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A rule-based pilot performance model

MICHAEL S. MCCOY{ and REUVEN R. LEVARY{

A new method of modelling task execution time and its relationship to resource utiliza-
tion has been developed in this study in order to simulate accurately pilot performance
in a single-seat ® ghter aircraft. By developing the model in a rule-based expert system
program, it is suitable for incorporation in an intelligent decision support system to help
manage pilot workload and improve total man± machine system performance. This
model can also be employed in the design of new aircraft crewstations to analyse
new man± machine system interfaces. V alidation of the model was accomplished
through comparison of critical predicted measures of merit against observed pilot
performance in a manned ¯ ight simulator.

1. Introduction

Human performance models are computer-based math-
ematical simulation models used to predict operator
decision making, task and procedure execution, and
mental workload. These models have been applied in
the design of aircraft cockpits, nuclear power plant con-
trol stations, and air tra� c control centres to anticipate
problems with operability of the system. More recently
proposed applications include supervisory control
systems and decision aiding systems (Sheridan 1992) .
These new applications require a high level of precision
in modelling the human decision making process and
behaviour.

Early human performance models were developed
with the sensory, organism and response construct
(Siegel and Wolf 1969, Asiala et al. 1982) . These
models did not account for con¯ ict between resource
usage in the performance of tasks in parallel. Citing
this de® ciency, Wickens (1985) developed a multiple
resource theory that used expert subjective opinion to
estimate the percentages of resources required to per-
form tasks. Then, when the sum of demanded resources
exceeded the availability of resources, tasks were shed or
delayed until resources became available. However, this
method depended on a highly subjective estimate of the

percentage of resources required by the operator in the
performance of the tasks. In addition, Wickens did not
account for the extra time required when operators per-
formed tasks in parallel, rather than singularly, i.e. in
sequential order. Therefore, using measured task per-
formance times, a new method of modelling the relation-
ship between task execution time and resource
utilization was developed in this study to account for
these de® ciencies, and to simulate more accurately
human behaviour in a real-world, complex operating
environment.

A human± machine system consists of a computer con-
trol system designed to provide an interface between a
human operator and a task environment to achieve spe-
ci® c goals, such as navigating through the sea in a ship,
generating electricity in a nuclear power plant, mana-
ging air tra� c in an airport, or ¯ ying an aircraft from
an origin to a destination.

Human performance models have been classi® ed into
four major categories (a) information processing, (b)
control theory, (c) task network, and (d) knowledge
based. Each type of model has advantages and disad-
vantages that must be weighed when selecting a tech-
nique for a speci® c application.

Information processing models were best typi® ed by
Senders’ (1977) model and the Human Operator Model
(Wherry l976, Lane et al. 1981) . The strengths of these
models were generally detailed enough to produce
data much like that collected in human-in-the-loop
simulation experiments. Sub-models were aggregated
to produce total task times. The models often were sen-
sitive to equipment layout. However, the major weak-
nesses of information processing models involved their
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predominantly micro-task orientation. This made them
unsuitable for high-level analysis. Also, since informa-
tion processing models were comprised of many sub-
models, they were hard to validate.

Three control theory models best represented this
category of human performance model. First, a fre-
quency domain model, employing classical control
theory, was developed (McRuer and Krendel 1974) .
This model was a quasi-linear describing function
model that simulated manual control. Next, Baron
and Levison (1980) developed the Optimal Control
Model that utilized modern control theory to model
manual control in the time domain. Finally, a combina-
tion of procedures, time-domain control theory, and
rule-based modelling was employed in the Procedure
Oriented Crew Model (PROCRU) developed by Baron
and associates (Baron et al. 1980).

An advantage of control theory models was that their
modular structure allowed sub-models to be incorpo-
rated into them. PROCRU permitted information pro-
cessing to be incorporated in the task selection routines
along with priority setting for task selection and execu-
tion. Disadvantages of these models included: lack of
validation of the overall integrated models, apparent
ability to work well only in highly structured pro-
cedures, and the high level of mathematical sophistica-
tion required limits their understanding and use.

The next category of human performance model was
the task network model. This technique was ® rst
explored by Siegel and Wolf (1969). They built simple
models that simulated task completions and accuracy.
The US Air Force then commissioned development of a
simulation language called `Systems Analysis of
Integrated Networks of Tasks’ (SAINT), which pro-
vided an environment for de® ning networks, task
times, network branching, and probabilities (Pritsker
et al. 1974). Another network model developed was
the Technique for Human Error Rate Prediction
(THERP) that explained human reliability through the
use of fault trees (Swain and Guttman 1980) . Finally,
queueing models were developed that simulate one task
at a time using a computed priority algorithm for selec-
tion of the next task to be executed (Chu and Rouse
1979) . This model employed resource utilization, much
like the SAINT models.

One advantage of task network models was that
operator procedures could be modelled to any level of
detail. These models could include a knowledge base for
branching logic from one task to another and could mix
the level of detail between di� erent sub-networks.
Another advantage of this technique was that it fostered
a top-down, hierarchical approach to task decomposi-
tion and modelling (Baron et al. 1990) . The disadvan-
tages of the task network modelling technique included
the fact that the complexity created by integrating many

sub-models together, made this type of model very di� -
cult to validate. Because of the ¯ exibility in modelling,
tasks often were not developed adequately for good
analysis. Assumptions often embedded in a particular
model that only may have been valid during speci® c
circumstances.

The last category of human performance models con-
sidered were knowledge-based models. Little has been
done to adapt knowledge-based technology to human
performance models (Elkind et al. 1989) . Hunt and
Rouse (1984) demonstrated the application of fuzzy
sets and rule-based modelling in human problem solv-
ing. The concept required the de® nition of appropriate
data structures, such as frames, schemas and scripts
(Minsky 1968, Schank and Abelson 1977) . These data
structures developed into the latest technology of object
oriented programming that de® ned rules to relate pat-
terns of objects or frames (data) and initiated changes in
the database. Finally, a con¯ ict resolution mechanism
was required to determine which rules to use at any
given instant. Expert system programs are now commer-
cially available to provide the mechanization for this
concept.

Rule-based models simulate cognitive processes, such
as decision making and problem solving. Rule-based
models foster a better understanding of how people
solve problems in a speci® c domain. This concept was
deemed good for modelling cognitive activities in super-
visory control (Baron et al. 1990).

One disadvantage of rule-based models was that the
process of extracting knowledge from experts (knowl-
edge acquisition) did not readily apply across groups.
Often there was con¯ ict between experts on problem
solving methodology. Because of the computational
intensity of rule-based models, they typically were not
applied to real-time processes (Pilot’s Associate 1991) .
The extraction of knowledge has been a di� cult process
to construct (Nisbitt and Wilson 1977) . Also, rule-based
models were di� cult to evaluate in terms of their ® delity
to the acquired expertise they attempted to reproduce
(Baron et al. 1990).

Many models have been developed over the years to
simulate human performance, starting with Siegel and
Wolf (1969). These models were developed for di� erent
purposes and, thus, di� ered in assumptions, structure,
and implementation (Schuppe l988). Because of the
large number of models and the various techniques
used to simulate human behaviour, several good sum-
maries have been written over the years. Rather than
attempt to present another summary of existing
models, a summary of the critiques is presented.

Knoop (1978) was very critical of the ability of models
to represent characteristics of operator behaviour.
She suggested that research had to be conducted to
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investigate the appropriate sub-models to be built for
each aspect of the operator’ s characteristics.

Rouse (1980) presented a good outline of models and
their applications. He gave a very fundamental explana-
tion of models in the categories (a) estimation theory, (b)
optimal control theory, (c) queueing theory, (d) fuzzy
sets, and (e) production systems. With each tutorial on
the theory, Rouse presented the applications to which
that technique had been applied.

In the area of supervisory control, Sheridan and
Hennessy (1984) presented a summary of the models
that seemed applicable. They recognized that the
design team could bene® t from the application of mod-
elling to assess the design. No model was found appro-
priate for all aspects of supervisory control, but several
models were found applicable for analysis and experi-
mentation. Di� erent models were applicable to di� erent
stages of supervisory control system development.

McMillan et al. (1989) presented the proceedings of a
NATO research study group workshop on applications
of human performance models to system design which
summarizes all of the major models. A good critique and
review was included in this volume.

Baron et al. (1990) summarized models and recom-
mended research for improving human performance
models. They recommended research in merging various
sub-models and modelling techniques (like knowledge-
based models, networks, and queueing models) realizing
that a super-model would not be all encompassing.

Finally, Schuppe (1988) cited Wickens’ (1984) review
as germane to his research of investigating or con-
trasting a multiple resource model and a queueing
model. Schuppe found that there was no signi® cant
advantage to incorporating the complex multiple
resource model in the queueing model for predicting
pilot workload.

Several network models were developed to account
for parallel processing of tasks. Asiala et al. (1982)
developed a model that broke tasks into micro levels
and associated a resource requirement to each subtask.
No two subtasks could be executed simultaneously if
they shared the same resource. The resources available
consisted of vision, audition, cognition, right hand and
left hand. With this model, the operator (an aircraft
pilot) could employ the right hand on the stick (control-
ling the attitude of aircraft), while looking at a display
and thinking about a tactical situation simultaneously,
since these tasks did not require the same resources.

The Human Operator Simulator (Harris et al. 1987) is
currently being modi® ed to account for parallel pro-
cessing, in much the same way that the Pilot
Simulation Model of Asiala and colleagues did so.
However, as Wickens (1989) noted, there is no method
incorporated in either of these models to account for
interaction between parallel tasks.

In order to account for the demand for tasks,
Laughery et al. (1986) incorporated the task demand
table developed by McCracken and Aldrich (1984) and
by Aldrich et al. (1988). Each type of task (scan, read,
decode, etc) was assigned a demand level from 0 to 7.
Then, when the sum of task demands exceeded a
threshold, one or more tasks were queued until they
could be executed. There was no relationship established
between channels (vision, cognition, motor resources,
etc), thus, visual activity has no impact on cognitive
activity being executed simultaneously.

Wickens (1989) examined several limitations to this
approach. Most notably, there was experimental evi-
dence that visual tasks did con¯ ict with cognitive ones
(Wickens l984). He indicated that his multiple resource
theory accounted for con¯ ict between channels
(Wickens 1987, Wickens and Liu 1988).

Wickens’ (Wickens 1987, Wickens and Liu 1988)
multiple resource theory proposed three dichotomous
dimensions, each of which de® ned two resources.
There were processing codes (spatial-analogues versus
visual-manual) , processing modality (auditory-speech
versus visual-ma nual), and processing stages (percep-
tual-cognitive versus response). North (North 1985,
North and Riley 1988) developed the WINDEX
system, which uses many of the assumptions of the mul-
tiple resource theory by incorporating a con¯ ict matrix
that penalized tasks based on the con¯ ict between
resource requirements. Each task required some percen-
tage of perceptual, cognitive and motor resource. Two
tasks could be executed simultaneously, as long as the
sum of the resources did not exceed a predetermined
threshold. The con¯ ict matrix was used to evaluate the
percentage of resource requirements competing for
attention during each task. Task time was not penalized
except by the task execution time delay created by
resource saturation.

The major di� culty with the multiple resource model
approach was that experts were required to estimate the
percentage of resource requirements for each task.
Many expert subjects provided a wide range of estimates
of the required percentage of cognition needed for one
task. Therefore, this approach appeared too subjective.
Schuppe (1988) demonstrated that a queueing model
could provide equivalent results in a ® ghter mission to
the WINDEX concept. This eliminated the necessity of
having experts estimate the task cognition percentages.
Schuppe’s method did not consider con¯ icts between
tasks. Therefore, a model was needed that combined
the network, queueing, modelling technique with the
rule-based modelling technique that accounted for task
con¯ ict without relying on the pilot’ s subjective esti-
mates of the percentage of resource-attentiona l
demand for tasks.
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The prediction of pilot performance and workload
goes beyond simply de® ning and evaluating operator
interaction and contributions to overall system behav-
iour. The de® nition of operator performance is quite
intuitive yet measurable in terms of time and accuracy.
The concept of workload appears to be nebulous.
Although there is not a common de® nition, workload
measurement e� orts have been pursued for a number of
years (Schuppe 1988) . Several measurement techniques
have shown promise in discriminating between di� erent
levels of workload. Given an existing system, subjective
measures of workload are the most common method of
measuring workload. However, physiological measures
are being explored as substitute discriminators or, more
likely, as augmentation to subjective measures.
However, those methods assume an existing system is
available for experimentation. When the system design
is in the early stages, the physical system will not be
available for workload or performance evaluation.

An alternative approach, during the early phases of
system design, is to develop a performance and work-
load prediction system. Several methods of workload
prediction exist. They rely on time line analysis or psy-
chological factors, such as stress. However, these models
do not lend themselves to being incorporated in decision
support systems since they are stand-alone simulation
models.

A human performance model that could adequately
predict performance and workload, as well as ® t into an
`expert system’ type of decision support system would be
quite a bene® cial design tool. If pilot workload and
performance could be predicted accurately enough to
provide reasonable indications of possible design de® -
ciencies early in the aircraft design process, certainly the
e� ort put forth developing such a model would be jus-
ti® ed. A computer simulation model with the capabil-
ities described would enable aeronautical design
engineers to identify human± machine interaction prob-
lems and evaluate alternative designs with relative ease
while the aircraft was still `on the drawing board’ . Thus,
the time and expense incurred in building a physical
prototype of an inadequate aircraft could be avoided
(Sage 1991, Sheridan 1992) .

If the human performance model, developed early in
the design process can be validated, this model can be
used for two distinct purposes: evaluation of avionics
systems and embedded decision support. The model
can be used during system design and deployment, a
signi® cant cost saving can be realized in system devel-
opment. The model can also be incorporated into the
decision support system to aid operator performance
and manage workload during system deployment.

As technology continually progresses, humans are
designing more complex systems requiring human-in-
the-loop interactions. These systems are designed so

that the humans operate as controllers. As a controller,
the human must be capable of perceiving inputs from
the environment, processing those inputs cognitively,
and responding to those inputs in a way that ensures
the human± machine system e� ciently achieves its pur-
pose. One of the most complicated components of a
technological system is the human± machine interaction.

Systems design is becoming more sophisticated in an
attempt to streamline the human± machine interface.
The application of arti ® cial intelligence, and, speci® -
cally, expert systems technology, is being heavily inves-
tigated to allow machines to assume more responsibility
for performing mundane tasks, thus permitting the
humans to perform more complex tasks suited to their
abilities. While developing intricate systems, the issues
of coordination and areas of responsibility between the
human and the system become signi® cant factors in the
design and operation of the system (Rouse et al. 1988).

In order for complex human± machine systems to
operate e� ectively and e� ciently with humans, these
systems must possess knowledge of both the humans’
performance, and their workload. Performance infor-
mation allows the system to anticipate the human’s
actions, and workload knowledge helps the system
judge when the human may need assistance (Sage
1991) . When good models have been incorporated in
supervisory control systems, or other forms of decision
support systems, they have enhanced the overall
human± machine system performance (Morris et al.
1985) . Therefore, a good predictive model of human
performance and workload can be critical for the e� -
cient operation of a human± machine system (McCoy
and Boys 1987) .

A concern in the development of human± computer
interaction is the workload imposed on the human by
the system design. Workload refers to the mental or
cognitive load on the operator. There are two methods
of managing workload during the design process. First,
the designer may predict operator workload as the
system design progresses and choose the design that
imposes minimum workload. Second, the operator’s
workload can be reduced by incorporating a model of
operator workload into the human± machine system,
and by allowing the system to adapt to the task envir-
onment. Therefore, a method of assessing operator
workload early in the system design is critical to mana-
ging operator workload during system operation. As the
workload model evolves, it can be embedded in a deci-
sion support system that provides systemic reasoning
and adjusts to speci® c situations and operator states.
Sinc e operator performance predictions can be used to
adjust system performance, the model should predict the
timing and activity of the operator.

Because of these concerns the objective of this study
was threefold. First, an improved human performance
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model was deemed necessary to predict operator task per-
formance time and workload. By establishing a relation-
ship between operator task execution time and human
resource utilization and con¯ ict, a more accurate predic-
tion could be established and used to provide decision
support. The second objective was to extend the concepts
that Curry et al. (1985) developed with a knowledge-based
simulation model and that McCoy and Levary (1988)
investigated using an activity scanning model. Pro® ting
from lessons learned in both of these studies, the current
human performance model was written in a rule-based
language which better modelled the decision making pro-
cess. Third, by adding the network concept developed by
Siegel and Wolf (1969) and subsequently used by Asiala et
al. (1982), rapid prototyping of task knowledge could be
incorporated into the model.

In order to investigate performance and workload
modelling, this study concentrated on assessing and pre-
dicting a pilot’s performance and workload while ¯ ying
a single-seat ® ghter aircraft. A human performance
model was developed and validated in this study to pre-
dict pilot performance and workload for later use in
decision support in modern cockpits. This study deter-
mined how well model predictions correlated with meas-
ures of actual performance in a dynamic pilot-in-the-
loop simulation.

The model developed in this study di� ered signi® -
cantly from other models because it incorporated a
mechanism to account for task resource con¯ ict within
the context of a knowledge-based model. By incorpor-
ating the con¯ ict matrix into the baseline rule-based
model, resource con¯ ict was related to task performance
and workload, thus improving the quality of the model
predictions. By using a rule-based framework, the model
was better suited for incorporation in an expert system
decision support environment.

The model developed in this study combined rule-
based simulation with task network discrete event simu-
lation (Keller and Stanley 1991) in the form of an
activity scanning model as illustrated in ® gure 1.

Comparisons of critical predicted measures against
observed pilot performance in a McDonnell Douglas
manned ¯ ight simulator were used to validate the per-
formance aspect of the model.

The human performance model is described in section
2. Section 3 deals with the model veri® cation and valida-
tion. A summary and conclusions are provided in the
® nal section.

2. The pilot performance model

2.1. Model development process

The ® rst step in the model development process con-
sisted of de® ning the mission scenarios. These scenarios
provided an objective of performing procedures in order
to accomplish speci® c objectives. When the procedures
were de® ned, they were analysed to determine the func-
tions and corresponding tasks that had to be performed
to accomplish the mission. Two types of data require-
ments were de® ned, model input data and measures of
merit for model validation. Each type of data required
speci® c procedures to be executed in a realistic environ-
ment. Both part task and part mission simulation
experiments were conducted to gather this data. A
block diagram of the model development process is illu-
strated in ® gure 2.

Part task simulation was the process of having pilots
perform all tasks required for a procedure, in a
McDonnell Douglas simulator cockpit, without the
burden of having to perform or attend to other tasks
as distractions. In this way, task execution times and
pilot workload could be estimated on each procedure.
The model then used these results as inputs to help
pro® le the tasks and procedures being simulated by
the pilots.

Part mission simulation was the process of having
pilots perform the entire mission scenario. This required
the executions of multiple procedures simultaneously. In
performing these procedures in parallel, con¯ ict could
arise between tasks competing for human resources (per-
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ceptual, cognitive or motor). If the model properly pre-
dicted pilot activity, it would also predict delays due to
con¯ ict between tasks. Therefore, measures of merit for
validation were task execution times as well as delays
due to the con¯ ict of tasks competing for human
resources.

Using the data collected through part task simulation
experiments, the model was built. Each task was de® ned
as part of a network representing the di� erent pro-
cedures. Task inputs consisted of execution times, pre-
dessor and successor relationships, task information
requirements, and task criticality. Task criticality
consisted of classi® ng tasks as contributing to survival
(highly critical), e� ectiveness (medium critical)
and e� ciency (low critical). Part task simulation (execu-
tion of tasks without interference from demands for
other con¯ icting activity) was performed on seven pro-
cedures :

° Manually inputting a radio frequency

° Engaging the auto pilot

° Selecting the tactical navigation system

° Selecting a preset radio channel

° Inputting a navigational waypoint

° Selecting the Identify Friend or Foe frequency

° Engaging the instrument landing system.

These data, reported in McCoy and Seavers (1993), were
then used to build the model for each procedure. In
addition, these data were used to verify that the model
was operating properly by comparing the model predic-
tion of pilot procedure execution with actual pilot per-
formance.

The next step was to validate the simulation model.
Validation consisted of running the model to predict
total mission performance. This constituted executing
selected procedures while ¯ ying the aircraft. In this
way, tasks would compete with each other for resources
and cause potential delays. By comparing model predic-
tion of model performance with actual pilot perform-

ance in the McDonnell Douglas simulator, a
determination of model validation was made. The fol-
lowing section describes these steps in detail.

2.2. Mission scenarios

The purpose of developing mission scenarios was to
de® ne the goals of the mission and the procedures
necessary to meet those goals. In the case of this exer-
cise, the goals were to establish a route that required the
pilot to execute representative procedures that could be
used to measure pilot performance, and to compare
these measures with a computer-generated prediction
of pilot performance. To accomplish these goals, two
mission scenarios were adapted, requiring pilots to per-
form ¯ ight control functions (see ® gures 3 and 4). In
addition, the pilot had to maintain communications,
navigation, and identi® cation functions while per-
forming the ¯ ight control functions.

The ¯ ight pro® le consisted of a set of waypoints
placed strategically on a terrain board. Each waypoint
was represented by a church steeple that was highly
visible both on the map and in ¯ ight. Figure 3 shows
the route that was ¯ own by the aircrews. The ® rst leg of
the route was 15.8 miles long on a heading of 208. Each
pilot was instructed to ¯ y the entire route 500 feet above
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ground level at a speed of 480 knots. At that rate, the
® rst waypoint would be reached in 1 minute, 50 seconds.
Once the pilot over¯ ew the church, he executed a stan-
dard turn to a new heading of 3108 and ¯ ew 19.7 miles.
This leg lasted 2 minutes, 30 seconds. Again, upon over-
¯ ying the next church steeple, the pilot executed a stan-
dard turn to a new heading of 2708 for 16.3 miles, or
approximately 2 minutes.

When the pilot ¯ ew the route illustrated in ® gure 3,
data were collected on his accuracy in maintaining the
¯ ight path. In addition to ¯ ight control, the pilot was
required to execute several event procedures consisting
of (a) changing the frequency on a manual radio
channel, (b) changing the frequency on the Identify
Friend or Foe (IFF) system, and (c) inputting a new
target location to include latitude, longitude and eleva-
tion. These events were presented to the pilot in what
appeared to be a random order through a radio trans-
mission instructing the pilot to execute each procedure
with 1 minute, 30 seconds remaining in the ¯ ight seg-
ment.

The second mission scenario required the pilot to f1y
a prede® ned route and deliver a stand-o� land attack
missile (SLAM). The pilot was required to ¯ y the route
depicted in ® gure 4. During the ® rst leg of the route
(from WP1 to WP2), the pilot was required to perform
SLAM weapons management while maintaining the
¯ ight plan. Weapons management consisted of (a)
selecting the stores display, (b) selecting the SLAM mis-
sile, (c) selecting the data link for future communica-
tions with the missile in ¯ ight, (d) down-loading a
prede® ned missile mission and, ® nally, (e) selecting the
SLAM video display for future use.

At the waypoint (WP2 ), the pilot had to turn to a new
heading to ¯ y to the launch point (LP). During this leg,

the pilot maintained a speci® c heading and altitude
while slowing down to a particular ground speed, all
of which conformed with the pre-programmed mission
loaded into the SLAM missile. By reaching the launch
point using the correct ¯ ight parameters, the missile
guidance system was more accurate, since the SLAM
was launched under optimal initial conditions. At the
launch point, the pilot pressed the appropriate button
to launch the SLAM missile.

After launching the missile, the pilot changed head-
ings and ¯ ew to the ® rst control point (CP1 ). Upon
arrival at that location, the pilot assumed a new heading
on a course parallel with the SLAM missile, and ¯ ew to
the second control point (CP2 ). While on this heading,
the pilot could monitor the SLAM video as the missile
approached the target.

2.3. Task decomposition and analysis

In order to develop a simulation model of pilot
activity, a task analysis had to be performed, generating
data for input to the model and data to be used for
validating the model. Initial task analyses for the F/A-
18 aircraft were reported by Wise and Asiala (1977),
Wise et al. (1977). The data presented in these reports
provided an initial base for developing the model.
Additional data were collected in conjunction with
experiments conducted at McDonnell Douglas
Aerospace Company to satisfy the requirements of the
Human Engineering Dynamic Simulation Plan (McCoy
et al. 1993) . The data collected during these exercises
were reported in a series of White Papers that will be
included in latter revisions of the Human Engineering
Systems Analysis Report (McCoy and Seavers 1993) .

Given the mission scenarios described, the pilot had
to perform four major tasks, or functions: (a) ¯ ight
control, (b) communications, (c) identi® cation, and (d)
navigation. In order to determine which variables to
measure and what tasks to model in the simulation, it
was necessary to decompose the functional tasks. For
¯ ight control, the pilot primarily concentrated on
manipulation of the stick. This required viewing the
Head Up Display (HUD), comparing the heading to
the desired ¯ ight path, and seizing the stick with the
right hand to adjust the aircraft’ s ¯ ight path. The
declarative knowledge for this task was the actual and
desired heading. The procedural knowledge for this
function became:

If (actual heading ¡ desired heading) is too large,
Then adjust heading (by manipulating the stick).

The type of data collected in the simulator were the
mean time to manipulate the stick (adjust heading and
altitude) and the mean time between adjustments.
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The next function that was decomposed was commu-
nications. The pilot was instructed, via a radio transmis-
sion, to select a new radio frequency on the manual
channel. In order to accomplish this procedure, several
individual steps had to be performed. Using the Up-
Front Control (UFC), the pilot selected the appropriate
rotary `comm’ knob, and then viewed the frequency set
on the knob. If the frequency was not `manual’ the pilot
was required to rotate the knob and select `manual’ . The
next step involved pulling the knob that changed the
UFC to data entry mode to display the current fre-
quency. Then, the pilot compared the current frequency
to the desired one and chose to input the new frequency
by using the mechanical keypad to input up to six digits.
Finally, the pilot pressed `enter’ to signify that the old
frequency had been overridden.

Another function the pilot performed was inputting
the IFF code. Again, the pilot received a radio transmis-
sion instructing them to input this code. Upon receiving
the command, the pilot pressed the appropriate button
on the UFC to select the IFF input mode. The pilot
compared the current with the desired four-digit code
and chose to update it. Then, the pilot pressed `enter’ to
complete the operation.

The ® nal, and by far the most complicated, procedure
executed by the aircrew was changing the waypoint, or
target location. After receiving a radio transmission with
instructions to input the new target location the aircrew
selected the data entry panel from the Horizontal
Situation Indicator (HSI) display. Once the waypoint
input mode was selected, the pilot entered the hemi-
sphere `N’ followed by a six-digit latitude. Next, the
pilot entered `W’ and a seven-digit longitude. Finally,
the pilot selected a three-digit elevation and pressed
`enter’ . The data de® ned and collected for each task in
the described procedures consisted of : task execution
time (mean and standard deviation) ; information
requirements; preconditions for execution; task goals
or anticipated outcome; resource requirements; and,
shed conditions.)

Task times were measured by video taping the execu-
tion of procedures and recording the time needed to
complete each component of the task. Since data input
was being recorded by the computer, the time each
button as pushed was also recorded. By using these
data along with guidelines extracted from Card et al.
(1983), each task was measured for its perceptual, cog-
nitive, and motor components. Then, this information
was averaged across all pilots who participated in the
data-gathering procedure. This produced an average
execution time and a standard deviation for each task.
Empirical distribution functions for each task were
de® ned based on this data and used in the pilot perform-
ance simulation model (McCoy 1995) .

The remaining data de® ned and collected for the
model were gathered through pilot interviews. Pilots
de® ned the information required to perform each task,
the goals which prompted them to initiate the task and
preconditions for task execution. In addition, they
de® ned reasons for abandoning a task (shed conditions) .

2.4. Simulation model development

The human performance model d eveloped for this
study was comprised of a combination of conventional
discrete event simulation modelling techniques and an
activity scanning, or knowledge-based, representation of
the pilot decision making process. These two techniques
were highly integrated to ensure that they accurately
represented the environment exerting the demands on
the aircrew, and the decision making and task execution
processes that represented pilot activity. A description
of the data generated from the model will be presented
in section 3 to illustrate which variables compared
favourably to observed pilot performance.

2.5. Model description

The human performance model (HPM) used in this
study was a special form of activity scanning model. The
model was built using the `C’ Language Interactive
Production System (CLIPS) program. CLIPS is an
expert systems tool developed by the arti® cial intelli-
gence section of the NASA/Johnson Space Center
(Giarratano 1993) . Although CLIPS is a language
designed for writing expert systems, it could be used to
develop and execute simulation models. The basic ele-
ments of CLIPS are (a) a fact base, (b) a knowledge
base, and (c) an inference engine. A program written
in CLIPS consists of facts and rules. The facts represent
the major component of the declarative knowledge of
the model, while the rules constitute the procedural
knowledge of the model. The inference engine decides
which rules should be executed.

Declarative knowledge
CLIPs language has three basic components, declara-

tive data, procedural data, and the inference engine that
relates the two. Declarative data in CLIPs consist of
facts. Facts can be simple structures, such as goals, or
they can be complex structures called templates. A tem-
plate de® nes a complex fact with associated ® elds or
attributes. Two major templates were de® ned for this
model, a resource template and a task template.
Figure 5 illustrates the resource template.

The ® rst line of ® gure 5 de® nes the template for
resources. A resource represents a class of objects that
share the same ® elds. Therefore, this template was used
to de® ne those common ® elds for the class of objects
assigned the name r̀esource’ .
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The second line de® nes a name for each resource that
was created. This name was distinct and was used for
matching resource status in the rules. Lines 3 and 4
indicate that a limited number of resource names were
allowed in the model (a) vision, (b) audition, (c) cogni-
tion, (d) left-hand, (e) right-hand and ( f ) speech. This
limitation enabled the model to check that only allow-
able names were used, otherwise no match could occur
on the resource name.

The status of the resource is addressed in lines 5 and 6.
Either the resource status of ìdle’ or `busy’ was allowed.
Depending on the status, the system either implemented
or delayed tasks requiring that resource. The execution
time of the task as well as delay times were a� ected by
the resource utilization state. The remaining ® ve lines of
code de® ne statistical variables to be controlled. In order
to collect statistics on the utilization of the resources,
data had to be gathered on the amount of time the
resource was busy. Therefore, two more ® elds were
de® ned for this template, the sum-used and the sum-
used-squared. These were used to compute the mean
utilization rate and standard deviation by recording
these times each time the resource changed status.

The second template in the model de® ned the tasks
that the aircrew performed. Figure 6 presents the CLIPS
coded task template. Again, templates are the
mechanism for de® ning task attributes and are used by
the rules to scan the tasks, or activities, for patterns of
data that will allow task execution. The ® rst attribute of
the task is the nameÐ again, an identifying keyword (see
® gure 6, line 2).

The ® eld illustrated on the third line of ® gure 6 is the
task status. When tasks were ® rst de® ned, they had a
status of `null’ . However, rules in the model dictated

when a task status would change. The task status and
conditions for those allowable status values consisted of
(Sacerdoti 1977) :

(1) Planned ˆ goal for task has been asserted.

(2) Enabled ˆ predecessor task has been completed.

(3) Activated ˆ all preconditions have been met.

(4) Executing ˆ resource seized.

(5) Completed ˆ task conditions met.

In order for a task to be considered `planned’ , a goal
must have been asserted. The goal ® eld, described on
line 6 of the task template, was used as part of the
pattern-matching rules governing task planning.
De® ning the system in this way, made it a truly goal-
oriented model of the pilot. Although, in this study
project, one goal triggered a whole procedure, the
model was de® ned with the ability to propagate goals
throughout the procedure while integrating a variety of
tasks. The major goals employed in this model consisted
of (a) ¯ y aircraft, (b) establish comm, (c) select IFF, and
(d) select new waypoint. These goals were used to trigger
(a) ¯ ying the aircraft, (b) inputting a manual frequency
change, (c) inputting an IFF code, and (d) entering new
waypoint coordinates, respectively.

The next set of ® elds (see ® gure 6, lines 13 and 14)
consists of predecessor and successor ® elds that allowed
the model to traverse through a network of tasks that
constituted a procedure. Rules were developed to ex-
amine the status of the predecessor and to ensure that
it was completed prior to activating the next task.
Several tasks could be executed simultaneously, as
long as they were members of di� erent sub-networks.
If a task was the ® rst task of a procedure, its predecessor
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was assigned the status of `nil’ . Also, if a task was the
last task in a procedure, its successor was set to `nil’ .

Task beginning and ending times were recorded when
the task began execution and when it completed execution
(see ® gure 6, lines 15 and 16). These data could be used to
calculate average task execution times, if those data were
deemed necessary. This proved particularly useful when
tasks were repeated throughout a model execution. The
repetitive tasks in this study were ¯ ight tasks.

Although resource availability and preconditions
were used to dictate which tasks should be executed,
there was also a priority scheme incorporated in the
model. The priority could be (a) survival, (b) e� ective-
ness, and (c) e� ciency (see ® gure 6, lines 17± 19). In the
rules, survival tasks have the highest priority, followed
by e� ectiveness and, ® nally, e� ciency. Therefore, as the
activities were scanned, prioritization was employed.
Another priority scheme, which may be implemented
in the future involves de® ning a deadline for a task.
Then, a criticality based on the time available to per-
form the task could be computed.

Once a task has met all conditions, including resource
availability, the task completion must be scheduled. The

next two ® elds, mean and standard deviation, were
derived from the task analysis described in the earlier
data gathering section. Those data were put into the task
pro® le and employed using an appropriate distribution
function to determine the random task execution times.
Often, an empirical distribution was used.

Procedural knowledge
The facts described in the previous section de® ned the

state of the system at any time. The rules for the human
performance model provided the mechanism for scan-
ning all of these facts, recognizing a speci® c pattern of
facts, and choosing which rule to execute. The types of
rules available in this model consisted of (a) changing
the status of a task or activity, (b) setting a new goal,
and (c) advancing time in the simulated clock. When a
rule was executed, new facts could be asserted and old
ones could be either retracted or modi® ed. New or
modi® ed facts could trigger execution of another rule
by providing a pattern that matched the conditional
part of the rule. This discussion of procedural knowl-
edge describes the structure of rules employed in CLIPS
as well as each of the rules developed for this pilot
performance model.
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The standard rule employed for CLIPS is illustrated
in ® gure 7. The conditions on the conditional side of this
rule structure typically represented a set of fact values
that the model recognized. An inference engine, such as
that imbedded in CLIPS, provided the most e� cient
algorithms for pattern recognition. Therefore, construc-
tion of the rules remained the most challenging activity
for the modeller.

As mentioned before, the major rule types for the
human performance model consisted of (a) changing
task status, (b) setting new goals, and (c) advancing
time. The potential task status consisted of (a) null, (b)
planned, (c) enabled, (d) activated, (e) executing, and ( f )
completed. The ® rst task status modi® cation rule was :

If

status ˆ null
goal of task is posted

Then

modify task status to planned

The next rule developed for this model was the
enabling rule that advanced the task to enabled status
when a predecessor task was completed. If this was the
beginning task, it became enabled automatically. The
rule read as follows:

If

the task status ˆ planned
task predecessor ˆ completed or nil

Then

change status ˆ enabled.

In order for a task to proceed to the next status and be
activated, one of two conditions had to be true. Either a
task had no preconditions to meet, so it was enabled, or
the preconditions were met, and it was currently
enabled. Although none of the current tasks had pre-
conditions, this stage was incorporated into the model
for future growth. When a task had assumed the acti-
vated status, it could become `executing’ . When a task
became `activated’ , it was essentially waiting in a queue
for the resources required to execute it.

When a task was in an activated state, and it required
a resource to execute, the rule for changing the status of
the task to `executing’ checked the state of the
demanded resource. If the demanded resource was

idle, then the resource was s̀eized’ (i.e. the state of the
resource was modi® ed to `busy’ and the task status was
modi® ed to `executing’ ). Also, a random sample was
used to schedule the task completion time. When the
task began executing, the time of execution was
recorded by the model for use in calculating total execu-
tion time and resource utilization time.

When the task completion time exceeded the clock
time t̀now’ , then the resource was modi® ed to the idle
state and the task status was modi® ed to the complete
state. In addition, the running total of resource usage
time was updated with the total time that the task was
executed. This time factor was used at the end of the
simulation execution to compute the statistics on
resource utilization.

Another form of procedural knowledge investigated
was the rule for advancing the clock. Every time a task
was scheduled for execution, the event± time fact was
asserted with the time of the completion of the task. A
rule was developed to match on the latest event± time
fact and update t̀now’ when all activities had been com-
pleted for the current time. In this way the simulation
was a `next event’ simulation, since it did not require the
model to time step through the total modelling horizon.
The rule was written as follows:

If

event± time> tnow
event± time 4 other-event± time

Then

assert new tnow ˆ event± time

In addition, when t̀now’ exceeded the target simulation
cycle, the model terminated execution and report statis-
tics of model execution and resource utilization.

A mechanism for predicting pilot workload was
required. Wicken’s (1985) Multiple Resource Theory
was deemed inappropriate due to the fact that it
assumed several tasks using the same visual, cognitive
or motor resource could be performed simultaneously
(McCoy 1995). This same study found conventional
single channel operator models to be inadequate because
they did not address con¯ ict between tasks being per-
formed simultaneously using di� erent resources.
Therefore, a technique was developed that combined
these two methods to predict pilot workload, estimate
the workload to performance relationship, and adjust
task performance based on this relationship.

By using a single channel operator mechanism, the
problem of multiple tasks using the same resource was
eliminated. However, the con¯ ict matrix was incorpo-
rated from the Pilots Associate program model (Pilots
Associate 1990) and the workload calculation developed
by North (1985) was used to estimate workload each
time a task began or completed execution. Next, a per-
formance operating characteristic , as reported by Bo�
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and Lincoln (1988) was introduced into the model. This
characteristic provided a threshold for comparison of
pilot workload. When workload exceeded the threshold,
all active task scheduled completion times were
extended. When workload decreased below the
threshold, all active task completion times were re-
adjusted to re¯ ect better performance (McCoy 1995) .

Once the model was developed, veri® cation and vali-
dation had to be performed. The next section describes
this process along with the application of the additional
part mission data collected in the McDonnell Douglas
¯ ight simulation facility.

3. Veri® cation and validation

Veri® cation is the process of ensuring that the simula-
tion model functions as intended when executed on the
computer (Velayas and Levary 1987, Pritsker l984). An
example of veri® cation involves determining that all
activities are executed in the proper sequence.
Veri® cation also ensures that the probability distribu-
tions used in the model properly represent the data. A
series of examinations and tests was conducted on the
model to verify its operational ability.

Validation is the process of ensuring that the simulation
model represents the  environment it is designed to emu-
late (Velayas and Levary 1987) . By comparing observed
data collected in the pilot-in-the-loop McDonnell
Douglas simulator with comparable data generated by
the simulation model, an assessment can be made as to
how well the model predicts the pilot activity. The e� orts
employed both to verify and validate the simulation
model of the pilot are described below.

3.1. V eri® cation

The ® rst veri® cation exercise tested that all tasks were
properly executed in a procedure network. Based on the
planning paradigm incorporated in the model, each task
advanced through the following sequence of states (a)
planned, (b) enabled, (c) activated, (d) executing and, (e)
completed. Figure 8 illustrates the sequential progres-
sion of these stages. A print statement was embedded
in the rules that matched on the condition for changing
the task state and modi® ed that state. Therefore, a trace,
or time line, of events changing the status of task was
generated and inspected. This trace demonstrated that
the order of task planning and execution was func-
tioning correctly.

The next phase of model veri® cation ensured that
each task had the correct probability distribution
which generated appropriate task execution times.
Each task was simulated 63 times with pilots in the
McDonnell Douglas manned ¯ ight simulator. The law
of large numbers indicated that this number of trials was
su� cient for comparison purposes. The tasks were com-
pared with the original sequence to demonstrate that the
distributions generated appropriate means. A series of
tables report the comparisons between model-generated
samples of the distributions and the data observed in the
manned simulator.

Table 1 presents the task comparison that constitutes
the communications procedure. In this table, `pilot
mean’ represents the average time pilots required to per-
form the subtask. The `model mean’ represents the
average time required by the model to execute the sub-
task. The `F-test’ reports the signifcance of the test of
di� erences between means, and the `P-value’ reports the
probability of error. In all cases, the probability of error
was su� ciently large to indicate that no statistically sig-
ni® cant di� erence existed between pilot performance
and model-generated task execution times at the 5%
level of signi® cance. The results reported in this tabular
summary proved that the model was functioning prop-
erly with respect to the communications procedure.

Once the task distributions obtained from part task
simulation experiments were simulated individually and
compared with the input data to con® rm the distri-
bution accuracies, the procedures had to be simulated
and compared with those observed in the simulator.
Table 2 reports the comparison of procedures being
executed by the pilot in the simulator with the pro-
cedures being predicted by the model.

Again, the ® rst procedure investigated in the model
was communications. In the previous exercise each sub-
task was executed repeatedly and averaged for compar-
ison with the distributions derived from observed pilot
performance. The next step was to run the entire pro-
cedure repeatedly and compare each subtask, as well as
the total procedure execution time, with that performed
by the pilots. Table 2 compares the means for both the
pilot and the model for each subtask (even though sub-
tasks were executed within the entire procedure) . As
table 2 illustrates, all the subtasks generated by the
model were statistically close to those observed while
pilots were performing the procedures in the part task
simulation exercise.
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3.2. V alidation

The previous section reported the exercises performed
to verify that the model was functioning properly on the
computer. This section reports the exercises performed
to validate the model for the mission segments ¯ own in
the manned ¯ ight simulation facility. Only the pro-
cedure addressed in veri® cation will be discussed. The
remainder of the procedures executed by the pilot, used
for validation are described in McCoy (1995).

First, pilots ¯ ew the navigational route and per-
formed the communications, identify friend or foe,
and navigational waypoint update procedures while
maintaining the route. This imposed con¯ ict between
the ¯ ight control procedures, maintaining the route
and airspeed, and the communications, navigation and
identi® cation (CNI) procedures mentioned. Then, the
model was exercised to predict the pilot’s performance
of the same route and procedure execution. The purpose
of this exercise was to compare the procedure execution
time between the pilot and the model.

For each procedure, several statistics were reported.
First was the average procedure time predicted by the
model, based on the inputs. Next, was the average stick
input time. This represented the average amount of time
the pilots inputted stick manipulation to adjust course
or altitude. Finally, the average time between stick
inputs was presented. If the procedure was truly time
consuming, then the time between stick input could be
large since resources would be consumed when pilots
manipulated the displays or entered data.

Two of the procedures showed large discrepancies
between the execution times predicted by the model
and the actual performance observed while a pilot ¯ ew
the aircraft. The COMM procedure, entering a new
radio frequency, and the Identify Friend or Foe (IFF)
procedure both required the pilot to devote more than
twice as much time to these tasks than the computer
model had predicted.

The model was run in segments with one of the pro-
cedures being executed (the goal posted during that mis-
sion segment). Resource statistics were collected for the
human during each mission segment and averaged for
all repetitions of the model for that segment. Each seg-
ment was executed 35 times, a su� cient sample size to
perform a statistical comparison. Table 3 reports the
estimated resource usage that the model predicted
regarding pilot workload.

Table 4 shows that two of the procedures, predicted
by the model, were underestimated, compared with the
observed pilot performance, when the pilot was simul-
taneously ¯ ying the airplane and performing the pro-
cedures. The procedures were entry of a new radio
frequency and entry of a new IFF code. As with every
procedure, the pilots were given approximately 90 sec-
onds to perform the tasks. Upon arrival, the pilot was
instructed to make a course correction. This was the
time needed to ¯ y to the next waypoint. Both procedures
required less than 10 seconds to perform during the part
task exercise. The model predicted pilot performance
would be very similar when ¯ ying the aircraft.
However, this was not the case. It is possible that the
pilots actually performed the radio frequency and IFF
code changes considerably slower than the model pre-
dicted because they experienced no sense of urgency.
When the model was constructed, assumptions were
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Table 1. Task veri® cation for communications subtasks

Task name Pilot mean Model mean F-test P-value

Sel-Man-P 1.180 1.330 0.940 0.330
Sel-Man-c 1.700 1.700 0.000 0.989
Sel-Man-m 1.540 1.350 0.956 0.330
Ent-freq-p 0.900 0.850 0.415 0.520
ent-freq-c 2.100 1.900 2.100 0.150
ent-freq-m 0.890 0.950 0.370 0.540
ent-man-p 0.140 0.136 0.070 0.790
ent-man-c 0.360 0.400 2.600 0.110
ent-man-m 0.180 0.200 0.310 0.580
Total 9.010 8.840 0.195 0.660

*Task names are de® ned in McCoy (1995)

Table 2. Communication procedure veri® cation

Task name Pilot mean Model mean F-test P-value

Sel-man-p 1.183 1.301 0.317 0.575
Sel-man-c 1.727 1.759 0.031 0.862
Sel-man-m 1.537 1.249 1.833 0.179
inp-freq-p 0.904 0.804 0.933 0.337
inp-freq-c 2.091 2.18 0.312 0.578
inp-freq-m 0.891 0.812 0.527 0.470
ent-freq-p 0.140 0.174 3.151 0.079
ent-freq-c 0.360 0.414 3.272 0.074
ent-freq-m 0.180 0.143 2.194 0.142
Total 9.012 8.769 0.232 0.631

*Task names are de® ned in McCoy (1995)

Table 3. Resource usage by mission segment

Right Left
Segment Vision Audition Cognition hand hand

COMM 0.347 0.040 0.225 0.510 0.083
WPT 0.420 0.365 0.425 0.129
IFF 0.373 0.159 0.536 0.037
SLAM 0.447 0.350 0.331 0.128



made that the pilots would devote immediate attention
to these procedures, since no other complex functions,
with su� cient demand to delay task execution, were
competing for resources. Within those parameters, the
model adequately predicted pilot performance. The next
two procedures investigated consisted of inputting a new
waypoint coordinate and pre-programming a SLAM
missile for launch. Both of these procedures required
much more time to perform (approximately 20 seconds).
Apparently, the pilots perceived a sense of urgency and
performed these tasks more expediently. The model,
which accounted for urgency only in the priority
system, predicted pilot performance times within 2 sec-
onds of the times observed when pilots actually per-
formed these procedures. In both cases, the model
credibly predicted pilot activity.

Based on these results, the model did predict pilot
performance, yet consistently underestimated pilot
execution time. Incorporating the ability to account
for interference between pilot resources (vision, audi-
tion, cognition, right hand, left hand, and speech)
should enable the model to predict pilot activity with
even greater accuracy.

4. Summary and conclusions

Systems engineering is a management technology that
controls the interaction of science, the organization, and
the systems environment (Sage 1992) . The systems
engineering process employs operations research tech-
niques to improve the design of the system, at minimal
cost. One critical aspect of systems engineering is the
human± machine interaction. By combining mathemat-
ical modelling with traditional task analysis and other
human factors procedures, human performance models
have been developed to evaluate candidate system
designs (Elkind et al. 1989) . This has become increas-
ingly important because development of full-scale,

human-in-the-loop simulation studies have become
expensive, in terms of personnel and time (Baron et al.
1990) . Another motive for developing human perform-
ance models is that the rapid advance of modern infor-
mation technology has redirected the way systems are
being designed. With continuing improvements in com-
puter technology, task automation has moved the
human from immediate control of system operation to
higher-level, supervisory tasks and long-term planning
functions (Sheridan 1992) . Without the thorough under-
standing of the implications of system design on the
human± computer interface that a human performance
model can provide, the overall system design can su� er.
In such cases, inferior design can jeopardize the success
of the entire system.

The ® delity of human performance models is key to
the success of their application in both system design
and in decision support implementation. If the model
poorly predicts the impact of the system design on the
human± computer interaction, the operator can become
overloaded. Various methods of developing human per-
formance models have been employed and each one has
both advantages and disadvantages . Selecting any one
technique can cause criticism, based on that method’s
acknowledged disadvantages . However, by minimizing
these disadvantages and building a model suitable for a
speci® c application, design criteria can be better met and
the model will prove more suitable for embedding in
real-time systems, such as decision support.

Three major modelling techniques were considered in
this study because of their popularity, or ease of use.
They were (a) the task network approach, (b) the rule-
based approach, and (c) the multiple resource theory
approach (Baron et al. 1990) . Each of these approaches
had both advantages and disadvantages . Advantages of
the task network approach were (a) it encouraged a top-
down structured design process, (b) it incorporated a
natural hierarchy of tasks and procedures, and (c) the
procedures could be decomposed to any level of detail,
depending on the requirements of the model application.

The rule-based modelling approach (a) described how
people solved di� cult problems, (b) developed an under-
standing of how humans are transitioning to the role of
supervisory controllers, (c) understood how the model
could be embedded in knowledge-based decision sup-
port systems, and (d) expanded and became capable of
learning as the environment changed.

The multiple resource model (Wicken 1984) was
developed to account for the fact that humans appear
to share resources while performing multiple tasks,
simultaneously. Many previous modelling techniques
ignored this phenomenon. Although di� cult to quan-
tify, the WINDEX model was developed to incorporate
the multiple resource model (North 1985) . It provided a
mechanism to quantify channel demand and workload

726 M. S. McCoy and R. R. L evary

Table 4. Procedure validation

Procedure Model Pilot
name mean mean F-test P-value

COMM 9.100 17.200 13.400 0.001
Stick Input 1.070 1.020 1.550 0.220
Bet. Stick 0.956 1.220 2.810 0.099
WYPT 16.410 20.600 0.657 0.420
Stick Input 1.080 1.150 3.630 0.062
Bet. Stick 1.290 1.070 21.200 0.000
IFF 4.840 16.950 48.500 0.000
Stick Input 1.090 1.166 6.940 0.011
Bet. Stick 0.830 1.000 11.100 0.002
SLAM 21.790 22.820 0.460 0.500
Stick Input 1.070 0.944 1.840 0.180
Bet. Stick 2.300 0.861 151.080 0.000



calculation that could be used to defer task execution
based on a predicted excessive workload situation.

Each of these modelling techniques also had distinct
disadvantage. With the network modelling paradigm,
the interaction between tasks generally has not been
modelled. Subprograms were not necessarily unique
and care was taken in selecting which ones to model.
Also, validation could be di� cult because di� erent
levels of decomposition were used in the model com-
pared with the data collected for validation.

Rule-based models have typically required extensive
study of the individuals being modelled to determine the
knowledge they employed while performing tasks within
the system. Rule-based systems were generally used in
slow, non-real-time environments where response times
varied in magnitude from seconds to minutes.
Aggregating submodels of perception, cognition, and
motor response were required to model interactions
between submodels. Finally, rule-based models were
generally expensive to construct since they required
developing an extensive knowledge base.

The multiple resource model, as implemented in the
WINDEX environment (North 1985) , quanti® ed the
channel demand and con¯ ict between combinations of
channel usage. The model generally allowed multiple
tasks to be performed, simultaneously, as long as the
predetermined workload limitation was not exceeded.
Each task demanded a fraction of the resource to
attend to each channel demanding attention. The
major problem with this approach was determining
what fraction of a resource was necessary for each
channel within the task. Schuppe (1988) showed that
the e� ort may not have been necessary since a queueing
model did as well in predicting human performance.
However, his queueing model, like others, still ignored
the interaction of competing channels.

In order to combine the hierarchical advantages of the
task network model with the ¯ exibility of rule-based
modelling, a joint modelling approach was implemented
in this study. By developing the network environment
within a rule-based, expert system program, the pattern
recognition and other inherent knowledge-based fea-
tures were available for enhancing the model environ-
ment. An initial demonstration of this technique was
presented in the Task Network Tool that was developed
for the Pilot’s Associate program (Keller and Stanley
1991) . However, this program also incorporated
WINDEX for multiple resource theory workload calcu-
lations. In order to relieve the model of the problems
found in the WINDEX implementation, the workload
calculation was modi® ed to allow only one task to seize
a channel at a time. Two tasks could not share the same
resource simultaneously. However, the model did retain
the con¯ ict penalty imposed from two channels being

utilized simultaneously with di� erent resources. In this
way, multiple tasks could still be active simultaneously.

To develop a human performance model that was
task-oriented, employed rule-based procedure genera-
tion, and incorporated accountability for interference
between tasks performed simultaneously, data from
various sources and modelling techniques were inte-
grated. The data integration was accomplished
throughout the following tasks: (a) task analysis data
were selected from existing databases developed from
a human-in-the-loop simulation plan (McCoy et al.
1993) ; (b) the task analysis was conducted using estab-
lished techniques (Ausburn et al. 1980) ; (c) task demand
for channel attention, based on McCracken and Aldrich
(1984), was incorporated in the tasks reported by
McCoy et al. (1993) ; (d) a task con¯ ict matrix, as
reported in the Pilot’s Associate program (1990) for a
crew station similar to that used for data collection, was
performed; and, (e) a rule based on a performance oper-
ating characteristic derived from data reported in Bo�
and Lincoln ( 1988) was incorporated.

Developing the model also entailed integrating a
series of techniques and modi® ed methods to incorpo-
rate the advantages of each technique. These integration
steps included: (a) adapting the model, based on task
pro® les developed for the human performance model
reported by Asiala et al. (1982) ; (b) incorporating a
combined task network and rule-based modelling
approach similar to the Pilots Associate Task Network
Tool (Keller and Stanley 1991) ; (c) building the model in
a ¯ exible, rule-based CLIPS environment (Giarratino
1993) ; (d) employing the planning paradigm proposed
by Pilot’s Associate (1991) and based on the method
de® ned by Sacerdoti (1977) ; and (e) modifying the mul-
tiple resource theory (Wickens 1984) as implemented by
WINDEX (North 1985) and applied to pilot modelling
(Pilot’s Associate 1991) .

Because of the nature of integrating modelling tech-
niques and data from multiple sources, there were a
number of contributions made by this study. They
consisted of (a) combining network and rule-based
mode ling approaches in CLIPS, (b) illustrating the use
of an expert system program for modelling pilot per-
formance, (c) demonstrating an environment that com-
bines rule-based knowledge of task selection and
execution, (d) validating the combined task network/
rule-based model with data collected in a high ® delity,
complex, human-in-the-loop simulation facility, (e)
demonstrating a simpli® ed workload calculation based
on a single channel operator within a validated model,
and ( f ) demonstrating the use of a performance oper-
ating characteristic, relating performance times to work-
load level, and adjusting task performance times.

The ® rst contribution this study made toward
improving human performance modelling techniques
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involved adapting the rule-based task network concept
that Keller and Stanley (1991) developed (using an
extensive mainframe computer network) for the Pilot’s
Associate program into a CLIPS expert system program
(Giarratano and Riley 1994) running on a single per-
sonal computer. This provided an expedient medium
for conducting experiments with the model using a con-
venient, low-cost facility. This also provided an environ-
ment for exploring the de® nition of declarative
knowledge (in the form of templates and facts) as well
as procedural knowledge, represented by rules.

Because declarative knowledge, facts about the
operator state, system state, and environment, are repre-
sented, the model was useful for model-based reasoning.
By imbedding this model in a decision support system,
the model could produce operator activity predictions
that could be compared with observed performance.
Then, deviations from predicted activity and observed
performance could be used to initiate more rules to aid
the pilot.

The model developed in this study was validated using
data collected from the human-in-the-loop ¯ ight simu-
lator. Data were collected on pilot performance, while
executing the procedures modelled. Those data were
compared with the data generated from the Monte-
Carlo simulation of the model. The data compared
favourably.

The ® nal demonstrated bene® t of this study emanated
from the model architecture. By using the rule-based
modelling approach, a true activity scanning approach
was developed. As events occurred, the model adjusted
the fact database to re¯ ect (a) the new state of the
systems environment, (b) the system, (c) the operator’s
goals, and (d) the operator’s state. The rules were devel-
oped to recognize patterns of states and to execute pro-
cedures based on those recognized patterns. This process
represented procedural knowledge. One major advan-
tage this methodology provided was an ease in adjusting
task execution times. One rule was capable of adjusting
all executing tasks based on the goal set by existing con-
ditions representing changes in operator workload. This
feature had been extremely di� cult to implement using
procedural languages, such as FORTRAN (McCoy and
Levary 1988) .
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