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ABSTRACT: This paper describes the design and development of an intelligent agent model for human behavioral 
representation (HBR) in real-time air combat simulation. The essential feature of this model is its organization around 
the skilled human’s situation assessment behavior in a complex multi-task environment. Its application is demonstrated 
for modeling tactical pilot behavior in a four-ship fighter sweep mission. A detailed knowledge engineering exercise 
was conducted with Air Force pilots to define relevant situation awareness (SA) and decision-making models. These 
models were inserted into a real-time tactical engagement simulator, along with a mechanism for inter-agent 
communication. Simulation results demonstrate the effectiveness of using SA-centered decision-making as a framework 
for modeling tactical piloting behavior. The agents demonstrate the ability to set up and execute intercepts, perform 
defensive reactions, make kill assessments, and re-engage when necessary. The inter-agent communications mechanism 
facilitates the development of shared situation awareness, and it provides a command mechanism for the flight leader to 
direct the behavior of other flight members. 
 

1. Introduction 
The growing use of simulation for military training, 
systems analysis and acquisition, and command decision 
aiding has created a need to develop accurate 
computational models of individual and team behavior 
(Pew & Mavor, 1998). The goal of such models is to 
mimic the behavior of a single human or the collective 
behavior of a team of humans in some well-defined 
operational environment. For training purposes, they can 
provide a realistic threat environment when it is not 
feasible or desirable to fully populate a simulation with 
human players. To be effective, the models should 
demonstrate observable behaviors that are realistic to 
other participants in the simulation. Similarly, for systems 
analysis and evaluation, accurate human behavioral 
models can provide a realistic context for evaluating the 
performance and robustness of new design concepts. 

One particular area where effective human behavioral 
models are needed is tactical air combat. Fighter pilots are 
facing increasing numbers of sophisticated threat weapons 
systems, and air superiority scenarios are becoming 
progressively more time-critical and complex. In 
response, significant effort is being placed on developing 
technologies that offer the potential to increase the pilot’s 
situation awareness (SA). While many definitions of SA 
have been proposed (Pew & Mavor, 1988), a succinct one 
is offered by Endsley (1995): situation awareness is the 
perception of the elements in the environment within a 
volume of time and space, the comprehension of their 
meaning, and the projection of their status into the near 
future. Few reliable tools exist at present for evaluating 
the utility of any given subsystem in terms of its direct 
potential for enhancing SA. 

Many computer models have been developed for 
evaluating the impact of new technologies on overall 
mission success. A key U.S. Air Force (USAF) model is 
the Man-In-the-Loop Air-to-Air System Performance 
Evaluation Model (MIL-AASPEM), developed by The 
Boeing Company (Lawson & Butler, 1995). It is used 
extensively for subsystem effectiveness evaluation and 
air-to-air combat tactics development. MIL-AASPEM’s 
strengths include capabilities for: 1) representing multiple 
types of aircraft and their associated avionics, sensor 
subsystems, displays, weapons and ground players; 2) 
conducting man-in-the-loop simulations using any 
combination of manned pilot stations and simulated pilots 
implemented via a rule-based pilot decision logic (PDL); 
and 3) simulating a many vs. many (MvN) engagement in 
real time. While MIL-AASPEM has been used effectively 
in several system studies, a number of key weaknesses 
have been identified. These include: 
1) An inability to relate proposed display or subsystem 

enhancements to improved pilot situation assessment, 
decision-making, and overall performance. 

2) The lack of an integrated architecture for representing 
advanced pilot behavior models needed for accurate 
predictions of engagement outcome. 

3) The lack of a realistic representation of the pilot’s 
capabilities and limitations in information processing, 
situation assessment, and decision-making. 
Most of these problems can be traced directly to 

MIL-AASPEM’s emphasis on a rule-based PDL, which 
does not accurately model situation assessment behavior. 
Since the rule-based PDL lacks capabilities for 
representing key SA concepts such as a tactical mental 
model, the process of evidence accumulation, and the 



 

 

quantitative representation of situation awareness, it 
cannot simply be expanded to properly account for SA-
related pilot activities. The rule-based PDL model is thus 
considerably limited in its representation of the pilot’s 
actual decision-making process. Consequently, no matter 
how well MIL-AASPEM represents the non-human 
components of the scenario (e.g., vehicle, subsystems, 
displays, etc.), its fidelity will always be limited by the 
validity of those components representing human 
decision-making behavior. 

In light of these shortcomings an upgrade effort was 
initiated, focusing on the development of a high-fidelity 
agent model of SA-centered pilot decision-making, and 
the demonstration of its utility in MIL-AASPEM. 

2. Background 
The objective of this research was to develop an 

intelligent agent model that could be used to simulate 
skilled human behavior in a real-time tactical air combat 
simulation environment. This section provides 
background material that supported this modeling and 
development effort. Section 2.1 describes the Rasmussen 
Hierarchy of human information processing and skilled 
behavior, which is a conceptual framework for analyzing 
different types of human skills. Section 2.2 describes past 
research in the area of human decision modeling that 
supported the formulation of the intelligent agent model. 
Finally, section 2.3 describes some past efforts to develop 
HBR models that directly influenced this research. The 
reader is referred to Pew and Mavor (1998) for a broader 
overview of human behavioral modeling for simulation. 
2.1 Rasmussen Hierarchy of Human Behavior 

Rasmussen’s three-tier model of human information 
processing and skilled behavior (Rasmussen, 1981, 1982), 
shown in Figure 1, provides a good unifying theoretical 
framework for analysis of different human skills that may 
be modeled within a real-time simulation. 
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Figure 1: Rasmussen Hierarchy of Human Behavior 

By dividing skilled behavior into categories based on 
the degree of automaticity, complexity, and level of 
cognitive processing, this framework supports systematic 
skill decomposition and measurement of individual 
aspects of the overall skill on a part-task basis. Each link 
in Figure 1 represents flow of information through the 
human information processing apparatus. Information 
flows through the system starting at the bottom left with 
environmental input, and flowing upwards along the left 
side of the diagram to the most complex level of 
knowledge-based processing. Decisions about behaviors 
propagate downward through the right side of the figure 
until they are executed by the motor organs. Aspects of 
the stimuli that can be handled at the lower levels are 
processed there (i.e., a cognitive “shortcut”) and only 
situations that require more sophisticated processing reach 
the most complex knowledge-based level. Processing is 
divided into three broad categories, corresponding to 
activities at three different levels of complexity: 

Knowledge-based behavior is the highest level of 
complexity, required for any complex problem solving 
that has not been fully automated and typically involves 
handling new or unusual situations where reasoning from 
first principles is required. These situations are often 
made more complex by the need to engage in several 
parallel tasks simultaneously. 

Rule-based behavior is at the core of high-
performance skill as it involves well-practiced, often 
highly automatized behavioral sequences that comprise a 
set of compiled situation-action pairs (i.e., rules). It is 
demonstrated in situations requiring standardized 
procedures. The emphasis here is on accurate and timely 
situation assessment, followed by the appropriate 
procedural response. 

Finally, skill-based behavior involves well-practiced 
sensorimotor skills that do not involve cognitive resources 
but are performed largely automatically in response to 
recognized stimuli. It is the most automated type of 
behavior demonstrated by almost unconscious 
performance of highly trained sensorimotor tasks. 

The Rasmussen hierarchy is a good framework for 
decomposing a particular task-skill pair into constituent 
skill-types, each with different processing characteristics 
and requirements. This hierarchy of performance skills is 
a good tool for decomposing complex skills into their 
constituent elements. Although not posed directly as a 
computational representation, it does provide a good basis 
from which to approach the design of an intelligent agent 
for human behavioral modeling. 
2.2 Human Decision-Making in Complex Task 

Environments 
Human performance in decision-making has been 

studied extensively, primarily through empirical studies 
but increasingly with computational tools. These studies 



 

 

span the theoretical-to-applied spectrum and cover many 
domains. 

Endsley (1993, 1995) and Adams, Tenney & Pew 
(1995) discuss a psychological model of decision-making, 
focusing in particular on situation awareness (SA), and 
the impact of particular system characteristics on the 
operator workload, attention and memory requirements, 
and the likelihood of errors. Klein (1989, 1994) has 
studied a particular type of decision-making predicated on 
the quick extraction of salient cues from a complex 
environment and a mapping of these cues to a set of 
procedures. Research indicates that such Recognition-
Primed Decision-making (RPD) plays a major role in 
planning and it is therefore critical for decision-aiding 
systems to recognize and support this mode of human 
information processing. Situation-centered decision-
making has been widely accepted as the most appropriate 
representation of actual human decision-making in high 
tempo, high value situations (Klein, 1989; Stiffler, 1988; 
Fracker, 1990). 

While many definitions of situation awareness have 
been proposed (see Pew & Mavor, 1988 for an overview), 
a particularly succinct one is that offered by Endsley 
(1995), which divides SA into three hierarchical levels: 
• = Level 1: Perception of the key elements in the 

environment within a volume of time and space. This 
is the identification of all of the relevant elements 
that, when combined and interpreted, define the 
current situation. 

• = Level 2: Comprehension of the current situation. This 
consists of the mental “integration” of level 1 events 
into an overall, operationally relevant picture of the 
current situation. 

• = Level 3: Projection of the current situation into the 
near future. This is the prediction of the current 
situation into the future, to support short-term 
planning when possible. 
These definitions are especially useful for the 

development of intelligent agent models of human 
behavior, because they can be used to as a starting point 
for knowledge engineering exercises with domain experts. 

There is a significant difference between the SA-
centered model and the conventional decision-centered 
model that views the decision maker as “faced with 
alternatives, and considering the consequences of each 
alternative in terms of analysis of future states 
(odds/probabilities) weighed against alternative goals” 
(Klein, 1989). In the SA-centered model, no utility or 
alternative is considered; instead, SA becomes the focus 
of all human actions. It defines a decision maker’s view 
of the environment and characterizes the information 
needs that drive his/her experiential (if-then) decision-
making. This view of human decision-making provides 
the basis for the intelligent agent representation developed 
under this research. 

A number of studies have been conducted focusing 
on the differences between expert and non-expert 
performance. An experiment designed to determine 
differences in information usage by tactical planners 
indicated that 78% of critical facts identified by the 
experts were missed by the non-experts. The facts missed 
by non-experts included timing information, actions of 
adjacent units, changes in boundaries, enemy activities, 
terrain constraints, mobility, engineering capabilities, and 
logistical loads (Fallesen et al, 1992). Another critical 
difference between experts and non-experts is the use of 
uncertain information. Experts were more aware of 
uncertain assumptions and made explicit predictions of 
events that would confirm their expectations and thus 
confirm or disconfirm assumptions (Tolcott et al, 1989). 
A study of expert military tactical decision-making 
(Deckert et al, 1994) found that experts’ performance 
differed along a number of dimensions, including 
awareness of enemy activities, learning from past 
mistakes, flexibility of planning, seeking of disconfirming 
evidence, deeper exploration of options, and better 
management of uncertain information. Although these 
characteristics are not captured within SAMPLE at 
present, they do provide a roadmap for modeling 
individual differences in human performance during 
future research. 
2.3 Computational Models for Human Behavioral 

Representation 
The modeling approach used here has its roots in 

development that began with the Optimal Control Model 
(OCM) (Kleinman & Baron, 1971). This is an 
information-processing model of the operator of a 
dynamic system, grounded in modern control and 
estimation theory, which accounts for closed-loop 
human/machine performance across a range of primarily 
continuous control tasks (e.g., flight-path control). 
Building on this model, the dynamic decision-making 
model (DDM) of Pattipati, Kleinman & Ephrath (1983) 
was developed to account for discrete decision-making 
behavior in a generic multi-task supervisory control 
environment. 

The first attempt to integrate continuous and discrete 
information processing with the structured procedural 
activities of the flight crew was with PROCRU, a model 
developed to evaluate commercial approach procedures 
during landing (Baron, Zacharias, Muralidharan & 
Lancraft, 1980; Milgram, van der Wijngaart, Veerbeek, 
Bleeker & Fokker, 1984). A number of approach 
simulations were conducted under different procedural 
assumptions, to support crew information-processing 
requirements, performance, and workload. An upgraded 
version was also developed to model the anti-aircraft 
artillery (AAA) crew for military applications, and to 
evaluate performance against targets using a range of 
defensive countermeasures (Zacharias, Baron & 



 

 

Muralidharan, 1982). Here, the task of situation 
assessment was first made explicit, and linked to 
procedurally-driven rules of engagement.  

Finally, an enhanced model known as the 
crew/system integration model (CSIM) has been used for 
the analysis of anti-aircraft artillery crews (Zacharias & 
Baron, 1981), fighter attack missions (Zacharias & Baron, 
1982), and in a precursor effort to the current research 
(Zacharias et al, 1996). CSIM provides a greater 
structural formalization of many of the functions included 
in previous versions, and makes explicit some of the 
modeling requirements needed for realistic 
human/systems analysis. 

Figure 2 illustrates CSIM’s block diagram. The 
block diagram is separated into two major components: 
one dealing with the aircraft, and one with the pilot. The 
display/control module acts as the interface between the 
two model components. 

The display/control interface drives the pilot’s 
sensory channels. The vehicle state, in conjunction with 
the terrain features generated by the external world, drive 
the pilot’s extra-cockpit visual channel, and provide him 
with map-based navigation information. The aircraft 
displays, driven by both vehicle dynamics and subsystems 
(e.g., the altimeter driven by the vehicle state, or a 
situation display driven by radar), feed both visual and 
auditory channels. There is also a tactile/vestibular 
channel, to account for non-visual and non-auditory cues 
picked up by the pilot such as rotational accelerations. 
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Figure 2: Crew/System Integration Model 

The attention allocator accounts for the pilot’s 
sensory limitations as well as for monitoring decisions on 
how to allocate attention among competing information 
sources. Visual sensory limitations are modeled in the 
same manner as in the OCM (Kleinman & Baron, 1971; 
Baron & Levison, 1977), except that the perceptual delay 
is neglected. An observation noise and a threshold are 
associated with each observed visual quantity. The 

thresholds are particularly important for external visual 
scene perception, for example, in visual target acquisition. 
Monitoring decisions reflect the fact that the pilot cannot 
process all sources of information simultaneously and 
must divide his attention (i.e., between the external world 
and within the cockpit; within the cockpit there is the 
question of which displays to fixate on, etc.). 

The information processor submodel consists of 
two submodels, a continuous state estimator and a 
discrete event detector. The estimator can be identical to 
that used in the OCM, a Kalman filter designed to 
generate optimal estimates of the current vehicle/system 
state. 

The outputs of the estimator are the estimate of the 
vehicle/system state, ˆ x  and the covariance of the 
estimation error, ΣΣΣΣ. Such states would include vehicle 
linear and angular velocities, position, and attitude, as 
well as the states of any targets or threats that might 
influence task execution. The estimator produces the state 
information needed for vehicle control, in addition to 
subjective probability estimates that can be used for event 
detection and situation assessment. The error covariance 
ΣΣΣΣ also measures the pilot’s uncertainty in the estimate ˆ x , 
and can be used to influence monitoring decisions. 

The event detector generates occurrence probabilities 
of mission-relevant events, as perceived by the pilot on 
the basis of his dynamic information base. The event may 
be a failure, a request for action, a mission-related 
milestone, or some other discrete enunciated condition. 
The inputs to the event detector are visual and auditory 
discretes picked up by the display processor, and state 
estimator outputs. 

The situation assessor block takes in the estimated 
states ˆ x  and the detected events e, and generates an 
assessed situation state S*, which is a multi-dimensional 
vector defining the occurrence probabilities of the 
possible situations facing the pilot. For model tractability, 
a fixed and pre-defined set of candidate situations are 
assumed, determined solely by their task relevance. A 
situation defines an aggregated set of states, events, and 
possibly other situations which call for a given course of 
action or procedure execution. In simple terms, a situation 
is a predicate that must be satisfied to activate a procedure 
in a production rule system. Both the situation and 
production rule activities can be quite complex, 
depending on the modeled task. 

The decision maker and procedure selector block 
takes in the assessed situation state S*, and generates a 
selected task or procedure P*, defined in the procedure 
memory shown. The definition of these procedures is an 
essential step in any task modeling effort, and it is 
important to note that the term procedure can apply to 
tasks in general; a procedure in these terms can have 
considerably more cognitive content than might normally 
be considered. 



 

 

The selection and execution of a procedure results in 
an action or a sequence of actions. Three types of actions 
are modeled within CSIM: control actions, display 
requests, and communications. The control actions 
include continuous manual flight control inputs to the 
aircraft and discrete control settings. Display requests 
result from procedural requirements for specific 
information and, therefore, raise the attention allocated to 
the particular information source. Communications are 
verbal requests or responses as demanded by a procedure, 
and are modeled as the transfer of state, command, or 
event information. 

3. Architecture and Implementation of 
Intelligent Agent Model 

3.1 Overview 
The SAMPLE architecture, shown in Figure 3, 

combines elements of the Rasmussen Hierarchy and the 
Crew/System Integration Model presented in the 
preceding section. It integrates the information 
processing/situation assessment/decision-making concepts 
of CSIM with the explicit delineation of skill based and 
rule-based behavior of the Rasmussen Hierarchy. 
Knowledge-based or problem-solving behavior is not 
currently supported explicitly, but it would be a 
straightforward extension of the existing architecture 
(although computational implementation of generic real-
time planning or problem-solving algorithms would pose 
a considerable challenge). 
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Figure 3: Agent Model Architecture 

Two branches exist underneath the sensory channels 
and attention allocation block. The “shortcut” between 
continuous input filtering and the control channel serves 
the same function as the skill-based branch of the 
Rasmussen Hierarchy, while the path beginning with 
feature extraction and ending below the procedure 
selector is the equivalent of the rule-based branch. Like 
CSIM, a modeled behavior is that of directed attention 
allocation or situation assessment. 

The integration of each of the key cognitive functions 
into a behavioral agent architecture called for the 
application of computational intelligence technologies. In 
this section the implementation approach used is 
described. Section 3.2 discusses the use of fuzzy logic for 
low-level event detection and information processing. 
Section 3.3 explains the application of belief networks for 
situation assessment modeling. Finally, section 3.4 
describes the use of rule-based expert systems for 
modeling the final decision-making function. 
3.2 Fuzzy Logic for Event Detection 

The front end to the agent model’s SA-based 
decision-making model is the information processing and 
event detection module, which transforms fused sensor 
data into situationally relevant semantic variables. These 
are the essential events that, as a group, define the overall 
situation facing the human operator. 

SAMPLE uses fuzzy logic (FL) technology to 
implement event detection functionality. While some 
discrete event detection can be implemented using 
Boolean logic, most significant events required a more 
robust and flexible means of definition. This was 
achieved by the use of an FL-based event detector. 

Fuzzy logic was proposed by Zadeh (1973) as a 
mathematical concept to deal with uncertainty in human 
decision-making. He was concerned with how humans 
can process imprecise non-numerical, or linguistic, 
information (i.e., big, small, fast, heavy, etc.) to perform a 
given task. He argued that if a human can perform 
complex tasks with this imprecise knowledge, then a 
machine would also benefit from such an approach. 

Fuzzy reasoning employs the techniques of fuzzy 
logic in an IF-THEN rule base to perform a given task. A 
functional block diagram of fuzzy reasoning is shown in 
Figure 4. Fuzzy reasoning consists of three main blocks: a 
fuzzifier, a decision logic, and a defuzzifier. 
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Figure 4: Functional Block Diagram for Event 

Detection using Fuzzy Logic 



 

 

The fuzzifier acts on the system measurements and 
performs the mapping of deterministic numerical data (a 
crisp set) into fuzzy sets. Given a measurement value x, 
the fuzzifier interprets it as a fuzzy set A with 
membership function µ(x), where µ(x) ∈  [0,1]. The 
fuzzification process involves the following steps: 1) 
determine the range of values of the measurement 
variables; 2) perform a transformation that maps the 
ranges of values of the measurements into the 
corresponding universes of discourse; and 3) perform the 
fuzzification function by transforming the measurement 
value into a suitable linguistic value which is viewed as 
labels of fuzzy sets.  

After the fuzzification procedure, the fuzzy sets are 
processed via some decision logic consisting of linguistic 
rules. These rules are structured as follows: 

IF X is A, THEN Y is B 
where antecedent X is a measurement and consequence Y 
is the output. These rules thus relate the input 
measurements into the outputs. The mapping from the 
fuzzy set A into the fuzzy set B is called a fuzzy relation, 
and can be implemented via simple forward chaining 
algorithms. 
 The final element of the functional block diagram for 
fuzzy reasoning is the defuzzifier, which acts on the 
decision logic output variables or fuzzy control actions 
and performs the mapping to the corresponding 
deterministic numerical data (a crisp set). Three main 
techniques are employed to perform defuzzification: 
maximum membership, mean-of-maxima, and centroidal 
(Kosko, 1992). 
3.3 Belief Networks for Situation Assessment 

The second processing stage in SAMPLE is the 
situation assessor, which generates a high-level 
interpretation of the operational situation. The agent 
model design relies on belief networks (Pearl, 1988) for 
probabilistic reasoning in the presence of uncertainty, 
making use of computational models of situation 
assessment. These models emulate a skilled human’s 
information fusion and reasoning process in a multi-task 
environment. 

Any robust computational model of situation 
assessment requires a technology that has: 1) a capability 
to quantitatively represent the key SA concepts such as 
situations, events, and human mental models; 2) a 
mechanism to reflect both diagnostic and inferential 
reasoning; and 3) an ability to deal with various levels and 
types of uncertainties, since most real-world systems of 
any complexity involve uncertainty. Russell & Norvig 
(1995) cite three key reasons for this uncertainty: 
1) Theoretical ignorance: All models of physical 

systems are necessarily approximations. 

2) Laziness: Truly exceptionless rules require numerous 
antecedents and consequents and are therefore 
computationally intractable. 

3) Practical ignorance: Even if all rules are known, 
there may not be enough time to measure all 
properties of the particular objects that must be 
reasoned over. 
Belief networks (Pearl, 1988) offer considerable 

potential for meeting these requirements and modeling 
SA behavior. The principal advantages of belief networks 
over other uncertain reasoning methods are: 
1) Its probability estimates are guaranteed to be 

consistent with probability theory. This stems from 
its Bayesian update procedure’s strict derivation from 
the axioms of probability.  

2) It is computationally tractable. Its efficiency stems 
principally from exploitation of conditional 
independence relationships over the domain. 

3) The structure of a BN captures the cause-effect 
relationships that exist among the variables of the 
domain. The ease of causal interpretation in BN 
models typically makes them easier to construct, thus 
minimizing the knowledge engineering costs 
(Tversky & Kahneman, 1981) report that expert 
physicians prefer to assess disease-symptom 
probabilities in terms of causal reasoning rather than 
diagnostic reasoning), and easier to modify (Henrion, 
1989). 

4) The BN formalism supports many reasoning modes: 
causal reasoning from causes to effects, diagnostic 
reasoning from effects to causes, mixed causal and 
diagnostic reasoning, and intercausal reasoning. 
Intercausal reasoning refers to the situation in which 
a model contains two potential causes for a given 
effect. If we gain evidence that one of the possible 
causes is very likely, this reduces the likelihood of 
the other cause. Russell & Norvig (1995) assert that 
no other uncertain reasoning formalism supports this 
range of reasoning modes. 
Belief networks provide the capability and flexibility 

of modeling situation awareness (SA) with its full 
richness without arbitrary restrictions. They provide a 
comprehensible picture of the SA problem by indicating 
the dependent relationships among the variables, both 
high-level (symbolic) and low-level (numeric), relevant to 
the SA problem. This provides a clearer view (than a low-
level neural network-based approach would, for example) 
of how each individual piece of evidence affects the high-
level situation characterization. They allow the 
incremental addition of evidence, concerning any of the 
domain variables, as it arrives, thus allowing for real-time 
SA update. The method is consistent with probability. 
Finally, the graphical representation in which the global 
CPT is decomposed into a set of smaller local CPTs each 
describing the interactions of a small subset of the domain 



 

 

variables renders probabilistic inferencing tractable, even 
for large domains such as tactical situation assessment. 
3.4 Expert Systems for Decision-Making 

Human decision-making is modeled using a cascade 
of two sub-models: a procedure selector and a procedure 
executor. In tandem, these emulate a human’s rule-based 
decision-making behavior and psychomotor skills in 
executing a selected procedure. Decision-making 
behavior was implemented as a production rule system, 
with a general structure given by: 

If (Situation = Si) then (Procedure Set = Pi) 
This supports selection of a procedure set that is pre-

assigned to the assessed situation specified in the human 
operator’s mental model. Details of the procedure set, and 
its linkages to the associated situation, are maintained in a 
procedural knowledge base. 

A procedure set may contain one or more sub-
procedures. After a procedure set is selected, each firing 
of a sub-procedure is determined using a forward chaining 
production system in response to event and state 
evolution. 
3.5 Modeling of Inter-Agent Communications 

An important component of any multi-agent system 
is the implementation of inter-agent communication. 
SAMPLE makes use of the concepts underlying the 
Command and Control Simulation Interface Language 
(CCSIL) as a framework for modeling inter-agent 
communications. CCSIL is a special language that has 
been developed by the DARPA Command Forces Project 
to model communication among entities in the Distributed 
Interactive Simulation (DIS) Environment (Salisbury, 
1995). It is a component of the Command Forces (CFOR) 
Simulation (Calpin, 1998), which incorporates explicit 
modeling of battlefield command and control into virtual 
simulation. CCSIL includes a set of messages and a 
vocabulary of military terms to fill out those messages. 
CCSIL enables communications modeling via 
implementation of a message packet that comprises three 
fields: 
• = The sender, which is the alphanumeric representation 

of the sending unit. 
• = The destination, which is a list of one or more unit 

names of the intended message recipients. 
• = The message definition, which is a structured data 

packet that contains a well-defined set of data 
encoding the message’s contents. 
The developers of CCSIL have developed message 

content definitions for land, sea, and air operations for 
battlefield communications. The general philosophy 
underlying CCSIL’s design was used for overall modeling 
of inter-agent communication, and its specific message 
packet definitions were used for the particular application 
described in the following section. 

Although more generic approaches to inter-agent 
communication do exist (e.g., the Knowledge Query 
Manipulation Language, or KQML (Finn, Labrou, and 
Peng, 1998)), it was decided that the domain-specific 
needs of modeling air combat communications were met 
more readily by a customized approach such as that used 
here. This will also facilitate integration of SAMPLE into 
other military simulation models that use CCSIL for inter-
agent communication. 

4. MIL-AASPEM Integration and 
Demonstration 

4.1 Development Scenario 
The SAMPLE agents were developed to model pilot 

behavior in a fighter sweep mission, in which a four-ship 
formation of tactical aircraft deploys to clear the air of 
enemy fighters prior to other air missions entering the 
engagement area. Any airborne targets meeting a 
restrictive geometric commit criteria are engaged. 

Figure 5 illustrates the general progression of the 
sweep mission. Five key phases were identified for this 
overall mission, as follows. 
1) Ingress (Initial transit towards battle area) 
2) Detection (Identification and assessment of detected 

threats) 
3) Engagement (Tactical intercept leading to weapons 

employment) 
4) Defensive Reaction (May occur at any time) 
5) Egress (Exit back to friendly territory) 

Political
Border

Home Plate

Objective

INGRESS DETECTION

EGRESS

ENGAGEMENT

Commit
Criteria

Met

Detection
Criteria

Met

Threat Aircraft
Group(s)

May have defensive reaction, re-engagement,
and/or countermeasures in this period

Weapons
Employment

ADMIN (not formally part
of modeled scenario)

Continue

approx. 100 nautical miles approx 50 nautical miles  
Figure 5: Sweep Mission Overview 

The transitions between one mission phase and the 
next are event-driven rather than being constrained 
geographically or temporally, so they may occur at any 
time. The number of threat aircraft that may be 
encountered is unknown, and it is possible that some 
missions may not result in an engagement. 

As the blue flight transits towards the engagement 
area, they build a shared picture of the tactical situation 
ahead through radio communications. This helps to ensure 



 

 

that all pilots have a common picture of the threat 
situation. The flight leader’s decision matrix includes 
threat detection with onboard sensors, commit decision, 
positive identification, tactical intercept selection, threat 
group and within group sorting for flight members, hostile 
declaration and weapons employment. Note that only the 
flight leader can declare the decision to commit on a 
particular threat group; that decision is communicated to 
the other flight members via inter-ship communications. 
After weapons employment, all flight members monitor 
weapons success and re-engage as necessary. Post-
engagement flight would continue running through 
decision matrices until the flight returns home. 
4.2 Mental Model Development 

The information processing, situation assessment, 
and decision-making models required to implement the 
SAMPLE agents were developed via an extensive 
knowledge engineering and cognitive task analysis (CTA) 
effort conducted with experienced USAF pilots. CTA 
determines the mental processes and skills required to 
perform a task at high proficiency levels (Redding 1992). 
The traditional method for task analysis is to decompose 
it into subtasks, skills, and knowledge. CTA improves the 
process by including the analysis of human thought 
processes during task performance. In this study, the 
objective was to identify the following: 
• = What activities, procedures, and tasks do the pilots 

perform during the sweep mission? 
• = What decisions support the performance of those 

tasks? 
• = What situation assessments support those decisions? 
• = What information is needed to develop these situation 

assessments? 
• = What is the nature of inter-ship communications over 

the course of the mission? How can they be modeled 
using the structured data packet representation 
described here? 
A particular challenge in this effort was the 

development of a broad range of event detection and 
belief network models for tactical situation assessment. 
The approach taken here followed that prescribed by 
Russell & Norvig (1995): 
1) Decide what to talk about. Choose which factors will 

be modeled explicitly, and which will just be 
summarized by probability statements. 

2) Decide on a vocabulary of random variables. 
Determine the variables to be used , and what values 
they can take on (e.g., target range may be long, 
medium, or short). For the purpose of fuzzification, it 
is useful to quantize continuous-valued variables into 
discrete ranges. 

3) Encode general knowledge about the dependence 
between variables. This contains both a qualitative 
and quantitative part. During the former, general 

dependencies between variables are identified. 
During the latter, the specific probability values (i.e., 
CPTs) are identified. These values may come from 
the subject matter expert’s experience, from 
measurements of frequencies in a database of past 
experiences, or some combination of the two. 

4) Encode a description of the specific problem 
instance, and pose queries to the inference 
procedure. The most common query is to obtain the 
value of some hypothesis variable. For example, what 
is the risk posed by some hypothetical tactical 
situation? It is also common to use sensitivity 
analysis to determine the robustness of such answers 
with respect to perturbations in the CPT values. 
The knowledge engineering effort yielded a network 

representation of the pilot’s mental model for the sweep 
mission. This network consists of a large set of 
interconnected nodes, each representing a different event 
detection/situation assessment/decision-making function. 
Each SAMPLE agent instantiation is implemented as a 
feed-forward network, driven by a well-defined set of 
situational and mission context inputs. 

Figure 6 illustrates one of the belief networks 
developed for situation assessment. Shown is the BN for 
computing mental posture, which quantifies the extent to 
which each pilot agent is in an offensive or defensive state 
of mind. Posture will drive decisions such as whether or 
not to abort an engagement, or the selection of an 
appropriate defensive reaction. This diagram shows two 
independent BNs linked via an algorithmic processing 
block that is essentially a lookup table followed by 
arithmetic computations. This assessment depends 
directly on three quantities: 
• = The current mission phase (ingress, detection, 

engagement, or egress) 
• = The level of confidence on whether or not the 

ownship has been targeted by enemy radar (high, 
medium, or low) 

• = The pilot’s confidence that he has mutual support 
from his wingman (high, medium, or low) 

• = The pilot’s offensive status (whether he has already 
taken a high pk shot or a low pk shot) 
The pilot’s belief as to whether he has been targeted 

depends on two pieces of evidence: 
• = Whether the radar warning receiver (RWR) detects 

any radar signals, and if so, their operating mode 
(none, search, or track) 

• = The ownship’s location with respect to a potentially 
hostile aircraft’s weapons employment zone, or WEZ 
(in or out) 
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Figure 6: Example Belief Network: Mental Posture 

Assessment 

Whether or not the pilot believes he is in a hostile 
aircraft’s WEZ depends on two factors: the type of hostile 
aircraft (which can be used to estimate its WEZ), and the 
perceived relative location of the ownship with respect to 
the hostile aircraft. This assessment cannot be represented 
directly with a belief network, because it is not a 
probabilistic inferencing process. The block labeled 
Lookup Table Processing accepts two inputs: a hypothesis 
on the threat type (which is generated using a belief 
network), and information regarding ownship position 
relative to the threat aircraft. Lookup table operations are 
performed to determine the spatial extent of the WEZ 
based on the aircraft type, followed by geometric 
computations to determine whether the ownship is in or 
out of the WEZ. 

The threat type hypothesis, which may be an all-
aspect fighter, a limited-aspect fighter, or some other 
vehicle (e.g., a transport or bomber), depends on three 
pieces of evidence: 
• = The classification generated by the RWR (all-aspect 

fighter, limited-aspect fighter, or other) 
• = The vehicle’s speed [very slow (less than 100 kt), 

slow (between 100 and 200 kt), fast (between 200 kt 
and Mach 1), or very fast (greater than Mach 1)] 

The vehicle’s altitude [low (less than 5,000 ft), medium 
(between 5,000 ft and 25,000 ft), high (between 25,000 ft 
and 50,000 ft), or very high (greater than 50,000 ft)] 

These three pieces of evidence drive the threat type 
hypothesis, which in turn drives the (non-BN) 
computation of ownship’s location relative to the WEZ. 

Table 1 shows a representative example of 
SAMPLE’s pilot decision matrices. Shown is the decision 
matrix for the type of tactical intercept to perform on a 
threat group. This decision is a function of the presence 
and arrangement of multiple threat groups, the number of 
threats, and constraints posed by the mission’s rules of 
engagement (which are specified a priori). 

Table 1: Decision Matrix for Tactical 
Intercept Selection 

Threat 
Type 

Multiple Group 
Arrangement 

Number of 
Threats 

Rules of 
Engagement 
Constraints 

Intercept Tactic 

All-Aspect 
Fighter 

 1 or 2 with 
certainty 

 Straight-in w/ pincer 
following missile shot 

  ≥3 or indeter-
minate 

 Single-side offset 

   Require Visual 
Identification 
of Target 

Lead/trail 

   Allow BVR 
Shot with Fox 
3 ordnance 

Lead/trail 

Limited-
Aspect 
Fighter or 
Other 

Azimuth 
Presentation 

  Single-side offset 

 Otherwise   Straight-in to pince, 
depending on spacing 
(i.e., larger bracket for 
greater spacings) 

The main purpose of the intercept tactic is to 
maneuver to a point where the threat aircraft are within 
the WEZ, while staying outside the boundaries of the 
threat’s WEZ. Figure 7 illustrates this concept, in the case 
where both aircraft have a WEZ of approximately the 
same size. The longest range at which either aircraft can 
launch its missiles such that its opponent is inside the 
WEZ is called the first launch opportunity (FLO). In the 
figure, the blue aircraft (on the left) has maneuvered such 
that the bandit is within its WEZ, but the blue aircraft is 
not within the bandit’s WEZ. Blue therefore has FLO. 

First Launch
Opportunity (FLO)

First Launch
Opportunity (FLO)

 
Figure 7: Weapons Employment Zones and First 

Launch Opportunity 

Tables 2 and 3 show examples of the structured data 
packets developed to describe inter-agent communication, 
as discussed earlier in section 3.5. Table 2 shows the 
message definition packet for an engagement advisory 
message, which is used by a pilot agent to communicate 
some activity (firing missiles, dropping a target, etc.) in 
relation to a specific air entity that is being tracked or 
monitored. The engagement keyword field describes the 
activity, the contact description is an alphanumeric 
designator for the contact of interest, and the contact 
location is another structured data packet nested within 
this one. Table 3 shows its definition, which describes a 
contact’s location in terms of its compass bearing, 
together with a group of optional variables that may be 
used to add additional details on the contact’s location 
and motion. 



 

 

Table 2: Message Packet for Engagement Advisory 
Field Name Description Data Type Allowed Values 
Engagement 
Keyword 

Type of Advisory Enumerated NOTCH 
ABORT 
SPIKED 
SPLIT 
FLOATING 
LOCKED 
FOX1 
FOX2 
FOX3 
KILL 
DROP_BEAMER 
DROP_DRAGGER
SORTED 

Contact 
Description 

Label used to identify the 
contact uniquely.  

Alphanumeric  

Contact location Location of the contact 
that is the subject of the 
message, or the direction 
in which a maneuver is 
being performed 

Composite 
(Air Location 
Structure) 

As defined in Table
3 

The SAMPLE software was implemented using 
object-oriented C++ on a Unix workstation. Fuzzy logic 
reasoning is performed using software derived from the 
Matlab Fuzzy Logic Toolbox, while belief network 
modeling is implemented using a stand-alone C++ class. 
All expert system functions are performed using the 
CLIPS expert system shell (Giarratano, 1998). 

Table 3: Message Packet for Air Location Structure 
Field Name Description Data Type 
Bearing Bearing to contact Bearing type 
Range Range to contact in nautical miles Floating point
Altitude Altitude of contact in ft Floating point
Speed Speed of contact in knots Floating point
Heading Heading of contact Bearing 
Aspect Aspect angle of contact Bearing 
Bullseye Location from which bearing, range, and 

heading or aspect are being calculated. 
If none specified, values are assumed to 
relative to message recipient. 

Alphanumeric

Climb Rate Rate of altitude change in ft/min Floating point
Turn Rate Rate of turn in deg/min Floating point

4.3 Simulation Results 
The results of a set of MIL-AASPEM-based 

simulation trials conducted to evaluate SAMPLE’s 
performance in the sweep mission are now discussed. In 
all scenarios, the blue flight (which used the SAMPLE 
agents) was initialized at an altitude of approximately 
25,000 ft, heading east towards the engagement area. Two 
2v2 scenarios are presented. In both cases, threat team 
(red) behavior was driven by MIL-AASPEM’s original 
PDL. The SAMPLE agents use the inter-agent 
communications mechanism described earlier in section 
3.5 to support the development of shared situation 
awareness, and to allow the flight leader to direct the 
other flight members to engage the hostile threats. 
4.3.1 2v2 Scenario, Threat Group Initially in CAP 

Figure 8 illustrates the evolution of a scenario in 
which a 2-ship blue flight (coming from the left) engages 
a 2-ship red group. The red group is initially in a combat 

air patrol (CAP) orbit, which it breaks to engage the 
incoming blue flight. In this scenario and those that 
follow, only missile launches resulting in a kill are shown, 
unless a re-engagement is required. 
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Figure 8: 2v2 CAP Scenario Evolution 

In this scenario, the blue flight commits on the threat 
group at t = 1:35 (time index 1 in the figure), at which 
point the centroid of the threat group is 60 nm away. The 
commit means that the flight leader decides to engage on 
the incoming threats, and communicates this decision to 
his wingman. The red circles shown along the threat 
trajectories at time index 1 indicate their location at the 
instant that the blue flight entered the engagement phase. 
As the red CAP breaks its orbit, it assumes a range-split 
formation (i.e., one aircraft is ahead of the other, relative 
to their direction of flight). As such, the blue flight 
performs a range sort during the engagement: Eagle 2 
(i.e., blue flight member #2) sorts on the frontmost threat, 
while Eagle 1 sorts on the trailer. Since the player ratio is 
1 and the threats are all-aspect fighters, the blue flight 
performs a single-side offset intercept (SSO) (see Table 
1). The goal of an SSO intercept is to maneuver around a 
threat’s WEZ while seeking to place the threat in the 
ownship’s WEZ, as shown earlier in Figure 7. Because 
Eagle 1 is engaging on the trailer, it makes a wider turn 
during the offset to avoid the red leader’s weapons 
employment zone (WEZ). 

Eagle 2 launches its missiles at t = 2:58 (time index 
2), and then performs an F-pole (the standard post-launch 
maneuver following the release of radar-guided missiles). 
The objective of an F-pole is to steer the aircraft in such a 
way as to keep the threat just on the edge of radar 
coverage. The solid black line emanating from Eagle 2’s 
location at 2:38 shows the trajectory of the first missile 
that hit the target (at t = 3:29). It then continues F-poling 
to avoid missiles launched by Red 3 (not shown in the 
figure). At t = 3:20, Eagle 1 launches its missiles on Red 
4, but must re-engage because the threat evades the 
missiles (the dotted lines emanating from Eagle 1 at 3:20 
show the trajectory of the evaded missile). Both Eagle 1 



 

 

and Eagle 2 fire two missiles each at their target, in 
accordance with the relevant decision matrix for weapons 
quantity selection. At t = 4:30, Eagle 1 fires a second 
round of missiles at Red 4, which hit the target at t = 4:40. 
Both blue players then disengage and head home base. 
4.3.2 2v2 Scenario, Threat Group in Azimuth-Split 

Formation 
Figure 9 shows the evolution of a 2v2 scenario in 

which the threat group is initially in an azimuth-split 
formation (abreast with respect to each other, relative to 
the direction of flight), heading west to engage the blue 
flight. The blue flight commits on the threat group at t = 
0:34, at which point the threat group centroid is just under 
60 nm away. The blue flight performs an azimuth sort on 
the threats, using a single-side offset intercept. Eagle 1 
chooses the sort logic and intercept type, and 
communicates that to his wingman. Like the previous 
scenario, a single-side offset is used because the player 
ratio is 1.0 and the threats are all-aspect fighters. Both 
blue players launch their missiles between t = 2:05 and t = 
2:08, and then perform an f-pole maneuver to the right 
(defensive reactions against incoming missiles take place 
during this time). Both Eagle 1 and Eagle 2 hit their target 
on the first attempt, with Eagle 1 making a kill at t = 2:37 
and Eagle 2 at t = 2:40. The blue flight then disengages 
and egresses towards home base. 

-20

-10

0

10

20

-30 -20 -10 0 10 20 30

Eagle 1
Eagle 2
Red 3
Red 4

   
 y

 (n
m

)

    x (nm)

1) 0:34 Commit

3) 2:08 Launch

2) 2:05 Launch

2)

3)

X

4) 2:37 Kill

5) 2:40 Kill

X

1)

 
Figure 9: 2v2 Scenario Evolution 

5. Summary 
The design and development of an intelligent agent 

model for human behavioral representation (HBR) in real-
time simulation has been described. This agent model 
uses a probabilistic representation of human information 
processing and situation assessment as the foundation for 
modeling complex decision-making behavior in multi-
task environments. The simulation results demonstrate the 
feasibility and effectiveness of using such SA-centered 
decision-making for modeling tactical piloting behavior. 
The tactics employed by the SAMPLE players were 
consistent with the results of the knowledge engineering 

exercise that supported this study. SAMPLE 
demonstrated the ability to set up and execute intercepts, 
perform defensive reactions, make kill assessments, and 
re-engage when necessary. The inter-agent 
communications mechanism facilitated the development 
of shared situation awareness, as well as providing a 
command mechanism for the flight leader to direct the 
behavior of other flight members. 

These results lay the foundation for the development 
of a full-scope SA-based model of tactical piloting 
behavior across a range of mission scenarios, and the 
deployment of the agent model into other operational 
domains. Work is underway to apply the generic agent 
architecture for modeling dismounted infantry decision-
making in hostile urban threat environments, and 
commercial pilot decision-making under distributed 
air/ground traffic management (Harper et al, 1998). 
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