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Abstract

The recognition of a temporal sequence is a complex problem, especially in the framework of driving situations. However, this

recognition is essential for the development of driving assistance systems. This paper presents a rule-based system that manages the

real-time measurements got from sensors of an experimental vehicle, in order to determine the current possible maneuvers worked

out by the driver. The particularity of the proposed system is that it manages the inaccuracy of the data and the uncertainty of the

recognition, using fuzzy subsets and beliefs on hypotheses.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Much research has been conducted in order to assist
car drivers in their driving activity. That have led to the
realization of different kinds of tools. It has been shown
that in order to be useful, a driving assistance system has
to take into account the driving context, and specially
the maneuver worked out by the driver. The automatic
acquisition of context and maneuver recognition is a
particularly complex task, which is the goal of the
CASSICE1 project (Rombaut and Saad, 2000). The
driving situations considered have to represent the
context in which this activity takes place, in conjunction
with the actions of the driver, namely his/her maneuvers
performed.

The physical system is made up of an experimental
vehicle equipped with sensors and a software to store
and to exploit a database of driving situations. The
software is made up of several layers, which go from the
low-level processing of data (acquisition of data) to the

construction of high-level descriptions of driving situa-
tions. The aim of this paper is to propose a method to
recognize the maneuver performed by the driver
according to raw data coming from the sensors of the
experimental vehicle. In this paper, we are not con-
cerned with other questions such as the equipment of the
vehicle.

Section 2 presents the context of the ‘‘driving
assistance’’, why it is important to study the drivers’
behavior related to the maneuver they perform. The
psychologist and engineering approaches are presented.
In Section 3, the formal description of the maneuvers is
detailed as well as the rule-based approach used for the
maneuver recognition. Data used are assumed to be
perfect and accurate. It will be illustrated with the
description of an overtaking maneuver which is a typical
example taken from an intelligent vehicle application
(Blancard et al., 1994). Section 4 deals with the
inaccuracy and uncertainty inside data, how we define
the symbolic data using fuzzy subsets. Section 5 presents
the modified rule-based systems dealing with uncertainty
and inaccuracy. Finally, results will be presented in
Section 6. They have been obtained from simulated data
because the experimental vehicle has just been equipped.
New experiments will begin soon with real data. In the
follow-up, no distinction will be made between real and
simulated data.
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2. Context: the driving assistance

The study of the driver’s activity represents an
indepth qualitative investigation into driver behavior
(Saad, 1997) in the context of the complex interactions
at work in real situations. Research conducted at
INRETS2 on this topic relies on the observation of
driver behaviors. The objectives are the following:

(1) understand the driver behavior in order to define
rules of behavior,

(2) from these rules, build driving assistance systems
taking into account the driving context and the
driver’s behavior,

(3) study the drivers’ behavior modifications using the
new driving assistance systems.

The investigations about the drivers’ behavior are held
by psychologists. The human driver is the center of
interest of their research. In the CASSICE project, the
objective is to recognize the current maneuver of the
vehicle whoever is the driver and therefore his behavior.
Our research relies on the research developed at
INRETS.

2.1. Previous experiments for driver behavior study

At INRETS, experiments are realized using an
equipped vehicle on an urban motorway, 21 km long,
near Paris, France. The driving episodes are recorded
with a video. Interviews conducted after the journey
enable the driver to explain his/her strategies (Saad,
1993). In order to be able to learn knowledge about this
kind of situation, grids of data are manually filled to
detail the driving situations. These grids represent the
infrastructure, the environment of the driver, in terms of
traffic, and the actions of the driver (maneuver, action
on the brake, etc.). An extract of this grid and the
meaning of the columns are presented in Table 1.
During all these experiments, we assume that only one
vehicle preceding the subject on the road is of interest.
The reason is that only pulling in and pulling out are
considered. The number of occurrences of both actions
is then computed in order to obtain the number of
overtaking maneuvers.

2.2. Analysis

After the journeys and the interviews, the grids are
analyzed. This work allows the psychologist to deter-
mine the strategies employed by the driver (the subject)
during his/her activity, according to the kind of
situation encountered and his/her intentions (ex: mini-

mization of the number of maneuvers). The objective is
to bring to the fore his/her tactic rules and strategic rules
(Senach, 1999). An example of tactic rule is given below:

IN an orientation area on a 3-lane motorway,
IF the subject is on the middle lane
AND middle and right-lanes are orientation lanes,
AND the driver intends to go right
THEN he remains on the middle-lane.

2.3. The CASSICE project

The construction of driving situations and their
analysis are very time-consuming tasks. One of the
CASSICE project’s objective is to automatically build
the description of these situations. Automatically
acquiring driving situations needs to respect the follow-
ing main stages: acquire data from sensors, translate a
numerical description into a significant representation
allowing high-level requests, store the driving situation
representations. The first stage has been presented in
Shawky and Bonnifait (1999). The last one is in
progress. In this paper, we were interested in the second
stage. Its objective is to automatically construct a grid,
such as the one presented in Section 2.1. We reasonably
assume that particular data will continue being acquired
manually: that is the case of the column ‘‘zone’’, for
instance in Table 1. CASSICE is a big project broken in
several varied tasks. All of these tasks are realized at the
same time. That is the reason why the data used are
simulated at the present time.

2.3.1. Input data

The recognition of the real-time maneuver needs to
evaluate a lot of parameters that characterize the driving
situation. In order to obtain these values, an exper-
imental vehicle (EV: Experimental Vehicle) has been
equipped and experiments have just begun with it. The
input data we use are therefore generated by a
simulator. During the simulation, as well as during the
future real driving scenario, the acquired data, that will
represent the same kind of data, are assumed to be
provided by a vehicle moving on a straight urban
motorway.

Our approach is illustrated throughout this paper by a
typical example taken from an intelligent vehicle
application (Fort et al., 1997). The goal is to detect
and characterize an overtaking maneuver of a target
vehicle (TV: Target Vehicle). We have used the
simulated data presented in Table 2. Data used are
related to the position of the EV on the motorway and
towards the TV. It can be noticed that EV is the vehicle
of the ‘‘Subject’’ whose behavior study is described in
Section 2.1, and TV is the vehicle of the ‘‘Followed’’
driver.
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By contrast with the manually acquired data of
Table 1, simulated data, as well as the future real
data, are time stamped and they refer to the center
of the EV.

2.3.2. Method used

The maneuvers that have to be detected may be
explained by a succession of stages, which may be
described at different levels of description: pulling in,
passing, pulling out, etc. The nature of the data at our
disposal requires the recognition of certain moves of EV,
or certain actions of its driver, for instance turning the
wheel. Each of the actions can be recognized thanks to a
subset of variables in Table 2. For instance, in order to
recognize that EV gets closer to TV, one needs to
consider the variations of variables X ; Y over an

interval of time. The approach chosen has naturally
been the rule-based approach, which fully satisfies the
requirement above.

3. Maneuver recognition

During his driving activity, the driver has the choice
between different possible maneuvers. He can decide at
a particular time to execute one of them, and to start the
maneuver. Later, he can decide to change strategy, to
give up the current maneuver to reach another one that
seems better. The objective of the system we have to
develop is to determine automatically at any time, the
strategy of the driver, that means the possible maneu-
vers he has decided to execute.

Table 2

Example of simulated input data

Grid of measures

TimeCode 0.01 0.02 0.03 y 1.12 1.13 1.14

X �32:00 �31:85 �31:70 y �15:52 �15:37 �15:22
Y 0 0 0 y �2:01 �2:04 �2:06
V 15 15 15 y 15 15 15

y 0 0 0 y �9:91 �9:68 �9:46
f 0 0 0 y 3 3 3

Rg �3:50 �3:50 �3:50 y �1:46 �1:46 �1:46
Rd 1.50 1.50 1.50 y 3.54 3.54 3.54

Meaning of data

TimeCode Clock(s)

X Position on the x’s axis of TV against EV (m)

Y Position on the y’s axis of TV against EV (m)

V Speed of EV relative to TV (m/s)

y Angle of the target TV (deg)

f Front wheel angle of EV (deg)

Rg Position of EV against the left road side (m)

Rd Position of EV against the right road side (m)

Table 1

Example of grid detailing the maneuver

TimeCode 00:27:09 00:27:10 y

Subject 1 1 Observed subject

NbL 2 2 Number of lanes

Zone ZE ZE Kind of traffic zone (e.g. ZE ¼ entry zoneÞ
Sveh 118 115 Speed of subject

Star 131 130 Speed of the followed vehicle

BrS 0 0 Action on break by subject

BrA 0 0 Action on break by the followed vehicle

Dist 41 34 Distance covered

TIV 1.28 1.47 Time between before collision

Lane 2 3 Lane occupied by subject

ManS 6 6 Maneuver performed by subject

ManA 6 6 Maneuver performed by the followed vehicle

^
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In this section, we describe the logical representation
of states and maneuvers, as well as the logical rule-based
systems developed for this application.

3.1. Illustrating example

In order to illustrate our approach, the example of
overtaking maneuver is used: on a highway composed of
two one-way lanes, an experimental vehicle (EV) goes to
the right lane. It catches a target vehicle (TV) going on
the same lane with a lower speed. The EV is beginning
an overtaking of the TV. It begins to go left for a lane
changing, then goes straight forward. When TV is over-
taken, it goes right to the right lane. This typical man-
euver can be aborted at different places, for instance:

(1) during the left changing, the driver can choose to
stay behind the TV, because he sees the next exit
soon, and estimates the time of overtaking too long;

(2) on the left lane, the driver can choose to stay on this
lane because there is a slow truck relatively close
behind and he estimates that it is not necessary to
change lanes twice.

3.2. Maneuvers and states

At a particular time t; the driver of the experimental
vehicle (EV) performs a maneuver M and its real state s

is one of the states that compose this maneuver. It is
assumed that the set M of possible maneuvers Mi is
known, as well as the description of each maneuver.

For the example described before, the set M is
composed of three possible maneuvers:

M ¼ fM1;M2;M3g;

where M1 is the complete overtaking maneuver; M2 the
aborted overtaking maneuver where EV stays on left
lane; M3 the aborted overtaking maneuver where EV
stays behind TV.

A maneuver Mi is composed of an ordered sequence
of nMi

states si:

Mi ¼ ðs1; s2;y; si;y; snMi
Þ:

Table 3 presents the states of the three maneuvers
described before.

With each transition between si and sj is associated a
logical condition Ci;j ; that means that if the condition
Ci;j is true, it is possible but not sure the actual state
s is sj :

For instance, the condition C5;6 between (s5: Passing)
and (s6: End of passing) is:

(EV on the left lane) and (TV on the right lane) and
(TV behind EV)

3.3. Evolution rule-based systems

The evolution of a dynamic system is usually
represented by a model that allows to connect the states

between two different times t1 and t2: The interest of the
system community concerns both the analogical and
sequential systems. In the first case, the evolution is
modeled by differential equations, and in the second
case, it is represented by a graph such as the largely used
Petri net model (Courvoisier and Valette, 1992). In this
paper, we focus only on the rule-based approach to
model the sequential systems, mainly used in the
artificial intelligence community. In this case, the system
is modeled by a set of declarative rules.

The evolution rule presented in Table 4 corresponds
to the classical one of the states charts, or Petri nets. The
maneuver M is recognized when the last state sNM

is
reached.

The system rules consists in determining the states
following the states previously reached, evaluating the
truthfulness of their conditions and finely determining
the new states reached according to these conditions.
The rules are strongly dependent on the structure of the
graph. The algorithm can be described as follows:

Loop

Determination of the next possible states

Evaluation of the conditions associated to these

states

Determination of the new states reached

End of loop

At any time, several possible maneuvers can be in
progress with different levels of evolution. That means it

Table 3

The sequence of states of the overtaking maneuver

Maneuver M1

s1 Wait for overtaking

s2 Beginning of changing lanes

s3 Crossing of the discontinuous line on the left

s4 End of changing lanes

s5 Passing

s6 End of passing

s7 Beginning of changing lanes

s8 Crossing of the discontinuous line on the right

s9 End of changing lanes

Maneuver M2

s1 Wait for overtaking

s2 Beginning of changing lanes

s3 Crossing of the discontinuous line on the left

s4 End of changing lanes

s5 Passing

s6 End of passing

Maneuver M3

s1 Wait for overtaking

s2 Beginning of changing lanes

s3 Return to right lane

J.-M. Nigro et al. / Engineering Applications of Artificial Intelligence 15 (2002) 217–228220



is necessary to follow the evolution of several graphs
associated with different maneuvers. A particular
maneuver can be: not attempted, in progress (what

state?), finished.

The previous loop algorithm must be extended as
follows:

Loop

For each maneuver

If not attempted: Evaluation of the conditions

associated to the initial state

If in progress: Determination of the next possi-

ble states and Evaluation of the conditions

associated to these states

Determination of the new states reached

Qualification of the maneuver (not attempted, in

progress, finished)

End of loop

Two systems have been developed in the frame of the
CASSICE project, the Intelligent Driving Recognition
with Expert System (IDRES) and the Driving Situation
ReCognition systems (DSRC).

The DSRC system has been developed in order to
determine the state of a system following a particular
maneuver (Loriette-Rougegrez et al., 2000). It is made
up of two levels of rules. The rules of the first level have
to validate the logical conditions making up the
transitions in the graph. The second level of rules has
to change the current state according to the valid

transition. This formal model takes place between the
rule-based system where no global representation of the
system is used, and the Petri net system based on a strict
representation of this dynamic system.

The IDRES system is developed in order to determine
the maneuver followed into a set of possible maneuvers
(Nigro and Loriette-Rougegrez, 1999). Several states
may be found at any moment. The rules have to find
among all the hypotheses generated, a consistent pattern
of the a priori known sequence M; that corresponds to
the sequences itemized in the system.

The complete system is composed of three levels:

(1) evaluation of the validity of all the conditions
(made by DSRC),

(2) determination of the new current possible states
using the validated conditions (made by DSRC),

(3) determination of the possible maneuvers (made by
IDRES).

The logical functioning of IDRES and DSRC are
presented in detail before taking into account the
uncertainty of measurements.

3.4. The Driving Situation ReCognition systems

The recognition of a state inside a particular
maneuver is directly related to the graph that represents
it. Each state represents one stage of realization of the
maneuver. Some situations are optional. For instance,
during an overtaking, the driver may not use the turn
signal. This peculiarity explains why a maneuver is not
simply represented as a linear succession of states such
as can be seen from Fig. 1. A maneuver has then been
completely detected if the raw data acquired lead to go
from the first state to the final state of the graph. The
recognition is realized in batch mode. Nevertheless,
DSRC has been conceived for a sequential processing of
the data that should enable an easier adaptation of this
system to a real-time processing.

Table 4

Evolution rule

Evolution rule

If the states si and sj are linked,

si is already reached,

Ci;j is true,

Then the state si is left and the state sj is reached

4 wheels on the same 

TV and EV on the

same lane

lane.  EV in front of TV. to the left

Steering wheel

EV’s lane left to

TV’s lane

All the wheels on

the left lane

End of changing 

lanes

EV pulls in front of

TV

to the left

Steering wheel

At least, one wheel

on the line

same lane

TV in front of EV

TV and EV on the

Steering wheel

to the left

signalling of

overtaking (left)
intent of 

Wait for overtaking

Beginning of changing lanes

Crossing of the discontinuous line on the left

End of overtaking

Fig. 1. Transitions and states making up the overtaking maneuver.
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The transition between two states indicates which
conditions have to be satisfied in order to change the
current state. The conditions associated with each
transition consist in a conjunction of tests about the
current situation. They are represented at the symbolic
level.

The first-level rules of DSRC have to control the
truthfulness of the conditions that stamp the transitions
of the graph. One such rule is represented in Table 5.
This rule verifies, at each time point of the lines of Table
2, that the value of the variable Y indicates that both
vehicles move on the same lane.

The second-level rules associate the validated transi-
tions with the current state. If such an association is
possible, the current state of the graph is changed (see
Table 4). This kind of rule expresses the links between
states. For instance, let us consider inside the graph of
Fig. 1 the transition between the states Wait for

overtaking and Beginning of changing lanes. The rule of
Table 4 will enable the system to go from the first state
to reach the second one if and only if the conditions
associated with the transition between both states are
validated. That is to say, four wheels of EV are on the

same lane, EV and TV are on the same lane, and EV is

behind TV are true.

3.5. The Intelligent Driving Recognition with Expert

System

From states found by DSRC level, a set of decision-
level rules has to select a sequence M of states. M ¼
fs1; s2; s3;y; sng: This sequence is recognized when it
matches with the different known sequences of states.
For example, the simplest way to validate the M3

maneuver would be to validate the three states which
compose it (‘‘Wait for overtaking’’, ‘‘Beginning of

changing lanes’’, ‘‘Return to right lane’’) respecting this
chronological order. Some sequence recognition rules
are described with a textual syntax in Table 6.

The following principles have been adopted for the
recognition of the sequence performed:

* it is necessary to respect the order of the states inside
the sequence,

* some states inside a sequence may not be recognized,
* when the system is not able to detect a state at a given

moment k; the concept of persistence of the
previously detected state is used. This persistence is
only valuable during a short interval of time.

The rules of the decision level are developed indepen-
dent of any application domains. They respect the three
conditions described above. IDRES finds all possible a
priori known sequences that may correspond to the real
sequence of the dynamic system without determining the
most relevant one.

4. Confidence evaluation of logical propositions

Because we have no information about the decision of
the driver, the transition from one state to another one
depends on different parameters that are measured on
the vehicle and/or on the environment (static and
dynamic) of the vehicle. The input data can be of
different types such as the acceleration of EV, or the
lateral speed, or the position of the vehicle on the lanes.
Note that no temporal information is used, because the
duration of each phase depends on the context of the
maneuver (speed, length of TV, etc.) and cannot be
easily evaluated.

The system described before has logical properties,
meaning that its evolution is conditioned by logical
values of the inputs. Sometimes the inputs are logical
ones such as the blinker for instances (no blinker, right,
left). But generally, the inputs are numerical ones. It is
then necessary to turn the numerical values of the
reports into logical values associated with a symbol. For
instance, the speed of EV can be described by three
linguistics terms such as low, middle, and high. The set
of definition of the logical speed is then Ospeed ¼
flow;middle;highg: Each linguistic term has to be
described by an expert given the numerical limit between
these symbols. The evaluation of the proposition
associated with each term can be made by a set of rules
such as the ones represented in Table 7.

Table 5

Same lane rule

Rule Same lane

If Y between the right and left sides of the lane,

Then condition ‘‘same lane’’ is true

Table 6

Example of sequence recognition rules

Rule Begin of maneuver

If A state s is found

This state s is the first state of the sequence M

The sequence M has not still been recognized

Then The sequence M is in progress with the state s

Rule Same sequence same state

If A state s is found

This state s is included in sequence M

The sequence M is in progress with the same state s

Then The sequence M is in progress with the state s

Rule Same sequence next state

If A state s2 is found

The sequence M is in progress with the state s1
The state s1 precedes the state s2 in the sequence M

Then The sequence M is in progress with the state s2
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In fact, the truth values of the logical data are usually
not known with certainty, because of the limited
precision and reliability of the sensors. For instance,
during the state s3 (crossing of the discontinuous line on

the left), it is impossible to know precisely when this
event occurs. So it cannot be sure to know the real state
of EV as well as the real maneuver attempted by the
driver.

We propose to model the confidence of the logical
data by a belief function, as proposed by Dempster and
Shafer in Shafer (1976). The transitions from the
numerical values to the logical ones can be made using
statistical measures as in Silverman (1988). In this paper,
we propose to use expert knowledge about the dynamic
system and we present an example.

4.1. Confidence in the inputs

The method is based on the evidence theory also
named Dempster Shafer’s theory (Shafer, 1976). This
theory has yet been interpreted in the frame of
propositional logic (Cholvy, 2000). We propose to
introduce it inside of rules.

The problem is that the knowledge about the problem
induces a basic belief assignment modeled by a
distribution of mass of evidence m on the propositions
A; subsets of the set O ¼ fHig of hypotheses. A can be a
singleton (or single) proposition such as fHig; but also a
composed proposition such as fHi;Hjg for instance. The
distribution of mass takes values in 2O; the power set of
O:

m : 2O-½0; 1�;

A-mðAÞ:

Some properties are attached to this distribution of
mass:

mð|Þ ¼ 0;X
ACO

mðAÞ ¼ 1:

The propositions of 2O that have a mass not equal to
zero are named focal elements. The value mðAÞ
represents the degree of evidential support that a specific
element of O belongs to the set A; but not to a particular
subset of A:

4.2. Example of the EV speed model

The speed of EV can be described by three linguistics
terms such as low, middle, and high. The set of

definition of the logical speed is then Ospeed ¼
flow;middle;highg: The distribution of mass of evidence
is defined on 2Ospeed : Each term of 2Ospeed can be
represented in the numerical speed reference as a fuzzy
set defined by an expert such as represented in Fig. 2.

On this example, the distribution of mass associated
with the value s of the speed is then

msðmiddleÞ ¼ 0:8;

msðmiddle,lowÞ ¼ 0:2:

It can be noted that all the propositions of 2O are
modeled by a fuzzy set such as ðmiddle,lowÞ:3

4.3. From the inputs to the conditions

The conditions of the first-level rules or of the
transitions are generally a logic combination of the
symbolic inputs. So a distribution of mass can be
attached to each of them. For two logical propositions4

A and B defined on OA ¼ fA; %Ag and OB ¼ fB; %Bg; a
distribution of mass mA and mB defined on 2OA and 2OB

are attached. The evaluation of the confidence on the
proposition A-B is made by combining the distribu-
tions mA and mB on 2OA	OB using the conjunctive
combination rules usually defined by

m1;2 ¼ m1"m2;

m1;2ðUÞ ¼
X

V-W¼U

m1ðV Þ 
 m2ðW Þ; ð1Þ

for U ;V ;WC2O ¼ 2OA	OB the common space of
discernment.

5. Confidence evaluation of states and maneuvers

We have described in Section 4 the tools we intend to
use. Let us explain how they are applied inside DSRC
then IDRES.

5.1. From input data to graph’s states

The transformation of data is realized in three stages:

* from numerical input data, the confidence in the
associated symbolic data is computed,

Table 7

Numerical/symbolic conversion of the speed

If Vo10 km=h then ðrelative speed is smallÞ ¼ TRUE

If 10 km=hoVo30 km=h then ðrelative speed is middleÞ ¼ TRUE

If 30 km=hoVo50 km=h then ðrelative speed is highÞ ¼ TRUE

Fig. 2. Definition of the symbolic values of the speed.

3The two principle logical operations are AND usually written -
and OR written ,:

4 %A means A is FALSE and A means A is TRUE.
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* the belief of conditions associated to transitions are
computed,

* the uncertainty about conditions of transitions are
propagated to the states.

5.1.1. From numerical input data to symbolic data

The truthfulness of each symbolic data depends on
the value of the associated variable. The first-level rules
presented in Section 3.4 have to first evaluate the belief
about the symbolic data using fuzzy sets such as those
presented in Section 4.2. In the example proposed in
Section 3.2, the condition C5;6 between (s5: Passing) and
(s6: End of passing) is C5;6 ¼ H1-H2 where

H1: ðEV on the left lane and TV on the right laneÞ;

H2: ðTV behind EV Þ:

Using the numerical values described in Table 2, such as
X (position of the x’s axis of TV against EV) and Y

(position on the y’s axis of TV against EV), the two
distributions of mass mH1

and mH2
concerning the

propositions are evaluated. Numerical values examples
are given in Section 6.

5.1.2. Belief conditions computation

Usually, the conditions of transitions are associated
with more than one variable. We have to compute for
each condition C a distribution of masses of evidence
over fC; %C;C, %Cg: This is made using the conjunctive
combination-rule of Eq. (1). For instance, the combina-
tion of the distributions of mass mH1

and mH2
are

described by:

mH1
ðH1Þ mH2

ðH2Þ
mH1

ðH1Þ mH2
ðH2Þ

mH1
ðH1,H1Þ mH2

ðH2,H2Þ

We have now to compute mC5;6
¼ mH1

"mH2
with

C5;6 ¼ H1-H2: Table 8 gives the conjunctive combina-
tion of the propositions associated to the two distribu-
tions of mass. This table enables to evaluate the belief of
the proposition, for instances:

mC5;6
ðC5;6Þ ¼ mH1

ðH1Þ 	 mH2
ðH2Þ;

mC5;6
ðC5;6Þ ¼mH1

ðH1Þ 	 mH2
ðH2Þ þ mH1

ðH1Þ 	 mH2
ðH2Þ

þ mH1
ðH1Þ 	 mH2

ðH2Þ

þ mH1
ðH1Þ 	 mH2

ðH2,H2Þ

þ mH1
ðH1,H1Þ 	 mH2

ðH2Þ;

mC5;6
ðC5;6,C5;6Þ ¼mH1

ðH1Þ 	 mH2
ðH2,H2Þ

þ mH1
ðH1,H1Þ 	 mH2

ðH2Þ

þ mH1
ðH1,H1Þ 	 mH2

ðH2,H2Þ:

5.1.3. From transitions to states

In order to recognize a maneuver, it is necessary to
know at each time which state is validated. If we use a
states recognition based upon a running of the graph,
which is a normal utilization of a graph, the uncertainty
upon transitions is propagating to the states. In our
concern of coherence against the set of all the
representations chosen in DSRC, ws associate with each
state s too, a distribution of mass ms over Os ¼ fs; %sg:

By analogy with Petri nets (David and Alla, 1992), the
evolution of the graph follows these rules:

* if the state is si and the condition Ci;j is true, the state
becomes sj ;

* if the state is si and the condition Ci;j is false, the state
stays si:

These rules can be translated into boolean equations

skþ1
i ¼ ðsk

i -Ci;jÞ;

skþ1
j ¼ sk

i -Ci;j : ð2Þ

The uncertainty upon transitions or states has seldom
been considered until now. In Jarkass and Rombaut
(1998a), the uncertainty is on the first state of the Petri
net considered. In Jarkass and Rombaut (1998b), the
uncertainty is related to each recognized state of Petri
net at each time. This processing of the uncertainty
maintains the main properties of the Petri nets such as
the conservation of mass.

In the case of DSRC, the Ci;j are associated with
distributions of masses of evidence. For each state si

is associated a distribution of mass msi
on 2Osi ¼

fsi; si; si,sig that models the confidence that the real
state S is si: The aim is to compute the distributions
mkþ1

si
and mkþ1

sj
at time k þ 1 using the distributions mk

si

at time k and the distributions mCi;j about the conditions
associated to the transitions between the si and sj states.
The boolean equations (2) are extended to give the
tables of combination presented in Table 9.

The conjunctive combinations are made for each pair
ðmksi

;Ci;jÞ: Sometimes two different conditions lead to
define two distributions about the same state, for
instance Ci;j and Ck;j give two different functions mkþ1

sj
:

These functions are then combined using the conjunctive
rule. If a conflict appears such as mkþ1

sj
ðsjÞa0 for the first

function and mkþ1
sj

ðsjÞa0 for the second function, a
disjunctive rule of combination is used.

5.2. From states to maneuvers recognition

In order to evaluate the confidence in the realization
of the maneuver represented by the sequence M ; it is

Table 8

Conjunctive combination of the propositions

H1 H1 H1,H1

H2 C5;6 C5;6 C5;6,C5;6

H2 C5;6 C5;6 C5;6

H2,H2 C5;6,C5;6 %C5;6 C5;6,C5;6
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proposed to assign a mass mM of belief for M on the
power of the space

OM ¼ Os1 	 Os2 	?	 Osi
	?	 Osn ;

where si are the n states of the sequence M:

mM : 2O
M
-½0; 1�;

OM ¼ fM ; %Mg;

where the logical value M ¼ s1-s2-?-si-?-sn:
When the mass of M is not equal to zero ðmMðMÞa0Þ;
the maneuver can be considered performed, that means
all the states si of M have been reached during the
realization of M :

In order to be combined, the mass of evidence msi
are

extended to m0
si
defined on the space 2O

M
:

msi
ðsiÞ ¼ m0

si
si-

\
jai

Osj

 ! !
;

msi
ðsiÞ ¼ m0

si
si-

\
jai

Osj

 ! !
;

msi
ðOsi

Þ ¼ m0
si

\
j

Osj

 !
:

The second rules level can be modified, taking into
account the plausibility PlðsiÞ of the states si of the
sequence M such as represented in Table 10. We
remember that the plausibility PlðAÞ of a proposition
A of 2O is defined by the relation

PlðAÞ ¼
X

B=B-Aa|

mðBÞ

and the belief BelðAÞ is defined by

BelðAÞ ¼
X
BDA

mðBÞ:

It can be seen that during the time, the mass of evidence
passes through more and more accurate focal elements.
When the current state is s1 the focal element is
ðs1-O2-?-OnÞ: When the system reaches the state
s2 the focal element becomes ðs1-s2-?-OnÞ: And
finally, if the maneuver is complete the focal element is
ðs1-s2-?-snÞ:

In this Belief IDRES system, the first state reached
must be the first state of M; but it is possible to quantify
the quality of realization of M :

6. Results

Intensive experimentation has been realized based on
the use of DSRC and IDRES systems. The experience
consists in verifying that the global system recognizes
the overtaking maneuver using the belief model of
resolution. We propose to decompose the results
analysis in two parts, one concerning the transition
recognition using DSRC, the other one concerning the
maneuvers recognition using IDRES.

6.1. Transition recognition using DSRC

In order to illustrate the method, the rule Transition

End of passing has been chosen

Rule Transition End of passing

EV on the left lane and TV on the right lane ðH1Þ
TV behind EV ðH2Þ

Then

Transition End of passing ðC5;6Þ

This rule contains two conditions ðH1;H2Þ and
concludes with the validation of the Transition End of

passing ðC5;6Þ:
The left part of the table presented in Fig. 3

corresponds to the measurements of X and Y got at
different times.

From these numerical values and using the symbolic
models proposed in Fig. 4, the basic belief assignment

Table 9

Tables of combination

si si si,si

Computation of mkþ1
si

Ci;j si si si

Ci;j si si si,si

Ci;j, %Ci;j si,si si si,si

Computation of mkþ1
sj

Ci;j sj sj,sj sj,sj

Ci;j sj sj,sj sj,sj

Ci;j,Ci;j sj,sj sj,sj sj,sj

Table 10

Example of belief sequence recognition rules

Rule Begin of sequence

If Belðs1Þ ¼ 1

This state s1 is the first of M

M has not still be recognized

Then M is in progress and mk
M ¼ m0

s1

Rule Same sequence same state

If BelðsiÞ ¼ 1

This state si is included in M

M is in progress

Then M is in progress and mk
M ¼ mk�1

M "m0
si

Rule Same sequence next state

If Belðsiþ1Þ ¼ 1

M is in progress

The si precedes siþ1 in M

Then M is in progress and mk
M ¼ mk�1

M "m0
siþ1
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concerning the hypothesis H1 and H2 are computed. For
instance, at time t ¼ 222 ms; the basic belief assignments
are

mH1
ðH1Þ ¼ 1 mH2

ðH2Þ ¼ 0:3
mH1

ðH1Þ ¼ 0 mH2
ðH2Þ ¼ 0

mH1
ðH1,H1Þ ¼ 0 mH2

ðH2,H2Þ ¼ 0:7

These basic belief assignments mean:
at this time, it is certain that EV and TV are on the

same lane ðmH1
¼ 1Þ; but it is not certain that TV is

behind EV (mH2
¼ 0:3 and mH2,H2

¼ 0:7).
At any times, from mH1

and mH2
; the basic belief

assignment mC5;6
is computed by combination,

mH1
"mH2

;

using Eq. (1). For instance at time 222:

mC5;6
ðC5;6Þ ¼ mH1

ðH1Þ 
 mH2
ðH2Þ ¼ 0:3

mC5;6
ðC5;6Þ ¼ 0

mC5;6
ðC5;6,C5;6Þ ¼ 0:7

means EV state may be at the state End of passing ðs6Þ;
but it is not sure.

6.2. Maneuvers recognition using IDRES

The second decision level finds the car maneuver
with an incremental calculation of its mass of evidence
for the successive focal elements. Fig. 5 shows the
evolution of the overtaking maneuver M1; one of
the possible current maneuvers, described by the
sequence

M1 ¼ ðs1; s2;y; s9Þ:

At time 190 ms; the sequence ðs1; s2; s3; s4Þ has been
recognized and

mM1
ðs1-?-s4-O5-?-O9Þ ¼ 1:

At time t1; the state recognition level gives the basic
belief assignment concerning s5:

ms5 ðs5Þ ¼ 0:9
ms5 ðs5Þ ¼ 0
ms5 ðs5,s5Þ ¼ 0:1

Before, ms5ðs5Þ was ever equal to zero meaning that
Belðs5Þ ¼ 0: Such as the method presented in Section 5.2,
mM1

is combined with ms5 given values at mM1
:

mM1
ðs1-?-s5-O6-?-O9Þ ¼ 0:9

mM1
ðs1-?-s4-O5-?-O9Þ ¼ 0:1

From t1 to t2; Belðs6Þ ¼ 0 and becomes not equal to zero
at time t2; for instance:

ms6 ðs6Þ ¼ 1
ms6 ðs6Þ ¼ 0
ms6 ðs6,s6Þ ¼ 0

At this time, mM1
is combined with ms6 given values at

mM1
:

mM1
ðs1-?-s6-O7-?-O9Þ ¼ 0:9

mM1
ðs1-?-s4-O5-?-O9Þ ¼ 0:1

Fig. 3. Table of mass calculations.

Fig. 4. Symbolic model to define the truth of H1 and H2:
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Fig. 5. An example of IDRES behavior with maneuvers recognition.

Fig. 6. Evolution of the maneuver recognition.
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The maneuver recognition is totally recognized when the
belief of the complete sequence is not equal to zero:

mM1
ðs1-?-s9Þa0:

Fig. 6 shows the recognition of an overtaking maneuver.
It can be seen that the evolution of the focal elements
mass of evidence is progressive.

7. Conclusion

This paper focuses on the recognition of a sequence of
states from the numerical raw data got from the real
dynamic system. The addressed applications concern the
recognition of a driving maneuver. Two types of rule-
based systems are presented based on two levels of rules.
But if the two systems are well adapted to reach this
goal, they cannot be used in real-time conditions, and
they do not take into account the inaccuracy of the raw
data. In the first case, the problem can easily be solved
by using the knowledge of the possible current state. For
the second point, it is proposed to model the uncertainty
on the data by a basic belief assignment proposed in the
Dempster Shafer’s theory. This leads to the modeling of
a confidence on the conditions, transitions, states and on
the possible maneuvers that may be recognized. The
algorithms of the DSRC and IDRES systems have been
modified in order to take into account this confidence.
Because the final results will be used by a human expert,
the quality of the recognition given by this method is a
fundamental obtained parameter.

The future work consists in using data coming from
the real vehicle, and to complete the list of all possible
maneuvers that can occur during a journey on an urban
motorway.
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