fire example-3
37

 Multi-Agent-Stratego

 38

The nodes marked x?, etc., test if a fact contains the given data, while the

nodes marked + remember all facts and fire whenever they've received data

from both their left and right inputs. To run the network, Jess presents new

facts to each node at the top of the network as they added to the knowledge

base. Each node takes input from the top and sends its output downwards. A

single input node generally receives a fact from above, applies a test to it, and, if

the test passes, sends the fact downward to the next node. If the test fails, the

one-input nodes simply do nothing. The two-input nodes have to integrate facts

from their left and right inputs, and in support of this, their behavior must be

more complex. First, note that any facts that reach the top of a two-input node

could potentially contribute to an activation: they pass all tests that can be

applied to single facts. The two input nodes therefore must remember all facts

that are presented to them, and attempt to group facts arriving on their left

inputs with facts arriving on their right inputs to make up complete activation

sets. A two-input node therefore has a left memory and a right memory. It is here in

these memories that the inefficiency described above is avoided. A convenient

distinction is to divide the network into two logical components: the single-

input nodes comprise the pattern network, while the two-input nodes make up the

join network.

There are two simple optimizations that can make Rete even better. The first is

to share nodes in the pattern network. In the network above, there are five

nodes across the top, although only three are distinct. The second is by

modifying the network to share these nodes across the two rules (the arrows

coming out of the top of the x? and y? nodes are outputs):

 Multi-Agent-Stratego

X? Y? Z?

+ +

+

 3
 fire example-2

But that's not all the redun

is one joined node that is p

pairs) in both rules, and we

X? Y

+

+

fire example-
dancy in the original network. Now we see that there

erforming exactly the same function (integrating x,y

 can share that also:

? Z?
fire example-3
fire example-2
39

 Multi-Agent-Stratego

 40

The pattern and joined networks are collectively only half the size they were

originally. This kind of sharing comes up very frequently in real systems and is a

significant performance booster!

We can see the amount of sharing in a Jess network by using the watch

compilations command. When a rule is compiled and this command has

been previously executed, Jess prints a string of characters something like this,

which is the actual output from compiling rule example-2, above:

example-2: +1+1+1+1+1+1+2+2+t

Each time +1 appears in this string, a new one-input node is created. +2

indicates a new two-input node. Now watch what happens when we compile

example-3:

example-3: =1=1=1=1=2+t

Here we see that =1 is printed whenever a pre-existing one-input node is shared;

=2 is printed when a two-input node is shared. +t represents the terminal nodes

being created. (Note that the number of single-input nodes is larger than

expected. Jess creates separate nodes that test for the head of each pattern and

its length, rather than doing both of these tests in one node, as we implicitly do

in our graphical example.) No new nodes are created for rule example-3. Jess

shares existing nodes very efficiently in this case.

Jess's Rete implementation is very literal. Different types of network nodes are

represented by various subclasses of the Java class jess.Node: Node1, Node2,

NodeNot2, NodeJoin, and NodeTerm. The Node1 class is further specialized because

it contains a command member which causes it to act differently depending on

the tests or functions it needs to perform. For example, there are specializations

of Node1 which test the first field (called the head) of a fact, test the number of

fields of a fact, test single slots within a fact, and compare two slots within a

 Multi-Agent-Stratego

 41

fact. There are further variations which participate in the handling of multifields

and multislots. The Jess language code is parsed by the class jess.Jesp, while the

actual network is assembled by code in the class jess.ReteCompiler. The

execution of the network is handled by the class Rete. The jess.Main class itself

is really just a small demonstration driver for the Jess package, in which all of

the interesting work is done.

 Multi-Agent-Stratego

 42

 Multi-Agent-Stratego

 43

Chapter 6
Implementation
In this chapter we will describe the implementation for the Stratego expert

system shell. The implementation has been done using the object-oriented

programming language Java with the use of Jess the Java Expert System Shell

(the Rule Engine for the JavaTM Platform).

6.1 Jess - Java Expert System Shell
Since the game Stratego was developed using Java, a natural choice for an

expert system shell is the Java expert system shell (Jess). Jess is a rule engine and

scripting environment written entirely in Java. It was originally inspired by the

CLIPS expert system shell, but has grown into a complete, distinct Java-in

environment of its own. Because of its complete implementation in Java, the

rule-engine can be easily embedded within the Java simulation environment.

For detailed information about Jess see (Friedman-Hill 2000).

For every agent we have implemented the behaviors as described in Chapter 4,

which are attack, wander and stay. Additionally, we have added some extra

behaviors that apply to specific situations. These are:

1. Attack-marshal: a specific rule for the spy. When the spy sees the

enemy marshal within attacking range, this behavior will make the spy
attack it.

2. Attack-bomb: a specific rule for the miners. Upon seeing an enemy
bomb within attacking range, the miner will be eager to attack it.

3. Avoid: a rule that is applied for all agents except the miners, because it
is used to avoid enemy bombs.

In the prototype, 5 agents have a visual perception in the form of a diamond of

five squares wide. See Figure 6.2 for a picture of an agent (miner) in its

 Multi-Agent-Stratego

 44

environment. The miner sees an enemy piece with unknown rank (north

square) and an enemy scout (north-east square). The agent also sees some

Figure 6.1: The miner in its environment

fellow agents, the general and a scout (south-west and south-east respectively).

In the current implementation of the rule engines, the evaluation consists of a

mapping from enemy locations to a desire to move (for each direction) or to

stay, expressed in scores. In this specific example, the miner may want to flee

from the unknown enemy. But it also sees an enemy scout which can be beaten.

Therefore in this particular case the miner's behavior will be a mixture of the

desire to and attack and wander:

 -150
 75 0 60
 225

The scores indicated above express relative desires to go or stay. Negative

scores mean that the agent does not want to go in the corresponding direction.

In the example the scores are a resultant of the behaviors attack and wander.

The behavior is due to the enemy with unknown rank. Since the miner is a

somewhat cautious agent, the score to move backward is largest and the miner

 Multi-Agent-Stratego

 45

will decide to go backward. The wander behavior is a less important behavior,

which is used to express the general desire to move around the board. It has

contributed to the scores with minor additions to each direction, the forward

direction being the preferred wander-route.

The score above came from the “agent.clp” which is the general rule-engine of

an agent. For every action and direction to move there is a set of score defined

e.g.:

flee-scores
 (flee-score north -200 50 200 50)
 (flee-score west 50 -200 50 200)
 (flee-score south 200 50 -200 50)
 (flee-score east 50 200 50 -200)
 (flee-score north-north -100 50 100 50)
 (flee-score north-west -75 -75 75 75)
 (flee-score west-west 50 -100 50 100)
 (flee-score south-west 75 -75 -75 75)
 (flee-score south-south 100 50 -100 50)
 (flee-score south-east 75 75 -75 -75)
 (flee-score east-east 50 100 50 -100)
 (flee-score north-east -75 75 75 -75)

misc-scores
 (wander-score 50 25 10 25)

And because the decision was moving south, the wander score for south will be
added to the flee south score 200 + 25 = 225. The wander score will be also
added to the other direction.
North = -200 + 50 = -150
East = 50 + 10 = 60
West = 50 + 25 = 75

6.2 Simulating the agent's environment
When it’s the computer player turn in the game the computer call all the agents

on the board. Every agent tells where he is located and what he sees. And then

every agent calculates his best action with communicating with the database

(Jess). Jess run all the facts in the agent rule-set and send back the agent best

action to do. The agent sends his location, type, status and score to the Central

 Multi-Agent-Stratego

 46

Decision Maker (CDM). The CDM decide using the highest score of the agents

which agent can make the move. See figure 6.2 for schematic simulating.

Figure 6.2: agent schematic simulating.

1. The agent observes the environment.
2. The agent sends his information to Jess.
3. Jess calculates the agent best score for moving to a specific direction

(north, south, east or west) using the agent specific rule-set.
4. The agent send his score and the direction to move to the CDM
5. The CDM decide which agent move using the agent’s scores and tell

the agent to move.
6. The agent tries to makes his action. If the agent can’t move because it’s

the end of the game board or water in his direction or a friendly agent
blocks him, then he sends an error back to the CDM. The CDM give
command to the second best scoring agent to move and so on until an
agent move.

Note: If the agent best score is for staying. Then the agent doesn’t make step 4,

because it’s not necessary for the agent to move or to take an action. This could

happen when an agent is scared to move or when he is making a plan.

 Multi-Agent-Stratego

 47

This cycle is cycles on every turn of the computer player. Also the agent score

and the agent view reset on every turn. This way the agent checks his

environment on every turn and updates his information of the board.

The agent's lifecycle can be viewed as a number of states and transitions. In

Figure 6.3 an automaton is drawn with its states and transitions. The most

important state in the automaton is the Evaluate state. Here, the Rete algorithm

is applied using the percepts that have been received. If the evaluation leads to

an action, it will cause a transition to the Sleep state. Currently the action that

has been implemented is sending a move request to the CDM, waiting for an

answer.

Figure 6.3: agent evaluating cycle

In the Move state a piece can do an actual move. From the move state there are

two possible transitions to other states. When a move to an empty square was

done the agent perceives some changes in its environment and evaluates them.

The other possibility is a battle with an enemy piece. In the Battle state the

agent either wins and notifies the capture or the agent looses and removed from

the board.

 Multi-Agent-Stratego

 48

6.3 Agent neighbours
As we mentioned before the board was designed 2 dimensional. And that the

board have an X, Y-axis. One of the most important aspects in this project is

the agent sensors. Our agents here use the board 2 dimensional characteristic to

view their neighbours.

Every agent on the board has a unique location number like [2][3]. That agent is

located at x =2 and y = 3. This makes his north neighbours location x = 2 and y

= 3 –1. So we have a formula here:

Agent current location = ACL
Agent current X location = AXL
Agent current Y location = AYL

Neighbours North Agent = NNA

NNA = [AXL][AYL – 1]

And of course for the SNA (South)

SNA = [AXL][AYL +1]

This formula is implemented in every agent to view his neighbours. It also used

for all other directions east, west, northeast, northwest, southeast etc….

 Multi-Agent-Stratego

 49

Chapter 7
Testing the game
In this chapter we will test the Stratego game. Here we will test the game play,

the agent view, the communications between, the agents, the agents and the rule

base engine (Jess), the agents and the Central decision maker (CDM) and test if

the high ranked view agents can think and make a plan and finally we will play

the game and comment on the action taken by the system.

7.1 Game play
Because there isn’t a running version available of the game that uses agents for

the simulation. Is one of the main aspects of this project is to implement a

running version of the Stratego game.

How are we going to test the game play? Simple by starting the game and play

the game for a couple of times until we notice that the game don’t have any

errors who can stop the game playing or makes the game hangs. Also checking

if there is some kind of information showed that the actual status is or who is

won or lost an agent.

7.1.1 Game play test results
Our first notice is that the game doesn’t have any Null pointers expectations.

The following errors may appear in the information area:

If the error “Cannot be placed here” appear, then the user tried to place a tile or

an agent in a wrong place. This could be: trying to place an agent in the water,

or placing the agent on the same square where a friendly agent is placed.

If the error “ERROR: None of the agents can move" appears this mean that

the agents can’t move. This happened when for example all agent best score is

for moving forward and there is water or another agent from the same colour is

in front so the agent can’t move.

 Multi-Agent-Stratego

 50

A good thing about the information field is that you always can see who have

the turn by the massages “Computer Turn” and “Human Turn”. Also when

there is a battle between two agents the end result of the battle appears in the

information field e.g. “Major Win From Scout”.

7.2 The agent view
Every agent has a limited amount of squares to view. Some have a low 4

squares view and other has high 12 squares. We will test only the high view

agents, because we consider that if the 12 squares work then the low view of 4

also works.

We will place only one high view agent on the board and we are going to place

enemy agents around him to check if the agent really sees the enemy.

7.2.1 Agent view test results
We placed a marshal in the middle of the game board. Then we placed other

enemy agents around see figure 7.1

Figure 7.1: placing a marshal and a scout nearby.

Now the agent says:
RUN.Marshal[2][5] See from the West West Unknown enemy

 Multi-Agent-Stratego

 51

Because the scout didn’t go in a battle yet, his rank is not revealed. This mean

the scout is still UNKNOWN. And as we see that our marshal saw the scout

from the west west side of him.

Now we will test ALL the 12 squares at once see figure 7.2.

Figure 7.2: all 12 squares at once.

The Marshal says now:

RUN.Marshal[2][5] See from the South marshal
RUN.Marshal[2][5] See from the South South sergeant
RUN.Marshal[2][5] See from the East major
RUN.Marshal[2][5] See from the East East scout
RUN.Marshal[2][5] See from the North North captain
RUN.Marshal[2][5] See from the North colonel
RUN.Marshal[2][5] See from the West general
RUN.Marshal[2][5] See from the West West captain
RUN.Marshal[2][5] See from the North East spy
RUN.Marshal[2][5] See from the North West scout
RUN.Marshal[2][5] See from the South East minor
RUN.Marshal[2][5] See from the South West lieutenant

Now we made all agents rank known so we can check if the agent sees the

enemy correctly. The test results show that the view of the agent is correct.

 Multi-Agent-Stratego

 52

7.3 The communications between the agents
The communications between agents happened when an agent wins or loses a

battle. The agent notifies the capture a bomb or a marshal. This is important

because some of the agent’s rule set is based on the information of the capture

of the marshal or the bombs.

We will test this by capturing all the human bombs and the marshal and see if
the agents get this information.
After capturing all the enemy bombs the agent’s rule set now fire with:

f-51 (MAIN::enemy-bombs-captured)

And also in the output we notice:
enemybombs: 0, (total enemy bombs on board)

if the human player marshal is captured (it can only be captured by the spy
when attacking or when the marshal lost from a bomb or a draw between the
marshal’s) then the rule set of the agent fire with:
f-52 (MAIN::enemy-marshal-captured)

The test result shows that the communication is correct.

7.4 The communication between the agents and Jess
Every kind of agent has his own rule set. And the communication between the

rule-base engine and the agent must be correctly done. Otherwise the rule set

wont fire all the rules or all the agent preferences.

 The agents have to tell the rule base engine:

• The agent type.
• The agent status.
• The agent view.

7.4.1 Jess test results
When the rule-base engine fires a fact he logs it with f.

RUN.Colonel[4][8] Thats ME and here I am
RUN.Colonel[4][8] See from the North minor
RUN.Colonel[4][8] i-have-moved

 Multi-Agent-Stratego

 53

RUN.Colonel[4][8] my-rank-revealed
f-0 (MAIN::initial-fact)
f-1 (MAIN::distance north 1)
f-2 (MAIN::distance west 1)
f-3 (MAIN::distance south 1)
f-4 (MAIN::distance east 1)
f-5 (MAIN::distance north-north 2)
f-6 (MAIN::distance north-west 2)
f-7 (MAIN::distance west-west 2)
f-8 (MAIN::distance south-west 2)
f-9 (MAIN::distance south-south 2)
f-10 (MAIN::distance south-east 2)
f-11 (MAIN::distance east-east 2)
f-12 (MAIN::distance north-east 2)
f-13 (MAIN::flee-score north -200 50 200 50)
f-14 (MAIN::flee-score west 50 -200 50 200)
f-15 (MAIN::flee-score south 200 50 -200 50)
f-16 (MAIN::flee-score east 50 200 50 -200)
f-17 (MAIN::flee-score north-north -100 50 100 50)
f-18 (MAIN::flee-score north-west -75 -75 75 75)
f-19 (MAIN::flee-score west-west 50 -100 50 100)
f-20 (MAIN::flee-score south-west 75 -75 -75 75)
f-21 (MAIN::flee-score south-south 100 50 -100 50)
f-22 (MAIN::flee-score south-east 75 75 -75 -75)
f-23 (MAIN::flee-score east-east 50 100 50 -100)
f-24 (MAIN::flee-score north-east -75 75 75 -75)
f-25 (MAIN::attack-score north 200 -50 -200 -50)
f-26 (MAIN::attack-score west -50 200 -50 -200)
f-27 (MAIN::attack-score south -200 -50 200 -50)
f-28 (MAIN::attack-score east -50 -200 -50 200)
f-29 (MAIN::attack-score north-north 100 -50 -100 -50)
f-30 (MAIN::attack-score north-west 75 75 -75 -75)
f-31 (MAIN::attack-score west-west -50 100 -50 -100)
f-32 (MAIN::attack-score south-west -75 75 75 -75)
f-33 (MAIN::attack-score south-south -100 -50 100 -50)
f-34 (MAIN::attack-score south-east -75 -75 75 75)
f-35 (MAIN::attack-score east-east -50 -100 -50 100)
f-36 (MAIN::attack-score north-east 75 -75 -75 75)
f-37 (MAIN::avoid-score north -1000 0 0 0)
f-38 (MAIN::avoid-score west 0 -1000 0 0)
f-39 (MAIN::avoid-score south 0 0 -1000 0)
f-40 (MAIN::avoid-score east 0 0 0 -1000)
f-41 (MAIN::stay-score 250)
f-42 (MAIN::wander-score 50 25 10 25)
f-43 (MAIN::attack-bomb-score north 1000 0 0 0)
f-44 (MAIN::attack-bomb-score west 0 1000 0 0)

 Multi-Agent-Stratego

 54

f-45 (MAIN::attack-bomb-score south 0 0 1000 0)
f-46 (MAIN::attack-bomb-score east 0 0 0 1000)
f-47 (MAIN::attack-marshal-score north 10000 0 0 0)
f-48 (MAIN::attack-marshal-score west 0 10000 0 0)
f-49 (MAIN::attack-marshal-score south 0 0 10000 0)
f-50 (MAIN::attack-marshal-score east 0 0 0 10000)
f-51 (MAIN::i-have-moved)
f-52 (MAIN::my-rank-revealed)
f-53 (MAIN::enemy-lower-rank north)
f-54 (MAIN::enemy-marshal-captured)
f-55 (MAIN::enemy-bombs-captured)
f-56 (MAIN::attack north)
f-57 (MAIN::update-scores 0 200 -50 -200 -50)
f-58 (MAIN::wander)
f-59 (MAIN::update-scores 0 50 25 10 25)
For a total of 60 facts.
Score for staying: 0
Score for moving forward: 250
Score for moving left: -25
Score for moving backward: -190
Score for moving right: -25
My best score is = 250 and this is for moving Forward

The colonel first says what he is and what is his type and his view. And then he
communicates with Jess

In f-51 and f-52 we see that the communication is successfully done. The agent
told Jess his status, which is “i-have-moved” and “my-rank-revealed”.
f-53 is the agent view which is a lower-rank enemy agent from the north.
Also in f-54 and f-55 the agent tell Jess about what he received from other
agents.

In f-56 Jess decides to attack north. This mean the agent best score is for
attacking north (moving north).

At the end we see that the rule-base engine had fired 60 facts.

Here is the communication from Jess to the agent:
Score for staying: 0
Score for moving forward: 250
Score for moving left: -25
Score for moving backward: -190
Score for moving right: -25

And here is where the agent decides which direction is moving based on
the best score:

 Multi-Agent-Stratego

 55

My best score is = 250 and this is for moving Forward.

After checking those logs of the agent and Jess we can say that the
communication is successfully done. And our agent can make a decision based
on his own rule-set.

7.5 Testing the agents and the CDM communication
The communication between the agents and the Central Decision Maker

(CDM) is done when all the agents compute their best score. After this is done

the CDM use an ordering algorithm to put the agent with the best score above

of the list. This is done by using the Java function Comparator.

If the agent best score is for staying he doesn’t communicate with the CDM,

because he is not moving anywhere. Also if the agent best score is for moving

forward and in the square in front of him is water, then he skips the

communication with CDM.

When this is done the CDM tells the agent with the highest score to move. If

he can’t move e.g. there is a friendly agent in front. He communicates back to

the CDM and sending the massage “I can’t move”. The CDM takes the second

best scoring agent and tell him to move. See below for an example output.

Total Agents = 26
Best Scoring Agent = Colonel[4][8] with a score of 250 for moving Forward
Im moving Forward now
0=250
1=50
2=50
3=50
4=50
5=50
6=50
7=50
8=50
Etc…

 Multi-Agent-Stratego

 56

7.6 Making a plan
Only the high view agents can make a plan, because they see more. We will
again place a marshal and put an enemy two squares distance from marshal.

RUN.Marshal[3][7] See from the West West spy
RUN.Marshal[3][7] i-have-moved = false
RUN.Marshal[3][7] my-rank-revealed = false
My best score is = 125 and this is for moving Left

RUN.Marshal[3][8] Thats ME and here i am
RUN.Marshal[3][8] See from the West spy
RUN.Marshal[3][8] i-have-moved
RUN.Marshal[3][8] my-rank-revealed = false
My best score is = 225 and this is for moving Left

The marshal decided to move toward the spy and capture him.
Even if we put the Spy in a diagonal direction like north-east the marshal thinks
2 steps forward. He moves left and then he moves north to capture the spy.
This means that the high ranked agent’s can think 2 steps forward using their
ability of a 12 squares view.

 Multi-Agent-Stratego

 57

7.7 Playing the game.
We started the game and choosed using the `Setup’s` menu for the “Wheel Of
Danger” starting setup. Figure 7.3

Figure 7.3: Wheel of Danger staring setup.

We started the game using the “Start” button. A die is thrown (figure 7.4) and
the computer scored more then the us, therefore he have the turn to play first.

Figure 7.4: Deciding the turn with a die.

The first thing we notice while playing the game is that because of the random
choice of the highest scoring agents, the agents in the back also move and
therefore the agent in the front are slow with the attack (figure 7.5)

 Multi-Agent-Stratego

 58

Figure 7.5: The agents at the back are moving and having a turn and slowing

the front agents to move.

The general in figure 7.5 kept moving forward. And then he stopped when he
reached the bomb (the bomb had a battle before and therefore its status is
known). He is computing the following scores:

Score for staying: 250
Score for moving forward: 50
Score for moving left: 25
Score for moving backward: 10
Score for moving right: 25

We moved an unknown and a lower ranked enemy around the same general
(figure 7.4).

Score for staying: 250
Score for moving forward: 0
Score for moving left: 225
Score for moving backward: -40
Score for moving right: -175

Figure 7.4: The general still deciding to stay, notice the score for moving forward!!

We decided to play on with the game and wait to see what the general is going
to do when he is forced to play. While playing we noticed another interesting
point. The known agent are avoiding our known general (figure 7.5)

 Multi-Agent-Stratego

 59

Figure 7.5: The sergeant is fleeing from our general.

The computer marshal is very cautious if there is unknown enemy in his sight
he never move even if he already moved and his status is known. But when that
enemy is at an attacking distance he attacks him because it may be a spy.

A lieutenant agent reached the bottom of the game board. It’s interesting to see
what he is going to do now. We found out that he keeps attacking the enemies
until someone stopped him.

The board situation is now as figure 7.6.

Figure 7.6: The board situation

Because both the red general and the red marshal have a score for staying with
250 and their best second score is 225 for attacking the system picked a random
one to move. The marshal is assigned to move. He attacked the blue colonel
and major. And then he went left avoiding the bomb and all the way to the left-
end of the board. He kept moving left, right, left, right leaving the general
waiting. This is because of the mechanism that the agent with a highest score of
staying doesn’t communicate with the CDM except when there aren’t any more
agents to move, then he is forced to pick his second highest score.

 Multi-Agent-Stratego

 60

We decided to suicide the sergeant and the lieutenant by attacking the red
general, to kill the general with the blue marshal. And then we attacked the red
marshal with the blue marshal to make it a draw. The computer lost the game
now because he doesn’t have anymore pieces to move (figure 7.7).

Figure 7.7: Computer losing the game.

After testing the game we can say that the prototype is successfully
implemented.

 Multi-Agent-Stratego

 61

Chapter 8
Manual
In this chapter we will describe how to use the game for the human player (the

normal user or gamer) and finally a small manual about CLIPS for the

programmers who wants to improve CLIPS.

8.1 User manual
The game needs only mouse clicks to be played.

Starting the game: Double click on Stratego.exe and the game will start.

Setting the pieces: One click on the desired piece to set on the board. And

another click on an empty square on the board to set the piece. Do this until all

the 40 pieces are placed on the board. Note: it’s not possible to move a piece after it’s

already set on the board, this will make the computer play.

Moving the pieces: One click on the desired piece to move. Choose a square

up, down, left or right from your piece and click it to move your piece. Note: it’s

possible to move the piece more then 1 square. But this is only done for testing and trying to

make better CLIPS for the agents.

Restarting the game: The game can be restarted by clicking on the restart

button in Game – Restart Game.

Exiting the game: The game can be quitted anytime by clicking the exit game

in Game – Exit.

About the game: Information about the author and the game versioning will

be showed by clicking the button Help – About.

 Multi-Agent-Stratego

8.2 CLIPS manual
The CLIPS are the brain of the agents. Every agent has his own rule-set. The

CLIPS are case sensitive and therefore it asks extra attention when changing

them.

As mention before every agent have his own rule-set. But there is one rule-set

which is used for all agents which is the “agent.clp”. This file contains several

general definitions that apply to all ranks. The code contains a defclass that

is an external address, which makes exchange of data between Jess and Java

possible.

The actions that can be used for the agents are:
• flee
• attack
• attack-marshal
• attack-bomb
• stay
• avoid
• wander

Upon asserting an action, the defclass (a Java-bean) will be updated by asserting

the corresponding score.

In

Fo

(defclass scores agents.Scores)
 the Java source, the bean is passed to Jess as follows:
r.store("SCORES", new Scores());
r.executeCommand("(bind ?s (fetch SCORES))");

llowing we can use the following jess commands:
(call ?s getCenter)
(call ?s setCenter value)

62

 Multi-Agent-Stratego

 63

and as getters and setters for the bean, where in this case the Scores bean has a
property `center'
Following will make sure that the globals will keep their values upon issuing a
`reset'.

deffacts mean that this is a fact e.g.:

Above define the fact distances. And that fact that can be fired is north.

Defrule defines a new rule for the agents. See appendix for the complete

agent.clp file.

Agents CLIPS
We will take the CLIP of the miner as an example for our explanation.

Following makes use of the action available in agent.clp
(batch agents/agent.clp)

These are the specific globals for the miner upon change, call the assert-globals
function to assert the new corresponding facts:

(set-reset-globals nil)

(deffacts distances
 (distance north 1)
)

(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)
(defglobal ?*enemy-bombs-captured* = false)

abstract rule 1
(defrule enemy-unknown-1
 (enemy-bombs-captured)
 (i-have-moved)
 (my-rank-revealed)
 (enemy-unknown ?enemy)
 (distance ?enemy 1)
 =>
 (assert (flee ?enemy))
)

 Multi-Agent-Stratego

 64

If the enemy bombs are captured and I have moved and my rank is revealed
and there is an unknown enemy with an attacking distance of 1 then flee.

Above defined the name of the rule by defrule enemy-unknown-1.
And then we give the rule the facts. `distance ?enemy 1` checks in what
direction the enemy is located. The => means take the action which is flee in
our situation.

It is also possible to use “not” like (not (my-rank-revealed)) for the facts.

 Multi-Agent-Stratego

 65

Chapter 9
Conclusion
In this investigation we have examined a multi-agent approach for playing the

game Stratego. This approach involves playing the Stratego game with multiple

agents that each represents a piece in the Stratego army. The approach was

based on the hypothesis that for some complex problems distributed

techniques for solving them can result in more intuitive solutions.

We assumed that the Stratego game could serve as an excellent playground for

testing in hypothesis. Typically, the game brings about a high complexity that

makes an analysis of it rather difficult. This is due to the fact that both players

have incomplete information about the board status. Furthermore, the game's

characteristics lend their selves well for the distributed techniques that we

proposed to use. Upon modelling the agents we can make use of the fact that

the Stratego army consists of military men that each have their own dedicated

role within the army. In other words, up to some level the agents can act as

individuals where each of them has their own set of characteristics.

9.1 Evaluation
At the start of the investigation a literature survey has been done about the

agent and multi-agent concepts. Firstly, this has led to insights about the level of

rationality, autonomy and intelligence of agents. Additionally, studying the

literature about the field of multi-agent systems gave us an understanding of

different types of multi-agent systems and their uses, which allows us to fit in

our approach with the field.

Unfortunately there have not been any studies or analyses about the Stratego

game. We have written down some general considerations about the game's

characteristics, but a thorough analysis is not a purpose of the investigation. In

an attempt to acknowledge the complexity of game playing in general, we have

 Multi-Agent-Stratego

 66

studied some papers on game playing theories. These theories apply to perfect

information games. Theories about games with information however are sparse,

and where available they are very complicated. This leads us to believe that an

intuitive solution for finding a way to play Stratego is to be found using multiple

agents, where we avoid reasoning about board positions seen from a central

point of view.

One of the things that the literature survey has resulted in, is an inspiration for

the agent's model. We have modelled the agent as a system that can exhibit

behavior patterns which result from separate internal behaviors. These internal

behaviors may inhibit each other, harmonize or even con with each other. This

way of modeling the agent has some important advantages.

First of all, this way of modelling systems comes closer to explaining human

intelligence than the traditional way of modelling intelligence. Secondly, a

pragmatic advantage of this type of architecture is that the agent's behavior can

be extended easily. By adding new internal behaviors, the agent expresses a new

overall behavior.

We have chosen to use rule-based approach for specifying the agent's behavior.

It turns out that for a Stratego agent we can specify a lot of rules which result

from the characteristics of the game. We can easily define a number of goals for

the agents such as staying alive, capture enemy pieces, etc.

Our design reflects the desire to build a generic tool for the investigation. The

basic functionality of the design has been implemented successfully. The

prototype currently allows for playing Stratego games locally. The most

important part of Stratego is the implementation of a framework for the agents

in which they have:

• Visual perception
• Evaluation of its environment
• Effectors

 Multi-Agent-Stratego

 67

Note that every agent has its own characteristics. For each of the ranks we have

implemented specific rule-sets. The behavior of the agent results from the

specific rule-set that it uses according to its rank, its perception and its own

status.

We have tested Stratego by letting the agents play against a human player. The

experiments have resulted in some valuable ideas about our multi-agent

approach. First of all, the results of our experiments support our hypothesis,

which stated that for some complex problems distributed techniques have a

more intuitive solution. We have shown that playing the game with multiple

agents is an excellent approach to break down complexity of the game.

9.2 Future work
The future work that needs to be done to continue the investigation can be

divided into several categories. First of all, several improvements to the

framework can be made. As stated before, we have implemented the basic

functionality of the design. An important part that still has to be done is adding

extra functionality to the agents by specifying a communication scheme with

which they can exchange information. Additionally, the communication should

be a means for cooperation between the agents.

One of the aspects of the agents that can be extended is the rule-sets. First of all

we want to have more functionality in the rule-sets. Extra rules are needed for

communication and cooperation.

Using the rule-sets that we have implemented the agents do not know how to

play the end game. This requires specific knowledge about how to play it. The

rule-set that we have implemented is not enough for the end game, therefore

extra rules have to be used. Filling in the message-passing mechanism will be an

important demand for the extra rules. We can make specific rules for the

opening, mid game and end game.

 Multi-Agent-Stratego

 68

 Multi-Agent-Stratego

 69

Bibliography

Multi-Agent Stratego
C. Treijtel’s Master Thesis report
http://www.kbs.twi.tudelft.nl/Publications/MSc/2000-Treijtel-MSc.html

Sun Java Standard Edition Documentation
http://java.sun.com/docs/

Ed’s Stratego Site
http://www.edcollins.com/stratego

Jess Java Expert System Shell
http://herzberg.ca.sandia.gov/jess/

Homepage of Multi-agent Stratego
http://stratego.tigris.org/

Jess-users mailing list
http://www.mail-archive.com/jess-users@sandia.gov/

Home of the original free and open source java IDE.
http://www.netbeans.org

Jshrink: Java Shrinker and Obfuscator
http://www.e-t.com/jshrink.html

Rational software, tool for UML design
http://www.rational.com

Books:

Artificial Intelligence: A Modern Approach
ISBN 0-13-080302-2

Data structures in Java
ISBN 0-201-30564-X

Praktisch UML 2de editie
ISBN 90-430-0494-4

http://www.kbs.twi.tudelft.nl/Publications/MSc/2000-Treijtel-MSc.html
http://java.sun.com/docs/
http://www.edcollins.com/stratego
http://rds.yahoo.com/S=2766679/K=JESS/v=2/SID=w/TID=YS42_26/l=WS1/R=1/SS=436454/H=0/*-http:/herzberg.ca.sandia.gov/jess
http://herzberg.ca.sandia.gov/jess/
http://stratego.tigris.org/
http://www.mail-archive.com/jess-users@sandia.gov/
http://www.netbeans.org/
http://www.e-t.com/jshrink.html
http://www.rational.com/

 Multi-Agent-Stratego

 70

Agent Engineering
ISBN 981-02-4558-0

AI Game Programming Wisdom
ISBN 1-58450-077-8

Multi-Agent Systems and Applications
ISBN 3-540-42312-5

Java How to Program Third Edition
ISBN 0-13-012507-5

 Multi-Agent-Stratego

 71

APPENDIX A
The agent’s source code
; agent.clp
; the general rule-engine of an agent
;
; This file contains several general definitions
; that apply to all ranks. The code contains a
; defclass that is an external address, which
; makes exchange of data between Jess and Java
; possible.
;
; The actions that can be used are:
; flee
; attack
; attack-marshal
; attack-bomb
; stay
; avoid
; wander
;
; Upon asserting an action, the defclass (a Java-bean)
; will be updated by asserting the corresponding
; score.
(defclass scores agents.Scores)

; In the java source, the bean is passed to Jess as follows:
;
; r.store("SCORES", new Scores());
; r.executeCommand("(bind ?s (fetch SCORES))");
;
; Following we can use the following jess commands:
; (call ?s getCenter)
; (call ?s setCenter value) and
; as getters and setters for the bean, where in this case
; the Scores bean has a property `center'

; This will make sure that the globals will keep their
; values upon issuing a `reset'
(set-reset-globals nil)

(deffacts distances
 (distance north 1)
 (distance west 1)
 (distance south 1)
 (distance east 1)
 (distance north-north 2)
 (distance north-west 2)
 (distance west-west 2)
 (distance south-west 2)
 (distance south-south 2)
 (distance south-east 2)
 (distance east-east 2)
 (distance north-east 2)
)

 Multi-Agent-Stratego

 72

(deffacts flee-scores
 (flee-score north -200 50 200 50)
 (flee-score west 50 -200 50 200)
 (flee-score south 200 50 -200 50)
 (flee-score east 50 200 50 -200)
 (flee-score north-north -100 50 100 50)
 (flee-score north-west -75 -75 75 75)
 (flee-score west-west 50 -100 50 100)
 (flee-score south-west 75 -75 -75 75)
 (flee-score south-south 100 50 -100 50)
 (flee-score south-east 75 75 -75 -75)
 (flee-score east-east 50 100 50 -100)
 (flee-score north-east -75 75 75 -75)
)

(deffacts attack-scores
 (attack-score north 200 -50 -200 -50)
 (attack-score west -50 200 -50 -200)
 (attack-score south -200 -50 200 -50)
 (attack-score east -50 -200 -50 200)
 (attack-score north-north 100 -50 -100 -50)
 (attack-score north-west 75 75 -75 -75)
 (attack-score west-west -50 100 -50 -100)
 (attack-score south-west -75 75 75 -75)
 (attack-score south-south -100 -50 100 -50)
 (attack-score south-east -75 -75 75 75)
 (attack-score east-east -50 -100 -50 100)
 (attack-score north-east 75 -75 -75 75)
)

(deffacts avoid-scores
 (avoid-score north -1000 0 0 0)
 (avoid-score west 0 -1000 0 0)
 (avoid-score south 0 0 -1000 0)
 (avoid-score east 0 0 0 -1000)
)

(deffacts misc-scores
 (stay-score 250)
 (wander-score 50 25 10 25)
)

(deffacts attack-bomb-scores
 (attack-bomb-score north 1000 0 0 0)
 (attack-bomb-score west 0 1000 0 0)
 (attack-bomb-score south 0 0 1000 0)
 (attack-bomb-score east 0 0 0 1000)
)

(deffacts attack-marshal-scores
 (attack-marshal-score north 10000 0 0 0)
 (attack-marshal-score west 0 10000 0 0)
 (attack-marshal-score south 0 0 10000 0)
 (attack-marshal-score east 0 0 0 10000)
)

(defrule action-attack
 (attack ?enemy)
 (attack-score ?enemy ?forward ?left ?backward ?right)
 =>
 (assert (update-scores 0 ?forward ?left ?backward ?right))

 Multi-Agent-Stratego

 73

)

;for the minors
(defrule action-attack-bomb
 (attack-bomb ?enemy)
 (attack-bomb-score ?enemy ?forward ?left ?backward ?right)
 =>
 (assert (update-scores 0 ?forward ?left ?backward ?right))
)

;for the spy
(defrule action-attack-marshal
 (attack-marshal ?enemy)
 (attack-marshal-score ?enemy ?forward ?left ?backward ?right)
 =>
 (assert (update-scores 0 ?forward ?left ?backward ?right))
)

(defrule action-flee
 (flee ?enemy)
 (flee-score ?enemy ?forward ?left ?backward ?right)
 =>
 (assert (update-scores 0 ?forward ?left ?backward ?right))
)

(defrule action-stay
 (stay)
 (stay-score ?center)
 =>
 (assert (update-scores ?center 0 0 0 0))
)

(defrule action-avoid
 (avoid ?enemy)
 (avoid-score ?forward ?left ?backward ?right)
 =>
 (assert (update-scores 0 ?forward ?left ?backward ?right))
)

(defrule action-wander
 (wander)
 (wander-score ?forward ?left ?backward ?right)
 =>
 (assert (update-scores 0 ?forward ?left ?backward ?right))
)

(defrule update-scores
 (update-scores ?c ?f ?l ?b ?r)
 =>
 (call ?s setCenter (+ (call ?s getCenter) ?c))
 (call ?s setForward (+ (call ?s getForward) ?f))
 (call ?s setLeft (+ (call ?s getLeft) ?l))
 (call ?s setBackward (+ (call ?s getBackward) ?b))
 (call ?s setRight (+ (call ?s getRight) ?r))
)

 Multi-Agent-Stratego

 74

; spy.clp
; the rule-engine of the spy
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the spy
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*enemy-marshal-captured* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*enemy-marshal-captured* true) then
 (assert (enemy-marshal-captured))
)
)

;these are the specific rules for the spy
(defrule enemy-unknown-1
 (enemy-unknown ?enemy)
 (i-have-moved)
 =>
 (assert (flee))
)

; abstract rule 6 (stay)
(defrule enemy-unknown-2
 (enemy-unknown ?enemy)
 (not (i-have-moved))
 =>
 (assert (stay)
)
)

;hey the general is at distance 1-->attack him!
(defrule enemy-marshal-1
 (enemy-marshal ?enemy)
 (distance ?enemy 1)
 =>
 (assert (attack ?enemy))
)

;we haven't moved yet and the enemy general is at distance 2,
;the spy definately wants to stay!
(defrule enemy-marshal-2
 (not (i-have-moved))
 (enemy-marshal ?enemy)
 (distance ?enemy 2)

 Multi-Agent-Stratego

 75

 =>
 (assert (stay))
)

;the general is at distance 2, the spy may want to stay foot
(defrule enemy-marshal-2
 (i-have-moved)
 (enemy-marshal ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

;always watch out for the bomb!
(defrule enemy-bomb
 (enemy-bomb ?enemy)
 (distance ?enemy 1)
 =>
 (assert (avoid ?enemy))
)
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 76

; scout.clp
; the rule-engine of the scout
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the spy
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the scout

;abstract rules 1 and 2
(defrule enemy-unknown-1
 (my-rank-revealed)
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 5 and 6
(defrule enemy-unknown-2
 (i-have-moved)
 (not (my-rank-revealed))
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 9 and 10
(defrule enemy-unknown-3
 (not (my-rank-revealed))
 (not (i-have-moved))
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 3 and 4
(defrule enemy-higher-rank-1
 (my-rank-revealed)

 Multi-Agent-Stratego

 77

 (enemy-higher-rank ?enemy)
 =>
 (assert (flee ?enemy))
)

;abstract rule 7
(defrule enemy-higher-rank-2
 (not (my-rank-revealed))
 (i-have-moved)
 (enemy-higher-rank ?enemy)
 (distance ?enemy 1)
 =>
 (assert (flee ?enemy))
)

;abstract rule 8
(defrule enemy-higher-rank-3
 (not (my-rank-revealed))
 (i-have-moved)
 (enemy-higher-rank ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

;abstract rule 9 and 10
(defrule enemy-higher-rank-3
 (not (my-rank-revealed))
 (not (i-have-moved))
 (enemy-higher-rank ?enemy)
 =>
 (assert (stay))
)

;abstract rule 13:always watch out for the bomb!
(defrule enemy-bomb
 (enemy-bomb ?enemy)
 (distance ?enemy 1)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 14: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 78

; minor.clp
; the rule-engine of the miner
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the miner
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)
(defglobal ?*enemy-bombs-captured* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
 (if (eq ?*enemy-bombs-captured* true) then
 (assert (enemy-bombs-captured))
)
)

;these are the specific rules for the miner

;abstract rule 1
(defrule enemy-unknown-1
 (enemy-bombs-captured)
 (i-have-moved)
 (my-rank-revealed)
 (enemy-unknown ?enemy)
 (distance ?enemy 1)
 =>
 (assert (flee ?enemy))
)

;abstract rule 2
(defrule enemy-unknown-2
 (enemy-bombs-captured)
 (i-have-moved)
 (my-rank-revealed)
 (enemy-unknown ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

;abstract rules 5 and 6
(defrule enemy-unknown-3
 (enemy-bombs-captured)

 Multi-Agent-Stratego

 79

 (i-have-moved)
 (not (my-rank-revealed))
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 9 and 10
(defrule enemy-unknown-4
 (enemy-bombs-captured)
 (not (i-have-moved))
 (not (my-rank-revealed))
 (enemy-unknown ?enemy)
 =>
 (assert (stay))
)

;abstract rule 13
(defrule enemy-unknown-5
 (i-have-moved)
 (my-rank-revealed)
 (not (enemy-bombs-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 1)
 =>
 (assert (flee ?enemy))
)

;abstract rule 14
(defrule enemy-unknown-6
 (i-have-moved)
 (my-rank-revealed)
 (not (enemy-bombs-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

;abstract rule 17
(defrule enemy-unknown-7
 (i-have-moved)
 (not (my-rank-revealed))
 (not (enemy-bombs-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 1)
 =>
 (assert (flee ?enemy))
)

;abstract rule 18
(defrule enemy-unknown-8
 (i-have-moved)
 (not (my-rank-revealed))
 (not (enemy-bombs-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

 Multi-Agent-Stratego

 80

;abstract rules 19 and 20
(defrule enemy-unknown-9
 (enemy-unknown ?enemy)
 (not (i-have-moved))
 (not (my-rank-revealed))
 (not (enemy-bombs-captured))
 =>
 (assert (stay))
)

;abstract rules 3 and 4
(defrule enemy-higher-rank-1
 (enemy-bombs-captured)
 (i-have-moved)
 (my-rank-revealed)
 (enemy-higher-rank ?enemy)
 =>
 (assert (flee ?enemy))
)

;abstract rules 7 and 8
(defrule enemy-higher-rank-2
 (enemy-bombs-captured)
 (i-have-moved)
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 =>
 (assert (stay))
)

;abstract rules 11 and 12
(defrule enemy-higher-rank-3
 (enemy-bombs-captured)
 (not (i-have-moved))
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 =>
 (assert (stay))
)

;abstract rules 15 and 16
(defrule enemy-higher-rank-4
 (i-have-moved)
 (my-rank-revealed)
 (not (enemy-bombs-captured))
 (enemy-higher-rank ?enemy)
 =>
 (assert (flee ?enemy))
)

;abstract rules 21 and 22
(defrule enemy-higher-rank-5
 (not (i-have-moved))
 (not (my-rank-revealed))
 (not (enemy-bombs-captured))
 (enemy-higher-rank ?enemy)
 =>
 (assert (stay))
)

;abstract rule 23 and 24

 Multi-Agent-Stratego

 81

(defrule enemy-lower-rank-1
 (enemy-lower-rank ?enemy)
 (not (my-rank-revealed))
 =>
 (assert (stay))
)

;abstract rule 25 and 26
(defrule enemy-lower-rank-2
 (enemy-lower-rank ?enemy)
 (my-rank-revealed)
 =>
 (assert (attack ?enemy))
)

;abstract rules 27: hey a bomb at distance 1!
(defrule enemy-bomb-1
 (enemy-bomb ?enemy)
 (distance ?enemy 1)
 =>
 (assert (attack-bomb ?enemy))
)

;abstract rule 28: hey a bomb at distance 2!
(defrule enemy-bomb-2
 (enemy-bomb ?enemy)
 (distance ?enemy 2)
 =>
 (assert (attack ?enemy))
)

;abstract rule 29: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

;abstract rules 5 and 6
(defrule enemy-minor-1
 (i-have-moved)
 (my-rank-revealed)
 (enemy-minor ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rule 11 and 17
(defrule enemy-minor-2
 (not (my-rank-revealed))
 (enemy-minor ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

 Multi-Agent-Stratego

 82

; sergeant.clp
; the rule-engine of the sergeant
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the sergeant
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)
(defglobal ?*enemy-bombs-captured* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the sergeant

;abstract rule 1 and 2
(defrule enemy-unknown-1
 (i-have-moved)
 (my-rank-revealed)
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rule 9 and 10
(defrule enemy-unknown-2
 (i-have-moved)
 (not (my-rank-revealed))
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rule 23 and 24
(defrule enemy-unknown-3
 (not (i-have-moved))
 (not (my-rank-revealed))
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rule 3

 Multi-Agent-Stratego

 83

(defrule enemy-higher-rank-1
 (i-have-moved)
 (my-rank-revealed)
 (enemy-higher-rank ?enemy)
 (distance ?enemy 1)
 =>
 (assert (flee ?enemy))
)

;abstract rule 4
(defrule enemy-higher-rank-2
 (i-have-moved)
 (my-rank-revealed)
 (enemy-higher-rank ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

;abstract rules 9 and 10
(defrule enemy-higher-rank-3
 (i-have-moved)
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 =>
 (assert (stay))
)

;abstract rules 15 and 16
(defrule enemy-higher-rank-4
 (not (i-have-moved))
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 =>
 (assert (stay))
)

;abstract rules 5 and 6
(defrule enemy-sergeant-1
 (i-have-moved)
 (my-rank-revealed)
 (enemy-sergeant ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rule 11 and 17
(defrule enemy-sergeant-2
 (not (my-rank-revealed))
 (enemy-sergeant ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 12
(defrule enemy-sergeant-3
 (my-rank-revealed)
 (not (my-rank-revealed))
 (enemy-sergeant ?enemy)
 (distance ?enemy 2)

 Multi-Agent-Stratego

 84

 =>
 (assert (attack ?enemy))
)

;abstract rule 18
(defrule enemy-sergeant-3
 (not (i-have-moved))
 (not (my-rank-revealed))
 (enemy-sergeant ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

;abstract rule 7 and 8
(defrule enemy-lower-rank
 (enemy-lower-rank ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 19 and 20: avoid the bomb
(defrule enemy-bomb-1
 (enemy-bomb ?enemy)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 21: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 85

; lieutenant.clp
; the rule-engine of the lieutenant
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the lieutenant
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the lieutenant

;abstract rules 1 and 2
(defrule enemy-unknown
 (i-have-moved)
 (my-rank-revealed)
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 3 and 4
(defrule enemy-higher-rank-1
 (my-rank-revealed)
 (enemy-higher-rank ?enemy)
 =>
 (assert (flee ?enemy))
)

;abstract rule 9
(defrule enemy-higher-rank-2
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 10
(defrule enemy-higher-rank-3

 Multi-Agent-Stratego

 86

 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 2)
 =>
 (assert (attack ?enemy))
)

;abstract rules 5 and 6
(defrule enemy-lieutenant-1
 (my-rank-revealed)
 (enemy-lieutenant ?enemy)
 =>
 (assert (stay))
)

;abstract rule 15
(defrule enemy-lieutenant-2
 (not (my-rank-revealed))
 (enemy-lieutenant ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 16
(defrule enemy-lieutenant-3
 (not (my-rank-revealed))
 (enemy-lieutenant ?enemy)
 (distance ?enemy 2)
 =>
 (assert (attack))
)

;abstract rules 13 and 14: avoid the bomb
(defrule enemy-bomb-1
 (enemy-bomb ?enemy)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 15: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 87

; captain.clp
; the rule-engine of the captain
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the captain
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the captain

;abstract rules 1 and 2
(defrule enemy-unknown-1
 (i-have-moved)
 (my-rank-revealed)
 (enemy-unknown ?enemy)
 =>
 (assert (stay))
)

;abstract rules 9 and 10
(defrule enemy-unknown-2
 (i-have-moved)
 (not (my-rank-revealed))
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 13 and 14
(defrule enemy-unknown-3
 (not (i-have-moved))
 (not (my-rank-revealed))
 (enemy-unknown ?enemy)
 =>
 (assert (stay))
)

 Multi-Agent-Stratego

 88

;abstract rules 3 and 4
(defrule enemy-higher-rank-1
 (my-rank-revealed)
 (enemy-higher-rank ?enemy)
 =>
 (assert (flee ?enemy))
)

;abstract rule 11
(defrule enemy-higher-rank-2
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 11
(defrule enemy-higher-rank-3
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 2)
 =>
 (assert (attack ?enemy))
)

;abstract rules 5 and 6
(defrule enemy-captain
 (enemy-captain ?enemy)
 =>
 (assert (stay))
)

;abstract rules 7 and 8
(defrule enemy-lower-rank-3
 (not (my-rank-revealed))
 (enemy-lower-rank ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 15 and 16: avoid the bomb
(defrule enemy-bomb
 (enemy-bomb ?enemy)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 17: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

;abstract rules 5 and 6
(defrule enemy-lower-rank
 (enemy-lower-rank ?enemy)
 =>

 Multi-Agent-Stratego

 89

 (assert (attack ?enemy))
)

 Multi-Agent-Stratego

 90

; major.clp
; the rule-engine of the major
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the major
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the major

;abstract rules 1 and 2
(defrule enemy-unknown-1
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 7 and 8
(defrule enemy-higher-rank-1
 (enemy-higher-rank ?enemy)
 =>
 (assert (flee ?enemy))
)

;abstract rule 9
(defrule enemy-higher-rank-2
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 10
(defrule enemy-higher-rank-3
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 2)
 =>

 Multi-Agent-Stratego

 91

 (assert (attack ?enemy))
)

;abstract rules 3 and 4
(defrule enemy-major
 (my-rank-revealed)
 (enemy-major ?enemy)
 =>
 (assert (stay))
)

;abstract rule 11
(defrule enemy-major
 (not (my-rank-revealed))
 (enemy-major ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 12
(defrule enemy-major
 (not (my-rank-revealed))
 (enemy-major ?enemy)
 (distance ?enemy 2)
 =>
 (assert (attack ?enemy))
)

;abstract rules 5 and 6
(defrule enemy-lower-rank
 (enemy-lower-rank ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 13 and 14: avoid the bomb
(defrule enemy-bomb
 (enemy-bomb ?enemy)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 17: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 92

; colonel.clp
; the rule-engine of the major
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the major
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the major

;abstract rules 1 and 2
(defrule enemy-unknown-1
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 7 and 8
(defrule enemy-higher-rank-1
 (enemy-higher-rank ?enemy)
 =>
 (assert (flee ?enemy))
)

;abstract rule 9
(defrule enemy-higher-rank-2
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 10
(defrule enemy-higher-rank-3
 (not (my-rank-revealed))
 (enemy-higher-rank ?enemy)
 (distance ?enemy 2)
 =>

 Multi-Agent-Stratego

 93

 (assert (attack ?enemy))
)

;abstract rules 3 and 4
(defrule enemy-colonel
 (my-rank-revealed)
 (enemy-colonel ?enemy)
 =>
 (assert (stay))
)

;abstract rule 11
(defrule enemy-colonel
 (not (my-rank-revealed))
 (enemy-colonel ?enemy)
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 12
(defrule enemy-colonel
 (not (my-rank-revealed))
 (enemy-major ?enemy)
 (distance ?enemy 2)
 =>
 (assert (attack ?enemy))
)

;abstract rules 5 and 6
(defrule enemy-lower-rank
 (enemy-lower-rank ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 13 and 14: avoid the bomb
(defrule enemy-bomb
 (enemy-bomb ?enemy)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 17: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 94

; general.clp
; the rule-engine of the general
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the general
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)
(defglobal ?*enemy-spy-captured* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
 (if (eq ?*enemy-spy-captured* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the general

;abstract rules 1 and 2
(defrule enemy-unknown-1
 (enemy-spy-captured)
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rule 11
(defrule enemy-unknown-2
 (not (enemy-spy-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 1)
 =>
 (assert (attack ?enemy))
)

;abstract rule 12-> beware of the spy
(defrule enemy-unknown-3
 (not (enemy-spy-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

 Multi-Agent-Stratego

 95

;abstract rules 5 and 6
(defrule enemy-general-1
 (enemy-general ?enemy)
 (my-rank-revealed)
 =>
 (assert (attack ?enemy))
)

;abstract rule 9
(defrule enemy-general-2
 (enemy-general ?enemy)
 (not (my-rank-revealed))
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 10
(defrule enemy-general-2
 (enemy-general ?enemy)
 (not (my-rank-revealed))
 (distance ?enemy 2)
 =>
 (assert (attack ?enemy))
)

;abstract rules 5 and 6
(defrule enemy-lower-rank
 (enemy-lower-rank ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 13 and 14: avoid the bomb
(defrule enemy-bomb
 (enemy-bomb ?enemy)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 15: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 96

; marshal.clp
; the rule-engine of the general
;
; makes use of the action available in agent.clp
; available actions are:
; flee
; attack
; attack-general
; attack-bomb
; stay
; avoid
; wander
;
(batch agents/agent.clp)

;these are the specific globals for the general
;upon change, call the assert-globals function
;to assert the new corresponding facts
(defglobal ?*i-have-moved* = false)
(defglobal ?*my-rank-revealed* = false)
(defglobal ?*enemy-spy-captured* = false)

(deffunction assert-globals()
 (if (eq ?*i-have-moved* true) then
 (assert (i-have-moved))
)
 (if (eq ?*my-rank-revealed* true) then
 (assert (my-rank-revealed))
)
 (if (eq ?*enemy-spy-captured* true) then
 (assert (my-rank-revealed))
)
)

;these are the specific rules for the general

;abstract rules 1 and 2
(defrule enemy-unknown-1
 (enemy-spy-captured)
 (enemy-unknown ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rule 11
(defrule enemy-unknown-2
 (not (enemy-spy-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 1)
 =>
 (assert (attack ?enemy))
)

;abstract rule 12-> beware of the spy
(defrule enemy-unknown-3
 (not (enemy-spy-captured))
 (enemy-unknown ?enemy)
 (distance ?enemy 2)
 =>
 (assert (stay))
)

 Multi-Agent-Stratego

 97

;abstract rules 5 and 6
(defrule enemy-marshal-1
 (enemy-marshal ?enemy)
 (my-rank-revealed)
 =>
 (assert (attack ?enemy))
)

;abstract rule 9
(defrule enemy-marshal-2
 (enemy-marshal ?enemy)
 (not (my-rank-revealed))
 (distance ?enemy 1)
 =>
 (assert (stay))
)

;abstract rule 10
(defrule enemy-marshal-2
 (enemy-marshal ?enemy)
 (not (my-rank-revealed))
 (distance ?enemy 2)
 =>
 (assert (attack ?enemy))
)

;abstract rules 5 and 6
(defrule enemy-lower-rank
 (enemy-lower-rank ?enemy)
 =>
 (assert (attack ?enemy))
)

;abstract rules 13 and 14: avoid the bomb
(defrule enemy-bomb
 (enemy-bomb ?enemy)
 =>
 (assert (avoid ?enemy))
)

;abstract rule 15: wander behavior
(defrule wander
 (initial-fact)
 =>
 (assert (wander))
)

 Multi-Agent-Stratego

 98

 Multi-Agent-Stratego

 99

APPENDIX B
UML diagrams
Use-case diagram

Start game

Restart game

Exit game

About game

Set tile

Move tile

Human_Player

 Multi-Agent-Stratego

 100

 Multi-Agent-Stratego

 101

 : Stratego : Board : Agent :
AgentComparator

JESS

getAgents() getAgentType()

compare()

Agent()
orderAgents(List)

Resetview()

checkPlayerTurn()

AgentPlay()
getMovement()

getScore()

AgentPlay()
checkPlayerTurn()

ResetAgent()

checkPlayerTurn()

Status

setScore(int)

setMovement()

 Multi-Agent-Stratego

 102

Player
CPU : int = 1122
HUMAN : int = 2211
turn : int
score[] : int
playerType : int

Player()
isCPU()
getPlayerType()
getFlag()
setFlag()
removeFlag()
getBomb()
setBomb()
removeBomb()
getSpy()
setSpy()
removeSpy()
getScout()
setScout()
removeScout()
getMinor()
setMinor()
removeMinor()
getSergeant()
setSergeant()
removeSergeant()
getLieutenant()
setLieutenant()
removeLieutenant()
getCaptain()
setCaptain()
removeCaptain()
getMajor()
setMajor()
removeMajor()
getColonel()
setColonel()
removeColonel()
getGeneral()
setGeneral()
removeGeneral()
getMarshal()
setMarshal()
removeMarshal()
incr_turn()
reset_turn()
hasTurn()

Tile
FLAG_TILE : int = 11111
BOMB_TILE : int = 1000000
SPY_TILE : int = 33333
SCOUT_TILE : int = 33344
MINOR_TILE : int = 44444
SERGEANT_TILE : int = 55555
LIEUTENANT_TILE : int = 55566
CAPTAIN_TILE : int = 55577
MAJOR_TILE : int = 55588
COLONEL_TILE : int = 55666
GENERAL_TILE : int = 66666
MARSHAL_TILE : int = 77777
UNKNOWN : int = 88888
KNOWN : int = 99999
NotMoved : int = 0
Moved : int = 1
tileType : int
status : int
move : int

Tile()
getPlayer()
getTileType()
setStatus()
getStatus()
setMove()
getMove()

Board
foundti le[][] : Logical View::java::lang::String = new String [10][10]
Tilename[][] : Logical View::java::lang::String = new String [10][10]
pressed : Logical View::java::lang::String = null
num : int = 0
ihavemoved : int = 0
imknown : int = 0
movment : Logical View::java::lang::String = ""
enemysouth : Logical View::java::lang::String = "nothing"
enemyeast : Logical View::java::lang::String = "nothing"
enemynorth : Logical View::java::lang::String = "nothing"
enemywest : Logical View::java::lang::String = "nothing"
agentname : Logical View::java::lang::String = "nothing"
enemybombs : int = 0
enemysouthsouth : Logical View::java::lang::String = "nothing"
enemyeasteast : Logical View::java::lang::String = "nothing"
enemynorthnorth : Logical View::java::lang::String = "nothing"
enemywestwest : Logical View::java::lang::String = "nothing"
enemynortheast : Logical View::java::lang::String = "nothing"
enemynorthwest : Logical View::java::lang::String = "nothing"
enemysoutheast : Logical View::java::lang::String = "nothing"
enemysouthwest : Logical View::java::lang::String = "nothing"
enemymarshal : Logical View::java::lang::String = "nothing"
AllAgents : Logical View::java::uti l::ArrayList = new ArrayList ()

Board()
paintGrids()
getAgents()
orderAgents()
Resetview()
AgentPlay()

Stratego
playercount : int

Stratego()
initComponents()
checkPlayerTurn()
ResetAgent()
exitForm()
main()

 Multi-Agent-Stratego

 103

Grid
P_FLAG : int = 1
P_BOMB : int = 2
P_SPY : int = 3
P_SCOUT : int = 4
P_MINOR : int = 5
P_SERGEANT : int = 6
P_LIEUTENANT : int = 7
P_CAPTAIN : int = 8
P_MAJOR : int = 9
P_COLONEL : int = 10
P_GENERAL : int = 11
P_MARSHAL : int = 12
C_FLAG : int = 13
C_BOMB : int = 14
C_SPY : int = 15
C_SCOUT : int = 16
C_MINOR : int = 17
C_SERGEANT : int = 18
C_LIEUTENANT : int = 19
C_CAPTAIN : int = 20
C_MAJOR : int = 21
C_COLONEL : int = 22
C_GENERAL : int = 23
C_MARSHAL : int = 24
WATER : int = 25
GRASS : int = 26
STOP : int = 27
EMPTY : int = 28
UNKNOWN : int = 29
type : int
counter : int = 0

Grid()
Grid()
setType()
setTile()
hasTile()
placeTile()
setTile()
getGridType()
getTile()
removePlayerTile()
removeTile()

Agent
i : int
y : int
score : int
move : Logical View::java::lang::String

Agent()
getAgentType()
getI()
setI()
getY()
setY()
getScore()
setScore()
getMovement()
setMovement()

AgentComparator

compare()

StartingSetupCPU

StartingSetupCPU()
SetupCPU()

HumanPlayer

HumanPlayer()

ComputerPlayer

ComputerPlayer()

ButtonListener
gridText : Logical View::java::lang::String

actionPerformed()

MenuKeyListener

actionPerformed()

SplashScreen
top : int
left : int
Seconds : int = 1

SplashScreen()
show()

SplashScreenImage

SplashScreenImage()
paint()

FlagTile

FlagTile()
getFlagType()

MinorTile

MinorTile()
getMinorType()

CaptainTile

CaptainTile()
getCaptainType()

MarshalTile

MarshalTile()
getMarshalType()

BombTile

BombTile()
getBombType()

MajorTile

MajorTile()
getMajorType()

ScoutTile

ScoutTile()
getScoutType()

SergeantTile

SergeantTile()
getSergeantType()

SpyTile

SpyTile()
getSpyType()

LieutenantTile

LieutenantTile()
getLieutenantType()

ColonelTile

ColonelTile()
getColonelType()

 Multi-Agent-Stratego

 104

	TABLE OF CONTENTS
	ACKNOWLEDGMENTS
	Abstract
	Chapter 1
	Introduction
	1.1 Motivation
	1.2 Project Goals

	Chapter 2
	Multi-agent systems
	2.1 Intelligent agents
	2.2 Multiple cooperative agents

	Chapter 3
	Playing Stratego
	3.1 The game
	3.2 Rules of the game
	3.3 Description of the pieces

	Chapter 4
	Design
	4.1 Requirements
	4.1.1 The agent's environment
	4.1.2 The agent's functionality
	4.1.3 Decision making

	4.2 UML
	4.2.1 The Use-Case diagram
	4.2.2 The Class diagram
	4.2.3 Sequence diagram

	4.3 The game board

	�Chapter 5
	Knowledge of the agents
	5.1 Rule-based systems
	5.2 Rules for the agents' behavior
	5.2.1 Preference rules for the miner

	5.3 The Rete Algorithm

	Chapter 6
	Implementation
	6.1 Jess - Java Expert System Shell
	6.2 Simulating the agent's environment
	6.3 Agent neighbours

	Chapter 7
	Testing the game
	7.1 Game play
	7.1.1 Game play test results

	7.2 The agent view
	7.2.1 Agent view test results

	7.3 The communications between the agents
	7.4 The communication between the agents and Jess
	7.4.1 Jess test results

	7.5 Testing the agents and the CDM communication
	7.6 Making a plan
	7.7 Playing the game.

	Manual
	8.1 User manual
	8.2 CLIPS manual

	Chapter 9
	Conclusion
	9.1 Evaluation
	9.2 Future work

	Bibliography
	APPENDIX A
	The agent’s source code

	APPENDIX B
	UML diagrams

