
Iconic Communication

Iulia Tatomir

* Diploma Thesis *

M

otto: If a picture is worth a thousand words, an icon must be worth at least a sentence!

December 2003

Delft University of Technology
Supervisor Drs. Dr. L.J.M ROTHKRANTZ

 2

Acknowledgements

 This project is the first part of my final project, being started at the department of
Technical Informatics, which is part of the Faculty of Information Technology and
Systems at Delft University of Technology, The Netherlands, and it will be continued at
the department of Mathematics and Computer Science, of the Transilvania University of
Brasov, Romania, under the supervision of Conf. Dr. D. Marinescu. The work was
performed at the Knowledge-Based Systems (KBS) chair of the Mediamatica department.
 First of all, I would like to thank my project leader Dr. drs. L.J.M. Rothkrantz of
the KBS chair, for the support, attention and the great ideas reached during our weekly
meetings.
 Further more I would also like to thank Prof. dr. H. Koppelaar for providing some
great documentations; Mr. M.L. Hodge for providing the software and the ideas in the
creation of the icons; Mr. D. Danciu for helping with the optimal form of the theoretical
approach, and last, but not least, Mr. B. Tatomir, my brother, for all his support.

 Iulia Tatomir
 Delft
 December 2003

 3

Abstract

 Non-verbal communication plays an important role in human communication.
The KBS department of TU Delft University is interested in developing multi-modal
systems, that will get closer and closer to making the interaction with the computer more
human. From facial expressions and speech recognition, to eyes tracking and sign
language communication, all these ways create a larger environment in the interaction
with the user.
 An uni modal system was created, based on the iconic communication � which
means that the user will communicate data only by using an international approved
language, which are the icons. The situation considered was the one of a crisis, which
includes explosions, fire, flood, car crashes, and so on.

 4

Contents

Acknowledgements... 2
Abstract ... 3
Chapter 1... 6
Introduction... 6
Chapter 2... 8
Literature survey � The theoretical approach ... 8

2.1 What are the icons?... 8
2.2 Semiotics... 9
2.3 Encoding/Decoding... 11
2.4 Icons and context .. 11
2.5 Human Communication .. 12

Chapter 3... 14
Methodology... 14

3.1 Advantages vs. disadvantages in using the icons.. 14
3.2 The design of the icons ... 14
3.3 Creating the interface.. 15

Chapter 4... 21
Introducing Natural Language Processing.. 21

4.1 The natural language... 21
4.1.1 Components of an NLP system.. 22
4.1.2 Language problems.. 24
4.1.3 Approaches to NLP.. 26
4.1.4 Language Universals.. 26
4.1.5 Creating the vocabulary ... 27

4.2 Grammars and productions ... 28
4.2.1 Bachus Naur Form ... 29
4.2.2 Connection between a context-free grammar (CFG) and a BNF construction 30

4.3 Grammar subdivisions .. 30
4.3.1 Simple Noun Phrases ... 31

Verbs ... 32
Particles... 32

4.3.2 Bounding the vocabulary with the grammar categories 32
4.4 Defining the grammar ... 32
4.5 Properties of BNF grammars .. 35

4.5.1 Emptiness... 35
4.5.2 Starting tokens ... 37
4.5.3 Recursive rules... 37
4.5.4 Left-recursive... 38

4.6 An example ... 38
4.7 Phrase structure and lexical structure ... 39

4.7.1 Parsing techniques ... 40
4.7.2 Top-down parsing (LL).. 41

4.8 Competence and performance... 42
4.8.1 What is a good grammar? .. 42

 5

Chapter 5... 44
Models... 44

5.1 Interface .. 44
5.2 Testing the application.. 48
5.3 Programmatic wrapping of the problem ... 50
5.3 The meaning of the sentence - the connection between the user interface and the
grammar .. 51

5.3.1 Conclusions.. 56
Chapter 6... 56
Implementation ... 56

6.1 Design patterns.. 57
6.1.1 Singleton .. 57

6.2 Creating the buttons .. 59
6.3 Configuration of the data .. 59

6.3.1 Loading the rules.. 60
6.3.2 The semantic elements... 62
6.3.3 Articles between the words.. 62
6.3.4 Plural nouns ... 63

6.4 Syntactic analysis.. 63
6.5 Semantic analysis.. 64
6.6 Giving the meaning to the sentence .. 65
6.6.1 Templates... 65

6.6.1.1 �There is � There are�.. 65
6.6.1.2 Question template ... 66
6.6.1.3 First person template... 67

6.7 Client � server side.. 68
6.8 Hints.. 70

Chapter 7... 72
Testing � the user book ... 72
Chapter 8... 75
Conclusions... 75
References... 76

 6

Chapter 1
Introduction

The topic of the project is to create an application that gives the possibility to the
users to communicate using an international �language� � the icons. We take in
consideration the crisis situations: fire, car crash, etc. and also the fact that the
communication can take place without the user knowing an international language, which
is in our case English, and even the fact that he/she may not be able to speak. Until now
this is a uni modal system, this means that the only way to transmit information is using
the icons, which is a visual channel of communication.
 The central part of this project is the one based on natural languages, our main
concern being the way to transform the icons into text, with less grammar errors as
possible. That�s why we had to create our own language, constructing in a matter of
speaking our own way of communicating, including all the levels: vocabulary, ontology,
grammar rules, also taking care of the syntactical and semantic problems. The main idea
was to permit the �free� expression of ideas according to the specific context, only by
using the icons. It would have been useless to add text between the icons, because our
goal was to code as much as possible the communication, making it as atomic as
possible.

We have started this approach by concentrating first on the design of the interface,
knowing the fact that it should be as simple as it can to be used. Taking in consideration a
person placed in a crisis situation, being able to transmit information, for example, from a
PDA (Personal Digital Assistant). We are well aware of the fact that one can describe a
situation in many ways, the spoken language being very flexible according to the human
needs � but the context of this very project constrained us to impose certain rules of
sending messages. For example, some of the constraints are the length of a sequence of
icons that will be sent, the order of the icons, and so on.

Our wish was to create an icon editor, meaning that the user would have freedom
of creating the sentences, modifying them before sending them, browsing through the
icons, etc. It is like we try to replace the words with icons, keeping the same basic ideas
of grammar rules and order in concepts.
 This application is conceived as being a client-server one. In our case the client is
the application running on the user�s machine. The input information would be the
sequence of icons. On the moment the user will press the �SEND� icon, the correctness of
the sequence will be checked, and, in case of success, the output, which will be the
translated text, would be transmitted to the server side. From this point the application
can be developed both on the server site and on the client one. But this is not the goal of
our project.
 In chapter two we present the theoretical fundament of the problem, starting with
the concept of icon, gathered in the one of semiotic, and passing through the practical use
of the icons.
 In chapter three, we present our approach to the graphical part of the application:
why we choose these icons, why we had defined them in such a manner, the arguments
for the way the interface looks like, and all the things that are related with the appearance
of the application, within reasoning.

 7

 In the next chapter, chapter four, we pass to a short presentation of the most
important part of the project, defining the grammar for the vocabulary in a situation of
crisis. And here it starts the personal contribution: in section 4.4, not taking into
consideration the design of the icons.
 Chapter five makes a description of the modeling of the project, the structure of
the application, and the very first layer of programming elements that will help us to
solve the problem.
 In chapter six we develop more the presentation of the programming elements,
presenting all the things that have been used in syntactical and semantic analysis, the
definition of the fix structures of the sentence � the templates, plus some programming
tricks, like the design patterns, that are used to ease our work. In the end of this chapter,
section 6.8 we also present our way to help the user in using this application, giving him
some hints of the sentences that can be constructed stating with a particular icon.
 If chapter seven is meant to explain the way this application should be used, like
giving the steps of the running application, steps that must be followed in a specific
order; in chapter eight we present the final conclusions, and also making a parallel
between our application and the others that are already existing, plus the further work.
 Apart from chapter three, that gave me the possibility to create the icons in the
way I wanted, part from them, the construction of the vocabulary, the definition of the
grammar with all that includes: grammar categories, subcategories and the production
rules, and continuing with chapter 5 until the end, all those elements are personal
contribution.
 Problem definition
 We have started the approach of this project by reading some appropriate
literature, to get some panoramic idea of the context of the application. The next step was
to define the vocabulary and the grammar. The form of the grammar changed
continuously from the fact that we could find contra-examples for all the intermediary
forms, until we have reached the form that is presented in the appendix A. We have
continued after that with the implementation of the grammar checker both from
syntactical and semantic point. Because the time permitted, we have transformed the
application into one of the client � server communication type, and we have started to
implement the part in which we are helping the user to construct more easier the
sequence of icons � the hints, presented in section 6.8.

 8

Chapter 2
Literature survey � The theoretical approach

The dream of being able to understand and communicate in any language has not
yet been satisfied. However, there do exist signs and symbols (icons), which are
understood internationally. This project proposes a computer-based iconic
communication application, an iconographic approach towards a crisis situation.
The theory of an iconography is that it is understandable by everyone concerned - that is
why iconographies worked well in the ancient world where small groups shared the same
experiences - but not always so well in today�s global village. Between two people any
mark can become an understandable icon. A very simple two-way, open ended and
interactive iconic communication between sender and receiver would not need to be
comprehensible to anyone else other than those two, but could be extended within a
family. It should be possible to re-establish communication by returning to the origins of
human development when, in part, facial expression and gesture were used.

2.1 What are the icons?

Icons have been in use for a very long time, as early as the Middle Ages complex
iconic systems had been developed such as the heraldic coats of arms and systems of
astrological signs. In modern society everyone is familiar with icons, both in and out of
work: for example, icons on the toilet door, iconic road signs and complex icons on
electronic goods. From the everyday context of living to the packaging for the latest
products, one can meet icons as a daily occurrence. In the computer world, the use of
icons has been an extension of their traditional uses but computer and related
technologies offer the unique possibility of exploiting animation and interaction.

Furthermore, a computer interface language, which is consisted entirely of icons,
would have many advantages. It would avoid the need for foreign language translation, it
would assist those with language and learning difficulties, even the people who can�t
speak, and it would help in the teaching of new systems. Also, the use of pictures and
gestures to convey our ideas is a basic form of communication that two people frequently
resort to when they find they share no common language.

Because you cannot speak does not always mean that you cannot write or maybe
produce some kind of mark. This possibility is often ignored. It is a basic human need to
make your own mark, and is of psychological importance not only to read or recognize
something, but also to have some fast personal means of having an input into your care or
daily life. Ideally you need a way expressing your thoughts and feelings, negative as well
as positive.

All these ideas are based on a concept called: communication. One should
understand the meaning of the icon, remembering it if it is not the first time he/she saw it,
and so on. It is a problem of sending a message from the designer to the user, of coding
and decoding the meaning � as we will see soon. Communication can be described as the
transfer and exchange of messages between people, and in iconic communication the icon
is the message transferred between the designer and the user.

 9

A computer interface typically offers the user explicit information and options.
Communication between humans however, usually includes nonverbal implicit
information, perhaps in the form of intonation, gesture or expression, which serves to
interpret the given message. Indeed these value-added features of spoken language can
often communicate more than the words themselves, particularly if the words are in a
foreign language.

Icons offer a rich potential for communication across natural language barriers. If
confined to the European arena, the many-shared conventions make their design much
simpler and their correct, true interpretation more certain. The computer provides an ideal
device for the implementation of a flexible iconic communication system. The need for
such a system is made more urgent by the increasingly international nature of
commercial, educational and social communication. Examples such as booking a hotel
room abroad, ordering machine parts from a foreign subsidiary all provide occasions for
such a system to prove its worth.

An icon can be seen first by its perceivable form (syntax), second by the relation
between its form and what it means (semantics), and third by its use (pragmatics). In
general, the semantics of icons should be based upon their real-world domain, so the
semantics of crisis situation should be based on this specific domain. The meaning of the
icon may not simply be its denotation but rather its pragmatic effect.

Starting with a more general point of view, we could say that the iconic
communication is a metalanguage. According to Hayes-Roth [7], the representation used
is a form of metaknowledge. So we define a language to explain another language.

2.2 Semiotics

Lets start first by giving a definition of this term. The shortest definition is that it

is the study of signs. We can continue on with the question: What is a sign; and so on, but
the most important thing is that semiotics could be anywhere (see Chandler [4]).

One of the broadest definitions is that of Eco [6], who states that 'semiotics is
concerned with everything that can be taken as a sign'. Semiotics involves the study not
only of what we refer to as 'signs' in everyday speech, but also of anything, which 'stands
for' something else. In a semiotic sense, signs take the form of words, images, sounds,
gestures and objects. Whilst for the linguist Saussure, 'semiology' was 'a science which
studies the role of signs as part of social life'.

For Morris [9], semiotics embraced semantics, along with the other traditional
branches of linguistic, looking almost the same as the approaches defined above for the
icons:

- Semantics: the relationship of signs to what they stand for;
- Syntactics (or syntax): the formal or structural relations between signs;
- Pragmatics: the relation of signs to interpreters.

In our application, one of the steps is to transform the icons into text. Semiotics is
often employed in the analysis of texts (although it is far more than just a mode of textual
analysis). Here it should perhaps be noted that a 'text' can exist in any medium and may
be verbal, non-verbal, or both. The term text usually refers to a message, which has been
recorded in some way (e.g. writing, audio- and video-recording) so that it is physically
independent of its sender or receiver. A text is a composition of signs (such as words,

images, sounds and/or gestures) constructed (and interpreted) with reference to the
conventions associated with a genre and in a particular medium of communication
(Vaillant [21]).

Lets make now the connection between the semiotic and its subdivision - the
icons. In the assertion of the semioticians icon/iconic is a mode in which the signifier is
perceived as resembling or imitating the signified (recognizably looking, sounding,
feeling, tasting or smelling like it) - being similar in possessing some of its qualities: e.g.
a portrait, a cartoon, a scale-model, metaphors, imitative gestures.

Turning to icons, Peirce [16] declared that an iconic sign represents its object
'mainly by its similarity'. A sign is an icon 'insofar as it is like that thing and used as a
sign of it'. Indeed, he originally termed such modes, 'likenesses'. He added that 'every
picture (however conventional its method)' is an icon. Icons have qualities, which
'resemble' those of the objects they represent, and they 'excite analogous sensations in the
mind'. Unlike the index, 'the icon has no dynamical connection with the object it
represents�. Just because a signifier resembles that which it depicts does not necessarily
make it purely iconic.

Semioticians generally maintain that there are no 'pure' icons - there is always an
element of cultural convention involved. Peirce [16] stated that although 'any material
image' (such as a painting) may be perceived as looking like what it represents, it is
'largely conventional in its mode of representation'.

Cook [5] asks whether the iconic sign on the door of a public lavatory for men
actually looks more like a man than like a woman. 'For a sign to be truly iconic, it would
have to be transparent to someone who had never seen it before - and it seems unlikely
that this is as much the case as is sometimes supposed. We see the resemblance when we
already know the meaning'. Thus, even a 'realistic' picture is symbolic as well as iconic.
So he proposed the next icon as the international standard for the concept of �man�.

a
a

u
i

10

 Figure 1. The icon of a man

It is easy to slip into referring to Peirce's three forms as 'types of signs', but they
re not necessarily mutually exclusive: a sign can be an icon, a symbol and an index, or
ny combination.

Eco [6] argues that an image (e.g. a human face) is made up of smaller word-like
nits (i.e. eye, nose, hair, etc.). Semioticians define these smaller meaningful units as
conic signs and argue that their combination within the image results in more complex,

 11

meaningful units, called semes, which correspond to a verbal sentence. Thus the level of
first articulation is made up of iconic signs. In Eco's analysis the pre-semantic units of
second articulation in film are defined as figurae (e.g. geometrical elements, light
contrast, figure-ground relations).

Pure icons, therefore, rely initially on recall of a previous visual experience on the
part of the user (either first or second hand) with sufficient particularity to make their use
in a particular context clear to him.

2.3 Encoding/Decoding

Contemporary semioticians refer to the creation and interpretation of texts as

'encoding' and 'decoding' respectively. Even 'encoding' might be more accurately
described as 'recoding'. In the context of semiotics, 'decoding' involves not simply basic
recognition and comprehension of what a text 'says' but also the interpretation and
evaluation of its meaning with reference to relevant codes. What is 'meant' is invariably
more than what is 'said'.

We can consider icons as way of coding and decoding from two aspects. One is
the presence of the sender and receiver structure, and the other one is the fact that icons
encrypt in a way the meaning of a specific concept.

2.4 Icons and context

The interpretation of gestures that accompany spoken language can be related to
the context, but can often significantly improve understanding, notably in a situation
where the spoken word is difficult to hear or to comprehend. Many people speak little of
any foreign language but are able to understand and communicate a surprising amount
with intuitive sign language. As well as these multilingual gestures there are many
internationally understood symbols (such as arrows to indicate direction and overlaid
diagonals to indicate negation), a study of which can usefully be brought to the design of
our icons.

Icons alone are meaningless. An icon in a particular context, however, triggers
memories and associations in a user�s mind that produce what we refer to as the meaning
of the icon. Only in a particular context and interpreted by a human mind does the icon
have any meaning.

Context is the situation in which we view the icon. It consists of all the things in
the field of view that add to or interfere with the icon. We can think of context as all the
hints that nudge us toward one particular interpretation of an icon. Each icon has a matrix
of possible meanings depending on the contexts and users.

 Iconi + Contextj + Viewerk => Meaningijk

The message is what the icon is all about. If the user recognizes the icon as
representing the concept you needed, the message was understood. There are two kinds
of messages: factual and emotional. Factual messages represent specific information.
They are ideas or concepts that we want the user to recognize intellectually. Emotional

 12

messages are feelings we want the user to recognize and perhaps to experience, but in this
project we stick only to the first category.

2.5 Human Communication

Human communication is the sharing of facts, feelings, and ideas among people,
and the communication takes place through signs. Communication in lower animals is
limited to basic survival needs. Humans, in contrast, communicate for a variety of social
purposes.

2.5.1 Signs

Sign broadly refers to all actions, events and objects that may be used to

communicate. Any action or object that has communication value is a sign. Sign, in this
sense, is not limited to hand gestures. Human beings use three types of signs � indexes,
icons, and symbols.

SIGNS

Indexes Icons Symbols

Concrete Abstract

 Figure 2. Connection between signs and concrete � abstract concept

Indexes
When the relationship between a sign and what it represents is one of cause and

effect and/or physical proximity, it is called an index. Both humans and lower animals
use indexes. Indexical communication is unintentional. Examples include facial
expressions, body postures and movements and reflexive vocalizations (cries, moans,
grunts, sighs) indicative of emotions and feelings. Spontaneous sub-human animal
communication is limited to indexes.

Icons
When a sign bears a physical resemblance to what it signifies, it is called an icon.

Iconic communication is intentional and requires learning. Examples include miniature
objects, pictures, pantomime, and imitation of sounds of animals. Onomatopoeic words,
words that sound like what they represent such as ding-dong, bow-wow, etc., in spoken
languages are iconic. Many signs of gestured languages are iconic.

Symbols
When the relationship between a sign and what it signifies is arbitrary and

conventional, it is called a symbol. Symbolic communication is intentional and learned.
All languages including gestured languages (sign languages) use symbols. Symbols are
especially well suited for the expression of abstract thoughts and relationships, for
example the exact sciences like math and physics.

Communication that takes place through indexes and icons and symbols that are
not a part of a natural language is referred to as non-verbal. Non-verbal is synonymous

 13

with non-linguistic. Examples include facial expressions, eye contact, gestures, tone of
voice indicative of emotions and proxemics that accompany speech. People
simultaneously use non-verbal communication to compliment and supplement verbal
communication.

 14

Chapter 3
Methodology

 The creation of user interface is not an easy thing to do, because the designer
should first of all have �the human touch� while creating the shapes of the objects,
choosing colors, expressing movement and so on. It is known that if a picture is a little bit
too complicated, two people can understand different things out of it. Even the colors can
be tricky. For example, the color red can express danger, warnings, but in the same time
is the color of the human healing, life and health.

3.1 Advantages vs. disadvantages in using icons

 Let us see first what are the advantages and disadvantages in creating an
application based only on icons. One first advantage it could be that the communication
through the icons is a fast one. The meaning of an icon is being extracted immediately,
because it is a 100% visual method in sending the information, and usually, this way of
communication, the visual one, is the most developed one in the human being. The
second advantage is that you type less. As the motto of this paper says: If a picture is
worth a thousand words, an icon must be worth at least a sentence! Using one icon spears
us in typing a lot� plus, these icons are independent from any language, but dependent
on the culture � and this is the first disadvantage. Another advantage is the fact that an
icon needs no translation, because it is self � explaining. On the other hand, of the
disadvantages in using the icons, is the fact that as much as we could try to build an
international system of icons, recognizably all around the world, it will be impossible.
People are too different to create one way of interpreting an icon.

3.2 The design of the icons

The icons are normally diagrammatic and may be either combined with, or
interspersed with, symbols (arrows, numerals etc.). It is unfortunately apparent that their
style is as subject to fashion as any other design product, even typefaces, and that the
ideal, timeless range of icons is unlikely to be found. It is, however, possible to avoid the
excesses of fashion, and to produce icons, which have a long life span and are amenable
to future stylistic updating without compromising continuity of recognition. But one thing
is for sure: pictographic sign language is more calligraphic in its visual character.

There are, however, existing signs, symbols and icons which are understood
internationally and it is the aim of this research to discover the level of subtlety of
communication which icons can achieve, and to develop a computer-based iconic
language.

When an iconic interface contains many icons it is easy for the user to get
confused. There are various remedies to this situation: the careful design of icons,
consistency and respect for conventions are all essential.

There are three levels of articulation defined for icons: the first articulation is the
iconsign (atomic icon), which can be composed into compound icons; the second level of
articulation is represented by visual elements (shape, color, texture, etc.); the third level

of articulation is represented by the dynamic dimension of motion (static or in
movement).

Whilst it is possible to move from a thought to its expression without reference to
natural language, it is likely that grammatical elements will often be recognisable. When
this arises it might be that kinetic icons and nouns represent verbs by static icons, for
example:
 - To run: like a movement icon

- Medicine:

Though it is
its context.

Criteria for
• Graphically
• Semanticall
• Without cul
• Adaptable (
• Simple (cre

One good q

look? Why this gra
background color,
say that I have use
from the huge datab
found, so I have in
of the rules mention

My icons w
yourself your own
usually I liked to us

3.3 Creating the in

As it is de
language, an icon w
to explain its mean
evolution from its s

In our appl
their meaning. Each
the main character
Cars, Elements of
Directions, House,
for instance, be pos
having several elem
 like a static icon
Torun.ico
15

 possible for the tense of a verb or number of a noun to be implicit in

the icons are that they should be:
 clear;
y unambiguous;
tural, racial or linguistic bias;
open to modification to express nuance);
ated within a 32x32 matrix).

uestion that can be raised is why the icons look like the way they
phical approach, and not another one? Why are some icons used with
and some others have transparent background? First of all I have to
d some icons that have already been created by others, taking them
ases that one can find on Internet. But still, not all of them were to be

spired myself from Horthon�s book [8], in which I have applied some
ed above.
ere created in Easy Icon Editor, software that allows you to design by
icons. I have used my imagination and intuition in creating them, and
e the colors as much as possible.

terface

sirable that the system should not rely at any stage on any natural
hose meaning is not immediately obvious to the user should be able

ing in terms of more fundamental icons or through diagramming its
ource imagery.
ication, we have defined fourteen categories of icons, according to
 one of these categories will have a representative icon that will show

istics, being like a hint for the �background� list. The categories are:
 crisis, Human actions, People, First aid, Numbers, Yes/No signs,
 Information, Intonation, Special signs, Military and Time. It would,
sible to `click' on a compound icon (standing for an event or concept
ents) and have its meaning expressed by several static base icons

Medicine.ico

(standing for those individual elements) � this is the idea of category. The icons from
behind are in some cases nuances of the first (main) icon, like the example: starting from
�People� category, which distinct icon is the one of a Man, we will have displayed the
icons of Man, Woman, Fireman, Policeman, Doctor, Victim, Dead Person, Person with
handicap, Soldier, Bomb squad and the general idea of People. In the other situations
they develop together a basic idea, being more constructing the category, than defining it.

`Clicking' on those basic icons might initiate a simple, but revealing,
transformation from a more comprehensive (possibly photographic) image showing the
source of the icon, to the icon itself. The use of relevant photographic images as
backgrounds to messages could establish the current domain, and the use of colour will
be a helpful adjunct but cannot be used to carry essential information that might become
lost on a monochrome system.

In designing our icons we used a corpus � based approach. First we generated
messages about crisis situations. Next we defined icons for the user concept, and finally
we created these icons in �logical� categories.

The icons will therefore comprise several levels. The top level will present the
message and will incorporate compound icons and symbols where needed. Let us explain
at least the design of the basic icons. For category �Cars� we have choose to display the
icon of an ambulance car, because is the most representative for a crisis situation; we
always thing about an ambulance, not a police car, not even at a fire truck. The shape of
an ambulance is distinguishable by its shape, colour and the special Red Cross sign. We
didn�t put any background colour because there is enough contrast between the white
colour of the ambulance car and the default grey from the buttons.

 Figure 3. The icon of the ambulance car

 For the category �Crisis elements� we have picked up the icon of the flames,
because it is the most used one, the most suggestive according to the topic of our
vocabulary. When you say crisis situation, one of the first, if not the first one, is the word
fire. It is so widely spread and often used, because fire is a consequence of a crash,
explosion, bombing, and so on. The colours were used to give the image of expansion
and a kind of a movement, red representing the heat but also the danger.

 Figure 4. The ic

 In the case of expressing dire

some arrows? These are one of the o
still some fashion elements everywhe
because the fact that is divided in
movement. Why a left oriented arrow

Ambulance.ico
16

on of the flames

ctions, what can be more appropriate than to put
nly items that are worldwide spread, but there are
re. Why did I choose this kind of arrow? Mostly
two sections gives the impression of space and
 and not a right one? For no reason, perhaps just

Flames.ico

 17

because it was the first one in the list, alphabetically speaking. In this situation, adding a
background, like the standard one in a grey colour, would make the arrow become
invisible. In fact, for the fact that some icons have a background colour and some other
don�t, it was just a matter of intuition and common sense. Personally I think that some of
the icons look better without a colour on the background.

Figure 5. The icon of the left direction

 Let us go further to the presentation to the category �First aid�. The icon selected
to represent this category is actually the icon that has the same name: First aid, and also
the text, of course. When you say first aid, first you imagine yourself a box with
everything you need inside. The colour of the box was just a random one.

Figure 6. The icon of the first aid box

 For The �Buildings� category we have chosen a house, because it was the clearest
image between them, being also expressive in shape and even in colour.

Figure 7. The icon of the house
Talking about human needs in a crisis situation, you think about helping them, so

this is the reason I have chosen the icon with this topic, plus it is a way of showing the
fact that it is a human activity � the presence of a hand.

Figure 8. The icon of the helping activity

 To be in a difficult situation, perhaps quite a dangerous one, you need ways to
communicate what you are seeing or hearing, but also receiving some information back.
The image of a lightened bulb is a symbol of knowledge; ideas and reason � that is why
we have chose this icon in particular.

Figure 9. The icon of the information symbol

Left.ico

House.ico

Firstaid.ico

Help.ico

Bulb.ico

In the case of the category called �Intonation�, where there are only two icons: the
question sign and the exclamation one, the choice was not difficult at all, because the
most used one is the question sign.

Figure 10. The icon of the question sign

 Not even for the numbers the choice was a random one. We had opted for number

one because it is the first of them, representing the start, even if it might not be the most
used one. The colour used for these icons was a choice for the moment, and the fact that
we didn�t add some background colour, only proves that fact � that we wanted the icons
to look different, various. It is a personal opinion and choice.

Figure 11. T

 Another numerous in elem
icon for it is the one that represen
Most of the fact that the noun peo
in this category, and another reaso
might look quite expressive, almo
that all the elements should be par

Figure 12. T

 For the category �Special s
represents the exit, and the other o
one because it is more expressive,
some more colours to the applicati

Figure 13. T

Not a lot of explanations to
defines the time concept. This ico
colour, not even for the backgroun

Question.ico
he icon of number one

ents category is the one called �People�, and the basic
ts a man. Why didn�t we choose the icon with people?
ple is by default on plural form, which is an exception
n is that the man is by definition a relevant element. It
st individualised, but in this category we have chosen

ticular.

h

ig
ne
 b
on

h

 m
n
d.

One.ico
18

e icon of the man

ns� we had to choose between two icons: the one that
 was the sign of negation. We have preferred the first

eing a true special sign. The colour was putted to give
.

e icon of the exit sign

ake on the basic icon of category �Time�. The clock
is a little bit too detailed, so we didn�t add any other

Exit.ico

Time.ico

Man.ico

Figure 14. The icon of time, clock

 The category �Yes/No� can not be used in this step of the application, because the
yes/no signs are implying a communication between the client application and the server
� which is not our concern by the moment; but still, they appear in the designing
interface. Between the two signs we have opted for the one that express a positive
assertion, of course.

Figure 15. Th

 The last category to be anal

we have chosen a tank. Why? We
course, represented in grey colour, a
background were out of discussion.

Figure 16. Th

Querying any icon will initi
will seek to explain the meaning
appropriate. A further level cou
photographic references to its sour
support. The user on entering the sy
is active.

Additional weapons in the de
• Color, which might be used e
• Movement, which is potenti

time dependent concepts suc
• Background, which can be u

The judicious use of colour
coding, but the system must be able
images, however, could help to esta
developments are bringing closer th
in continuing this project. In fact, sin
a lingual, it would be a very appropr

According to Horton [8], in
understand, whether we represent t
whether icons require study, but wh
word labels. This was the issue wit
They are concepts defined by hum
made the compromise of defining s
e icon that express yes

ysed is the one of the military elements. For this one
thought that is was the most suggestive one. It is, of
nd quite in detail designed, so other colours, even for

Yes.ico
19

e icon of the tank

ate a move to the second level, at which base icons
 of the top-level icon, acting out the meaning if
ld trace the icon's development from suitable
ce, and at any level natural language could act in
stem would have chosen the natural language, which

sign armoury are therefore:
ither expressively or for coding;
ally very powerful (most obviously for dealing with
h as movement) but not to be used lightly;
sed as a visual cue to the domain.
can be employed to good effect, most obviously for
 to communicate fully in monochrome. Background
blish context for a message and multimode systems

e option of using video in that role � like a future step
ce much multi-media production is visual, and hence
iate medium in which to use an iconic language.
 creating an icon: some concepts are inherently to

hem with icons or with words. For such issue is not
ether they require less or more study than equivalent
h creating the icons for concepts like �I�, �there are�.
ans, can�t be touched, can�t be seen. We could have
ome textual icons, like for �me�, or �I�, the use of a

Tank.ico

 20

sign with the letter �I� on it. We had made the convention that we won�t use any words,
and even if English is so widely spread. The way to complete these tasks, of adding such
constructions, was to create some templates, but this subject will be developed, as we will
see next.
 Nevertheless, icons are not pictures. Icons are meant to be viewed entirely in a
single glance and, once learned, recognized automatically. Overloading an icon with
realistic detail may render it less rather than more recognizable, but sometimes it is
useful. Icons should be concrete, showing real-world objects, vivid, clearly depicted, and
conceptually distinct one from another.

 21

Chapter 4
Introduction in Natural Language Processing (NLP)

 Life would be so much easier if we could communicate with the computers
conversationally. After all, everyone knows how to use a �natural language� such as
English or French, but not everyone knows how to use obscure command like the ones
from the Unix environment. The goal of natural language processing (NLP) is to make
conversational computer communication a reality.
 To achieve that goal, computers must understand language, an extraordinarily
difficult task because language is ambiguous. Words can have more than one meaning,
pronouns can refer to many things, and what people say isn�t always what they mean.
 Natural language processing, or computational linguistics, is a field combining
computer science and linguistics that focuses on the problems of modeling language on
computer.
 Sophisticated NLP systems try to �understand� language by incorporating
knowledge of how sentences are constructed grammatically, and through an ability to
draw inferences and explain their reasoning. This is in contrast to systems that take a
keyword approach (also called template systems or pattern matchers), in which patterns
in the input are matched to stored templates.

4.1 The natural language

As we have mentioned above, the basic field in which we develop this
application, is the one of natural languages. Lets see now a definition of this term.
According to the British Self-Explaining Dictionary, a natural language is a language
spoken or written by humans, as opposed to a language use to program or communicate
with computers. Natural language understanding is one of the hardest problems of
artificial intelligence due to the complexity, irregularity and diversity of human language
and the philosophical problems of meaning.

Our approach in this area was to start from a vocabulary and then defining the
grammar, not the other way around. This thing is very delicate due to the complexity of
the elements involved in the problem: grammar rules, which would create perfectly,
correct sentences, speaking from the semantic and syntactical analysis.

In Allen [1] we can find different approaches to the natural language
understanding, according to all the layers of knowledge. The different forms of
knowledge have traditionally been defined as follows:

- Phonetic and phonological knowledge concerns how words are realized as
sounds. While this type of knowledge is an important concern for automatic
speech-understanding systems, there is not the space to examine these issues.

- Morphological knowledge concerns how words are constructed out of more basic
meanings units called morphemes.

- Syntactic knowledge concerns how words can be put together to form sentences
that look correct in the language. This form of knowledge identifies how one
word relates to another (for example, whether one word modifies another, or is
unrelated).

 22

- Semantic knowledge concerns what words mean and how these meanings are
combined in sentences to form sentences meanings.

- Pragmatic knowledge concerns how sentences are used in different contexts and
how context affects the interpretation of the sentence.

- World knowledge includes the general knowledge about the structure of the world
that languages users must have in order to, for example, maintain a conversation,
and must include what each language user must know about the other user�s
beliefs and goals.

We are dealing only with the syntactic and semantic knowledge. Starting with this

idea, we pass now at another problem: defining the grammar.

4.1.1 Components of an NLP system

 Linguists divide language into processing levels, a division reflected by natural
language systems that incorporate components for some or all of these levels in their
architectures. Morphology is concerned with how words are formed from basic
meaningful units called morphemes. �Cover� is a morpheme; add the morpheme �un� to
the beginning and you have another word, �uncover�. �Walk� is a morpheme; adding the
morphemes �s� and �ed� to its end to the form �walks� and �walked� form various forms of
the verb.
 Closely connected to morphology is the lexicon, the dictionary of an NLP system.
It holds the vocabulary that the system understands and often contains morphological
information. Because its organization can differ radically from one system to another, a
major design decision is how much and what kind of information is to be included in the
lexicon.
 NLP systems don�t always perform morphological analysis. The system designers
might choose to include all possible forms of a word in the lexicon. In such a lexicon the
word �walk� would have four separate entries: �walk�, �walks�, �walked� and �walking�,
while in a lexicon containing morphological information it would have a single base
entry of �walk�, plus the information that �walk� is a regular verb. The system would then
use morphological rules to reduce the other forms of the verb.
 Syntax is concerned with the grammatical rules for constructing sentences. The
syntax of the sentence is analyzed using a grammar that formally defines the structures
permitted in the language, and a parser that analyses a sentence according to the grammar
and produces a structural description of a sentence.
 The syntactic component of system parse each sentence in the input to determine
its syntactic structure and produces output in the form of a parse tree that describes the
sentence structure. Often a sentence will have more than one possible structure, in which
case the system must determine which analysis is most likely to be correct. This
determination frequently involves obtaining information from other components of the
system such as semantics or pragmatics.
 A phrase-structure grammar is often used to define the grammar. This is a
context-free grammar consisting or rewrite rules defining the permissible constructs of
the language. The grammar defines a sentence as being made up of a noun phrase

followed by a verb phrase. A noun phrase consists of either a determiner followed by a
noun or a noun alone. A verb phrase is made up of a verb.
 VP -> V NP
 Another frequently used grammar formalism is the transition network. Transition
networks are finite-state automata consisting of nodes and labeled arcs. The arcs are
labeled with the word category being looked for. When it reaches �pop� it pops out of the
network.
 A more powerful version called an augmentation network (ATN) is commonly
used in NLP. ATNs increase the descriptive power of the grammar by using recursion to
define the networks and by using mechanisms such as registers and tests, which increase
the number of operations available. A grammar requires a parser that will take an input
sentence and analyze it according to the rules of the grammar. Natural language parsers
use parsing strategies from programming language theory and those tailored to natural
language. Some types of parsers include shift-reduce parsers, chart parsers, and statistical
parsers.

Semantics is about the meaning of words and sentences. It must cope with lexical
ambiguity, the fact that a single word can have more than one meaning.
 For example, by using the icon that represent a fire

 Figu

One would say that it mean
icon representing and sugg

 Figu

Could be interpreted like
his/hers ears. There are als
the sentence: The building

Figure 19. The repr

re 17. The image of some flames

s flames, and some other that it means the verb to burn. Or the
esting a deaf person

re 1

bei
o d
is o

esen
8. The image of a deaf person

ng a person who simply doesn�t want to hear, covering
ifferent ways of expressing the same meaning. Let us take
n flames. Which would have the next visual representation:

23

tation of the sentence: The building is on fire.

One-way of twisting the sentence is the simple reversion of the words, and the
sentence would become: There are flames in the building, which has the following
appearance:

Figure 20. The represent

A logical form is the ou

order predicate logic representat
general representation looks like

<negation> <number> <adjecti
<adjective> <noun> adverb>

With some small interference f
sentence with a question sign;
optional according to the syntac
the input data, we must add also
a noun, and only a noun.
 Most NLP systems perfo
but some go directly to the sema
parallel to try to constrain th
information.
 Pragmatics is concerned
of an NLP system is the compo
the time?� as one which someon
no answer.
 World knowledge is imp
In order to respond properly to
are referring to. For reasoning p
knowledge is encoded in a know
the systems.
 These components of a
with each other, because knowle
single accepted architecture fo
approaches and formalisms. Sys
they can be linked together in va

4.1.2 Language problem

 NLP systems implemen
caused by ambiguity of langu
nonstandard ways and still be u
ation of the

tput of the
ion of the m
 this:

ve> <noun

rom the fa
 plus, keep
tical constr
 a noun, be

rm syntact
ntic levels,
e number

with langu
nent that id
e would lik

ortant for u
a question,
urposes it
ledge base

NLP system
dge from o
r NLP syst
tems may h
rious ways

s

t strategies
age and

nderstood.
24

 sentence: There are flames in the building.

 semantic component; it is frequently a first-
eaning of the sentence. In our case, the most

> <negation> <verb> <adverb> <number>

ct that after the first noun we could end the
ing in mind that all of these elements are
aints. For example, if we add an adjective to
cause the adjective could only sit �in front� of

ical processing and then semantic processing,
 or perform syntactic and semantic analyses in
of possible parse trees by using semantic

age use in context. The pragmatic component
entifies the question �Can you tell me what is
e to receive the exact time, rather than a yes or

nderstanding and maintaining a conversation.
 an NLP system may need to know what you
may require an inference mechanism. World

 that can be accessed by all the components of

 must be able to interact and communicate
ne component can inform another. There is no
ems; they can be implemented using many
ave some or all of the above components and

.

 for handling common linguistic problems
by the fact that people can use language
A good test of an NLP system is its ability to

cope with, a system can resolve such sentences, determines how successful it is in
understanding a reasonably large subset of natural language.
 Prepositional phrase attachment is a problem in NLP. A sentence can often be
analyzed in more than one-way, producing multiple parse trees for the sentence.
Prepositional phrases often produce such ambiguity. Reference to semantics and world
knowledge can help to disambiguate the structure. Lexical ambiguity occurs when words
have multiple meanings, as was discussed in the example of the ambiguity of the word
 Anaphoric reference, or pronoun resolution, is the problem of figuring out what a
pronoun refers to. A common technique for resolving this is to create a history list of all
previously mentioned noun phrases and assume that a pronoun refers to the most recent
noun phrase that meets the constraints (number, gender) of the pronoun and various
pragmatic constraints.
 Ellipsis refers to sentences that appear to have some parts missing. The missing
word or phrase is parallel to one in the previous sentence or phrase:
 The doctor helps the man, the fireman the handicapped person.
 In this case, �the fireman the handicapped person� is an elliptical phrase. It lacks a
verb but is understandable in the context of the entire sentence because we draw a
parallel from the first phrase and assume it�s an elliptical form of �the fireman helps the
handicapped person�. But such sentences can�t be created still by our application, because
there will be created only simple sentences, not at all phrases. The reason why we add
such a severe constraint is that a person in a crisis situation doesn�t need to send long
sentences, and writing novels. The basic sentences are just enough for transmitting the
fact data. Plus, everything connected to the grammar would just have been too
complicated to deal with.
 Quantifier scope is another problem area. Quantifiers such as all, every, some, and
no can be ambiguous in their interpretation. Nevertheless, in our application we had
defined some quantifiers in order to give more space and wideness to the vocabulary, and
also thinking that those words are very useful and often used in explaining something.
One of the quantifiers is the negation, which represent a self-standing category in our
specific grammar definition. This item can be used next to a noun, where it has the
meaning of �no�, or next to a verb, when is negating the activity. Let us give some
concrete examples for that. In the first case, we take the sequence:

 Figure 21. T

It�s meaning being: There
object is not in a certain place. T
No doctor run towards the exit, or
expression: There is, There are, an
 The second situation is pl
mention the fact that a negation c
that we will accomplish the syntac
25

he problem

is no victim
his constru
 by activati
d this is ou
acing the n
ould only b
tic product
 of <negation> + <noun>

. It is also expressing the fact that specific
ction can be used in a normal sentence, i.e.
ng the first template, which is the one of the
r case.
egation in front of a verb. We should also
e positioned in front of a noun or a verb, so
ion rules. In the verb case, the negation will

generate the adding to the output text or the word �can�. So, if we have the sequence of
icons like follows:

The meaning

No NL
can yet cope w

4.1.3 A

 Differ
distinguishing

- Lingu
proces
or on s

- AI � F
- Conne

disam
- Statist

corpor
Most

Statistical me
incorporate th
components
chooses one
application, it

4.1.4 L

There

differences w
some languag

- Where
- There

equall
- Any c

for lea
- All lan

The st
most s
Figure 22

it would be

P system
ith unrestr

pproache

ent approac
 them is as

istic � Ba
sing. A lin
yntax and
ocuses on u
ctionist � U
biguation.
ical � Base
a (millions
NLP syste
thods are n
em in the

of languag
design app
s domain o

anguage U

are more
ithin langu
e universa

ver human
are no �p

y �simple�.
hild can lea
rning langu
guages cha

ructure of l
usceptible
. The proble

: �The doct

has comple
icted natura

s to NLP

hes to ana
 follows:
sed on en
guistically
semantics.
sing world
ses neural

d on extra
 of words o
ms use a
ow receiv

 future. Th
e, attempts
roach and
f use, and th

niversals

 than 600
ages. All la
ls.

s exist, lang
rimitive� l

rn any lang
age.
nge throug
anguage is
to change.
26

m of <nega

or can not h

tely solved
l language

lyzing natu

coding fo
oriented sy

 knowledge
 nets for pr

cting statis
f text).
 combinati
ing much a
e extent to
 to solve
formalism
e philosop

0 language
nguages in

uage exists
anguages.

uage if exp

h time. Onl
highly resis
tion> + <verb>

elp the victim.�

 these problems, and therefore no system
 input.

ral language exist. A convenient way of

rmal grammar rules for sentence-level
stem often focuses on the syntactic level,

 to understand language.
ocessing language, particularly for lexical

tically significant information from large

on of the linguistic and AI approach.
ttention, and more systems are likely to
 which a system concentrates on certain
a particular linguistic problem area, or
over another depends upon the type of

hy of its designers.

s in the world not counting dialectal
 the world share certain features. Here are

. Is language innate?
All languages are equally �complex� or

osed to it; there, however, is a critical age

y the �dead� languages remain unchanged.
tant to change. The content of language is

 27

- All languages have grammatical categories such as nouns and verbs and semantic
categories such as �animate�, �inanimate�, �male� and �female�.

- We can talk about the past, make plans for the future, imagine things that are not
in the immediate surroundings and do not even exist, lie and mislead, and pass
information to successive generations.

- Language is hierarchical: English, for example, has phonemes or speech sounds
 (approximately 45), syllables (about 4,000) made up of one or more phonemes,
 morphemes (about 20,000) consisting of one or more syllables, words (in

excess of 500,000) made up of one or more morphemes, and phrases and
sentences (unlimited) consisting of one or more words. This permits creation of
novel sentences and sentences of unlimited length.

- All natural languages have the duality of patterning, i.e. the basic building
blocks (phonemes and most syllables) are meaningless, which when combined
into larger units (morphemes, words and phrases) become meaningful.

4.1.5 Creating the vocabulary

 It is essential to mention that for our application there were multiple ways of
defining the problem: first of them was to start from the grammar, and then generate all
the words out of it; and the second one was to start the other way around � from the
vocabulary, and then build the grammar. This last one is the approach that we have
followed.
 A good question is: how did I define this specific vocabulary? The answer is very
simple: I just took a piece of paper, and started to put down all the key words that I had in
mind connected to the topic of a crisis situation. At the beginning there were only thirteen
categories, the Military one was not created, because I had considered it to be a little bit
too extreme. The reason of adding this last category is the fact that this application will
be used by other applications that will require the existence of this specific topic.
 Another aspect to be presented, is that the list of the keywords changed on the
long of the development of the application, adding more words, sometimes excluding
some of them, like �dog�, �insect�, �warning�; words which I have considered at the
beginning of being important. Along the developing of the program I have noticed that
these words are very isolated ones, and could create just very few sentences, or the fact
that they didn�t fit anymore in the generating language.
 After having the vocabulary, we had to create some categories of them, grouping
them after a specific topic, which would be characteristic for all the icons contained by it.
The reason for grouping them was first the fact that we just don�t have place for
displaying them all on the screen, especially if we are intending to make this application
work on PDA. As we will see in the designing of the interface part, the dimensions of the
MainForm � the form that represents the main user interface, has fixed dimensions, due
to the fact that the screen of a palm is a very small one, sometimes having problems even
with the resolution of the images. The second motive, also a very strong one, is that it is
just out of hand, and extremely inefficient to start and search which icons to use. The user
should be helped to insert the needed icons, not to block him/her for the first contact to
the application. We should create an application that gives as many hints to the user about
which icons he should press so that he will transmit a specific fact.

 28

 There was the suggestion of grouping the icons after their grammar category, so
that in one category there should be numbers, in another one just the verbs, and so on. I
have found this approach of being inefficient and too scientific: inefficient, because the
distribution of the icons over the grammar categories is not an average one � meaning
that there are only ten numbers, three adjectives, and more than seventy nouns. I called
this approach too scientific, because a person, especially when he is in a crisis situation,
he does not think in verbs, adverbs and nouns, which are abstract elements, but in
concrete things, like images. So, defining some special categories, that represent almost
the same idea, was the best one.
 Let us see now the list of one category, the �Crisis situations� one, and the �words�
that are contained in it. The rest of the categories would be presented in Appendix ???
Category Crisis

- Flames;
- Electricity;
- Explosion;
- Air;
- Smoke;
- Bomb;
- Gun;
- Knife;
- Toxic;
- Flood;
- Tornado;
- Nuclear threat.

4.2 Grammars and productions

 We will have to define a context free grammar (CFG) according to Chomsky�s
hierarchy. Thus we move on to consider the notion of a grammar. This is essentially a
set of rules for describing sentences - that is, choosing the subsets of possible
combinations that can be constructed, in which one is interested. Formally, a grammar G
is a quadruple {N, T, S, P} with the four components:

(a) N - a finite set of non-terminal symbols,

(b) T - a finite set of terminal symbols,

(c) S - a special goal or start or distinguished symbol,

(d) P - a finite set of production rules or, simply, productions.

The word �set� is used here in the mathematical sense. A sentence is a string

composed entirely of terminal symbols chosen from the set T. On the other hand, the set
N denotes the syntactic classes of the grammar, that is, general components or concepts
used in describing sentence construction.

The union of the sets N and T denotes the vocabulary V of the grammar.

 29

V = N T

The sets N and T are required to be disjoint, so that

N T = Ø

In this situation Ø is the empty set.

4.2.1 Backus Naur Form

 We go further to introduce the concept of BNF (Backus Naur Form), originally
�Backus Normal Form�, which is a metasyntax, used to express context-free grammars.
BNF is one of the most commonly used metasyntactic notations for specifying the syntax
of programming languages, command sets, and the like. It is widely used for language
descriptions.

A BNF rule defining a non-terminal has the form:

Non-terminal ::= sequence_of_alternatives consisting of strings of
terminals or non-terminals separated by the meta-symbol |

In classic BNF, a non-terminal is usually given a descriptive name, and is written

in angle brackets to distinguish it from a terminal symbol. Non-terminals are used in the
construction of sentences, although they do not actually appear in the final sentence. In
BNF, productions have the form

leftside definition

Here � � can be interpreted as �is defined as� or �produces� (in some texts the

symbol ::= is used in preference to). In such productions, both leftside and definition
consist of a string concatenated from one or more terminals and non-terminals. In fact, in
terms of our earlier notation

leftside (N T)+

and
definition (N T)*

Although we must be more restrictive than that, for leftside must contain at least one non-
terminal, so that we must also have

leftside N Ø

Frequently we find several productions with the same leftside, and these are often
abbreviated by listing the definitions as a set of one or more alternatives, separated by a
vertical bar symbol �|�.

From a grammar, one non-terminal is singled out as the so-called goal or start
symbol (the symbol noted with S in the definition of the grammar). If we want to

 30

generate an arbitrary sentence we start with the goal symbol and successively replace
each non-terminal on the right of the production defining that non-terminal, until all non-
terminals have been removed.

4.2.2 Connection between a context-free grammar (CFG) and a BNF

construction

As we have said before, we are using a context-free grammar, based on the
definition of some BNF grammar rules. A BNF grammar is similar (and equivalent in
power) to a context-free grammar, and most of the times it can mislead us into believing
that they are one and the same thing, but in fact there are some basic differences between
them. In a context-free grammar, each variable, or non-terminal, has one or more
�productions�, which are the rules that map the non-terminal to a string of tokens
(�terminals�) and variables. The idea in the CFG is that you repeatedly replace non-
terminals with their production strings until you get a string of tokens. In a BNF
grammar, each variable has a single production, but the production is more than just a
string; it's a regular expression � or can be one, in case of the BNF structure that you are
using.

BNF grammars can be compiled into context-free grammars, and context-free
grammars are very easy to convert into BNF grammars. The method is very simple. If all
the productions for a non-terminal are written together separated by the symbol �|�, all we
need to do is reinterpret the symbols.

4.3 Grammar subdivisions

In order to construct a grammar, that should be compact as possible, with robust
qualities, we had take the structure of the English grammar, considering that the resulted
text will be transmitted to the server side into its English version. We had to split the
icons into grammar groups according to their word classes in the sentence. So the
categories are: noun, numeral, adjective, verb, negation, sign and adverb; where the
Verbs are the elements from the icon category called Human Actions, the Numerals are
the ones from the Numbers category, the Adverbs are the Directions, and so on. We are
talking now only about the icons that could be selected, and we do not have to choose all
of them into one sentence all the time. The user should have the possibility and the
freedom to construct the sentence �almost� as he/she wants to. That�s why we have
created the templates structures: to permit communication in different ways. It may look
more complicated at first, but in fact, these kind of predefined situations will ease the
parsing step.
 We need to make a small correction: the distribution of the categories is not as
simple as it may look, and most of all, it is not enough. It will be a mistake to consider
that all the nouns have the same position into the future sentence. For example, if we
have the next structure <Noun> <Verb> <Noun>, the next sentence will be a correct one:
 The doctor helps the victim.
but the sentence:
 The doctor helps the ambulance

 31

is not an accepted entry, even if, initially, �the victim� and �the ambulance� are both
nouns. This situation will be taken care in the semantic analysis. We will define a
network between categories, and we will even define subcategories of icons to build a
very rigorous system. But this subject will be discussed later. Lets see now what are the
sentence subdivisions.

4.3.1 Simple Noun Phrases

Noun phrases (NP) are used to refer to things: objects, concepts, places, events,
qualities, and so on. The simplest noun phrases consist of a single pronoun, such as he,
she, it, and I, or an object. The remaining forms of noun phrases consists of main word,
called the head, and other words that qualify the head and identify the nature of the item
being referred to. The head of a noun phrase is always a noun. Nouns are divided into
two main classes:

- Count-nouns -> nouns used to describe some specific object or set of objects:
numbers;

- Mass nouns -> nouns used to describe composites or substances: some, etc�
In addition to the head, noun phrases may contain specifiers, from which we use

only cardinals - words indicating the number of objects being described, such as one,
two, and so on, but we have made a new category out of it, which is Numbers. In the
same manner, we have also qualifiers, which are a noun phrase occur after specifiers and
before the head. They consist of adjectives and nouns being used as modifiers. In our
case we have used only the adjectives, which are words that attribute qualities to objects
yet do not refer to the quality itself.

While noun phrases are used to refer to things, sentences are used to assert, query,
or bring about some partial description of the world. The way a sentence is used will be
called its mood. So we have:

 Declarative (or assertion)
 Yes/No question
 Wh-question
 Imperative (or command)

 The wh-question, which is referring to why, where, what, who and so on, will be
constructed like templates, and they are defined by adding the question icon, �?�, to the
end of the sequence of icons. In our case, we took into discussion only the construction of
the �Where� questions. In this way, the only combinations available for this topic, is the
presence of a noun followed immediately by the question sign. In the same manner, the
order will be suggested by adding the imperative sign, �!�, and the declarative sentence
will be the default one. Nevertheless, there is no difference between the order sentence
and the assertion one. We cannot transmit the tone of the sentence, but we can give a hint
about the inner state of the user � if he uses the sign �!� it means that he/she is in a serious
situation. Also, if there is no question or order sign at the end of the input line, there will
be tested a structure of a declarative sentence.

 32

Verbs
We will use only verbs at simple present tense (not even continuous form). And

the transitivity or passives verbs are not of our concern. It may look restricted, but by
adding the grammar rules for the verbs, the structure of the network will become too
complicated. Also, in direct correlation to the verbs are the adverbs. In our situation we
have defined only space � adverbs, to give a more precise view of the situation: here,
there, and modal adverbs: blocked, unblocked, to represent a delicate crisis situation, in
which these words are keywords.

Particles
 Some verb forms are constructed from a verb and an additional word called a
particle. Particles must be immediately follow the verb or immediately follow the object
NP. For example, walk on stairs� Adding these elements to our application, will make
the sentence have more meaning, and be closer to the spoken or normal written language.
 Prepositional phrases

Another �field� is the prepositional phrases. The most common form of
prepositional phrase consists of a preposition (on, from, to, by, through) followed by a
noun phrase, which is called the object of the preposition. They can be simple or
complex: get out of the car.

4.3.2 Bounding the vocabulary with the grammar categories

 For defining our grammar we had �spread� the vocabulary, lexicon in seven
categories: negation, number, adjective, subject, verb, adverb and sign. They may not
look like the typically grammar categories, and some of them could have been included
in the more based ones, but in our case it would be so much easier to work with these
ones. As we have already mentioned, the icons are divided into fourteen categories
according to their theme, and the way that they would be used, but also in direct
connection with our grammar types. Even though some of the words could have had
some other meanings, we have defined the sequence of tokens in a certain manner that
one icon should have only one meaning (including one grammar category). For example,
for the icon �flames�, we could have used the noun �fire�, or the verb �to burn� etc. In this
case it would have been even more difficult to establish which meaning should be choose
at a certain moment. Lets see now how they are constructed.
 Only nouns construct the category of icons with the name �Crisis Events�. The
same situation is with the group called �Cars�, �First Aid�, �Buildings�, �Information�,
�Military� and �People�. On the other hand, the categories �Directions�, �Time� and
�Intonation� are formed only by adverbs, the �Numbers�, of course, from numbers, and
�Yes/No� icons are included in the adjective section. The other categories are mixed ones:
in �Human Actions� we can find three adjectives � blind, scared and deaf, the rest are
verbs; in �Special Signs� we can find a noun � exit, a verb � to move, three adverbs �
blocked, unblocked and disorder, plus the icon with the negation sign, which is a self
standing element by defining its own property: the negation.

4.4 Defining the grammar

 33

In the last chapter, we have set the definition of the grammar in this way: G :=
{N, T, S, P}, where N is a finite set of non-terminal symbols, T is a finite set of terminal
symbols, S is a special goal or start or distinguished symbol, and P is a finite set of
production rules or, simply, productions. It is time for us to define the grammar,
presenting the production rules:

S = negation A | number B | adjective C | noun R | verb E | adverb H

A = number B | O

O = verb E | P

P = verb | B

B = adjective C | C

C = noun R | noun

R = sign | D

D = negation F | F

F = verb | G

G = verb E | E

E = adverb | I

I = adverb H | H

H = number J | J

J = adjective K | K

K = noun L | noun

L = adverb

Number, adjective, verb, noun, adverb, sign and negation are terminal symbols,

and the symbols A �> R are non-terminals. As it can be noticed by testing the definition
of the grammar, the only imposed symbol it may look of being the presence of at least
one noun. The way to avoid the generation of the empty string is the fact that we should
always have at least two entrance symbols. First should be the one from the production of
the starting symbol, and the last one should be the terminal.

Only by looking at the way these rules are combined, we could distinguish two
categories of tokens: the starting and the finishing element. Actually this was the starting

 34

point in the construction of the grammar. We took into consideration all the possibilities
of how these icons can come along. Our wish is to give as many possibilities of
combination as possible taking care of the English grammar rules, because this is the base
construction for our grammar. In the end, we have to have a text written in English,
which should mean what the user wanted to transmit. To be easier to distinguish the way
the categories can be combined, we are presenting a diagram with the network structure
between grammar types, lighting also the starting and the ending elements.

Figure 23. The visual representation of the grammar.

 Start elements

 Finish

 elements

Number Adjective

Noun

Verb

Negation

Adverb

Number
Adjective

Noun

Sign

Negation

 35

Going back to our grammar, we could see that the elements, which the sentence
could start with, are given by the first production rule. So that means that the first element
in a valid sequence of icons could be the negation, a number, an adjective, a noun, or a
verb.

In the same way we could check which are the characters with which a valid icon
sequence could end. These elements can be distinguished by checking the right side of
the production rules. We can observe that the production rules are usually formed (except
the last one, which is a direct transformation) by a terminal followed by a non-terminal,
which alternates either with a non-terminal (which means that the derivation goes on,
with no transcription directly to the out-put text), or with a terminal. These particular
terminals are actually the ones with which a valid sequence of icons could end with.
Specifically speaking, they are: noun, verb, adverb or sign.
 There are a lot of �unexpected� associations between the icons, due to the fact that
the bounding words would be defined in the template constructions. For example, we
could have the next situation:
 <noun> <adverb>
like: The door is blocked. � where �door� is the noun, and �blocked� is the adverb. In the
same way we could have a more complicate construction:
 <noun> <adverb> <number> <noun>
as in: The road is blocked by three cars. The underlined words are the one used in the
structure, which was took for example.
 We have mentioned above that some of the icons could have had more that one
meaning, having the possibility of being part of different grammar groups (i.e. flames vs.
to burn). By using the template structure, we could create the sentence without a verb or a
noun in it. Even the combination between two nouns is accepted, like in the next
example:
 The car had an explosion.

4.5 Properties of BNF grammars

For this discussion, we use 'children of X' to mean terminals and non-terminals
that are mentioned in the production for X. We use 'string' to mean either a sequence of
terminals or a sequence of terminals and non-terminals, and 'matched string' to mean a
sequence of terminals and non-terminals that is matched by a particular regular
expression, or grammar rules that have been defined above. We use here the concept of
regular expression like the way we could combine the lexemes according to the structure
of our grammar.

Subj noun subj => The house has 3 doors.

4.5.1 Emptiness

One of the most delicate aspects is the one connected with the possibility of
generating the empty string (noted here with epsilon). This situation could cause
problems at the parsing step. But let us see first which are the conditions to be fulfilled
for producing this particular case. If the non-terminal has no non-terminal children, we
can determine the fact that a grammar can generate the empty string by looking at the

 36

form of the regular expression. Terminals cannot be empty; if the non-terminal's
production is a terminal, it therefore cannot be empty. Alternations of non-empty things
cannot be empty, but alternations including at least one alternative that can be empty can
be empty. Sequences are their dual: sequences of possibly empty things can be empty, but
if the sequence contains any things that cannot be empty, it cannot be empty.

Adding non-terminal children is easy; since for each leaf of the regular
expression, we're only interested in whether or not it can be empty, we can simply
compute whether the production of that non-terminal can be empty. But this fails to
terminate when the grammar is recursive. But it turns out that if a non-terminal can
expand to the null string (in zero or more steps), it can do so non-recursively. Here's why.

Suppose
X =>* epsilon

Now, suppose X has to recourse to do this; i.e. all derivations of the form
X =>* epsilon

are of the form
X =>* AXB =>* epsilon

Since there are a finite number of steps in the derivation, there are a finite number
of steps at which point the string being expanded contains X. Take the last one of these,
say CXD. We know

CXD =>* epsilon
 and by hypothesis, there are no steps following CXD during which the string contains X.
Now, for

CXD =>* epsilon
to be true, all of

C =>* epsilon
X =>* epsilon
D =>* epsilon

must be true. Furthermore, all three of these derivations must involve no X'es. But now
we have a derivation of the form

X =>* epsilon
that is not of the form X =>* epsilon, contradicting our original hypothesis.

So we can simply ignore recursive derivations -- we only need to look at non-
recursive derivations to determine whether the non-terminal can derive the null string. So
our new rules are:

1. Terminals can't be empty;
2. Sequences can be empty if they contain no recursive non-terminal references

and if all of their elements can be empty;
3. Alternations can be empty if any of their alternatives (except for recursive non-

terminals, which are treated as if they weren't there) can be empty;
4. Non-recursive non-terminals can be empty if their production can be empty.

Here 'can be empty' means 'can eventually derive the null string'.
 In our specific case, the generation of the empty string is not only unwanted, but it
is a situation that would block the standard implementation procedures. That is why we
had imposed that there should be at least one item to be sent and checked, and as we
could see from the grammar rules that have been defined, the imposed item is a noun. All
the sentences should contain a noun, even if it is the noun from the starting category, or

 37

the one from the finish one. Nevertheless, the first production rule has to be taken into
consideration, and one of the items should be selected. In this way we have imposed the
presence of the items in the input data, and the possibility to generate the empty string
has been eliminated.

4.5.2 Starting tokens

That whole emptiness rigmarole is mostly interesting because we need it for this.
To construct a predictive recursive-descent parser, we need to know what tokens can
begin sequences derived from particular non-terminals. The rules for computing this are
fairly simple:
1. a regular expression consisting of a terminal can derive only strings starting with that
terminal. Actually, consisting of one occurrence of that terminal, but that's beside the
point.
2. an alternation can start with whatever any of its alternatives can start with.
3. a non-terminal can start with whatever its production can start with.
4. a sequence can start with anything that its n-th element can start with provided all
elements before that element can be empty. So a sequence of four items, of which the
first and last can be empty, can start with only what its first or second item can start with.

This looks good, but rule 3 can lead to infinite recursion. If it does, that means
the non-terminal we are looking at is left-recursive, which is a not wanted situation for
constructing predictive parsers. But left-recursion doesn't add anything to the set of items
that can occur at the start of the matched string -- it just adds the same items again. So
again, we can ignore recursive alternatives. Another aspect of this problem is the fact that
the parsing technique that we have chosen to use, the top-down parser, works only non-
left recursive grammars, with left most derivation. The way our grammar was defined
saves us from this inconvenient. More over, there is no item that can be doubled by the
same production rule, the enumeration is not allowed into this grammar, not even for the
numbers. Otherwise, there would have been difficult to announce the ending of the items
sequence. Not even for the numerals this part is not available. The use of that category is
strict to only one element, so the forming of numbers � not digits � won�t be possible.
The only situation that can look like breaking this restriction is the presence of two nouns
� sometimes all alone in the sentence. This fact is due to the part that a noun is
compulsory and the other one could be generated from the end category. Like in the
sentence:

The house is in flames.

4.5.3 Recursive rules

How do we determine if a production rule is generating a recursion? Finding the
set of children of a non-terminal is fairly simple: look at its production and extract the
terminals and non-terminals mentioned. The descendants of the non-terminal can be
computed by taking the transitive closure of the 'children' operation. A recursive non-
terminal is one of its own descendants.

 38

4.5.4 Left-recursive

The above procedure for finding starting tokens works just as well for finding
starting non-terminals, i.e. non-terminals that can begin a string derived from a particular
non-terminal. We can call this set the 'leftmost descendants'. A left-recursive non-
terminal is one of its own leftmost descendants.

4.6 An example

Lets take an example and see how the grammar generation works. Let us consider
the input stream (as a �translation� from their meaning of the icons):

The scared people run.

We redefine the S symbol with <sentence>. In the above example the symbol

<sentence> is, as one would expect, the goal symbol. Thus, for example, we could start
with <sentence> and from this derive the sentential form

the <adjective> <noun> <verb>
In terms of the definitions of the last section we say that <sentence> indirectly produces
�the <adjective> <noun> <verb>�. In terms of the definitions of the last section,
<sentence> has produced this sentential form in a non-trivial way. If we now follow this
by applying production 1, second option (<adjective> scared) we get the form

the scared <noun> <verb>
Application of production 3, second option (<noun> doctor) gets to the form

the scared people <verb>
Finally, after applying production 4, second option (<verb> run) we get the sentence

The scared people run.
The end result of all this is often represented by a tree, as in the next figure, which

shows a phrase structure tree or parse tree for our sentence. In this representation, the
order in which the productions were used is not readily apparent, but it should now be
clear why we speak of �terminals� and �non-terminals� in formal language theory - the
leaves of such a tree are all terminals of the grammar; the interior nodes are all labelled
by non-terminals.

 <sentence>
 |
 .------------------+-----------------.
 | | |
 the <verb>
 | |
 .------------. |
 | | |
 <adjective> <noun> run
 | |
 | |
 scared people

 39

 Figure 24. The parse tree for �the scared people run�

4.7 Phrase structure and lexical structure

It should not take much time to see that a set of productions for a real
programming language grammar will usually be divided into two distinct groups. In such
languages we can distinguish between the productions that specify the phrase structure -
the way in which the words or tokens of the language are combined to form components
of programs - and the productions that specify the lexical structure or lexicon - the way
in which individual characters are combined to form such words or tokens. Some tokens
are easily specified as simple constant strings standing for them. Others are more generic
- lexical tokens such as identifiers, literal constants, and strings are themselves specified
by means of productions (or, in many cases, by regular expressions).

As we have already hinted, the recognition of tokens for a real programming
language is usually done by a scanner (lexical analyser) that returns these tokens to the
parser (syntax analyser) on demand. The productions involving only individual characters
on their right sides are thus the productions used by a sub-parser forming part of the
lexical analyser, while the others are productions used by the main parser in the syntax
analyser.

A moment's thought should reveal that there are many possible derivation paths
from the goal or start symbol to the final sentence, depending on the order in which the
productions are applied. It is convenient to be able to single out a particular derivation as
being the derivation. This is generally called the canonical derivation, and although the
choice is essentially arbitrary, the usual one is that where at each stage in the derivation
the left-most non-terminal is the one that is replaced - this is called a left canonical
derivation. In a similar way we could define a right canonical derivation.

Not only is it important to use grammars generatively in this way, it is also
important - perhaps more so - to be able to take a given sentence and determine whether
it is a valid member of the language - that is, to see whether it could have been obtained
from the goal symbol by a suitable choice of derivations. When mere recognition is
accompanied by the determination of the underlying tree structure, we speak of parsing.
A fairly natural way in which we can attempt to solve the problem is to start with the goal
symbol and the sentence, and, by reading the sentence from left to right, to try to deduce
which series of productions must have been applied.

Let us try this on the sentence
the scared people run
If we start with the goal <sentence> we can derive a wide variety of sentences.

Some of these will arise if we choose to continue by using production 1, some if we
choose production 2. By reading no further than �the� in the given sentence we can be
fairly confident that we should try production 1.

<sentence> the <adjective> <noun> <verb>.
In a sense we now have a residual input string �scared people run� which

somehow must match <adjective> <noun> <verb>. We could now choose to substitute for
<verb> or for <adjective> or for the <noun>. Again limiting ourselves to working from
left to right, our residual sentential form <adjective> <noun> <verb> must next be
transformed.

 40

In a sense we now have to match �scared people run� with a residual sentential
form <adjective> <noun> <verb>. We could choose to substitute for any of <adjective>,
<noun> or <verb>; if we read the input string from the left we see that by using
production 3 and 4 we can reduce the problem of matching a residual input string �people
run� to the residual sentential form <noun> <verb>. And so it goes; we need not labour a
very simple point here.

The parsing problem is not always as easily solved as we have done. It is easy to
see that the algorithms used to parse a sentence to see whether it can be derived from the
goal symbol will be very different from algorithms that might be used to generate
sentences (almost at random) starting from the start symbol. The methods used for
successful parsing depend rather critically on the way in which the productions have been
specified; for the moment we shall be content to examine a few sets of productions
without worrying too much about how they were developed.
In BNF, a production may define a non-terminal recursively, so that the same non-
terminal may occur on both the left and right sides of the sign. But this is not our case.
We have imposed the rule of having only one transcription rule for each one of the
elements, meaning that we won�t have conjunctions between the nouns for example. This
idea was taken into consideration at the beginning, but we have considered the fact that a
person, which is in a crisis situation won�t be interested in sending very long and
complicate sentences. We only have to assure that he/she will be able to send to the
server simple, basic sentences.

4.7.1 Parsing techniques

To examine how the syntactical structure of a sentence can be computed, we must

consider two things: the grammar, which is a formal specification of the structures
allowable in the language, and the parsing techniques, which is the method of analyzing a
sentence to determine its structure according to the grammar.

Top-down methods have the advantage that they will never consider word
categories in position where they could not occur in a legal sentence. This advantage
stems from the fact that the parser works from a syntactic category and checks that the
word fits that category.
 To visualize the grammar we will use the notion of transition network consisting
of nodes and labeled arcs. Consider the network named NP � each arc is labeled with a
word category. Starting at a given node, you can traverse an arc if the current word in the
sentence is in the category on the arc. If the arc is followed, the current word is updated
to the next word. A phrase is a legal NP if there is a path from the node NP to a pop arc
(an arc labeled pop) accounting for every word in the phrase. To get the descriptive
power of CGFs, we will use a notation of recursion in the network grammar. A recursive
transition network (RTN) is like a simple transition network, except that it allows arc
labels that refer to other networks rather than word categories. Any language generated
by a CFG can be generated by an RTN, and vice versa.

According to Johnstone [8], when building a new language, the natural design
process starts with the language itself, not with the grammar. The situation is particularly
difficult in the case of bottom up parsers since, even when a grammar has been accepted

 41

by the parser generator and successfully tested it may break when semantic actions are
added.
 While designing a grammar, it is convenient to be able to generate a parser to help
with the process of checking whether the grammar actually generates the required
language. For this process to be effective the parsing technique on which the parser is
based should allow easy transfer between parser steps and grammar rules, so that the
problems identified using the parser can be related directly to the grammar structure.

Top down, recursive descent based techniques are appropriate in this respect. We
will use a top-down approach because it is important for the language design that the
parser structure reflects the grammar structure. Although modifications to the standard
bottom-up parser generators are available they are not well integrated into the parser�s
operations and usually require the user to understand internal details of the parser. Top-
down parsers allow natural placement of semantic actions, recursive descendent parsers
allow trivial implementation of both inherited and synthesized attributes in terms of
parsers� function parameters. On the other way, a harder method to parse is the one
known as shift-reduce or bottom-up parsing, or LR parsing. This technique collects input
until it finds that it can reduce an input sequence with a symbol.

4.7.2 Top-down parsing (LL)

The easiest way of parsing something according to a grammar in use today is
called LL parsing (or top-down parsing). It works like this: for each production find out
which non-terminals the production can start with. (This is called the start set.) Then,
when parsing, we just start with the start symbol and compare the start sets of the
different productions against the first piece of input to see which of the productions have
been used. Of course, this can only be done if no two start sets for one symbol both
contain the same terminal. If they do there is no way to determine which production to
choose by looking at the first terminal on the input.

LL grammars are often classified by numbers, such as LL(1), LL(0) and so on.
The number in the parenthesis tells you the maximum number of terminals you may have
to look at a time to choose the right production at any point in the grammar. So for LL(0)
we don't have to look at any terminals at all, we can always choose the right production.
This is only possible if all symbols have only one production, and if they only have one
production the language can only have one string. In other words: LL(0) grammars are
not interesting.

The most common (and useful) kind of LL grammar is LL(1) where you can
always choose the right production by looking at only the first terminal on the input at
any given time. With LL(2) you have to look at two symbols, and so on. There exist
grammars that are not LL(k) grammars for any fixed value of k at all, and they are sadly
quite common.

4.7.3 Conclusions

 For this application we have preferred the LL parser from different reasons. First
of it is the simplicity. The workings of an LL parser are much simpler. In case if we have
to debug a parser, looking at a recursive-descent parser (a common way to program an

 42

LL parser) is much simpler than the tables of a LALR parser, for example. The second
motive was the introduction of new actions, because in an LL parser you can place
actions anywhere you want without introducing a conflict. The third criterion is the error
repair. LL parsers have much better context information (they are top-down parsers) and
therefore can help much more in repairing an error, not to mention reporting errors. Next
assuming we write a table-driven LL parser, its tables are nearly half the size. And the
last one: the parsing speed � it is very good, but also tool-dependent.

4.8 Competence and performance

Native speakers can differentiate well-formed sentences from ungrammatical
sentences. This is the intuitive grammar or linguistic competence. Formal grammar is
the explicit metalinguistic knowledge of rules of the language. A speaker�s linguistic
performance may and often does fall short of his/her competence. Prescriptive grammar
is judgmental whereas descriptive grammar simply documents speaker performance.
 The value of a defined grammar is given by its general characteristics. The most
important one is the completeness of a grammar; this means that one can express
anything meaningful using the production rules. In our case, there are of course some
imposed limitations, so that we could assure most of it of the semantic approach. But still,
with all these constraints, a sentence can start with any icon, and could end with almost
any icon (to keep the syntactic correctness). This means that the grammar is a quite open
one, things can be explained in different ways, and the way that icons are coming one
after another gives a wide variety of ideas, the things to be transmitted.
 Another way to take into consideration is usability. Even if we have a rather
general grammar, if it is difficult to be used, or if there are inconsistent in it, it is useless.
This application was created to be used, not just to have some nice pictures and a lot of
theory. And from the given test, all of the sequences of icons that have been introduced
were checked both syntactically and semantically in a correct way.
 Even if it works with �unusual� sub-grammar categories, our defined grammar has
also the particularity that it operates with special concepts: the images, the icons. The
binding between the theoretical approach and the practical one is made with the help of
the programming tricks, presented in the next two chapters, the freedom in defining new
objects into the running software.

4.8.1 What is a good grammar?

Many grammars may correspond to one programming language, but there could
be still defined some criteria for a good grammar:
- Capture the logical structure of the language as the structure carries some semantic
information (example: expression grammar);
- Use meaningful names;
- Are easy to read;
- Are unambiguous.

It is difficult to prove the completeness and correctness of a grammar from the
theoretical point of view. The only thing that has proven that was the empirical approach

 43

of the application. All the things show that the grammar that we have defined is following
these criteria.

Chapter 5
Models

Everyone knows that the interface of an application is extremely important,
especially if it is created for human interaction. Even if an application has a very
powerful algorithmic background, for example, if the interface is not user friendly, such a
product has a lot to lose while being displayed on the market. An interface should be
intriguing, smartly created in a more intuitive way than in a logical way, so that the user
should be inclined to test it and then, to use it.
In the latest period of time, one of the main goals of the computer science world, was to
create artificial systems that could interact more and more with the user, in an order that
these system would �simulate� a human behavior.

5.1 Interface

Here is the way that the application looks like:

a

44

 Area 1

 Area 2

 Area 3

 Area 4

 Area 5

Figure 25. The image of the interface � application

There was of course the restriction of dimension to be applied. The window
pplication has the following dimension: 304 x 352, beginning with these because our

 45

final goal: to make this application work on a PDA, where the space of the screen is not
as generous as the one of a desktop computer, or even a laptop.

Area 1
As you can see, the main form is structured in five areas. The icons displayed on

the top of the application window form the first one. They represent the index of the
category they are defined to be part of it.

 Figure 26. The first area of the interface

There are:

- category Crisis represented by the icon

- category Cars represented by the icon

- category People represented by the icon

- category House represented by the icon

- category First Aid represented by the icon

- category Directions represented by the icon

- category Time represented by the icon

 Area 2
 The second area, looking from the top
where the icons from the chosen category will b
of design was given by the fact that the user s
necessary items in the same time, meaning t
category, all the other information should be vi
icons, ending with the area allocated for the inp

Amb

H

Tim
Flames.ico
ulance.ico
Man.ico
ouse.ico
 to
e
h

ha
si
ut

Firstaid.ico

e

Left.ico
 the bottom of the window, is the area
 displayed. The idea of creating this kind
ould have the possibility to view all the
t by displaying the elements from one
ble, starting with the other index � index
 sequence of icons.

.ico

 46

 One important criteria for determining this specific order the icons from one
category, while being displayed, is that the index � icon should be placed as close as
possible to the input OnClick event. The reason is the following: being a �definition� of
the group from which it makes part, it is expected that that specific icon should appear in
our sight as the first one, like a continuation of its role of �idea of the grouping criteria�.

 Figure 27. The display of the Crisis elements on the MainForm

 Area 3

The third area is reserved to the second sequence of index � icons, having the
same expectations like the first level in the application. Lets see here also the grouping in
categories:

category Human Actions represented by the icon

category Information represented by the icon

category Numbers represented by the icon

category Yes/No represented by the icon

One

Yes.i

Help.ico
Bulb.ico
.ico
co

 47

category Special Signs represented by the icon

category Intonation represented by the icon

category military represented by the icon

 Area 4

The fourth area is the one in which we will display the
user will chose. At the first look we have the impression
images, that we are clicking, choosing, sending icons (corresp
we are manipulating data from buttons. Everything that seem
simple button, and the icon is the background image displaye
see in the implementation part, all the needed information i
While selecting a new icon, one could say that we are creating
area. This is totally wrong! We have defined from the beg
maximum number of icons that can be processed at a specif
hidden. Whenever the user selects a new icon, the image of t
on a button from area number four, and we make this button v
like this:

Figure 28. The third, forth and fifth areas of the applica

The last area is the one so called �the icon editor area�, mean
the possibility of navigating through the icons using the purple

to the left with

to the right with

Ques

Tank.ico

Navleft.ico

Navright.ico

Exit.ico
tion.ico
 sequence of icons that the
that we are working with

ondent of an image). In fact
s to be dynamical is just a

d on the button. As we will
s gathered on the buttons.
 a new button in the display
inning seven buttons (the

ic time), which are at start
hat icon is being displayed
isible. The initial area looks

tion

ing that the user will have
 arrows

 48

- to delete an icon from the input sequence using the icon

- inserting a new icon in the middle of the sequence by moving th
course � he will generate the processing of the information by pre
given by the icon

5.2 Testing the application

In order to test this application, we will start by having a goo
the grammar is being defined. It is obvious that not all the sequence
the same time even if we have the next valid sequence of grammar c

<negation> <adjective> <noun> <verb> <adverb
It doesn�t mean that for <noun> all the icons that are takin

category are right to be chosen. In the same manner, after a particu
verbs are allowed, and so on. This problem of solving and determin
an input data is debated in the special section dedicated to the sy
analysis.
 So lets see now the final form of the grammar rules.

S = negation A | number B | adjective C | noun R | verb E | adverb H
A = number B | O
O = verb E | P
P = verb | B
B = adjective C | C
C = noun R | noun
R = sign | D
D = negation F | F
F = verb | G
G = verb E | E
E = adverb | I
I = adverb H | H
H = number J | J
J = adjective K | K
K = noun L | noun
L = adverb

Send.ico
e cursor there, and of
ssing the send button,

Delete.ico
d look at the way that
s of icons are valid, in
ategories:
>

g part in this specific
lar <noun> not all the
ing the correctness of
ntactic and semantic

 49

 The reason for this final version of the grammar will be proved in the section
consecrated especially to the grammar definition. Next, we will create some input data
just to see how the application works.
 Lets generate the next input sequence of icons:

Figure 29. The sequence of icons representing the sentence: The doctor helps three
victims here.

 The first icon has the following information: Text = Doctor, Grammar Category =
noun. The second icon: Text = help, Grammar Category = verb. The third one: Text =
three, Grammar Category = numeral; followed by the icon with Text = victim, Grammar
Category = noun; ending with Text = here, Grammar Category = adverb.
 From the first production rule, the starting symbol, S, will be rewritten with the
rule:
 S -> noun R
 We are positioned now on the second element, which is a verb, so we are looking
for a production rule that starting with the non-terminal R, will generate the terminal
Verb. So the next two rules that will be applied are
 R - > D
 D - > F
 In this point we are checking the next rule more carefully because the actual set
key-word is being found in the rule F -> verb | G, but in this case the icon with the
grammar category �verb� is not the last element in the input data, so neither this rule is
going to be applied. And we go even further.
 F -> verb | G
 G -> verb E | E
 This last rule is a valid one, because the current element is a verb, and we haven�t
reached the end of the sentence. So we are now moving forward in the input sequence,
�chasing� a number, starting with the non-terminal E. We are jumping over the next rule,
cause they are not fulfilling our requirements.
 E -> adverb | I

I -> adverb H | H
 The next rule to be applied is:

H -> number J | J
Keeping in mind the non-terminal, J, and the next icon, which is in this case a noun. The
next rule is not good for us

J -> adjective K | K
And we have reached the rule
 K = noun L | noun
Which is a correct one. We pass next in the input sequence, having to search only for one
more element, an adverb, and the last production rule is a correct one.

L -> adverb

 50

After checking the semantic restrictions, we will generate the output text line,
because this is the goal of this application. In this case it will be:

The doctor helps three victims here.

5.3 Programmatic wrapping of the problem

 To combine the theory with the practical part, to make things as easy as possible,
we have tried to use all the facilities that the software platform puts us at our disposal.
The software that we have used is Visual Studio Professional 2003, Visual C#.
 As all the controls on the form are buttons, because we needed the OnClick event,
we had the idea of extending the basic Button class and add to it some new features. We
needed some information about each button in every moment of the application. The
most interesting part with this approach is that we do not manipulate directly the buttons,
but we are more interested in setting and getting the information contained on a button.
 Let us see what are the new elements added to a button, and most of it: why? If
we were dealing with grammar syntax, and sub-categories of this grammatical point of
view, it would have been useful to know each button which category represents. So, this
is why we have optioned for adding a new field to each button that would get this specific
information. The field is called GrammarCat. That means that each icon is taking part of
one, and only one, category: noun, verb, number, adjective, sign, negation, and adverb.
 If the first presented field is the one who will be interrogated in the syntactical
analysis, for the semantic one we have added a new field, called Subcategory. It will
memorize the connection between the subcategories, giving us a basic meaning of the
sentence.
 The other fields are Category � for keeping �in mind� the category from which it
comes (one of the fourteen ones); Textt � is the text that it will be taken in the translation
from icon to text; Index � an unique index (number) that it can identify an icon.
 To have this information modularized, we have created a new class to make them
atomically, like another field in the list of attributes for a button.
 The IconicInformation class will have only the declaration of the fields, which all
of them should be private,

 private string imagName;
 private int idCat;
 private int indexButton;
 private int subCat;
 private string txt;
 private string grCat;

and setter and getter of each one of these elements. We give next the example of the
setter � getter for Category.

 public int Category
 {
 get
 {
 return idCat;
 }
 set

 51

 {
 idCat = value;
 }
 }

In the same way we have defined the others elements of the application.
 Another class, called CImageButton, makes the connection between a button and
the IconicInformation class. From now on, the buttons that we will have in our project, on
the forms, they won�t have the System.Windows.Forms.Button type, but they will be
instances of CImageButton class. This class is a very special one, using the most used
design pattern, singleton, and it will be presented in the next chapter. The connection
between the button and the special information is made in a very simple way: the element
iconInf is considered to be a new self-standing field on the button, behaving in the same
manner like any other property. For that, we have to define a setter and a getter, in the
unique style of C# development toolkit.

public IconicInformation iconInf
{
 get
 {
 return iconInformation;
 }
 set
 {
 iconInformation = value;
 }
}

 This class extends the Button class, and adds one more element, which is iconInf.
This element is an instance of the IconicInformation class and it will bring all those
information contained there on the new button.

5.3 The meaning of the sentence - the connection between the user interface and the
grammar

 From the interface, we have buttons, from the buttons, we go further to their
specific information; processing that information, and we get the meaning. But the next
question is: what are exactly these subcategories, how are they defined, and why those
rules?
 Let us take one by one these questions, and give them some answers. The basic
idea of this approach, was to define or group the icons in some larger extension in
divisions that would prove their behavior in the application. We have chosen first the
initial categories, the fourteen of them, and spread the icons in such a manner that they
will act alike. What does it mean act alike? Well, it can refer to the fact that they should
have, first of all, the same grammar category, plus, they require the same articles, and
connection words, and so on. The way they will be used is the same: the same context,
only the context differs slightly. Let us take the categories one by one and explain why I
did the specific divisions.

 52

Category Crisis Elements

 First of all we should observe that in this category we have eleven nouns and one
adjective, so, from the start, the adjective, toxic defines a self-standing subcategory.
Flames, the most used word, was at the beginning coupled with electricity and explosion,
as being the major elements in a critical moment, in the way that they are not extremely
concrete, but they are more like concepts than things. We had placed the word flames in
another subcategory, because it requires some specific connection words, for example
with the verbs. The air and smoke are in another category because they are the elements
of the etheric world; on the other hand, the words bomb, gun and knife, are the weapons.
In the last subcategory are placed the words flood, tornado and nuclear threat, that are
less likely to be used, and they have the same demand in the sentence construction. Here
is the table with the items from this category:

Table 1. The structure of the subcategories in the category �Crisis elements�

Flames Electricity

Explosion
Air
Smoke

Bomb
Gun
Knife

Toxic Flood
Tornado
Nuclear
threat

Category Cars

 The elements from this category, they are all nouns, and they have been divided in
three subcategories. We can make a difference between the vehicles and the ways they
are used on. So, road, railway, tunnel and bridge, are grouped together, and the other
elements are spread also in two: bike, and the rest, because the bike is a very light vehicle
and can�t be used in all the written sentences. So, in this case the table looks like this:

Table 2. The structure of the subcategories in the category �Cars�

Ambulance
Car
Police car
Fire truck
Train

Bike Road
Railway
Tunnel
Bridge

Category Directions

 In this situation is elements are all adverbs, adverbs to express distance and place,
and they have been divided after the directions: left, right, up and down, and after
distances: here and there. The table looks like this:

Table 3. The structure of the subcategories in the category �Directions�

Left
Right

Here
There

 53

Up
Down

Category Buildings

 Also in this case all the elements are nouns, and they have been divided in
Buildings: house, building and hospital, elements of the room: door and window, and the
stairs and the elevator, even if the both represent ways of transporting, they do not have
the same behavior in according to the article matrix. The table has the following form:
Table 4. The structure of the subcategories in the category �Buildings�

House
Building
Hospital

Door
Window

Stairs

Elevator

Category People

 In this category we have only nouns, grouped in four subcategories with the next
principles. The word people should define a self-standing subcategory because it
represents a collective noun (the noun that imposes the plural verbal form), the word
dead person is a special case � the impossibility to act. It wouldn�t make sense to add a
moving verb for example after it. Then we have the humans: man, woman, handicap
person and victim, and the intervention teams: soldier, cop, fireman, doctor and bomb
squad. The form of the table is the following:

Table 5. The structure of the subcategories in the category �People�

Man
Woman
Handicap
people
Victim

Soldier
Cop
Fireman
Doctor
Bomb squad

Dead person People

Category First aid

 The elements are in this case nouns too, and they have been placed in different
subcategories according to their use: the treatment things � bandage, medicine, injection
and first aid, elements that sustain life � food and water, lighting things � candle, matches
and lantern, extinguisher and thermo are separated because the ask for specific
connection elements to the other words. This is the table for this category:

Table 6. The structure of the subcategories in the category �First aid�

Bandage
Medicine
Injection
First Aid

Candle
Matches
Lantern

Food
Water

Extinguisher Thermo

 54

Category Human Actions

 This category contains verbs and adjectives, as the state of describing the
condition of a person. So, it was natural to group the adjectives together in one
subcategory, and the adjectives are: blind, deaf and scared. The other words, the verbs,
were very difficult to establish the same way of connecting to the other words. Only two
verbs, which are less likely to be used: note and read, could have been placed in the
same subgroup; all the rest of the verbs define a self-standing subcategory. Here is the
structure for this category:

Table 7. The structure of the subcategories in the category �Human Actions�

Hear See Speak Note

Read
Run Call Hit Want Help Search Blind

Deaf
Scared

Category Information

 In this category we can find only nouns, nouns which are divided in two groups:
one of them is the word information, which is the general description of all the items, and
the rest of the words: computer, mobile phone, telephone, radio and tv. This category has
the following construction:

Table 8. The structure of the subcategories in the category �Information�

Information Computer

Mobile phone
Telephone
Radio
Tv

Category Special Signs

 At the first look it may appear that this category contains everything that didn�t fit
in the other categories. This fact is false, due to the fact that these elements, being
adverbs, noun, verb or a negation, have the goal of changing totally the meaning of the
sentence, like it is with the negation, or it gives the final form of the idea. As we had
noticed already, we have four grammatical categories here, and it is obviously that we did
the spread in subcategories after this criteria. The table looks like this:

Table 9. The structure of the subcategories in the category �Special Signs�

Blocked
Unblocked
Disorder

Exit No Move

Category Military

 55

 The following category is the one of military equipments, which from the
grammatical point of view, they are all noun. They were still divided in three parts,
according to the medium in which they appear: land, water and sky. So the table has the
construction:

Table 10. The structure of the subcategories in the category �Military�

Airplane
Fighter
Helicopter

Tank Submarine
Boat
Cruiser

Category Numbers

 In this specific category, we have, of course, only numerals, or as we had defined
them: numbers. They are divided in two: number one in one subcategory, and the rest in
the other part, due to the fact that one asks for the singular form of the noun, and the rest
words ask for the plural form. So the table looks like this:

Table 11. The structure of the subcategories in the category �Numbers�

One Two

Three
Four
Five
Six
Seven
Eight
Nine
More

Category Intonation

 The elements from this category, just two of them, they are some special
grammatical element � signs. The behavior between the interrogative and exclamation
item are totally different. Only from the fact that we have defined a template construction
of building the text for the question sign, gives us a lot of reasons for dividing the two
elements in two distinctive subcategories. And the Table has the following form:

Table 12. The structure of the subcategories in the category �Intonation�

? !

Category Yes/No

 In this category, we have only adverbs of time, and they are not usable yet in our
application. Why? The presence of this type of adverbs require the changing of the
grammar definition, giving the possibility of creating more and more complex sentences,
which is out of the range of the goal of this application, until now at least.

 56

Category Time

 Even if for this category there is the same situation as the previous one: Yes/No
symbols, meaning they are not usable in the application, they were divided in two: time,
and the two antonyms: day and night.

5.3.1 Conclusions

We have to admit that all this classifications are pure intuitive, and they were

done in a way to help us with the solving of the problem, only in the semantic approach
of the project.

Chapter 6
Implementation

 The first goal of any approach in solving a problem is to make it work, but the
true value of an application, it may be considered the safety of the code and the elegance

 57

of writing it. Usually, when a part of code is being written, there is slight chance that it
will remain like that, talking of course of the valuable projects, the large and professional
ones. The code says a lot about the application and the one that has build it, and it is also
a way of communication between programmers, besides providing the documentation for
it. Let us start now the presentation of the small programming tricks.

6.1 Design patterns

Objects, Inheritance, Encapsulation, Abstractions - we've heard a lot about these
concepts and orthodoxy use these in our daily work. Object-oriented software is changing
the way development is being done and has come into vogue. It is now widely recognized
that Object-Oriented software is essential to complex, scaleable software development,
and the key to distributed computing. We many-a-times observe that while solving
various types of business problems, we come across similar issues that can be solved by
using same design methods. Having done it in the past makes it easier for us to solve it
the second time. These recurring solutions to Software problems are termed as Design
Patterns.
 But what are exactly the patterns? A definition of this concept could be the
following: A pattern is a named, reusable solution to a recurrent problem in a particular
context.
 The goal of patterns within the software community is to create a body of
literature to help software architects resolve recurring problems encountered throughout
the software development. A Pattern is evolved when we realize that we are trying to find
a solution to a problem that has been already dealt with; that is the time when one can
make the problem as well as the solution global so that it can be applied verbatim to the
analogous situations in future. Each patterns has some elements attached to it viz. name,
purpose, problem that it solves, constraints and forces that have to be considered etc. The
primary focus is not so much on technology as it is on creating a culture to document and
support sound engineering architecture and design. In fact, most patterns are discovered
rather than written. Instead of reinventing a solution all you have to do is learn the pattern
and know when you apply it.

6.1.1 Singleton

There are many patterns discussed, but one of the most widely used and the

simplest is the Singleton pattern, and we have used it in our application. Its intent is to
ensure that a class has only one instance, and to provide a global point of access to it. The
situations where this kind of pattern can be applied are many; there can be many ways to
implement this pattern. The first and foremost that comes into the mind is to have a
global variable that keeps the count of the objects created. But in true Object Oriented
paradigm, global variables are not allowed (example Java and C#). We'll take a look on
one such way to get the feel of it.

 58

Figure 30. Singleton Class

We can create a static method to create an instance of a class. We make the
constructor private so that if someone tried to use the conventional method of creating an
instance, that way just won�t be possible. This way, the instance can only be created
using the static method.

We have used this design pattern twice: once in the Configurator class, the class
that provides the input data for the application, that fills the matrixes and the lists, so that
the information could be processed; and the second one is the class called CSender, that
takes part of the client area in the communication on the sockets, but all this elements
will be developed in the next sections.

Let us take like example the definition and implementation of the Configurator
class. First we have defined a variable, an instance of the class. It should, of course, be
private so that the encapsulation will be respected, and we have also added the fact that
this instance is a static one, because we should fill in the data only once, and this data
should be global for all the other classes that will use them.

//singleton instance
private static Configurator instance = new Configurator() ;

The particular element comes with the constructor, which we know that usually it

is declared to be public.

//private constructor, as we have a singleton instance
private Configurator()
{
}

Even the name of this specific design pattern suggests the action of the class its

self. It gives the idea of being unique � single. By making the constructor private, even if
it does not do anything in particular (but it might do, eventually), we should have at least
a method in which we can get the instance of the class, so that is why we have build a
new method to provide this information.
//returns the singleton instance
public static Configurator GetInstance()
{
 return instance ;

 59

}

By reusing already established designs, one gets the benefit of learning from the

experience of others. We do not have to reinvent solutions for commonly recurring
problems. If we have the patterns ready on specific domains then we can concentrate on
more macro-level problems while creating a design rather than boggling into small-
unadorned technicalities. When working in a team, teamwork requires a common base of
vocabulary and a common viewpoint of the problem. Design patterns provide a common
point of reference during the analysis and design phase of a project.

In our context, sometimes it happens that we are working with great endeavor to
accomplish a certain task, that some or the other had already achieved. Thus, we must try
to standardize, systematize, and institutionalize the efforts applied on such problems and
have some global Design Patterns, those of which can be used by each one of us with
much ease, reducing the design and the development time.

6.2 Creating the buttons

 We have seen in section 5.3 the definition of the information that we need to build
our approach on the problem. But let us see now in fact the way these elements are
mixing with the application. We have defined for this a new class, called CimageButton,
a class that will extend the basic C# class and type � the Button. So, obviously, the
constructor of our class should call the constructor of the base class.

public CImageButton() : base()
{
 initializeComponent() ;
}

 In this constructor we call the method initializeComponent(), in which we assign
all the information defined in the IconicInformation to the new Button. So, in this
moment, our buttons will contain besides the standard information from a normal button,
the ones from our special class, encapsulated in the name iconInf.

public IconicInformation iconInformation ;
private void initializeComponent()
{
 iconInformation = new IconicInformation();
}

6.3 Configuration of the data

 We have mentioned above that this class is under the singleton design pattern
style, so we won�t present once again the way that it is defined or used. Why do we need
this kind of class, may be a very good question. Before answering to this question, first of
all let us see what are the sources of this application. We have a file in which we have the
grammar production rules, and this information is the base of our grammar checker, the
syntactical part. This file is also listed in appendix????? The next helping element is the
file with the network structure of the subcategories, and this will generate in part the
semantic part of the problem. You can check the content of this file in appendix ????

Another file we use is the one in which we are memorising the nouns that have a plural
verbal form, so that it will be easy just to place the appropriate verbal form, according
with the ATN. The last file we use was defined just for the fact that we want to give more
meaning to the output sentence, making it more and more meaningful, so that it won�t
look like we are sending messages in a language used by a five year old kid.

6.3.1 Loading the rules

 For this part, which is the first step in the syntactical analysis, we have defined
another class that is the template of the construction of the grammar rules, being from
now on a new type in our application. The form of the CRule, the class we are referring
to, is very simple � it just creates the form of a grammar rule:
 Leftside = Terminal Nonterminal.
Or
 Leftside = Terminal.

public CRule(string leftNT, string rightNT, string terminal)
{
 this.leftNT = leftNT;
 this.rightNT = rightNT;
 this.terminal = terminal;
}

 The constructor of this class is a trivial one, it is just assigning the elements of the
class, elements for which we have also defined a getter, so that we could access them in
any moment.
 In order not to make the file very long, we have preferred a more condensed form,
equivalent with the standard one, in which the first rule, for example, would have had the
next form:

Figure 40. Th

 But we had pr
S = negation A | num
 After splitting
of strings, because w
that need to take int
applied. All the cond
that we test that we h
the next element the

S = negation A
S = number B
S = adjective C
S = noun R
S = verb E
S = adverb H
60

e standard form of the first production rule

eferred a more compact one:
ber B | adjective C | noun R | verb E | adverb H
 the file into lines, we will start with the second element of the array
e will �jump� over the elements �S =�. There are different elements
o consideration, being different types of rules that they might be
itions are running until we still have elements to check, plus the fact
ave reached the end of the line, or the situation in which we have in

alternation sign, which gives us one more production rule.

 61

while(currentPos < tokens.Length)
{

if(currentPos + 1 == tokens.Length ||
String.Compare(tokens[currentPos+1] , ‘|’) == 0)

 {

 If we look it more closely, we can observe that the terminals are noted with a low
capital letter, and the non-terminals, are starting with a high capital letter. So, for us is
very easy to determine if the current element that is to be tested is a terminal or not, just
to chose the way to fill the next rule. So, if it is indeed a terminal, it means that we have
the next case:
 Leftside = terminal
 Like for example: P = verb, and in this case we do not have a non-terminal in the
rule, meaning this a finishing production rule � we can not go any further with our check
as we have no other option to follow.
 If the current element is a non-terminal, and the next element is the alternation,
that means that we have no terminal in the production rule and its form is like this:
 Leftside = non-terminal
 Like for example, A = O, and then we will �jump� over two elements so that we
will go on with our checker.

if(Char.IsLower(tokens[currentPos], 0))
{
 rule = new CRule(tokens[0], null, tokens[currentPos]) ;
}
else
{
 rule = new CRule(tokens[0], tokens[currentPos], null) ;
}
currentPos += 2 ;

 If none of these cases are fulfilled, that means that we have a full production rule
with the form:
 Leftside = terminal Non-terminal
 Like in the case of: B = adjective C, and we will �jump� over three elements.

else if(currentPos+ 2 == tokens.Length ||
String.Compare(tokens[currentPos+2] , ‘|’) == 0)
{
 rule = new CRule(tokens[0], tokens[currentPos+1],

tokens[currentPos]) ;
 currentPos += 3 ;
}

 For the fact that these information might be required multiple times, so that we
have them created and loaded just once, and use them as many times as we want, we have
created like a setter and a getter for this section. What we have seen until now is the setter
part, and this one will only be executed only once. In case we want to use the elements
that have been added to the rules of the grammar, we have defined the next method:

 62

public ArrayList GetRules()
{

if(rules == null) //the rules have not been loaded yet
 {
 LoadRules() ;
 }

return rules ;
}

 In the MainForm we call the creation of the rules, so that we have already these
elements. But, if we look closer to the getter method, we test once again the loading of
that part. This is what is called, a safe code. In each moment a programmer should look
very close to all the possibilities that they might appear. In our case, we have doubled
check the loading of the information � just in case some other developer of the project
would change any part of the code that may generate the lose of consistency of the code.

6.3.2 The semantic elements

 This step in defining the elements that we need is trivial, from the fact that from
the file that includes the network between the subcategories, after splitting it into lines,
we assign the semanticMatrix with 1 if there is any connection between two
subcategories, and the default value, 0, if there is no such connection. So, if we have in
the file the line: cat1 cat2, that means that semanticMatrix[cat1, cat2] =1, else
semanticMatrix[cat1, cat2] = 0. This matrix in not a symmetrical one, meaning that if we
have semanticMatrix[cat1, cat2] = 1, that doesn�t necessarily require that
semanticMatrix[cat2, cat1] = 1 too. But this case can happen easily.
 This matrix, as we have mentioned above, gives us the semantic checker of the
input sequence of icons. As we have done with the syntactical approach too, we also
check twice the creation of this matrix, like making a setter � which is called in the
MainForm, and a getter � that is at the disposal of the other classes.

public int[,] GetSemanticMatrix()
{
 if(semanticMatrix == null)
 {
 LoadSemanticMatrix() ;
 }
 return semanticMatrix ;
}

 6.3.3 Articles between the words

 This part is a small extension of the way we have deal with the semantic one. It is
also based on the subcategories, adding afterwards, on the same line, the text that should
be placed between the two elements from that specific subcategory. So, one line from this
file has the following form: cat1 cat2 text. The fact that semanticMatrix[cat1, cat2] = 1,
doesn�t imply the fact that the article Matrix[cat1, cat2] should contain something apart
from the default assignment. The two matrixes are related in the way that if article
Matrix[cat1, cat2] != �� , which is the empty string, there should definitely be that

 63

semanticMatrix[cat1, cat2] = 1. In a different way said: the semanticMatrix includes the
article Matrix. Also, this last matrix is not a symmetrical one.

6.3.4 Plural nouns

 The last part of the configuration step is the one of creating a list out of file that
memorize the nouns that have a plural form. This thing is done automatically by splitting
the file into words.

6.4 Syntactic analysis

 The entire syntactic checker is made in the class CGrammar. This class contains
only two methods: one that gives an approximate production rule, GetRule, and the next
one, CheckPhrase, determines if the rule is a correct one.
 The first thing we should take into consideration is that the non-terminal that
gives the transcription is the same with the non-terminal that we are looking for, element
that is memorized in the variable leftNT. If we have found such a rule, we check
afterwards if the terminal is the same too. It may sound obvious that we will find such a
rule according to the imposed context, but we have to remember that a rule has the form
 Leftside = non-terminal terminal
 For this kind of rules, there is the possibility that either the non-terminal, or the
terminal should be null � the case in which they are both in the same time null is
permitted only by grammars that allow the creation of the empty string, and this is not
our case. We have defined in our file the rules in a more �relaxed� way, but in fact, the
number of the possible production rules is given by the possibilities that one symbol can
produce multiple rules, multiple elements. So, these conditions are not trivial.

if (String.Compare(rule.LeftNT(), leftNT) == 0)
{
 if (String.Compare (rule.Terminal(), terminal) == 0)
 {
 if(isLastWord && rule.RightNT() == null ||
 !isLastWord && rule.RightNT() != null)
 {
 return rule;
 }
 }

 In case we do not find a rule that transcripts something, that makes us go further
with the checker along the sequence of icons, there can be rules that just make a simple
movement through the rules of the grammar, having the form:
 Leftside = non-terminal
 But with the condition that we have passes from our LeftNT element, to another
one. In this situation we return an auxiliary production rule, also called temporary one.

if (rule.Terminal() == null)
{
 bestMatch = rule;
}

 64

 The correctness of a sequence is also given by some other factors: the number of
elements should conduct to a terminal, there should be another production rule for a non-
terminal in case the number of elements are not over, and so on. So, we start the checker
from the fact that we have a production rule. In case we do, that means that one element
from the input sequence was analysed, the active non-terminal that will create the
transcription rule will have now the value of the RightNT, the non-terminal that was on
the right side of the transcription.

while (currentWord < words.Length && (rule = GetRule(leftNT,
words[currentWord], currentWord+1==words.Length))!= null)
{
 if (rule.Terminal() != null)
 {
 currentWord ++; // we have a rule of the type A -> bB
 }
 leftNT = rule.RightNT();
 if(leftNT == null)
 {
 break ; //parsing has finished before the words are over
 }
}

 We should also considerate the fact that the grammar rules might seem
�insufficient�, meaning that we are still looking for production rules, but the lines from
our file are over.

if(currentWord != words.Length)
{
 return false; // we have no more rules to check
}
return rule.RightNT() == null ; //we check if the last rule has the
form A -> a

6.5 Semantic analysis

The semantic checker is much more simpler than the syntactical one, and we have
used the ideas of Schank [12], that proposed the network between certain categories of
elements, in order to generate in a way, not a complete one, the meaning of a sentence.
This method can be applied only for the cases in which the vocabulary in not very
general, having a special topic. Also, the network between the categories should be as
robust as possible. For example, if we have three categories: cat1, cat2 and cat3, and
there is a connection between cat1 and cat2, cat2 and cat3, even cat1 and cat3, and
according to our network � everything is correct, but it may be the case that the whole
sequence cat1 cat2 cat3 has no meaning what so ever. So this is just a fragile way of
imposing some coherence in the sentence. The reason we went for this approach, was that
we have a small vocabulary, and the sequence of icons are imposing some logical
constrains, just enough to make it understandable. The only condition that we have to
check is that between two icons, there is the network assigned, meaning the value in the
semanticMatrix should be 1.

for(int i = 0; i < subcat.Length-1; i++)
{
 if(matrix[subcat[i],subcat[i+1]] != 1)
 {
 valueToReturn = false;
 }
 if(subcat[i] == 10 && (i!= 0 || i != subcat.Length - 1))
 {
 valueToReturn = false;
 }
}
return valueToReturn;

The only thing that might cause some problems, is the use of the adverb that
express space: here and there. They are one of the most used icons, and this fact was
generating the possibility of introducing sentences with no meaning. The constrain that
had to be added was that this particular two icons should be used either in the beginning
of the sentence, or in the very end. Even the grammar allows us to add first an adverb and
then probably a number, or a noun, this is not the case with the icons placed in the
subcategory numbered with 10.

6.6 Giving the meaning to the sentence

 We have mentioned many times already the fact that our grammar is a very
flexible one, that the user can start the sentence with whatever element he/she wants, and
ending it almost in the same way. The fact that there are some concepts in the real life
that have absolutely no graphical representation, made us use some well-defined
structures, also called templates.

6.6.1 Templates

6.6.1.1 �There is � There are�

The templates are the constructions that are activated immediately, if there are
some conditions to be fulfilled. In our case we have defined three templates. The first of
them is the one with the possible following constructions:

<negation> <noun>
<negation> <number> <noun>
<negation> <number> <adjective> <noun>
<negation> <adjective> <noun>

 There is the possibility of adding the adverbs here and there at the end. This
particular template has the default beginning: �There is�, �There are�. For example, for the
next sequence of icons, has the meaning �There are two victims here�:

65

 66

 Figure 41. The sequence of icons with the meaning: �There are two victims here.�

 The conditions that have to be fulfilled are the following:

- Just one noun;
- No verbs;
- Assertive sentence;
- There shouldn�t be already an adverb on the first position.

if(nounCount == 1 && verbCount == 0 && words[0] != ‘adverb’
 && text[text.Length - 1] != ‘?’)
{
 output += ‘There ‘;
 bool aux = false;
 for(int i = 0; i < nounFileElements.Length; i++)
 {
 if(String.Compare(nounFileElements[i], text[text.Length-2])
== 0)
 {
 output += ‘are ‘;
 aux = true;
 }
 }

The plural form of the template: There is; There are, is given by the presence of
the numerals that are greater than one, or by the nouns that have a plural form.

for(int i = 0; i < words.Length; i++)
{
 if(words[i] == ‘number’ && String.Compare(text[i],’one’) != 0)
 {
 output += ‘ are ‘;
 aux = true;
 }
}
if(aux == false)
{
 output += ‘ is ‘;
}

6.6.1.2 Question template

 The second template that we have defined is for the Wh-questions, from which we
are creating only the �Where� type question. These are the accepted constructions, where
sign is the symbol �?�:

 <negation> <noun> <sign>
 <number> <noun> <sign>
 <adjective> <noun> <sign>

 <number> <adjective> <noun> <sign>

 The main condition for this template is the presence of the question symbol on the
last position of the sequence of icons, having in front of it a noun. The case where this
element is placed on the first position, or somewhere in the middle, is not a valid one.
The default first word is �Where�. Next, we should establish if the noun is in the plural
form, in the same manner as we did in the previous example.

if(String.Compare(text[text.Length-1], ‘?’) == 0)
{
 output += ‘Where’;
 bool aux = false;
 for(int i = 0; i < nounFileElements.Length; i++)
 {
 if(String.Compare(nounFileElements[i], text[text.Length-2])
== 0)
 {
 output += ‘ are the ‘;
 aux = true;
 }
 }
 for(int i = 0; i < words.Length; i++)
 {
 if(String.Compare(words[i], ‘number’) == 0
 && String.Compare(text[i],’one’) != 0)
 {
 output += ‘ are the ‘;
 aux = true;
 }
 }
 if(aux == false)
 {
 output += ‘ is the ‘;
 }
}

 Let us also give an example of the way this template works. Here is the sequence
of icons:

Figure 42. The sequence of i

6.6.1.3 First person te

The last template tha
is the case when we do no
replace a pseudo-elliptical s
concept of �I� is very cripti
generating confusions. In the
67

cons with the meaning: �Where are the flames?�

mplate

t we have creates is the one of the first person singular. This
t have a noun in the beginning of the sentence, having to
ituation. Why we do that? For the simple reason that the
cal and abstract to be expressed by a simple icon, without
 same time, we have to define an application for the user, so

 68

that he/she could express and transmit what he/she sees. And the constructions of the
type: �I see�, �I hear�, etc. make the communication with the server site in a more human
way.

Like in the other cases, there are some situations that are generating this template,
and we first present it in a schematic form:

<verb>
<negation> <verb>
The conditions for applying this template are: no noun in the beginning, on the

first position there should be either a verb, or a negation followed by a verb. In the
negative form of the verb, the default words would be �I can�, and in the other cases, just
�I�.

if(words[0].CompareTo(‘verb’) == 0)
{
 output += ‘I ‘;
}
if(words[0].CompareTo(‘negation’) == 0 && words[1].CompareTo(‘verb’) ==
0)
{
 output += ‘I can ‘;
}

6.7 Client � server side

Network programming in windows is possible with sockets. A socket is like a

handle to a file. Socket programming resembles the file IO, as does the Serial
Communication. You can use sockets programming to have two applications
communicate with each other. The applications are typically on the different computers
but they can be on same computer. For the two applications to talk to each either on the
same or different computers using sockets one application is generally a server that keeps
listening to the incoming requests and the other application acts as a client and makes the
connection to the server application. The server application can either accept or reject the
connection. If the server accepts the connection, a dialog can begin with between the
client and the server. Once the client is done with whatever it needs to do it can close the
connection with the server. Connections are expensive in the sense that servers allow
finite connections to occur. During the time client has an active connection it can send the
data to the server and/or receive the data.

The complexity begins here. When either side (client or server) sends data the
other side is supposed to read the data. But how will the other side know when data has
arrived. There are two options - either the application needs to poll for the data at regular
intervals or there needs to be some sort of mechanism that would enable application to
get notifications and application can read the data at that time. Well, after all Windows is
an event driven system and the notification system seems an obvious and best choice and
it in fact is.

As I said the two applications that need to communicate with each other need to
make a connection first. In order for the two application to make connections the two
applications need to identify each other (or each other's computer). Computers on

 69

network have a unique identifier called I.P. address which is represented in dot-notation
like 10.20.120.127 etc. Lets see how all this works in .NET.

Socket programming in .NET is made possible by the Socket class present inside
the System.Net.Sockets namespace. This Socket class has several method and properties
and a constructor. The first step is to create an object of this class. Since there is only one
constructor we have no choice but to use it.

Here is how to create the socket:

m_socListener = new
Socket(AddressFamily.InterNetwork,SocketType.Stream,ProtocolType.Tcp);

The first parameter is the address family, which we will use, in this case,
interNetwork (which is IP version 4) - other options include Banyan NetBios, AppleTalk
etc. (AddressFamily is an enum defined in Sockets namespace). Next we need to specify
socket type: and we would use reliable two way connection-based sockets (stream)
instead of un-reliable Connectionless sockets (datagrams). So, we obviously specify
stream as the socket type and finally we are using TCP/IP so we would specify protocol
type as Tcp.

Once we have created a Socket we need to make a connection to the server since
we are using connection-based communication. To connect to the remote computer we
need to know the IP Address and port at which to connect. In .NET there is a class under
System.Net namespace called IPEndPoint, which represents a network computer as an IP
address and a port number. The IPEndPoint has two constructors - one that takes an IP
Address and Port number and one that take long and port number. Since we have
computer IP address we would use the former

public IPEndPoint(System.Net.IPAddress address, int port);

As you can see the first parameter takes an IPAddress object. If you examine the
IPAddress class you will see that it has a static method called Parse that returns
IPAddress given a string (of dot notation) and second parameter will be the port number.
Once we have endpoint ready we can use Connect method of this Socket class to connect
to the end point (remote server computer). Here is the code:

System.Net.IPAddress ipAdd =
System.Net.IPAddress.Parse(‘130.161.157.235’);
System.Net.IPEndPoint remoteEP = new IPEndPoint (iAdd,8221);
m_socClient.Connect (remoteEP);

These three lines of code will make a connection to the remote host running on

computer with IP 130.161.157.235, the IPAddress from the computer that I have used at
TU Delft university, and listening at port 8221. If the Server is running and started
(listening), the connection will succeed. If however the server is not running an exception
called SocketException will be thrown. If you catch the exception and check the Message
property of the exception in this case you see following text:

�No connection could be made because the target machine actively refused it.�

 70

Similarly if you already have made a connection and the server somehow dies,
you will get following exception if you try to send data.

�An existing connection was forcibly closed by the remote host�

Assuming that the connection is made, you can send data to other side using the
Send method of the Socket class. Send method has several overloads. All of them take a
byte array. For example if you want to send �Hello There� to host you can use following
call:

try
{
 String szData = �Hello There�;
 byte[] byData = System.Text.Encoding.ASCII.GetBytes(szData)S;
 m_socClient.Send(byData);
}
catch (SocketException se)
{
 MessageBox.Show (se.Message);
}

Note that the Send method is blocking. This means the call will block (wait) until
the data has been sent or an exception has been thrown. Similar to Send there is a Receive
method on the Socket class, but this part will be used only in the next versions of the
application, when there will be a communication between the client and the server. Right
now, there is only a basic communication on sockets, the client sends the translation of
the input sequence of icons, and the server does nothing else but receiving this
information.

6.8 Hints

 Until now we didn�t discuss bout the situation when the sequence of icons is not a
valid one. What should be done in this situation? One of the ideas was that we should
notify the user that the input is not correct, syntactically or semantically, by lightening a
warning bulb on the MainForm, like the Windows Warning System works � placing an
icon on the task bar, on the very right position. In addition to this thing, there was the
possibility of giving to the user some hints, like in Microsoft Word for example. This
thing could have been a very difficult task, having three possibilities to do this: deleting
the less feasible icon, switching the position of two icons after some criteria, and the last
of them is inserting a new icon on a specific position.

All these elements are very useful, and important algorithms could be constructed
on them. But our approach is the following: why to cure, than to prevent. We refer now
not at the algorithms for giving to the user of some hints, but at the fact that we will
display every time for him only the icons that could create a valid sequence of icons.

In this first phase of the project, we will give only the semantic hints, meaning
that after choosing an icon, on the moment when the user will browse through the

 71

categories of icons, only the ones which are related semantically with that first icon that
has been introduced. And so on. This is a very practical and quite simple method of
taking care of the correctness of the input data, but we are also helping a lot the user to
choose more easily the icons. In the other approach, with giving the hints in the end, with
some very complicated background, the user had to face every time all the icons from all
forms, looking in a confused way for the most appropriate one. In this situation, we are
showing him what are the options at a very specific moment. Let us see now how we do
that.

int subCathegory = ((IconicInformation)list.ToArray()[list.Count-1]).
Subcategory ;

 We start all the time to check the correctness of the input data from the last
element that has been introduced, thinking that in a crisis situation the user will have to
create fast some sentences, and he will not be interested so much in navigating inside the
icons, to change them. It has been proven actually that if one realizes that he introduced
an element wrong, he will delete the sequence of icons, or words until it reaches that
point, and enters the correct element; instead of preferring to navigate backward, deleting
one item, and then navigating back. But my supervisor wished for me to create an icon
editor, so in this case, if the user wants to navigate and insert in the middle of the
sequence of icons, the basic grammar checker will be done.
 At the beginning of the application, we have started the interface part, by creating
one MainForm, and fourteen secondary forms for each one of the categories. But this was
not an elegant method to solve things, because every time we were clicking on one index
� icon, a new forms was opened, and above that another one, and so one. So, to adapt this
method, making it more elegant, we have added a panel on the third area of the
MainForm. On this panel we will display the icons for a specific category, without
needing to create over and over again a new window. It is not only inefficient, but also
not nice in appearing.

IEnumerator controlEnumerator = pnCurrentCat.Controls.GetEnumerator() ;
while(controlEnumerator.MoveNext())
{
 if(controlEnumerator.Current is CImageButton)
 {
 CImageButton currentButton =
(CImageButton)controlEnumerator.Current ;

 currentButton.Visible =
semanticMatrix[subCathegory,currentButton.iconInf.Subcategory] == 1 ;
 }
}

 Creating an enumerator for the panel, we take one by one all the controls from it,
the ones that have CImageButton type, and add to the panel, and make visible only the
buttons that have a semantic connection with the last element from the list.
 In order to load them practically, we have to make them a copy, and when we
refer to them, we are speaking about the buttons. We can�t access the buttons from

 72

another form. It is not logical correct that a button should be positioned in two placed at a
time.

IEnumerator controlEnumerator = form.Controls.GetEnumerator() ;

while(controlEnumerator.MoveNext())
{
 Control c = (Control) controlEnumerator.Current ;
 if(!(c is CImageButton)) continue ;
 CImageButton currentButton = (CImageButton)c ;
 //create a clone of the button
 CImageButton cib = new CImageButton() ;
 cib.Size = c.Size ;
 cib.iconInf = currentButton.iconInf ;
 cib.Left = c.Left ;
 cib.Top = c.Top ;
 cib.Image = currentButton.Image ;
 cib.Click += new EventHandler(imageButtonClick);
 //add the button to the panel
 pnCurrentCat.Controls.Add(cib) ;
}

Chapter 7
Testing � the user manual

 The application can be tested and downloaded from my local web page:

http://www.kbs.twi.tudelft.nl/People/Students/J.Tatomir/

 The steps to test this application are easily to detect, but they are still constraining
the user to pass certain stages. First of all, we have to make sure that we have the proper
virtual machine. This project was build like a server � client one, and the server site
should be the one who is started the first one. The server has to establish its status as
being available, and to be prepared to accept data from the client side. Here is the form
that will appear:

 Figure

 On th
listen on the
main form for
communicatio
the receiving
 After
running this a
server. The w
the condition
form:

 43. The server form

is form, press Start Listening. From this moment the server is prepared to
port 8221, the same port that the client application uses to send data. The
 the server also includes an area that could be used in the future for the real
n with the client, but for the moment, we will use only the area dedicated to

of the data.
starting the server site, we are prepared to start the client side. While
pplication, a window is being displayed asking for the IP address of the
hole project can run on the same machine, or on different machines, with
that these two ones are connected in the network. Here is the image of the
73

http://64.4.10.250/cgi-bin/linkrd?_lang=EN&lah=a6afd93c94d21ed9bad7233997465f69&lat=1070619608&hm___action=http%3a%2f%2fwww%2ekbs%2etwi%2etudelft%2enl%2fPeople%2fStudents%2fJ%2eTatomir%2f

 Figure 46. Form asking for IP address

 After introducing the IP address, press ok. The next image will appear:

 Figure 4
 Starting
he wants to exp
after choosing
sequence, speak
create the input
For example, it
74

7. The main application- the starting frame
 with this moment, the user can introduce the icons that can form the idea
ress. At the beginning, he can choose any icon, all being available; but

one icon, we will display only the icons that can lead to a correct input
ing from semantic point of view. In this way it is easier for the user to

 sequence, because he doesn�t have to bother with illogical combinations.
is obvious that after a number there cannot follow a verb.

 Another step would be to have a minimum base knowledge about the structure of
the grammar. One should not to be surprised by the fact that by the moment, we are doing
only a semantic restriction, and there are still some sequences of icons, that even they
have passed with success after the semantic checker, from the point of the syntactical one
it will not. But this will be corrected, or continued in the second part of the development
of the project.
 But let us give a basic example of how the project is working. For example, we
will like to start with �Man�, and then we will like to add a verb, a human action. We will
notice that from the all the initial icons, we will have displayed only some of them � the
adjectives: scared, blind and deaf won�t appear. And the form looks like this:

 Figu

Chapte
Conclus

Related wor

Initially, even
Traumatized b
of shock and d
75

re 48. The Human Actions form after inserting the �Man� icon

r 8
ions

ks

 these strategies do not always work for those
y the sudden onset of aphasia, with stiff bodies in a state
epression. A better strategy would be to utilize the

 76

origins of written communication; very simple symbols.

Further work
Language learning through icons.

References

[1] Allen, J. - Natural Language Understanding � Benjamin/Cummings Publishing
Company, Inc., 1987

[2] Callan, R. � Artificial Intelligence � Palgrave Macmillian, 2003.

[3] Castagliola, G., Tortora, G., Arndt, T. � A Unifying Approach to Iconic Indexing for
2-D and 3-D Scenes � IEEE Transactions on Knowledge and Data Engineering, vol. 4,
no. 3, June 1992

 77

[4] Chandler, D. - Semiotics: the Basics (The Basics) - Routledge, an imprint of Taylor &
Francis Books Ltd, 2001

[5] Cook, G. - The Discourse of Advertising - Routledge, London, 1992

[6] Eco, U. - A Theory of Semiotics - Bloomington, IN: Indiana University Press/London:
Macmillan, 1976

[7] Hayes-Roth, F., Waterman, D. A., Lenat, D.B. � Building Expert Systems � Addison-
Wesley Publishing Company, Inc., Massachusetts, 1983

[8] Horton, W. � The Icon Book: Visual Symbols for Computer Systems and
Documentation � John Wiley & Sons, Inc., 1994

[9] Johnstone, A., Scott, E. � Generalized recursive descendent, part I Language design
and parsing - CSD � TR � 97 � 18, 1997

[10] Knuth, D. E. � On the Translation of Languages from Left to Right � Inf. Contr. 8,
1965.

[11] Krulee, G. K. � Computer Processing of Natural Language � Prentice-Hall
International Editions, 1991.

[12] Morris, Charles W - Foundations of the Theory of Signs. Chicago: Chicago
University Press, 1970

[13] Moyne, J. A. � Understanding Language, Man or Machine � Plenum Press,
NY&London,1985.

[14] Naur, P. - Revised Report on the Algorithmic Language ALGOL 60. -
Communications of the ACM, Vol. 3 No.5, pp. 299-314, May 1960.

[15] Negnevitsky, M. � Artificial Intelligence, A Guide to Intelligent Systems � Addison-
Wesley, Pearson Education, 2002.

[16] Peirce, C. S. - Collected Writings (8 Vols.). - Ed. Charles Hartshorne, Paul Weiss &
Arthur W Burks, Cambridge, MA: Harvard University Press, 1931

[17] Russel, S., Norvig., P. � Artificial Intelligence, a modern approach � Prentice Hall
International Editions, 1995.

[18] Schank, R. C., Reisbeck, C. K. � Inside Computer Understanding: Five Programs
Plus Miniatures � Lawrence Erlbaum Associates, Publishers Hillsdale, New Jersey, 1981

 78

[19] Sharma, R., Yeasin, M., Krahnstoever, N., Rauschert, I., Cai, G., Brewer, I.,
Maceachren, A., M., Sengupta, K. � Speech-Gesture Driven Multimodal Interfaces for
Crisis Management � IEEE, vol. 91, no. 9, September 2003.

[20] Vaillant, P. � Semiotique des langages d�icones � Honore champion, Paris, 1999

[21] Vaillant, P. � Modelling Semantic Association and Conceptual Inheritance for
Semantic Analysis � Mautousek et al., TDS 2001, LNAI 2166, pp. 54-61, 2001.

[22] Woods, W. A. � Transition Network Grammars for Natural Language Analysis -
Readings in Natural Language Processing � Morgan Kaufmann Publishers, Inc., 1986.

	Acknowledgements
	Abstract
	Chapter 1
	Introduction
	Chapter 2
	Literature survey – The theoretical approach
	
	
	2.1 What are the icons?
	2.2 Semiotics
	2.3 Encoding/Decoding
	2.4 Icons and context
	2.5 Human Communication

	2.5.1 Signs
	
	
	Indexes Icons Symbols
	Concrete Abstract
	Indexes

	Chapter 3
	Methodology
	
	
	3.1 Advantages vs. disadvantages in using icons
	3.2 The design of the icons
	3.3 Creating the interface

	Chapter 4
	Introduction in Natural Language Processing (NLP)
	
	
	4.1 The natural language

	4.1.1 Components of an NLP system
	4.1.2 Language problems
	4.1.3 Approaches to NLP
	4.1.4 Language Universals
	4.1.5 Creating the vocabulary
	4.2 Grammars and productions

	4.2.1 Backus Naur Form
	4.2.2 Connection between a context-free grammar (CFG) and a BNF construction
	4.3 Grammar subdivisions

	4.3.1 Simple Noun Phrases
	
	
	
	Verbs
	Particles

	4.3.2 Bounding the vocabulary with the grammar categories
	4.4 Defining the grammar
	4.5 Properties of BNF grammars

	4.5.1 Emptiness
	4.5.2 Starting tokens
	4.5.3 Recursive rules
	4.5.4 Left-recursive
	4.6 An example
	4.7 Phrase structure and lexical structure

	4.7.1 Parsing techniques
	4.7.2 Top-down parsing (LL)
	4.7.3 Conclusions
	4.8 Competence and performance

	4.8.1 What is a good grammar?

	Chapter 5
	Models
	
	
	5.1 Interface
	Area 1

	5.2 Testing the application
	5.3 Programmatic wrapping of the problem
	5.3 The meaning of the sentence - the connection between the user interface and the grammar
	
	
	
	
	Category Crisis Elements

	Category Cars
	Category Directions
	Category Buildings
	Category People
	Category First aid
	
	Category Human Actions
	Category Information

	Category Special Signs
	Category Military
	Category Numbers
	Category Intonation
	Category Yes/No
	
	Category Time

	5.3.1 Conclusions

	Chapter 6
	Implementation
	
	
	6.1 Design patterns

	6.1.1 Singleton
	6.2 Creating the buttons
	6.3 Configuration of the data

	6.3.1 Loading the rules
	6.3.2 The semantic elements
	6.3.3 Articles between the words
	6.3.4 Plural nouns
	6.4 Syntactic analysis
	6.5 Semantic analysis
	6.6 Giving the meaning to the sentence
	6.6.1 Templates
	6.6.1.1 ‘There is – There are’
	6.6.1.2 Question template
	6.6.1.3 First person template

	6.7 Client – server side
	6.8 Hints

	Chapter 7
	Testing – the user manual
	Chapter 8
	Conclusions
	References

