
‘A COMMUNICATION LAYER FOR
DISTRIBUTED DECISION MAKING’

by

J.L.Boehlé

A thesis submitted in partial fulfilment of
the requirements for the degree of

Bachelor of Computer Science

Rotterdam University

2004

‘A COMMUNICATION LAYER FOR
DISTRIBUTED DECISION MAKING’

by

J.L.Boehlé

A thesis submitted in partial fulfilment of
the requirements for the degree of

Bachelor of Computer Science

Rotterdam University

2004

Approved by ___
Chairperson of Supervisory Committee

__

__

__

Program Authorized
to Offer Degree ___

Date __

Rotterdam University

Abstract

‘A COMMUNICATION LAYER
FOR DISTRIBUTED DESCISION

MAKING’

by J.L.Boehlé

Chairperson of the Supervisory Committee: Ir. M.M.M. Abdelghany
 Department of Computer Science

A driver travelling from point A to B in a city constantly gathers valuable

information about the environment and traffic conditions. This information

remains with the driver and therefore precious information that in theory could

be useful to other drivers is lost. By equipping automobiles with a PDA drivers

are able, with the use of those PDA’s, to form mobile ad-hoc communication

networks, which enables them to exchange information.

This thesis addresses the problems related to creating and maintaining a dynamic

wireless ad hoc network in a city street network. It discusses a simulation

environment that simulates the creation, operation and maintenance of a dynamic

wireless ad hoc network. The simulation should allow the users to exchange

messages and files between one or multiple nodes present in the city street

network in order to evade traffic jams and hazardous situations or to warn

emergency services.

The conclusions draw from this report indicate the simulation environment is

able simulate the workings of a wireless mobile ad hoc network in a realistic way

although some hardware limitations prevent the simulation form simulating more

than thirty concurrently active nodes.

TABLE OF CONTENTS

List of Figures ...v
List of Tables...vii
Acknowledgments... viii
Glossary ... ix
Chapter 1: Introduction... 1

1.1 Problem setting .. 1
1.2 Crisis management project... 3

1.2.1 Traffic simulation program ... 5
1.3 Project goals.. 6

Chapter 2: Literature study...7
2.1 IEEE 802.11B MAC Layer ... 7

2.1.1 Probing.. 7
2.1.2 Basic access method ... 8

2.1.2.1 Data transmission ...10
2.1.2.2 Multi fragment...11

2.2 The Ant-Colony-Based Routing Algorithm for MANETs.........................12
2.2.1 The ARA algorithm ..13
2.2.2 ARA Phases..14

2.2.2.1 Discovery phase ..14
2.2.2.2 Route maintenance ...15
2.2.2.3 Route failure...15

Chapter 3: Design ... 16
3.1 Ad Hoc Simulation..16

3.1.1 Communication layer ...19
3.1.1.1 Media access communications layer..20
3.1.1.2 Protocol ..22

3.2 Ad Hoc visualization...24
Chapter 4: Implementation...26

4.1 Ad Hoc simulation ..26
4.1.1 Communication Layer..27

4.1.1.1 IEEE 802.11B Media Access Communications Layer............30
4.1.1.2 ARAProtocol ...33

4.2 Ad Hoc visualization...34
4.3 Common code base ..37

Chapter 5: Experiments and results ...40
5.1 Simulation environment ...40

5.1.1 AHS ...40
5.1.2 AHV ..42

5.2 Simulation experiments ..43
5.2.1 MAC802_11B Class..44
5.2.2 ARAProtocol ...45

Chapter 6: Evaluation and recommendations ...47
6.1 Evaluation ...47
6.2 Recommendations...48

6.2.1 A communication layer for distributed decision making...................48
6.2.2 Crisis management..50

Bibliography.. 51
Appendix I: Convert IT ..52

I.1 Design ..53
I.2 Implementation ..54
I.3 Dataset layout ...56

Appendix II: User manual ..58
II.1 Traffic Simulation...58
II.2 Convert IT ...58
II.3 The options screen...60
II.4 AHS...61
II.5 AHV..62
II.6 PDA GUI ..63

Appendix III: Sector based nearest neighbour queries...............................66
III.1 The algorithm ..66

Appendix IV: AHS ..69
Appendix V: AHV ...73
Appendix VI: MAC Layer flowcharts...76
Appendix VII: ARAProtocol flowcharts...80
Appendix VIII: IEEE 802.11B..85
Appendix IX: MAC Test results ...87
Appendix X: ARAProtocol Test results..89

LIST OF FIGURES

Number Page
1. Nodes.. 2
2. Crisismangement layers ... 4
3. Traffic simulation program... 5
4. Station probing.. 8
5. Basic access method... 9
6. Back off procedure... 9
7. Data transmission communication..10
8. Multi fragment transmission...11
9. Missed acknowledgement. ..12
10. Two routes to a food source ..12
11. Pheromone updating formula ..13
12. Pheromone decreasing formula ...14
13. AHS packages..18
14. Communication layer class diagram..19
15. MAC layer class diagram ...21
16. Protocol class diagram...23
17. AHV packages...24
18. Convert IT program GUI...27
19. Synchronized receive function ...28
20. PROTODATA class layout..29
21. MACData class layout ...30
22. Hidden node problem ...31
23. Packet transmission time formula ...32
24. Back off algorithm..33
25. AHV program GUI ...34
26. Render engine rendering flow chart..36
27. TransformToScreen functions...37
28. Thread base class ..38
29. AHS counter monitor..41
30. Counter monitor legend ..41
31. AHV counter monitor. ..42
32. Counter monitor legend. ...43
33. Traffic simulation coordinate information ..52
34. Convert IT design...53
35. Flowchart of dataset conversion process ...55
36. TransformToNorm function ...55
37. Dataset example..56

38. Convert IT program GUI...59
39. Options screen ..60
40. AHS program GUI ..61
41. AHV program GUI ...62
42. PDA GUI...64
43. Neighbour numbering ...67
44. Different steps of neighbour calculation..68
45. AHS class diagram..70
46. AHV class diagram...74
47. Data transmission sequence..77
48. Data reception sequence ...78
49. Packet overhearing; Idle state...79
50. Outgoing data packet ...81
51. Incoming data packet...82
52. Incoming ant data packet. ...83
53. Incoming ACK packet...84

LIST OF TABLES

Number Page
1. ARA routing table. ...13
2. Description of classes present in the convert class diagram.54
3. Search sectors based on sector coordinates...67
4. AHS data dictionary ...71
5. AHV data dictionary ..74
6. MAC layer default parameters..85
7. MAC layer ideal transmission ranges ..85
8. Packet type and subtype ids..86

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Ir. M.M.M Abdelghany and

Dr. Drs L.J.M. Rothkrantz. Thanks to Ir. M.M.M Abdelghany for recommending

the TU Delft, also for his interest, ideas, recommendations and input during his

visits throughout the course of this bachelor thesis project. Special thanks go to

Dr. Drs. L.J.M Rothkrantz for providing a most interesting bachelor thesis

assignment, for his ideas and guidance during the weekly meetings and for taking

time out of his busy schedule to facilitate this all.

Thanks also go out to B.Sc. B.Tatomir for his help with the traffic simulation

program and his input during the weekly meeting as well as to the staff and

students of the KBS group for making my stay a pleasant one. And Last but

certainly not least thanks to my family for the support and advice given in relation

to this bachelor thesis project.

GLOSSARY

ACK. Abbreviation of Acknowledgement, packet defined in the IEEE 802.11B
specification indicating that the host has successfully received the data packet
transmitted to it.

AHS. Abbreviation of Ad Hoc Simulation, program designed for this thesis
assignment that simulates the behaviour of PDA’s and mobile communication in
a mobile environment.

AHV. Abbreviation of Ad Hoc Visualization, program designed for this thesis
assignment that visualises the actions performed by the AHS program.

BANT. Abbreviation of Backward Ant, Agent part of the ARA Routing
algorithm that is send in reply to a FANT to backtrack the route established by
the FANT in order to create a bidirectional communications path.

CRC. Abbreviation of Cyclic Redundancy Check, common technique for
detecting data transmission errors.

CPU. Abbreviation of Central Processing Unit, hardware specialized in
calculations. The CPU is the most important part of a computer.

CTS. Abbreviation of Clear To Send, packet defined in the IEEE 802.11B
specification indicating that that host is ready to receive incoming data.

FANT. Abbreviation of Forward Ant, Agent part of the ARA routing algorithm
that is send by a querying node in order to establish a route to a specific
destination node.

GUI. Abbreviation of Graphical User Interface.

IEEE. Abbreviation of Institute of Electrical and Electronics Engineers, United
States based non-profit organization for the creation of standards for computer
formats and devices.

MAC. Abbreviation of Media Access Layer, one of the two layers that make up
the Data link layer of the OSI model, responsible for moving packets from an to
a NIC.

MANET. Abbreviation of mobile ad hoc network.

Namespace. A logical grouping of the names within a program. The Microsoft
Framework .NET refers to a namespace as a collection of classes that together
from a library.

NIC. Abbreviation of Network Interface Card, device that enables a computer to
communicate over a specified network.

PDA. Abbreviation of Personal Digital Assistant, handheld device that combines
computing, telephone/fax, Internet and networking services.

RTS. Abbreviation of Ready To Send, packet defined in the IEEE 802.11B
specification that is send by a host that wants to initiate data transfer with another
node.

TCP/IP. Abbreviation of Transmission Control Protocol / Internet protocol,
suite of communications protocols used to connect to hosts on the Internet.

Wi-Fi. Abbreviation of Wireless-Fidelity, comprises a set of standards for
wireless local area networks based on the IEEE 802.11 specifications.

WLAN. Abbreviation of Wireless Local Area Network, network that uses radio
waves as carrier.

C h a p t e r 1

INTRODUCTION

This chapter discusses the problem setting that lies at the foundation of the

project ‘A communication layer for distributed decision making’. Also the traffic

simulation program and the project goals will be discussed.

1.1 Problem setting

The traffic situation in a city like Rotterdam is an ever-changing series of events.

During the peak traffic hours between 8:00 - 9:00 and 17:00 - 19:00 congestions

are rampant across the city. If an accident occurs emergency services need to be

notified as soon as possible with up-to-date information concerning the current

situation. Any automobiles travelling through that area need to be diverted by the

police to prevent a major traffic jam.

A driver travelling from point A to B in a city constantly gathers valuable

information about the environment and traffic conditions. This information

remains with the driver and therefore precious information that in theory could

be useful to other drivers is lost. By equipping automobiles with a PDA drivers

are able, with the use of those PDA’s, to form mobile ad-hoc communication

networks, which enables them to exchange information (an automobile equipped

with a PDA is from now on referred to as a node).

1

Figure 1: Nodes

Traffic is always on the move and mobile ad-hoc communication technology is

only able to cover relatively small distances (550 meters/601.49 yards maximum).

Dynamic self-organizing networks have to be formed in order to maintain

communication with nodes even if they are out of the sending nodes

transmission range. Nodes can enter and leave the network at any time; a node

that leaves the network can do so without prior notice.

This thesis addresses the problems related to creating and maintaining a dynamic

wireless ad hoc network in a city street network. It discusses a simulation

environment that simulates the creation, operation and maintenance of a dynamic

wireless ad hoc network. The simulation should allow the users to exchange

messages and files between one or multiple nodes present in the city street

network in order to evade traffic jams and hazardous situations or to warn

emergency services.

2

1.2 Crisis management project

The project ‘a communication layer for distributed decision making’ is defined as

a subproject of the ‘Crisis management using mobile ad-hoc networks’ [R04]

project. The ‘Crisis management using mobile ad-hoc networks’ project aims to

develop an environment wherein rescue services can communicate using

handheld devices that can form dynamic mobile ad hoc networks. Through these

handheld devices that operate in a wireless environment communication is still

possible when major infrastructural communications links have been damaged,

destroyed or overloaded. In case of a major disaster within a city, emergency

service can communicate without the need for access points or other

infrastructural requirements. The users of this network can exchange

observations, message and files through agent technology and intuitive GUI’s

located on the handheld set. The agents help the user in finding, storing and

retrieving information from the network.

The first implementation of the Crisis management project focuses on building a

simulation environment that is able to model in a realistic way the behaviours of

city traffic, mobile ad-hoc communication and agent technology.

Two other projects part, of the crisis management project that are strongly related

to the project discussed in this thesis, namely the Traffic simulation program

described in the following subsection and the Waypoint project. The Waypoint

project defines information about the environment within the simulation

environment in order to provide the user with information about his current

location within the simulated environment.

3

Figure 2: Crisismangement layers

The different layers in the Crisis management project implement specific features

and are stacked on top of one another as shown in figure two. These layers

should the exchange and provide information to the nodes so that drivers can

interpret the information and take further action.

4

 1.2.1 Traffic simulation program

The Traffic simulation program [K02] uses the Ant based control algorithm to

route traffic through a city street network. The Ant based control algorithm

calculates the fastest route, in time, for a car from point A to B.

Figure 3: Traffic simulation program

With the use of traffic lights, precedence rules, roundabouts, one lane, multi lane

and one-way roads a ‘realistic’ simulation environment is created. By recording

the coordinate information of the cars during a simulation run in the traffic

simulation program coordinate information data is gathered for the vehicles

equipped with a PDA that run in the AHS/AHV simulation.

5

1.3 Project goals

The primary goal of this project is creating a communication layer that is able to

create and maintain connections on a simulated ad-hoc dynamic network. A

secondary goal in the creation of the communication layer is building a graphical

user interface that displays the moving nodes and dynamic communication links.

The tertiary goal is the realisation of a communication link with the traffic

simulation program developed by R.Kroon in order to receive positional

information about nodes.

6

C h a p t e r 2

LITERATURE STUDY

This chapter summarizes the literature studied before starting the design and

development of the simulation environment. Although more literature was

studied concerning different routing protocols only the literature applicable to the

final implementation has been listed here. The first section covers the specifics of

the IEEE 802.11B MAC layer the second section discusses the ant-colony-based

routing algorithm.

2.1 IEEE 802.11B MAC Layer

The IEEE 802.11B MAC Layer [IEEE99a, IEEE99b] consists of a series of

agreements concerning the sending and receiving of data. In this chapter the

agreements that will be implemented in the simulation environment are

discussed. A table providing wait times and parameter descriptions can be found

in appendix VIII. Appendix VI displays three flowcharts describing the flow of

the overhearing process, packet transmission process and packet reception

process for single and multi-fragment packets.

2.1.1 Probing

Before nodes, operating in an ad hoc wireless environment, can start to transmit

data to each other they must first find each other. In order for a node to discover

its neighbour nodes, which are within its communication range, the node sends

out a probe.

7

Figure 4: Station probing

Setting the type field of an IEEE 802.11B frame control structure to

‘Management’ and its subtype field to ‘Probe’ creates the probe message packet.

Once created the message is broadcasted at 1Mbps in order to have the

maximum transmission range. After transmission the node waits for a specified

amount of time in order to receive all probe response messages. The probing

node confirms each received probe response message with an ACK message.

A node that receives the probe message formulates a probe response message by

setting the type field of an IEEE 802.11B frame control structure to

‘Management’ and its subtype field to ‘Probe response’. After transmitting the

packet to the probing nodes it waits a specified amount of time for the ACK

message confirming the reception of the probe response packet. If no ACK

message is received within the time period the probe message is retransmitted.

This sequence is repeated up to four times.

2.1.2 Basic access method

In order to realize communication between two wireless IEEE 802.11B

compatible nodes a complicated set of delay timers and packets is needed. Nodes

operating in the wireless ad hoc mode cannot start sending data immediately.

First the nodes must determine if the receiving node is currently idle before

transmission can start.

8

Figure 5: Basic access method

A node that needs to determine if the intended receiving node is idle, it opens a

reception socket and senses the air for transmission that have the intended

destination as destination. If no transmission is detected the packet is sent out to

the destination. If the node senses a current transmission the node waits until the

transmission has stopped. The waiting period is determined by initialising a timer,

this ‘back off’ timer waits for a ‘random’ period plus the slot time for the current

allocated for the current MAC layer (in this case 802.11B).

Back off Time = Random() * aSlotTime

The Random() function displayed here draws an integer value in the range of

[0,CW] where CW is an integer value in the range between aCWmin and

aCWmax, where aCWmin < CW < aCWmax. This value doubles every time a

busy receiver is detected at the end of the back off period.

Figure 6: Back off procedure

9

This back off method is used in order to give every node a statistical equal

opportunity to transmit its data to the destination. If there are no transmissions

to the intended destination at the end of the contention period the node sends

out its data.

2.1.2.1 Data transmission

The transmission of a data packet to a node starts when the sending has found

the receiver to be idle. The sending node broadcasts an RTS packet to the

intended destination then waits a certain amount of time for a CTS packet. If the

CTS packet is not received within the waiting time the RTS packet is transmitted

again, if the destination node is still idle. The CTS packet is send back using the

broadcast method to notify other nodes of the pending transmission.

Figure 7: Data transmission communication

Nodes that receive either the broadcasted RTS or CTS message set an NAV

timer specifying the length time in which the sending and receiving nodes are not

available for transmissions. The time period for the NAV timer is taken form the

duration field of the RTS or CTS packet. If no transmission is detected after the

exchange of RTS or CTS a node may reset its NAV timer after a period specified

by the formula below.

NAV reset = (2*aSIFSTime) + (CTS_Time) + (2*aSlotTime)

10

After receiving the CTS packet and waiting for a SIFS amount of time the node

can transmit the data packet to the destination. Once transmitted the node waits a

specified time for the ACK packet to arrive confirming a good transmission.

2.1.2.2 Multi fragment

An 802.11B Data packet can have a maximum payload of 2312 bytes. Data that

exceeds this size needs to be fragmented by the sender before transmission can

take place. The 802.11B specification has limited the payload to 2312 bytes in

order to minimize the bit error rate. The bit error rate in wireless network is at

current 10^-5 to 10^-6. Increasing the size of the payload will lead to an increased

bit error rate, which eventually results in 100% packet loss.

Figure 8: Multi fragment transmission

Once the sending node finds the destination node to be idle it sends out an RTS

packet. The node that overhears this RTS packet sets it NAV timer for sender

and destination using the duration field of the RTS packet, the destination node

sends back a CTS. The sending node can now start to transmit its first fragment,

nodes that overhear the fragment update their NAV timer for sender and

destination, and the sender confirms the successful reception of the data packet

using the ACK packet, which also may be overheard by other nodes. This

process is repeated until the last fragment specifies zero for the more fragments

field of the data packet.

11

Figure 9: Missed acknowledgement.

If the ACK period expires on the sending node signalling a missed ACK packet

the data transmission stops. The nodes that overheard the last fragment will have

their NAV timer still running for the duration specified by the last fragment. The

sending node may try to rebuild the communication with the destination node, if

this does not happen the destination node will be available to all other nodes as

soon as their NAV timers expire.

2.2 The Ant-colony-based routing algorithm for MANETs

The Ant-colony-based routing algorithm (ARA) [GS02, GSB02] is a multi-agent

system in which ants form the individual agents. ARA is based on the behaviour

that ants exhibit when searching for food.

Figure 10: Two routes to a food source

Two ants travelling from the nest to a food source both take a different path.

While proceeding along the chosen path they drop a pheromone that other ants

can smell in order to trace back the taken route. Once an ant reaches the food

source it picks up some food and starts travelling back along it previous path

increasing the strength of the pheromone track. As displayed in figure ten the ant

12

that took the bottom route needs less time to travel to the food source and back

therefore leaving a stronger pheromone track. Other ants in search of food will

choose the stronger pheromone trail since this represents the shortest route to

the food source in time.

2.2.1 The ARA algorithm

In order to make the ARA algorithm suitable for dynamic ad-hoc networks some

adaptations have to be made. Since pheromone values cannot be dropped by

current day communication devices a routing table is maintained on each

individual communication device in the network.

Table 1: ARA routing table.

Destination address Next hop Pheromone

The routing table noted above shows the basic ARA routing table in which

‘destination address’ represents the address of the sending node, ‘Next hop’

represents the address of the previous node, which relayed the packet to the

current node, and ‘Pheromone’ represents the strength of the trail.

The ARA algorithm consists of two formulas for increasing and decreasing the

pheromone value.

Figure 11: Pheromone updating formula

Each time a packet (ant) is received by a communication device (node) the

routing tables are updated. The amount of pheromone φi,j for the route taken is

updated with a constant value ∆φ.

13

Figure 12: Pheromone decreasing formula

When operating in a dynamic network some routes may become invalid or are

simply not used. In order to distinguish between optimal routes and sub optimal

routes the amount of pheromone is decreased periodically for all routes.

Pheromone values are decreased by the formula depicted in figure 12 where φi,j is

the pheromone value and q is member of the set q ∈ (0,1].

2.2.2 ARA phases

The ARA routing algorithm consists of three distinct phases namely the route

discovery phase, route maintenance and route failure handling.

2.2.2.1 Discovery phase

In order to communicate with other nodes the ARA protocol sends out a

uniquely identifiable forward ant (FANT) that tries to establish a route to node

somewhere in the network. At each node (hop) that it encounters on the way to

the destination node it updates the route tables. If there is no address entry for

the route taken by the FANT, the FANT senders address is noted is the

‘destination address’ field, the hop that relayed the packet is noted in the ‘Next

hop’ field and the pheromone value is set to default. Otherwise only the

pheromone value is updated using formula depicted in figure 11.

As soon as the FANT finds/arrives at the destination node a uniquely identifiable

backward ant is launched (BANT). The BANT traces back the route to

originating FANT node by making use of the routing table entries previously

made by the FANT. While tracing back the route to the BANT updates the

routing tables at each hop in the same fashion the FANT did. Once the FANT

originator node is reached communication between the nodes can be established.

14

2.2.2.2 Route maintenance

The individual nodes do the route maintenance by analyzing received packets and

by use of pheromone formula depicted in figure 12. Each packet received by the

node either for processing or relaying is used to update the routing table and the

pheromone value by use of formula depicted in figure 11. A timer determines the

when formula in figure 12 is executed in order to decrease the pheromone value.

Once the pheromone value for a certain route has reached zero the route can

safely be discarded.

2.2.2.3 Route failure

The MAC layer implemented on the NIC of the communication device notifies

the ARA protocol in case of route failure by returning a ROUTE_ERROR

message. Once notified by the MAC layer the ARA protocol searches the routing

table for an alternative route. If no alternative route is found the packet is relayed

to all the neighbours of the node who will check their routing tables for a route to

the destination. If the packet cannot be relayed to the destination node the packet

is send back to the destination node, each receiving hop tries to find an

alternative route as described above before sending the packet back.

15

C h a p t e r 3

DESIGN

In this chapter the design of ad hoc simulation and ad hoc visualization programs

will be discussed. The main considerations and design goals and features will be

discussed as well as the UML Package and class diagrams created for the AHS

and AHV applications.

The simulation environment consists out of three different applications namely

Convert IT, AHS and AHV. The Convert IT program is a dataset creation tool

and is described in detail in appendix I. The AHS program contains the entire

simulation environment, it models the PDA’s and communication layers and

simulates the transmission of information over a dynamic wireless ad hoc

network. The AHV program visualizes the actions that occur in the simulation

environment. It displays the moving nodes, the possible network connections

that can exist between nodes when they are in range and lists statistics that show

the amount of traffic in the network.

3.1 Ad Hoc Simulation

When designing the simulation environment for wireless communication a

number of requirements almost immediately arise. Wireless communication is

limited by data transfer rates, transmission ranges and signal interference. PDA’s

are limited in resources like battery power, memory and processor speed. In this

one hundred day project it is unrealistic to incorporate al these features to

perfection. Therefore choices have to be made about the feature set to

incorporate in the simulation environment the enables user to gain meaningful

and useful results. The focus in the AHS program lies therefore completely upon

16

the communication layer and does not implement features like signal interference

and PDA limitations.

Timing is an important factor when developing a simulation. In order to develop

a realistic environment the simulation should be able to simulate data

transmission in real-time. The IEEE 802.11B specification defines real-time as

microseconds. By making use of the Windows WIN32 API a class was developed

to access the high performance counter that registers time using the clock pulse

generator of the PC, allowing for a time interval of 1/3579545. This should in

theory provide for very accurate timing results but the retrieval of the frequency

when ran in a multi–threaded environment under heavy load becomes

unpredictable. Timing results start to vary and timers do not precise or are

unable to report back of the short spans of time. Therefore this realism factor

had to be abandoned. The times defined in the IEEE802.11B specification where

scaled up to milliseconds in order to prevent varying timing results.

 The package diagram depicted in figure 13 shows the different namespaces and

the dependencies between the namespaces. The Communication layer packages

are discussed in detail in section 3.1.1 the other packages will be discussed here. A

detailed class diagram as well as a class dictionary can be found in appendix IV.

17

Figure 13: AHS packages

The AHS namespace contains the basic program classes like GUI’s and the main

simulation manager that controls the start-up and shutdown of the simulation

environment. The Dataset namespace contains a dataset reader that reads traffic

coordinate information form a dataset, further information about dataset creation

and layout can be found in appendix I. The network namespaces contains

functionality that provides a TCP/IP socket connection for communication

between the AHS and AHV program. The location namespace contains the

nearest neighbour detection algorithm. This algorithm is needed to determine

18

which nodes are within communication range in the simulation environment.

This is described in detail in appendix III. The namespaces belonging to the

Common namespace provide as a set of common features that is used by the

AHS and AHV programs.

3.1.1 Communication layer

The communication encompasses the entire set of namespaces and classes that

are together responsible for data transmission. The communication layer class

diagram as depicted in figure 14 contains the classes that are part of the

Communication layer namespace.

Figure 14: Communication layer class diagram

The Communication layer encompasses the functionality of an entire PDA,

although only a sub set of features have been implemented. The PDA provides

the files or messages that have to be transmitted, they travel through the protocol

layer that fragments the data in the correct packet sizes and discovers and

19

maintains routes to nodes. The MAC layer then handles the IEEE 802.11B

compliant packet forwarding and transmission of data to other nodes. The next

sub-paragraphs will describe the design of the MAC and Protocol layers in detail.

3.1.1.1 Media access communications layer

Since realism was one of the most important requirements for the simulation

environment a realistic wireless communication scheme had to implemented. The

most widely used communication specification for PDA’s is the IEEE 802.11B

specification, part of the IEEE 802.11 set specifications also known as Wi-Fi.

The working of the IEEE 802.11B specification is discussed in detail in chapter

two section one, therefore this section focuses on the design considerations and

portions of the specification implemented.

The IEEE 802.11B specification does not only cover the MAC layer but also

discusses the requirements for the physical layer. The physical layer specification

that covers the requirements for the radio signal at the electronic and mechanical

level and is responsible for transferring the actual bit stream is not implemented

in the simulation. Packets in the simulation will be passed from MAC layer to

MAC layer in the MAC packet form. The transmission times for this layer are

taken into account during the transmission of data.

The IEEE 802.11B specification defines a number of packets that can be

transmitted via the MAC layer. These packets fall in three different categories

namely control, management and data. The packets that fall in the control

category are not considered in the simulation environment since they do not

influence normal data traffic between mobile nodes.

20

The packets transmitted by the MAC layer although not converted to a bit stream

are fully compliant with the IEEE 802.11B specification with the exception of

the CRC number, this number is fixed since the possibility of data corruption in

the simulation environment is non existent.

Figure 15: MAC layer class diagram

The design phase of this project resulted in the class diagram depicted in figure

15. The MAC Layer consists out of two MAC classes. The MAC class provides

basic functionality that is needed to incorporate the MAC802_11B layer into the

AHS simulation framework. The MAC802_11B class contains the

communication functionality based on the IEEE 802.11B specification. The

different packages implemented are depicted at the bottom of the class diagram.

The MACData class provides a means of transferring data between the protocol

and the MAC layer. The Packetlist filters out any duplicates received.

Appendix VI contains three flowcharts that depict the way in which a packet can

travel through the MAC layer.

21

3.1.1.2 Protocol

The protocol incorporated in the simulation environment is specially designed to

incorporate the ARA algorithm as described in chapter 2.2. ARA relies heavily on

header data transmitted using the TCP/IP four specification. The packages

transmitted by the protocol therefore contain the TCP/IP four fragment offset

field, the other information required for the ARA protocol like Source address,

destination address and previous transmitter is obtained from the MAC layer.

The protocol implemented in the simulation environment does not need to have

an extensive feature set. Since the MAC layer described in the previous will

handle the main bulk of the information exchange the protocol should only

worry about data fragmentation, data buffering and Ant based route discovery

and maintenance and duplicate Ant detection.

The routing table needed for the ARA algorithm controls the build up and flow

of data over the network. In order to find and to communicate over the best

possible data link the signal strength that is calculated by the MAC layer is

incorporated into the pheromone update formula. The signal strength is

calculated by the MAC layer as a percentage in relation to the distance between

transmitter and receiver.

φi,j := φi,j + (signal / 100) + ∆φ

The class diagram designed for the protocol is depicted in figure 16. The protocol

is made up out of two classes namely Protocol and ARAProtocol. The protocol

provides the basic functionality needed for the ARAProtocol class to be accepted

by the framework. The ARAProtocol class incorporates the entire set of features

needed for data transmission and ARA handling.

22

Figure 16: Protocol class diagram

The features include a packet list for filtering out duplicate data packets and ants.

Since ants are broadcasted over the network in order to establish one or more

routes to the host the reception of duplicate ants is quite common. The routing

table that functions as small database in order to register, mutate and remove

routes found by the host. The protocol buffer provides a means to store

fragmented data transmissions received from one or multiple hosts and

concatenates this stream to the final end result being a file or text message.

Appendix VII contains four flow charts that depict the way in which packets are

send to other hosts and received by a protocol.

23

3.2 Ad Hoc visualization

The Ad Hoc Visualization environment is designed as an extension layer that

operates on top of the Ad hoc simulation program. It uses a network connection

to communicate with the AHS program, this set up allows for a distributed

execution of the program.

Figure 17: AHV packages

The packages displayed in the package diagram show the collection of namespace

that form the AHV program. The class diagram of the AHV program can be

found in appendix V as well as class dictionary.

The AHV namespace contains the collection of classes that provide the GUI’s

and control the simulation environment ran on the AHV program. The Network

namespaces maintains a TCP/IP socket connection with the AHS, The presence

of the connection between the AHV and AHV program is mandatory when

running the AHV program.

24

The Dataset namespace provides functionality that reads nodes coordinate

information from a dataset file, this class is almost identical to the AHS Dataset

class. The location namespace contains the Nearest Neighbour algorithm that

enables the AHV program to draw network connections between nodes with no

data traffic over the network.

The rendering namespace contains a memory buffered rendering engine that

enables the AHV program to provide smooth graphics without overdraw. Part of

this render engine is the traffic map class that render the street network in the

same manner as the traffic simulation program. The Nodes namespace part of

the Rendering namespace contains the collection of active nodes.

25

C h a p t e r 4

IMPLEMENTATION

This chapter focuses on the implementation details of the programs developed

for the project ‘a communication layer for distributed decision making’.

The entire project was implemented using the Microsoft C# language which is

part of the Microsoft Framework .NET. This language is chosen because it

provides the programmer with a ‘managed’ environment that does not ‘leak’

memory. The language is comparable by syntax to C/C++ and Java and

therefore easy to learn. The Microsoft .NET framework allows for the

incorporation of multiple languages like Managed C++, C#, J#, Visual basic and

Delphi into one project, which eliminates any deficiencies that might exist

between different programming languages, used in previous and future projects.

4.1 Ad Hoc simulation

The AHS program is a multi-threaded application that is responsible for the

entire simulation. The AHS program reads node information from a dataset,

calculates nearest neighbours and maintains the collection of PDA’s, MAC layers

and ARA Protocols. The program provides a minimal interface exposing only

access to PDA statistics.

26

Figure 18: Convert IT program GUI

4.1.1 Communication Layer

This section focuses on the communication between the different classes in the

communication layer. The internal communication of the MAC layer and

Protocol layer classes will be discussed in the following paragraphs.

The Protocol class and the MAC class that operate within de communication

layer both have their own thread. This allows the protocol and MAC layer to

function independently form each other allowing data processing by the protocol

and data transmission and reception by the MAC layer at the same time. This

multi-threaded set up allows for an increased realism factor but at the same time

complicates the program flow. Different threads cannot access data of other

threads without proper synchronization mechanics, otherwise data corruption

may occur. When implementing synchronization for threads the programmer

always has to check that the program cannot deadlock. A deadlock occurs when

two or more threads are waiting on each other’s synchronized resources to

become available again.

27

public bool Receive(Object packet,
 int signalstrength,
 TRANSMISSIONSPEEDS_KBPS kbps)
{

 if (!Monitor.TryEnter(_InputQueue))
 return false;

 _InputQueue.Enqueue(packet);
 Interlocked.Increment(ref _EnqueuedPacketsIn);
 Monitor.Exit(_InputQueue);
 ExitWait();

 return true;
}

Figure 19: Synchronized receive function

The C# source code depicted in figure 19 shows a part of the MAC802_11B

class. Other MAC802_11B classes within the simulation environment access the

Receive function when they want to send a packet to the host. The code

demonstrates how thread synchronization is implemented. Multiple threads can

access the Receive function. The first thread that reaches the Monitor.TryEnter

statement acquires a lock on the incoming packets queue, other threads that

attempt the gain the lock receive are diverted out of the Receive function with a

‘false’ value indicating sending failed.

This prevents a possible deadlock situation. As soon as the thread that acquired

the lock has added its packet to the incoming packets queue it increments the

incoming packet counter and releases the lock, then it wakes up the thread by

calling the ExitWait function.

28

During the simulation PDA’s get added, updated and removed from the

PDAContainer. A PDA that gets registered as active in the simulation

environment starts in sleep mode. This means that the threads for the PDA that

encompasses the MAC and Protocol classes are set in block mode and do not

consume any CPU resources, for further details see section three.

The MAC and Protocol classes almost have an identical build of packet reception

and processing. If a PDA wants to transmit a packet, it creates a PROTODATA

packet. This PROTODATA packet can hold numbers of parameters namely a

filename, destination and a BinaryReader class that provides binary access to the

stream of data that needs to be transmitted.

Figure 20: PROTODATA class layout

This packet is placed in the incoming queue of the protocol that will fragment

and process the data before transmitting it to the MAC layer using a MACData

class.

29

Figure 21: MACData class layout

The MACData class is used by both the MAC and Protocol classes to exchange

data between the two classes. A protocol that transmits data to a MAC layer fills

out the Destination, PrevNext, Data, More and more fragments (MF) field. A

MAC layer that transfers data to a Protocol fills out all the fields with data

received.

4.1.1.1 IEEE 802.11B media access communications layer

The MAC layer implemented in the simulation environment can reside in six

different states. The MAC can be IDLE meaning that the thread has no work to

carry out and currently resides in sleep mode. The MAC can be in the

SIFS_WAIT state indicating the MAC is delaying transmission to allow the SIFS

period to pass. The MAC can be in NAV_WAIT state indicating that the NAV

timer has been set, the MAC will defer from transmitting data until the timer

expirers or is reset. The MAC can be CTS_WAIT state this means that an RTS

packet has been send to a host and the MAC layer is waiting for the CTS

response. The MAC can be in DATA_WAIT indicating that the CTS packet has

been transmitted and that data is expected within the duration period.

ACK_WAIT meaning that data has been transmitted and the MAC is waiting for

30

an ACK packet reply. The six states mentioned above control the program flow

and allow the MAC enter sleep mode once a packet has been send and pick up

where it left a soon as a packet is received.

The hidden node problem (see figure 22) is one of the most common problems

that occur in mobile dynamic ad hoc networks. The hidden node problem occurs

when two or more nodes are within transmission of a node but not within each

other’s transmission range.

Figure 22: Hidden node problem

When node two is not transmitting any data node one and three are free to

transmit data. Their now exists a possibility that node one and three start

transmitting data to node two at exactly the same time. This results in packet

collisions and prevents the reception of any data by node two.

The IEEE 802.11B specification solves this problem with three the use of the

control packet types RTS, CTS and ACK. Also by defining in each packet send,

using the MAC layer, a duration field. This duration field indicates maximum time

available to transmit and entire sequence of packet to a host. This means that the

RTS packet send by a host has a duration field value that is equal to the

transmission time needed to transmit a CTS, Data, ACK packet and the waiting

time of three SIFS intervals (10 µs). The source code depicted in figure 23 shows

the formula used to calculate the duration time of an individual packet.

31

private int CalcPacketDuration(PACKETSIZE psize,
 int datalenght)
{
 float TD_Data = sTP + sTPhy + (((8.0f * ((int)psize +
 datalenght)) * 1000) /
 (int)_TransmissionSpeed);

 // Round up to the next integer value
 if((TD_Data - (int)TD_Data) != 0)
 TD_Data++;

 return (int)TD_Data;
}

Figure 23: Packet transmission time formula

The function [XR02] requires the length of the physical layer preamble in bytes,

the length of the physical layer header in bytes, the size of the packet header in

bytes and the length of the data field if applicable, and finally the transmission

speed in Kilobits per second with which the PDA is transmitting. The IEEE

802.11B specified values are listed in appendix VIII. The duration field is also

used by node that overhears a packet transmission. The simulation environment

allows nodes to overhear the control packets RTS, CTS and ACK. A packet that

is destined for another node is used to update the NAV timer. The NAV timer

specifies the amount of time, based on the duration time in the overheard packet,

in which other nodes are communicating over the network and the current

should defer from transmitting data.

To prevent all nodes form initiating a data transfer request at the same time each

node must wait a random amount of time before starting to transmit data. The

time interval period starts when the NAV timer has expired. The back off

formula is implemented in the AHS program using the source code as depicted in

figure 24.

32

private int Backoff()
{

 int backoff = sCWMin;

 for(int i = 0; i < _Retry; i++)
 backoff += backoff;

 if(backoff > sCWMax)
 backoff = sCWMax;

 return (backoff * sTSlot);
}

Figure 24: Back off algorithm

4.1.1.2 ARAProtocol

The ARAProtocol implemented in the simulation environment can reside in

three different states that control the program flow. The IDLE state indicates the

ARAProtocol class currently has no incoming or outgoing packets and is in

thread sleep mode. The BANT_WAIT state indicates that the ARAProtocol has

send out a FANT packet and is waiting for BANT packet to return or the

timeout timer to expire. The ACK_WAIT state indicates that ARAProtocol has

send out a data packet and is waiting for the ACK packet confirming successful

reception of the packet.

The ARAProtocol uses a specially designed ARA packet filtering class. This class

filters out packet based on source transmitter, previous transmitter and fragment

offset number. The filtering of duplicate packets is an important feature in ARA

since ants are broadcasted onto the network and propagated by other nodes using

broadcasting.

33

Data transmissions received from other nodes are in buffered streams. The

streams allow for inserting, updating, removing and positioning. The protocol

buffer incorporated in the ARAProtocol class allows for backing up different

types of data like files, messages and AHV destined messages. The fragments are

stored in buffer and the buffer is automatically disposed when the transmission is

complete. The buffer will than perform the action defined by the buffer, like

storing data to disk or showing a message box conforming successful reception.

4.2 Ad Hoc visualization

The AHV program consist mainly out of GUIs and menus that are rather trivial

to implement using drag and drop and therefore will not be discussed. This

section will therefore only discuss the implementation of the render engine.

 Figure 25: AHV program GUI

34

The windows graphic device interface (GDI+) that is responsible for drawing 2D

graphics in the windows operating system. The render engine is required to make

extensive of the GDI+ for drawing nodes, transmission ranges, city street

network and network connections. The GDI+ provides extensive functionality

and options for drawing that make it easy to use, the downside though is that de

GDI+ is rather slow.

The traffic map used by the simulation program to route the traffic is rendered

onto a bitmap image surface in the computers memory. Once rendered in

memory the traffic maps bitmap image does not change, unless the user zooms in

or out or scrolls using the scrollbars of the AHV program. This prevents

unnecessary calls the GDI+ interface.

35

Figure 26: Render engine rendering flow chart

The rendering process of the rendering follows the path depicted in figure 26.

The render engine uses a time interval for rendering the network to screen. The

rendering process can be initiated by a number of events. It can happen after the

expiration of the time interval, when the user zooms in or out, when the user

modifies the position of the scroll bars and when the user resizes the form.

The rendering process starts by copying the traffic stored in memory to a

rendering bitmap image surface. The rendering engine then checks to see if the

network connection should be drawn, this is a user modifiable parameter. If so

the connections are render to the rendering bitmap image surface. This process is

done before render the nodes and transmission ranges to prevent connection

36

lines from drawing over nodes. After the connections are rendered the nodes and

their transmission ranges are drawn on the rendering bitmap image surface. The

rendering engine then presents the rendered bitmap image to screen.

The use of this double memory buffered rendering sequence prevents screen

flickering caused by rapid overdraw when rendering the nodes or their

connections.

public static int TransformToScreen(Double coord, int pMin,
 int pMax, int pScreenSize,
 double pZoom, double pZoomCenter)
{
 if (pMax <= pMin)
 pMax = pMin + 100;

 Double Temp = ((((coord- pMin) / (pMax - pMin)) -
 pZoomCenter) * pZoom) + pZoomCenter;

 return Convert.ToInt32(Math.Round(Temp * pScreenSize));
}

Figure 27: TransformToScreen functions

In order to render the nodes and their connections the normalized coordinates

have to be converted to screen coordinates. The transformation is carried by the

function displayed in figure 27, and was taken from the traffic simulation

program. It reveres operations done by the TransformToNorm function

described in appendix I.

4.3 Common code base

The common code base found in the namespace AH contains classes that are

used by the AHS and AHV program. These classes provide basic functionality

that is used throughout the AHS and AHV program.

37

The Network namespace part of the common code base contains two classes that

provide basic TCP/IP socket connection capabilities that can be inherited by

other classes. The NetworkSocket class implements the Framework .NET

TcpListner class and provides initialize and listen functions in order to start the

socket server. The NetHandler class is a wrapper class around the

NetworkSocket class and provides threading functionality for other classes to

inherit.

The PointD structure represents a two-dimensional vector where the values for

the x-axis and y-axis are stored in the double format. This means that coordinates

can be stored with 15 ~ 16 decimal digits. This functionality is needed because of

the fact that the traffic simulation program calculates all its coordinates using the

double format.

The Threadbase class provides basic threading functionality for other classes to

inherit. The threading functionality provides thread starting and stopping and also

a thread wait mechanism. The thread wait mechanism revolves around blocking a

thread by locking an object. As soon as we want to suspend a thread we let the

thread lock a meaningless object that has been allocated only for locking

purposes. The lock on the object blocks the thread for getting CPU time.

 Figure 28: Thread base class

38

Once locked only the class that is locked can unlock itself. This prevents random

unlocking of threads when their activity is not required. An example of this is the

fact that in the simulation environment the MAC and Protocol layer only unlock

themselves as long as they have data to transmit or process.

39

C h a p t e r 5

EXPERIMENTS AND RESULTS

The experiments and results chapter covers two different sections. The first

section will measure the performance of the AHS and AHV program. This will

provide an overview of system memory consumption, CPU time consummation

and network traffic generated between the AHS and AHV program. The second

section in this chapter will measure simulation performance and behaviour.

The test system used to conduct the system was build up out of the following

components: Intel Pentium four 3Ghz hyper-treading processor, 1024 Mb

internal system memory running at a combined speed of 800 MHz, SATA 120

GB hard disk, and a ASUS PC4800-deluxe main board with integrated 1000

Mbps NIC.

5.1 Simulation environment

The simulation environment was run with the AHS and AHV container on one

PC. The programs where loaded and prepared for a default simulation using the

Test3.New.Mod.ds dataset. The AHS and AHV application where monitored

over a 120 second period.

5.1.1 AHS

The AHS program ran for the first 120 ticks of the Test3.New.Mod.ds dataset,

using the default parameters provided by the simulation environment. At the end

there where 11 PDA’s running represented by 22 threads. The entire program

consisted of 27 threads.

40

Figure 29: AHS counter monitor

The counter graph depicted in figure 29 show the behaviour of the AHS program

in detail. The first peak at the start of the graph represents the program start up.

The second peak is generated by the start up of the network socket. The

simulation was stared about ten seconds after program start up. The first spike in

the graph that then occurs is the registration of the first PDA and allocating of

memory for the PDAContainer and the PDA, Protocol and MAC. The spike that

occurs during the rest of the graph at 58, 64 and 85 seconds resemble increased

network activity in the simulation. The increased activity was caused by text

messages that where transmitted between nodes in the network. Figure 30

contains the legend associated with the counter monitor.

Figure 30: counter monitor legend

41

From the testing result gained we can conclude that the AHS application has an

overall low utilization of the CPU, although this increases as soon as messages are

exchanged between nodes within the network. The application benefits on the

test system of the hyper threading functionality of the CPU, processors with out

this capacity will show a slight increase processor time between five and fifteen

percent according to Intel.

5.1.2 AHV

The AHS program ran for the first 120 ticks of the Test3.New.Mod.ds dataset.

At the end of the simulation there where 11 nodes active, the entire program

consisted out of 5 threads.

Figure 31: AHV counter monitor.

The counter monitor graph depicted in figure 31 shows that the AHV program

starts to consume reasonable amounts of processor time each time the network

layout is rendered. Figure 32 contains the legend associated with the counter

monitor.

42

Figure 32: counter monitor legend.

In order to explain the behaviour of the AHS program and to find the source of

processor time consummation a call graph was created. The AHV program was

run under the identical settings used for the counter monitor. The call graph pin

pointed the screen drawing calls made by the AHV render engine as the major

time consuming operations. This behaviour can unfortunately not be altered

since its Windows related.

5.2 Simulation experiments

Due to the lack of an agent framework that automatically sends out agents over

the network the communication layer has to be operated by the user. This

somewhat limits the extend to which we can stress test simulation engine. The

results shown in this section should be repeated when an agent simulation

framework is implemented in order to show the true network performance under

heavy load.

The simulation environment it self does not show the working of the MAC and

protocol classes to the user. To allow proper testing of the functionality a number

of debug messages have been inserted into the MAC and protocol classes. These

debug messages where used to generate the results listed in the following

subsection and where removed when the testing was done since the hinder

program flow.

43

5.2.1 MAC802_11B class

In order to test the MAC802_11B class a four nodes where defined that where all

within each others transmission range. MAC class one was given the assignment

to transmit a simple test message to MAC four which was located 549 meters

(600.39 yards) away from node one, MAC two was located 159 meters (173.88

yards) away from MAC one and MAC three was located 269 meters (294.18

yards) away from MAC one.

The test was executed using the default IEEE 802.11B specified parameters and

should produce the following result. MAC one should transmit an RTS with

destination MAC four using the 11Mbps speed setting. Node two who is within

range the 11Mbps signal should receive the RTS packet, process it and set its

NAV to defer from sending. MAC one should experience a time-out since node

four does not reply and should send the RTS frame again using the 5.5Mpbs

speed setting. This should result in MAC two and three receiving the packet and

update their NAV timer accordingly. MAC one experiences yet another time out

and should scale down again to the 2Mbps speed. MAC two and three should

receive the packet and update their NAV timers. MAC one should experience

another time and decrease its transmission speed further to 1Mbps bringing node

four into transmission range. MAC one transmits its packet and MAC two, three

and four receive the packet. MAC two and three should update their NAV timers

and MAC four should reply with a CTS packet directed back at node one. MAC

two and three receive the packet and update their NAV timer and MAC one

should processes the CTS packet and transmit a data packet. MAC four should

receive the data packet and process it and reply with an ACK packet. MAC one,

two and three should receive the ACK packet, MAC two and three should reset

their NAV timer and all MAC layers should return to Idle.

44

The results of the test are listed in appendix IX. The test proved to be successful

the MAC802_11B worked accordingly to the expected results which are in

compliance with the IEEE 802.11B specification.

5.2.2 ARAProtocol

In order to the test the ARAProtocol class four PDA where setup in a network.

The PDA’s where placed on a imaginary line and setup so that the distance

between a PDA and its neighbour was 549 meters (600.39 yards). PDA one was

located at far left side of the network and PDA four was located at the far right

side with node two and three in between them.

The MAC802_11B class was tested in the previous chapter and therefore we

assume it functions correct. A number of debug message where inserted in the

ARAProtocol class. The simulation was setup so that ARAProtocol one should

transmit a file of 19 kb to node four. The expected results are as follows. The

ARAProtocol one receives the send assignment and tries to find a route in its

routing table to ARAProtocol four, the route cannot be found so ARAProtocol

one should send out FANT message. The FANT should be received by

ARAProtocol two who updates it routes and should send FANT the out again.

The FANT is now received by ARAProtocol one and three, one discards the

FANT since and three updates its routing table and sends the FANT out again.

ARAProtocol two and four now receive the FANT, two should detect a duplicate

packet and discard it, four should update its routing table and destroy the FANT

packet, it then should create a BANT packet and send it out. ARAProtocol three

then should receive the BANT packet, update its routing table and send the

packet out again. ARAProtocol two and four should receive the BANT, four

should detect a duplicate packet and discard it, two should update its routing

table and send the packet out again. ARAProtocol one and three should then

receive the BANT packet, three should detect a duplicate and discard the packet,

45

one should update its routing table and destroy the BANT. One then must build

a data packet and send it to four using the newly detected route, after passing

through ARAProtocol two and three, four should receive the data packet allocate

a buffer and reply with an ACK packet. After reception of the ACK packet

ARAProtocol should send the second data packet until there are no more

packets.

The test results are listed in appendix X. The ARAProtocol was able to

successfully establish a route between ARAProtocol one and four and was able to

successfully transmit data over this link.

46

C h a p t e r 6

EVALUATION AND RECOMMENDATIONS

This chapter contains the evaluation held at the end of the project and provides

the reader with a number of recommendations concerning further improvements

to the simulation environment, and the whole crisis management project.

6.1 Evaluation

The first weeks of the project focussed on research into Agent platforms, File

distribution methods, wireless communication specifications and writing the plan

of approach. At the end of that period the conclusion was drawn that building a

simulation environment that included an agent platform, file distribution and

wireless communication was not feasible within the given time period. This

decision put to waste a lot information gathered about file distribution and agent

platforms, but was necessary in order to make the project fit within the time limit.

The available time allocated for the design phase of three weeks was sufficient for

designing a basic framework for the application although a number of revisions

had to be made during the implementation phase. The revisions made where

minor and concerned the implementation specifics of the nearest neighbour

algorithm. Firstly a quad tree was implemented but this proved to error prone

and slow. To design a framework that incorporated all the features needed would

have taken the entire thesis period, therefore the design only focussed on the

simulation layer.

The implementation phase of the project exceeded the allocated the time

originally allocated by 15 workdays. This prolongation of the design period was

47

caused by delays that were encountered when developing the nearest neighbour

algorithm and development of the Convert IT application. The integration of the

AHS and AHV application with the Traffic simulation turned out to be

problematic since the Traffic simulation program was not designed to provide

coordinate information to other programs. The extraction and normalization of

the coordinates made a direct coupling between the Traffic simulation and the

AHS and AHV program complex and was not feasible.

At the end this of period the conclusion can be drawn that, although the

simulation cannot handle more than thirty concurrent transmissions or active

protocol and MAC threads due to hardware limitations, and that timing on

current hardware is not able to be precise below the millisecond threshold, the

project assignment requirements as defined at the start of the project and noted

in chapter one have been met. The simulation environment allows for easy

extensions and modification due to its namespace oriented design. The

simulation environment allows nodes to form dynamic self-organizing networks

and exchange data with a high degree of realism. The simulation environment

functions by using the Traffic simulation generated data in the form of datasets.

6.2 Recommendations

The recommendations in this section reflect the sole opinions of the author

concerning further development and improvements to the developed programs

and the Communication layer and Crisis management projects, these opinions do

not necessarily reflect those of other individuals involved in the projects ‘a

communication layer for distributed decision making’ and ‘Crisis management’.

6.2.1 A communication layer for distributed decision making

The keyword used during this simulation was ‘realism’ therefore large amounts of

time have been invested to implement an IEEE 802.11B compatible MAC layer.

Although the author believes this has succeeded there are other possibilities that

48

enable the simulation to have and IEEE 802.11B without the entire sequence of

control packets. These packets can be replaced using formulas specified in

[XR02] since IEEE 802.11B is very time depended and restricted a realistic

simulation should not be impossible to achieve.

The ARA algorithm used in the protocol class is very depended on the TCP/IP

four specification and is not compatible with the TCP/IP six specification since

the fields of which ARA is depended like the ‘fragment offset’ have been

removed in this version. TCP/IP six is not yet an issue but might become one

very soon. Further research in the extendibility and revision of the ARA

algorithm is needed to grantee a realistic simulation environment as time

progresses.

The most obvious downside of the current simulation environment is the fact

that it cannot influence the flow of traffic. Although this fact was clear from the

start and agreed upon further integration between the traffic simulation and the

simulation environment will further improve the realism factor and improve the

way in which simulations can be setup.

The multithreaded implementation of the AHS program provides the user with a

possibility to realistically simulate the communication between different nodes in

the network. This however has certain limitations as described in chapter five. By

implemented a more distributed orientated AHS program which allows for the

transparent creation and operation of different nodes in different AHS

subprograms divided over multiple PCs a greater network could then be

simulated. This distributed system feature would further improve the realism

factor of the simulation and will increase the testing capabilities of the network.

49

6.2.2 Crisis management

The ‘Crisis management’ project consists out of a number of independent

programs developed by and altered by different students over different time-

periods. Although this is normal for each development process it does in this case

not benefit the compatibility between the different programs. The traffic

simulation program has been developed in Borland Delphi five and seven, the

waypoint server is developed in Delphi seven and the Communication layer

designed described in this thesis is developed in C#.

The choice for C# could at first be considered a strange one but if we look at the

current heading Delphi is moving in and the possibilities this might bring the

choice is not so strange. The latest version of Delphi, version eight has fully

migrated to the Microsoft Framework .NET of which C# is a main programming

language. New Microsoft Windows version provide full support for the

Framework .NET and their even exists a Linux version developed by Novell.

Taking all of the lesson learned in developing the different programs belonging to

the Crisis management project a new component orientated framework could be

designed and implemented in .NET that incorporates all programs. This

framework could the form the base of further development.

50

BIBLIOGRAPHY

[IEEE99A] LAN MAN Standards
Committee.
Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer
(PHY) Specifications.
IEEE, 1999.
[IEEE99B] LAN MAN Standards
Committee.
Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer
(PHY) Specifications: Higher-Speed
Physical Layer Extension in the 2.4 GHz
Band.
IEEE, 1999.
[K02] Kroon, Ronald.
Dynamic vehicle routing using ant based
control.
TU Delft, 2002.
[GS02] Güneş, Mesut & Spaniol,
Otto.
Routing Algorithms for mobile multi-hop
ad-hoc networks.
International workshop NGNT,
2002.
[GSB02] Güneş, Mesut & Sorges
Udo & Bouazizi, Imed
 ARA – The Ant Colony Based routing
algorithm for MANETs.
Aachen University of technology,
2002.
[P97] Brenner, Pablo.
A Technical tutorial on the IEEE 802.11
protocol.
Breeze COM, 1997.
[XR02] Xiao, yang & Roshdahl, Jon.
Throughput and delay limits of IEEE
802.11.
IEEE Communications Letters, 2002.

[R04] Drs. dr. L.J.M.Rothkrantz.
Crisis management using mobile ad-
hoc networks.
TU Delft, 2004

Jupiter media Corporation.
Webopeida.
http://www.webopedia.com.
Microsoft Corporation.
Microsoft Developers Network (MSDN).
http://msdn.microsoft.com.

51

A P P E N D I X I

CONVERT IT

Although not part of the actual simulation environment discussed in this thesis,

the Convert IT program is a vital tool for the creation of simulation datasets. The

Convert IT program functions as a link between the traffic simulation software

and the AHS and AHV programs.

The traffic simulation program only calculates the nodes coordinates during the

screen-rendering phase of the program. The node coordinate information is

discarded directly after the node has been drawn on the screen. Since this

coordinate information is vital to the AHS and AHV simulation environment

modifications have been made to the traffic simulation program in order to make

the coordinate information persistent by writing it to a file.

1 495 415 5.11000000000000E+0002 2.82558333333333E+0002
0 804 277 9.96450000000000E+0002 2.82558333333333E+0002

Figure 33. Traffic simulation coordinate information

The coordinate information is stored by the traffic simulation program using the

layout shown in figure 33. The beginning of every rendering sequence is marked

with a line of ‘-‘ tokens. The lines between rendering sequences contain node

information. The first parameter contains the nodes ‘unique’ number. The second

parameter contains the x-axis screen coordinate for the node. The second

parameter contains the y-axis screen coordinate for the node. The third and

52

fourth parameter contain the screen x and y-axis coordinates for the roadblock

with full precision.

I.1 Design

The Convert IT program was designed in order to make traffic simulation data

useable for the AHS and AHV program. The main goal when developing the

application was automating the conversion process, transforming the traffic

simulation screen coordinates back to traffic map file coordinates (normal

coordinates) and removing duplicate entries for nodes made by the traffic

simulation program.

Figure 34: Convert IT design

The Convert IT program is a multi-threaded application and is designed

accordingly to the class diagram shown in figure 34. Table two lists the class

names and gives a brief description about the their purpose.

53

Table 2: Description of classes present in the Convert IT class diagram.

Class name Description
GUI Requests the needed parameters from the user and starts

the conversion process.
GUIConvert GUI shown when the conversion process has started. The

GUI displays status and error messages.
Convert Thread that steers the conversion process and also

transforms the node screen coordinates to traffic map
coordinates and determines the NodeActionType for each
node.

TickInformation Stores information about the nodes that are part of the tick
that is currently processed.

Dataset Writes the TickInformation and nodes contained by it to
the AHS/AHV dataset.

Node Class that contains information about a node.
DSData Structure that is used to pass user input data through the

program.

I.2 Implementation

The Convert IT application is a multi-threaded application that is not effected by

the issue of synchronization as with the AHS and AHV programs. The

converting of the coordinate information takes place in one thread that does not

transfer data between threads except for text messages that are send to a read-

only textbox.

The conversion of a dataset is described in the flow chart depicted in figure 35.

The flowchart depicts the processing done after the user has set up the

parameters required for the conversion process.

54

End of file
reached

Open traffic
simulation file

Read rendering
sequence from file

No

Previous
TickInformation

present

No

Set Current
TickInformation as

pervious

End

Write header to
final datasetYes Append temp file

content to header

Compare
TickInformation
class and mark

duplicates

Yes

Transform the
Previous

TickInformation
nodes coordinates

to traffic map
coordinates

Delete temp file

Write previous
TickInformation

nodes to temp file

Figure 35: Flowchart of dataset conversion process

The coordinate transformation from traffic simulation generated screen

coordinates to traffic map coordinates or normal coordinates is done with the

function shown in figure 36. This function is the reverse of the function

TransformToScreen function found in the traffic simulation program.

public static double TransformToNorm(double coord,
 double add, int pMin, int pMax, int pScreenSize,
 double pZoom, double pZoomCenter)
{
 if (pMax <= pMin)
 pMax = pMin + 100;

 return (((((coord + add) / pScreenSize) - pZoomCenter) /
 pZoom) + pZoomCenter) * ((pMax - pMin) + pMin);
}
Figure 36: TransformToNorm function

55

The normal coordinates calculated give the position of a node in traffic map

coordinates. This enables the AHV rendering engine to draw nodes at the correct

position on screen and the AHV and AHS location manager to calculate the

exact distance between nodes, required for the nearest neighbour detection.

I.3 Dataset layout

The dataset layout used by the AHS and AHV program comprises a header,

multiple ticks and node location information.

The dataset header consists out of eight parameters that are stored on the first

line of the dataset; this line is prefixed with the letter ‘H’. The first parameter of

the header contains the name of the traffic simulation map file on which the

simulation was run. The second parameter contains the number of ticks present

in the file. The third parameter contains the maximum number of nodes active at

any given time during the entire simulation.

H|test3.map|2506|36|120|120|0|0|80
T|0|1
0|0|99.7301472860233|39.2363011519124
T|1|3
0|1|99.359357297353|39.2363011519124
1|1|58.0224533937584|63.2164449818621
0|1|93.5503141415182|39.2363011519124
T|2|0
T|3|2
1|1|58.0224533937584|63.5219245210971
0|1|93.1795241528479|39.2363011519124
T|4|3
2|0|20.3934493768668|41.0691783873225
1|1|58.0224533937584|63.8274040603322
0|-1|92.8087341641776|39.2363011519124
Figure 37: Dataset example

The fourth parameter contains the largest value for the x-axis as found in the

traffic map file on which the simulation was run. The fifth parameter contains

the largest value for the y-axis as found in the traffic map file. The sixth

parameter contains the smallest value for the x-axis as found in the traffic

56

map file. The seventh parameter contains the smallest value for the y-axis as

found in the traffic map file. The eighth parameter contains the number of

meters that one traffic map file unit represents.

The lines prefixed with the letter ‘T’ represent ticks. These ticks represent the

time when the traffic simulation program started a new rendering sequence

and updated the coordinates for the different nodes. A tick consists out of

two parameters. The first parameter represents the current tick number,

starting from zero. The second parameter represents the number of node

mutations present in this tick.

The data stored in the dataset consists out of four parameters and is not

prefixed. The first parameter represents the nodes ‘unique’ number. The

second parameter represents the operation that needs to be carried out on the

node. The third parameter represents the new coordinate for the x-axis. The

fourth parameter represents the new coordinate for the y-axis.

There are three different types of operations that can be carried out on a

node. The first operation is represented by the value zero and indicates that

the node is new and needs to be created in memory before processing

coordinate information. The second operation is represented by the value one

and indicates that only the new coordinates need to be processed by the

simulation. The third operation is represented by the value minus one and

indicates that the node trajectory is completed and that it can be removed

from memory.

57

A P P E N D I X I I

USER MANUAL

This appendix introduces the basic steps needed to build a dataset for the AHS

and AHV program by describing the functionality and use of the modified traffic

simulation program and the Convert IT program. The AHS and AHV program

GUI and options will also be discussed in detail.

II.1 Traffic Simulation

In order build a dataset with coordinate information a modified version of the

traffic simulation program was developed. This program functions exactly like

described in [K02] but requires two text files to be placed on the root directory

of the c-drive of the Windows operating system. The files are named ‘test.txt’ and

‘MapCoordTransform.txt’.

Once the above-mentioned files are present start the Traffic simulation program

as normal. Select a city map, set the ‘run’ parameter to 1 and modify other

settings at will, then run the simulation. While recording a simulation it is vital

that you do NOT alter the zoom level or scrollbar positions, doing so will make

the data useless.

II.2 Convert IT

In order to create a dataset with traffic information organized in an AHS/AHV

readable format the Convert IT program is developed. Before data conversion

can begin we first need to specify the dataset that holds the raw information. The

steps needed to create this raw dataset are described in the previous paragraph.

58

By pressing the top ‘Browse’ button and selecting the ‘test.txt’ file this step is

completed. Then we need to specify the traffic map used in the Traffic simulation

program by pressing the lower ‘Browse’ button on the right side of the screen.

Figure 38: Convert IT program GUI

After registering the dataset and map file the Convert IT program will fill in most

of the parameters required for the conversion. The only parameters the user

needs to specify are the screen height and width of the rendering panel in the

traffic simulation program, these value’s can be found in the

‘MapCoordTransform.txt’ file. Finally we need to specify a dataset name and

press the convert button.

After pressing the convert button a new window will open displaying the

progress of the file conversion and any error’s encountered. This conversion

process can consume quite some time on slow PC’s. As soon as the conversion

process is complete the Convert IT application can be closed. The newly created

dataset can be found in the working directory of the Convert IT program.

Copying the Dataset and traffic map files to the right directories of the AHS and

AHV program completes the operation.

59

II.3 The options screen

The options screen used for AHS and AHV program have the same layout and

settings therefore it will be discussed here separately of the AHS and AHV

program. The options screen is accessible by pressing the ‘F3’ function button on

the keyboard by navigating to the menu bar and choosing Simulation and the

options. Once opened the screen as depicted below will appear.

Figure 39: Options screen

The top left part of the screen sets up a TCP/IP network connection between

the AHS and AHV program. By specifying an IP address and then pressing the

connect button the connection is made. In case an error occurs during the setup

process the application will appear to ‘hang’, do not close the application but wait

until it returns to normal operation. This can take up to one minute. The bottom

left part of the screen enables the user to load a dataset and set the read speed

used by the AHS and AHV programs. To load a dataset press the ‘Browse’

button and navigate to the dataset using the then displayed window. The centre

of screen holds the default parameters for the IEEE 802.11B MAC layer. These

parameters can be modified by the user at will, but can lead to unexpected results.

Please refer to appendix VIII for a complete description of the individual

60

parameters. The top right portion of the screen holds the ARA protocol

influential parameters. The bottom right portion of the screen holds the

transmission ranges specified for the different transmission speeds. Once the

initial setup is done de ‘Done’ will be enabled. The simulation can now be run.

II.4 AHS

The AHS program runs the entire simulation of the PDA’s, protocols and MAC

layer’s and the communication between them. Therefore the emphasis with the

AHS program lies completely on the simulating part, resulting in a minimal

interface.

Figure 40: AHS program GUI

Figure 40 shows the AHS GUI as shown at program start. Once the simulation is

setup using the options screen (see section three) the simulation can be run be

navigating to Simulation and the start or by pressing the function key F5. The

PDA’s that are registered in the simulation environment are listed in the top left

portion of the screen. By clicking on the name of a PDA its PDA GUI is

displayed (see section six). The right portion of the screen gives information

about the state of the simulation.

61

The log window is shown by selecting view and then log in the main menu or by

pressing the function button ‘F3’. The log windows will be attached to the

bottom part of the screen displaying simulation progress messages and any errors

that might occur during the simulation process.

II.5 AHV

The AHV program only visualizes the results like statistics and traffic flow as

gathered during a simulation run with the AHS program. The AHV screen is

divided into two sections. The right-hand section of the screen displays

simulation progress statistics, Rendering options and graphs displaying up to date

information about the number of active nodes, total number of packets send and

total number of packets lost.

 Figure 41: AHV program GUI

62

The main portion of the screen is taken up by the traffic network screen, which

displays the cars moving along the city street network. Cars in the network are

represented by a blue dot that follows a route along city street network. Wireless

network transmission ranges, network connections and node numbers are

rendered by default but can be deactivated using the rendering options on the

right side of the screen.

The zoom in and out buttons on the toolbar, located in the top left portion of the

screen allows the user to zoom in and out on the map. The vertical and

horizontal scrollbars enable the user to focus on a specific portion of the map

when zoomed in.

Once the simulation is setup using the options screen (see section three) the

simulation can be started by pressing the green play button on the toolbar, the

‘F5’ button or by navigating to Simulation and then start.

II.6 PDA GUI

The PDA GUI displays the information gathered by the PDA on the moment

the PDA GUI was accessed. The top left portion of the screen display the

number and types of the packets send and received. The bottom left part of the

screen show the nodes one hop neighbours. The right portion of the screen

provides the user with the possibility to send files and text messages to other

nodes in the network.

63

Figure 42: PDA GUI

On start up only the top left portion of the screen is shown, the current

neighbours and transfer screen can be displayed by navigating to the view menu.

By navigating to the file menu and then pressing the ‘Refresh’ option will refresh

the statistics to resemble the current up-to-date information. Navigating to file

and then pressing the ‘Exit’ option will close the PDA GUI screen.

64

65

A P P E N D I X I I I

SECTOR BASED NEAREST NEIGHBOUR QUERIES

Wireless devices are limited in their communication capabilities by the maximum

transmission range over which they can propagate their signal. To incorporate

this feature into the simulation environment a nearest neighbour detection

algorithm had to be implemented. This chapter discusses the algorithm

implemented.

III.1 The algorithm

When searching for the nearest neighbours of a specified node the brute force

method works well on small collections of nodes. The greater the numbers of

nodes the more calculations have to be made in order to find the correct set of

neighbours. The traffic map files used by the traffic simulation program together

with the datasets used for the AHS/AHV program provide an elegant way to

minimize the number of calculations.

Taking the maximum and minimum x-axis and y-axis coordinates out of the

traffic-map file provides us with an imaginary rectangle around the entire city

street network. By dividing this rectangle into squares all of equal size, the edge

length of the square must always be greater than the diameter of the maximum

transmission range for any given node and must also be a power of two. Each

node is then made aware of its direct neighbours, these neighbours are stored in

an array and are ordered as shown in figure 43.

66

 Figure 43: Neighbour numbering

The nodes are stored in the sector that encompasses the area in which the nodes

coordinates fall. If a node now wants to retrieve its set of neighbours the

following actions will be undertaken. Calculate the sector coordinates of the node

by using the formula:

S(c) = N(c) % Edge – Radius

Where S(c) is the sector coordinate, N(c) is the node coordinate, Edge is length

of the sector edge and Radius is the maximum transmission range. These

calculations must be done for the nodes x-axis and y-axis coordinates. The sign of

the sector coordinates now specifies which sectors fall within the transmission

range of the node as shown in table three, note that the sector in which to node

lies is always searched.

Table 3: Search sectors based on sector coordinates.

x-axis y-axis Sectors
Negative Negative 0, 1, 3
Positive Negative 3, 5, 6
Negative Positive 1, 2, 4
Positive Positive 4, 6, 7

67

Now that the sectors that need to be searched are determined we perform the

Euclidian distance metric on the member nodes of the sectors.

Dist = √ (x1 – x2)2 + (y1 – y2)2

By adding all nodes with a distance smaller or equal to the maximum

transmission range of the current node the set of nearest neighbours is retrieved.

Figure 44: Different steps of neighbour calculation

68

A P P E N D I X I V

AHS

This appendix contains the class diagram of the AHS program, a data dictionary

is also included explaining the purpose of each of the classes. The classes shown

in the class diagram but not mentioned in the data dictionary are located in the

common namespace and are described in chapter four section three.

69

Figure 45: AHS class diagram

70

Table 4: AHS data dictionary

Class Description
AEP Application entry point. Contains the

main function of the program and is
responsible for the initial start up of the
program.

ARAPacketlist Filters out duplicate ants and data
packets received by the MAC layer.

ARAProtocol Protocol class that uses ants to
establish routes between mobile nodes
in order to transmit data between them.

ARARoutingTable Routing table that stores routes
between nodes.

Datasetmanager Class that loads node coordinate
information from a dataset at specified
intervals.

Location Stores all nodes that lie within its
coordinates, also locates the
neighbours of a node by querying itself
and the neighbour locations.

Locationmanager Initializes, contains and provides access
to the locations.

MAC Extendable model of a media access
layer.

MAC802.11B Basic implementation of a media access
layer based on the IEEE 802.11B
specification.

MACData Class used to exchange data between
MAC and Protocol. Stores data
transmission details like destination and
next hop.

Options Options screen, allows the user to alter
simulation parameters and dataset to
use.

PacketList Filters out duplicate packets.
PDA Class that implements a minimal PDA.
PDAContainer Class stores the PDA’s that loaded and

provides a way to access them.
PDAContainerGUI GUI that display’s the current state of

71

the AHS environment and the PDA’s
registered in the PDAContainer.

PDAContainerSocket TCP/IP Socket wrapper class, this
class extends functionality provided by
the Nethandler class.

PDAGUI GUI that display’s the statistics of the
PDA in question. Also provides a
means to send messages.

PointD 2D Vector representing the
coordinates of a node in the double
(precision of 15 ~ 16 digits) format.

Protocol Extendable model of a Protocol
ProtocolBuffer Packet storage facility stores received

packets in a stream until data
transmission is complete.

Protodata Class that stores information supplied
by the PDA that needs to be
transmitted to another node.

Simulationmanager Initializes, starts and stops the
simulation.

72

A P P E N D I X V

AHV

This appendix contains the class diagram of the AHV program, a data dictionary

is also included explaining the purpose of each of the classes. The classes shown

in the class diagram but not mentioned in the data dictionary are located in the

common namespace and are described in chapter four section three.

73

Figure 46: AHV class diagram

Table 5: AHV data dictionary

Lass Description
AEP Application entry point. Contains the

main function of the program and is
responsible for the initial start up of the
program.

AHVSocket TCP/IP network socket that enables
the AHV program to communicate
with the AHS program.

ChartMaintainer Provides easy access functions for
updating and mutating chart present in
the AHV program

74

Datasetmanager Class that loads node coordinate
information from a dataset at specified
intervals.

FRMMain The main GUI of program display’s
statistics and the city street network
with moving nodes.

Location Stores all nodes that lie within its
coordinates, also locates the
neighbours of a node by querying itself
and the neighbour locations.

Locationmanager Initializes, contains and provides access
to the locations.

Node Class representing a node in the
simulation environment.

Nodemanager Class that maintains a array of nodes
and provides functionality for adding,
removing and updating nodes.

PDAGUI GUI that display’s the statistics of the
PDA in question. Also provides a
means to send messages.

PointD 2D Vector representing the
coordinates of a node in the double (
precision of 15 ~ 16 digits) format.

RenderEngine Memory buffered rendering engine that
renders the traffic network and nodes
to screen.

Simulationmanager Initializes, starts and stops the
simulation.

Trafficmap Memory buffered class that renders the
city street network to memory.

75

A P P E N D I X V I

MAC LAYER FLOWCHARTS

The three flow charts depicted on the following pages show in detail the program

flow each different type of packet has to travel when send to or received from the

MAC layer.

76

Figure 47: Data transmission sequence

77

Figure 48: Data reception sequence

78

Figure 49: Packet overhearing; Idle state

79

A P P E N D I X V I I

ARAPROTOCOL FLOWCHARTS

The four flow charts depicted on the following pages show in detail the program

flow each different type of packet has to travel when send to or received from the

MAC layer.

80

Figure 50: Outgoing data packet

81

Figure 51: Incoming data packet

82

Figure 52: Incoming ant data packet.

83

Figure 53: Incoming ACK packet

84

A P P E N D I X V I I I

IEEE 802.11B

This appendix lists the default values as defined by the IEEE 802.11B

specification for the various parameters that influence the MAC layer. Table six

specifies the default parameters set for the transmission timing calculations.

Parameter Value Description
Tslot 20 µs Slot time
τ 1 µs Propagation delay
Tp 144 µs Transmission time of the physical preamble.
Tdifs 50 µs DIFS time
Tsifs 10 µs SIFS time
Tpifs 30 µs PIFS time
CWmin 31 Minimum back off window size.
CWmax 1023 Maximum back off window size.
Tphy 48 µs Transmission time of physical header

Table 6: MAC layer default parameters

Table seven lists the transmission speeds in relation to transmission range. Note

that the transmission ranges in table seven are only possible in an ideal

environment, signal interference will cause these transmission ranges to decrease

drastically in a real life situation.

Table 7: MAC layer ideal transmission ranges

Transmission speed Communication range
1 Mbps 550 meter (601.49 yards)
2 Mbps 400 meter (437.45 yards)
5.5 Mbps 270 meter (295.28 yards)
11 Mbps 160 meter (174.98 yards)

85

Table eight Lists the type and sub type numbers associated with the different

packets transmittable in the implemented version of the MAC layer.

Table 8: Packet type and subtype ids

Type Description Subtype Description

01 Control 1011 RTS
01 Control 1100 CTS
01 Control 1101 ACK
10 Data 0000 Data

86

A P P E N D I X I X

MAC TEST RESULTS

Started
1: OutgoingPacket
1: SendRTS
1: Timer set 670
1: SendToMac
1: IDLE
2: ProcessIncommingPacket
2: ProcessRTS
2: NAV set: 670
2: Timer set 670
2: IDLE
1 Time Elapsed
1: OutgoingPacket
1: SendRTS
1: Timer set 733
1: SendToMac
1: IDLE
2: ProcessIncommingPacket
2: ProcessRTS
2: NAV set: 733
2: Timer set 733
2: IDLE
3: ProcessIncommingPacket
3: ProcessRTS
3: NAV set: 733
3: Timer set 733
3: IDLE
2 Time Elapsed
1 Time Elapsed
1: OutgoingPacket
1: SendRTS
1: Timer set 950
1: SendToMac
3: ProcessIncommingPacket
3: ProcessRTS
3: NAV set: 950
3: Timer set 950
1: IDLE
3: IDLE
2: ProcessIncommingPacket
2: ProcessRTS
2: NAV set: 950
2: Timer set 950
2: IDLE
1 Time Elapsed
1: OutgoingPacket
1: SendRTS
1: Timer set 1294
1: SendToMac

87

3: ProcessIncommingPacket
3: ProcessRTS
3: NAV set: 1294
3: Timer set 1294
4: ProcessIncommingPacket
4: ProcessRTS
4: SendCTS
4: Timer set 932
1: IDLE
2 Time Elapsed
3: IDLE
2: ProcessIncommingPacket
2: ProcessRTS
2: NAV set: 1294
2: Timer set 1294
2: IDLE
4: SendToMac
4: IDLE
3: ProcessIncommingPacket
3: processCTS
3: NAV SET CTS
3: Timer set 932
1: ProcessIncommingPacket
1: processCTS
1: SendData
1: Timer set 314
2: ProcessIncommingPacket
2: processCTS
2: NAV SET CTS
2: Timer set 932
3: IDLE
2: IDLE
1: SendDataToMac 0
4: ProcessIncommingPacket
4: ProcessData
//---
1: IDLE
// 5/5/2004 3:16:50 PM - Macdata Received
// Signal : -1
// Address1 : 1
// Address2 : 4
// Address34: 1
// Data : TEST

TEST
// Sequence : 1
// Fragment : 0
// More : False
// MF : True
//---
4: SendAck
4: SendToMac
2: ProcessIncommingPacket
2: ProcessACK
2: IDLE
3: ProcessIncommingPacket
3: ProcessACK
3: IDLE
4: IDLE
1: ProcessIncommingPacket
1: ProcessACK
1: IDLE
Stopped

88

A P P E N D I X X

ARAPROTOCOL TEST RESULTS

Started
BANT_WAIT Timer Set
Protocol: 0: Ant send. BANT Time-out Set
1: Received Packet
Protocol: 1 Received: 3 | 0 |FANT
Protocol: 1: Processing ANT 1: 0
0: Received Packet
2: Received Packet
Protocol: 0 Received: 3 | 0 |FANT
Protocol: 0: Processing ANT 0: 0
Protocol: 0: Duplicate dropped.
Protocol: 2 Received: 3 | 0 |FANT
Protocol: 2: Processing ANT 2: 0
1: Received Packet
3: Received Packet
Protocol: 1 Received: 3 | 0 |FANT
Protocol: 1: Processing ANT 1: 0
Protocol: 1: Duplicate dropped.
Protocol: 3 Received: 3 | 0 |FANT
Protocol: 3: Processing ANT 3: 0
Protocol: 3: Sending BANT
2: Received Packet
Protocol: 2 Received: 0 | 3 |BANT
Protocol: 2: Processing ANT 2: 3
1: Received Packet
3: Received Packet
Protocol: 1 Received: 0 | 3 |BANT
Protocol: 1: Processing ANT 1: 3
Protocol: 3 Received: 0 | 3 |BANT
Protocol: 3: Processing ANT 3: 3
Protocol: 3: Duplicate dropped.
0: Received Packet
Protocol: 0 Received: 0 | 3 |BANT
Protocol: 0: Processing ANT 0: 3
Protocol: 0: route found: 1
Protocol: 0ACK_WAIT Timer Set
2: Received Packet
Protocol: 2 Received: 0 | 3 |BANT
Protocol: 2: Processing ANT 2: 3
Protocol: 2: Duplicate dropped.
Reading position: 2295 - Fragment 1 done: 2312
Sending fragment to: 3, via: 1
1: Received Packet
Protocol: 1 Received: 3 | 0 |DATA
2: Received Packet
Protocol: 2 Received: 3 | 0 |DATA
Tick
3: Received Packet
Protocol: 3 Received: 3 | 0 |DATA

89

Protocol: 3: ACK send
2: Received Packet
Protocol: 2 Received: 0 | 0 |ACK
1: Received Packet
Protocol: 1 Received: 0 | 0 |ACK
0: Received Packet
Protocol: 0 Received: 0 | 0 |ACK
Protocol: 0: route found: 1
Protocol: 0ACK_WAIT Timer Set
Reading position: 4603 - Fragment 2 done: 2312
Sending fragment to: 3, via: 1
1: Received Packet
Protocol: 1 Received: 3 | 0 |DATA
2: Received Packet
Protocol: 2 Received: 3 | 0 |DATA
Tick
3: Received Packet
Protocol: 3 Received: 3 | 0 |DATA
Protocol: 3: ACK send
2: Received Packet
Protocol: 2 Received: 0 | 0 |ACK
1: Received Packet
Protocol: 1 Received: 0 | 0 |ACK
0: Received Packet
Protocol: 0 Received: 0 | 0 |ACK
Protocol: 0: route found: 1
Protocol: 0ACK_WAIT Timer Set
Reading position: 6911 - Fragment 3 done: 2312
Sending fragment to: 3, via: 1
1: Received Packet
Protocol: 1 Received: 3 | 0 |DATA
2: Received Packet
Protocol: 2 Received: 3 | 0 |DATA
Tick
3: Received Packet
Protocol: 3 Received: 3 | 0 |DATA
Protocol: 3: ACK send
2: Received Packet
Protocol: 2 Received: 0 | 0 |ACK
1: Received Packet
Protocol: 1 Received: 0 | 0 |ACK
0: Received Packet
Protocol: 0 Received: 0 | 0 |ACK
Protocol: 0: route found: 1
Protocol: 0ACK_WAIT Timer Set
Reading position: 9219 - Fragment 4 done: 2312
Sending fragment to: 3, via: 1
1: Received Packet
Protocol: 1 Received: 3 | 0 |DATA
Tick
2: Received Packet
Protocol: 2 Received: 3 | 0 |DATA
3: Received Packet
Protocol: 3 Received: 3 | 0 |DATA
Protocol: 3: ACK send
2: Received Packet
Protocol: 2 Received: 0 | 0 |ACK
1: Received Packet
Protocol: 1 Received: 0 | 0 |ACK
0: Received Packet
Protocol: 0 Received: 0 | 0 |ACK

......

90

Reading position: 40960 - Fragment 18 done: 1741
Sending fragment to: 3, via: 1
1: Received Packet
Protocol: 1 Received: 3 | 0 |DATA
Tick
2: Received Packet
Protocol: 2 Received: 3 | 0 |DATA
3: Received Packet
Protocol: 3 Received: 3 | 0 |DATA
Protocol: 3: ACK send
2: Received Packet
Protocol: 2 Received: 0 | 0 |ACK
1: Received Packet
Protocol: 1 Received: 0 | 0 |ACK
0: Received Packet
Protocol: 0 Received: 0 | 0 |ACK
Stopped

91

	1.1 Problem setting
	1.2 Crisis management project
	1.2.1 Traffic simulation program

	1.3 Project goals
	2.1 IEEE 802.11B MAC Layer
	2.1.1 Probing
	2.1.2 Basic access method
	2.1.2.1 Data transmission
	2.1.2.2 Multi fragment

	2.2 The Ant-colony-based routing algorithm for MANETs
	2.2.1 The ARA algorithm
	2.2.2 ARA phases
	2.2.2.1 Discovery phase
	2.2.2.2 Route maintenance
	2.2.2.3 Route failure

	3.1 Ad Hoc Simulation
	3.1.1 Communication layer
	3.1.1.1 Media access communications layer
	3.1.1.2 Protocol

	3.2 Ad Hoc visualization
	4.1 Ad Hoc simulation
	4.1.1 Communication Layer
	4.1.1.1 IEEE 802.11B media access communications layer
	4.1.1.2 ARAProtocol

	4.2 Ad Hoc visualization
	4.3 Common code base
	5.1 Simulation environment
	5.1.1 AHS
	5.1.2 AHV

	5.2 Simulation experiments
	5.2.1 MAC802_11B class
	5.2.2 ARAProtocol

	6.1 Evaluation
	6.2 Recommendations
	6.2.1 A communication layer for distributed decision making
	6.2.2 Crisis management

	I.1 Design
	I.2 Implementation
	I.3 Dataset layout
	II.1 Traffic Simulation
	II.2 Convert IT
	II.3 The options screen
	II.4 AHS
	II.5 AHV
	II.6 PDA GUI
	III.1 The algorithm

		2004-06-13T21:15:01+0200
	J.L.Boehlé
	I am the author of this document

