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ABSTRACT

A method for combining subjective measures
of workload and task characteristics is described.
Data describing the human operator performance in
compensatory tracking tasks at three levels of task
complexities are used to develop a distribution
function of fuzzy workload. The Cooper-Harper
(CH) subjective judgment of task difficulty is
administered to the subjects after each task
completion. The final results show the relationships
between fuzzy workload distribution as a function of
task complexity.

1. INTRODUCTION

The concepts of workload are characterized
by multifaceted definitions (Jex, 1988). This
includes the considerations of task characteristics, the
human characteristics, and the task environment.
Usually, however, workload measures are used to
measure human performance This approach has
generated various opinions and models, including,
but not limited to, mental workload models (Moray,
1979), and physical workload models (Strasser,
1977).

The performance of the human operator is
often a concern in human-machine systems. Thus,
minimizing workload is considered an important goal
in system design (Welford, 1978). For the most part,
workload indicators are usually obtained through the
subjective ratings of the task characteristics by the
person performing the task. For example, how the
human operator perceives the level of “difficulty”

0-8186-7493-8/96 $5.00 © 1996 IEEE

101

associated with the task; how much “effort” is
required, and the level of “comfort” experienced
while performing the task. All these attributes are
subjective, imprecise and vague (Moray, Eisen,
Money and Turksen, 1988).

Because of the subjectiveness involved in
workload measures, it is difficult to a standard
workload metric which is stable, sensitive, and global
(Jex, 1988). However, recent interest, due in part to
the progress in fuzzy set theory (Zadeh, 1973), has
concentrated on quantifying the subject workload
measures. The paper’s contribution to this issue are:
1) assessing the task characteristics, and 2) deriving
fuzzy workload measures in an actual experimental
condition  using the task  characteristics.
Compensatory tracking tasks at three levels of
‘perceived’ complexities are used as a proof-of-
concept database. The compensatory tasks studied
are: position tracking, rate tracking and acceleration
tracking. Instability factors are introduced in each
task as a measure of complexity. Fuzzy workload
distributions are obtained using the workload metric
developed by Watson and Ntuen (1996).

2. FUZZY THEORY

Zadeh (1973, 1975) introduced the theory of fuzzy
set to address the issues associated with vagueness
and impreciseness by hedging subjective opinions on
a cognitive scale of preference.  Eshrag and
Mamdami (1979) developed a general approach to
linguistic approximation to weight the “behavioral
preference” of choice in multi attribute decision
making problem. Others, for example, Baas and



Kwakernaak (1977) developed methods for ranking
subjective alternatives. In general, fuzzy metrics,
developed on subjective scales, are known to follow
certain laws of comparative judgment (Thurstone,
1927).

The fundamental definitions of a fuzzy set theory are
given as follows (Zadeh, 1973):

Let X = {x} be a set of attributes, then a fuzzy set A
€ X is a set of ordered pairs

A= {x,uA(x)},x eX

where p(x) is called the characteristic function or
graded membership of x in A (Zadeh, 1975). The
membership function p,(x) maps the fuzzy set A
onto the interval [0, 1], that is u,: A — [0, 1],
Similarly, let Y = {y} be a set of criteria variables,
then a fuzzy set BeY is a set of ordered pairs

B= {y,uB(y)}, yeY.. )

and pp: B— [0, 1]. Note that p,(x), p(y) can be
assumed to have a known distribution -
mathematically or perceptually. The fozzy
distribution can be a real continuous phenomenon or

may represent a discrete countable event. The
interaction of A and B is defined by:
Ha () A pp () =min {ty (X) , P} i 3)
The union of A and B is defined by:
ta(x) U pg (x) = max {py (X), tg (%) wooerereeenee, 4

The extended maximum operator combines the
definitions in (3) and (4). This is defined by :

1, (U, (x) = Sup{min[p, (), MB(V)]} )

((u, v/ x=max(u,v),Vx € R)

3.  QUANTITATIVE WORKLOAD
INDEX (QWI)

The quantitative workload index (QWI)
developed by Watson and Ntuen (1996) is used in
this  study. The QWI considers the system
complexity as a parameter in workload measure.
According to Rouse and Rouse (1979), «.
complexity is related to the human’s understanding
of the relationships within a problem as well as the
strategy which the human uses to solve the problem

102

(p. 720)”. And, the apparent complexity of a system
affects how the human operator executes the task
(Rasmussen, 1980).

Subjective measures of workload often
requires the human operator to evaluate the task
according to perceived dimensions of “difficulty”.
Quite often, the degree of difficulty is confused with,
or used interchangeably with degree of complexity.
Task difficulty as used here is a measure how the
human operator perceives the task in terms of how
“hard” or “easy” it is to perform the task. A task
difficulty can be measured in terms of error, time and
some cognitive levels of “comfort” (Watson and
Ntuen, 1996).

We should note that a task complexity is not
necessarily the same as task difficulty.  Task
difficulty may or may not be a function of
complexity. In the QWI (Watson and Ntuen, 1996),
both concepts are used interchangeably for reasons to
be explained later.

The QWI is defined by

c—e ™ , forstable systems
c+e” (no oscillatons)
owr=< L (6)
c—(/b)e , for unstable systems
cte”

where: ¢ is an hypothetical work content or “load”;
this may be a distribution of time available to
complete a task; e® is energy loss to the work
environment (see Gheorghe, 1979); c¢ + e is the
total system work content; and a is the complexity
parameter. a can be defined in various ways. For
our compensatory task experiment.

g RMS(e)

RMS(s)

where RMS(e) is the root mean square of control

error and RMS(s) is the root mean square of the task

dynamicity: (s-1) for position error; (s-A) for

velocity, (s-7&)2 for acceleration; b is the system
damping coefficient, and

0 < QWI L 1, with the conditions:

(c-¢*H>0,forb=0
cz(1/b)e® =20forb>0



No evaluations for b < 1 is available in the QWI
model

4. METHOD

The Manual Control Laboratory was used in
the experiment. The goal of a compensatory tracking
task is typically to minimize the time-average delays
between apparent task execution failures. The
subjects” perceptual and control strategies are
focused primarily on how to compensate for this
failures. On the experiments, the subjects are
required to keep a vertical bar within a reference box
of defined width and length in a stationary target.
Within the dynamic parameters, position control
output is a direct result of the movement of the
control device.  The level of difficulty was
introduced by varying the disturbance parameter (1)
over the amplitude of the cursor. This range from 0.0
to 1.0 half-screen heights. Higher values result in a
larger effect of disturbance. The levels of difficulties
are shown in Table -1.

Table 1: Levels of Task Difficulty Defined by
Overall Amplitude

Level Amplitude Setting
1 02
2 0.4
3 0.6
4 0.8
5 1.0

Bandwidth settings and disturbance relative
amplitude in the Manual Control Laboratory (MCL)
remained fixed. This was done deliberately to study
only the levels of task difficulty in Table 1. The task
complexities were studied at three levels: position

control %)velocity control ( (s f 7»)) , and

] , 2=(20507,09,10 1520)

acceleration control k

(]
defines the instability vector induced by a gaussian
type distribution with zero mean.

After performing each task, the subjects
were asked to rate the task in a subjective scale of
difficulty and the Cooper-Harper (1969) task
handling scale. The difficulty scale used is as
follows:

0<D=<=1 : not very difficult
1<D<2 : slightly difficult
2<D<3 : moderately difficulty
3<D<4 noticeable difficult
4<D<S5 very difficult

The Cooper-Harper (CH) task handling scale consists
of opinions that are vague and imprecise on a
linguistic scale of preference. An example of CH
task handling scale is shown in Table 2.

The CH scale in Table-2 classifies FHQ into three
levels:

Level 1:  Task qualities adequate for the
mission flight phase.

Level2:  Task qualities adequate to
accomplish the mission flight
phase, but some increase in pilot
workload or degradation in
mission effectiveness exists.

Level 3:  Task qualities such that the
airplane can be controlled safely,
but pilot workload is excessive, or
mission effectiveness is
inadequate, or both.

Table-2: Pilot Opinion Rating on CH Scale

Characteristics Demands on Pilot in Selected Task or Required Operation Pilot Flying Qualities
Rating Level
Excellent; highly desirable Pilot compensation not a factor for desired performance 1
Good; negligible deficiencies Pilot compensation not a factor for desired performance 2 1
Fair; mildly unpleasant deficiencies Minimal pilot compensation required for desired performance 3
Minor but annoying deficiencies Desired performance requires moderate pilot compensation 4
Moderately objectionable deficiencies Adequate performance requires considerable pilot compensation 5 2
Very objectionable but tolerable Adequate performance requires considerable pilot compensation 6
deficiencies
Major deficiencies Adequate performance not attainable with maximum tolerable 7
pilot compensation Controllability not in question
Major deficiencies Considerable pilot compensation required for control 8 3
Major deficiencies Intense pilot compensation required to retain control 9
Major deficiencies Control will be lost during some portion of required operation 10




5. A FUZZY MODEL FOR
WORKLOAD ASSESSMENT

5.1  Theoretical Development

The interaction of the CH tasklevels can be
represented in a linguistic geometric space as shown
in Figure 1; where A is for Level 1, B for Level 2,
and C for Level 3 respectively. In Figure 1, the fuzzy
boundary between A and B, and between B and C
represent some “occluded” interaction of cognitive
opinions; and can be modeled as event interactions.
Specifically, let 15(x), pp(x), and pe(x) represent the
fuzzy membership of levels A, B, and C, the
aggregate cognitive fuzzy rating is given by

function (Eshrag & Mandani, 1979).

Hs(X) = ka(x) U pe (x) - [Ra(¥) A pg (X)] ~[pg (x) At (] (®

Where 14(x) is the fuzzy membership for describing
the task rating on CH scale.

From equation (8), it is easy to show that
s (%)= pa (O U pp () U pe (x) - Hp (x) [1a () U pe ()]

=pia U g () U e () = & Koo 9)
8(x) = pp(x) N [LaCUncx)]

where g(x) is a fuzzy function describing the degree
of overlapping opinions. g(x) can be obtained by
using the general overlapping function (Eshrag &
Mandani, 1979).

Figure 1:  Set representation of FHQ levels with fuzzy boundaries.

_ P )= )+ (@)}
b ()= ) (10)

M () e(-1)

We want pyn(x) € [0, 1], hence from equation (8),
the scaled overlapping function is

/20y )+ , —1<p,,(x)<0
g=1,__ 1 930 .(11)
Py ()+1 > T

5.2 Mapping Perceived Difficulty Into CH
Scale

Let D be a space of point objects with a
generic element of denoted by d (D is the difficulty
rating). Associated with Up(d) is D= {(up(d), d)) , d;
eD} - [0, 1].

i=1,2,..,5.

Equivalently, define X such that X= {0, X5) 5 X
€X} — [0, 1] is the fuzzy description function of the
CHscale; j=1,2, ..., 10. A fuzzy relation R on the
Cartesian set N.x M (N = 5, M = 10) is defined as a
mapping of D onto X such that V d, €D, V x; € X,
R(d;, x;) € [0, 1]. According to Yager (1977), Ris a
measure of the possibility or perception of how the
task difficulty contributes to task handling quality.
The greater the value of R(-), the more difficult the
task handling performance. The fuzzy distribution
induced by R-(-) is defined by

up(d) = max {ur(d, X) A Up(d)}eeioreeeeennn, (12)
5.3  Experimental Fuzzy Distribution
The experimental fuzzy distribution obtained is an

aggregation of subjective and objective measurement
of the task workload defined in equation 6 (with ¢ =



1). The fuzzy workload model is defined by

1
b, () = l+exp{\/%} , 0<v<l..(13)
0, else

Where v = QWI; the denominator term is the peak of
the step response of the close-loop control system
(Biernson, 1988).

SAMPLE RESULTS

Eight graduate students (5 males and 3 females with
an average of 24.3 years of age took part in the
study) under the experimental conditions specified

The experiment involve trials in random

order to ensure that learning effects were eliminated
with the aggregation of the difficulty and CH ratings
based on the obtained QWI. The membership value
was calculated using equation (13) and the
normalized values obtained by dividing each value
with the maximum rating obtained. Tables 3-5 give
sample values for position, rate, and acceleration
compensatory control tasks respectively. These data
are displayed in Figure 2 by plotting the fuzzy
membership as a function of QWI. Although we do
not have sufficient data to conduct robust statistical
tests, Figure 2 indicates fuzzy membership
distribution by task difficult levels. This is similar to
the CH levels described earlier. Figure 3 shows the
average CH rating for each task level as a function of
system instability.

Table 3: Workload Membership Function For Position
Compensatory Task
Workload Calculated Normalized
index membership membership
0.17 0.632 0.712
022 0.67 0.755
0.28 0.714 0.804
0.31 0.736 0.829
0.35 0.764 0.86
043 0.818 0.921
0.55 0.888 1

Table 4: Workload Membership Function For Rate
Compensatory Task
Workload Calculated Normalized
index membership membership
0.39 0.791 0.827
0.48 0.848 0.887
0.59 0.907 0.949
0.66 0.94 0.983
0.7 0.956 1

Table 5: Workload Membership Function For
Acceleration Compensatory Task
Workload Calculated Normalized
index membership membership
0.63 0.927 0.927
0.74 0.97 0.97
0.82 0.989 0.989
0.36 0.995 0.99
0.95 0.999 1
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Figure 2: Fuzzy Membership Distribution By Task Levels.

Average Cooper-Harper Rating for Compensatory
Tracking
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Figure 3: Average CH rating for each task level as a function of

system instability.
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7. CONCLUSIONS

This paper has presented a fuzzy model of
workload as a function of task difficulty and
complexity. While the fuzzy model is developed
from compensatory tracking tasks, the concepts can
be generalized to many situations involving the
combination of subjective and experimental data.
Some further studies are required. Other interests are
the investigation and classification of tasks based on
the CH levels as a function of task difficulty and
complexity and the development of fuzzy predictive
model for human performance based on the
perception of these levels. Further, the investigation
of effects of control bandwidths deserve some
attention (see, e. g., Strickland, Ntuen, & Park, 1995;
and Moray and Waterton, 1988).
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